
Tooling to Detect Unwanted
Thread Exits in Rust

D. A. van Cuilenborg
B. T. J. van Schaick
F. P. Stelmach
A. S. Zwaan

Fa
cu
lty
of
El
ec
tr
ic
al
En
gi
ne
er
in
g,
M
at
he
m
at
hi
cs
&
Co
m
pu
te
r
Sc
ie
nc
e

Tooling to Detect Unwanted Thread
Exits in Rust

by

D. A. van Cuilenborg
B. T. J. van Schaick

F. P. Stelmach
A. S. Zwaan

in partial fulfillment of the requirements for the degree of

Bachelor of Science
in Computer Science & Engineering

at the Delft University of Technology,
to be presented on Monday July 2, 2018 at 12:00 AM.

Project Duration: April 23, 2018 — July 2, 2018
Thesis committee: Dr. R. J. Krebbers, TU Delft, Supervisor

Ir. O. W. Visser, TU Delft, Coordinator
Ir. E. Gribnau, Technolution, Client

This thesis is confidential and cannot be made public until July 2, 2018.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

With this report we conclude our bachelor project, and (most of us) will thereby receive our bachelor
degree in Computer Science and Engineering at the University of Technology Delft. A total of 10
full-time weeks were spent at Technolution; a technology integrator that brings business, technology,
and knowledge together. In this report we provide the reader with not just an explanation of the final
product, but also the road that led us there.

We would like to thank the various people that supported us during those project. First of all, we
would like to thank Technolution for the opportunity to carry out this project and providing us with an
office, whiteboards and coffee for the duration of our project. Furthermore we would like to thank Erwin
Gribnau, our direct supervisor at Technolution, who supported us with useful feedback, to stir the project
into the right direction. Finally, we would like to thank Robbert Krebbers, for his continuous effort in
providing us with thorough feedback and his excellent mentoring.

D. A. van Cuilenborg
B. T. J. van Schaick

F. P. Stelmach
A. S. waan

Gouda, June 2018

iii

Summary

Technolution is a company that specializes in building embedded and information systems, in which
software plays a key role. Recently, Technolution is transitioning from the use of C in embedded systems,
to Rust, a relatively new programming language developed by Mozilla. By design, Rust provides the
programmer with higher security and reliability guarantees, such as memory safety, type safety and the
absence of race conditions. These guarantees are ensured by means of an expressive ownership-based
type system. However, it is impossible for the Rust type system to detect all errors statically. Hence,
there are still many operations that contain dynamic checks to test for erroneous conditions. When
such a check fails, an unrecoverable problem has been encountered and the current thread exits, this is
called a panic in Rust. A panic causes the program to terminate, leading to a decrease in availability of
the system. To avoid situations causing panics, Technolution wants tooling that detects possible ways a
program could panic.

For this purpose, we developed a static analysis tool: Rustig. When given a program, Rustig notifies the
user of all the operations that either directly, or indirectly via another library, may cause a panic. The
tools performs the analysis of panic calls in two stages. First, it builds a call graph from the executable of
a Rust program, modelling functions as nodes and function calls as directed edges. Secondly, it performs
an analysis on the call graph to determine which functions could cause panic.

As part of the development of Rustig, we devised two new approaches. We have developed an approach
to construct call graphs taking into account dynamic dispatch calls. This is based upon the assumption
once a function address is loaded, it will also be called during execution. Furthermore, in order to
efficiently analyze the call graph, a simplification of the all paths problem is proposed. In contrast with
the all paths problem, the simplification is solvable in polynomial time. The approach involves finding
the shortest path for every crossing edge on a graph cut.

v

Contents

1 Introduction 1
1.1 Technolution . 1
1.2 Contribution. 1
1.3 Outline . 2

2 Problem Definition 3
2.1 Rust Safety Guarantees . 3
2.2 Handling of Unwanted Program State in Rust . 4

3 Problem Analysis 7
3.1 Decomposing the Problem . 7
3.2 Call Graph. 8
3.3 Analysis . 11
3.4 Conclusions . 12

4 Design 13
4.1 Requirements . 13
4.2 Design Goals . 15
4.3 Test Design . 15
4.4 Architecture . 16

5 Implementations 19
5.1 Pipeline. 19
5.2 Call Graph. 20
5.3 Markers and Filters . 24
5.4 Find Panics . 25
5.5 Patterns . 27
5.6 Output . 27
5.7 Testing . 28

6 Process Evaluation 31
6.1 Development Methodology . 31
6.2 Development Tools . 31

7 Final Product Evaluation 33
7.1 Verification of Design Goals . 33
7.2 Verification of Requirements . 34
7.3 Validation . 34
7.4 SIG . 35

8 Ethics 37
8.1 Control Flow Analysis . 37
8.2 False Assumptions . 38

9 Discussion 39
9.1 Failed Approaches . 39
9.2 Limitations . 40
9.3 Findings . 40

vii

10Conclusion 43

A Project Description 45
A.1 Background Information . 45
A.2 Goal. 45
A.3 Research Questions . 45
A.4 Technologies Involved . 45
A.5 Future . 46

B Project Plan 47
B.1 Introduction . 47
B.2 Purpose . 47
B.3 Process . 50
B.4 Risks . 51
B.5 Planning . 52

C Research Report 53
C.1 ELF and DWARF . 53

D Test Report 55

E SIG Evaluation 57
E.1 Feedback on first SIG submission . 57

F Project Reflection 59
F.1 Dominique van Cuilenborg . 59
F.2 Bart van Schaick . 60
F.3 Fabian Stelmach . 60
F.4 Aron Zwaan . 61

G Info Sheet 63

Glossary 65

Bibliography 67

viii

1
Introduction

Code for low-level systems is usually written by the select few who are able to code using low-level
languages, keeping in mind memory management, data representation and concurrency. Rust, a fairly
new programming language by Mozilla, breaks these barriers by having a very strict compiler. This
compiler ensures memory safety and data race freedom by means of an expressive ownership-based
type system [1]. This allows for easier low-level systems programming, while the performance is on par
with C, the lingua franca for low-level code. Companies are gradually learning about the potential of
Rust and some of them are currently shifting towards using this new programming language. One of
such companies is Technolution.

1.1. Technolution
Technolution creates information and embedded systems for their clients, realizing innovative ideas in
the domains of transportation, defense and public security. These systems are subject to high security
standards, to ensure confidential data is securely processed. Furthermore, the systems have to meet
high availability and reliability standards, leaving no room for mistakes affecting its uptime. Moreover,
fixing bugs after deployment is difficult and should be avoided if possible, since updating embedded
systems can be very costly, because of the need for physical access to update the systems.

While Rust provides Technolution with most of the necessary safety guarantees, availability is not
guaranteed, since execution may still fail at some point. This occurs when an unrecoverable problem is
encountered, the program enters a state which the programmer did not account for [2], and terminates
immediately. In Rust, this is called a panic. Despite the safety advantages of Rust, a panicking program
could still be a great burden to the operations of Technolution due to the loss of availability. Therefore,
they want to be able to analyze their programs to find execution paths in their code potentially leading
to a panic.

1.2. Contribution
Our contribution to the Rust community is Rustig, a static analysis tool which provides the programmer
with paths in their code that could potentially lead to a panic. This is done by first creating a call graph
from a binary file and then analyzing the graph to find code paths which lead to a premature termination.

The significance of Rustig is that the programs written in Rust can be of higher quality, with less panics.
This would help Rust programmers, and Technolution, since they would be able to achieve a higher
availability and reliability for their software. Based on the output of Rustig, the programmer could
refactor their program to be less prone to panic during runtime. To further help Rust programmers,
Rustig allows them to ignore certain functions by means of whitelisting. This can be used to reduce
false-positives or errors the programmer does not care about.

Our scientific contribution is twofold. First of all, a strategy was devised to find all relevant paths in a
graph in a situation where finding all paths was too complex from a computational perspective. The

1

proposed approach can be expressed in terms of a well-known graph algorithm, namely breadth-first
search. The second contribution is that, to the extend of our knowledge, we are the first to use loaded
function addresses instead of invoked function pointers to approximate dynamic dispatch in a static call
graph.

1.3. Outline
This report presents the development of Rustig. In Chapter 2 the problem is described in greater
detail. This problem is then further analyzed in Chapter 3. This software development project required
various design choices, these are discussed in Chapter 4. A description of the workings behind Rustig is
provided in Chapter 5. Next, The development process and the final product are evaluated in Chapter 6
and Chapter 7 respectively. In Chapter 8 the ethical implications of Rustig are discussed. During the
development of the tool we ran into various issues, which are discussed in Chapter 9. Finally, conclusions
and recommendations are provided in Chapter 10.

2

2
Problem Definition

High availability systems are characterized by their guarantees on operational performance, usually
uptime; therefore, these systems should never crash. Furthermore, updating embedded system may
not be feasible due to the need for physical access to the system. Patching the bugs would likely be
postponed or not done at all, due to high costs of such operation. Therefore, programs written for
such systems should be developed and checked carefully. Currently, the systems written in the Rust
programming language cannot be properly analyzed for unwanted thread exits, since no analysis tools
exist that are capable of performing such analysis.

Our goal is to develop such analysis tools. In order to do so, in this chapter, the definition of the
problem is presented. The safety guarantees of the Rust programming language are first be described
in Section 2.1. Afterwards, the handling of unwanted program state in Rust is explained in Section 2.2.
This explanation consist of a description of idiomatic Rust error handling, analysis of hidden panic calls
and clarification of the complexity of the problem.

2.1. Rust Safety Guarantees
Technolution uses various programming languages for the different solutions that they create for their
clients. The company has also started to use the Rust programming language in situations where high
performance, protection against exploits and robustness are crucial. Before Rust, C was usually used in
these situations and so the Rust programming language is used as a replacement for the C programming
language.

The advantages of Rust include, but are not limited to, memory and type safety. Many erroneous
constructs that cause undefined behavior in C, are prevented by the Rust compiler. Common examples
of such constructs in C are dangling pointers, which may lead to errors such as double free and use after
free. Double free is the situation where a memory block is freed more than once, and use after free is
the situation where some memory is used after being freed. Both errors cause undefined behavior and
may cause vulnerabilities. Special tools are often necessary in order to find the before mentioned errors
[3].

By design, Rust does not allow the existence of dangling pointers, due to its single ownership data
model. In this model, data only has one owner, who can use the data freely. The data can be shared
by a mutable reference &mut T or aliasing &T, but not both. Moreover, ”The basic ownership discipline
enforced by Rust’s type system is a simple one: If ownership of an object (of type T) is shared between
multiple aliases (“shared references” of type &T), then none of them can be used to directly mutate it”
[4].

Even though Rust solves a lot of programming pitfalls originating from bad memory management, Rust
programs can still end up in an unwanted state. Such unwanted states are characterized by the fact
that they cannot be detected during compilation time.

3

2.2. Handling of Unwanted Program State in Rust
Many unwanted system states are handled by the Rust language through error propagation. Error
propagation is often enforced by the Rust language by the use of Result type. An example of such
propagation of errors can be seen in the standard library function responsible for opening of files. The
signature of the function std::io::open is:

pub fn open<P: AsRef<Path>>(path: P) -> io::Result<File>

It is important to note that the return type is: io::Result<File>. The general Result type can
either contain the wrapped value, or some error if the function has failed to execute properly, which in
this example can happen if the given file does not exist. In the case of an error, the programmer may
try to resolve the problem themselves and prevent the thread from crashing.

Unfortunately, not all functions in Rust use explicit error propagation. For example, array indexing will
cause a runtime error when the index exceeds the size of the array. When such unwanted program state
is reached, the panic! macro will be called directly, which in turn, will cause the thread to terminate
immediately. In some cases, the programmer may be well aware of the fact that their code may panic
when some specific program state is reached. They may, for example, call the panic macro themselves
in order to crash the thread when some unwanted state is reached. However, if such panic call is made
within some library code, the programmer will not have a chance to resolve the problem and prevent
the thread from crashing. They will also not know whether the library code even contains calls to the
panic macro, unless they analyze the libraries source code very well. In this report, calls to panic in the
library code that the programmer is not informed of, are referred to as hidden panic calls.

2.2.1. Hidden Panic Calls
In some cases, the programmer may not be aware of the fact that some code that they use might panic,
since Rust does not inform the programmer of specific occurrences of panic calls. One case where such
panic calls occur, is the code from the Rust standard library used for thread spawning. An example using
the thread spawn is shown in Listing 2.1. Notice that simply looking at the source code of the program
in Listing 2.1 does not present us with any indication whether the code might panic or not. Therefore,
we present a manual approach that can be used for finding out whether a function can panic or not.

Listing 2.1: Render an image in a separate thread

1 use std::thread;
2
3 let child = thread::spawn(move || {
4 render_image()
5 });
6
7 let image = child.join();

A quick glance at the source code of the std::thread::spawn gives more clarity about what happens
when the std::thread::spawn function is called.

Listing 2.2: Source code of std::thread::spawn[5]

1 #[stable(feature = ”rust1”, since = ”1.0.0”)]
2 pub fn spawn<F, T>(f: F) -> JoinHandle<T> where
3 F: FnOnce() -> T, F: Send + ’static, T: Send + ’static
4 {
5 Builder::new().spawn(f).unwrap()
6 }

Notice that the unwrap() function is called within the std::thread::spawn function. The unwrap()
function looks as follows:

4

Listing 2.3: Source code of std::result::unwrap[6]

1 #[inline]
2 #[stable(feature = ”rust1”, since = ”1.0.0”)]
3 pub fn unwrap(self) -> T {
4 match self {
5 Ok(t) => t,
6 Err(e) => unwrap_failed(
7 ”called ‘Result::unwrap()‘ on an ‘Err‘ value”, e),
8 }
9 }

Finally, the source code of unwrap_failed() looks as follows:

Listing 2.4: Source code of std::result::unwrap_failed[7]

1 #[inline(never)]
2 #[cold]
3 fn unwrap_failed<E: fmt::Debug>(msg: &str, error: E) -> ! {
4 panic!(”{}: {:?}”, msg, error)
5 }

We have now shown that the thread spawn function contains a hidden panic call, which will cause the
program to crash when the thread fails to spawn. The Rust documentation offers help on how to prevent
the panic call. The description of spawn() tells us that it: ”Panics if the OS fails to create a thread; use
Builder::spawn to recover from such errors.”[8]. Following this instruction, we obtain the non-panicking
version of thread spawning, shown in Listing 2.5. Note that only one panic call has been prevented now.
There are still other panic calls within this code snippet, but for the sake of simplicity, in this example,
they are not addressed.

Listing 2.5: Non-panicking version of thread spawn

1 fn main() {
2 let builder = thread::Builder::new();
3
4 let child = builder.spawn(|| {
5 render_image();
6 });
7
8 if child.is_err() {
9 // Handle error case
10 }
11 else {
12 // Since we know that child is not an error,
13 // we can safely unwrap
14 let image = child.unwrap().join();
15 }
16 }

Noticeably, the panic! call may have gone unnoticed if the programmer that used thread spawning did
not read the source code or the documentation of the std::thread::spawn. Moreover, if the panic
call occurred in an external library instead of the Rust standard library, the programmer may not even
be informed of the panic call through documentation.

5

2.2.2. Complexity due to Unreachable Code
The Rust language does not offer the functionality to automatically detect panic calls within the source
code. One might expect that such functionality could be implemented by simply looking at panic
occurrences in the source code. This is not the case, since some branches of the program may not be
reachable at all. These branches can thus not cause a panic during the execution of the program and
so they can be safely ignored. An example is presented to illustrate this. In Section 2.2.1 it has been
shown that calls to unwrap() can panic, however, that is not always the case.

Listing 2.6: Correct use of unwrap

1 fn max_array_10(arr: [i64; 10]) -> i64 {
2 *arr.iter()
3 .max()
4 .unwrap()
5 }

Consider the case in Listing 2.6, where the function max_array_10() is a function that finds the
maximal value of an array of 10 64-bit integers and returns it. In line 2, the iterator over the array
is created. Afterwards, in line 3, the max() function of the iterator is called. Notice that the max()
function has the following signature:

fn max(self) -> Option<Self::Item>

The type Self::Item is in the case of this example set to i64, since arr is an array that contains 10
values of type i64. The Option enum is similar to the Result enum. It wraps either some value or
no value at all. Similarly to Result, unwrap() will panic if it has been called when the Option did not
wrap any value.

It is important to note that the function max() only returns a None if the iterator is empty. It is clearly
not the case in the function max_array_10, since the input array has a fixed length of 10. In this case,
the Option returned by max() function can be unwrapped, as seen in line 4, and that Option will
always contain some value. Therefore, no panic will occur due to the unwrap call.

In many cases, it is not possible to avoid writing code without any dead branches. Such branches are,
however, irrelevant to the programmer, as they are never executed during the runtime of the program
and so they will not cause an unwanted thread exit. Therefore, branches such as the unwrap call in
Listing 2.6 should be ignored by the analysis tool, since if they are not ignored, the tool may produce
inferior results that is bloated with false positives.

6

3
Problem Analysis

In this chapter the problem described in the previous chapter is analyzed and the various sub-problems
are defined. First, the definition of the panic macro, and the detection of potential execution paths
paths that lead to its execution are analyzed. As an intermediate result, it is concluded that a call graph
is a good data structure to solve the problem (Section 3.1). Therefore, the problem is divided into two
main steps: building the call graph (Section 3.2), and analyzing it (Section 3.3). For both sub-problems,
several aspects of the problem are discussed, and a justification for several implementation choices is
given.

3.1. Decomposing the Problem
As explained in Chapter 2, it is not easy to determine whether an arbitrary function call may lead to a
panic! invocation. However, it is important to be able to detect these calls, because only then a warning
to the programmers that these indirect invocations of panic! can be given. The first step to gain a better
understanding of this problem is to analyze what code themacro expands to, so that it can be recognized
at program representations below the source code level (More on different Rust program representations
in Section 3.2). In Listing 3.1, the macro definition for Rust 1.26.1 is shown [9]. This definition shows
that a call to the panic macro is translated into a function call to core::panicking::panic() or
core::panicking::panic_fmt(). Therefore, the analysis can be done at source-code level by
detecting calls to the panic macro, and at lower compilation levels by detecting calls to one of the
aforementioned functions.

Listing 3.1: panic! macro definition

1 macro_rules! panic {
2 () => (
3 panic!(”explicit panic”)
4);
5 ($msg:expr) => ({
6 $crate::panicking::panic(&($msg, file!(), line!(),
7 __rust_unstable_column!()))
8 });
9 ($msg:expr,) => (
10 panic!($msg)
11);
12 ($fmt:expr, $($arg:tt)+) => ({
13 $crate::panicking::panic_fmt(format_args!($fmt, $($arg)*),
14 &(file!(), line!(), __rust_unstable_column!()))
15 });
16 }

7

Although being able to recognize direct calls to panic! is important, it does not solve the complete
problem. A call to panic! may be in a library, which cannot be easily patched by the programmer.
Furthermore, it may be possible that the function that invokes panic! is never executed. This can
be due to the fact that compiler optimization has not taken place, or because the compiler was not
able to prove that a certain branch is never executed. More information about the conditions under
which panic! is invoked must be given, in order to judge if the invocation is a real threat to program
robustness.

An effective representation of a program for the purpose of panic! call analysis is a call graph. This is a
graph, where each node 𝑓 represents a function or subroutine, and each directed edge (𝑓, 𝑔) represents
a call from subroutine 𝑓 to subroutine 𝑔. Metadata can be stored on both the nodes and the edges.
This makes a call graph a flexible, high level representation of a program that can be used for many
different forms of program analysis [10–12].

When a program is represented as a call graph, it is possible to determine for an arbitrary subroutine (𝑓)
if it may (indirectly) lead to an invocation of panic! (𝑝) by finding a path from 𝑓 to 𝑝. More information
about the cause and severity of the risk of that call path can be derived from the metadata. For example,
we can define the metadata attribute user_code on the nodes (defining whether a subroutine is defined
by the programmer, or imported from an 3rd party dependency). If there is an arbitrary node 𝑓 that
belongs to the user code in the graph, and an edge (𝑓, 𝑝) exists (where 𝑝 is a panic! node), we can
conclude that the programmer used the panic macro directly. This example illustrates that we can use
metadata (𝑢𝑠𝑒𝑟_𝑐𝑜𝑑𝑒) to retrieve more information about a panic call (In this case, the fact that it is a
direct use of the macro).

Based on these results, it can be concluded that a call graph is an appropriate data structure to serve as
a basis to analyze panic calls in a program. However, before being able to perform this analysis, a call
graph must first be built from the program that is to be analyzed. The following two sections discuss the
details of those two subproblems. Section 3.2 covers problems concerning the building of a call graph.
Finally, some issues encountered when analyzing this call graph are discussed in Section 3.3.

3.2. Call Graph
In the previous section, it was explained that a call graph is a data structure that fits our purpose. In this
section, several considerations about building that call graph are made. First, the question regarding
which requirements the algorithm should satisfy are discussed. Secondly it is discussed whether a static
or a dynamic call graph fits our problem best. Thirdly, the representation of the program that is used
as input data is determined.

3.2.1. Callgraph Requirements
In an ideal situation, the algorithm should return a call graph that contains all edges that occur during
runtime, but no more. This is called an exact call graph. However, determining the exact call graph
is an undecidable problem [13]. Therefore, one of the following two options can be chosen. The first
possibility is to have a potentially under-represented graph, for which it is certain that all edges can
actually occur during runtime, but it is not certain that all actual invocations are represented. The
other option is to build an over-represented graph, for which it is certain that all possible invocations
are present, but it cannot be assured that all individual invocations will actually occur during program
execution. Regarding the problem of finding execution paths to panic!, it is better to report too many
errors, and let the programmer filter out the relevant ones. Therefore, the first requirement of our call
graph is that all possible invocations are present.

Although it should be certain that no possible paths to panic are not discovered by Rustig, as few false
positives as possible should be reported. Here, Rustig might benefit from compiler optimization. As
illustrated in Section 2.2.2, dead branches are often unavoidable on the source code level. The Rust
compiler performs dead code elimination in order to remove unreachable branches from the code so
that they do not pollute the final executable. This elimination also includes unreachable panic paths.
Therefore, it is desirable to be able to apply compiler optimization on the program before building the
call graph.

8

The third requirement is given by the fact that Rust is a young and fast evolving language. New stable
versions are released every 6 weeks, while the most progressive channel, nightly, is updated every night
[14]. However, it is undesirable that the call graph algorithm needs to be adapted to every individual
version of Rust, because maintenance would be too costly. Therefore, the third requirement to our call
graph algorithm is that it should not depend on the exact Rust version of the target program.

Summarized, the requirements for the call graph building algorithm are as follows:
1. It should contain all possible edges (thus be over-represented)
2. It should represent an optimized program
3. It should work correctly independent of the Rust version

In the next sections, we will explore how to design an algorithm matching these requirements.

3.2.2. Analysis Strategy
The first choice that is explained concerns the approach to building the call graph. In general, there
are two types of call graph builders. The first type are static call graph builders. These builders do not
require a program to be executed, but instead build a call graph from the source of a program, or from
an executable. This builder type is usually implemented in compilers, like gcc or LLVM, that use the
graphs for optimization purposes [13]. For example, dead code elimination can be implemented using
call graphs [15], by removing all functions that are not in the same connected component as the main
function.

The second type of call graph builders are dynamic call graph builders, which require the program to
be executed [16]. They usually record jump instructions, out of which a call graph is built. This call
graph type is usually implemented in profilers, that record profiling information on the call graph. For
example, gprof does record invocation count and runtime on an dynamic call graph [17].

For us, as we did explain in Section 3.2.1, it is important that all possible edges are found. Therefore,
dynamic call graph builders are not suitable for our purpose, since they only record actually occurring
calls. When a certain possible call is not hit during execution, it will not be present in the graph. In fact,
it will almost never be the case that all branches are hit. Therefore, the requirement that the graph
should be over-represented cannot be guaranteed to be met by dynamic call graphs.

When the dynamic approach is related to the problem that is solved (finding all paths to panic!), it
can be seen that it is required to hit all panics. If a panic! would not be hit, it would also not be
present in the call graph. However, if it would be possible to device an algorithm that ensures for an
arbitrary binary that all panics are hit, it would not be necessary anymore to create a call graph, and
find all panic! calls again, since they were already found by the call graph builder. Therefore, it can
be concluded that doing panic trace analysis based on dynamic call graphs does not add any value.

In contrast, static call graphs, like those used by compilers, are generally over-represented. For an
illustration, consider the example regarding the dead code analysis. If an edge would be missing, it can
occur that a function will be eliminated while it was still invoked. This is something compilers generally
would like to avoid. Therefore, static call graphs, and particularly those created by compilers, are useful
for our purpose.

3.2.3. Input
A program that builds a static call graph generally takes a representation of the target program as input,
and gives a call graph as output. This input representation can be in many different forms. In order
to choose the correct form to take as input, the Rust compilation process and the intermediate output
forms it can produce are analyzed in this section. After that, the possibilities of all these output forms
are compared with the requirements stated in Section 3.2.1 and the best input format for our problem
is chosen.

Compilation Process
Rust is a compiled language, meaning that a program written in Rust undergoes a compilation process
before it can be executed on the target machine. During the compilation process, source code is trans-

9

lated into machine code. This translation is not a single-step procedure. Instead, the process contains
many intermediate steps between the source-level representation and the machine code representation.
An overview of the important steps of the translation process is shown in Figure 3.1.

Machine
codeLLVM-IRMIRHIR

Rust source
(AST)

Figure 3.1: Rust compilation process overview [18]

Note that the overview in Figure 3.1 is not complete. More intermediate steps of compilation exist, but
the additions that these steps offer are not relevant to our project, so they are not listed.

During the compilation process, the source code is first converted into an intermediate phase: higher-
level intermediate representation (HIR). HIR is the representation of a program, roughly equivalent to
an abstract syntax tree. During this step, the source code is parsed and some constructs are expanded
into more fundamental constructs [19], which is called desugaring.

Secondly, the translation from HIR to MIR, the mid-level intermediate representation, takes place.
Desugaring has taken place in the steps before and so MIR is an intermediate representation that is in
a much simpler form compared to Rust’s actual syntax, since MIR consists of a relatively small amount
of primitive operations. During the MIR phase, type checking is executed [20].

Thirdly, the transition from MIR to LLVM-IR, the low-level intermediate representation, occurs. During
this transition the checks that provide the memory safety of Rust are executed [18]. Furthermore, some
Rust-specific optimizations are performed. LLVM-IR is an intermediate language which is described by
the LLVM Language reference manual [21].

Finally, the LLVM-IR code is translated into machine code. This is done using LLVM from The LLVM
Compiler Infrastructure [22]. When compiled for the Linux platform, this binary is created in the ELF
format.

Optimal Input Format
It turns out that all intermediate stages below HIR can be dumped from the compiler infrastructure,
using the --emit flag on rustc (the Rust compiler). For the source code (AST) and HIR levels, Rust
offers an unstable compiler plugin API. Therefore, the accessibility of the format is not a limitation a
priori. For that reason, it is possible to create a callgraph from any of these representations.

On the other hand, not all representations fit the requirements from Section 3.2.1. The AST, HIR and
MIR formats are unstable, and might have breaking changes every night. Furthermore, it is not possible
to apply LLVM optimizations to these formats. Therefore, these formats do comply with our requirements
of stability and optimization.

These objections do not apply to the LLVM-IR representation. This representation is stable, and can
be optimized with the LLVM optimizer. Furthermore, LLVM has an option to generate a call graph. A
possible command sequence to perform this is shown in Listing 3.2. However, the call graphs emitted
by this procedure are not very accurate. As an example, a simplified example of the output of a hello
world program is shown in Figure 3.2.

Listing 3.2: Callgraph creation command

1 rustc main.rs --emit=llvm-ir -o main.ll
2 opt main.ll -O3 | opt -dot-callgraph

When examining this graph in more detail, several things are remarkable. Firstly, there are 2 ’virtual’
nodes, External node and Sink. These account for all invocations to and from external symbols. The fact
that LLVM uses these nodes implies that the actual invocation target is not known. Secondly, from an

10

External
node

lang_startcall_oncelang_start::closure main main::main

start_internalTermination::report print

Sink

Figure 3.2: Example LLVM call graph

arbitrary Rust backtrace it can be derived that main calls lang_start and lang_start::closure
calls main::main. All these invocations are not represented in the graph. Thirdly, it is remarkable that
there is no node for the panic handler, while print can lead to a panic. Fourthly, there are no nodes for
functions in external compilation units. This last problem could be solved by generating LLVM-IR code
for all modules, use the LLVM linker to create one combined LLVM intermediate module, and generate
a call graph from that. However, this would require duplication of the Rust build procedure, but instead
with LLVM output. This process is very tedious and prone to error.

Based on these results, it can be concluded that the call graphs generated by LLVM do not match
the requirements from Section 3.2.1. As shown in the previous paragraph, some edges are missing,
which violate the requirement that the call graph should not be under-represented. Furthermore, when
analyzing an LLVM-IR call graph for a single module, not all calls panic appear. Altogether, this makes
the LLVM call graphs not suitable for our purpose.

Finally, the final compiled and linked binary can be used for the analysis. On the Linux platform, these
binaries are in ELF format, with program metadata for debugging purposes in DWARFv4 format, and
x86_64 bytecode. All these formats are standardized, and may therefore be expected to remain stable
for a considerable amount of time. Furthermore, Rust compiles all dependencies into one binary (there
is no dynamic linking by default). This implies that all Rust functions that might be called are present
in the binary. Moreover, it is possible to make an approximation of all function calls, which are further
explained in Chapter 5. Finally, the final executable has been optimized by the compiler. An additional
advantage of analyzing executables is the fact the source code is not required to be available. Therefore,
we can conclude that the final binary is the most appropriate input format for our analysis.

3.3. Analysis
In the previous section, it was explained that it is possible to build an accurate call graph from a Rust
binary program. In this section, several types of analysis that can be applied on such a call graph
are explored. First, a simple approach to investigate whether a function calls panic! is described.
Afterwards, it is explained how we can derive the last function in the trace that is written by the creator
of the program. That is useful, since that is often the best point to fix such a situation. Then, some

11

ideas on how to extract useful statistics from the call graph are discussed. Finally, a summary of the
problem analysis, and possible solutions are provided.

3.3.1. Finding Panic Paths
After having build a call graph, the most important task is to identify traces that lead to a panic!. This
can be implemented by first identifying nodes that represent panic handlers, and identifying entry points
(nodes where we assume that the program starts executing). After determining these nodes, we can
find paths between all pairs of entry points and panic handlers.

In an optimal situation, it would be desirable to find all possible paths. However, finding all possible
paths between two nodes in a graph is exponentially bound to the number of nodes and edges in the
graph. Therefore, reporting all possible paths to panic! is not feasible. In Chapter 5, we explain in
detail the final algorithm we use to find the most relevant paths.

3.3.2. Reporting Last User-Defined Function
After having found a certain number of paths to panic!, it is useful for the programmer to know the
last function in the trace that is in their own codebase, because that is most often the best place it fix
the issue. Using DWARF debug info (more information on DWARF can be found in Appendix C), it is
possible to determine the crate (Rust software package) the function was defined in. When the user
can specify what crates are under their control, it is trivial to compare these crate names to the crate
names if the functions in the trace, and report the last one. Moreover, using DWARF debug data, other
useful information, like file and line number, can be given as well. This helps the programmer to find
and fix issues more efficiently.

3.3.3. Statistics
Finally, it can useful to have a summarized report of the data. There can be many calls to panic!,
especially in an industry-sized projects. Just reporting all these individually can overwhelm the user. In
that case, Rustig does not help the programmer to achieve its goal of writing robust software. When
the data is summarized properly, Rustig can aid in identifying host spots and commonly used patterns.

3.4. Conclusions
After having seen several aspects of the problem on how to find panic! calls in Rust projects, the
following conclusions can be derived. Firstly, the program can be solved by representing a problem
as an over-represented call graph. The call graph data structure is a flexible instrument to carry out
panic! trace analysis, as well as deriving meta-information. Secondly, Rust binary files are the most
appropriate input sources for creating a call graph, because they contain all necessary information,
and their format is stable. Thirdly, it is not possible to report all possible paths to panic! due to the
𝒩𝒫-hard nature of the problem, so an algorithm to find the most useful paths needs to be designed.
Fourthly, reporting meta-information and statistics is possible, and could be convenient for the user.

In summary, the problem seems to be quite well solvable, although some aspects are algorithmically
complex. In the next chapter, the design of the product that was derived from this analysis is presented.
In Chapter 5, the final implementation is discussed. In that chapter, we evaluate how the implementation
reflects the results of the problem analysis as well.

12

4
Design

In this chapter the design of Rustig is made clear. In order to make a software engineering project run
smoothly, the design of the tool should be defined. Various design goals should be agreed upon before
implementing the tool. This allows for people new to the project to understand the underlying design
and for the people already working on the project to have a goal to work towards. An important aspect
of the design are the requirements which the tool should adhere to. These requirements are provided in
Section 4.1. The design goals for this project are discussed in Section 4.2. Furthermore, various goals
for test design are defined in Section 4.3. Finally, the architecture of the tool is provided in Section 4.4

4.1. Requirements
To have a clear picture of the goal of Rustig, various success criteria need to be defined. These criteria are
defined by means of requirements, which were decided upon during the first week of the project and are
presented and prioritized using the MoSCoW method [23]. Functional and non-functional requirements
are discussed in Section 4.1.1 and Section 4.1.2 respectively.

4.1.1. Functional Requirements
This section provides the functional requirements as agreed upon with Technolution. These are the
requirements of the functionality the final product should contain.

Must have

• The tool must operate from the command line.

• The tool must internally build a call graph from a Rust ELF binary.

Should have

• The tool should be able to detect, whether code paths exist that may lead to a panic call (which
may reside in an external crate)

• The tool should print errors if the previously mentioned thread exits occur to the standard output.
The format if the output will be:
”Method ’<method name> in <file name>:<line number>’

calls ’<crate>::<method name>’”.
Here the first mentioned method name will be the last method in backtrace which is user code,
while the second mentioned is the first method in an external library that is called.

• The tool should have exit code 0 if no errors were found.

• The tool should have exit code 1 if unwanted thread exits were found

• The tool should have exit code 101 if an internal error occurred.

13

Could have

• The tool could be configurable to ignore particular patterns.

• It could be possible to ignore single warnings by placing a comment in the code.

• The tool could propose suggestions to fix found problems.

• The tool could support CI-server (Jenkins) compatible output.

• The tool could support XML as output format.

• The tool could support JSON as output format.

• The tool could support HTML as output format.

• The tool could be able to print the call graph in DOT as output format.

• The tool could have a verbose output mode, where full backtraces of unwanted thread exits are
printed.

Won’t have

• The tool will not be a compiler plugin

• The tool will not fix found issues in the source code itself.

• The tool will not detect unwanted thread exits originating from unsafe Rust code.

4.1.2. Non-Functional Requirements
This section defines requirements which is not part of the expected functionality of our tool, but rather
define the way of operating and the design constraints.

Must have

• The tool must be executable within a Linux environment.

• The tool’s source code should have no compilation errors under standard compilation conditions.

Should have

• The tool should be written in the Rust programming language.

• The tool’s source code should have each public, non-trivial code element (method, struct, trait, etc.)
documented. Documentation should indicate the purpose of the code element, and particularities
or non-trivial properties of the implementation.

• The tool should have a short user guide, explaining all the implemented options, the output, and
configuration as part of its source code.

• The tool should have a help-option, that prints a small guide on how to invoke the tool.

• The tool should have no compilation warnings.

• The source code should adhere to the Rust Style Guide [24]

• For each function, all usage patterns that can be reasonably expected should have a test case.
For these test cases, it should be documented what use case is tested.

Could have

• The tool could be able to run on a Windows environment, so that developers who want to work
on Windows, and cross-compile their code, can still use the tool.

• The tool could support the ARM architecture.

• The tool could be supplied with an architecture design, that explains which academic principles
and structures were used in developing the tool.

14

Won’t have

• The tool will not be supported by the original development team after project termination.

4.2. Design Goals
In this section various goals which Rustig should adhere to are described. These goals are to ensure
that the final product is of high quality. In Section 7.1 we reflect on these goals and see how our tool
managed to accomplish them.

Extensibility
It should be easy to extend Rustig with a new feature, without requiring major changes to the rest of
the program architecture to ensure that the tool will be able to grow and evolve. For example, new
ways of analyzing call graphs or the ability to add support for more computer architectures should be a
straightforward process.

Modularity
Rustig should be divided into various modules, this would allow for easier testing of these independent
components before adding them to the pipeline. Furthermore, it allows the user to easily swap out
modules for their own implementations if they would like a different kind of functionality. Furthermore,
it should also be possible to use the modules by themselves. For example, it could be useful to create
a call graph of a program without using any of the modules for analysis.

Usability
It should be clear how to use Rustig. While the tool will be a simple command-line interface, there
should be no confusion on how to invoke the tool. Therefore a clear help menu is needed to tell the
user how to use the tool. Furthermore, sensible defaults should be chosen when a user fails to provide
optional input parameters.

Scalability
The performance of Rustig should adapt well to increasing amounts of data. Programs with a lot of
external dependencies should not be an issue for the tool and it should finish within reasonable time.
The goal of Rustig is to constantly help the programmer and should therefore not take more than 2
minutes to create a report of a 100MB ELF file.

4.3. Test Design
One of the necessary steps to ensure that a program works correctly is the testing of that program. It
was decided that for this tool, the combination of unit tests, integration tests and regression tests would
be necessary to ensure the quality of the program. The coverage of these tests should be summarized
in the code coverage report. Finally, manual performance tests are required to ensure that Rustig is
able to perform analysis on realistic, and possibly large scale, projects as well.

4.3.1. Unit Tests
Unit testing is an important measure that programmers can take in order to ensure that the program
building blocks are implemented properly. The Rust language offers native support for unit testing and
so no external frameworks are necessary. Furthermore, these unit tests should be testing one isolated
module at a time, in accord with the rust guidelines: ”Unit tests are small and more focused, testing
one module in isolation at a time, and can test private interfaces.”[25] The aim of this project is to have
most, if not all, public methods covered by unit tests.

4.3.2. Integration Tests
Whereas unit tests focus on isolated modules, integration tests ensure that multiple modules interact
correctly with each other. The Rust language offers native support for integration tests as well, and so,
the idiomatic way of implementing integration tests in Rust will be used. Noticeably, the Rust language
does not differentiate between integration tests and systems tests. Therefore, systems tests will be
implemented as integration tests.

15

4.3.3. Regression Tests
For most programs, a new compiler version of rustc would mean that the programs functionality may
break. Regression tests should ensure that the developed software works with newly released rustc
versions. Since Rustig relies on the analysis of ELF binaries, it is necessary to ensure that ELF binaries
generated by new rustc version are still properly analyzed. Regression tests should thus not only ensure
that the tool still functions with the new rustc version, but they should also ensure that programs
generated with the new compiler can still be analyzed. This means that the test suite must be able to
create binaries with the current rustc, which can then be used as resources for the tests.

4.3.4. Code Coverage
Technolution does not yet provide any specific coverage requirements for their software written in Rust,
since the coverage tooling is not mature enough. Even though Rustig will be written in Rust, and so it
will have inherent memory and type safety, some measurable data would be useful to ensure the quality
of the program. For this goal, one of the two crates: cargo-kcov or Tarpaulin will be used in order to
calculate the code coverage of the previously mentioned test methods.

4.3.5. Performance Tests
In order to make sure that Technolution is able to use Rustig to analyze their existing programs, the tool
will be manually ran on already existing projects in order to ensure that time and space requirements
are in order.

Firstly, Rustig will be tested on programs made by Technolution. It should be possible to run the analysis
tool on all of the currently existing programs made by Technolutionwith the Rust programming language.
Secondly, Rustig should be able to analyze itself. Finally, Rustig will be used to analyze a large project,
namely The Servo Browser Engine. This project has been chosen as it is one of the largest open source
projects available that are written in Rust. The source code of the browser contains 300 thousand lines
of Rust code and the executable is 1GB. The assumption is that if such large program can be analyzed
with Rustig, then the tool is suited to analyze most of Rust programs.

4.4. Architecture
After having established the design goals and some generic choices, we established a more concrete and
complete technical design of our project. That design is presented in this section. First, in Section 4.4.1,
the different components of the project are discussed. After that, Section 4.4.2 explains in more detail
how these components interact.

4.4.1. Component Design
In this subsection, it is explained how the project is split up into different autonomous components. A
UML component diagram of the design is presented in Figure 4.1.

As explained in Chapter 3, the problem is solved in two different steps: First, a call graph is build.
Subsequently, the call graph is analyzed, and traces to panic! are extracted and reported. This
separation is translated into two different modules (Callgraph Builder and Panic Analyzer respectively),
performing these respective tasks. We choose to implement both modules as static libraries, so it is
possible for other projects to use our output as well.

The output of these libraries is consumed by two executable wrappers: CLI and Cargo plugin. The
difference between those is that the former can be executed on any Rust binary, while the latter can
only be executed in a Cargo workspace. The advantage of the Cargo plugin is that certain parameters
(like the binary to analyze) can be determined automatically. It will therefore require less command line
parameters, which is more convenient for the user.

In order to share the output functionality, a separate library for printing panic traces (Panic Output) is
created. This component depends on Panic Analyzer for the data definition of the panic call traces, and
offers an interface to print collections of these traces. It is used by CLI and Cargo plugin component to
print the traces that are returned from the Panic Analyzer component.

16

Figure 4.1: Component diagram

4.4.2. Control Flow
In the previous section, the static structure of the project was explained. In this section, the way Rustig
behaves dynamically is explored. Based on the sequence diagram in Figure 4.2, the steps Rustig runs
through, and the data that is passed are discussed. Note that this sequence diagram is simplified. The
objects represent our components, where all self calls are usually implemented as calls to submodules
in the same component. For reasons of brevity, these calls to submodules are not depicted explicitly.

It can be seen that the CLI handles over control to Panic Analyzer. Then, the Panic Analyzer component
ensures the target binary exists, and requests the Callgraph Builder module to build a call graph. The
Callgraph Builder module parses the file and builds a call graph, which is returned back to the Panic
Analyzer. The analyzer subsequently calculates some metadata attributes on the call graph nodes and
edges, and filters out irrelevant ones. After that, the actual panic traces are found, and some metadata
for them is calculated. This result is passed back to the CLI component, which in turn uses the Panic
Output component to format the output, and print it to the desired output destination.

17

Figure 4.2: Component diagram

18

5
Implementations

In this chapter, we provide details on the implementation of the various modules of the final tool. First,
the pipeline of Rustig is discussed in Section 5.1. In the subsequent sections the individual components of
the pipeline are explained. Finally, the framework which was built to allow for integration and regression
testing is described in Section 5.7.

5.1. Pipeline
In this section, we give a broad outline of the structure of Rustig. Rustig performs its analysis in a
number of sequential steps. These steps are usually implemented in separate modules. An overview of
this pipeline is provided in Table 5.1, displaying the steps in consecutive order, with a brief explanation
of each step. In Section 5.2 to Section 5.6, most of these steps are explained in detail. However, not
all steps are described explicitly, this is due to the fact that these steps are trivial or are handled by
external crates.

Table 5.1: Tool pipeline

Step Component Module Description Section

Build binary Panic Analysis binary Ensures the target binary exists. -

Read binary Callgraph Builder binary_read Reads the target binary into a
byte vector. -

Parse binary Callgraph Builder parse
Parses the file content to usable
formats, like ELF and DWARF
information.

-

Build call graph Callgraph Builder callgraph Creates a static call graph from
the binary. Section 5.2

Marking Panic Analysis marker
Sets various metadata attributes
on the nodes and edges of the
call graph.

Section 5.3.1

Filtering Panic Analysis filter Removes redundant nodes and
edges. Section 5.3.2

Find panic traces Panic Analysis panic_calls Builds traces for all panic calls in
the graph. Section 5.4

Find patterns Panic Analysis patterns Assigns patterns to the panic
traces. Section 5.5

Print output Panic Output panic_calls_output Prints the panic traces to the
standard output. Section 5.6

19

5.2. Call Graph
The first step in our pipeline is building a call graph from the input binary. As explained in Section 3.2,
the call graph is an important asset in the analysis. In Section 5.2.1 the way call graph nodes are
built is explained. After that, it is explained how static and dynamic invocations are found in section
Section 5.2.2 and section Section 5.2.3 respectively.

For the graph data structure, the petgraph crate is used [26]. This crate implements a generic Graph
structure, which allows for custom node and edge weights. We use custom defined structs to store
information of the Procedures and Invocations of the nodes and edges, respectively. This is
summarized in Figure 5.1.

Figure 5.1: Call graph data structure

5.2.1. Call Graph Nodes
The first step of building a call graph is to insert nodes for all procedures. In order to find all these
functions, all the compilation units in the DWARF information (see Appendix C for more information
in DWARF) are iterated. When the compilation unit was written in the Rust language (which can be
determined by the DW_AT_LANG attribute), all subprogram entries are iterated. For all subprograms, a
node in the graph is created. All information on the procedure (see Figure 5.1, struct Procedure) can
be derived from the debug attributes.

There are four important peculiarities to take notice of. Firstly, sometimes a function is duplicated. In
that case, multiple DWARF entries are made as well. However, not all information is duplicated on
these entries. Instead, an ’abstract origin’ entry is made, containing all information. The other entries
have a DW_AT_abstract_origin attribute, that points to the origin entry. Our algorithm creates a
distinct nodes for all these duplicated procedures, but it also follows these indirections, to determine
the attribute values for all these duplications.

The next relevant implementation detail considers the disassembly field. We use the address
(DW_AT_low_pc attribute) and procedure size (DW_AT_high_pc attribute) to determine the machine
code bytes corresponding to this procedure. We use the crate capstone to disassemble the machine
code, and store the disassembled code on the Procedure [27].

20

Another relevant aspect of the node generation is the way the algorithm deals with inlining. Since
DWARF entries for inlined functions do not include the necessary metadata, no nodes are generated for
inlined functions. Instead, we maintain a list of inlined functions on the edges of the call graph.

For example, assume there are three functions, foo(), bar() and baz(). foo() invokes bar(), and
bar() invokes baz(). When the compiler inlines bar() into foo(), the call graph builder will create
nodes for foo() and baz(), and an edge between them. On that edge, an InlineFunctionFrame
for bar() is stored. This is illustrated in Figure 5.2.

foo()

bar()

baz()

foo()

bar()

baz()

Functions Call Graph

Figure 5.2: Example call graph

The last aspect of the node generation that is
explained is the address index. In the call graph,
we can easily find an address for a given procedure.
However, it turned out that it is often useful to find
the procedure for an given address. Therefore we
maintain an index (implemented as HashMap that
stores the Procedure for a given address. This
enables 𝑂(1) lookup of a procedure by address.

Another way to find all the procedure nodes could
be by iterating the symbol table, instead of iterating
DWARF information. This approach is more robust,
since it does not require debug information to be
available. We chose not to implement this approach,
since we ultimately need the DWARF info anyway to determine the crate details, and the file location.

5.2.2. Static Invocations
Now that nodes are generated for all procedures, edges for function calls can be inserted. Static
invocations consider the cases where the called function is known at compile time. In these cases,
call instructions with a hard-coded address are created. A simple example of a static call, and the
corresponding assembly code, can be seen in Listing 5.1 and Listing 5.2, respectively.

Listing 5.1: Code with static call

1 fn main() {
2 foo();
3 }
4
5 fn foo() {
6 println!(”Hello world!”);
7 }

Listing 5.2: Assembly with static call

1 0000000000007490 <static::main>:
2 7490: 50 push %rax
3 7491: e8 0a 00 00 00 call 0xa(%rip) <static::foo>
4 7496: 58 pop %rax
5 7497: c3 ret
6 00000000000074a0 <static::foo>:
7 ...

In this example, it can be seen that the function call in line 2 of Listing 5.1 translates to a call to an
address that is relative to rip. The absolute address can be calculated by adding the offset to the
address of the next instruction. In this case, this is 0𝑥7496 + 0𝑥𝑎 = 0𝑥74𝑎0. It can also occur that the
generated call instruction already has an absolute address (0𝑥74𝑎0) as argument.

21

In order to add edges for all calls that follow this pattern, the graph builder iterates over the instructions
of all procedures. If an instruction is a call instruction, and the argument is either absolute or relative
to rip, an edge from the function in which the call instruction is defined to the procedure at the
argument address is made. If there is no node for the callee, a call to a non-Rust function is assumed,
and therefore the edge is ignored.

5.2.3. Dynamic Invocations
In the previous section, it was discussed how edges for calls, with known destinations at compile time,
are added to the call graph. However, it is not the case that for any function call, the called function
is known at compile time. For example, if a function pointer to function f is passed as parameter to
another function g, and g invokes that function f, it cannot be known at compile time in the context of
g what function is pointed to by f.

A similar situation occurs when a function h has a formal parameter with a trait type. A trait is a Rust
construct that defines an interface, without defining an implementation. Traits can be implemented by
concrete data types. They are comparable to interfaces in object-oriented languages. When a function
parameter with a trait type is defined, it is unknown which struct implementing that trait will be passed
to it. Still, Rust allows to call functions defined on that trait, since that is what traits are actually useful
for. Similar to the previously mentioned function pointer example, the actual implementation of the trait
function is unknown at compile time.

Since call target information is not known at compile time, it can be concluded that it is passed at
runtime. We explore how this is done using a simple example (see Listing 5.3, and the corresponding
disassembly snippet in Listing 5.4) with a trait invocation.

Listing 5.3: Code with dynamic call

1 trait T {
2 fn f(&self);
3 }
4
5 struct S;
6
7 impl T for S {
8 fn f(&self) { println!(”Hello from T implementation on S!”) }
9 }
10
11 fn main() {
12 let s: &T = &S;
13 foo(s);
14 }
15
16 fn foo(t: &T) {
17 t.f()
18 }

22

Listing 5.4: Assembly with dynamic call

1 26d350 40740000 00000000 00000000 00000000
2 26d360 01000000 00000000 d0740000 00000000
3
4 00000000000074d0 <<dynamic::S as dynamic::T>::f>:
5 ...
6
7 0000000000007520 <dynamic::main>:
8 7520: push %rax
9 7521: lea 0x4f180(%rip),%rdi # 566a8
10 7528: lea 0x265e21(%rip),%rsi # 26d350
11 ...
12 7535: call 7540 <dynamic::foo>
13 ...
14
15 0000000000007540 <dynamic::foo>:
16 7540: push %rax
17 7541: call *0x18(%rsi)
18 7544: pop %rax
19 7545: ret

It is noticeable that the destination of the call instruction in line 17 cannot be exactly determined,
since it is determined by the memory value rsi is pointing to. In this case, we can determine that
value, by looking at the lea instruction in line 10. It can be seen that, in line 17, rsi will have value
0𝑥26𝑑350. Therefore, 0x18(%rsi) will resolve to 0𝑥26𝑑368, and dereferencing that with * resolves
to 0𝑥74𝑑0, as can be seen in the second half of line 2.

In order to understand what is going on here, we need to know how Rust passes pointers to objects
having a trait type. Internally, Rust passes 2 pointers to foo, a pointer to the data of s, and a pointer
to the vtable of s. This vtable is a construct that contains data about the implementation of the
trait. The first field contains a pointer to the destructor of the object that is passed. After that, the
size and alignment of the data are given. Finally, for each function defined on the trait, a pointer to
its implementation is given. The Rust compiler generates such vtables as read-only data for any trait
implementation.

vtable_S : VTable_T

destructor: *fn(&self) = &S::drop_in_place
size: usize = 0
align: usize = 1
f: *fn(&self) = &S::f

Figure 5.3: Example call graph

For the implementation of trait T for struct
S, the generated vtable object is displayed in
Figure 5.3. It can be seen that the f field of the
vtable refers to the implementation of T::f for
S. This object is derived from the first 2 lines
of Listing 5.4. There we see the destructor
field (at address 0𝑥26𝑑350) has value 0𝑥7440
(40740000 00000000 corrected for endianness),
the size field has value 0, because S has no
fields, the align field has value 1, and the f
field has value 0𝑥74𝑑0. This is the address of the implementation of T::f for S, as can be seen in line
4.

For this simple example, the call target (<S as T>::f) can ultimately be detected manually. However,
function references can be arbitrarily nested in other data structures, or passed in other ways. Therefore,
by just examining the call instructions, it cannot be guaranteed that all possible function calls can be
determined. Therefore, in order to approximate these dynamic calls, Rustig does not look at call
instructions, but rather at lea instructions. Although the called function reference cannot be found
programmatically in general, we know that for a function to be called dynamically, its address, or the
corresponding vtable address should be loaded. To the extend of our knowledge, this loading always

23

occurs by means of lea instructions. Accordingly, Rustig analyzes lea instruction to find possible
dynamic invocations.

The algorithm that creates edges for these dynamic invocations is implemented as follows. First the
instructions of all procedures are iterated. For all lea instructions, the algorithm tries to determine
the argument value. If that value is an address of a procedure, an edge between the procedure the
instruction is defined in, and the procedure that is pointed to is added. If the loaded address is the
address of a vtable, edges from the procedure, where the lea instruction is defined in, to all functions
in the vtable are added.

While this approach guarantees that all dynamic invocations are found, there are some repercussions.
First of all, we assume that all loaded functions are actually invoked, which of course is not necessarily
true. If one of the created edges leads to a panic, but is never invoked, false positives may occur.
Secondly, the edges created in this way have the procedure in which the lea instruction was defined
as caller. In fact this function will almost never be the actual caller of the loaded function. However, for
the purpose of finding paths to panic this is only a minor problem. Although the given path might be
incorrect, the fact that there exists a path in this call graph implies that a path in the binary exists as
well and could thus lead to a panic.

5.3. Markers and Filters
During the analysis of the call graph, two operations that are used extensively are the marking operation
and the filtering operation. Marking nodes in the call graph is used to put metadata on some particular
nodes into the graph, whereas filtering has been used to remove nodes which were deemed unnecessary.
In this section, the marking operation and uses thereof is first be explained in Section 5.3.1. Afterwards,
the filter operation, together with its uses, particularly whitelisting, is be discussed in Section 5.3.2

5.3.1. Marking Operation
The marking of particular nodes is used extensively in Rustig. Marking simply means putting metadata
on some particular node in the call graph. This information would be put in the attributes field of
procedures that are contained in the call graph (see: Figure 5.1). Four different attributes of the nodes
are marked, they are briefly discussed.

Internal Nodes
Throughout the rest of this section, a distinction between types of crates is made. Two terms are
introduced for this purpose. External crates refers to crates which are not part of the codebase that the
programmer is analyzing, and external functions are functions that are a part of such external crate.
One of the characteristics of external crates is that the programmer cannot modify the code in these
crates directly, unless they fork those crates or submit a patch to their repository. On the other hand,
internal crates are crates which the programmer can modify directly. Internal functions are functions
that belong to the internal crate.

The distinction between marking a node internal or external is made based on the crate that the
function is in. In turn, the crate of a function is derived from its compilation directory. Compilation
directories of functions can be found in DWARF. Usually, that directory is in the following format:
/path/to/checkout/<crate-name>-<version>. From this format, we can derive the crate name
to be: <crate-name>. Noticeably, an exception to this format occurs. The Rust standard library has
a compilation directory of /checkout/src/.

The nodes in the call graph that the programmer can edit are thus marked as internal nodes. The
significance of the distinction between internal and external nodes is further explained in Section 5.4.

Main Entry Point
The second attribute of the nodes which is sought after by the markers is the main entry point attribute.
Only one node is marked with this attribute, namely the main function. It is important to note that the
main function does not necessarily equal the entry point of the executable, as Rust programs usually

24

specify Rust-specific setup functions as the entry point, which in turn call the main function specified in
the source code of the program. This function can still be found with the proper DWARF tags.

The main function is important to know, as it is used to determine the name of the internal crate. The
assumption is that the main function is always placed in the internal crate.

Panic Endpoints
In Rust, there are many different ways to end up in a panic state. The stack trace should always
end with a panic call. As mentioned in Section 3.1, the functions std::panicking::begin_panic
and std::panicking::begin_panic_fmt are currently the only two panic end points. Notably,
both the functions that indicate a panic end point start with std::panicking::begin_panic. This
information is used for the classification of the panic end points.

Whitelisted Functions
A programmer may want to whitelist some of the functions that cause panicking, as they may be sure
that such function would never call panic, or, even if such panic would occur, they would not care. In
order to do so, the programmer may specify the names of the procedures, or invocations which they
would want to whitelist. In turn, the procedures or invocations with matching names will be marked as
whitelisted in the call graph. This is further used in filtering, described in Section 5.3.2.

5.3.2. Filter Operation

main()

bar()foo() baz()

panic! buz()

Internal Crate

External Crate

Figure 5.4: Call graph with filtered nodes

Some nodes of the generated call graph may be
redundant. An example of such nodes are nodes
that do not lead to a panic call. Figure 5.4 shows a
call graph in which such nodes are present, namely
baz() and buz(). These nodes are removed from
the call graph during the filtering phase.

Another type of nodes that may be removed
during this phase are the whitelisted nodes, this is
represented in the call graph by the node bar().
Whitelisted nodes should produce no panic stack
traces, however, it is arguable whether nodes
reachable from whitelisted nodes, such as foo()
should produce panic traces. By default, Rustig assumes that since foo() is unreachable, it does not
produce any panics. However, the tool also supports a full-crate-analysis mode, where the
whitelisting of bar() does not have an effect on the node foo(). Nodes that are marked whitelisted,
as described in Section 5.3.1, are thus removed.

5.4. Find Panics
During the process of finding panics, a full stack trace is made. This trace begins with function which
is in the analyzed crate and ends with a panic call. It is not plausible to find all paths in the call graph
that lead to a panic, because this problem is 𝒩𝒫-hard, as shown in Section 3.3.1. Therefore, some
simplifications have been imposed on characteristics of paths that are marked as relevant. The criteria
for marking a panic as relevant are explained in Section 5.4.1. Implementation details of the algorithm
for finding relevant panics are presented in Section 5.4.2

5.4.1. Relevant Panic Paths
The problem that is being solved in this step, is the problem of finding paths from nodes with some
code to nodes that start the execution of panic (panic nodes). In order to keep the amount of panic
paths manageable, only relevant paths are sought. Relevant panic paths are defined as shortest paths
to panic! from each unique pair of nodes on the internal/external crate boundary. The pair has to
contain one node of the internal crate and one node of the external crate. Due to the directionality of
the graph, the relevant panic paths only contain one node from the internal crate and may contain more
than one node from the external crate. These rules are explained with an example, using the call graph
in Figure 5.5.

25

The blue nodes represent functions in internal crates and white nodes represent functions in external
crates. From the perspective of a programmer, foo() is the function that is problematic, as it calls
two other functions that may panic: quz() and bar(). The programmer, therefore, has two choices
on how to remove panic calls from the program: either get rid of the function foo(), or fix foo()
such that it calls neither quz() nor bar(). Note that if it was possible to change buz() directly
so that it would not panic, then the call graph would have no calls to panic. This is not the case,
since buz() is in an external crate. Even though many stack traces can be found that lead to panic,

main()

foo()

quz()qux() bar()

baz()buz()

panic!

Internal Crate

External Crate

Figure 5.5: Example call graph

main()

panic!

Internal Crate

External Crate

Figure 5.6: Example call graph with high branching factor

not all of them comply with the relevancy criteria defined before. Therefore, only two paths in this
example are marked as relevant. These two paths are: foo() - quz() - buz() - panic! and
foo() - bar() - buz() - panic!. Edges of these paths are marked blue. The two paths do not
include main(), since for the panic trace, it is not relevant how the internal crate function, that has
outgoing calls to panic, is called. Moreover, the path foo() - bar() - baz() - buz() - panic!
is skipped, since it it not the shortest path from bar(). It is clear that the amount of relevant panic
traces always equals the amount of outgoing calls from internal crate nodes to external crate nodes that
panic. Traces containing qux() are not calculated, since qux() does not call panic and is thus filtered
out from the call graph during the filtering phase.

Notice in Figure 5.6 that when the external crate code has a high branching factor, the total amount
of paths from main() to panic! may increase exponentially with the size of the graph. On the the
contrary, the amount of relevant paths is linearly bounded by the total amount of edges. A total of 81
paths can be found in the presented call graph, which contains 33 edges. Only 3 of those paths are
useful by the criteria of relevancy defined before.

5.4.2. Implementation Details
The process of finding panic call traces in the call graph consists of two main stages, which can be
summarized as follows. In the first stage, the shortest path to a panic node is calculated for each node
in the external crates. In the second stage, for each edge between an internal node and an external
node, a the stack trace is made from a panic up until that node in the internal crate. Note that each of
the edges between an internal node and an external node leads to a panic, since paths that do not lead
to a panic have been removed in previous step, described in Section 5.3.2.

Determination of Shortest Path
The call graph used for the representation of the program is unweighted. Therefore, breadth first search
algorithm is used for the determination of shortest paths from panic calls to other nodes in the external

26

crates. Note that the algorithm begins with the panic call and continues upwards, in the direction
opposite to that of the edges of the graph. The algorithm visits each node at most once, and so the
runtime complexity of this step is linearly bounded by the size of the graph. During this step, the partial
traces to the closest panic are saved for each external node. The partial stack traces for the call graph
in Figure 5.5 are shown in Table 5.2. It is possible for a call graph to have more than one panic node

Table 5.2: Traces to closest panic

Function qux() quz() bar() baz() buz()

Stack trace - buz(), panic! buz(), panic! buz(), panic! panic!

endpoint. In this case, a virtual node is added to the call graph, which is connected to all the panic
endpoint nodes. The algorithm is executed in the same way, but the virtual node is excluded from the
eventual stack traces. This is visualized in Figure 5.7.

main()

panic1panic2panic3

Virtual
panic!

Internal Crate

External Crate

Figure 5.7: Example call graph with a virtual panic node

main()

Option::
unwrap

panic!

Internal Crate

External Crate

Figure 5.8: Call graph leading to unwrap

Collection of Stack Traces
During the second stage, the proper stack traces are collected. First, all edges that cross the boundary
between internal and external crate are sought. For all of those edges, both endpoints are added to the
stack trace. Then, the stack trace of the external node, which was calculated in the previous step, is
added as well. This creates a complete stack trace of a relevant panic call.

5.5. Patterns
After finding the full stack traces of relevant panics, it is important to realize that some patterns can be
recognized in those stack traces. Those patterns can provide insights as to what led to some specific
panic call.

The categorization of different patterns can be made on the basis of the panic stack trace. As an
example, Figure 5.8 shows a call graph of a function which leads to panic. Notice that the intermediate
node is called Option::unwrap and it is therefore reasonable to assume that the panic occurs due to
a call to unwrap on an Option.

The differentiation between panic stack trace patterns can be useful for the programmer to decide on
the severity of some panic call. Rustig supports the detection of two types of panic calls. The first type,
caused by unwrap() call, has already been described. The second type that is recognized, is the direct
panic call. This type of panic occurs when the panic macro is called directly from the internal crate.

5.6. Output
The last step of the pipeline is providing the user of Rustig with the information, which is obtained in the
phases mentioned in the previous sections. This information is presented in different output formats,
each aiding the user in some way. The main output is given through the command line and consists of
a list of found panic calls. This type of output is covered in Section 5.6.1. Furthermore, Rustig is able
to write its inner graph representations to file. This is covered in Section 5.6.2.

27

5.6.1. Print Panic Calls
When providing feedback through a command line interface, it is important to determine what information
is printed and how this information is structured. The essential information needed to fix a call to
panic!, is the exact location in the source code of the function call that is found to panic. Providing
more information, like the full stack trace or a matching pattern, could be useful. On the other hand,
the output could become cluttered and might overwhelm the user. This consideration is accounted for
by implementing two printing modes: simple and verbose.

Simple is the standard output format of Rustig. As the name suggests, simple contains concise information;
the found pattern and full stack trace are left out. Instead, only the external function that was found to
panic and its internal caller are printed, as well as the crates and files they were defined in. The format
of simple can be seen in Listing 5.5. In this listing the output is split up over two lines, where normally
the output would be printed on one line.

Listing 5.5: Entry in simple output format (i=internal, e=external)

1 <i-crate>::<i-function> calls <e-function> (<e-crate>)
2 at <file name>:<line number>

When more information is required, the verbose output format can be chosen by using the -v or
--verbose flag. Unlike the simple output format, verbose does show the found pattern and full stack
trace. Furthermore, whenever a stack trace contains a dynamic invocation and is therefore uncertain
(as explained in Section 5.2.3), a notification is added to the output of this trace. The exact format of
verbose can be seen in Listing 5.6, lines 3 and 4 are repeated for every call in the stack trace.

Listing 5.6: Entry in verbose output format

1 --#<trace count> --Pattern: <Pattern> [--dynamic invocation]
2
3 [<entry number>: <crate><crate version>::<function name>}
4 at <file name>:<line number>] {number of entries in trace}

5.6.2. Call Graph
Rustig can output the content of its internal graph representations to a DOT file (a graph description
language). This feature is optional and can be triggered by supplying the -g or --callgraph flag.
Furthermore, the type of graph that the user would like to be returned should be specified. This is
done by adding either full or filtered as an argument to the flag. A full call graph contains all the
procedures and invocations contained in the executable that was analyzed. The Filtered type does not,
this DOT file only contains the procedures and invocations that form a path to panic!.

5.7. Testing
The Rust programming language distinguishes two types of tests: unit tests and integration tests. The
input to Rustig is a binary executable, hence, such binary executables are needed as test resources
for both unit and integration tests. In this section, the generation of the resources is first explained in
Section 5.7.1. Secondly, the types of generated resources are discussed in Section 5.7.2. Finally, the
build script used for generation of these resources is investigated in Section 5.7.3.

5.7.1. Test Resources Generation
Integration tests are an important consideration for Rustig, since they require a full binary executable
to perform analysis on. This binary could be included either as a pre-compiled binary or as Rust source
code that would need to be compiled together with the tool when testing takes place. The final choice
for implementation of the test suite was the compilation during testing. While this approach would
generally increase the runtime of the testing phase, the benefits of this solution outweigh the costs.
Those benefits are explained in the following paragraphs.

28

The first advantage of generating binary test resources during the compilation phase is the transparency
of Rustig. One of the intentions for the tool was to release it as FOSS (Free Open Source Software).
Generally, software classified as FOSS is not prohibited from using pre-compiled binaries, as long as
the source code for them is available. According to the Open Source Initiative: ”Where some form of
a product is not distributed with source code, there must be a well-publicized means of obtaining the
source code for no more than a reasonable reproduction cost, preferably downloading via the Internet
without charge.”[28] The users might, however, be suspicious of such pre-compiled binaries in the
sources of the tool.

The second advantage of the compilation during testing phase is the reduced size of the sources. The
ELF binaries created by Rust are quite large, a simple ”Hello World” application has a size of 5.1MB,
while the source code of such application has a size of just 8KB. Including multiple binaries in the source
code of Rustig would result in an unnecessarily large project.

The third advantage of the chosen approach is that Rustig can be tested more thoroughly, if both the
program as well as the test resource are compiled by the same compiler. The change of version of rustc
poses two challenges. On one hand, using versions of rustc newer than the version in which the tool
was written may cause unwanted changes to the behavior of the program. On the other hand, using
newer versions of rustc can also change the binary format slightly. This would mean that the input
to the tool also changes and that should be tested. Note that when necessary, a fixed version of the
compiler can still be used to compile some test resources. This functionality is used for tests that expect
a specific binary as input.

5.7.2. Test Resource Types
The test resources needed for proper testing of Rustig are executable files compiled with either some
fixed rustc version or the same version that Rustig itself is built with. In the source files of the tool,
the directory test_subjects represents test resources that are compiled with the same version
as the tool itself. These resources are used for most integration tests. The projects in directory
test_subjects_stable_rustc are compiled with a fixed rustc version, namely version 1.26.0.
This version has been chosen as it was the latest available version of stable rustc during the initial phase
of the development of Rustig. This type of test resources is mostly used for unit tests of the binary
parsing stage.

5.7.3. Build Script
The test resources are generated during the compilation of Rustig. This process is possible due to a
custom build script. The build script is used to build two separate projects that contain test resources:
test_subjects and test_subjects_stable_rustc. Both projects are virtual cargo manifests,
which means that they contain multiple cargo projects in them. When the virtual manifest is compiled,
all the projects contained in it are compiled as well.

If the virtual manifests were not simple test resources but actual projects, the compilation would be
done by running the cargo build command in the appropriate directory. The custom build script
does exactly the same, it calls the cargo build command in the appropriate directory. For the
test_subjects directory which simply uses the same version of rustc compiler as the project itself,
the snippet of the build script can be seen in Listing 5.7

Listing 5.7: Snippet of the build script, showing the cargo build command

1 use std::process::Command;
2
3 Command::new(”cargo”)
4 .current_dir(&test_subjects_dir)
5 .arg(”build”)
6 .status()
7 .expect(”Building of test subjects did not produce any output”)

29

The build script for test_subjects_stable_rustc is similar, but since this directory should always
be built with a specific, fixed version of rustc, this version is enforced by the build script. This can be
seen in Listing 5.8.

Listing 5.8: Snippet of the build script, showing the cargo build command with fixed rustc version

1 use std::process::Command;
2
3 Command::new(”cargo”)
4 .current_dir(&test_subjects_dir)
5 .env(”RUSTUP_TOOLCHAIN”, ”stable-2018-05-10”)
6 .arg(”build”)
7 .status()
8 .expect(”Building of test subjects did not produce any output”)

Notice that the 5th line in Listing 5.8 sets the environment variable RUSTUP_TOOLCHAIN to the value
of stable-2018-05-10, this value corresponds to the Rust version of 1.26.0. This variable is only
used when rustup is installed. Since rustup is the default toolchain manager of the Rust programming
language, the assumption that it is installed is reasonable.

30

6
Process Evaluation

This chapter discusses the development process of Rustig. To ensure a flexible development process,
it was decided to use Scrum as the development methodology for this project. Our take on Scrum
is described in Section 6.1. Furthermore, our process used various tools to encourage a streamlined
development process, these tools are discussed in Section 6.2.

6.1. Development Methodology
The project made use of the Scrum methodology, which is ”an agile approach for developing innovative
products and services” [29]. Scrum uses short development cycles called sprints, which usually last
between one week and one month. For this project, it was decided to use sprints with a length of one
week each. These short sprints allowed us to be flexible in our development process and it would allow
us to change the design if it were to be requested by Technolution.

During a sprint, several features would be scheduled to be implemented. These features would have
to be fully implemented, tested and documented before they would be considered as done. To ensure
that we would be able to meet our sprint deadlines, we would have daily stand-up meetings. During
these meetings the product owner, who is a representative of Technolution, the scrum master, who is
a project member who we appointed to be the scrum master, and the development team would be
present. They would then discuss the individual progress that was made the day before, what each
team member would accomplishing today, and if they foresaw any problems which could potentially
prevent them from accomplishing their goal. If it seemed that a feature would not be finished on time
we would be able to shift our priority towards that specific feature, or to reschedule it to a later sprint.

6.2. Development Tools
During the development process various tools were used. In this section it is explained how we used
these tools to help development. The main tools for this project were Continuous Integration and Static
analysis, these are explained in Section 6.2.1 and Section 6.2.2 respectively.

6.2.1. Continuous Integration
To ensure that problems were caught early, we would build and test our code pushes on a continuous
integration server. For this project we got access to the Jenkins server of Technolution. This server was
hosted by Technolution and provided us with very fast build times. On this server we ran static analysis,
which will be discussed in the next section, and our tests on every commit. While it was great that
Jenkins worked well, there was no integration with Gitlab. This made pull-based development slightly
more inconvenient, since we had to check the status of our builds manually.

31

6.2.2. Static Analysis
To ensure that our code was of high quality, various static analysis tools were used. While the Rust
eco-system is stil very young, various tools already exist for static analysis.

• Clippy is a static analysis tool used to catch common mistakes and to improve Rust code [30].
Clippy was ran on our continuous integration server to ensure a commit did not introduce any code
smells. While this proved to be very useful during a project, we did not use Clippy as well as we
could have. We decided not to run Clippy locally, Because it is very unstable, since new versions of
Rust often break Clippy. Instead, we opted to run Clippy exclusively on the continuous integration
server. This caused some failing builds, since there was no way to check Clippy warnings without
pushing.

• rustfmt provides automatic formatting according to the Rust style guidelines [31]. During our
developing process we used git hooks, which ran rustfmt before every commit. This ensured that
we would only commit correctly formatted code. Despite the git hook, we could have improved
our rustfmt usage. While rustfmt can be run on a continuous integration server, we did not use
this functionality. If we did run it on our continuous integration server, we would be certain that
our code would always be correctly formatted.

32

7
Final Product Evaluation

In this chapter, we discuss how well the product solved our initial problem. This is done by verification
and validation of the final tool. Verification is used to check whether the final product is built according
to the design goals and requirements, this is discussed in Section 7.1 and Section 7.2 respectively.
Validation is done by ensuring that the built tool is solving the problem that Technolution had, this is
discussed in Section 7.3. Finally we discuss the feedback we received from the Software Improvement
Group in Section 7.4

7.1. Verification of Design Goals
In this section the design goals, which were first introduced in Section 4.2, are reflected upon.

Extensibility
Rustig is written to allow for easy extensibility. This is done by the use of traits, which can easily be used
to implement a new feature without making major changes in other parts of the code. This adheres
to the ’inversion of control’ design principle [32]. Furthermore we made use of a creational design
inspired be the factory design pattern. Using this creational pattern, the tool is able to return a specific
implementation of a trait for the use case at hand. A programmer could easily extend this by adding an
implementation to the factory.

Modularity
Rustig is built using various modules. As explained in Section 5.1, the design allows for easy removal
and addition of modules steps in the pipeline. Furthermore, every module was built to allow it to be
tested without strongly depending on code in other modules. This ensures that a module would work
by themselves, as long as the correct input is provided.

Usability
During the project, we had various meetings with representatives of Technolution. This allowed us to
thoroughly focus on usability of Rustig, since we constantly received feedback. One of such points of
feedback was that our tool was providing an overwhelming amount of information. It was suggested
to filter the results based on what would be interesting to the programmer. After implementing these
features, the output of the tool became a lot more manageable. To give an indication of the size of
the output, the total number of paths to panic! found for different Rust programs can be found in
Section 9.3.

Scalability
Scalability was a major factor for this project. During the project we had to keep the size of the
programs which we would be analyzing in mind. This influenced decisions on the various algorithms we
implemented. While some other algorithms might have provided a slightly better result, their runtime
and memory usage would be too large. These considerations proved to be beneficial, since we were
able to analyze the executable of the Servo Browser Engine. This was a challenge, since the codebase of

33

Servo is quite large. It consists of approximately 300.000 lines of Rust code, and builds, with optimization
enabled, to a binary of almost 1GB. The analysis has been performed successfully and took less than a
minute, using 16.5GB of memory.

7.2. Verification of Requirements
In Section 4.1 various requirements were given. Rustig was built in accordance with these requirements
and adheres to all of the must have and should have goals. However, Rustig does not adhere to all
could have requirements. Therefore, it is interesting to discuss the could haves and why these could,
or could not, be implemented. The functional could haves are found in Table 7.1. The non-functional
could haves are found in Table 7.2

Table 7.1: Explanation of the functional could have requirements.

Functional Could Have Requirements

Requirement Finished Explanation

The tool could be configurable to ignore
particular patterns. Partially

Rather than ignoring patterns, the user
is able to ignore functions as explained
in Section 5.3.1. This can be used to
approximate pattern whitelisting.

It could be possible to ignore single
warnings by placing a comment in the
code.

Partially
While the user is unable to ignore single
warnings, the user could whitelist an entire
function as explained in Section 5.3.1

The tool could propose suggestions to
fix found problems. No

While it could have been possible to
implement this, it was decided the gained
benefits were not worth the time. The
programmer is very well capable of solving the
problem based on our current output.

The tool could support XML, JSON,
Jenkins and HTML as output format No

After some discussion with Technolution it
was found that this had very low priority.
They told us that, if necessary, they could
implement this themselves. Therefore, it
ended up at the bottom of our backlog and
was not implemented due to a lack of time.

The tool could be able to print the call
graph in DOT as output format. Yes Our tool is able to dump the call graph in DOT

format, as explained in Section 5.6.2

The tool could have a verbose output
mode, where full backtraces of
unwanted thread exits are printed.

Yes Our tool has both a simple mode and a
verbose mode as explained in Section 5.6.1

7.3. Validation
Technolution provided us with regular feedback during the development of Rustig. This ensured that the
tool would indeed be solving their problem. The output contained all the information they were looking
for; however, the size of the output was quite overwhelming. Nonetheless, it did bring awareness within
Technolution of the scale of the problem, since they were able to see how many distinct paths to panic
there were in their code base.

To fix the problem of the results being too overwhelming, we made two changes for the tool to be usable
by Technolution. The first change is whitelisting. Whitelisting allows the user to get rid of functions they
do not care about. This allows the user to focus on the functions they do care about. The second change
is clickable file names in the console output of your IDE. This change allows the user to immediately
jump to a function that causes a panic. After applying these changes, Technolution was very satisfied
with the workings of our tool.

34

Table 7.2: Explanation of the non-functional could have requirements.

Non-Functional Could Have Requirements

Requirement Finished Explanation
The tool could be able to run on
a Windows environment, so that
developers who want to work on
Windows, and cross-compile their
code, can still use the tool.

Yes
Our tool does not use any system calls which
are exclusive to Unix. Furthermore, it has
been tested to run correctly on Windows.

The tool could support the ARM
architecture. No

Several parts of our code are x86 specific.
While the code could quite easily be adapted
to support ARM, Technolution told us this was
not a priority for them.

The tool could be supplied with an
architecture design, that explains
which academic principles and
structures were used in developing the
tool.

Yes The architecture design is provided in
Section 4.4

7.4. SIG
As part of the process, our code was assessed by the SIG (Software Improvement Group). They provided
us with two points of improvements to better the quality of our code. A copy of the feedback by SIG
can be found in Appendix E. In this section we discuss how we incorporated their feedback in our code.

The first point of feedback was that some of our units were too complex. This was caused by various
long functions in our code. These long functions cause unnecessary complex code and they should be
split up to allow for easier testing and a better structure. We fixed this by examining the tasks performed
by a function, and distributing these tasks over different functions. This improved the readability of our
code, since it made functions more compact. However, the runtime of the program, when compiled with
optimizations enabled, increased by 4.6 seconds (8%) on average.

This benchmark was performed by running Rustig on Servo 10 times before the refactoring and 10
times after the refactoring. We suspect the runtime decrease happens because function parameters
are passed on the stack in Rust when optimization is disabled. This is not as efficient as passing
through registers. Some refactored functions were called relatively often, and therefore the newly
introduced functions may cause significant overhead. When optimizations are enabled, this overhead is
not completely optimized away. Since the runtime of the tool in absolute values is still acceptable, we
ought this increase of readability to outweigh the performance loss. However, it shows that improving
one metric can deteriorate another. Therefore, it is always needed to compare a set of metrics to obtain
optimal code quality [33].

Secondly, SIG commented on the fact that we did not have any unit tests; however, we had more than
100 tests at that time. After some back-and-forth mailing, we learned that their tool did not detect tests
in the same file as source code. They suggested us to put the test cases in a separate folder. However,
Rust guidelines state that unit tests should be in the same file as the method they are testing [34].
Therefore, SIG decided to withdraw this suggestion and told us to follow the Rust guidelines.

35

8
Ethics

In this chapter ethical concerns regarding Rustig are discussed. Just like other static analysis tools, this
software has been created with the incentive to support Rust programmers in writing robust code, but
it could also be used by people with malicious intent, as described in Section 8.1. Furthermore, the
documentation of Rustig should be clear about what the tool is capable of. Section 8.2 covers false
assumptions users might have, resulting in users overestimating the quality of their software.

8.1. Control Flow Analysis
For us as the development team, and Technolution as a client, the objective of this project has always
been evident: To aid developers in writing robust Rust code. In Section 3.2 we concluded that to obtain
the information necessary to achieve this goal, the analysis must be performed on binary files. This
approach provides the programmers with all the potential paths to panic!, enabling them to secure
their program against unforeseen situations, that would lead to the system going down.

To perform analysis on binaries, these files first have to be abstracted to a higher level language
(assembly) to make analysis less cumbersome and eventually provide feedback on a source code level
to the programmer. This is achieved by reverse engineering the binary, a practice known to raise a lot
of ethical and legal questions. Legally, copyright law protects the intellectual property of the developer
(or company), prohibiting others from reproducing or making adaptions to the software. However, most
countries allow reverse engineering in some cases. For instance, regulation in the United States and the
European Union allows decompilation and disassembly of software that has been legitimately obtained,
for the purpose of interoperability and error correction (the objective of Rustig) [35, 36]. On the ethical
side, the intention of the user determines whether reverse engineering is considered right or wrong.

In the case of our tool, most use cases will be aiding the goal of writing fail-safe code. However, Rustig
might also be used by people with malicious intentions, trying to expose vulnerabilities of a program.
The tool allows for control flow analysis on an executable as input, which may lead to the exposure
and exploitation of a vulnerability. This may cause systems running the software to stop or slow down
execution, due to a handling the panic! that was caused.

The outlined problem will probably be hard to take advantage of, because the output of Rustig gives
little to no indication about how to exploit the found panic calls. Furthermore, for the tool to be able
to analyze an executable, it has to be compiled with debug information. Generally when a program is
not open source, the executable does not contain this information, and is therefore not susceptible to
an attack that makes use of the tool. When the source code is available, numerous other methods exist
that are better at finding exploits in code. Therefore, we deem it unlikely that Rustig will be used for
these practices.

37

8.2. False Assumptions
When using static analysis tools, it is important to keep in mind how they function and what aspect of
the code they are trying to improve. In the case of this tool, it should be used by developers to assess
how their own programs might fail. It is important that users do not have false expectations of Rustig,
or how limiting the number of paths to panic helps them. A piece of code might be perfectly valid Rust,
and contain no calls to panic!, but be full of bugs. Users of the tool might not realize this and falsely
assume that their programs do not contain bugs.

Ethically, the big concern here is that Rustig becomes some kind of measurement on the reliability of
software, directly associating the number of paths to panic with software quality. While a correlation
between these two most definitely exists, one cannot simply deduce one from another. This wrong
assumptions between a metric and software quality is not specific to this tool, but are a problem in
general with the use of analysis tools. Bouwers, Visser and van Deursen characterize this mistake as
”Treating the metric”, where changes to software do not improve its quality, but are merely to improve
the value of a metric [33].

We as the developers of this tool have a responsibility to make users aware of how Rustig functions
and its possible shortcomings. We cannot expect the user to not associate less output of the tool with
higher software quality, because it is a reasonable assumption to make. The intention of Rustig: to
make programmers aware of hidden panic calls in their code, should be clear from the documentation.
This documentation should also contain warnings about the aforementioned wrong assumptions, giving
the user a clear prospect of the tool.

38

9
Discussion

in this chapter, the various issues and findings that emerged during development are discussed. Some
of these issues could be solved by using a different approach, these are discussed in Section 9.1. Other
issues are still present in the final product, and restrict the domain of the tool. These limitations are
discussed in Section 9.2. Finally, various findings, which were found by the use of Rustig, are provided
in Section 9.3.

9.1. Failed Approaches
Some of the tried implementations were unfeasible for multitude of reasons. One of such implementations
was symbolic execution, which is explained in Section 9.1.1. Another failed approach was trying to find
every path to a panic, this is further explained in Section 9.1.2.

9.1.1. Symbolic Execution
In Section 5.2, it was explained how lea instructions are used to approximate dynamic invocations.
However, this algorithm was not the first implementation of this dynamic invocation finder. Our initial
attempt implemented symbolic execution to find these cases. For every call relative to a register value
we attempted to combine the previous instructions with the DWARF formal arguments information to
determine what parameter value is in that register. Subsequently, we applied symbolic execution on all
callers of that function, in order to determine the parameter they passed to that function.

It turned out that, in most cases, not enough context information was available to reliably determine
the passed function pointers. Moreover, when function pointers were hidden in more complex data
structures, doing only partial symbolic execution did not suffice. Therefore, we do not recommend
implementing algorithms that are prone to missing cases when it is not a problem for the call graph to
be over-represented.

9.1.2. Find Panics
In earlier sections it was discussed how finding every path in a graph is an 𝒩𝒫-hard problem. We,
however, failed to realize this initially and tried to implement an algorithm which saves a list of all paths
to panic! on each node. As a result we were very surprised when our initial algorithm ran out of
memory while analyzing very simple programs. This was due to the algorithm being exponential in
space. After further research we realized that the problem was 𝒩𝒫-hard.

Consequently, we had to find an algorithm that would provide the user of Rustig with the expected
results, but would not run in exponential time. We then came up with the algorithm as explained in
Section 5.4. This algorithm provided the necessary results and ran in polynomial time. Therefore, this
algorithm is a suitable replacement for our original idea.

39

9.2. Limitations
Finally, the final product that is delivered also has its limitations. As stated in Chapter 8 it is important
to be aware of these.

The first important limitation is that we do not attempt to find premature thread exits that are not caused
by panic! calls. While the Rust compiler normally guarantees that these cannot occur, it is possible to
circumvent these compiler checks by using unsafe blocks. In these unsafe blocks, memory access
violation errors can occur. Our tool does no attempt to find these.

A second limitation is the fact that false positives can be reported. As explained in Section 5.2, dynamic
invocations are over-approximated. Moreover, it might occur that some code is not reachable, but the
compiler fails to optimize it away. In these cases the user needs to be aware that the reported trace is
not an actual issue.

A third limitation is the fact that Rustig is dependent on the fact that #[inline(never)] is defined
on the panic handler functions. As explained in Section 5.2.1, no nodes are created for inline functions.
If the panic! handler would be inlined, our tool will not detect calls to it.

The last important limitation is the fact that traces through embedded C code are not reported. This can
occur if Rust functions are inlined in C functions when link-time optimization is applied, or when Rust
functions are explicitly called from C functions.

9.3. Findings
In this section, some findings on the number of panics found by the tool are discussed. It turned out
that many panics are not relevant in all situations, but some panic traces that were found can really lead
to program terminations. The whitelisting functionality (see Section 5.3.1) is very useful to filter these
situations. An indication of the ratio of panic traces found to the number of lines in production code is
provided in Section 9.3.1. An overview on how many of the found traces require more analysis is given
in Section 9.3.2.

9.3.1. Concentration
The results obtained by our tool show that the problem does indeed exist. We ran an analysis on
optimized builds of servo, cargo and two often downloaded cargo plugins. The results are displayed
in Table 9.1. The number of lines is measured using tokei, on production code only. It turns out that
approximately for every 3 - 8 lines of code, a path to panic is made. This is significantly more than we
initially expected.

Table 9.1: Tool output

Crate Lines of Code Number of panic
paths

Servo 219806 50881

cargo 25892 9439

cargo-make 8243 1195

cargo-edit 671 237

9.3.2. Quantitative analysis
We performed some analysis on the details of the output for five open-source projects and five internal
pre-production projects (numbered 1 - 5 in the table), that were provided by Technolution. This was
done by judging the relevance of the outputted traces that were reported. In order to categorize
the output, we used whitelisting to remove traces with a specific cause, like formatting or memory
allocation. The results are shown in Table 9.2. In this table, the column Total denotes all the panic traces
in the program. In the column Project specific, we whitelisted some functions that were explicitly

40

meant to panic if something went wrong in the setup or teardown phase. In the subsequent columns
Format, Allocation and Indexing, we disabled traces for string formatting, memory allocation and
array indexing respectively. We whitelisted these because, based on our experience, they are very
unlikely to panic. These whitelists are added on top of the project-specific whitelists. In the All column,
we combined all these whitelisting configurations. The traces in this output did not have an easy to
identify cause, and would require more investigation. In the last two columns, we identified how many
of the traces in the All column were caused by an unwrap or by use of the panic macro itself.

Table 9.2: Tool output

Project Whitelisted Type

No Total Project
specific Format Allocation Indexing All Unwrap Direct

cargo 9439 7782 4833 5514 6758 2238 738 49

cargo-make 1195 1136 695 697 1030 148 71 8

cargo-add 388 283 201 209 236 95 17 4

cargo-rm 126 108 64 91 97 37 5 0

cargo-upgrade 415 298 204 231 267 112 16 2

Project 1 1989 294 191 269 259 164 38 1

Project 2 2015 1839 398 1316 1577 237 118 0

Project 3 257 93 69 80 80 48 15 0

Project 4 461 230 114 214 203 100 23 0

Project 5 263 93 3 78 82 50 16 0

Based on these results, we tried to estimate the impact of this output. It turned out that many panics
were difficult to trigger, since they are very environment specific. However, in the cargo-make project,
we were able to trigger 2 panics after trying for just half an hour. These occurred when the current user
has no read permission on some of the input files for cargo-make, or when that file was not formatted
correctly. This demonstrates it is possible to find bugs with the tool; however, it certainly requires some
effort. To make the tool more useful, more research regarding the causes and frequency of certain
panics is necessary. This would allow the tool to only report panics that could actually occur in practice.

41

10
Conclusion

This project began with a clear goal in mind: analyze Rust code to find ways that a program could
potentially panic. Using this information, Technolution could write more robust Rust code to ensure
the availability of their software. The initial research phase proved that the problem was complex, but
solvable.

The final product is a tool that statically determines paths to panic for a given executable written in
Rust. Internally, Rustig creates a call graph using ELF binary and the embedded DWARF information.
This construction of the call graph is based on the function calls found in the assembly. While static calls
will always be correctly detected by the tool, estimations had to be made to detect dynamic calls. We
concluded that we should overestimate these calls, since we want to ensure that no potential path panic
is left unseen. To accomplish this we assume that every function that is loaded, using Load Effective
Address instructions, will later be invoked and thus an edge should exist towards this function.

Building the call graph was only part of the problem. The next step was to analyze the graph to provide
the programmer with usable output. This analysis consists of several smaller steps to preprocess the
graph and finally finding the code paths which lead to a panic. While finding every possible path in a
graph was the original goal, this problem turned out to be 𝒩𝒫-hard. It was therefore decided to find
at most a single path for every function call to an external crate. This single path could already be used
to warn programmers that the external crate they were using could cause a panic. All these paths to
panic through an external crate are then written to the console.

The output, as provided by Rustig, allows a programmer to find potential premature terminations. The
programmer could then decide to refactor their code to be less prone to panics during runtime. Rust
programmers would then be able to to achieve a high availability for their code, while having the luxuries
of type and memory safety of Rust.

Nonetheless, we propose several recommendations concerning Rustig. Firstly, whitelisting of certain
functions could be done by using source code annotations. Currently whitelisting of functions is done in
an external configuration file. Annotations would greatly improve the ease of use of whitelisting, since
the programmer would no longer have to update an external file.

Secondly, Rustig could be improved to recognize more panic patterns. There are many panic call types
which can be categorized by their stack traces. The pattern recognition is useful for the programmer
as it helps them to approximate the severity of the panic call. The two panic types that are already
categorizable by the tool, are direct panic calls and panic calls due to unwrap. It is expected that
patterns such as array indexing or panics due to overflow checks can be recognized as well.

Finally, an extensive usability analysis of the tool could not be performed during this project. However,
it would be advantageous to get answers to the following questions: ”How often does Rustig help to
identify and solve causes of premature thread exits?” and ”How can the results of the tool be categorized,
prioritized and filtered to optimize relevance and convenience to the user?”. Answers to these questions
could be used to further improve the effectiveness and usability of Rustig.

43

In conclusion, we are very satisfied with the results achieved by our tool, since the core functionality
has been built and can easily be extended upon. Furthermore, we believe that our tool provides the
Rust community with the means necessary to write more robust and highly available software.

44

A
Project Description

This appendix contains the original project description as found on BEPSys (https://bepsys.ewi.tudelft.nl/)

A.1. Background Information
Technolution is working on various systems in the defense, public security, industry and transportation
markets.

In general, these kinds of systems require software to meet high security, availability and reliability
standards.

Mozilla’s new programming language Rust is a language that, by design, gives higher security and
reliability guarantees than languages like C and Java. However, in some cases the higher security can
lead to a decrease in availability of the software. The system goes down. It requires careful programming
to ensure this does not happen.

A.2. Goal
The goal of this assignment is to create tooling to verify (prove) that the programmer did not trade
availability for security. We want both.

To do this, the students will dive deep into the ELF binary format for executables and DWARF debug
information and derive a call graph. Using this call graph the students will check for constructs in Rust
that lead to the system going down.

A.3. Research Questions
• Research what information is needed to generate a call graph from an ELF binary.

• Research which situations in the call graph signify an unwanted situation as described above.

• Research the available tools and libraries to generate the required information.

• Research the available methods to allow a software engineer to blacklist/whitelist certain paths
that lead to unwanted situations.

A.4. Technologies Involved
• Rust

• Linux

• ELF binary executable format

• DWARF debugging info format

45

https://bepsys.ewi.tudelft.nl/

A.5. Future
Detecting unwanted thread exits is only one verification that can be done once we understand the way a
Rust program gets compiled and optimized. Future research might try to find additional proofs or other
methods to deduce the required information from the Rust compiler and executable.

46

B
Project Plan

The project plan was written in week 1 and defines our initial approach of the project.

B.1. Introduction
The TU Delft Computer Science Bachelor Project is the final project carried out by Computer Science
bachelor students. During this project, as a team of 4 students, we will produce a product that is
commissioned by the client, Technolution. The project is also supervised by a TU Delft coach, Robbert
Krebbers.

The product commissioned by the client is an analysis tool for unwanted thread exits in Rust programming
language. Even though the Rust programming language provides memory and data-race safety, the
programmer is still responsible for ensuring the availability and reliability of the program. Irresponsible
error handling is an example of a situation that can lead to unwanted exits. Such situations should be
detected programmatically and hint the user what part of the code-base contains the unwanted thread
exits. For some known patterns, the programmer can also be hinted in how the unwanted exit could be
prevented.

The issue of unwanted exits is crucial for high availability systems, for which the downtime should be
well below minutes per year. These systems cannot afford to lose uptime due to programming errors.
Examples of such systems are: carrier-grade telephony, health systems and banking systems.

During the initial project phase, it is important for the three parties (the team, the client and the
supervisor) to reach an agreement on the content, goals and methods of the project. It is of utmost
importance that the product delivered by the team is usable by the client and also contributes sufficiently
to the scientific world. Moreover, the project must allow us, as a team, to carry out a full software
development project with a research component.

In this document, a project plan is proposed, such that the requirements of the three parties are satisfied.
Firstly, the purpose of the project is described. Secondly, the general process that we plan to use during
the project are laid out. Finally, we present the planning for the project.

B.2. Purpose
In this section, we will describe in more detail what goals we want to achieve by the end of the project.
First, we will explain what research questions we want to have answered. These questions will help
us to sufficiently understand the problem to come to an optimal solution. After that, we will describe
the goals for the product we want to deliver. These goals (requirements) will be prioritized using the
MoSCoW method. Finally, we will give an overview of deliverables we want to provide at the end of the
project.

47

B.2.1. Research goals
Regarding the research goals, two particular questions are of interest. In its raw form, binary files
formats are difficult to analyze. As a first step, we should transform binary information into a call
graph. This call graph denotes what functions call to which other functions. Additionally, some context
information can be given to these calls. For us, this means we should research what information we
should extract from the binary files, and how we should represent this in a graph format. The question
that we want to answer is: ”How can binary information be used in order to create a call graph?”

The second question that is relevant is how to analyze the call graph we build. From a call graph (or
binary itself) it is easy to detect whether certain procedures get called. However, it is more interesting
to detect if these functions will actually be hit during code execution. The question that we want to
answer is: ”How can the call graph be used in order to find unwanted thread executions?”

In order to be able to answer the questions posed in the previous paragraphs, we also need to know
some details about how Rust code is transformed into binary code. These include how functions can
call other functions (static and virtual), how debug information is encoded, and how external code is
linked and called.

B.2.2. Product goals
Another goal of this project is to deliver a tool that can detect unwanted thread exits (calls to panic).
In this subsection, we will state the functional and non-functional requirements for this tool. These will
be categorized into four priority classes: must-have, should-have, could-have and won’t-have (where
appropriate). This prioritization is scoped to our project only. This means that, for example, won’t have
requirements will not be implemented by us, but might be implemented at a later stage, in a different
project.

B.2.3. Functional Requirements
This section provides the functional requirements as agreed upon with Technolution. These are the
requirements of the functionality the final product should contain.

Must have

• The tool must operate from the command line.

• The tool must internally build a call graph from a Rust ELF binary.

Should have

• The tool should be able to detect, whether code paths exist that may lead to a panic call (which
may reside in an external crate)

• The tool should print errors if the previously mentioned thread exits occur to the standard output.
The format if the output will be:
”Method ’<method name> in <file name>:<line number>’

calls ’<crate>::<method name>’”.
Here the first mentioned method name will be the last method in backtrace which is user code,
while the second mentioned is the first method in an external library that is called.

• The tool should have exit code 0 if no errors were found.

• The tool should have exit code 1 if unwanted thread exits were found

• The tool should have exit code 101 if an internal error occurred.

48

Could have

• The tool could be configurable to ignore particular patterns.

• It could be possible to ignore single warnings by placing a comment in the code.

• The tool could propose suggestions to fix found problems.

• The tool could support CI-server (Jenkins) compatible output.

• The tool could support XML as output format.

• The tool could support JSON as output format.

• The tool could support HTML as output format.

• The tool could be able to print the call graph in DOT as output format.

• The tool could have a verbose output mode, where full backtraces of unwanted thread exits are
printed.

Won’t have

• The tool will not be a compiler plugin

• The tool will not fix found issues in the source code itself.

• The tool will not detect unwanted thread exits originating from unsafe Rust code.

B.2.4. Non-Functional Requirements
This section defines requirements which is not part of the expected functionality of our tool, but rather
define the way of operating and the design constraints.

Must have

• The tool must be executable within a Linux environment.

• The tool’s source code should have no compilation errors under standard compilation conditions.

Should have

• The tool should be written in the Rust programming language.

• The tool’s source code should have each public, non-trivial code element (method, struct, trait, etc.)
documented. Documentation should indicate the purpose of the code element, and particularities
or non-trivial properties of the implementation.

• The tool should have a short user guide, explaining all the implemented options, the output, and
configuration as part of its source code.

• The tool should have a help-option, that prints a small guide on how to invoke the tool.

• The tool should have no compilation warnings.

• The source code should adhere to the Rust Style Guide [24]

• For each function, all usage patterns that can be reasonably expected should have a test case.
For these test cases, it should be documented what use case is tested.

Could have

• The tool could be able to run on a Windows environment, so that developers who want to work
on Windows, and cross-compile their code, can still use the tool.

• The tool could support the ARM architecture.

• The tool could be supplied with an architecture design, that explains which academic principles
and structures were used in developing the tool.

49

Won’t have

• The tool will not be supported by the original development team after project termination.

B.2.5. Deliverables
In order to achieve the previously set goals, we will provide the following at the end of our project:

Product
We will deliver an executable that can be run on a Linux environment. Furthermore, the complete,
commented, source code, including tests and development history, of the project will be available to the
client and the TU Delft coach. Technolution will be the owner of the code. Technolution may decide to
publish this code under the MIT license or the Apache-2.0 license.

Documentation
Furthermore, we will deliver the following documents in both PDF and LaTeX form: Firstly, a user guide,
that explains the purpose of the tool, what command line parameters can be given. Secondly, we will
provide a research report, in which the findings of our research will be summarized. Thirdly, we will
provide an architecture overview, which will explain the technical design choices made. This document
will refer back to the research report for scientific background of the design. Fourthly, we will deliver a
final report, which will elaborate more on the full project.

B.3. Process
This section describes how we plan on achieving the previously mentioned research goals (Section B.2.1)
and product goals (Section B.2.2), and which approach we will take to meet the requirements of the
deliverables (Section B.2.5). The process description will be split up in two parts. First we will illustrate
how we plan to collaborate as a team and communicate with our client and coach in Section B.3.1.
Secondly we will describe what facilities we have at our disposal and which software will be used for
implementation in Section B.3.2.

B.3.1. Communication
Our client provides us with a spacious room, from which we will be working for the next ten weeks. Since
we all sit together, we will be able to communicate in person on a daily basis. The room is equipped
with two whiteboards, of which one was covered immediately in post-it notes, functioning as our Scrum
board. The Scrum framework will be used to provide fast feedback and to assure that a working version
of the tool is available at all times. Due to the short project duration, sprints of a 1-week period are
chosen. The first two weeks will deviate from the standard Scrum methodology, the university requires
us to conduct research, preparatory to any product implementation. This also means that we will be
starting with daily Scrums after the first two weeks.

Meetings with our client, Erwin Gribnau, are scheduled on Mondays and Thursdays at 10:00 am in
our room at Technolution and will generally take half an hour. Furthermore the client has indicated to
be available for questions during work hours and has provided us with his contact information. The
meetings with our TU Delft coach, Robbert Krebbers, are scheduled on Fridays around 9:00 am, at his
office in Delft, and will generally take half an hour. Due to holidays and the schedule of both client and
coach, some meetings will be moved to another time.

To ensure a smooth project process, we agreed upon some rules for conflict resolution. First of all, to
avoid confusion, agreements between group members or between group and client should be explicit,
clearly formulated and well documented. If a group member or the group in general foresees that an
intermediate deadline cannot be met, this should be communicated to the rest of the group and the
client at least 24 hours before the respective deadline. A disagreement between group and client should
first be discussed briefly between these two parties, before the TU Delft coach gets involved.

50

B.3.2. Means
The company provided us with four modern desktop PC’s, on which most of the work during this project
will be done. We had the freedom to choose a Linux distribution that we felt comfortable with. The
client also required us to make use of the GitLab server of the company as version control. We will use
this server with the following five rules:

1. No pushes to master

2. Each feature is made on a separate branch

3. Each branch is peer reviewed before it is merged into master

4. A merge is approved only when documentation and test requirements are met

5. Only code that has successfully been built on our CI server, is able to be merged into Master.

Early on, we, as a group decided to write our tool mainly in Rust. This choice was made for a number of
reasons: First and foremost the code base should be maintainable within the company, after the project
has ended. Furthermore, Rust provides methods for binary parsing and easy access to C-functions.
Writing the problems in Rust also gets us acquainted with the problems we are trying to resolve. At
last, after the project has ended the code will be made open-source, at which point we hope the Rust
community will start using it. Writing the code in Rust will facilitate this process.

The code we produce will be sent twice to the Software Improvement Group (SIG) during this project.
The feedback we get from SIG during the first code submission will be used to improve the code base
for the second and final code evaluation.

B.4. Risks
In this section, in order to maximize the chances of this project succeeding, we identify some risks that
may possibly negatively influence the progress of our project. Furthermore, we describe the methods
of dealing with them in order to minimize their negative effects.

B.4.1. Leave of a team member
The risk here is that unexpectedly, a member of the team would not proceed with the project. In this
case, the solution will depend on the time-frame when this happens. If this situation occurs at the end
of the project, we expect to continue the project as planned. If, however, this happens at the beginning
of the project, some changes to the expected goal of the project will be applied. Due to lowered amount
of team members, we expect that the main goal would be the generation of the call graph. We still
expect to identify some thread panic calls, but the research on this topic will be less sophisticated.

B.4.2. Expected design is infeasible
There exists a risk that the program design that is expected from us is not feasible. For this risk, we
identified two scenario’s of how this could happen. It is either not possible to make a full call graph with
information in ELF/DWARF formats or it is not possible to reliably find the thread panic calls within this
graph.

The call graph cannot be reliably made with ELF/DWARF information
In the situation where the full call graph cannot be reliably made with only ELF/DWARF information,
we could extend our approach to include more information sources, such as source code or compiler
information. While these methods may not be preferred, it may be necessary to use them if no other
method will prove to be useful.

The thread panic calls cannot be reliably identified from the call graph
We have seen that at least some thread panic calls can be identified from the call graphs. If, however,
more in-depth research will reveal that not all of these thread panic calls can be identified, we plan
to continue our research and classify cases where the thread panic calls cannot be identified properly.
Using this approach, we can specify what guarantees our tool can provide for program analysis.

51

B.5. Planning
The planning for our project is as follows, we would like to submit the project plan within the first week
of our project, this project plan has to be approved by both our client and our TU Delft coach, we can
then start our research phase. We then have to submit our research report 2 weeks into our project.
Due to absence of our client during the second week, we propose to submit the report on the 7th of
May. The next deadline is the code submission to SIG on the 1st of July. Furthermore, we have a second
mandatory deadline to submit the code to SIG on the 25th of July. The final mandatory deadline is our
final presentation, which will be either on the 2nd, 3rd or 4th of July. Table B.1 provides an overview of
all the deadlines provided by the university. Finally we want to propose a few dates where we can submit
our report to our TU Delft coach for review. These dates will be discussed during our first meeting.

We plan on making a more in-depth planning after our research phase. We want to set ourselves a clear
road-map, however before doing so we need more research to make a judgment about the time-span
of all the software components.

Table B.1: Deadlines

Week Date Description

Week 1 April 26 Project Plan due
Week 3 May 7 Research Report due
Week 6 June 1 Submit code to SIG
Week 10 June 22 Submit code to SIG
Week 10 June 25 Submit final Report
Week 11 July 2, 3 or 4 Final Presentation.

52

C
Research Report

Our research project was originally written during the first weeks of the project. Most of our original
Research Report has been integrated into the main report and therefore it was decided to not add the
entire report as appendix. However, since the chapter on ELF and DWARF was not included in the main
report, it was decided to add it as an appendix.

C.1. ELF and DWARF
To accomplish our goal of finding potential software exits, we analyze executables which are stored
using the Executable and Linkable Format (ELF). Using the data found in the ELF we create a callgraph
which can be used to analyze the program. Furthermore ELF contains a DWARF subsection. DWARF
can be used to store debug data about a compiled program. Using DWARF, a debugger can find the
relevant information in the source code when given a compiled program. In Section C.1.1 we give a
short overview on the structure of ELF and DWARF. In Section C.1.2 we provide a comparison between
various methods of parsing ELF in Rust.

C.1.1. Structure
A file using ELF consists of various headers [37]. The first of these headers is the ELF header, which
describes the structure of the ELF file and general system information, for example, for which operating
system it was compiled for and the endianness of the file. Furthermore, it describes at which byte the
program headers and the section headers start. The program header contains information to allow the
operating system to prepare for the execution of the file. A section header contains information on a
specific section, most importantly the offset of a section and the type of the section. The following
sections are the most valuable to us:

• .text, which contains machine code that can be disassembled.

• .data, which contains various data, but most importantly the virtual method tables which can be
used to trace method invocations.

• .debug, contains the DWARF debug information.

DWARF, is meant ”to facilitate source level debugging” [38]. DWARF represents the debug information
as a tree, where a node of the tree is the debug information related to that entry, an entry could be
a type, variable or function, and the children of this node are debug information owned by that node.
Furthermore, DWARF contains a mapping from variables and function in the .text section of an ELF file
to the original source code. Using this mapping we can trace patterns in the assembly (e.g. Panics)
back to its original declaration in the source code.

Using ELF and DWARF we can analyze the compiled machine code and find patterns which could
potentially lead to a Panic.

53

C.1.2. Parsing
In order to be able to access all the information in the binary files in our tool, we need to parse these
files to a format that can easily be used and interpreted. As a first step, we will parse the ELF file, in
order to access the DWARF information, machine instructions, symbol tables and data sections. As a
second step, we will need to parse the DWARF information and disassemble the machine code.

There are many Rust crates available for ELF parsing. The first option is the object crate, which has a
simple API, but does not offer detailed header information. Since we need to extract, for example, the
section header offset, in order to disassemble correctly, this crate might not be a good choice for us. The
second option is the elf crate. This crate gives us enough information, but does not represent headers
as enums, which makes them more difficult to read for us. The xmas-elf crate, on the other hand,
does represent headers as enums. The disadvantage of that crate is that it applies a very non-intuitive
construction to dispatch different byte-sizes. All struct types take a P32 or P64 type parameter, which
are returned in an enum that encapsulates both types. The elrond crate provides a very detailed, but
still intuitive api. It also performs the flag parsing which, e.g. the elf crate did not do. The last option
we found is goblin, which also has a good API, all needed header information available, and even checks
the type of entries of the symbol table.

We see that for our use case, only the object crate is not a good option. This makes sure that we can,
if needed, use the same crate as a potential other dependency does, in order to speed up running time
(not parsing the elf twice) and binary size (not including superfluous dependencies).

Regarding the DWARF parsing, we found only the gimli crate that can perform this task. When examining
the documentation, we found that it is quite feature-complete. It can handle different DWARF versions,
use abbreviations, and much more. Also, this crate has been used to implement an addr2line clone
in Rust, and for creating a tool that generates backtraces at runtime (backtrace). The addr2line crate
might even be useful for us, to map call destinations to function names and source lines.

For disassembling the code, we found 2 possible options. The first one is the capstone-rs crate, that
provides bindings to the C capstone library. We could get that library to work in an example. A
disadvantage of this API is that only a text representation of the instruction is given. If we want to
extract this information, we will need to parse these instructions manually. Another option to decompile
is using radare2 [39], and the r2pipe crate. This option also has the disadvantage of string output, but
in addition to that requires a full radare2 installation, which introduces a lot of overhead.

54

D
Test Report

55

Coverage	Report
Command:

Date: 2018-06-22	14:54:26 Instrumented	lines: 4040
Code	covered: 91.3% Executed	lines: 3689

FilenameFilename Coverage	percentCoverage	percent CoveredCovered
lineslines

UncoveredUncovered
lineslines

ExecutableExecutable
lineslines

./lib/callgraph/src/lib.rs 67.6% 94 45 139

./lib/panic_analysis/src/graph_output/mod.rs 78.0% 64 18 82

./lib/panic_analysis/src/marker/mod.rs 82.6% 38 8 46

./lib/callgraph/src/callgraph/static_calls.rs 87.1% 101 15 116

./lib/panic_analysis/tests/function_whitelist.rs 87.4% 146 21 167

./lib/panic_analysis/src/lib.rs 88.0% 491 67 558

./lib/panic_analysis/tests/recognize_unwrap.rs 88.6% 31 4 35

./lib/panic_analysis/src/filter/mod.rs 90.6% 48 5 53

./lib/panic_analysis/src/marker/function_whitelist.rs 90.9% 130 13 143

./lib/panic_calls_output/src/lib.rs 91.1% 205 20 225

./lib/panic_analysis/src/patterns/direct_panic.rs 91.6% 141 13 154

./lib/panic_analysis/src/marker/analysis_target.rs 91.7% 111 10 121

./lib/panic_analysis/src/binary/mod.rs 92.6% 25 2 27

./lib/panic_analysis/src/marker/entry_point.rs 93.0% 80 6 86

./lib/panic_analysis/src/filter/panic_filter.rs 93.0% 66 5 71

./lib/callgraph/src/dwarf_utils.rs 93.1% 54 4 58

./lib/test_common/src/lib.rs 93.4% 57 4 61

./lib/callgraph/src/parse/mod.rs 94.1% 112 7 119

./lib/panic_analysis/src/patterns/unwrap_panic.rs 94.3% 148 9 157

./lib/panic_analysis/src/filter/whitelist_filter.rs 94.3% 116 7 123

./lib/panic_analysis/src/panic_calls/mod.rs 94.5% 445 26 471

./lib/panic_analysis/src/marker/panic.rs 94.7% 249 14 263

./lib/callgraph/src/callgraph/lea_dynamic_calls.rs 95.9% 301 13 314

./lib/panic_analysis/tests/libcalls.rs 96.4% 53 2 55

./lib/callgraph/src/callgraph/mod.rs 97.0% 318 10 328

./lib/rtti-derive/src/lib.rs 100.0% 1 0 1

./bin/cli/src/main.rs 100.0% 15 0 15

./bin/cli/src/cmd_args.rs 100.0% 3 0 3

./lib/callgraph/src/binary_read/mod.rs 100.0% 16 0 16

./lib/panic_analysis/src/patterns/mod.rs 100.0% 29 0 29

./lib/rtti/src/lib.rs 100.0% 1 0 1

Generated	by:	Kcov

E
SIG Evaluation

This appendix contains the evaluation by the Software Improvement Group. Note that the feedback was
provided to us in Dutch.

E.1. Feedback on first SIG submission
De code van het systeem scoort 3.5 sterren op ons onderhoudbaarheidsmodel, wat betekent dat de code
marktgemiddeld onderhoudbaar is. We zien Unit Complexity vanwege de lagere deelscore als mogelijk
verbeterpunt.

Voor Unit Complexity wordt er gekeken naar het percentage code dat bovengemiddeld complex is. Het
opsplitsen van dit soort methodes in kleinere stukken zorgt ervoor dat elk onderdeel makkelijker te
begrijpen, makkelijker te testen is en daardoor eenvoudiger te onderhouden wordt. Door elk van de
functionaliteiten onder te brengen in een aparte methode met een descriptieve naam kan elk van de
onderdelen apart getest worden en wordt de overall flow van de methode makkelijker te begrijpen.

In jullie project is LEABasedDynamicInvocationFinder() in lea_dynamic_calls.rs een goed voorbeeld van
een complexe methode, waarbij het opvalt dat het merendeel van jullie code uit vrij kleine methodes
bestaat. Dit is dus een uitschieter, waarbij een grote hoeveelheid functionaliteit in één stuk wordt
uitgeschreven. Er zijn pogingen gedaan om door middel van commentaar structuur en duidelijkheid aan
te brengen. Dat is in principe goed, maar idealiter zou je die structuur in de code zelf willen aanbrengen.

Als laatste nog de opmerking dat er geen (unit)test-code is gevonden in de code-upload. Het is sterk
aan te raden om in ieder geval voor de belangrijkste delen van de functionaliteit automatische tests
gedefinieerd te hebben om ervoor te zorgen dat eventuele aanpassingen niet voor ongewenst gedrag
zorgen.

Over het algemeen is er dus nog wat verbetering mogelijk, hopelijk lukt het om dit tijdens de rest van
de ontwikkelfase te realiseren.

57

F
Project Reflection

This chapter contains the reflections on the project of individual team members. In this evaluation we
reflect on our personal contributions to the project and the communication between the various external
parties.

F.1. Dominique van Cuilenborg
During the initial research phase of the program, I invested most of my time in researching ELF binaries
and the DWARF information they contained. This was very important to our project, since we had to
know whether it would be feasible to build a call graph from a binary. After the research phase we came
to the conclusion that this would be feasible.

During the project I was heavily invested in the algorithmic part of the tool. This part consisted mostly
of algorithms to extract the necessary data from the call graph. However, the issue is coming up with
an actual algorithm that provides you with the correct answer. Whenever we came up with a possible
solution, I found a lot of enjoyment in coming up with a counter-example, as to why our algorithm
would fail. This prevented us from wasting time on implementing algorithms that would not provide the
correct result.

However, there is more to an algorithm than just providing the correct answer; Algorithms have to be
fast. I found it very interesting to optimize our algorithms as much as possible. Optimization was very
important due to the fact that the tool should be able to analyze big binaries, without a major increase
in runtime. A slight error in one of our algorithms could greatly increase the runtime of our program,
which we wanted to avoid at all costs. Therefore, we often had to come up with a simplification of our
problem that would still return the results necessary, but would be a major speedup compared to our
original algorithm.

Nevertheless, we would not have been able to do any of this without the great cooperation within our
team. Every member was able to put their stamp on the project. Furthermore, whenever someone
would get stuck working on their idea (or was stuck fighting the Rust compiler...), the team made sure
to help them as soon as possible. What contributed immensely to the cooperation within the team was
the fact that we were working full-time in an office provided to us by Technolution.

Other than the cooperation within the team, we had to cooperate with the client and the TU coach. I
do not have any remarks on this aspect of our project, since we had weekly meetings with our coach
and almost daily meetings with the client. These meetings always provided us with in-depth and useful
feedback on not just the workings of the tool, but also the final paper we would write. This ensured that
Technolution would be satisfied with our program and that there was a scientific purpose to our project.

When looking back at the product we created, I feel very satisfied. We were able to create a tool that
helps the programmer build a more robust Rust program. However, I also feel like our tool reveals the
dark-side of rust; A language that is meant for low-level programming should not be able to crash this
easily. Therefore, I hope that our tool can stir some conversation in the Rust community on this topic.

59

F.2. Bart van Schaick
Looking back at the past three months and assessing the final product, I think we as a team can all
agree that the project has been a success. The client and TU Delft coach also seem pleased with the way
things went and the achievements we made. Luckily, I already had been in contact with Technolution
during a previous project. The positive impression I got back then, contributed to the decision of picking
this project over other interesting alternatives.

The impression proved to be correct, because the client has been very helpful and understanding during
the past months. It really helped that the client had previous experiences with student projects, and
also that, as a software company, the client understood what we were doing. The room and other
facilities that they provided us with, really contributed the project and its outcome. Furthermore, the
engineers at Technolution have provided us with helpful insights and alternative solution to problems
that we were facing.

During the research phase, when we were analyzing the problem and possible solutions, together with
Fabian, I was assigned to look into how the call graph should best be built. This proved to be a
one-man-job, so I had to come up with another interesting research topic. Those two weeks I spent most
of my time investigating how other static and dynamic analysis tools worked, and whether they could
be used to serve our purposes. Furthermore, I was involved in testing a number of crates (libraries),
which might come in handy during the realization phase of the project.

For the remainder of the project I was responsible for the output of the tool. My task was to gather all
the information acquired in previous stages and to provide this information in useful way to the user.
Because of continuous improvements that led to the tool being able to draw more and more information
from the binaries we analyzed, the output was bound to change every once in a while. This could be
quite frustrating, because every new feature and structural change to the code, could force the output
to change as well.

Another factor problematic to the implementation of the output and the tool in general, is the problem
turning out to be bigger than expected. The number of ways to panic we found in some projects is
staggering, especially when you consider that we already dismissed a number of paths. No developer in
his right mind would be willing to analyze thousands of stack traces leading to a panic, just to find the
few that could really cause hazard. I think that the people that will continue the development of this
tool should be focusing on the classification of treats, something we already started by implementing
white-listing and pattern recognition.

F.3. Fabian Stelmach
In the first phase of the project, the research phase, I divided my attention between two topics: the
Rust compilation process and building of a call graph. The former topic gave us insight about the
process which is responsible for the creation of executables from Rust source code. The latter topic
has helped me develop knowledge about the structure of a call graph and allowed me to develop ideas
about algorithms that could be used on the call graph to help us solve the problem, some of which have
been implemented in Rustig.

One of the areas where I have been active during the realization phase of the project was the algorithm
design. I have presented many ideas that I had developed during both the research phase and the
realization phase. The most important design decisions, that I helped develop, were the bottom-up
approach of the call graph analysis and the definition of relevancy of a path in a call graph. These two
topics are quite closely related to each other, since the combination of the two has improved the usability
of the program by reducing the (overwhelming) amount of output that Rustig produces.

An important task that I had been assigned during the project was that of creating a full test suite
that would allow for integration, and regression testing of the tool. Updates to the Rust compiler could
possibly change the workings of the program, but the updates could also change the input of the
program. Such changes should be caught by simply running the test suite of the tool. This concept has
been developed quite well, and so I expect that in the future, Rustig will be well maintainable.

60

In general, I think that the project has been a success. The tool that we have developed could be used
productively in order to reduce the occurrences of panic calls. The client, Technolution, has already
shown interest in reducing the amount of panic calls in their Rust programs. My hope is that the Rust
community will also take a notice of the value that Rustig provides, since that could lead to an increase
of quality in the open source crates.

The success of the project can be credited a combination of many factors. One of such factors is the
working environment. The client, Technolution, has provided us with a spacious office that we have
used for the whole duration of the project. The key to maximizing the usefulness of that office, in my
opinion, was the communication process between the team members. I was really glad that the others
actively helped maintain the open-minded atmosphere, where bringing up new ideas was welcome and
discussion of design choices occurred frequently.

Finally, the success of the project can also be partially credited to the collaboration with our coach,
Robbert Krebbers and our direct supervisor at Technolution, Erwin Gribnau. Their guidance consisted
of continuous critical feedback on the Rustig design ideas, implementations and written work. With this
guidance, they have both greatly helped us to complete the project successfully.

F.4. Aron Zwaan
My role in this project, besides developing, was that of scrum master. Since the project was too short
to really get the scrum-train going, we only did the daily stand up meetings, which were led by me. I
found the stand-up meetings very useful, because we used them to synchronize ideas, report progress,
and decide on future directions.

During the project, I also contributed a lot in discussions regarding design details. For many parts of
our project, it was very important to specify the implementation very precise, since minor difference in
implementation could often lead to superfluous, missing or incorrect results, significantly higher runtime
or problems in implementing other planned features.

Regarding the research, I was mainly responsible for the technical details regarding the binaries we
analyzed. This included finding out what information was contained in an ELF file, and the corresponding
DWARF information. Moreover, I researched how different Rust constructs translated to assembly
instructions and how we could use these to build a call graph.

Based on this knowledge, a lot of my implementation work went in to the dynamic invocations. I came
up with the idea to implement dynamic invocations using loaded functions reference. I was surprised
by how well it worked, despite the risk of false positives.

Another important part of the project I contributed was the overall structure. Based on the knowledge
of the problem after 2 weeks, I designed the pipeline and most important data structures. Although this
structure was later adapted to the new requirements and insights that came up during the project, the
overall idea worked quite well.

Looking back on the cooperation within the team, I think we did a good job. Every member was able
to have his say, and most often the combined insights gave the best results. Moreover, details of the
problems and different solutions were often difficult to comprehend, most often regarding the different
graph analysis options. Discussing these characteristics in depth together often led to valuable insights.

In addition to that, the cooperation with the client and TU supervisor was very good. Both the functional
aspects of the tool, and the scientific contributions were guarded well. This made sure we, as a team,
kept hold of the bigger picture, instead of focusing only on the technical details of our problem only.
The feedback provided on our tool (by the client) and the report (by the TU supervisor) was always
detailed, in-depth, and useful. We learned a lot their comments.

When reflecting on the final product, I think we did a great job. The suspicion that there were many
panics in Rust code and library could be confirmed and quantified. I hope that the Rust community
will take the message we will bring out serious, and try to greatly reduce the amount of panics. I am
definately looking forward to new developments in this field.

61

To conclude, I think the project definitely succeeded. We delivered a useful tool, demonstrated a problem
regarding the Rust software stability, and developed several new concepts regarding call graph building,
and graph analysis.

62

G
Info Sheet

On the next page a copy of the info sheet can be found. The purpose of this info sheet is to provide a
short overview of the project.

63

Title of the Project: Tooling to Detect Unwanted Thread Exits in Rust Software
Name of the Client Organisation: Technolution
Date of the Final Presentation: July 2, 2018

Description
Technolution is a company that realizes complex software systems and electronics. Some of these
systems are implemented using the Rust programming language. Despite inherent safety guarantees
of the language, unforeseen situations in Rust can cause the program to end up in state it cannot
recover from, forcing program termination and the system going down. This is highly undesirable for
Technolution, due to the high availability requirements for their systems.

For the purpose of detecting such unwanted thread exits, we created a static analysis tool: Rustig.
Rustig provides the user with stack-traces to show how their program could prematurely terminate.

During the initial research phase we analyzed whether it would be feasible to do our static analysis
on the binary of a program. To do this, we had to delve deep into ELF binaries to extract the necessary
data. We concluded that there was a sufficient amount of data in these binaries to successfully analyze
the control flow of a program.

The challenge of this project was to build a call graph using the machine code of a compiled Rust
program. One particular problem we came across during the project was how to deal with function calls
that are unknown at compile time (dynamic dispatch). We solved this by implementing an advanced
over-approximation of those function calls.

Furthermore, we had to find a way to analyze the graph to provide the programmer with execution
paths that could potentially lead to a thread exit. An unexpected challenge that we faced, during the
call graph analysis, was the amount of execution paths that could be found. This required us to come
up with a way to only extract the paths necessary to warn the programmer.

Rustig will be released as an open-source project. The intention behind this is that the tool could
be further developed and maintained by the Rust community. Furthermore, the results generated by
the program could spark a discussion within the community about the large amount of unwanted thread
exits in Rust. For the future development, we have recommended the client to expand the ability of
the tooling to categorize the types of unwanted thread exits. Doing this would allow programmers to
further determine the severity of the output Rustig provides.

Members of the Project Team
Dominique van Cuilenborg — d.vancuilenborg@hotmail.com
Interests: Algorithm Design, Programming Languages and Operating Systems
Contribution: Call Graph Analysis, Panic Pattern Detection and Metadata Extraction

Bart van Schaick — bvschaick@gmail.com
Interests: Embedded Systems, Artificial Intelligence and Software Design
Contribution: CI Setup and Output Formatting

Fabian Stelmach — fabianstelmach@gmail.com
Interests: Algorithm Design, Programming Languages and Software Design
Contribution: Call Graph Analysis and Test Suite

Aron Zwaan — aronzwaan@gmail.com
Interests: Software Design, Software Analysis, Programming Languages and Embedded Systems
Contribution: Call Graph Building and Executable Analysis

Contact Information
Client Erwin Gribnau erwin.gribnau@technolution.nl
Coach Robbert Krebbers r.j.krebbers@tudelft.nl

Glossary

AST Abstract syntax tree. A tree representation of the abstract syntactic structure of source code
written in a programming language. 10

cargo Rust’s package manager. 16, 29, 40

crate Rust software package. 12, 13, 16, 19–21, 24–28, 43

DWARF A standardized debugging data format. 11, 12, 19–21, 24, 25, 39, 43, 53, 59

ELF Executable and Linking Format. A common standard file format for executable files, object code,
shared libraries, and core dumps. 10, 11, 13, 15, 16, 19, 29, 43, 53, 59, 64

FOSS Free Open Source Software. Software that can be classified as both free software and open-source
software. That is, anyone is freely licensed to use, copy, study, and change the software in any
way, and the source code is openly shared so that people are encouraged to voluntarily improve
the design of the software. 29

gcc GNU C compiler. 9

gprof GNU profiler. 9

hidden panic Calls to panic in library code, of which the user of this library code is not aware. 3–5

LLVM Low Level Virtual Machine. A collection of modular and reusable compiler and toolchain technologies
used to develop compiler front ends and back ends. 9

macro Language construct that expands to regular code before actual compilation happens. They
can be recognized by the trailing !. In contrast to functions, they are not compiled to lower
level representations. They are also more flexible (having variable arguments) than regular Rust
functions. 4, 7, 8, 27, 65

Option A type representing an optional value, an Option is either Some and contains a value, or None
and does not. 6, 27, 65

panic Rust’s way of saying that the program ended up in a unrecoverable state, which leads to a
premature thread or program exit. v, 1, 4–9, 11, 12, 16, 17, 19, 24–28, 34, 37–41, 43, 61, 65

panic! The macro that forms the entry point for panic in Rust threads. 4, 5, 7–9, 11, 12, 16, 25, 28,
33, 37–40

Result A type that is either an Ok representing success and containing a value, or Err representing
an error and containing an error message. 4, 6, 65

rustc The Rust compiler. 10, 16, 29, 30

rustup Rust toolchain installer. 30

unsafe Rust keyword to disable Rust’s safety checks in particular code blocks. 40

unwrap Function that returns the value contained in an Option or Result if it represented Some or Ok,
respectively. Unwrap panics whenever this is not the case and either None or Err is encountered.
4, 6, 27, 41, 43

65

Bibliography

[1] N. Matsakis and A. Turon, The Rust Programming Language, 2nd ed. Rust Lang., 2017. [Online].
Available: https://doc.rust-lang.org/book/second-edition/index.html

[2] “Error Handling,” 2017. [Online]. Available: https://doc.rust-lang.org/book/second-edition/
ch09-00-error-handling.html

[3] J. Caballero, G. Grieco, M. Marron, and A. Nappa, “Undangle: early detection of dangling pointers
in use-after-free and double-free vulnerabilities,” Proceedings of the 2012 International Symposium
on Software Testing and Analysis - ISSTA 2012, 2012.

[4] R. Jung, J.-H. Jourdan, R. Krebbers, and D. Dreyer, “RustBelt: Securing the Foundations of the
Rust Programming Language,” in ACM on Programming Languages, Vol. 2, No. POPL, Article 66, 1
2018.

[5] “Rust 1.26.1 std::thread::spawn definition,” 2018. [Online]. Available: https://github.com/
rust-lang/rust/blob/master/src/libstd/thread/mod.rs#L535

[6] “Rust 1.26.1 std::result::unwrap definition,” 2018. [Online]. Available: https://github.com/
rust-lang/rust/blob/1.26.1/src/libcore/result.rs#L777

[7] “Rust 1.26.1 std::result::unwrap_failed definition,” 2018. [Online]. Available: https://github.com/
rust-lang/rust/blob/1.26.1/src/libcore/result.rs#L944

[8] “Rust 1.26.1 std::thread::spawn description,” 2018. [Online]. Available: https://github.com/
rust-lang/rust/blob/master/src/libstd/thread/mod.rs#L467

[9] “Rust 1.26.1 panic macro definition,” 2018. [Online]. Available: https://github.com/rust-lang/rust/
blob/1.26.1/src/libcore/macros.rs#L15

[10] M. W. Hall and K. Kennedy, “Efficient call graph analysis,” ACM Letters on Programming Languages
and Systems (LOPLAS), vol. 1, no. 3, pp. 227–242, 1992.

[11] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon, D. Octeau, and P. McDaniel,
“Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for
android apps,” Acm Sigplan Notices, vol. 49, no. 6, pp. 259–269, 2014.

[12] J. Law and G. Rothermel, “Whole program path-based dynamic impact analysis,” in Proceedings of
the 25th International Conference on Software Engineering. IEEE Computer Society, 2003, pp.
308–318.

[13] G. C. Murphy, D. Notkin, W. G. Griswold, and E. S. Lan, “An empirical study of static call graph
extractors,” ACM Transactions on Software Engineering and Methodology (TOSEM), vol. 7, no. 2,
pp. 158–191, 1998.

[14] “Stability as a Deliverable,” 2014. [Online]. Available: https://blog.rust-lang.org/2014/10/30/
Stability.html

[15] Y.-F. Chen, E. R. Gansner, and E. Koutsofios, “A C++ data model supporting reachability analysis
and dead code detection,” IEEE Transactions on Software Engineering, vol. 24, no. 9, pp. 682–694,
1998.

[16] R. Jalan and A. Kejariwal, “Trin-Trin: Who’s Calling? A Pin-Based Dynamic Call Graph Extraction
Framework,” International Journal of Parallel Programming, vol. 40, no. 4, pp. 410–442, Aug
2012. [Online]. Available: https://doi.org/10.1007/s10766-012-0193-x

67

https://doc.rust-lang.org/book/second-edition/index.html
https://doc.rust-lang.org/book/second-edition/ch09-00-error-handling.html
https://doc.rust-lang.org/book/second-edition/ch09-00-error-handling.html
https://github.com/rust-lang/rust/blob/master/src/libstd/thread/mod.rs#L535
https://github.com/rust-lang/rust/blob/master/src/libstd/thread/mod.rs#L535
https://github.com/rust-lang/rust/blob/1.26.1/src/libcore/result.rs#L777
https://github.com/rust-lang/rust/blob/1.26.1/src/libcore/result.rs#L777
https://github.com/rust-lang/rust/blob/1.26.1/src/libcore/result.rs#L944
https://github.com/rust-lang/rust/blob/1.26.1/src/libcore/result.rs#L944
https://github.com/rust-lang/rust/blob/master/src/libstd/thread/mod.rs#L467
https://github.com/rust-lang/rust/blob/master/src/libstd/thread/mod.rs#L467
https://github.com/rust-lang/rust/blob/1.26.1/src/libcore/macros.rs#L15
https://github.com/rust-lang/rust/blob/1.26.1/src/libcore/macros.rs#L15
https://blog.rust-lang.org/2014/10/30/Stability.html
https://blog.rust-lang.org/2014/10/30/Stability.html
https://doi.org/10.1007/s10766-012-0193-x

[17] S. L. Graham, P. B. Kessler, and M. K. Mckusick, “Gprof: A call graph execution profiler,” in ACM
Sigplan Notices, vol. 17, no. 6. ACM, 1982, pp. 120–126.

[18] N. Matsakis, “Introducing MIR,” 4 2016. [Online]. Available: https://blog.rust-lang.org/2016/04/
19/MIR.html

[19] “Macro RFC,” 2018. [Online]. Available: https://github.com/rust-lang/rfcs/blob/master/text/
1566-proc-macros.md

[20] “MIR RFC,” 2018. [Online]. Available: https://github.com/rust-lang/rfcs/blob/master/text/
1211-mir.md

[21] “LLVM Language Reference Manual.” [Online]. Available: https://llvm.org/docs/LangRef.html#
runtime-preemption-specifiers

[22] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong Program Analysis &
Transformation,” in Proceedings of the 2004 International Symposium on Code Generation and
Optimization (CGO’04), Palo Alto, California, 3 2004.

[23] International Institute of Business Analysis, A Guide to the Business Analysis Body of Knowledge
(BABOK Guide), Version 2.0. International Institute of Business Analysis, 2009.

[24] “Rust Style Guide,” 2017. [Online]. Available: https://github.com/Rust-lang-nursery/fmt-rfcs/
blob/master/guide/guide.md

[25] N. Matsakis and A. Turon, The Rust Programming Language, 2nd ed. Rust Lang., 2017. [Online].
Available: https://doc.rust-lang.org/book/second-edition/ch11-03-test-organization.html

[26] Bluss, “petgraph,” 2018. [Online]. Available: https://crates.io/crates/petgraph

[27] N. A. Quynh, m4b, R. Healey, and T. Finkenauer, “capstone,” 2018. [Online]. Available:
https://crates.io/crates/capstone

[28] “The Open Source Definition.” [Online]. Available: https://opensource.org/osd

[29] K. S. Rubin, Essential Scrum: A Practical Guide to the Most Popular Agile Process, 1st ed.
Addison-Wesley Professional, 2012.

[30] A. Bogus, G. Brandl, M. Goregaokar, M. Carton, and O. Schneider, “rust-clippy,” 2018. [Online].
Available: https://crates.io/crates/clippy

[31] N. Cameron, “rustfmt-nightly,” 2018. [Online]. Available: https://crates.io/crates/rustfmt-nightly

[32] M. Fowler, “Inversion of control containers and the dependency injection pattern,” 2004.

[33] E. Bouwers, J. Visser, and A. v. Deursen, “Getting What You Measure,” Acm Queue, 2012.

[34] “Test Organization,” 2017. [Online]. Available: https://doc.rust-lang.org/book/second-edition/
ch11-03-test-organization.html

[35] United States Congress, “17 U.S.C. 1201 - Circumvention of copyright protection
systems,” 1998. [Online]. Available: https://www.gpo.gov/fdsys/granule/USCODE-2011-title17/
USCODE-2011-title17-chap12-sec1201

[36] European Parliament, Council of the European Union, “Directive 2009/24/EC,” 2009. [Online].
Available: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32009L0024

[37] J. R. van der Werven, elf(5) Linux User’s Manual, 09 2017. [Online]. Available: https:
//linux.die.net/man/5/elf

[38] DWARF Debugging Information Format Committee, DWARF Debugging Information Format
Version 4, 6 2010. [Online]. Available: http://www.dwarfstd.org/doc/DWARF4.pdf

[39] S. Alvarez, “radare.” [Online]. Available: https://rada.re/r/

https://blog.rust-lang.org/2016/04/19/MIR.html
https://blog.rust-lang.org/2016/04/19/MIR.html
https://github.com/rust-lang/rfcs/blob/master/text/1566-proc-macros.md
https://github.com/rust-lang/rfcs/blob/master/text/1566-proc-macros.md
https://github.com/rust-lang/rfcs/blob/master/text/1211-mir.md
https://github.com/rust-lang/rfcs/blob/master/text/1211-mir.md
https://llvm.org/docs/LangRef.html#runtime-preemption-specifiers
https://llvm.org/docs/LangRef.html#runtime-preemption-specifiers
https://github.com/Rust-lang-nursery/fmt-rfcs/blob/master/guide/guide.md
https://github.com/Rust-lang-nursery/fmt-rfcs/blob/master/guide/guide.md
https://doc.rust-lang.org/book/second-edition/ch11-03-test-organization.html
https://crates.io/crates/petgraph
https://crates.io/crates/capstone
https://opensource.org/osd
https://crates.io/crates/clippy
https://crates.io/crates/rustfmt-nightly
https://doc.rust-lang.org/book/second-edition/ch11-03-test-organization.html
https://doc.rust-lang.org/book/second-edition/ch11-03-test-organization.html
https://www.gpo.gov/fdsys/granule/USCODE-2011-title17/USCODE-2011-title17-chap12-sec1201
https://www.gpo.gov/fdsys/granule/USCODE-2011-title17/USCODE-2011-title17-chap12-sec1201
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32009L0024
https://linux.die.net/man/5/elf
https://linux.die.net/man/5/elf
http://www.dwarfstd.org/doc/DWARF4.pdf
https://rada.re/r/

	Introduction
	Technolution
	Contribution
	Outline

	Problem Definition
	Rust Safety Guarantees
	Handling of Unwanted Program State in Rust

	Problem Analysis
	Decomposing the Problem
	Call Graph
	Analysis
	Conclusions

	Design
	Requirements
	Design Goals
	Test Design
	Architecture

	Implementations
	Pipeline
	Call Graph
	Markers and Filters
	Find Panics
	Patterns
	Output
	Testing

	Process Evaluation
	Development Methodology
	Development Tools

	Final Product Evaluation
	Verification of Design Goals
	Verification of Requirements
	Validation
	SIG

	Ethics
	Control Flow Analysis
	False Assumptions

	Discussion
	Failed Approaches
	Limitations
	Findings

	Conclusion
	Project Description
	Background Information
	Goal
	Research Questions
	Technologies Involved
	Future

	Project Plan
	Introduction
	Purpose
	Process
	Risks
	Planning

	Research Report
	ELF and DWARF

	Test Report
	SIG Evaluation
	Feedback on first SIG submission

	Project Reflection
	Dominique van Cuilenborg
	Bart van Schaick
	Fabian Stelmach
	Aron Zwaan

	Info Sheet
	Glossary
	Bibliography

