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The linear fractional stable motion generalizes two prominent classes of
stochastic processes, namely stable Lévy processes, and fractional Brownian
motion. For this reason, it may be regarded as a basic building block for con-
tinuous time models. We study a stylized model consisting of a superposition
of independent linear fractional stable motions and our focus is on parame-
ter estimation of the model. Applying an estimating equations approach, we
construct estimators for the whole set of parameters and derive their asymp-
totic normality in a high-frequency regime. The conditions for consistency
turn out to be sharp for two prominent special cases: (i) for Lévy processes,
that is, for the estimation of the successive Blumenthal–Getoor indices and
(ii) for the mixed fractional Brownian motion introduced by Cheridito. In the
remaining cases, our results reveal a delicate interplay between the Hurst pa-
rameters and the indices of stability. Our asymptotic theory is based on new
limit theorems for multiscale moving average processes.

1. Introduction.

1.1. Overview. The linear fractional stable motion (lfsm) is a self-similar stochastic pro-
cess defined as

Y
H,β
t =

∫ t

−∞
(t − s)

H− 1
β

+ − (−s)
H− 1

β

+ dZβ
s , t ∈ R,

for a Hurst parameter H ∈ (0,1) and a standard symmetric β-stable Lévy motion Zβ with
β ∈ (0,2], that is,

E exp
(
iλZ

β
t

) = exp
(−t |λ|β).

Here, we use the notation (x)+ = x1x>0. Notable special cases of the lfsm are fractional
Brownian motion (β = 2), and the β-stable Lévy motion itself (H = 1/β). For general pa-
rameters H and β , the increments of the lfsm exhibit long memory and heavy tails. Another

prominent feature of lfsm is its self-similarity, namely (Y
H,β
γ t )t≥0

d= (γ HY
H,β
t )t≥0 for any

γ > 0. The lfsm is in some sense prototypical, since it arises as a scaling limit of various
moving average processes in discrete time; see, for example, Astrauskas (1983). Hence, pa-
rameter estimation for the lfsm may be regarded as an idealized test bed for more general,
nonsemimartingale processes.

In this paper, we study the mixed fractional stable process of the form

Xt =
q∑

j=1

bjY
Hj ,βj

t ,(1)
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where YHj ,βj , j = 1, . . . , q are independent fractional stable motions and bj > 0. Unless
all Hj are identical, the mixed process is no longer self-similar. Throughout this work, we

assume that H1 < · · · < Hq . In this case, we have γ −H1Xγ t ⇒ b1Y
H1,β1
t as γ ↓ 0, and

γ −HqXγ t ⇒ bqY
Hq,βq

t as γ ↑ ∞. Loosely speaking, the process looks different when zoom-
ing in (γ ↓ 0) or zooming out (γ ↑ ∞). In the sequel, we are mostly interested in the scaling as
γ ↓ 0. In particular, we want to estimate the parameters (bj ,Hj ,βj ) based on high-frequency,
discrete observations of X in the interval [0,1]. Based on the scaling limit, it is not surpris-
ing that (b1,H1, β1) may be estimated consistently as n → ∞. Can we also estimate the
remaining parameters, and at which rate?

Estimation of the lfsm has been recently studied by Mazur, Otryakhin and Podolskij (2020)
for high-frequency observations, and by Ljungdahl and Podolskij (2021) for low-frequency
observations. To see why estimation of the mixed lfsm is more complicated, we briefly review
the methodology of Mazur, Otryakhin and Podolskij (2020). Crucially, they exploit the self-

similarity of the lfsm, h−H (Y
H,β
t+h − Y

H,β
t )

d= (Y
H,β
t+1 − Y

H,β
t ) to transfer the high-frequency

setting to the low-frequency setting. In particular, they suggest to first estimate H by a log-
ratio statistic, and then estimate (b,β) based on the empirical characteristic function of the
rescaled increments. For the mixed lfsm, on the other hand, the log-ratio estimator will only
estimate the dominant, that is, the smallest Hurst exponent H1. It is thus not clear how to
extend their procedure to the mixed case. Notably, the mixed lfsm is no longer self-similar,
and we may not switch between the low-frequency and the high-frequency regime.

In this paper, we propose the first estimators for the mixed lfsm, based on n discrete
observations X�n, . . . ,Xn�n at frequency �n. Of particular interest is the high-frequency
case �n = 1/n, but we also derive asymptotic results for the regime �n → 0, n�n →
∞. Our estimation method are based upon a system of nonlinear equation of the form
Efn(Xi�n, . . . ,X(i+k)�n) for a suitable choice of functions fn. These moments may be esti-
mated by their sample means, and a parameter estimator may be obtained via the generalized
method of moments. In contrast to the classical literature, the function fn as well as the
process Xi�n now depend explicitly on n. To be precise, we will choose fn(x0, . . . , xk) =
f (un

∑k
r=0

(k
r

)
(−1)rxr), that is, we take the kth order increments of the process, scaled by

a factor un → ∞ and the function f will be bounded. In the first step, we will derive the
asymptotic theory for such class of functionals, which will provide the basis for statistical
inference. This limit theory is new and has interest in its own right. In the second step, we
will define an estimator for the unknown parameters of the model via a system of estimating
equations. We will study two related approaches, where the second one (smooth threshold)
explicitly accounts for the presence of a Gaussian component (β = 2). We prove the asymp-
totic normality of our estimator and discuss the identifiability issues.

1.2. Related work. While the estimation problem under consideration is new, there exists
a large body of work in more restrictive settings. This builds a natural comparison basis for
our new methodology.

(i) Linear fractional stable motion. Estimation of a single lfsm, that is, q = 1, has been
studied in several papers; early references include a nonrigorous treatment by Abry, Pesquet-
Popescu and Taqqu (1999) and a study by Abry, Delbeke and Flandrin (1999) who obtain
a suboptimal rate of convergence for the parameter H . An asymptotically normal estimator
for H is proposed by Stoev, Pipiras and Taqqu (2002), Stoev and Taqqu (2005), using a
central limit theorem published in Pipiras, Taqqu and Abry (2007). A consistent estimator for
the stability index β , provided that H is known, is given by Ayache and Hamonier (2012),
and consistent estimators for (H,β) are suggested by Basse-O’Connor, Lachièze-Rey and
Podolskij (2017), Dang and Istas (2017), Grahovac, Leonenko and Taqqu (2015). Estimation
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of the full parameter (b,H,β) has been investigated by Mazur, Otryakhin and Podolskij
(2020). Their approach is based on power variations with negative exponents, and they derive
the asymptotic normality of their estimator in the low- and high-frequency regime. For the
low-frequency regime, these results have been further refined in Ljungdahl and Podolskij
(2020) and Ljungdahl and Podolskij (2021). We remark that there is currently no statistical
lower bound for estimation of the general lfsm.

(ii) Mixed fractional Brownian motion. The mixed fractional Brownian motion corre-
sponds to the model (1) with βi = 2 for all i. It has been originally studied in Cheridito
(2001). It has been shown in van Zanten (2007) that the measures induced by C1

t = b1Y
H1,2
t

and C2
t = b1Y

H1,2
t + b2Y

H2,2
t , t ∈ [0,1] are equivalent if H2 > H1 + 1

4 , and singular oth-
erwise. Hence, in the Gaussian case, the parameter (bj ,Hj ) is identifiable if and only if
Hi < H1 + 1

4 . Estimation of the parameters of a mixed fractional Brownian motion has been
studied by Xiao, Zhang and Zhang (2011), although in a very restricted setting where the
Hj are assumed to be known. An estimator for a much more general nonstationary model
with d = 2 and H2 < H1 = 1

2 has been recently suggested by Chong, Delerue and Li (2021).
To the best of our knowledge, the latter paper is the first investigation of inference for the
general mixed fractional Brownian motion. An extension has been studied in Chong, Delerue
and Mies (2022), where the two processes are allowed to be correlated, and optimal rates are
derived for the special case of nonzero correlation.

(iii) Mixed Lévy processes. Some statistical results have been obtained in the setting of
mixed Lévy processes, which corresponds to model (1) with Hj = 1/βj (in other words,
YH,β = Zβ ). If β1 < 2 denotes the largest stability index, Aït-Sahalia and Jacod (2012)
showed that the measures induced by D1

t = b1Z
β1
t and D2

t = b1Z
β1
t + b2Z

β2
t are equivalent

if β2 < β1/2, and singular otherwise. Thus, the parameter (bj , βj ) is identifiable if and only
if βi > β1/2. See also Aït-Sahalia and Jacod (2008) for an earlier treatment of the special
case q = 2. Another known case is given by mixed Lévy processes with the additional re-
striction that β1 = 2, and β2 < 2 being the largest of the remaining indices. In this setting, the
identifiability condition becomes βj > β2/2. In other words, the identifiability of the stable
components is unaffected by the presence of a Gaussian component. This can be explained
by the observation that given a full trajectory of the process X, the continuous and the discon-
tinuous components could be perfectly separated. In discrete samples, however, the presence
of the Gaussian component has an adverse effect on the rate of convergence of any estimator
of βj , j ≥ 2; see Aït-Sahalia and Jacod (2012). Note that this case is of particular interest
for financial econometrics, where many models for high-frequency asset prices contain both,
continuous and discontinuous components. Here, the sup of a Brownian motion and a stable
Lévy motion may be regarded as the prototype of a semimartingale with infinite jump activ-
ity. The corresponding statistical problem has been first studied in the econometric literature
in Aït-Sahalia and Jacod (2009), and more recently by Bull (2016) and Mies (2020).

Besides these three special cases, the mixed lfsm has not been studied in the literature.
The currently unexplored regimes include, for example, the sum of fBm and a stable Lévy
process; the sum of Brownian motion and lfsm; the sum of non-Gaussian lfsms; the sum of
fBm and non-Gaussian lfsm. Our unified theory covers all these regimes, while matching the
results in the cases, which have already been investigated.

1.3. Outline of the paper. The paper is structured as follows. In Section 2, we present a
new limit theory for functionals of a mixed fractional stable motion. These results not only
provide a necessary basis for statistical estimation, but also have an interest in their own
right. Section 3 is devoted to statistical inference for mixed fractional stable motions. Here,
we employ the idea of estimating equations that may specifically account for the presence of
a Gaussian component (Section 3.2). In Section 3.3, we discuss the rates of convergence of
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our estimators, and we present a result on the singularity of measures induced by the mixed
lfsm. In the Appendix, we derive a general result on consistency and asymptotic normality
of solutions of estimating equations, which generalizes existing results in the literature (Ap-
pendix A). The proofs of the main results are presented in the Supplementary Material (Mies
and Podolskij (2023), Appendix B).

1.4. Notation. Throughout the paper, we use the following notation. We denote by
Cp(Rd1;Rd2) the space of p times continuously differentiable functions f : Rd1 → R

d2 ,
and denote the first derivative matrix as Df (x)i,j = d

dxj
fi(x). For a function f : R → R,

we denote its kth derivative as f (k). The space Lp(Rd) is the collection of all functions f

satisfying
∫
Rd ‖f (x)‖p dx < ∞. We write an ∼ bn when there exist constants c1, c2 > 0 such

that c1an ≤ bn ≤ c2an for all n ≥ 1. The notation an � bn means that bn/an → 0 as n → ∞.
Throughout this paper, all positive constants are denoted by C, or by Cp if we want to stress
their dependence on some external parameter p, although they may change from line to line.

2. Limit theorems for multiscale moving average processes. In this section, we
present a novel limit theorem for functionals of multiscale moving average processes, which
will provide the theoretical basis for the statistical procedures investigated in the next sec-
tion. Our main motivation comes from statistics of higher-order increments of X, which are
defined as follows: For a frequency �n → 0, γ ∈N and k ∈N, the kth order increments of X

at the frequency γ�n are given as

Xl,n,γ =
k∑

v=0

(−1)v
(
k

v

)
X(l−vγ )�n, l = 1, . . . , n.(2)

The factor γ allows us to identify parameters of the lfsm’s via their different temporal scaling.
In particular, the self-similarity of the lfsm yields

Xl,n,γ
d=

q∑
j=1

bj�
Hj
n

∫ l

−∞
gj (s − l) dZ

βj
s where

gj (s) =
k∑

v=0

(
k

v

)
(−1)v(vγ − s)

Hj− 1
βj

+ .

(3)

This higher-order differencing is common when working with fractional processes, as higher
orders k improve the decay of the autocovariances of f (Xl,n,γ ) for suitably bounded func-
tions f . In particular, the integral kernels decay as gj (s) ∼ sHj−k−1/βj , making this effect
evident.

Motivated by this example, we consider a more general class of discrete models, namely a
multiscale array of moving averages (Xt,n)t∈N defined as

Xt,n =
q1∑

i=1

an,i

∫ t

−∞
hi(s − t) dBi

s +
q2∑

j=1

bn,j

∫ t

−∞
gj (s − t) dZj

s ,(4)

for nonnegative sequences an,i and bn,j . Here, for i = 1, . . . , q1, the Bi are independent
standard Brownian motions, and for j = 1, . . . , q2, the Zj are independent symmetric βj -

stable motions, standardized such that E exp(iλZ
j
1 ) = exp(−|λ|βj ), βj ∈ (0,2). We allow

the kernels g, h to be d-dimensional, that is, gi, hi : R → R
d . This allows us to account

for different γ ’s in (2) by deriving a multivariate limit theory. Throughout this section, the
kernels are assumed to satisfy the following conditions:
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(i) hi(x) = gj (x) = 0 for x ≥ 0, (causality)
(ii) hi ∈ L2(R) with ‖hi(x)‖ ≤ C|x|δ0 , and ‖hl

i‖L2 ≤ σ < ∞ for hi = (hl
i)

d
l=1,

(iii) gj ∈ Lβj
(R) and ‖gj (x)‖ ≤ C|x|δj for some δj < −1/βj .

Definition (4) explicitly distinguishes between the Gaussian and the non-Gaussian compo-
nents. As demonstrated in the sequel, this distinction is motivated by a qualitatively different
effect of the Gaussian component on the limiting behavior.

Our focus is on statistics of the form

Sn(f ) = 1

n

n∑
t=1

[
f (Xt,n) −Ef (Xt,n)

]
,(5)

where f : Rd → R is a nonlinear function. We will assume that it belongs to the following
class of functions.

DEFINITION 2.1. For η ≥ 0, define the class Fη of all functions f :Rd →R such that:

(F1) f ∈ C5(Rd;R) and ‖Djf ‖∞ ≤ 1 for j = 0, . . . ,5,
(F2) f is even, and f (0) = 0,
(F3) D2f (x) = D2f (0) for ‖x‖ < η.

Moreover, define the class F0
η ⊂ Fη, which additionally satisfies:

(F4) f (x) = 0 for ‖x‖ < η.

The class Fη contains functions, which are quadratic on the interval (−η,η), whereas func-
tions in F0

η are smooth thresholds. Note that the class F0 = F0
0 imposes the least regularity.

The array Xt,n is a superposition of multiple processes with long memory and heavy tails
of different severity. Naively, one would expect that the limiting behavior of Sn(f ) is de-
termined by the component with the largest scaling factor an,i , respectively, bn,j . However,
we observe two interesting phenomena: First, for the stable components, it is not the scaling

factor bn,j itself which distinguishes the dominant component, but rather the power b
βj

n,j , re-
vealing an interesting interplay between the scale and the tail decay. Second, if f vanishes
near zero, then the effect of the Gaussian component is asymptotically negligible compared to
the stable components, even if maxi an,i � maxj bn,j . This is made precise by the following
theorem.

THEOREM 2.2 (Variance bound). Suppose that the exponent of the tail decay satisfies
δ	 = max(2δ0, δ1β1, . . . , δq2βq2) < −2, and that an,i and bn,j are bounded. Then for all n,
and for all f ∈ F0:

Var
(
Sn(f )

) ≤ C

n

[ q1∑
i=1

a4
n,i +

q2∑
j=1

b
βj

n,j

]
.

If η > 0, then for any λ > 0, there exists a constant C ∈ (0,∞) such that for all n, and for all
f ∈ F0

η,

Var
(
Sn(f )

) ≤ C

n

[( q1∑
i=1

a2
n,i

)
exp

(
− η2λ2

2dσ 2 ∑q1
i=1 a2

n,i

)
+

q2∑
j=1

b
βj

n,j

]
.

We remark that the exponential term in the variance bound for η > 0 vanishes rapidly
if an,i → 0 at a polynomial speed, such that the contribution of the Gaussian component
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is negligible in this case. That is, the smooth threshold f ∈ F0
η effectively filters out the

Gaussian component.
As a consequence of Theorem 2.2, we obtain a law of large numbers with rate of conver-

gence. In particular,

1

n

n∑
t=1

f (Xt,n) = Ef (Xt,n) +OP

(
1√
n

√√√√√ q1∑
i=1

a4
n,i +

q2∑
j=1

b
βj

n,j

)
.(6)

We highlight that the centering term Ef (Xt,n) is not explicit as a function of θ , and also
depends on the index n.

The next theorem is the main result of this section. It demonstrates a central limit theorem
for the statistic Sn(f ) in various settings.

THEOREM 2.3 (Central limit theorem). Let i	 ∈ {1, . . . , q1} such that a2
n,i	 �

maxi �=i	 a2
n,i , and let j	 ∈ {1, . . . , q2} such that b

βj	

n,j	 � maxj �=j	 b
βj

n,j . Assume that the kernel
decay satisfies max(2δ0, β1δ1, . . . , βq2δq2) < −2, and suppose furthermore that

an,i	 → a ∈ [0,∞), bn,j	 → b ∈ [0,∞).

Fix some f ∈ F0, and let one of the following conditions hold:

(i) a > 0, b = 0;
(ii) a = 0, b > 0;

(iii) a = b = 0, and a4
n,i	 � b

βj	

n,j	 , nb
βj	

n,j	 → ∞;

(iv) a = b = 0, and a4
n,i	 � b

β	
j

n,j	 , na4
n,i	 → ∞ and D2f (0) �= 0.

Then √
n√

max(a4
n,i	, b

βj	

n,j	)

Sn(f ) ⇒ N
(
0, ξ2),

where the asymptotic variance ξ2 is given in (B.20) in the Appendix.
Moreover, if (case (v)):

• a = b = 0, na4
n,i	 → ∞, nb

βj	

n,j	 → ∞,

• f1 ∈ F0 such that D2f (0) �= 0, and f2 ∈ F0
η for some η > 0,

• for some λ ∈ (0,1),

exp
(
− η2λ2

2dσ 2 ∑q1
i=1 a2

n,i

)
� b

βj	

n,j	 � a4
n,i	,

then

√
n

⎛⎜⎝
√

a4
n,i	 0

0

√
b

βj	

n,j	

⎞⎟⎠
−1 (

Sn(f1)

Sn(f2)

)
⇒ N

(
0,

(
γ 2
f1,0 0
0 ζ 2

f2,0

))
,

and γ 2
f1,0

and ζ 2
f2,0

are defined in (B.20) in the Appendix.

We remark that limit theorems for the sum of Gaussian and non-Gaussian fractional pro-
cesses are rather rare in the literature as the mathematical tools are different in the two cases.
Indeed, Theorem 2.3 seems to be the first result in this setting.
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There exist numerous central and noncentral limit theorems for statistics of lfsm’s or
more general Lévy moving average processes, all of them focusing on the case q = 1.
Pipiras and Taqqu (2003) considered a bounded function f and investigated some exten-
sions to nonbounded functions in Pipiras, Taqqu and Abry (2007). The asymptotic theory
for power variation statistics of lfsm has been studied in Basse-O’Connor, Lachièze-Rey and
Podolskij (2017), Basse-O’Connor and Podolskij (2017) and later extended to more general
functionals in Basse-O’Connor, Heinrich and Podolskij (2019). Further results on high fre-
quency statistics of lfsm’s and related models can be found in Mazur, Otryakhin and Podol-
skij (2020), Basse-O’Connor, Heinrich and Podolskij (2018) and Azmoodeh, Ljungdahl and
Thäle (2022).

Notably, all available results for the high-frequency regime scale the increments by �−H
n ,

where H is the Hurst exponent of the lfsm (cf. Theorem 2.3(ii)). This would correspond
to the scaling �

−H1
n in our mixed setting. In contrast, we also allow for different scalings,

such that the argument of the nonlinearity vanishes (cases (iii) and (iv)), and we also allow
for a dominant Gaussian component (case (i)). The special case of smooth thresholds in
Theorem 2.3(v), has been studied for Lévy processes in Mies (2020), but not for processes
with dependent increments.

The proof of the central limit theorem is performed by approximating Xt,n via an m-
dependent sequence. This is similar in spirit to the methodology of Pipiras and Taqqu (2003)
and Basse-O’Connor, Heinrich and Podolskij (2019). However, in the setting of Theorem 2.3,
we obtain more refined bounds on the autocovariances, which explicitly account for the scal-
ing terms an,i and bn,j ; see Lemma B.4 in the Appendix.

REMARK 1. One of the key conditions for the validity of the central limit theorem is the
assumption max(2δ0, β1δ1, . . . , βq2δq2) < −2. Here, we would like to compare this condition
with classical conditions in central limit theorems for statistics of Gaussian and non-Gaussian
fractional processes.

We consider the non-Gaussian case first, that is, q1 = 0, q2 = 1 and let the kernel g be
given as in (3). Then the decay rate of the kernel is given as δ = H − k − 1/β and the
condition of Theorem 2.3 becomes Hβ − kβ − 1 < −2. Since the function f is assumed to
be even, its Appell rank is 2 or larger, and the latter condition coincides with the one from
Basse-O’Connor, Heinrich and Podolskij (2019).

On the other hand, when considering the Gaussian case q1 = 1 and q2 = 0, our condition
seems to be suboptimal (although sufficient for statistical applications). Indeed, when k = 1
the condition translates to H < 1/2. However, when dealing with functions of Hermite rank
2, the optimal condition is known to be H < 3/4.

3. Estimation of the mixed fractional stable motion. Observing the representation (3),
the characteristic function of the kth order increments takes the form

E cos(λXl,n,γ ) = exp
(−ψn(λ, γ )

)
, ψn(λ, γ ) =

q∑
j=1

b̃j λ
βj γ βjHj �

βjHj
n ,

b̃j = b
βj

j

∫
R

∣∣∣∣∣∣
k∑

v=0

(
k

v

)
(−1)v(v − s)

Hj− 1
βj

+

∣∣∣∣∣∣
βj

ds.

(7)

Since there is a one-to-one correspondence between (bj ,Hj ,βj ) and (b̃j ,Hj ,βj ), we focus
on the estimation of the latter. We summarize the unknown parameters as

θ = (b̃1,H1, β1, . . . , b̃q,Hq,βq) ∈ �,

� = {
θ ∈ ((0,∞) × (0,1) × (0,2])q : H1(θ) < · · · < Hq(θ)

} ⊂ R
3q.

In the sequel, θ0 will denote the true but unknown parameter vector.
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Formula (7) for the characteristic exponents suggests that one can identify the stability
indices βj by varying the scaling factor λ. This property can also be exploited for parameter
estimation for Lévy processes and related semimartingales; see Aït-Sahalia and Jacod (2012),
Bull (2016), Mies (2020), Reiß (2013). Moreover, formula (7) reveals that one can identify
the Hurst exponents Hj by varying the lag γ . This leads to the intuitive idea of using em-
pirical characteristic functions to estimate the parameters of the model, which has been first
proposed in Mazur, Otryakhin and Podolskij (2020) in the setting q = 1 (see also Ljungdahl
and Podolskij (2021)). However, their method has several drawbacks, one of which is the
need of preestimation of the smallest Hurst exponent H1. It leads to singular limit distribu-
tions (cf. Mazur, Otryakhin and Podolskij (2020), Theorem 3.1) and its performance is far
from obvious in the mixed case q > 1.

Instead we follow a different strategy, which relies on a system of estimating equations, and
does not require prior information about the parameters. Section 3.1 presents the asymptotic
theory for the new approach. Section 3.2 demonstrates a further refinement of the estimation
method, the smooth threshold, which specifically accounts for the presence of the Gaussian
component in the model.

3.1. Estimation via adaptive moment equations. We consider an even Schwartz function
f :R→R, that is, f ∈ C∞(R) such that

sup
x∈R

|x|p∣∣f (j)(x)
∣∣ < ∞

for all p > 0 and all j ≥ 0, for example, f (x) = exp(−x2/2). For λr ∈ R and γr ∈ N, we
define the statistic

Sn

(
f ;un(θ); (λr, γr)

3q
r=1

) =
[

1

n

n∑
l=1

f
(
un(θ)λrXl,n,γr

)]3q

r=1

, un(θ) = �−H1(θ)
n .

We introduce the random vector

Gn(θ) = Sn

(
f ;un(θ); (λr, γr)

3q
r=1

)−EθSn

(
f ;un(θ); (λr , γr)

3q
r=1

)
,(8)

for some λr, γr , r = 1, . . . ,3q . Note that the expectations in (8) can be determined numeri-
cally for any θ ∈ �, and hence the quantity Gn(θ) can be computed from data. We now define
an estimator θ̂n of the unknown parameter θ0 as a solution of the equation

Gn(θ̂n) = 0.(9)

REMARK 2. To determine statistical properties of θ̂n, it is convenient to solve the equa-
tion Gn(θ̂n) = 0 over an open set rather than over �. This can be achieved by extending the
parameter set (0,2] for β to an arbitrary open set containing (0,2]. While a β-stable distri-
bution does not exist for β > 2, the expectation Eθf (λXl,n,γ ) can be extended to all values
β ∈ (0,∞). Indeed, we obtain via Fourier transform:

Eθf (λXl,n,γ ) =
∫

f̂ (v) exp
(−ψn(vλ, γ, θ)

)
dv,

f̂ (v) = 1

2π

∫
cos(vx)f (x) dx.

(10)

Since f is a Schwartz function, its Fourier transform f̂ (v) is a Schwartz function as well, and
in particular decays rapidly as v → ∞. On the other hand, definition (7) of the function ψn

is also sensible for βj > 2, such that the integral (10) is finite. In the sequel, we use (10) as
definition of the expectation for the case βj > 2. In practice, we extend the original parameter
set � to an arbitrary open set that contains �.
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To formulate our result on the asymptotic behavior of the estimator θ̂n, we introduce the
following rate matrix:

C
j

n(θ) = �
βj (θ)(H1(θ)−Hj (θ))
n √

n

⎛⎝1 −b̃j βj log(�n) b̃jHj log(�n)

0 1 −Hj/βj

0 0 1

⎞⎠ ∈ R
3×3,

Cn(θ) = diag
(
C

1
n, . . . ,C

q

n

) ∈ R
3q×3q .

We also define the matrix W(θ) ∈ R
3q×3q by

W(θ)i,r =
∫

f̂ (v) exp
(−b̃1|λrv|β1γ β1H1

r

)
∂θi

( q∑
j=1

b̃j γ
βjHj
r |λrv|βj

)
dv.

The main result of this section is the following central limit theorem.

THEOREM 3.1. Suppose that the order of differencing k is large enough, such that

k > Hj + 1

βj

, j = 1, . . . , q.

Choose λr ∈ R, γr ∈ N, r = 1, . . . ,3q , such that the matrix W(θ0) is regular. Assume the
identifiability condition

�
βj (θ0)[H1(θ0)−Hj (θ0)]
n √

n
� 1

| log�n|2 , j = 1, . . . , q.(11)

Then there exists a sequence of random vectors θ̂n such that P(Gn(θ̂n) = 0) → 1, which
satisfies

C
−1
n (θ̂n − θ0) ⇒ N (0,�),

with asymptotic covariance matrix � = W(θ0)
−1�̃(W(θ0)

−1)T ∈ R
3q×3q , and �̃ = �̃(θ0) ∈

R
3q×3q is given by formula (B.35) in the Appendix.

The proof of Theorem 3.1 is based upon the asymptotic theory for the random vector
Gn(θ0), which is obtained via an application of Theorem 2.3 from the previous section,
and a general theory for solutions of estimating equations; see Theorem A.2. The solu-
tion of the estimating equation Gn(θ̂n) = 0 is asymptotically unique in the sense that for n

large enough, there exists at most one solution within a rn-neighborhood of the true θ0 for
rn = ‖θ̂n − θ0‖1/2/| log�n|; see Remark 5. Establishing global uniqueness of the system of
nonlinear estimation equations requires different techniques and is beyond the scope of our
investigation. In practice, the equations will be solved numerically, and the numerical solution
will be chosen as estimator.

From the rate matrix Cn(θ0), we may derive constraints on the parameter θ0 to ensure that
all components of the process may be estimated consistently. If �n = n−ρ for some ρ ≥ 0,
then ‖θ̂n − θ0‖ → 0 if and only if

Hj < H1 + 1

2ρβj

.(12)

For the classical high-frequency regime ρ = 1, that is, �n = 1/n, this identifiability condition
is sharp for two prominent special cases:

(i) If βj = 2 for all j , then each Y
Hj ,2
t is a fractional Brownian motion, and (12) recovers

the identifiability condition of van Zanten (2007).
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(ii) If Hj = 1/βj and for all j , then each Y
1/βj ,βj

t is a βj -stable Lévy process. If additionally
βj < 2 for all j , then (12) recovers the identifiability condition of Aït-Sahalia and Jacod
(2012).

However, condition (12) is not sharp when the process contains both, Gaussian and non-
Gaussian components. If we consider the special case q = 2 and β1 = 2, H1 = 1/2, β2 < 2,
H2 = 1/β2, it is well known that all parameters are identifiable as �n → 0; see, for example,
Aït-Sahalia and Jacod (2009). However, the moment estimator based on Gn requires the re-
striction β2 > 1. We will address this issue in the next subsection. Another disadvantage of
the estimator based on Gn is that regularity of W(θ0) is nontrivial to verify because W(θ0)

depends nonlinearly on all parameters. This issue will also be addressed by the alternative
estimator presented in the next subsection.

3.2. Estimation via smooth thresholds. In this section, we improve upon the estimator
of Section 3.1 by exploiting the Gaussianity of some components in order to obtain weaker
conditions for identifiability and faster rates of convergence. Here, to demonstrate the main
ideas, we restrict our attention to a simplified model consisting of two Gaussian components
and two non-Gaussian components, and we assume that the Gaussian component is dominant.
To be specific, we study the model

Xt = a1Y
H1,2
t + a2Y

H2,2
t + b1Y

H 1,β1
t + b2Y

H 2,β2
t ,

H1 < min(H2,H 1,H 2), (H 1 − H1)β1 < (H 2 − H1)β2.
(13)

Note that the fractional Brownian motion YH1,2 is the dominant component on small scales,
in the sense that γ −H1Xγ t ⇒ a1Y

H1,2
t as γ ↓ 0. The model has ten parameters and we denote

the corresponding parameter set with the constraints as above by � ⊂R
10. As before (see the

transform in (7)), we switch to an equivalent representation of scale parameters and obtain

θ = (ã1,H1, ã2,H2, b̃1,H 1, β1, b̃2,H 2, β2) ∈ R
10.

As the Gaussian part YH1,2 is dominant, it is particularly hard to estimate the non-Gaussian
components of the model. To improve the results from the previous section, we employ the
idea of a smooth threshold, which aims at filtering out the continuous part at small scales. To
this end, we consider two Schwartz functions f1, f2 :R →R such that, for some η > 0,

f ′′
1 (0) �= 0, f2(x) = 0 for |x| ≤ η.

Moreover, let λr,n(θ) = λrun(θ) for λr ∈ R, and γr ∈ N, r = 1, . . . ,10. We suggest to esti-
mate θ ∈ R

10 as a solution θ̂n of the estimating equation

Hn(θ̂n) = 0 where

Hn(θ) =
(
Sn

(
f1;un(θ); (λr , γr)

4
r=1

)−EθSn

(
f1;un(θ); (λr, γr)

4
r=1

)
Sn

(
f2;un(θ); (λr , γr)

10
r=5

)−EθSn

(
f2;un(θ); (λr, γr)

10
r=5

)) ∈ R
10.

(14)

The first set of moments based on f1 serve to identify the Gaussian components, just as in
Section 3.1. The function f2 represents a smooth threshold, as f2(unXl,n,γ ) �= 0 if and only
if Xl,n,γ > η/un. The scaling factor un may thus be seen as a reciprocal threshold value, and
the moments based on the smooth threshold f2 identify the stable components. In contrast to
Section 3.1, we choose

un(θ) = wn�
−H1(θ)
n

where �ε
n � wn ≤ η

a12
k+7

2
√| log�n|

∀ε > 0.
(15)
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The crucial observation is that, for this choice of un, the variance of the smooth thresholds
is of a smaller order compared to the empirical characteristic function; see Theorem 2.2.
This occurs because the threshold is asymptotically unaffected by the dominant Gaussian
component, and the asymptotic distribution is driven by the smaller stable component. The
same idea has been employed in Mies (2020) to construct an estimator for Lévy processes,
that is, Hj = 1/βj .

To formulate our asymptotic result about the estimating equation (14), we define the rate
matrix Rn(θ) as

Rj
n(θ) = �

2(H1−Hj )
n √

n

(
1 −2ãj log(�n)

0 1

)
∈ R

2×2, j = 1,2,

R
j

n(θ) = w
β1
2 −βj

n �
β1(H1−H1)

2 −βj (Hj−H1)
n √

n

⎛⎜⎝1 0 −b̃j log |wn|
0 1 −Hj/βj

0 0 1

⎞⎟⎠ ∈ R
3×3, j = 1,2,

Rn(θ) = diag
(
R1

n,R
2
n,R

1
n,R

2
n

) ∈ R
10×10.

Furthermore, recalling the notation f̂ (v) = 1
2π

∫∞
−∞ f (x)e−ivx dx of f , we define

W(θ) =
(
W 1(θ) 0

0 W 2(θ)

)
∈ R

10×10,

W 1(θ)r,i =
∫

f̂1(v)∂θi

( 2∑
j=1

ãj γ
2Hj
r |λrv|2

)
dv

= f ′′
1 (0)|λr |2∂θi

( 2∑
j=1

ãj γ
2Hj
r

)
, r, i = 1, . . . ,4,

W 2(θ)r−4,i−4 =
∫

f̂2(v)∂θi

( 2∑
j=1

b̃j γ
βjHj
r |λrv|βj

)
dv, r, i = 5, . . . ,10.

The main result of this section is the following theorem.

THEOREM 3.2. Let �n ∼ n−ρ for some ρ > 0. Assume that the order of differencing is
large enough, such that

k > max
(
Hj(θ0) + 1

2
,Hj (θ0) + 1

βj (θ0)

)
, j = 1,2.

Assume furthermore that the following identifiability condition holds:

H2 < H1 + 1

4ρ
,

H 1 < H1 + 1

ρβ1
,

H 2 < H1 + 1

2ρβ2
+ β1

2β2
(H 1 − H1),

(16)

and suppose that W(θ0) is a regular matrix. Then there exists a sequence of random vectors
θ̂n such that P(Hn(θ̂n) = 0) → 1, which satisfies

Rn(θ0)
−1(θ̂n − θ0) ⇒ N (0,�),
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with asymptotic covariance matrix � = W(θ0)
−1 diag(�1,�2)(W(θ0)

−1)T ∈ R
10×10 and

�1 ∈ R
4×4, �2 ∈R

10×10 are given by formula (B.40), respectively, (B.41) in the Appendix.

REMARK 3. The contributions of f1 and (λ1, . . . , λ4) to W(θ0) and �1 cancel, and �2
does not depend on these parameters either. Thus, the choice of f1 and λ1, . . . , λ4 does not
affect the asymptotic variance.

Regularity of the matrix W(θ0) implicitly imposes assumptions on both, the parameters
θ0 and the statistical design in terms of λr and γr . If we choose the latter hyperparameters
carefully, the regularity holds for almost all parameters θ .

PROPOSITION 3.3. Let f2 ≥ 0, f2 �≡ 0.

(i) Choose (γ1, . . . , γ4) = (1,2,4,8), and λr �= 0 for r = 1, . . . ,4. Then W 1(θ) is regular
for all θ ∈ �.

(ii) Choose (γ5, . . . , γ10) = (1,2,2,4,4,8), and (λ5, . . . , λ10) = (1,2,4,8,16,32). Then
W 2(θ) is regular if

β1(1 + H1) �= β2(1 + H2) and β1(2 + H1) �= β2(2 + H2).

(iii) Choose (γ5, . . . , γ10) = (1,2,2,4,8,8), and (λ5, . . . , λ10) = (1,1,2,1,1,2). Then
W 2(θ) is regular if

H1β1 �= H2β2.

To circumvent the singular edge cases unveiled in Proposition 3.3, a potential solution
would be to use both sets of moments, and solve a nonlinear least squares problem instead
of the system of estimating equations. However, this extension is beyond the scope of the
present paper.

REMARK 4. By virtue of Proposition 3.3, the regularity of W(θ0) is rather simple to
verify. In contrast, the asymptotic analysis of the estimator presented in Section 3.1 requires
regularity of the matrix W(θ0), which is rather unwieldy as it depends nonlinearly on all
parameters due to the exponential term. For the matrix W(θ0), the dependence on all param-
eters except βj can be handled explicitly. This qualitative difference can be traced back to the

different rescaling factors un(θ): in Section 3.1, for un(θ) = �
−H1
n , the rescaled increments

un(θ0)Xl,n,γ converge weakly toward a β1-stable random variable; in Section 3.2, we choose

a scaling factor un(θ) � �
−H1
n , hence un(θ0)Xl,n,γ

P−→ 0.
Following the same strategy as in the proof of Theorem 3.2, it is also possible to derive a

central limit theorem for the estimator of Section 3.1 with the scaling factor un(θ) = wn�
−H1
n

for wn → 0, which will no longer require regularity of W(θ0), but rather of a matrix similar
to W 2. On the other hand, the rate will be slightly worse by a factor w

ρ
n for some ρ > 0.

Hence, we do not pursue this direction any further.

To instantiate the estimator θ̂n, we need to specify f1, f2, γ , λ and the order of differenc-
ing k:

• The function f1 should be a Schwartz function with f ′′(0) �= 0 (locally quadratic); see
Proposition 3.3. We suggest to choose f1(x) = exp(−x2/2), as it admits a simple and
explicit Fourier transform. Moreover, in view of Remark 3 and Proposition A.1, we may
choose λ1 = · · · = λ4 = 1, and (γ1, . . . , γ4) = (1,2,4,8).
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TABLE 1
Identifiability conditions for the various components, in the sampling

regime �n = 1/n, that is, ρ = 1

Without threshold (Gn) With threshold (Hn)

H1 (0,1) (0,1)

H2 < H1 + 1
4 < H1 + 1

4

H 1 < H1 + 1
2β1

< H1 + 1
β1

H 2 < H1 + 1
2β2

< H1 + 1
2β2

+ β1
2β2

(H 1 − H1)

• The function f2 should be a Schwartz function, which vanishes in a η-neighborhood of
zero. That is, f2 is a smooth threshold. Note that the specific choice of η is somewhat
redundant, as it may be compensated by a corresponding choice of wn. Hence, we choose
η = 1, and suggest to employ a function of the form

f2(x) = exp
(
− d1

(|x| − 1)+

)
· exp

(
− d2

(1 + d3 − |x|)+
)
, d1, d2, d3 > 0.

These functions have also been employed in Mies (2020). The choice of γ5, . . . , γ10 and
λ5, . . . , λ10 should be guided by Proposition 3.3. Note that case (iii) excludes mixtures
of Lévy processes, which are a natural candidate model in many situations. Hence, it is
preferable to use the specification of (ii). Ideally, we would like to choose f2 and γr , λr that
minimize the asymptotic variance. Due to the unwieldy form of the asymptotic variance,
this could only be achieved numerically.

• For βj ≤ 1, the process is either a Lévy process or explosive. In many cases, we can hence
safely assume βj > 1, so that k = 2 will always satisfy the conditions of Theorem 3.2.

3.3. Discussion. For ρ = 1, and for estimation of the smoother Gaussian component,
that is, H2, the new smooth thresholding estimator presented in Section 3.2 still matches the
identifiability restrictions of van Zanten (2007) and Aït-Sahalia and Jacod (2012). In contrast
to Section 3.1, we may now also identify the stable Lévy processes if the dominant component
is Gaussian, without the restriction βj > 1. This is possible because the Gaussian component
is effectively filtered by the smooth threshold. A direct comparison with the identifiability
condition (12) from Section 3.1 is presented in Table 1. Since H 1 > H1, the conditions for
the smooth threshold estimator, that is, based on the estimating equations Hn, are strictly
weaker.

The rates of convergence of both estimators are presented in Table 2. Again, the thresh-
olding estimator based on Hn is strictly better than the estimator based on Gn. Furthermore,

TABLE 2
Rates of convergence in the sampling regime �n = 1/n, that is, ρ = 1

Without threshold (Gn) With threshold (Hn)

H1 n− 1
2 n− 1

2

H2 n2(H2−H1)− 1
2 n2(H2−H1)− 1

2

H 1 nβ1(H 1−H1)− 1
2 n

β1
2 (H 1−H1)− 1

2 (logn)
β1
4

H 2 nβ2(H 2−H1)− 1
2 nβ2(H 2−H1)− β1

2 (H 1−H1)− 1
2 (logn)

β2
2 − β1

4
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we can assess the rates for the special Lévy case H1 = 1/2 and H 1 = 1/β1, H 2 = 1/β2, with
β1 > β2, which has been studied by Mies (2020) and Aït-Sahalia and Jacod (2012). In this
case, Theorem 3.2 yields, for �n = 1/n,

β̂1 − β1 =OP

(
(n/ logn)−

β1
4
)
, β̂2 − β2 = OP

(
(n/ logn)

β1
4 − β2

2
)
.

These are the same rates of convergence, which have been achieved for the Lévy case, and
which are conjectured to be optimal for this setting; see the discussion in Mies (2020).1

As another benchmark, we may investigate the regime H2 = 1
2 , H1 ∈ (1/4,1/2), which

corresponds to a sum of a classical Brownian motion and a rougher fractional Brownian
motion. This setting has been studied by Chong, Delerue and Li (2021), in a generalized
model allowing for additional nonstationarity. Both of our estimators, either based on Gn or
on Hn, yield

Ĥ1 − H1 = OP

(
n− 1

2
)
, ̂̃a1 − ã1 = OP

(
n− 1

2 logn
)
, ̂̃a2 − ã2 =OP

(
n

1
2 −2H1 logn

)
.

The rate for H1 is identical to the rate of Chong, Delerue and Li (2021); see Theorem 4.5
therein. On the other hand, our rate for ã2 is slower by a factor logn, which is due to the fact
that in our setting, H2 is unknown and needs to be estimated as well.

Except for the special cases discussed above, there are currently no benchmarks for the
mixed fractional stable motion (1). Hence, we do not know whether the conditions presented
in Table 1 and the rates presented in Table 2 are sharp for all parameter regimes. In fact, we
conjecture the results to be not sharp in at least the following two cases.

Case (i): If ρ ∈ (0,1), we have n�n → ∞, such that we effectively observe the process
Xt on the increasing interval [0, Tn], Tn → ∞. Since the linear fractional stable motion is
ergodic, the same holds for Xt , and we should expect that all parameters can be estimated
consistently in this regime.

Case (ii): Suppose that Hj > 1/βj for all j , and that the process contains no Gaussian
component, that is, βj ∈ (1,2) for all j . In this regime, Xt admits a continuous version.
Interestingly, for different parameters θ �= θ ′ the measures Pθ and P

θ ′
induced by (Xt)t∈[0,1]

on the path space C[0,1] are singular. This is a consequence of the following identifiability
result, which is new and might be of independent interest. The proof is presented in the
Appendix.

THEOREM 3.4. Let Xt = ∑q
j=1 bjY

Hj ,βj

t be a mixed fractional stable process, with βj ∈
(1,2) for all j = 1, . . . , q , and Hj > 1/βj . Assume that the parameters (βj ,Hj ) are pairwise
distinct.2 For any two parameters θ1, θ2 ∈ �, θ1 �= θ2, satisfying these requirements, with
potentially different sizes q(θ1) �= q(θ2), the measures P θ1 and P θ2 induced on C[0,1] are
mutually singular.

This result suggests that there should exist a sequence of consistent estimators in the high-
frequency regime ρ = 1, which would imply that our identifiability condition (12) is too
restrictive. However, pairwise singularity of the measures is not sufficient for the existence of
a consistent sequence of estimators; see Aït-Sahalia and Jacod (2014), 5.1.1. Hence, Theo-
rem 3.4 does not yield a complete answer about identifiability of the parameters of the mixed
lfsm.

1The formulas (3.2) and (3.3) in Mies (2020) contain an error where the term n logn should correctly be n/ logn.
The latter rate is obtained by substituting the value for un � √

n/ logn therein.
2The claim of the theorem is also valid if Hj = Hj ′ for some j �= j ′, as long as βj �= βj ′ . In this case, we sort

the components of θ in lexicographical order in Hj and βj , such that H1 ≤ H2 . . . , and βj < βj+1 if Hj = Hj+1.
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Besides these theoretical questions, future research also needs to address various practical
aspects regarding the estimation of the mixed stable motion. In particular, for our estimators,
we need to choose the functions f1 and f2, the scaling parameter un, and the values for λr

and γr . All these hyperparameters may affect the asymptotic variance of the estimator in
practice. Moreover, the number q of components needs be determined in a data-driven way,
raising questions of model selection. Nevertheless, the asymptotic results presented in this
paper demonstrate the various intricacies of the mixed lfsm model, and they show that many
models studied separately in the literature may in fact be treated by a unified statistical theory.

APPENDIX A: ESTIMATING EQUATIONS

The estimators proposed in Section 3 fall into the broader framework of estimating equa-
tions. In this section, we present some asymptotic results for solutions of general estimating
equations. Let � ⊂ R

d be an open parameter and let Fn(θ), θ ∈ � be a d-variate random
vector. Typically, Fn(θ) is a set of moment equations, and a parameter θ can be estimated by
solving Fn(θ̂n) = 0. A survey of the asymptotic theory of estimating equations is given by
Jacod and Sørensen (2018). However, for the purpose of this paper, we need to extend their
results. It should be noted that the theory presented in this section has already been applied
implicitly in the proofs in Mies (2020).

In order to derive the asymptotic distribution of θ̂n, we impose the following conditions:

(E.1) There exists a sequence of regular matrices An ∈ R
d×d such that AnFn(θ0) ⇒ Z for

some random vector Z.
(E.2) The mapping θ �→ Fn(θ) is C1. There exists a sequence rn of real numbers, and for

each θ ∈ � there exist sequences of regular (random) matrices Bn(θ), Cn(θ) and a
regular matrix W(θ), such that

sup
θ∈Brn (θ0)

∥∥Bn(θ)DFn(θ)Cn(θ) − W(θ)
∥∥ P−→ 0,

sup
θ∈Brn (θ0)

‖Cn(θ)‖‖Bn(θ)A−1
n ‖

rn

P−→ 0.

(E.3) The mapping θ �→ (Bn(θ),Cn(θ),W(θ)) is continuous in the sense that

sup
θ∈Brn (θ0)

∥∥Bn(θ)Bn(θ0)
−1 − I

∥∥+ ∥∥Cn(θ)Cn(θ0)
−1 − I

∥∥+ ∥∥W(θ) − W(θ0)
∥∥ P−→ 0.

If we are only interested in consistency, then (E.1) could be weakened:

(E.1)’ There exists a sequence of regular matrices An ∈ R
d×d such that AnFn(θ0) = OP (1).

Note also that (E.2) and (E.3) imply the following, upon setting Bn = Bn(θ0), Cn = Cn(θ0)

and W = W(θ0).

(E.2)’ The mapping θ �→ Fn(θ) is C1. There exists a sequence rn of real numbers, and for
each θ ∈ � there exist sequences of regular matrices Bn, Cn and a regular matrix W ,
such that

sup
θ∈Brn (θ0)

∥∥BnDFn(θ)Cn − W
∥∥ P−→ 0,

‖Cn‖‖BnA
−1
n ‖

rn

P−→ 0.

We only need (E.2)’ for our theory, but conditions (E.2) and (E.3) might be easier to verify.
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PROPOSITION A.1. Conditions (E.2) and (E.3) imply condition (E.2)’.

Jacod and Sørensen (2018) only consider the special case An = Bn = C−1
n ; see Condi-

tion 2.10 therein. In contrast, the asymptotic theory presented here allows for additional flex-
ibility. The proof of Section 3.1 uses the case An �= C−1

n , and Bn = I as identity matrix,
whereas the proof of Section 3.2 also requires a nontrivial Bn �= I .

The following theorem is the main result of this section. Its proof uses central ideas of
Lemma 6.2 in Jacod and Sørensen (2018).

THEOREM A.2. Let conditions (E.1)’ and (E.2)’ hold. Then there exists a sequence of
random vectors θ̂n ∈ � such that P(Fn(θ̂n) = 0) → 1 and

AnB
−1
n WC−1

n [θ̂n − θ0] = OP(1).

The sequence is locally unique in the sense that for any other sequence of random variables
θ̃n such that P(Fn(θ̃n) = 0) → 1 and P(‖θ̃n − θ0‖ ≤ rn) → 1, we have P(θ̂n = θ̃n) → 1. If
additionally (E.1) holds, then as n → ∞,

AnB
−1
n WC−1

n (θ̂n − θ0) ⇒ −Z.

REMARK 5. Note that Theorem A.2 yields asymptotic uniqueness among all estimators,
which converge at least with rate rn. In finite samples, it might still occur that the solution of
Fn(θ) = 0 is not unique, and one would need to pick one of those solutions as an estimator.
It might also even happen that for large n, the estimating equations have two solutions; only
one of which yields a consistent estimator. To ensure that these inconvenient scenarios do not
occur, one would need additional global properties of the function Fn. However, uniqueness
of the solution of nonlinear systems of equations is a nontrivial mathematical issue in general.
Hence, results about estimating equations typically only yield the existence of a suitable
sequence of solutions, as formulated in Theorem A.2 above. Global uniqueness may then be
derived on a case-by-case basis. If this is not possible, the solution of Fn(θ) = 0 needs to be
determined numerically in practice, and one may use the numerical solution as an estimator.

PROOF OF PROPOSITION A.1. Set Bn = Bn(θ0), Cn = Cn(θ0), W = W(θ0). We have∥∥BnDFn(θ)Cn − W
∥∥ ≤ ∥∥Bn(θ)DFn(θ)Cn(θ) − W(θ)

∥∥+ ∥∥W(θ) − W(θ0)
∥∥

+ ∥∥Bn(θ)DFn(θ)Cn(θ) − BnDFn(θ)Cn(θ)
∥∥

+ ∥∥BnDFn(θ)Cn(θ) − BnDFn(θ)Cn

∥∥.
The first two terms vanish uniformly for θ ∈ Brn(θ0) by (E.2) and (E.3). Regarding the last
two terms, we observe that∥∥BnDFn(θ)Cn(θ) − BnDFn(θ)Cn

∥∥ ≤ ∥∥BnDFn(θ)Cn

∥∥∥∥Cn(θ)C−1
n − I

∥∥ P−→ 0.

The same holds for the remaining term. �

PROOF OF THEOREM A.2. Consistency with rate rn: The equation Fn(θ̂n) = 0 holds if
and only if θ̂n is a fixed point of the function φ(θ) = θ − CnW

−1BnFn(θ). We show that φ

is a contraction for n sufficiently large. We use the fact that for two matrices A,B ∈ R
d×d ,

it holds that ‖AB‖F = ‖BA‖F for the Frobenius norm. In particular, ‖A‖F = ‖C−1
n ACn‖F .
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Thus,

sup
θ∈Brn (θ0)

∥∥Dφ(θ)
∥∥
F = sup

θ∈Brn (θ0)

∥∥I − CnW
−1BnDFn(θ)

∥∥
F

= sup
θ∈Brn (θ0)

∥∥I − W−1BnDFn(θ)Cn

∥∥
F

≤ sup
θ∈Brn (θ0)

∥∥W−1∥∥
op

∥∥BnDFn(θ)Cn − W
∥∥
F

P−→ 0.

In the last step, ‖ · ‖op denotes the Euclidean operator norm. Denote by �n the event that

�n =
{

sup
θ∈Brn (θ0)

∥∥Dφ(θ)
∥∥
F ≤ 1

2
,
∥∥CnW

−1BnFn(θ0)
∥∥ ≤ rn

3

}
.

Because ‖CnW
−1BnFn(θ0)‖ = OP (‖CnW

−1BnA
−1
n ‖F ) � rn, we have P(�n) → 1. Now

define the sequence θk recursively by θk = φ(θk−1), and θ0 as above. On the event �n, φ is a
contraction on Brn(θ0), and we need to show that the sequence θk satisfies θk ∈ Brn(θ0). We
may show by induction that

‖θk − θ0‖ ≤
k∑

r=1

‖θr − θr−1‖ ≤
k∑

r=1

2−r‖θ1 − θ0‖

≤ ‖θ1 − θ0‖
= ∥∥CnW

−1BnFn(θ0)
∥∥ ≤ rn

3
.

In particular, θk is a Cauchy sequence and converges to a limit value θ∞ ∈ Brn(θ0), which
satisfies φ(θ∞) = θ∞, that is, Fn(θ∞) = 0. Moreover, θ∞ is measurable since each θk is a
measurable random variable.

Define θ̂n = θ∞ on the event �n, and θ̂n = θ ∈ � otherwise, where θ is some arbitrary but
fixed parameter value. Then P(Fn(θ̂n) = 0) ≥ P(�n) → 1, and ‖θ̂n − θ0‖ = OP(rn). On the
event �n, φ is a contraction on Brn(θ0), such that θ̂n is also the unique solution on this set.
This yields the uniqueness result claimed in the theorem.

Asymptotic distribution: On the event �n, we apply the mean value theorem to obtain

0 = AnFn(θ̂n) = AnFn(θ0) + AnF̃n[θ̂n − θ0]
= AnFn(θ0) + AnB

−1
n [BnF̃nCn]C−1

n [θ̂n − θ0],
where (F̃n)l,r = ∂θr Fn(θ̃

l), for l, r = 1, . . . , d and for some θ̃ l on the line segment between
θ0 and θ̂n. Hence, θ̃ l ∈ Brn(θ0). By (E.1), we obtain the weak limit

AnB
−1
n [BnF̃nCn]C−1

n [θ̂n − θ0] ⇒ −Z.

By (E.2)’, BnF̃nCn
P−→ W as n → ∞. This also yields[

AnB
−1
n WC−1

n

]−1[
AnB

−1
n [BnF̃nCn]C−1

n

]
= Cn

[
W−1(BnF̃nCn)

]
C−1

n

P−→ Id×d .

Here, we use that ‖CnMC−1
n − I‖F = ‖M − I‖F . In particular, Slutsky’s theorem yields

AnB
−1
n WC−1

n [θ̂n − θ0] ⇒ −Z.

If not (E.1), but only (E.1)’ holds, then

AnB
−1
n [BnF̃nCn]C−1

n [θ̂n − θ0] =OP(1),

and we may proceed analogously as for the central limit theorem. �
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