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Abstract

The rise of quantitative investment strategies has been driven by increased data availability and
advancements in financial modeling. This thesis introduces Causal Factor Investing (CFI), a
novel approach that integrates causality and machine learning to enhance the performance and
explainability of factor investing strategies. Traditional factor investing often suffers from spec-
ification errors due to its reliance on correlations rather than causal relationships, and machine
learning methods are frequently criticized for their ‘black box’ nature. CFI addresses these is-
sues by using causal discovery methods, which are based on the mathematical properties of graph
theory, to identify factors that have a cause-effect relationship with asset returns. These causal
factors are then utilized as features in machine learning models to predict future returns, serving
as investment signals for portfolio construction.

Our empirical analysis in the European corporate bond market utilized causal discovery
algorithms including Fast Causal Inference (FCI) and Greedy Equivalence Search (GES). The
use of GES in CFI improves portfolio performance compared to traditional factor investing, while
FCI led to insufficient causal graphs. For the portfolios constructed with neural networks in CFI,
the use of causal factors resulted in the best-performing portfolio.

Altogether, CFI contributes to the field of quantitative finance by offering an explainable and
profitable approach to factor investing. For further research, we suggest exploring alternative
causal discovery algorithms, including time-series causal discovery methods and other algorithms
that account for hidden confounders to increase the accuracy of the causal graphs. Additionally,
a practical improvement would be including transaction costs and adjust the model for risk
constraints through optimization approaches.

Keywords: Causal Factor Investing, Quantitative Investing, Credit Market, Causal Discovery,
Fast Causal Inference, Greedy Equivalence Search, Machine Learning, Empirical Asset Pricing,
Neural Networks
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1 | Introduction

Over the last few decades, the field of quantitative investment strategies has grown significantly,
driven largely by the increase in data availability. One of the most famous quantitative investment
strategies is factor investing, which aims to realize profits by investing in financial instruments
exposed to one or multiple factors. A factor is a quantifiable characteristic or attribute that
explains the difference in returns across a set of securities.

Factor investing traces back to the Fama and French 3-factor model in 1992 [13]. Subse-
quently, factor investing research grew significantly, researching new factors and different factor
definitions, mainly focusing on equity. However, in recent years, credit markets and its factor
investing research has grown. As of May 2020, the International Capital Market Association
(ICMA) approximates the combined equivalent nominal value in the European investment grade
1 (IG) corporate bond market to be e5.65 trillion. A large part of factor investing literature is
dedicated to researching which factors best explain returns across a set of assets. This thesis
does not focus on factor identification or comparative analysis, but instead on utilizing known
factors for an investment strategy.

More recently, machine learning techniques have been integrated into the field of financial
mathematics, and thus into the factor investing industry. With abundant data, machine learning
can uncover non-linear relationships that may outperform traditional investment strategies. In
equity markets, several papers have been published using machine learning methods in factor
investment strategies. In credit market, this number drops to a few papers.

In November 2023, an article by de Prado et al. [29] was published with the title: ‘Why
Factor Investing Has Failed: The Role of Specification Errors’. The publication argues that
specification errors in factor strategies contribute to underperformance through a specific causal
mechanism grounded in causal theory. A misspecified factor model does not use the ‘correct’
factors based on a cause-effect relationship but instead relies on factors derived from correlations.
Another argument in favor of using causal knowledge is that, in combination with machine
learning methods, it could lead to improvement in explainability of the model. A significant
drawback of machine learning methods is their ‘black box’ nature, which often leads to models
that are difficult to interpret due to their reliance on correlation. While quantitative teams in
investment firms can be familiar with machine learning, these models must be transparent and
understandable to their clients. Hence, adding to the explainability of a machine learning factor
model is of high importance. The authors advocate for rebuilding the factor investing literature
in a more scientific manner, emphasizing the theory of causality.

This has lead to the main research question of this thesis:

“Can we increase performance and explainability of factor investing strategies via
machine learning and causal theory”

Through this research question, we have developed a novel factor investing strategy: Causal
Factor Investing (CFI). Our main contribution to existing literature is the integration of causal
theory in an investment strategy using factors. The concept and motivation for CFI are presented
in Section 1.1 to provide a high-level overview. In Section 1.2, we discuss the related literature

1Bonds with lower risk and therefore higher credit ratings
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on machine learning and causality in the field of factor investing. We conclude this chapter with
a complete outline of the thesis in Section 1.4.

1.1 Model concept

Our main goal is to integrate causal theory in an investment strategy to enhance profitability
and explainability. More specifically, we aim to find the causal structure of factors and returns.
A scientific theory can explain why an observed certain event takes place and is falsifiable.
This has to be consistent with empirical evidence or ideally proven with experiments including
interventions. In experimental sciences (physics, chemistry etc.) it could be possible to identify
causal relations by interventional methods which has is fundamentals in the mathematical theory
of causal inference.

In finance however, and therefore in factor investing context, direct interventions are not
feasible. Financial markets are complex systems, and it is impossible to randomly manipulate
variables such as interest rates, economic growth, or factors to observe their effects on asset
returns. Instead, we must work with observational data, which complicates the identification of
causal relationships. In this setting, causal discovery methods, become essential for uncovering
the underlying causal structures.

Definition 1.1 (Causal Discovery). The process of learning the causal structure from observa-
tional data is called causal discovery.

The output of causal discovery methods is a graph. The innovation of CFI lies into using the
causal structure to identify the factors that have a causal relation to the returns. These factors
are defined as causal factors. Then, the causal factors are to be used in the investment strategy
to enhance profitability and explainability.

The motivation behind the use of machine learning methods is to combine different factors of
interest into one composite machine learning signal. Factor investing strategies aim to generate
profits by maintaining a portfolio exposed to a certain factor. Some multi-factor strategies use
different factor portfolios simultaneously, dividing the invested money over the portfolios. Instead
of simultaneously holding multiple factor portfolios, one portfolio could be managed containing
the information of all factors. The factor investing strategy remains the same, using the machine
learning signal as criterion to construct the factor portfolio. This has two main advantages.
First, the profitability of these investment strategies can be improved because machine learning
methods can uncover non-linear relations of the factors and the returns. Second, transactions
cost can be lowered due to managing only one portfolio. It is important to mention that most
researchers do not necessarily resolve to information of factors to create the machine learning
signal (see the related literature in Section 1.2). Instead, they use all information available,
which are all available characteristics of financial securities.

Logically, we question ourselves: ‘How can we determine the most suitable choice for this
signal?’. To answer this question one has to go back to the core goal of the factor investing
strategy: harvest returns trough factor exposure. The investor believes that investing in assets
exposed to a factor, will enhance the return of the strategy. Therefore, an appropriate choice
for a signal is the predicted future return. If the prediction of future returns with factors is
accurate, this can be used as a criterion for the factor investment strategy by investing in assets
with high predicted returns. In literature, the problem of predicting future returns (or asset
prices) is often referred to as empirical asset pricing. The predicted future returns are modelled
via machine learning methods.

Taking these elements into consideration we constructed CFI which can be summarized into
three key steps:

1. Causal Analysis: Perform causal discovery on factors and returns to obtain causal factors.



CHAPTER 1. INTRODUCTION 3

2. Empirical asset pricing via machine learning: Predict future returns with machine
learning methods using the causal factors as features. The predicted future returns will
serve as composite signal.

3. Investment strategy: Use the signal, the predicted future returns, to invest and construct
the portfolio.

CFI is visualized in Figure 1.1, where each arrow indicates the output of the preceding step,
which serves as the input for the subsequent step.

Causal Analysis

Empirical
Asset Pricing
via Machine

Learning

Investment
strategy

Causal
Factors

Composite
Signal

Figure 1.1: Simplified visual representation of Causal Factor Investing (CFI)

CFI is constructed generically, such that it can be used for different type of asset classes.
The application of this thesis is in the European corporate bond market where CFI is tailored
to fit this context. Via backtesting CFI we obtain empirical results.

1.2 Related literature

Related literature can be categorized into three parts: factor investing, empirical asset pricing
via machine learning, and causal discovery. In this section, these categories are discussed in
this order. It is possible that some papers could be relevant to multiple categories. For related
literature on factor investing, this section provides a high-level overview of important develop-
ments within in factor investing with a focus in the credit market. In the next chapter (see
Section 2.2.2), we will delve into more detail, including additional articles, regarding the factor
definitions themselves. Here we will motivate the choices for the factor definitions used in this
thesis as there are multiple possible factor definitions for each factor.

Factor Investing

In 1993, Fama and French [14] pioneered the factor investing literature by publishing their famous
3-factor model. This model sparked new financial economic research aimed at identifying new
factors and constructing factor models within both equity and credit markets. In 2015, Fama and
French [15] extended the 3-factor model to a 5-factor model including the investment factor and
the profitability factor. One of the most influential articles for the credit markets was written by
Houweling et al. [22], who defined a multi-factor model in the credit market considering the value,
momentum, size, and low-risk factors. These factors were based on bond characteristics, whereas
previous literature in the corporate bond market mostly used equity definitions. Promising
evidence for the carry factor in credit was presented by Israel et al. [25], who combined equity
and credit data to define factors. Slimane et al. [3] extended this work to a six-factor model,
incorporating three traditional risk measures as additional factors.

Empirical Asset Pricing

The article by Gu et al. [18], Empirical Asset Pricing via Machine Learning, lays the founda-
tion for using machine learning methods for factor investing in this research. They conducted a
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comparative analysis of machine learning methods for empirical asset pricing in the equity mar-
ket. Trees and neural networks were the best-performing methods for predicting month-ahead
returns. Over 900 predictors were used, combining stock characteristics and macroeconomic
signals. Additionally, they demonstrated economic gains by implementing a factor investing
strategy on these predictions, taking a long position on the top 10% and a short position on the
bottom 10%. The book by Coqueret et al. [9] also reviews numerous machine learning methods
for factor investing strategies, focusing on practical implementation.

In subsequent years, several articles were published using machine learning methods to pre-
dict returns in markets other than the equity market. In line with the work of Gu et al. [18],
Mansouri et al. [30] used machine learning, excluding neural networks, to predict corporate bond
returns in emerging credit markets. They used a large set of bond characteristics and macroeco-
nomic variables in their predictor set, assigning their bond characteristics nine factor categories;
each factor category contains multiple bond characteristics. An important addition was their ex-
amination of profitability after transaction costs and constraints for factor investment strategies.
Using linear optimization, they concluded that investment strategies based on regression trees
were profitable in a real-life scenario. Bali et al. [2] explored machine learning to price United
States corporate bond returns, arguing for performance improvement by adapting the theoretical
structure, a stock-bond connection, of the Merton model.

In contrast to the articles in the previous two paragraphs, Cherief et al. [6] used only few
factor definitions as features to predict corporate bond returns. Their model builds on the
previously mentioned six-factor model of Slimane et al. [3]. The focus of their article was on
predictive performance and the importance of the factors, without considering factor investing
strategies. Using only eight characteristics, Zhu et al. [50] investigated factor investing strategies
in the Chinese commodity market using linear models and tree-based methods.

Causality

As mentioned at the beginning of this chapter, Lopez de Prado et al. [29] argue for using the
mathematical theory of causality in factor models. Extensive factor research has created the
so-called ‘factor zoo’, containing many factors and factor definitions. Incorrectly specifying a
model, by including or excluding certain factors, leads to underperformance due to causal effect
relations grounded in causal inference theory. Using the correct causes (factors) of the effect
(returns) can solve this problem. However, finding the true causal structure from observational
data, as is often the case in financial contexts, is challenging. Causal discovery algorithms can
be used to estimate the causal structure of observational data in the form of a causal graph.

To our knowledge, no papers apply causal discovery specifically to factors and returns for
an investment strategy, though some explore the relationships between them using causal dis-
covery algorithms. Gu et al. [17] utilized causal discovery to uncover causal relations between
the five Fama and French [15] factors and stock returns. Causal discovery was performed sep-
arately for each stock and and the return of factor portfolios and used the results to create an
aggregated graph. They assumed that the factors and returns were independent and identically
distributed i.i.d and there did exist hidden confounders. Therefore, they used three popular i.i.d.
causal discovery algorithms: Peter-Clark (PC), Greedy Equivalence Search (GES), and Linear
Non-Gaussian Acyclic Model (LiNGAM) belonging to three different causal discovery categories
constraint-based, score-based, and functional models, respectively. Sadeghi et al. [41] also re-
searched causal discovery on the same five equity factors and Apple stock returns, using a more
complex novel CD method called CDNOTS. This algorithm is a constraint-based algorithm for
time series data that allows for unobserved factors in the model. D’Acunto et al. [12] used a
time-series functional causal discovery algorithm VAR-LiNGAM on 11 risk equity factors to gain
insights into how these factors influence each other. VAR-LiNGAM is a time-series extension of
the LiNGAM, which also does not allow for hidden confounders. Howard et al. [23] defined a
new factor based on a causal network.
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Besides causal discovery on factors, research has been conducted in different financial con-
texts. One can attempt to find the causal structure of different stock returns on each other.
Pamfill et al. [36] propose a score-based algorithm DYNOTEARS that does not allow for hidden
confounders, but is robust for higher dimensions. Namely, the researched this algorithm for 97
stocks. Also, several articles, such as articles of Hossain et al. [19] and Zaher et al. [46] have
been published containing comparative analyses of various causal discovery methods for temporal
and/or non-temporal data. This is useful for arguing for certain causal discovery algorithms in
the context of this thesis.

During the same time period as this research, Tang [44] published an article using causal
discovery for an investment/trading strategy on stock returns among themselves. Tang used
three time-series causal discovery methods ts-FCI, VAR-LiNGAM, and TiMINo, to uncover the
causal structure of stock returns over time. From the causal graph, they identified the set of
parent vertices of stock X, denoted as Pa(X), which represents the direct causes of stock X.
They then fitted a predictive linear regression model on each stock X to forecast future returns
using these parent stockss and stock X itself as predictors. Notably, only VAR-LiNGAM could
efficiently handle large datasets. The trading portfolio incorporating parent stocks via VAR-
LiNGAM outperformed the trading portfolio that used only past values of the stocks themselves.

1.3 Data

Our dataset is the Markit IBoxx Euro Corporate Senior Index, provided by S&P. This index
consists of monthly data exclusively including investment-grade and senior corporate bonds1.
Portfolio managers, managing an active corporate bond portfolio, often construct a credit port-
folio by selecting bonds from an index and assigning specific weights (underweight or overweight)
to each bond based on their investment strategy. Often, the goal of these portfolio managers is to
beat the benchmark. We define our dataset as this corporate bond index. It is important to note
that the index itself is also used as the benchmark and is used to compare different investment
strategies in this research.

Different from a large part of equity modelling, we do not necessarily follow single bonds over
time. Instead, factor investing strategies focus on the cross sections of bonds and on portfolios
returns over time. Each month it is possible for bonds to appear and disappear in the index, based
on new bond entries and the expiration of some of the bonds. This means that the composition
of the index changes. Bluntly stating, one can see monthly bond data as ‘new’ monthly sample.
In similar way, we consider a single bond as a bond observation. In the application of this thesis,
bonds are indexed by i and months by t.

The dataset comprises a total of 336,671 monthly bond observations from 01/01/2009 to
31/12/2023. The number of bonds in the custom benchmark per month varies from approxi-
mately 500 to 3500. As time progresses, the number of bonds per month in the index increases,
as shown in Figure 1.2.

Table 1.1 presents descriptive statistics of the dataset for all bond observations. In this
thesis, all calculations for factor portfolios are performed bottom-up, based on all monthly bond
observations. To ensure a fair comparison, the index calculations are done similarly. We fix
the index weights at the start of the month, whereas in reality, the weights change minimally
on a day basis. This effect is negligible when comparing our bottom-up construction of the
index to the published top-level index performance. However, in the S&P published top-level
index performance, spreads and yields are calculated in a slightly different way. Therefore, our
Z-spread2 values may slightly differ from the published official numbers. Moreover, all metrics

1Investment grade bonds have high credit ratings ranging from AAA-BBB and senior bonds are higher claim
on a company’s assets in the event of bankruptcy

2Spread measure that captures the yield compensation of a corporate bond, compared to a similar sovereign
bond, by using the LIBOR risk free rate (see Definition 2.4)
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Figure 1.2: Total number of bonds per month the index

of the index portfolio are calculated using index weights.
Table 1.2 shows the bottom up yearly performance and some metrics of the dataset, which, as

previously mentioned, is the index itself. The Z-spread was highest during the years 2009-2012,
attributed to the financial crisis in 2008 resulting in higher credit spread compensation.

Table 1.1: Descriptive statistics dataset Iboxx Eur Corporate Senior Index. For every charac-
teristic the mean and five percentiles (5%, 25%, 50%, 75% and 95%) are stated.

Mean & Percentiles mean 5% 25% 50% 75% 95%

Duration2 4.95 1.30 2.75 4.40 6.49 10.27
Z-Spread 82.84 11.11 34.36 60.10 101.60 223.41
Notional (EUR M) 828 500 500 750 1000 1500
Ex. Return Lib1 (%) 0.10 -1.48 -0.19 0.08 0.44 1.77

Table 1.2: Yearly performance Iboxx Eur Corporate Senior Index

Date Duration2 Z-spread Ex. Return Lib3 (%)

2009 3.98 186.72 0.71
2010 4.09 112.92 -0.01
2011 3.93 145.30 -0.24
2012 4.03 140.30 0.43
2013 4.34 90.62 0.18
2014 4.62 66.63 0.10
2015 4.98 74.44 -0.09
2016 5.20 72.73 0.20
2017 5.26 46.73 0.15
2018 5.16 60.41 -0.20
2019 5.14 70.04 0.24
2020 5.31 99.61 0.08
2021 5.39 57.02 0.12
2022 4.92 99.06 -0.10
2023 4.57 91.76 0.15

1Monthly excess return over LIBOR
2Modified duration (see Section 2.2.3)
3Annual average of monthly excess return over LIBOR
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1.4 Outline

This thesis is structured as follows. In Chapter 2, we introduce the reader to the general back-
ground of factor investing. Here, the factor definitions used in this thesis are also stated and
motivated, given the variety of possible definitions. Chapter 3 provides the mathematical pre-
liminaries necessary for causal discovery. Causal Factor Investing (CFI) is discussed in Chapter
4, covering the integration of the three key steps: causal discovery, empirical asset pricing via
machine learning, and the investment strategy. The application of CFI is presented in Chapter 5,
where CFI is fitted in the context of the credit market. Chapter 6 presents the numerical results
of applying CFI in the corporate bond market, with these results obtained through backtesting.
We conclude this thesis with a discussion of our findings in Chapter 7.



2 | Factor Investing

2.1 Factor Models

Factor investing is a strategy that aims to enhance portfolio returns, manage risk and increase
diversification. The principle behind factor investing is that the difference of returns of an asset
class depends on drivers which we call factors.

Definition 2.1 (Factor). A factor is a quantifiable characteristic or attribute the explains the
difference in returns across a set of securities.

The core aim of factor research is to explain the drivers of cross-sectional asset returns.

Definition 2.2 (Cross-section). In financial analysis, a cross section refers to the examination
of a set of securities at a specific point in time without considering differences in time.

There are two type of factors: Macroeconomic factors, based on macroeconomic trends, and
style factors, based on characteristics of an asset. Often, the term ‘factor’ is also used when
speaking about the performance of a portfolio exposed to this factor: a factor portfolio. The
construction of a factor portfolio is explained later in this section. In this case a factor Ft can
be seen as a time series object. For a certain factor k, we adhere to the notation of F k

t for a
factor portfolio and we will use the fk

i,t to denote the factor score which is the value of the factor
characteristic k of asset i at time t.

A cross-sectional factor models expresses the return of any asset (or portfolio) i at time t as
a linear combination of K factor time series. This can be mathematically formulated as

rt,i = αt +
K∑
k=1

βi,kF
k
t + ϵt,i (2.1)

where

• rt,i is the return of asset i at time t,

• αt is the return that is not driven by a factor; can be the risk free rate

• F k
t is the value of the factor portfolio at time t of factor k,

• βi,k is called factor loading which is the sensitivity of asset i to the factor k,

• ϵt,i is the error at time t for asset i.

Factor loadings βi,k are often calculated via cross-sectional regression, where the return of an
individual assets is regressed on the returns of factor portfolios. Within factor model research,
the aim is to find factors that best explain the cross section of returns by minimizing the residuals
of these regressions. This thesis does not focus on factor loadings and factor identification, but
merely on using factors for an investment strategy.
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One of the most famous examples of a one factor model is the Capital Asset Pricing Model
(CAPM) from Markowitz [31]. Here, the return of an asset or portfolio is described by the market
return:

rt,i = rf + β(rmarket − rf ) + ϵt,i. (2.2)

Here rf is the return from the risk-free rate and rmarket is the market return. When one takes
expectations and removes the subscript we see the famous CAPM in the form

E[r] = rf + β(E[rmarket]− rf ). (2.3)

In this setting, β can is expressed as

β =
Cov(r, rmarket)

Var(rmarket)
. (2.4)

Subsequent research expanded on this foundation by identifying additional factors that could
explain returns better than the market factor alone. In 1993, Fama and French [14], proposed a
model including two more factors in the equity market. They observed that two type of stocks
outperformed: stocks with small market capitalization outperformed stocks with high market
capitalization and stocks with high book-to-market ratio outperformed stocks with low book-
to-market ration. The former is referred to as the size factor and the latter as the value factor
(assets with lower price relative to their fundamental value). The Fama and French 3 factor
model has the following form:

r = rf + β(rmarket − rf ) + β2 · SMB + β3 · HML + α. (2.5)

SMB is the size factor and stands for ‘Small Minus Big’ whereas HML is the value factor and
stands for ‘High Minus Low’. Note that SMB and HML are factor portfolios.

Factor Investing: Portfolio Construction

Based on the article of Fama and French [14], a generic factor portfolio can be defined as follows:

1. Sort the assets on factor score f at t

2. Long the top x % of assets and short the bottom x % of asset in your portfolio P

3. Repeat the process at t+ 1 through rebalancing portfolio P

Here, the investor has freedom in choosing factors, their investment horizon, percentage of
longing/shorting, and rebalancing time. Note that the numerical factor score is calculated per
bond, such that we can sort set of bonds.

Instead of ranking assets according to one factor, one can also perform the same operations
simultaneously on other factors and create multiple portfolios, which is called a multi-factor
strategy. In this way, investors can divide their total wealth among different factor portfolios of
interest.
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2.2 Application in the Corporate Bond Market

2.2.1 Corporate Bonds

A stock, the most commonly known financial derivative, represents ownership in a corporation.
When you buy a stock in a company, you purchase a small piece of that company. Stocks are
traded on the stock market, and the value of a stock can fluctuate based on various factors such
as the company’s performance, market conditions, and investor sentiment. A bond is another
popular financial instrument, and similarly, bonds are traded in financial markets, with their
value also changing over time.

A bond is a financial instrument that functions as a debt obligation. It represents a loan
issued by the issuer, which often are corporate, sovereign, or sovereign-related entities. These
loans are bought by an investor. Often, the loan is of a substantial amount, allowing the issuer
to raise capital for their ongoing operations or, for example, fund and finance significant projects
or take-overs. In return for holding a bond, the investor receives compensation for being exposed
to risk. This compensation comes in the form of interest payments, based on a fixed or variable
interest rate, which are called coupons. When the bond reaches maturity, the issuer repays the
original value of the loan, known as the face value of the bond, through the principal payment.

The most important forms of credit risk, from an investor’s perspective, are listed below:

• Credit risk: The risk that the bond issuer will not be able to make the the interest
payments and the face value repayment of the bond,

• Market risk: The risk that the market price of the bond changes,

• Interest rate risk: The risk that changes in interest rates will effect the value of the
bond,

• Liquidity risk: The risk that the investor will not be able to sell the bond easily on the
market due to illiquidity on the bond market

• Inflation risk: The risk that inflation will devalue the bond’s future cash flows.

The mathematical definition of a bond can be found in Definition 2.3.

Definition 2.3 (Bond). [35] A zero-coupon bond has value Bzero(t, T ) at time t and does not
yield any coupon payments to the investor. At maturity T , the investor is paid the face value of
the bond which, without loss of generality, can be expressed as 1 unit of currency: Bzero(T, T ) = 1.

A coupon bond B(t, T ) provides the bond holder n periodic coupon payments, at pre-specified
times {t1, . . . , tn} ∈ [0, T ], as well as the face value of the bond at maturity. The coupon payments
are specified by a fixed or floating rate of the face value of the bond.

Rating and Seniority

One can imagine that not all bonds have the same credit risk; some companies are more reliable
or financially healthy and thus are more likely to pay back the loan. Consequently, all bonds
have a rating that reflects their creditworthiness. Rating agencies such as Standard & Poor’s or
Moody’s assign ratings to bonds, with the highest rating being AAA and the lowest rating CCC.
The collection of bonds with ratings from AAA to BBB are investment grade (IG), indicating
low credit risk. Bonds with ratings from BBB to C are high yield (HY) grade bonds, also known
as junk bonds, and indicate high credit risk.

In addition to ratings, bonds can also differ in their seniority within the capital structure.
Senior bonds have a higher claim on a company’s assets in the event of bankruptcy or liquidation,
meaning they are repaid before other (junior) bonds. As a result, senior bonds are considered
to have lower credit risk because of their higher claim. The scope of this thesis is limited to IG
senior bonds.
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Yield

The yield of a bond is a general term used to express the return on a bond based on the initial
investment. A simple way of looking at the return of a bond is the current yield, expressed as:

Current Yield =
Annual Coupon Payment

Price of the Bond
. (2.6)

and it changes as the bond price changes. Both these calculations do not incorporate other
elements such as the time value of money and maturity. The Yield to Maturity (YTM) is the
interest rate for a bond bought at market price and held until maturity. Mathematically, this is
the discount rate that makes the sum of the bond’s future cash flows equal to its price. That is,

Price =

T∑
t=1

Cash Flowst
(1 + YTM)t

(2.7)

where YTM is the yield to maturity.
The yield curve plots the yields (YTM) of bonds and their maturities. The change in the

slope of yield curves can possibly provide information of economic sentiment. A rising positive
yield curve slope can suggest economic growth expectations because long-term bonds have higher
yields to match future inflation. Conversely, a decreasing slope (possibly an inverted yield curve),
can signal an economic recession; yields of bonds with longer maturities decrease because of
expectations of an economic downturn. Figure 2.1 shows a plot of different yield curves. At any
time, the number of bonds with different maturities is finite, so we do not know the exact yield
for all maturities. The yield curve over all maturities is modeled to fit the known points.

Figure 2.1: Yield curves

Credit spread

Now that the concept of yield curves is discussed, we introduce a fundamental aspect of fixed-
income analysis: credit spread. Credit spreads represent the difference in yield between a risk-
bearing bond and a considered risk-free bond. Often, the comparison is between credit spreads
of corporate bonds, which have higher credit risk, and government bonds, which have lower
credit risk. This spread essentially measures the extra yield that an investor gains for taking the
additional risk associated with corporate debt over ‘risk-free’ government debt. Credit spread is
a crucial measure for investors and analysts, as it offers insights into the riskiness of a bond and
is a great tool for comparing different bonds.

The width of a credit spread, for a fixed maturity, can vary greatly depending on the cred-
itworthiness of the bond. High-yield bonds, which have lower credit ratings, normally have
higher credit spreads than investment grade bonds of the same maturity. One can also use credit
spreads to compare bonds of similar quality. Even though the bonds appear similar, some may
have higher yields than others, which could imply that these bonds are underpriced. The credit
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spread curve is a graphical representation that plots the credit spread of similar bonds against
different maturities. When the actual credit spread is higher than the credit spread curve for a
certain maturity, it could also indicate that this bond is undervalued.

There are different ways to measure credit spread. In this thesis, we will use the Z-spread,
which is a commonly used credit spread measure.

Definition 2.4 (Z-spread). The Z-spread Z is the spread, often expressed in basis points, that
should be added to the LIBOR curve such that all the discounted cash flows of a bond equal
the current market price. The LIBOR curve is considered a risk-free curve, which stands for
the London Interbank Offered Rate curve, is a graphical representation of the interest rates at
which major global banks lend to one another for various maturities. This can be mathematically
expressed as

P =

n∑
i=1

Ci

(1 + Li + Z)ti
+

F

(1 + Ln + Z)T
(2.8)

where

P : Market price of the bond,
Ci : Coupon payment at time ti,

Li : Spot rate for the corresponding LIBOR zero curve,
Z : Z-spread,
F : Face value of the bond,
ti : Time to the i-th cash flow,
T : Time to maturity of the bond.

Excess Return

Excess return for corporate bonds refers to the return of a bond above the corresponding risk-free
curve. This measure isolates the performance of the bond relative to a risk-free return, providing
a clearer view of the bond’s actual performance and risk-adjusted return. It is convenient to look
at excess returns instead of absolute returns for a corporate bond investor who intends to beat a
benchmark without taking active interest rate risk. In this thesis, we will use excess returns over
LIBOR, which we refer to as excess return, to evaluate the performance of corporate bonds.

2.2.2 Factor Definitions

The credit factor investing strategy changes minimally form equity strategy. A monthly credit
factor investing strategy is defined as follows:

1. Sort the assets on factor f at the start of month t

2. Long the top x % of assets in your portfolio P

3. Repeat the process at month t+ 1 through rebalancing portfolio P

In the corporate bond market, regular shorting is often difficult due to illiquidity or restricted
by clients. Therefore, in the construction of factor portfolios, long-only portfolios on the best-
ranked subset of bonds are often considered. Furthermore, factor investing strategies allow for
flexibility in the percentage of assets in the portfolio as well as choosing between equal or market
weights.

Most factors are based on a certain ideology which can be supported by economic or empirical
arguments. Researchers constantly try to optimize the factor definition that correspond to a
certain factor. This has lead to numerous papers and definitions which, all together, are called
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the ‘factor zoo’ as in the article of Cochrane et al. [8]. Therefore, these factors do not have
world-wide consensus of the ‘correct’ definition in the corporate bond market yet. The factors
considered in this thesis, along with the rationale behind their selection, are listed below.

• Size: The size factor targets bonds with low market debt. The rationale behind this factor
is that smaller companies, measured by the market value of their debt, might offer higher
returns due to factors such as higher risk or less information availability.

• Value: The value factor targets bonds that appear to be undervalued compared to their
fundamental value. The rationale behind this factor is that, over time, undervalued bonds
will revert to their ‘true’ value which generates returns.

• Low-Risk: The low risk factor targets bonds that are less risky. The rationale behind this
factor is that less risky bonds offer better risk-adjusted returns over time.

• Momentum: The momentum factor targets bonds that have shown strong past returns.
The rationale behind this factor is that past winners tend to be future winners. On the
contrary, past losers tend to be future losers.

• Carry: The carry factor targets bonds that have a higher yield. This is based on idea that
carry measures expected return if market conditions, the risk free and carry structure, stay
the same.

In the following sections, we elaborate on the related literature for these factors and state the
factor definitions used in this thesis. We not only provide the factor definitions but also detail
the calculation of the factor score for each individual bond. The factor scores are denoted as fi,t
for bond i at time t.

Size

The size factor, one of the oldest factors, is based on the rationale that smaller firms tend to
outperform larger firms in the equity market. Translating this concept to the corporate bond
market has led to various definitions. Houweling et al. [22] were among the first to provide
evidence on the size factor in the corporate bond market. For each bond i, they define the size
factor score using the total index weight of the issuer of that bond, which represents the total
debt of the issuer:

sizi,t := Total outstanding debt1 of the issuer of bond i at time t (2.9)

This definition of total debt is the most commonly used in existing literature. In contrast,
Israel et al. [25] use equity data to assess the size factor, finding no significant size effect
in investment-grade bonds when using equity market capitalization as a metric. J.P. Morgan
adopts an even more extensive definition, otal enterprise value, as detailed in the paper by Saul
[11]. Despite these variations, we adhere to the definition given in Equation (2.9) due to its
simplicity and prevalent use in existing research.

Value

To construct the value factor, one needs to invest in ‘cheap’ securities. Securities that are under-
valued tend to outperform those that are overvalued. To determine which bonds are undervalued,
fundamental measures like earnings or the equity book value are commonly used. Correia et al.
[10] were among the first to introduce the value factor for corporate bonds by explicitly modeling

1Total outstanding debt of the issuer in the dataset
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the default probability of an issuer. Houweling et al. [22] compare the required market com-
pensation (‘fair value’) for the credit spread to the actual credit spread. If the required market
compensation is higher than the actual credit spread, the bond is considered to be undervalued.
The required market compensation is calculated by regressing the credit spread on some risk
predictors in the cross section of bonds. Houweling et al. [22] perform a cross-sectional which
can be expressed as

Si,t = α+
4∑

r=1

βr1
r
i,t + γMi,t + δ∆Si,t + ϵi. (2.10)

where Si,t is the credit spread, 1ri,t is the indicator function equal to 1 if bond i has rating r, Mi,t

is the maturity, and ∆Si,t is the 3-month spread change in the credit spread. For each bond, the
percentage difference between the actual credit spread and the fitted credit spread is used as the
value factor score:

vali,t =
Si,t − Ŝi,t

Si,t
. (2.11)

A variety of different credit spread measures and regression predictors can be used. In the
research paper by FTSE Russell [40], the option-adjusted credit spread (OAS) is used as the
credit spread, and they include the time to maturity squared in their regression model. They
also perform the regressions per industry rather than over the entire cross-section. Henke et
al. [21] utilize measures such as stock volatility, leverage ratio, profitability, rating, modified
duration, and 3-month OAS change. Instead of using the percentage change between the fitted
credit spread and the actual credit spread, they employ a log transformation in the form:

vali,t = ln

(
ÔASi,t

OASi,t

)
− 1. (2.12)

Israel et al. [25] use two value factor definitions: the value factor as defined by Correia et al.,
and a combination of credit rating, bond duration, and volatility of bond excess returns over the
last 12 months.

In this thesis, due to limited data availability on company fundamentals, we use the value
definition as specified in Equation (2.11) with the regression approach outlined in Equation
(2.10).

Low-Risk

The low-risk factor, also known as the defensive factor, is designed to capture premiums through
higher risk-adjusted returns from lower-risk companies. A crucial question in this context is the
selection of appropriate risk measures to construct the low-risk factor. The creation of the low-
risk factor for corporate bonds was introduced by Ilmanen [24], where both credit and interest
rate risk were minimized. This was achieved by selecting credit rating and time to maturity as
the two factor scores, respectively. A high credit rating and a low maturity would suggest higher
low-risk premiums.

Most researchers adopted this definition, including Houweling et al. [22] and Cherief et
al. [6] in constructing their low-risk factor. They use the combination of these factor scores
in factor construction (see Section 2.1), implemented as a double sort on rating, followed by
maturity. Alternatively, some researchers integrate equity and bond data to refine their low-
risk assessments. For instance, Israel et al. [25] employed three specific low-risk measures:
market leverage, gross profitability, and low duration. Doctor [11] relies even more on company
fundamentals in his low-risk factor definitions. In this thesis, we adhere to the two factor scores
of Ilmanen [24]. Instead of using a double sort, we aim to create a single factor score and define
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the low-risk factor as follows:

lri,t =


1 +

1

Maturityi,t
, if the rating of bond i ∈ {AAA, . . . ,A},

ϵ+
1

Maturityi,t
, if the rating of bond i = BBB,

(2.13)

where ϵ is a very small value. In this definition, a higher low-risk factor score indicates higher
low-risk premiums.

Momentum

The momentum factor principle is based on the notion that financial instruments that perform
well in the present are likely to continue their performance in the future, while those that perform
poorly will continue on the same trajectory. This concept was first explored in the equity market
in 1993, but it was not until 2013 that Jostova et al. [26] extended this analysis to the corporate
bond market. They defined the momentum factor score based on the past six-month return,
incorporating a one-month implementation lag, as follows:

momi,t =

 6∏
j=1

(1 + ri,t−j)

− 1 (2.14)

where ri,t is the excess return.
A higher momentum score suggests the potential for higher future returns. Recent articles

from Houweling et al. [22], Cherief et al. [6], and Israel et al. [25] have adopted the definition of
Jostova et al. [26] in their work. There are elements in this definition that allow some flexibility.
For instance, one could use returns based on absolute or excess returns relative to duration-
matched treasuries which is proposed by Houweling et al. [22]. Additionally, the time period
considered for momentum calculation can vary, with options extending up to twelve months or
reducing to three months, although six months remains the most commonly utilized time period.
Another variation includes using average returns instead of cumulative returns.

A significant adaptation, known as the amended momentum factor, was proposed by Slimane
et al. [3]:

Amended momentum =
Compounded average weighted excess returns− 1

Average weighted spread duration
. (2.15)

This variation addresses the anomaly where bonds with the lowest momentum scores sometimes
perform unexpectedly well. For further details of this variation, the reader is directed to the
work of Slimane et al [3].

Similar to other factor scores, it is possible to use equity data linked to bonds, as it could
be argued that news trends are better reflected in equity data than in bond data. Furthermore,
equity data could better predict future downgrades which is suggested by Henke et al. [21].
In this thesis, we use bond data only and adhere to the most general momentum factor score
presented in Equation (2.14).

Carry

Isreal et al. [25] are one of the first to use the carry factor when explaining the cross-sectional
return of corporate bonds. Stated simply, carry is return of a security if time passes and nothing
changes; a current higher yield bond outperforms a lower yield bond the conditions in the future
remain the same. They define carry as the credit spread measure OAS, which we introduced
in the previous subsection on the value factor. The carry factor is one of the simplest factors
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to implement. In the scope of this research we consider Z-spread (see Definition 2.4), which is
similar to OAS as we consider few bonds that have optionality. Therefore, the carry factor score
can be defined as follows:

cari,t := Z-spreadi,t (2.16)

2.2.3 Credit Portfolio Metrics

Besides the profitability of factor investing strategies, it is important to manage the risk of the
portfolio. There are multiple metrics available to evaluate portfolios, which we have narrowed
down to a specific selection.

As discussed earlier, our primary metric for evaluating portfolio performance in terms of
profitability is the excess return over LIBOR (see Section 2.2.1), referred to as excess return. At
first glance, calculating the cumulative total return may seem appealing from a client perspective,
as it directly shows the growth of invested wealth. However, for portfolio managers, excess return
is a more relevant measure as it reflects the performance beyond the risk-free component of the
bond. Another common profitability measure is the information ratio (IR). The information
ratio is a risk-adjusted return measure of a financial asset or portfolio compared to a benchmark.
It is calculated by dividing the expected value of active return E[Rp−Rb] of the portfolio by the
tracking error σ:

IR =
E[Rp −Rb]

σ
(2.17)

where σ is the standard deviation of the active return, Rp the return of the portfolio, and Rb

the return of the benchmark. The IR is particularly useful for portfolio managers as it quantifies
the ability to generate excess returns relative to the benchmark, adjusted for the risk taken. A
higher IR indicates a more efficient use of risk resulting in better risk-adjusted performance.

In addition to return measures, there are several risk-related metrics used to evaluate a credit
portfolio. Asset managers cannot arbitrarily construct portfolios but strive to build portfolios
that are optimal within the risk constraints. Therefore, we introduce the following additional
key portfolio metrics, some of which are discussed in Section 2.2.1:

• Duration
In this thesis we use modified duration for duration which is not be confused with Macaulay
duration. The duration measures the sensitivity of the bond’s price to changes in interest
rates. For portfolio managers, duration is crucial as it helps manage interest rate risk. A
longer duration implies greater sensitivity to interest rate changes, making it an essential
metric for constructing a portfolio that aligns with the fund’s risk tolerance.

• Z-spread
A spread measure represents the compensation over the risk-free swapcurve with the same
maturity. To complement the measure for excess return, we selected Z-spread as our spread
measure. The Z-spread is the constant spread that, when added to the risk-free rate at each
point on the yield curve, equates the present value of the bond’s cash flows to its market
price. It is particularly interesting for portfolio managers as it captures the additional yield
a bond offers over the risk-free rate, accounting for credit risk, liquidity, and other factors.

• Time to Maturity (TTM)
Time to maturity contains information on the expiry of the bonds. Bonds with longer
maturity often have higher yield, reflecting the increased risk of holding a bond for a
longer period. For a portfolio manager, understanding the time to maturity distribution
within the portfolio is vital as it impacts the portfolios yield and risk profile.
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• Rating
The rating of a bond reflects the creditworthiness of the issuer, as assessed by rating agen-
cies. Bonds with higher ratings (e.g., AAA) are considered safer but offer, in general, lower
yields, while lower-rated bonds (e.g., BBB) offer higher yields due to higher default risk.
For portfolio managers, the credit rating is a critical metric to ensure that the portfolios
overall credit quality aligns with the fund’s risk management policies. Maintaining an ap-
propriate average rating helps in achieving a desired risk-return balance. To calculate an
average rating, a numerical mapping is required. In this thesis we assigned the numerical
values as follows: AAA 7→ 1, AA 7→ 2, A 7→ 3, BBB 7→ 4.



3 | Mathematical Preliminaries for Causal
Discovery

In the application of this thesis, we focus on causal discovery using i.i.d. data rather than
time-series data. Consequently, this chapter presents the mathematical preliminaries of causal
discovery on independent and identically distributed (i.i.d.) data, which can be extended to
time-series data. We primarily make use, regarding i.i.d. causal discovery, of the lecture notes
of Peters [38], the paper by de Prado et al. [29], and two recent surveys on causal discovery
methods of Hossain et al. [19] and Zanga et al. [47].

In Section 3.1, we introduce the reader to the concept of causality with an intuitive example.
Then, in Section 3.2, we define the fundamental mathematical concepts for causal discovery.
Section 3.3 elaborates on causal discovery methods, which are subdivided into constraint-based
methods (Section 3.3.1) and score-based methods (Section 3.3.2). For each of these two cate-
gories, we consider one algorithm in this thesis. The complete causal discovery algorithms, Fast
Causal Inference (FCI) (constraint-based) and Greedy Equivalence Search (GES) (score-based),
are presented in Sections 3.4 and 3.5, respectively.

3.1 Cause and Effect

‘Correlation does not imply causation’ is a well-known phrase that highlights the difference be-
tween association and cause-and-effect relationships between two events. An observed correlation
between events A and B does not necessarily imply that A causes B. A famous example, given
in Peters [38], is the incorrect causal statement that ‘Eating chocolate produces Nobel prizes.’
This statement was popularized by some news platforms based on Messerli’s [32] research, which
found a correlation between a country’s chocolate consumption and the number of Nobel prizes
awarded (see Figure 3.1). The statement suggests that if every citizen were randomly forced
by the government to eat a certain amount of chocolate, there would be a dependence between
chocolate consumption and Nobel prizes. However, we know this is not true; the correlation
could instead be explained by hidden variables such as economic strength.

As mentioned in the introduction, de Prado et al. [29] argues that model misspecification
can lead to the underperformance of factor or forecasting strategies. We introduce the reader to
model misspecification through two intuitive examples adopted from the article of de Prado et
al. [29]: undercontrolling for a confounder and overcontrolling for a collider.

Undercontrolling for a confounder

Let us consider the data-generating process as an example:

X := Zδ + v (3.1)
Y := Xβ + Zγ + u (3.2)

where γ, δ ∈ R/{0} and u, v, Z are independent and identically distributed standard normal
variables. Here, let X represent the factor (cause) and Y represent the return (effect), with β
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Figure 3.1: Correlation between chocolate consumption (kg/y/capita) and the number of Nobel
Prizes (per 10 million inhabitants). Adopted from Messerli [32].

being the risk premium of this factor.1 In causal language, Z is a confounder because it influences
both the cause and the effect. This data-generating process can be represented as a graph in
Figure 3.2, where the green arrow shows the effect of X on Y .

Z

X

Y

δ

γ

β

Figure 3.2: Example data-generating process including a confounder. Adopted from de Prado
et al. [29].

In practice, the data-generating process is unknown to observers. With knowledge of the
causal structure, an investor would specify the model Y = Xβ + Zγ + u to estimate the effect
of X on Y . Incorrectly specifying the model, in this case undercontrolling for a confounder by
excluding variable Z, an investor would use Y = Xβ + ϵ as the model. In Section 3.1 of De
Prado et al. [29], they prove that an under-controlled model will underperform in both factor
and forecasting strategies.

Overcontrolling for a Collider

Similarly, overcontrolling for a collider can also have negative effects. Let us consider the following
data-generating process:

Y := Xβ + u, (3.3)
Z := Y γ +Xδ + v, (3.4)

where γ, δ ∈ R/{0} and u, v,X are independent and identically distributed standard normal
variables. Again, X is the cause and Y is the effect. In causal terms, Z is a collider because it
is influenced by both the cause and the effect. This data-generating process is represented as a
graph in Figure 3.3, where the green arrow indicates the effect of X on Y .

With accurate knowledge of the causal structure, an investor would specify the model Y =
Xβ + ϵ to estimate the effect of X on Y . Incorrectly specifying the model, referred to as
overcontrolling by including variable Z, would result in the use of Y = Xβ+ ϵ as the model. For
this example, de Prado et al. [29] demonstrate in Section 3.2 that an overcontrolled model will
underperform in both factor and forecasting strategies due to the collider effect δ.

1This example is adapted from de Prado et al. [29], where X represents Xi,t, the factor exposure of an asset
X. In our example, X represents the factor score.



20 3.2. DEFINITIONS AND NOTATION

X

Y

Z

β

δ

γ

Figure 3.3: Example data-generating process including a collider. Adopted from de Prado et
al. [29].

Observational Data and Causal Discovery

As discussed in the introduction of this thesis, interventional methods can be used in experimental
sciences to estimate cause-effect relationships. For example, consider a classic medical experiment
involving two identical groups of patients to test a drug’s effectiveness. Unknown to the doctors,
the treatment group receives the drug, while the control group receives a placebo. This double-
blind setup ensures that neither the participants nor the researchers know who receives the drug,
thereby reducing biases. Notably, being aware of receiving the actual drug or placebo could act
as a confounder in this experiment.

However, in finance and factor investing, direct interventions like those in the previous exam-
ple are not feasible. Therefore, in this case, identifying causal relationships relies on observational
data, complicating the process. We resort to causal discovery methods, which learn the causal
structure from observational data (see Definition 1.1) using mathematical properties from graph
theory.

3.2 Definitions and Notation

This section is used to present definitions and theorems required for causal discovery and famil-
iarize the reader with common notation. Causal discovery is heavily based on graph theory, of
which we review important definitions first.

Graph Theory

Definition 3.1 (Graph). A graph G = (V ,E) consists of vertices V and edges E ⊆ V × V
with (X,X) /∈ E for any (X,X) ∈ V

Definition 3.2 (Directed Graph). A directed graph (DG) is a graph of which edges are directed:
every edge (X,Y ) is distinct from edge (Y,X)

Definition 3.3 (Mixed Graph). [48] A mixed graph contains both directed, undirected edges, and
bi-directed edges.

More specifically, undirected edges can be graphically represented as X − Y , directed edges
as X → Y , and bi-directed edges as X ↔ Y . Intuitively, for any given vertex X, the set of
vertices that have a directed edge going into X are called the parents of X and are denoted by
Pa(X). The vertices that have an edge into them from X, are called the children of X and are
denoted by Ch(X). For a bi-directed edge X ↔ Y , X and Y are called a spouse, of each other.
The spouse set of X is denoted by Sp(X) and contains all spouses of X. For an undirected
edge X − Y , X and Y are called neighbors of each other. Vertices that are connected to X are
adjacent without specifying the orientation of the edge.

Definition 3.4 (Path). A path π = (X − · · · − Y ) is a sequence of distinct vertices where each
vertex is connected to the next vertex with an edge. If these edges are directed, this becomes a
directed path π = (X → · · · → Y ).
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When considering a directed path containing (· · · → X → · · · → Y → · · · ), we call Y a
descendant of X. Continuing in this language X the ancestor of Y .

Definition 3.5 (Cycle). A cycle is path where the starting vertex is the same as the ending
vertex i.e. (X → · · · → X)

Definition 3.6 (Directed Acyclic Graph). A directed acyclic graph (DAG) is a directed graph
that does not contain cycles.

Definition 3.7 (Partially Directed Acyclic Graph). A partially directed acyclic graph (PDAG)
is a graph that contains both directed and undirected edges

We will now introduce the important definition d-separation which is used to define graphical
independence. The formal definition can be found in Definition 3.9. Simply stating, X and Y are
d-separated by set Z if Z blocks every path π between X and Y . To understand the d-separation
criterion more thoroughly, we discuss three frequently observed fundamental key structures in a
causal graph. The three key structures are a Chain, Fork, and Collider (See Figure 3.4).

Definition 3.8 (Chain, Fork and Collider). Let G be a graph and let π be a path on G. For any
three vertices X,Y and Z in π we define the following structures in π:

• Chain: X → Y → Z

• Fork: X ← Y → Z

• Collider: X → Y ← Z

X

Y

Z

(a) Chain

X

Y Z

(b) Fork

X Y

Z

(c) Collider

Figure 3.4: Key structures of a causal graph

Now that these three key structures are defined, the definition of d-separation can be pre-
sented.

Definition 3.9 (D-separation). [37] Let G be a directed graph and π a path on G. Let A,B and
C be three vertices of G and let Z ⊂ V . π is blocked by Z if and only if π contains

• a fork A← B → C or a chain A→ B → C such that the middle vertex B is in Z,

• a collider A → B ← C such that the middle vertex B, or any descendent of B, is not in
Z.

If Z blocks every path between X and Y then Z d-separates X from Y .

To illustrate d-separation we present an example graph included in Figure 3.5. In this graph,
A and B are d-separated, without conditioning on any vertex, because they from a collider;
middle vertex C and its descendants are not Z which means Z is the empty set. Therefore A
and B are always d-separated. However for A and D, we have a chain structure A → C → D
on the path (A→ C → D)1 which means the middle vertex C d-separates A and D.

1The path itself is a chain structure
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A

B

C

D

E

F

Figure 3.5: Example graph to illustrate d-separation

Causal Graphs

A Causal Graph is a graphical representation of a system (of variables) in terms of cause-effect
relations. The vertices of the causal graph represent the variables of the system variables V =
(X1, X2, . . . , XK). The edges represent the causal relationship between the variables.

Definition 3.10 (Causal Graph). [19] [38] A causal graph (CG) is a DAG that represent a joint
probability distribution P over a set of random variables V = (X1, X2, . . . , XK) where P satisfies
the Markov property with respect to the graph G.

The Markov property can be distinguished into three type of definitions: global, local and
factorization.

Definition 3.11 (Markov property). [38] Let G be a graph and a P joint distribution over a set
of random variables V = (X1, . . . , XK). This distribution is said to satisfy

1. the global Markov property with respect to the DAG G if

Xi,Xj d-separated by Xk ⇒ Xi ⊥P Xj |Xk (3.5)

for all disjoint sets Xi, Xj , Xk. Here, ⊥P represents conditional independence in proba-
bility.

2. the local Markov property with respect to the DAG G if each variable is independent of
its non-descendants given its parents.

3. the Markov factorization property with respect to the DAG G if

p(V ) = p(X1, . . . , XK) =
K∏
j=1

p(Xj | Pa(Xj)) (3.6)

(here, we have to assume that P has a density p).

If the joint distribution P has a probability density, the three definitions are equivalent. Thus,
if considering a causal graph, all of the three Markov properties hold.

Theorem 3.1. [38] If P has a density p, then all Markov properties in Definition 3.11 are
equivalent.

Proof. See Theorem 3.27 of Lauritzen [28].

Conditional independence is a crucial tool to find causal relations among variables. The global
Markov property, statement 1 in Definition 3.11), conveys that d-separation implies conditional
independence i.e.

X ⊥G Y | Z ⇒ X ⊥P Y | Z. (3.7)

Here, we denote d-separation as ⊥G for graphical independence. This direction of the implication
is embedded in the definition of a causal graph. The other direction, conditional independence
in probability implies d-separation, is an important causal assumption (see Assumption 1) which
is known as faithfulness:

X ⊥G Y | Z ⇐ X ⊥P Y | Z. (3.8)
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Equivalence Classes

Causal discovery algorithms (Section 3.3) cannot always identify the causal structure in the form
of a DAG. Often, these algorithms are limited in finding other graphical representations.

Definition 3.12 (Skeleton). Let G be a PDAG. The skeleton of G is the undirected graph
obtained by chancing all directed edges into undirected edges.

Definition 3.13 (V-structure). Let G be a PDAG. A v-structure in G is a structure X → Y ← Z
where X and Y are not adjacent.

A v-structure is similar to a collider (see Definition 3.8). V-structures encode the conditional
independencies of the conditional probability distribution as stated in the article of Zanga et al.
[47]. Any that edge that creates a new v-structure or deletes an existing v-structure by changing
orientation is called a compelled edge. Every edge that is not compelled is called reversible.

In 1990, Verma and Pearl [45] proved the following lemma:

Lemma 3.1 (Markov Equivalent). [45] Let G and H be two DAGs. G and H are Markov
equivalent, denoted by G ≡ H, if they have

• the same skeleton,

• the same v-structures.

Definition 3.14 (Markov Equivalence Class). [47] Let G and H be two DAGs. G and H
are belong to the same Markov equivalence class (MEC), denoted as [G], if they are Markov
equivalent. This set of causal graphs has the same conditional independencies.

In Figure 3.6 we present an example of two graphs that are Markov equivalent. Note that
indeed they have the same skeleton and the same v-structure Z → V ← U .

X

Y Z

V

U

X

Y Z

V

U

Figure 3.6: Two Markov-equivalent graphs. Adopted from Peters [38].

Equivalence classes can be represented by a CPDAG.

Definition 3.15 (Completed Partially Directed Acyclic Graph). [19] A Completed Partially
Directed Acyclic Graph (CPDAG) is a PDAG that is completed. That is, the CPDAG consists
of directed edges that exist in every DAG that have the same conditional independencies and,
undirected edges that are reversible in G.

As an example, using the definition of a CPDAG, we can represent the equivalence class of
the two graphs of Figure 3.6 into one CPDAG shown in Figure 3.7.

X

Y Z

V

U

Figure 3.7: Equivalence class of graphs of Figure 3.6 represented by a CPDAG
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Ancestral Graphs

Another type of graph is an ancestral graph (AG) which is a special case of a mixed graph.
Ancestral graphs can be used to represent a data-generating system where there exist hidden
confounders (see Definition 3.20).

Definition 3.16 (Ancestral Graph (AG)). [48] A mixed graph G is ancestral if the following
conditions holds

1. There does not exist a directed cycle in G

2. There does not exist a almost directed cycle in G

3. For any undirected edge X − Y , X and Y have no parents or spouses

The first and second property induce ancestral hierarchy by removing cycles. The second
property contains an almost directed cycle, which occurs when X ↔ Y in G and Y is an ancestor
of X. The third property requires that there are no edges going in an edge that has an undirected
edge.

Mixed graphs, and thus ancestral graphs, focus on the endpoints of edges instead of the
complete edge itself. A mixed graph can have two different endpoints: − or >. When the
endpoint is generic, which means it can be both − or >, an asterisk ∗ is used. In the context
of ancestral graphs we wish to define m-separation instead of d-separation. It is necessary to
redefine a collider as (X∗→ Y ←∗Z). A structure that is not a collider is called a non-collider.

Definition 3.17 (M-separation). [47] Let G be a mixed graph, π be a path on G and Z ⊂ V .
The path π is blocked by Z if one of the following properties holds:

• π contains a non-collider such that the middle vertex of the non-collider is in Z

• π contains a collider such that the middle vertex, or any descendant of it, is not in Z

Z m-separates X from Y if it blocks every path between X and Y .

Definition 3.18 (Maximal Ancestral Graph (MAG)). [47] [48] A ancestral graph is maximal if
any pair of non adjacent vertices are m-separated

In the most general form, suppose there exists a true causal DAG G over a set of variables
V = O ∪ L ∪ S. Here, O represents the set of observed variables, L denotes the set of hid-
den/unobserved variables (possibly confounders), and S denotes the set of unobserved selection
variables to be conditioned upon. A selection variable is a variable that keeps track whether the
sample remains in the study/causal discovery or is omitted (see Zhang [48]). Selection variables
are often used in medical studies. Given any DAG G over V = O ∪ L ∪ S, there exists a
MAG, denoted by, over the observed variables only O that probabilistically represents the DAG
G. In Theorem 4.18 of Richardson et al. [39] they prove that for any DAG G a MAG can
be constructed such that the MAG probabilistically represents G. A MAG that probalistically
represents G is denoted byMG. We refer the interested reader to the work of Zhang [48] for the
full construction procedure.

Two different MAGs can have different causal information, but trough equivalence and m-
separation, they can represent the same conditional independence constraints. Trough the defi-
nition of discriminating paths, equivalence of MAGs can be proved1. The equivalence class for
MAGs can be represented by a partial ancestral graph. Here, the endpoint ◦ means that the
endpoint is not (yet) determined.

Definition 3.19 (Partial Ancestral Graph). [47] Let G be an ancestral graph. G is a partial
ancestral graph if it can have

1For the proof see Sprites et al. [43]
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• directed edges (→),

• bidirected edges (↔),

• undirected edges (−),

• partially directed edges (◦→). That is, each edge can have one of three different endpoints:
−, ◦, or >

Zanga et al. [47] describe the interpretation of PAGs as follows:

• X → Y : X causes Y . There could exist a hidden confounder,

• X◦→ Y : Y is not an ancestor of X. That is, X causes Y or there is an hidden confounder,

• X ↔ Y . There is a hidden confounder that causes both X and Y . X does not cause Y nor
does Y cause X,

• X ◦−◦ Y One of the following statements is true: X causes Y or Y causes X; here is a
hidden confounder that causes both X and Y ; both X → Y and X◦→ Y ; both X ↔ Y
and X◦→ Y .

3.3 Causal Discovery

Let G be the set of all possible graphs over the set of variables V in the dataset D. Causal
discovery methods aim to recover the ‘true’ graph G∗ ∈ G from the given dataset D. For real-
life observational data, it cannot be verified if the discovered graph is indeed the true graph.
However, using synthetic data generated from a known system, causal discovery algorithms can
be tested for accuracy. Although causal discovery methods strive to identify the DAG G∗ from
the data D, they are sometimes restricted to finding other graphical representations, such as
equivalence classes.

In practice, hidden variables present common challenges. Hidden variables are unobserved
variables that are not included in V but influence variables within V . These hidden variables
are referred to as hidden confounders.

Definition 3.20 (Hidden Confounder). A hidden confounder X, is a variable that is has an
effect on any subset of V and is not included in V itself.

Causal discovery algorithms often rely on several causal assumptions. These assumptions are
discussed first. Subsequently, we introduce two of the most common approaches to recovering
the causal graph from observational data: constraint-based methods and score-based methods.

Causal Assumptions

Causal discovery algorithms often makes use of certain causal assumptions regarding the variables
or the data.

Assumption 1 (Faithfulness). The faithfulness assumption states that all variables that are not
d-separated, are dependent; conditional independence in probability implies graphical indepen-
dence via d-separation. Mathematically,

X ⊥P Y | Z ⇒ X ⊥G Y | Z. (3.9)

Assumption 2 (Sufficiency). The sufficiency assumptions states that there are no hidden con-
founders, and that all variables that may have common cause are also includes as variables.

Assumption 3 (Acyclicity). There are no cycles in a causal graph

AGs are useful when aiming to relax the causal sufficiency assumption to representing the
underlying data-generating processes that may include hidden confounders as a causal structure,
even without directly modeling these unobserved variables.
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3.3.1 Constraint-based Methods

Constraint-based methods make use of conditional independence test to uncover the causal struc-
ture. This relies on the faithfulness assumption (Assumption 1) of the underlying distribution.
Trough this assumption, one can translate the conditional independence test into d-separation,
and therefore exclude edges between variables that can be d-separated. When the graph also
satisfies the Markov property i.e. is a causal graph, then we have a perfect map:

Definition 3.21 (Perfect Map). [47] A graph G is a perfect map for a probability distribution
P if every conditional independence statement from P can be derived from G and vice versa:

X ⊥P Y | Z ⇐⇒ X ⊥G Y | Z. (3.10)

Testing for conditional independence is well-known statistical procedure which we briefly
introduce. Let the null hypotheses H0 and the alternative hypotheses H1 be defined as

H0 : X ⊥P Y | Z, (3.11)
H1 : X ̸⊥P Y | Z. (3.12)

The conditional independence test statistic is defined as T (X,Y | Z). In general form, the p-
value for a two sided test with test statistic T and observed value of the test statistic T̂ is given
by

p-value = P (|T | ≥ T̂ | H0). (3.13)

For a two-sided hypothesis test, the zero hypothesis H0 is rejected if the p-value of the test
statistic is smaller than a significance level depending on α:

p-value ≤ 2 · α⇒ X ̸⊥P Y | Z. (3.14)

For instance, if the test statistic is assumed to be standard normal under the H0 hypothesis,
then we can reject the zero hypothesis H0 if

|T̂ | > Φ−1
(
1− α

2

)
. (3.15)

3.3.2 Score-based Methods

Score-based methods search over the space of all possible DAGs, denoted by G, to find optimal
graph G∗ based on a certain scoring criterion S(G,D). This can mathematically be expressed
as

G∗ = argmax
G∈G

S(G,D). (3.16)

These methods often consists of 2 key components:

1. A search strategy

2. A score function

The search strategy determines how the algorithm will explore possible search states of graphs
G. The score function is used to asses the possible graphs G; it maps causal graphs to a
numerical score based on how well it fits the data. The graph or equivalence class of graphs that
have the highest score function is the output of the algorithm. To understand the score-based
algorithms more rigorously, necessary properties and definitions are introduced in the following
few paragraphs.
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Definition 3.22 (Decomposable Score). [7] Let A scoring criterion S(G,D) is decomposable if
it can be defined as a sum of the scores of subgraphs of a vertex and its parents:

S(G,D) =
∑
Xi∈V

S(Xi,Pa(Xi),D) (3.17)

If a score function is decomposable the score computation can be efficiently evaluated through
local differences of the causal graph. During causal discovery, previously computed scores of
subgraphs can be used perform score calculations efficiently. In particular, the comparison of
scores of two DAGs G and H can be handled by taking into account only the vertices that have
different parent sets. Frequently used score functions, stated in the article of Barba et al. [1]
include the Bayesian Information Criterion (BIC), the Minimum Description Length (MDL), and
the Bayesian Dirichlet equivalent (BDe). Two score functions can be equivalent according to the
following definition:

Definition 3.23 (Equivalent Score). [47] A scoring criterion S(G,D) is score equivalent if for
any pair of graphs G and H that are in the same equivalence class, S(G,D) = S(H,D).

A graph G is said to contain a probability distribution P if there exists an (conditional)
independence model associated with G that represents P exactly (see Zanga et al. [47]). That
is, G is a perfect map of P (see Definition 3.21).

Definition 3.24 (Consistent Score). [47] Let D be a data set associated with a probability
distribution P and random variables (Xi, . . . , XK) and let G and H be two graphs. A scoring
criterion S is said to be consistent in the limit of the number of samples the following two
properties hold:

• If H contains P and not G does not contain P , then S(G,D) < S(H,D),

• If both G and H contain P and the model associated with H has fewer parameters than the
one with G, then S(G,D) < S(H,D).

Lemma 3.2. [7] BIC, MDL and BDe are score equivalent and consistent.

A score function can also be locally consistent which desired to efficiently compute local
scores.

Definition 3.25 (Locally Consistent Score). [7] Let G be a graph and G′ the graph resulting
from the addition of the edge X → Y to G. A scoring criterion S(G,D) is said to be locally
consistent if the two following conditions hold:

1. X ̸⊥P Y | Pa(Y ) =⇒ S(G,D) < S(G′,D).

2. X ⊥P Y | Pa(Y ) =⇒ S(G,D) > S(G′,D),

A score that is locally consistent score can be interpreted as follows. If an edge is added that
eliminates an independence constraint not contained in the generative distribution P it favors
the addition. Adding an ‘unnecessary’ edge that adds an independence constraint will not be
favored by the logical consistent score.

Lemma 3.3. [7] BIC is locally consistent.

Proof. See the proof Lemma 7 of Chickering et al. [7]

Without loss of generality, the BIC is used in this thesis as it is a locally consistent score.
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Definition 3.26 (Bayesian Information Criterion (BIC)). [7] Let D be the data set consisting of
m i.i.d. samples from distribution P . The Bayesian Information Criterion (BIC) can be defined
as

SBIC(G,D) = logP (D | θ̂, Gh)− d

2
logm (3.18)

where

• θ̂ denotes the maximum likelihood values for the parameter values that specify all conditional
probability distributions

• d denotes the number of free parameters1 of graph G

• m number of i.i.d. samples from data D

• P (D | θ̂, Gh) maximized value of the likelihood function. Here, the use Gh with h for
hypothesis denotes the assumption that the observed data contains i.i.d. samples from the
distribution P that exactly matches the conditional independence relations i.e. a perfect
map.

The likelihood function often is computed under the assumption that the samples are linear
Gaussian.

3.4 Fast Causal Inference (FCI)

In the application of Causal Factor Investing in this thesis, Fast Causal Inference (FCI), in-
troduced by Sprites et al. [42], is the first of two causal discovery algorithms used. It is an
adaption of the most-studied constraint-based PC algorithm which is named after its inventors
Peter and Clark [42]. The FCI algorithm uses conditional independence tests and extends the
PC algorithm trough relaxing the causal sufficiency assumption (Assumption 2). When omitting
the causal sufficiency assumption the causal structure may not be representable by a DAG or
CPDAG as it is statistically hard problem (see Zhang [48]). Moreover, incorporating the effect of
hidden confounders in a model implies that the graph search space is infinite unless the amount
of hidden confounders is significantly constrained. If the identification of the hidden confounder
themselves is not of main interest, the use of ancestral graphs provides a solution.

It is helpful to understand the concept of the PC algorithm before the FCI algorithm is dis-
cussed in more detail. The goal of the PC algorithm is to learn the causal DAG from observational
data under the causal sufficiency assumption (Assumption 2). The PC algorithm is based on
conditional independence test and therefore it is necessary that causal faithfulness (Assumption
1) and the Markov property hold (Definition 3.11). This leads to a perfect map, Definition 3.21,
of graphical independence in the causal graph trough d-separation and conditional independence
in probability. However, in general, d-separation does not uniquely determine a single DAG G
but a Markov equivalence class [G]. A Markov equivalence class [G] can uniquely be represented
by a Completed Partially Directed Acyclic Graph (CPDAG). The main idea of the PC algorithm
is to test for conditional independence between variables translate this via d-separation into a
causal graph.

The FCI algorithm relaxes the causal sufficiency assumption. Suppose we have a true causal
DAG G over observed and unobserved variables. It is necessary that the causal faithfulness
assumption and the Markov property hold as for the PC algorithm. Through these assumptions,
we obtain a perfect map between conditional independence in probability and graphical indepen-
dence through d-separation of causal DAG G (or its equivalence class). As described in Section
3.2, this DAG G can be probalistically represented by MAG MG on the observed variables.

1A variable that is not determined by the model itself but is left to be assigned (possible optimally)
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This means that there is a correspondence of conditional independence in probability of the ob-
served variables and m-separation of the graphMG. Similar as the PC algorithm, m-separation
relations do not uniquely determine a single MAG, but represent a Markov equivalence class
[MG]. An equivalence class ofMG can be uniquely represented by a PAG (see Definition 3.19).
Therefore, the main idea of FCI is to use conditional independence tests and m-separation to
learn the causal structure of observational data. The complete algorithm is given in Algorithm
1 and a visualization of the FCI algorithm is displayed in Figure 3.8.

We will describe the procedure of FCI in the following sections. In the algorithm AdjacencyG(X)
is the adjacency set of X on the graph G and Sepset(X,Y ) is a set that will contain the set of
vertices that d-separates X and Y . The FCI algorithm consist of three main steps: (1) Skeleton
identification, (2) V-structures determination, (3) and orientation of undirected edges. Following
Zhang et al. [48] we use R as the symbol for a orientation rule. More precisely, the second step
(2) can be seen as the first orientation rule R0. Furthermore we give the complete orientation
rules R1 and R2 in the third step. The remainder of the orientation rules R3 − R10 can be
found the paper of Zhang [48]. Recall that in a PAG we have 3 type of endpoints for an edge:
−, ◦, and >. A ◦ represents an undetermined mark. When stating orientation rules we make use
of an aterisk ∗ meaning it is generic and denotes any of the endpoints.

1. Skeleton Identification (lines 1-12, Algorithm 1)
The algorithm starts with a fully connected graph containing every variable and every edge
◦−◦. Then, with conditional independence tests, it tests for conditional independence in
probability for any pair, say X and Y , on every set S. If, for any S, X is conditionally inde-
pendent of Y given S, S is added to Sepset(X,Y ) (line 7). By the faithfulness assumption
and probabilistic representation by MAGs, conditional independence in probability implies
graphical separation (m-separation). Therefore, if Sepset(X,Y ) is not empty, one removes
the edge X−Y from the original graph (line 8). By repeating this for every pair of vertices,
a skeleton remains.

2. V-structures determination (lines 13-17, Algorithm 1)
In the next step, v-structure identification, as the name suggests, it aims to find and orient
the v-structures (unshielded colliders) which is also referred to as the first orientation rule
R0. This is done on the previously found skeleton using the separations sets. For any triplet
X ◦−◦ Z ◦−◦ Y with X not adjacent to Y , if Z m-separates X and Y via a v-structure
meaning Z /∈ Sepset(X,Y ), orientate the triplet as a v-structure: X∗→ Z ←∗Y .

3. Orientation of undirected edges (lines 18-27, Algorithm 1)
Now it remains to orient the edges. This is done by iteratively repeating orientation rules
R1 − R10 until none of them applies. Orientation rule R1 uses the assumption that all
v-structures have been detected during the previous step. Therefore, orientate triplets in
such a way to avoid new v-structures (line 19-21). Orientation rule R2 is based on the
acyclicity assumption (Assumption 3). So, orient triplets in such a way to avoid cycles
(lines 22-24). Then proceed with the other orientation rules R3 − R10 as in the work of
Zhang [48].
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Algorithm 1 Pseudocode FCI Algorithm. Adaption of PC algorithm from Zhu [49].
Input: A dataset D of the set of observational variables V , and a conditional independence test

method
Output: The graph G
1: Begin with the fully connected partial ancestral graph G on V with edges ◦−◦;
2: n← 0;
3: for Each adjacent pair X ◦−◦ Y with |AdjacencyG(X)\Y | ≥ n or |AdjacencyG(Y )\X| ≥ n

do
4: for Any S ⊆ AdjacencyG(X)\Y ∪ AdjacencyG(Y )\X and |S| = n do
5: Test whether X and Y are conditionally independent given S;
6: if X ⊥⊥ Y | S then
7: Sepset(X,Y )← S;
8: Delete the edge X ◦−◦ Y in G;
9: n← n+ 1;

10: end if
11: end for
12: end for
13: for Each triple of vertices X,Y, Z do
14: if X − Z and Y − Z are adjacent and (X,Y ) are not adjacent in G then
15: Orient X ◦−◦ Z ◦−◦ Y as X∗→ Z ←∗Y if Z /∈ Sepset(X,Y ) [R0: V-structures

Detection];
16: end if
17: end for
18: for Vertices in V (until none of them applies) do
19: if X,Y are not adjacent and X∗→ Z ◦−∗ Y in G then
20: Orient Z ◦−∗ Y as Z → Y [R1: Known Non-V-structures Detection];
21: end if
22: if X∗→ Y → Z or X → Y ∗→ Z, and X ∗−◦ Z then
23: Orient X ∗−◦ Z as X∗→ Y [R2: Cycle Avoidance];
24: end if
25: Apply further orientation rules R3−R10 [48]
26: end for

One can see that the time complexity is exponential, as it depends on the growth of condi-
tioning set S (line 4). To test for conditional independence of any pair (X,Y ), the algorithm
needs to test | 2V/{X,Y } | conditioning sets shown in the article of Zanga et al. [47].

Furthermore, it is of essence to select a good candidate for the conditional independence test
to check for conditional independence (Section 3.3). A frequently used test is the Fisher’s Z
conditional independence test (see Kalisch [27]). Let X, Y be random variables and Z as set of
random variables such that X,Y /∈ Z. The two-sided Fisher’s Z conditional independence test
is used to test the null hypothesis H0 against the alternative hypothesis H1 given by

H0 : ρXY |Z = 0, (3.19)

H1 : ρXY |Z ̸= 0. (3.20)

Here, ρXY |Z is the partial correlation between X and Y given Z. Under the null hypothesis, the
test statistic TFisher follows a standard normal distribution N(0, 1). The TFisher is the Fisher’s Z
statistic is given by

TFisher =
1

2
ln

(
1 + ρ̂XY |Z

1− ρ̂XY |Z

)√
n− |Z| − 3 (3.21)

where ρ̂XY |Z is the sample partial correlation coefficient, n is the sample size, and |Z| is the
number of conditioning variables in Z. The test concludes by comparing the absolute value of
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TFisher to the critical value from the standard normal distribution for the desired significance
level α. In particular, the zero hypothesis H0 will be rejected if

|TFisher| > Φ−1(1− α/2). (3.22)

where Φ the cumulative density function of a standard normal N(0, 1).
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Figure 3.8: Simplified visualization of the FCI algorithm. Adopted from Hossain [19].

3.5 Greedy Equivalence Search (GES)

Different from constraint-based methods, score-based methods rely on an optimization approach.
These methods search over all possible graphs to find the one that best matches the data using
a numerical score. For more information on score-based methods, we refer the reader to Section
3.3.2. Greedy Equivalence Search (GES) is the main algorithm in this category. As the name
suggests, the search strategy of GES is greedy, where it performs a greedy search over the state
space of equivalence classes of DAGs and outputs a CPDAG. A common score function for GES
is the Bayesian Information Criterion (BIC), defined in Definition 3.26.

For the formal details of the GES algorithm, including the formal definition of the operators
used in the algorithm, we refer the reader to the original work of Chickering et al. [7] and Barba
et al. [1]. These formalities include the definitions of the operators Insert and Delete using
neighboring sets. Additionally, by employing Theorem 15 of Chickering et al. [7], they provide
a method to test the validity of the Insert and Delete operators to preserve the equivalence
class through so called consistent extensions.

GES can be divided into three sub-algorithms. The first is the structure of GES itself (Algo-
rithm 2). The other two sub-algorithms are the two steps of GES: Forward Equivalence Search
(FES) (Algorithm 3) and Backward Equivalence Search (BES) (Algorithm 4). The pseudocode
of GES is adopted from Barba et al. [1], with the notation for the equivalence class E changed
to [G] to align with the notation used in this thesis.

GES (Algorithm 2) starts with an empty CPDAG G, i.e., a CPDAG without edges, which
represents an equivalence class [G] (line 2). It then performs the two search strategies: Forward
Equivalence Search (FES) (line 3) and Backward Equivalence Search (BES) (line 4).

1. Forward Equivalence Search (FES) (Algorithm 3)
FES iteratively applies FS([G]) which does the following three things: it gives the edge with
the highest improvement of the score function (line 3), inserts this edge with Apply Insert
(line 4), and converts the new created graph in a CPDAG with the function PDAGtoCPDAG
(line 5). It repeats this procedure until the FS does not return any edge that increase the
score function; it has reached a local maximum.
FS loops greedily over all possible edge additions. It first checks if the Insert operation
is valid with neighbouring set T of Y and definition of clique for which we refer the reader
to Theorem 15 of Chickering et al. [7]. If valid, it computes the increment of the scoring
metric ∆ (line 15) of the newly created subgraph by adding an edge with the Insert
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function. Because the score function is decomposable, the calculation simplifies (Corollary
16, Chickering et al. [7]). It checks if the increment is better than the best increment in
this iteration, and if true it updates the best increment (line 17) and saves the best edge
the edge (line 18).

2. Backward Equivalence Search (BES) (Algorithm 4)
After FES, Backward Equivalence Search (BES) is conducted in similar fashion that greed-
ily deletes edges. The Delete operator is used instead of the Insert operator. Also, Apply
Insert is changed into Apply Delete.

Algorithm 2 GES. Adopted from Barba et al [1].
1: procedure GES
2: [G]← Empty graph G (E = ∅)
3: [G]← FES([G])
4: [G]← BES([G])
5: return [G]
6: end procedure

Algorithm 3 FES. Adopted from Barba et al. [1].

1: procedure FES([G])
2: repeat
3: (X → Y,T) = FS([G])
4: [G] = Apply Insert(X,Y,T) to [G]
5: [G] = PDAGtoCPDAG([G])
6: until (X → Y = null)
7: return [G]
8: end procedure
9:

10: function FS([G])
11: edge← null; best← 0
12: for all X ∈ V do
13: for all Y ∈ V | (Y ̸= X) ∧ Y is not adjacent to X do
14: for all T ⊆ T0 | Test(X → Y,T) = true do
15: Compute ∆ = Insert(X,Y,T)
16: if ∆ > best then
17: best = ∆
18: edge = (X → Y ); subset = T
19: end if
20: end for
21: end for
22: end for
23: return (X → Y,T) = (edge, subset)
24: end function

From FES (Algorithm 2), it holds that time complexity is exponential on the size of set T0

as stated in the article of Barba et al. [1]. Simply stating, it is exponential on the number of
variables (vertices). More precisely, the total number of search states (graphs) found by GES can
never exceed n·(n−1) where n is the number of variables as shown in the article of Chickering [7].
For the interested reader, Chickering [7] shows in his article that GES reaches a local maximum1.

1Chickering [7] shows this by proving a certain conjecture: Meek’s Conjecture.
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Algorithm 4 BES. Adopted from Barba et al. [1].

1: procedure BES([G])
2: repeat
3: (X → Y,H) = BS([G])
4: [G] = Apply Delete(X,Y,T) to [G]
5: [G] = PDAGtoCPDAG([G])
6: until (X → Y = null)
7: return [G]
8: end procedure
9:

10: function BS([G])
11: edge← null; best← 0
12: for all X ∈ V do
13: for all Y ∈ V | (Y ̸= X) ∧ Y is adjacent to X do
14: for all H ⊆ H0 | Test(X → Y,H) = true do
15: Compute ∆ = Delete(X,Y,H)
16: if ∆ > best then
17: best = ∆
18: edge = (X → Y ), subset = H
19: end if
20: end for
21: end for
22: end for
23: return (X → Y,H) = (edge, subset)
24: end function
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Figure 3.9: Visualization of the GES algorithm



4 | Causal Factor Investing

This section contains the details of Causal Factor Investing (CFI) which is novelly developed
in this thesis. The methodology of CFI is constructed generically, such that CFI can be used
for different asset classes under different circumstances. Figure 4.1 presents a simplified visual
representation of Causal Factor Investing. Let us revisit the three steps of CFI:

1. Causal Analysis: Perform causal discovery on factors and returns to obtain causal factors.

2. Empirical asset pricing via machine learning: Predict future returns with machine
learning methods using the causal factors as features. The predicted future returns will
serve as composite signal.

3. Investment strategy: Use the signal, the predicted future returns, to invest and construct
the portfolio.

The experimental setup for causal discovery, using factors and returns, is discussed in Section
4.1. Through the causal structure, we seek to identify causal factors. In Section 4.2, we define
the empirical asset pricing problem via machine learning as an additive prediction error model.
Section 4.3 details the investment strategy, which is an adaptation of the traditional factor
investing strategy. This section also contains the full algorithm of CFI.

Furthermore, we use the same notation as defined in Chapter 2. A factor portfolio is denoted
by F k

t , representing the value (or return) of the factor portfolio at time t, where t ∈ {t0, . . . , T} of
factor k with k ∈ {1, . . . ,K}. A factor score fk

i,t represents the value of the factor characteristic
k of asset i, where i ∈ {1, . . . , I} at time t. The return of asset i at time t is denoted by ri,t.

Causal Analysis

Empirical
Asset Pricing
via Machine

Learning

Investment
strategy

Causal
Factors

Composite
Signal

Figure 4.1: Simplified visual representation of CFI

4.1 Causal Discovery on Factors and Returns

The goal of the causal analysis is to uncover the causal structure of factors and returns using
causal discovery methods. The resulting causal graph will be used to determine the causal factors
used in the second step of CFI: empirical asset pricing via machine learning (see Section 4.2).
In this section, terminology related to causal discovery is frequently used. For further details on
causal discovery, we refer the reader to Chapter 3, which explains the necessary mathematical
preliminaries.
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In Section 4.1.1, we will specify the problem mathematically and discuss potential approaches.
Numerous causal discovery algorithms exist for various types of problems, each employing differ-
ent causal assumptions. The following subsection, Section 4.1.2, provides an overview of possible
causal discovery algorithms for the different approaches. In the final subsection, Section 4.1.3,
we define causal factors and introduce the algorithm used to determine these from the causal
graph.

4.1.1 Setting and Approaches

The causal discovery problem can be defined as recovering true graph G∗ given dataset D. Causal
discovery algorithms can be split into two categories based on the type of data: independent and
identically distributed (i.i.d.) data and time-series data. We propose the following different
mathematical approaches, some of which are based on methods found in literature, to perform
causal discovery on factors and returns.

1. i.i.d. asset samples of factor scores and returns
In this case, the data D is assumed to consist of i.i.d. assets samples. An asset sample has
the form (f1, f2, . . . , fK , r) := (f1

i,t, f
2
i,t, . . . , f

K
i,t , ri,t) for i ∈ {1, . . . , I} and t ∈ {t0, . . . , T}

fixed. The set of vertices V can be defined as

V = (f1, f2, . . . , fK , r). (4.1)

Thus, we consider causal discovery on i.i.d. factor scores and returns of individual assets.

2. i.i.d. asset samples of factor scores and lagged returns
This approach differs from the previous trough one single adaption. Instead of including
the return at time t, the lagged return at time t + 1 is used. The sample is defined as
(f1, f2, . . . , fK , rlagged) := (f1

i,t, f
2
i,t, . . . , f

K
i,t , ri,t+1) for i ∈ {1, . . . , I} and t ∈ {t0, . . . , T−1}

fixed. The set of vertices V is defined as

V = (f1, f2, . . . , fK , rlagged). (4.2)

An argument for this approach is that cause-effect relations are identified between factors
and future returns.

3. i.i.d. samples of factor portfolio and returns with aggregation of graphs
In this case we consider i.i.d. samples. As proposed in the article of Gu et al. [17],
these samples consist of the factor portfolios and asset returns. A single sample from data
D is now defined as (F 1, F 2, . . . , FK , r) := (F 1

t , F
2
t , . . . , F

K
t , ri,t) for i ∈ {1, . . . , I} and

t ∈ {t0, . . . , T} fixed. Here, for i fixed, the amount of samples for a single asset is equal to
the amount of time observations T of this asset. Causal discovery is performed on the set
of vertices

V = (F 1, F 2, . . . , FK , r). (4.3)

Because factor portfolios have equal values a fixed point in time t, causal graphs are derived
for each asset individually. Then, the graphs are aggregated into one graph by assigning
weights to the number of appearances of each directed edge. Directed edges with weights
above a certain threshold are kept in the aggregated graph.

4. Time series of factor portfolios and market return
One can also perform time-series causal discovery on the factor portfolios and market
return rm which is done by D’Acunto et al. [12]. In this case, we have a multi-dimensional
time series object (F 1, F 2, . . . , FK , rm)t := (F 1

t , F
2
t , . . . , F

K
t , rmt ). The set of vertices of the

time-series causal discovery can be defined as

V = (F 1, F 2, . . . , FK , rm). (4.4)
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5. Time series of factor portfolios and asset return
Similar as the previous case, time-series causal discovery can be done on factor portfo-
lios and individual asset return as done by Sadeghi et al. [41]. In our context of fac-
tors and returns, we have a multi-dimensional time series object (F 1, F 2, . . . , FK , r)t :=
(F 1

t , F
2
t , . . . , F

K
t , ri,t) for i ∈ {1, . . . , I} fixed. The set of vertices during time-series causal

discovery for a fixed asset i can be defined as

V = (F 1, F 2, . . . , FK , r). (4.5)

The causal structure of factor portfolios and the return of a single asset can be found. If
one is only interested in a single graph, there exists an option combine graphs of all assets
into one aggregated graph.

6. Time series of factor scores and asset return
Time-series causal discovery can be done on factor scores and individual asset return. In
this case you consider the factor scores as a time series object. In a slightly different context,
considering causal relations of assets returns among themselves, Tang [44] also argue for
multidimensional time-series causal discovery. In our context of factors and returns, we
have a multi-dimensional time series object (f1, f2, . . . , fK , r)t := (f1

i,t, f
2
i,t, . . . , f

K
i,t , ri,t) for

i ∈ {1, . . . , I} fixed. The set of vertices during time-series causal discovery for a fixed asset
i can be defined as

V = (f1, f2, . . . , fK , r). (4.6)

The causal structure of factor scores and a return of single asset can be found. If one is
only interested in a single graph, there exists an option combine graphs of all assets into
one aggregated graph.

One of the goals of CFI is to create a profitable investment strategy. An important argument
using factor scores on individual asset level (approach 1, 2, and 6), is that it aligns with the
next two steps of CFI: empirical asset pricing via machine learning and the investment strategy.
The training of the machine learning models and the investment strategy itself do not consider
factor portfolios, but factor scores of individual assets. The machine learning models, discussed
in Section 4.2, use factor scores as features during training and prediction. The investment
strategy, presented in 4.3, sorts the set of assets on factor scores. Therefore, through approach
1, 2, or 6, we aim to uncover the causal relations of the same variables that are used in the
machine learning models and investment strategy, potentially leading to increased profitability.
If the goal was merely to identify causal relations between factors and returns, factor portfolios
could be of interest as well.

For approach 1 and 2, the use of i.i.d. causal discovery algorithms is necessary and this
results in a single graph. The integration machine learning models can be done creating a single
model using this single graph. For approach 6, time-series causal discovery is required. There are
two options to integrate empirical asset pricing via machine learning. First, a single graph can
be created trough aggregation of graphs of individual assets over time. This aggregated graph
is used to create a single machine learning model. The second option is to use each individual
graph, corresponding to a single asset, to create machine learning model for each specific asset as
done by Tang [44]. For more advanced machine learning models, the training time will increase
drastically as you will have to train as many models as there are assets.

When choosing between approach 1 and 2, we would argue for approach 2 as this captures
the causal relations between the factor scores and the future returns. This aligns well with the
other two steps of FCI. Namely, the machine learning models are trained to predict the future
(lagged) returns and the investment strategy uses these predicted future (lagged) returns.
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4.1.2 Causal Discovery Algorithms

As discussed in the previous section, there are different causal discovery approaches. Besides the
approach, different causal discovery algorithms are available. There is no universally optimal
causal discovery algorithm for every dataset. Causal discovery algorithms have been tested on
synthetic datasets where the underlying data-generating process is known, and different algo-
rithms performed better on different synthetic datasets (see Hossain et al. [19]).

Causal discovery algorithms are also tested on real datasets where the true causal graph
remains unknown (see Hossain et al. [19], Nogueira et al. [34] and Morrafah et al. [33]).
Depending on the chosen approach, as discussed in the previous subsection, either an i.i.d. or
time-series causal discovery algorithm can be considered. For both types of data, a wide range of
methods from different categories exists, as shown in Figure 4.2 for i.i.d. data and Figure 4.3 for
time-series data. The most researched methods are constraint-based and score-based methods.

i.i.d.
Causal Discovery Algorithms

Constraint-based Score-based Functional Causal
Model-based

Continuous
Optimization-based

Prior
Knowledge-based

PC
FCI
Anytime FCI
RFCI
RRCD

GES
FGS
SGES
RL-BIC
Triplet A*

LiNGAM
DirectLiNGAM
SAM
CGNN
ANM

NOTEARS
DAG-GNN
GraN-DAG
GOLEM
GAE
CAREFL
ENCO
CORL

C-MCMC
PKCL
Kg2Causal
JCI
CAMML
KCRL

Figure 4.2: A collection of i.i.d. causal discovery methods. Adopted from Hossain et al. [19].

Time-series
Causal Discovery Algorithms

Granger
Causality-based Constraint-based Functional Causal

Model-based
Continuous

Optimization-based
Miscellaneous
approaches

GVAR
NAVAR

PCMCI
tsFCI
CD-NOD

VarLiNGAM
TiMINO

DYNOTEARS
NTS-NOTEARS

ACD
PCTMI
oCSE

Figure 4.3: A collection of time-series causal discovery methods. Adopted from Hossain et al.
[19].

Each causal discovery algorithms use certain assumptions which are discussed in Chapter
3. In the context of financial data, there may other unobserved variables that influence factors
and/or returns. Therefore, some researchers aim to relax the causal sufficiency assumption
(Assumption 2). For example, Sadeghi et al. [41] use time-series causal discovery method CD-
NOTS, an adaption of CDNOD, to obtain the causal structure of factor portfolios and returns
(approach 5). Here, they assume causal sufficiency by including a the variable of time in the
set of vertices V . Tang [44] uses Fast Causal Inference time series (tsFCI), derived from FCI,
performing causal discovery on time-series data of stocks, which allows hidden confounders due
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to the use of partial ancestral graphs (variation of approach 4-5 using only stock data).
Some researchers incorporate the causal sufficiency assumptions. Gu et al. [17] use the an

algorithm of three categories: PC for constraint-based, Greedy Equivalence Search (GES) for
score-based, and LiNGAM for functional causal model-based. All of these algorithms do not
allow for hidden confounders. D’Acunto et al. [12] use a time-series approach using causal
sufficient VAR-LiNGAM on equity risk factor portfolios and market return (approach 4).

Depending on the amount size of the variable set or the number of causal discovery procedures,
time complexity plays an important role. For high dimensional data, causal discovery algorithm
can have high computational time. However during past two decades some of these algorithms
also have been improved on computational time. For instance, Really Fast Causal Inference
(RFCI) is an adaption of the Fast Causal Inference (FCI) algorithm improving computational
time. When the amount of variables of the vertex set remains small, computational complexity
is often not a problem.

4.1.3 Causal Factor Selection Algorithm

In this section we discuss the interpretation of the causal graph. With knowledge of the causal
graph, colliders and confounders (see Section 3.1) can be identified. Excluding colliders and
including observed confounders to your investing strategy could lead to improved performance.
The graph, outputted by causal discovery, determines the input variables (features) for the second
step of causal factor investing: empirical asset pricing via machine learning.

For this thesis, let us newly define a causal factor and direct causal factor. Both definition
variations include possible confounders (not hidden) and exclude possible colliders.

Definition 4.1 (Causal Factor). Let F ∈ V be a factor and R ∈ V the future return. Let and
G be a causal graph recovered by a causal discovery algorithm. Then, F is a causal factor if there
exists a possible directed path π from F to R

Definition 4.2 (Direct Causal Factor). Let F ∈ V be a factor and R ∈ V the future return.
Let and G be a causal graph recovered by a causal discovery algorithm. Then, F is a direct causal
factor if F is a possible parent of R i.e. F ∈ Pa(R)

The word possible is used because causal graphs can have possible directed paths through
undirected edges of which the orientation is not derived through the causal discovery algorithm.
This is because several causal discovery algorithms output graphs represented by other graphical
representation than a DAG such as an CPDAG or a PAG.

Let us denote the set of causal factors as F causal. Note that any direct causal factor is
automatically a causal factor. Recall that due to the local Markov property (Definition 3.11)
each variable is independent in probability of its non-descendants given its parents. That is,

F 2 ⊥P R | F 1 (4.7)

where factor F 1 is a parent of the return R and factor F 2 is a non-descendant. This can be
expressed by a visual example as in Figure 4.4.

F 2 F 1 R F 3

Figure 4.4: Example graph to illustrate local Markov property

In this figure F 2 is causal factor of R and F 1 is a direct causal factor of R. By the local
Markov property it holds that F 2 has no causal effect on R if F 1 is known because the effect of
F 2 on R is conveyed in F 1. Therefore, in theory, the definition of direct causal factor suffices
to obtain all factors that effect the returns. However, in real-world problems, there could exist
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noise and/or there could be an effect of a causal factor on the return that is unmeasured by the
causal discovery algorithm. It is still interesting to use the definition of causal factors as it still
includes confounders and excluded colliders. In the application of this thesis, both definitions
are tested numerically trough backtests.

As the factor selection from graphs is new, we propose a simple approach causal factor
selection (Algorithm 5) that relies on (direct) causal factors.

Algorithm 5 (Direct) Causal Factor Selection

Input: Causal graph G = (V ,E)
1: if There are no (direct) causal factors then
2: return all factors F ⊂ V
3: end if
4: return (Direct) causal factors F causal ⊂ V

Later in this thesis, we will introduce an expanding window and moving window (see Section
4.2.2). Using such a window format, causal discovery is performed for multiple periods and is
integrated with machine learning and the investment strategy. Therefore, in absence of causal
factors, we return all factors F such that the investment strategy can continue. We are aware
that omitting the causal graph is not preferred. If there are no (direct) causal factors, it suggests
that the casual discovery algorithm did not find the correct graph. However, in absence of better
solutions we resolve to this algorithm.

We demonstrate the Causal Factor Selection algorithm on an example graph in Figure 4.5
where R is the return. In this graph various possible directed paths are observed from factors to
future returns: (F 1 → ...→ R), (F 2 → ...→ R), (F 3 → ...→ R) and (F 4 → ...→ R). However,
there does not exist a directed path from (F 5 → ... → R) such that F 1, F 2, F 3, F 4 are causal
factors and F 5 is not. The direct causal factors are the parents of R which are F 3 and F 4.

F 1 F 2

F 3

F 4

F 5 R

Figure 4.5: Example graph to illustrate (Direct) Causal Selection Algorithm
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4.2 Empirical Asset Pricing via Machine Learning

The second component of the Causal Factor Investing (CFI) consists of the use of machine
learning methods to price future asset returns in the cross section. In literature this is often
referred to as empirical asset pricing via machine learning. For CFI to be causal, the features
used in the machine learning are causal factors obtained via causal discovery algorithms. The
output of empirical asset pricing, the predicted future return, will serve as a composite signal for
the investment strategy of CFI.

In Section 4.2.1 the setup of the empirical asset pricing is explained and formulated math-
ematically. In the following section (Section 4.2.2) we elaborate on hyperparameter tuning.
Section 4.2.3 is the final subsection in which we elaborate on the performance evaluation of
machine learning methods.

4.2.1 Setting and Mathematical Formulation

Simply stating, the goal is to accurately predict future returns using a causal factors as features.
In literature, empirical asset pricing is often done on a feature set of numerous characteristics
instead of just factors as done by Gu et al. [18], Coqueret et al. [9], and Mansouri et al. [30].
Sometimes, available characteristics are assigned to a certain factor category as done by Mansouri
et al. [30]. It could be possible to extend causal factor investing to causal characteristic investing.
However, factors are seen as drivers, based on economic arguments, of cross-sectional returns.
Causal relations seem more intuitive and explainable on such a set than on a large set of all
available characteristics. In addition, due to the high dimensionality, the computational time of
machine learning methods will be longer.

Let us define r as the return which we refer to as the target variable, z the set of features,
and ϵ the error. The set of features z consists causal factor scores of an asset. That is, ∀f

zi,t = (f1, f2, . . . , fL)i,t where f ∈ F causal (4.8)

It is important to note that the features zi,t are (direct) causal factor scores even if causal
discovery with factor portfolios is used. Otherwise, using factor portfolios as features, every
asset at a certain time point has the same features which is undesirable.

We can describe the future return of an asset as additive prediction error model as proposed
by Gu et al. [18]. We have

ri,t+1 = Et[ri,t+1] + ϵi,t+1 (4.9)

where

Et[ri,t+1] = g(zi,t). (4.10)

Here, assets are indexed with i and time with t. The goal is to find a representation of
Et[ri,t+1] as a function of features zi,t to maximize the out-of-sample performance for predicted
future returns r̂i,t+1. That is, we try to find g(zi,t), a function of features, that minimizes the
error ϵ. Note that the function g is defined in such a way that it neither dependent on i or t
such that it has the same form over time and for all assets. This means that assets observations
are considered in this form. In addition, the function g uses features zi,t which implies that the
function g does not rely on features prior to time t nor on other assets j in the cross section.

Through different machine learning methods, we can approximate the expression g. Machine
learning methods are suitable tools to address this problem as they have high predictive power,
capture non-linear relations, and perform well out-of-sample if constructed thoughtfully taking
overfitting into consideration.
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4.2.2 Hyperparameter Tuning

It is important think about how choose subsamples of your dataset for training and testing.
Furthermore, the selection of hyperparameters for the machine learning model is critical. Hyper-
parameters are parameters used for tuning the model; they allow to control the learning process
and overfitting.

By regularly refitting a machine learning model it can incorporate most recent developments
and have higher predictive power for future predictions. We propose a common approach, as
done by Gu et al. [18]. For each time window, split the the data into three distinct time
periods. The first period T1 is the training phase where we train the model with different
hyperparameter combinations. The subsequent period T2 is used to validate the for tuning
the hyperparameters. That is, we search for the optimal hyperparameters such that objective
function, based on prediction forecast, has the lowest loss on the validation set. A frequently
used objective function is the Mean Squared Error (MSE) which is also used the evaluate the
performance of machine learning methods and is discussed in the next section. Then, the model
is trained again on the combined set T1 ∪ T2 with the optimal hyperparameters found in the
previous step. The remaining segment is used as the testing period T3 where we evaluate the
out-of-sample performance with the optimal hyperparameters.

After this procedure, we move the window forward in time by ∆t and repeat the process.
The entire training period T1 can be moved forward which preserves the length of the window.
This approach is referred to as moving window. It is also possible to move only the end of the
training period by ∆t, allowing the training period to gradually expand as the window moves
forward. This approach is referred to as the expanding window.

During backtesting, T3 is used as the testing period. However, portfolio managers can adopt
this strategy real-time, utilizing the machine learning model to forecast returns in the future
period T3 for their investments.

4.2.3 Performance Evaluation of Machine Learning Methods

The performance of the machine learning methods is evaluated by out-of-sample test. That is,
we analyse the performance of the methods in T3. One of the most intuitive evaluation methods
is to inspect the error. This is done by computing the Mean Squared Error (MSE).

Definition 4.3 (Mean Squarred Error).

MSE =
1

N

∑
(i,t)∈T3

(ri,t+1 − r̂i,t+1)
2 (4.11)

In this case, N is the number of total asset observations (and predictions) in all test sets T3.
Besides the MSE, following Gu et al. [18], the out-of-sample R-squared (R2

OOS) is used and is
defined below.

Definition 4.4 (R2 Out-of-sample). [18]

R2
OOS = 1−

∑
(i,t)∈T3

(ri,t+1 − r̂i,t+1)
2∑

(i,t)∈T3
r2i,t+1

. (4.12)

The R2
OOS statistic is a crucial measure in evaluating the performance of predictive models.

It represents the proportion of the variance in the dependent variable that is predictable from
the independent variables, assessed using data of test set T3. This statistic provides a clear
indication of how well the model generalizes to new, unseen data. A higher, close to one, R2

OOS

value signifies a model that more accurately captures the underlying relationships in the data. A
subtle change of this R2

OOS metric, compared to the original definition, is that the denominator
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is the sum of the squared excess return without demeaning. That is, we compare the predictive
performance against the naive zero forecast value as done by Gu et al. [18] and Mansouri et al.
[30].

4.3 Investment strategy

In the previous two steps we have identified (direct) causal factors and these (direct) causal factors
are used to generate a machine learning signal. The last step of CFI contains the investment
strategy itself. The traditional factor investing strategy, as discussed in Chapter 2, is slightly
changed. Instead of sorting the set of financial instruments on a factor F , the set of assets is
sorted on the predicted future returns r̂t+1. The investment strategy is now given as follows:

1. Sort the assets on predicted future return r̂t+1 at t

2. Long the top x % of assets and short the bottom x % of asset in your portfolio P

3. Repeat the process at t+ 1 through rebalancing portfolio P

Combining the three components, we present the full procedure of CFI in pseudocode given
by Algorithm 6 .

Algorithm 6 Causal Factor Investing
Input: Set of assets, Machine learning method, Causal discovery algorithm, Factors of interest

F , Period ∆t, End time T , Initial window W0 = [T1, T2, T3]
Output: Portfolio PT

1: W ←W0

2: while T3 ≤ T do
3: Use causal discovery algorithm on F and returns r for combined training and validation

period T1 ∪ T2 to obtain graph G
4: Obtain (direct) causal factors F causal from graph G using Algorithm 5 (Direct) Causal

Factor Selection
5: Train machine learning model on T1 with features F causal and the future returns of the

assets as target variable
6: Hyperparameter tuning on validation period T2

7: Train machine learning model on T1 ∪ T2 with optimal hyperparameters
8: for t ∈ T3 do
9: Predict future returns r̂t+1 at time t with fitted machine learning method

10: Sort set of assets on r̂t+1 at time t
11: Rebalance portfolio P by taking long position in top assets and optionally a short

position in bottom assets
12: t← t+ 1
13: end for
14: W ←W +∆t
15: end while



5 | Application of Causal Factor Invest-
ing in the Corporate Bond Market

In this chapter fit CFI to the application of this thesis: the European credit market. We will
resort to five credit factors: size, value, momentum, low-risk, and carry. The motivation and
specification of these factors can be found in Section 2.2.2. The numerical results of CFI, obtained
via backtesting, of are stated in the next Chapter.

5.1 Causal Discovery on Credit Factors and Bond Returns

Approach

In Section 4.1 we discussed several approahes to perform causal discovery. We favoured causal
discovery approach 1,2, or 6:

• 1. i.i.d. asset samples of factor scores and returns,

• 2. i.i.d. asset samples of factor scores and lagged returns,

• 6. Time series of factor scores and asset returns.

In the application of this thesis we will not use a time-series approach (approach 6) because
of the following two reasons:

1. This thesis focuses on the corporate bond market. Bonds can reach expiry over time,
meaning they disappear from the market, while new bonds can be issued at any time.
This dynamic makes it difficult to perform time-series causal discovery for CFI. In CFI,
causal discovery is performed for a fixed period. Time-series causal discovery would require
omitting bonds that are issued or expire during this period, leading to incomplete data.
Bonds with shorter lifetimes than the fixed period would never be included.

2. In the application of this thesis, we use monthly data. Using time-series causal discovery
would result in fewer samples per bond. For instance, running causal discovery algorithms
over a 5-year period yields only 60 observations, which is undesirable for many algorithms.

Because of the two arguments above we do not use time-series causal discovery and we resort
to i.i.d causal discovery, approach 1 or 2, in the application of this thesis. As argued in Section
4.1 we prefer approach 2 over approach 1 as it aligns with the next steps of CFI. Therefore,
we will use approach 2 in our numerical experiments. More specifically, we use bond samples
(sizi,t, vali,t, lri,t,momi,t, cari,t, r

lagged
i,t+1 ) where i ∈ {1, . . . , I} and t ∈ {t0, . . . , T − 1} fixed. Our

set of vertices for causal discovery contains factor scores and lagged returns:

V = (siz, val, lr,mom, car, rlagged). (5.1)

The numerical results of causal discovery can be found in Section 6.2.
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Causal Discovery Algorithms in the Corporate Bond Market

To the best of our knowledge, this thesis is the first1 to apply causal discovery on factors and
returns within an investment strategy. We consider the two most researched categories in i.i.d.
causal discovery: constraint-based and score-based methods.

As explained in Section 4.1, we aim to relax the causal sufficiency assumption due to the use
of financial data. For constraint-based methods, we utilize Fast Causal Inference (FCI), which
is an adaptation of the PC method. FCI relaxes the causal sufficiency assumption and performs
well with large samples, as highlighted in the survey by Hossain et al. [19].

For score-based methods, the most popular method is Greedy Equivalence Search (GES). In
contrast to FCI, GES requires the causal sufficiency assumption. To the best of our knowledge,
there are no score-based methods that relax the causal sufficiency assumption. Score-based
methods search over the equivalence space of all possible Directed Acyclic Graphs (DAGs) to
find the graph that best explains the data using a score function. Due to the optimization-based
nature of score-based methods, we believe GES provides valuable information in the form of a
causal graph even though it does not allow hidden confounders.

Recall from Chapter 4 that causal discovery and fitting machine learning models are per-
formed iteratively on the union of the training and validation set T1 ∪ T2. During causal dis-
covery, the (direct) causal factor scores are normalized by uniformization to the [0, 1] interval.
This normalization is necessary because the same set T1 ∪ T2 is also normalized in the next step
of CFI. This is done because fitting machine learning methods require normalized features, as
done by Gu et al. [18]. Moreover, this normalization reduces the effect of outliers during causal
discovery.

The results of the causal analysis can be found in Section 6.2. Here we state the (direct)
causal factors that obtained trough causal discovery for each period. The graphs itself are given
in Appendix B.

5.2 Empirical Pricing of Bonds Returns via Machine Learning

Recall from Section 4.2 that our goal is to accurately predict future returns using causal factors.
In the application of this thesis, the target variable ri,t+1 is defined as the month-ahead excess
bond return:

ri,t+1 := rexcess return
i,t+1 . (5.2)

In the corporate bond market, the search for factors that explain the cross-section of returns
has resulted in a variety of candidates, which we have narrowed down to five credit factors (see
Chapter 2). In this thesis, we will use the factors size, value, low-risk, momentum, and carry.
The factors that are causal (see Definitions 4.1 and 4.2) are used as features in the machine
learning models. If all factors are causal, we can define the feature vector zi,t as

zi,t := (sizi,t, vali,t, lri,t,momi,t, cari,t). (5.3)

Note that the composition of zi,t may change depending on the causal factors identified through
causal discovery in the previous step of CFI.

We will focus on three popular machine learning methods from three different categories.
The three methods are

1. Ordinary Least Squares (OLS),

2. XGBoost2 (XGB) ,

1Tang [44] also uses causal discovery for an investment/trading strategy, but focuses on stocks among them-
selves.

2See Chen et al. [5]
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3. Neural Networks (NN).

To evaluate effect of causal factors, we will also train the machine learning models using all factor
regardless of the causal analysis as comparison which we will refer to as regular. Next, we aim to
obtain feasible graphs via two causal discovery methods FCI and GES. For both causal discovery
methods, we can obtain direct causal factors and causal factors. Thus, for each machine learning
method, we aim to research five variations of CFI via backtesting:

1. Regular: Includes all available factors scores for each year as features,

2. FCI: Includes causal factors for each year as features obtained with FCI,

3. FCI-Direct: Includes direct causal factors for each year as features obtained with FCI,

4. GES: Includes causal factors for each year as features obtained with GES,

5. GES-Direct: Includes direct causal factors for each year as features obtained with GES.

In total we seek to predict the month-ahead returns with 15 different machine learning models.
The results, the predictive performance of the machine learning models, are stated in Section
6.3.

As done by Coqueret et al. [9] and Gu et al. [18], it is common practice to scale features
before using them in machine learning methods such as neural networks, as this leads to faster
convergence. We follow Coqueret et al. [9], who use uniformization of the features within
the [0,1] interval. At each point in time, each feature is uniformized across the cross-section
of bonds in that specific month. They argue that it is important to scale features separately
for each month and feature, resulting in scaled features that reflect information within each
cross-section. This aligns with the investment strategy, where bonds are selected based on cross-
sectional information. Furthermore, we have also normalized the target variable during the
training periods.

Following Gu et al. [18], we employed an expanding window with the following specifications
to fit our dataset:

• T1: 5-13 years,

• T2: 1 year,

• T3: 1 year,

• Period ∆t: 1 year.

Due to the size of our dataset, the first training period spans from 2009 to 2012, with the
first validation period occurring in 2013. Therefore, we evaluate the total predictive performance
from 2014 to 2023. In addition to the expanding window, we also applied a moving window,
with the results included in Appendix C.

We now briefly introduce the three aforementioned machine learning methods and state the
choice of possible hyperparameters and architecture in the case of neural networks. For each
hyperparameter of interest, a range of possible values is chosen, which can be optimized during
the hyperparameter tuning process (see Section 4.2.2). The architecture of a neural network
refers to its structural design, including the number of layers, the number of neurons in each
layer, and their connections, which together determine how the network processes input data to
produce output.

Ordinary Least Squares (OLS)

OLS is the simplest form of a linear regression method (see Appendix A.1). For this method,
there do not exist hyperparameters. OLS is included as a simple machine learning method to
compare with the more advanced machine learning methods.
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XGBoost (XGB)

XGB is one of the most popular tree-based machine learning methods. The mathematical con-
cepts of tree-based machine learning methods can be found in Appendix A.2. Common hyper-
parameters for XGBoost are the learning rate, the number of trees, and the maximum depth of
the trees. The range for the hyperparameters of XGBoost used in this thesis can be found in
Table 5.1 and include commonly used values.

Table 5.1: Hyperparameters XGBoost

Learning rate {0.01, 0.1}
Maximum depth {3, 5}
# of trees {100, 200, 500}

Neural Network (NN)

A neural networks (see Appendix A.3) are considered to be a very powerful machine learning
method. We argue that we do not need a deep neural network with many hidden layers. Deeper
neural networks often used for very complex tasks including many features. Also, a shallow neural
network is more intuitive, and therefore explainable, than a deep neural network. This aligns
with our goal to produce an explainable factor investing model. Therefore, a simple architecture
for is proposed in this thesis: a shallow feed forward neural network with 1 hidden layer consisting
of 8 perceptrons. The complete overview of hyperparameters of the neural network can be found
in Table 5.2 and includes common values. The learning rate is low to prevent possible overfitting.

Table 5.2: Hyperparameters Neural Network

Learning rate 0.001
Epochs 100
Batch size 64
Patience 10
Activation function ReLu
Optimizer Adam

5.3 Investing Strategy in the Credit Market

The investment strategy for CFI uses predicted future returns as a composite signal. In our
context, we use predicted month-ahead excess bond returns as the future returns. Therefore, the
investment strategy has the following form:

1. Sort the corporate bonds based on predicted month-ahead excess returns r̂t+1 at month t,

2. Long on the top 10% of assets,

3. Repeat the process in the next month (t+ 1) by rebalancing the portfolio P .

Without loss of generality, we resort to the following parameters for the investment strategy.
A standard value of 10% is used for rebalancing the portfolio. We choose a long-only portfolio due
to liquidity constraints or client constraints from an asset managers perspective. Furthermore,
we used equal weighting in the construction of the portfolio. Since our data is monthly, we use
an investment horizon of one month, meaning we rebalance the portfolio every month.
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The numerical results of backtesting traditional factor investing and CFI are presented in
Sections 6.1 and 6.4, respectively. Portfolios are evaluated using the portfolio metrics discussed
in Section 2.2.3.

For the traditional factor investing strategy, we also present a decile analysis, as done by
Slimane et al. [3]. A factor portfolio consists of assets with the highest factor scores, as described
in Section 2.1. It is also possible to create portfolios of assets that do not have the highest factor
scores. In the decile analysis, we construct 10 portfolios using the following steps:

1. Sort the assets based on the factor score f at time t,

2. Divide the set into 10 deciles D1, . . . , D10, and take a long position in these deciles to create
decile portfolios P1, . . . , P10,

3. Repeat the process at time t+ 1 by rebalancing portfolios D1, . . . , D10.

The decile analysis functions as an intuitive method to compare the performance of different
decile portfolios. Based on factor investing literature, we expect the first decile portfolio, which
contains the bonds with the highest factor scores, to outperform the other deciles in terms of
return.
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This chapter presents the numerical results of backtesting Causal Factor Investing (CFI) in the
European investment-grade credit market using an expanding window. All of the numerical
results in this chapter do not consider transaction costs nor the feasibility of executing trades.
Backtesting simulates the real-time execution of CFI using historical data, without knowledge
of the true future values. In Appendix C, we provide the results of CFI employing a moving
window. According to the experiments, the expanding window yields slightly better results
compared to the moving window. Recall that we use the Markit IBoxx Euro Corporate Senior
Index, introduced in Section 1.3, as the benchmark to compare the numerical results. We will
refer to this index simply as the benchmark. To evaluate the portfolios we use the portfolio
evaluation metrics introduced in Section 2.2.3. The portfolio metrics are duration, Z-spread,
time to maturity (TTM), Rating, and the information ratio (IR).

Section 6.1 presents the results of traditional factor investing. The outcomes of the first step
of CFI, the (direct) causal factors obtained, are stated in Section 6.2. Next, Section 6.3 contains
the results of the second step of CFI: predicting future bond prices using machine learning
methods. The third step of CFI is the investment strategy in which portfolios are constructed.
The portfolio metrics are presented in Section 6.4.

6.1 Traditional Factor Investing

This section contains results of traditional factor investing. Section 6.1.1 provides an intuitive
decile analysis of the five traditional factor portfolios. The portfolio performance of traditional
factor investing is given in the next section (Section 6.1.2).

6.1.1 Decile Analysis

We will present the figures of the decile analysis for the five factors: carry, momentum, size,
low-risk, and value. These figures will include the mean excess return of all decile portfolios, as
well as the mean excess return of the benchmark, which is displayed as a red dashed line.

Carry

The results of the decile analysis for the carry factor are displayed in Figure 6.1a. The first decile
clearly outperforms last decile portfolio. Bonds with high carry will generally have higher excess
returns due to their higher risk profile. The last decile portfolio has a very weak performance.
The decile analysis suggest that the carry factor is an important factor to consider.

Momentum

The results of the decile analysis for the momentum factor are displayed in Figure 6.1b. The
last decile portfolio of the momentum factor stands out. It has a higher excess return than the
benchmark and outperforms the first decile portfolio significantly. This suggest bonds that have
been underperforming in the last six months, tend generate higher excess returns in the (lagged)
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month afterwards. The first decile surprisingly does not outperform the benchmark. Slimane
et al. [3] also observe high returns of bonds with low momentum factor scores. They use the
definition amended momentum to deal with high returns of low momentum decile portfolios (see
Section 2.2.2).

Size

The results of the decile analysis for the size factor are displayed in Figure 6.1c. Here, the
first and the last few decile portfolios outperform the benchmark minimally. We do not have
convincing evidence that the first factor portfolio outperforms the last decile portfolio.

Low-Risk

The results of the decile analysis for the low-risk factor are displayed in Figure 6.1d. Here, we
added the IR (Section 2.2.3) for each decile portfolio as a black line to visualize the risk measure
in this context. The IR should be higher for the low deciles and lower for the higher deciles.
Indeed, the IR is high for the lower deciles, but also for the higher deciles. The high IR for low
deciles can be explained by the low standard deviation of the excess return over time. The high
IR for the higher deciles can be explained by their high returns with respect to the standard
deviation.

When observing the mean excess return, it can be seen that the first decile underperforms
the benchmark significantly. It seems that the low-risk bonds (decile 1), do not bring higher
excess returns, but are less risky. The high returns of the 10th decile can be explained through
the fact that riskier bonds generate higher excess returns.

Value

The results of the decile analysis for the value factor are displayed in Figure 6.1e. The results
show that the the first decile portfolio outperforms the last decile portfolio. It suggests that
there is a value factor premium in our the European credit market.
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Carry
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(b) Decile Factor Portfolio Excess Perfor-
mance: Momentum
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(c) Decile Factor Portfolio Excess Performance:
Size
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(d) Decile Factor Portfolio Excess Perfor-
mance: Low-risk
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Figure 6.1: Decile Factor Portfolio Excess Performance for Various Factors
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6.1.2 Portfolio performance

In Figure 6.2 the cumulative excess returns are plotted. From this figure it is clear that the carry
portfolio has the highest cumulative excess return. Table 6.1 shows the portfolio metrics, as a
monthly mean, of the five factor portfolios.
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Figure 6.2: Cumulative Total Returns of Factor Portfolios

Table 6.1: Traditional Factor Portfolio Performance

Method Return1 (%) Duration Z-spread TTM Rating IR

Carry 0.19 6.89 172.67 8.03 3.89 0.10
Momentum 0.06 6.65 90.92 7.62 3.60 -0.01
Size 0.08 4.44 98.12 4.85 3.62 0.05
Low-risk 0.03 1.71 26.97 1.75 2.78 -0.05
Value 0.10 4.25 112.51 4.66 3.18 0.09
benchmark 0.07 5.06 73.84 5.58 3.38 nan

Recognized by the positive IR and high excess return, the factor portfolios that outperform
the benchmark are carry, size, and value. The negative IR of the momentum and low-risk
portfolios implies underperformance compared to the benchmark. However, the risk metrics of
all the portfolios differ from the benchmark. Depending on the risk-return profile or appetite,
different portfolios may be of interest.

For example, let us evaluate the risk characteristics of the factor portfolio with the highest
return: the carry portfolio. Bonds with high carry score are often riskier such that they generate
higher returns. Indeed, the carry portfolio incorporates bonds with a TTM over 8 years, whereas
the TTM of the benchmark is 5.58 years. The numerical rating the carry portfolio is 3.89, which
is significantly higher than the benchmark rating of 3.38, indicating that the portfolio consists
almost entirely of BBB-rated bonds, reflecting lower creditworthiness. Additionally, the duration
of the carry portfolio is higher, implying that this portfolio is more sensitive to price changes
and therefore riskier.

1Monthly average excess return over LIBOR
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It is interesting to note that several risk metrics of the value portfolio are lower than those
of the benchmark. This indicates that the value portfolio is less risky than the benchmark while
still delivering a higher excess return.

6.2 Causal Analysis

In this section, we present the results from the causal discovery on factors and returns using FCI
and GES. As described in Section 5.1, the causal analysis is performed on the factor scores and
the month-ahead returns over the time periods T1 ∪ T2.

Causal factors and direct causal factors, as defined in Definitions 4.1 and 4.2, are selected via
Algorithm 5 from the obtained causal graphs. We will present the causal factors as well as the
direct causal factors for both FCI and GES. All causal graphs, from which the causal factors are
derived, are included in Appendix B.

There are certain years where the results of the causal analysis cannot be used due to a lack
of sufficient causal factors. When no directed path exists from any factor to the return variable,
there are no causal factors. Years without causal factors are highlighted in bold text. In such
cases, the causal graph is omitted, and all five factors are included as features in the machine
learning methods.

6.2.1 Fast Causal Inference (FCI)

The causal factors and direct causal factors, obtained via FCI, are stated in Table 6.2.

Table 6.2: (Direct) Causal Factors obtained from FCI

Period Causal Factors

2009-2013 (siz, val, lr,mom, car)
2009-2014 (car)
2009-2015 (car)
2009-2016 (siz, val, lr,mom, car)
2009-2017 (siz, val, lr,mom, car)
2009-2018 (siz, val, lr, car)
2009-2019 (lr)
2009-2020 (siz, val, lr,mom, car)
2009-2021 (siz, val, lr,mom, car)
2009-2022 (siz, val, lr,mom, car)

Period Direct Causal Factors

2009-2013 (siz, val, lr,mom, car)
2009-2014 (car)
2009-2015 (car)
2009-2016 (siz, val, lr,mom, car)
2009-2017 (siz, val, lr,mom, car)
2009-2018 (lr, car)
2009-2019 (lr)
2009-2020 (siz, val, lr,mom, car)
2009-2021 (siz, val, lr,mom, car)
2009-2022 (siz, val, lr,mom, car)

There are six periods where FCI did not find sufficient causal factors. This could suggest
that the causal graph was inaccurate or that other latent factors are influencing the month-ahead
returns. Since only four periods identified (direct) causal factors, we will not use FCI in CFI.

6.2.2 Greedy Equivalence Search (GES)

The causal factors and direct causal factors, obtained via GES, are stated in Table 6.3.
We observe that for all time periods, GES was able to obtain causal factors. Therefore,

we will use the causal factors and direct causal factors identified via GES for CFI, rather than
those obtained through FCI. From Table 6.3 we can see that there is always a minimum of two
(direct) causal factors: momentum and carry. The size factor is the most frequently omitted
causal factor. Regarding the direct causal factors, we find that momentum and carry are present
every period. Additionally, for the periods (2009-2018) and (2009-2019), the low-risk factor is
also included as a direct causal factor.
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Table 6.3: (Direct) Causal Factors obtained from GES

Period Causal Factors

2009-2013 (siz, val, lr,mom, car)
2009-2014 (val, lr,mom, car)
2009-2015 (siz, val, lr,mom, car)
2009-2016 (siz, val, lr,mom, car)
2009-2017 (siz, val, lr,mom, car)
2009-2018 (val, lr,mom, car)
2009-2019 (val, lr,mom, car)
2009-2020 (val, lr,mom, car)
2009-2021 (siz, val, lr,mom, car)
2009-2022 (mom, car)

Period Direct Causal Factors

2009-2013 (mom, car)
2009-2014 (mom, car)
2009-2015 (mom, car)
2009-2016 (mom, car)
2009-2017 (mom, car)
2009-2018 (lr,mom, car)
2009-2019 (lr,mom, car)
2009-2020 (mom, car)
2009-2021 (mom, car)
2009-2022 (mom, car)

6.3 Empirical Asset Pricing via Machine Learning

In this section we will present the results of the prediction of month-ahead excess returns of
bonds via machine learning methods. For the methodology we refer the reader to Section 5.2.
We will compare the performance of the three different machine learning methods OLS, XGB,
and NN. For each of these machine learning methods, the month-ahead returns are predicted
with three sets of features:

1. Regular: Includes all available factors scores for each year as features

2. GES: Includes causal factors for each year as features obtained with GES

3. GES-Direct: Includes direct causal factors for each year as features obtained with GES

Note that, in total, we will consider 9 machine learning models instead of the initial 15 models.
This is due to insufficient causal factors obtained with FCI (see Section 6.2). The results are
stated in Table 6.4.

Table 6.4: Performance of machine learning methods on the prediction of month-ahead bond
returns

Model Factors R2
OOS MSE

OLS Regular -0.0033 2.0323E-04
OLS GES -0.0034 2.0324E-04
OLS D-GES -0.0035 2.0326E-04

XGB Regular -0.0036 2.0330E-04
XGB GES -0.0035 2.0326E-04
XGB D-GES -0.0035 2.0327E-04

NN Regular -0.0017 2.0290E-04
NN GES 0.0010 2.0235E-04
NN D-GES -0.0003 2.0263E-04

We can see that the GES NN model has the highest R2
OOS and the lowest MSE compared to

all other methods. This method is closely followed by D-GES NN, which has the second-highest
R2

OOS and lowest MSE. Moreover, all NN models outperform the other machine learning methods
on both metrics. In the case of neural networks, GES and D-GES result in a higher R2

OOS and
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lower MSE than regular neural networks. For OLS and XGB, the R2
OOS and MSE are similar

across all three types of factors: regular, GES, and D-GES.
Also, we observe that for all methods, the R2

OOS is negative except for GES NN. There
are several potential reasons for a negative R2

OOS . One possibility is overfitting the training
data, perhaps due to a lack of regularization techniques. Another possibility for a negative
R2

OOS is the complexity of predicting the month-ahead returns using only five features. Precisely
predicting future returns, which are often exposed to noise, is difficult. Furthermore, recall from
Definition 4.4 that the R2

OOS metric compares the predictions of the model with a naive zero-
value prediction. The most likely reason for a negative R2

OOS in our numerical results is that a
naive zero forecast may be a ‘safe’ prediction. Since excess returns tend to be small and centered
around zero, a zero prediction can be difficult to outperform.

While a negative R2
OOS is not desirable when focusing solely on predictive power, from a

strategy perspective, precise month-ahead return predictions are not always necessary. CFI
invests in bonds with the highest predicted future returns. If the machine learning model can
distinguish whether a bond’s return will be relatively high or low, without needing to predict the
exact price, this prediction can still serve as a useful investment signal. It is possible for these
predictions to have a negative R2

OOS but still provide valuable information for the strategy.

6.4 Investment Strategy

In this section the results of Causal Factor Investing in the credit market are stated. We have
followed the investment strategy of CFI as described Section 5.3. For more information on the
portfolio metrics, we refer the reader to Section 2.2.3. The cumulative returns are displayed in
Figure 6.3 and additional metrics are given in Table 6.5.
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Figure 6.3: Cumulative excess returns machine learning portfolios 2014-2023

Observing the cumulative returns in Figure 6.3, we see that all of the machine learning
portfolios exhibit higher excess cumulative returns than the benchmark. However, the benchmark
shows greater resistance to fluctuations. During periods of negative economic sentiment, the
machine learning portfolios consistently dip below the benchmark.

1Monthly average excess return over LIBOR
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Table 6.5: Performance of machine learning portfolios

Model Features Return1 (%) Duration Z-spread TTM Rating IR

OLS Regular 0.19 6.90 149.95 7.93 3.70 0.11
OLS GES 0.19 6.84 152.03 7.87 3.73 0.11
OLS D-GES 0.18 6.84 153.54 7.85 3.78 0.11

XGB Regular 0.16 6.86 164.02 7.92 3.87 0.09
XGB GES 0.16 6.86 164.16 7.93 3.87 0.09
XGB D-GES 0.18 7.00 165.96 8.14 3.87 0.10

NN Regular 0.18 6.92 151.83 7.94 3.82 0.11
NN GES 0.21 6.76 157.94 7.76 3.83 0.13
NN D-GES 0.19 6.98 158.23 8.07 3.83 0.11

Benchmark - 0.07 5.06 73.84 5.58 3.38 -

From Table 6.5, we observe that all machine learning portfolios have a higher excess return
than the benchmark. However, all portfolios also exhibit higher risk metrics compared to the
benchmark. The three NN portfolios and the three OLS portfolios have similar returns, which
are higher than those of the three XGB portfolios.

The GES NN portfolio stands out with the highest return of 0.21, and its risk metrics are low
compared to all the other machine learning portfolios. Additionally, the GES NN portfolio has
the highest IR of 0.13 among both machine learning and traditional portfolios. When comparing
the GES NN portfolio with the carry portfolio, which has the highest return of 0.19 among the
traditional portfolios, the GES NN portfolio not only has a higher return but also exhibits lower
risk metrics

All nine machine learning portfolios have a higher risk profile than the benchmark. However,
the GES NN portfolio offers the highest return among the nine machine learning portfolios and,
notably, has relatively low risk compared to the other machine learning portfolios.



7 | Conclusion and Discussion

The goal of this thesis is to explore the integration of causal theory and machine learning into
factor investing, aiming to enhance both the performance and explainability of the investment
method. Factor investing traditionally relies on managing portfolios exposed to quantifiable char-
acteristics, known as factors, which explain differences in returns across an asset class. However,
recent criticisms highlight the possible shortcomings of traditional factor investing due to speci-
fication errors and the reliance on correlations rather than causality. Additionally, a traditional
factor portfolio corresponds to a single factor portfolio, which increases transaction costs if an
investor wants to invest in multiple factors. To address these concerns, we developed the novel
Causal Factor Investing (CFI) framework, which consists of three main steps. First, it performs
causal discovery to identify factors, newly defined as causal factors, that have a causal-effect rela-
tionship with asset returns. In the second step, these causal factors are incorporated as features
in machine learning models to predict future asset returns. In the third step, these predicted
returns serve as a composite signal for the investment strategy.

In Chapter 4, we specified CFI generically so that it can be used for different asset classes.
As direct interventions are not feasible, we argued for causal discovery on factor scores and
returns resulting in a causal graph. The notion of (direct) causal factor was defined based on
possible directed paths in a causal graph. By modeling future returns as an additive prediction
error model, machine learning methods can be used to predict future returns, serving as an
investment signal, with (direct) causal factors as features.

The application of CFI in this thesis, detailed in Chapter 5, focuses on the European cor-
porate bond market, where CFI was tested against traditional factor investing methods. The
credit factors considered are size, low-risk, value, momentum, and carry. We used i.i.d causal
discovery algorithms: Fast Causal Inference (FCI) and Greedy Equivalence Search (GES). FCI
is a constraint-based method accounting for hidden confounders, while GES is a score-based
method assuming causal sufficiency. We employed three machine learning methods: Ordinary
Least Squares (OLS), Extreme Gradient Boosting (XGB), and Neural Networks (NN) to predict
future bond returns using an expanding window.

In Chapter 6, we backtested CFI in the corporate bond market with an expanding window.
This led to slightly better results than a moving window in terms of predicting future returns
and portfolio performance. FCI produced insufficient causal graphs and was not further used,
but GES provided sufficient causal graphs. For predictive accuracy of future returns, neural
networks had the highest performance, with the highest R2

OOS and lowest Mean Squared Error
(MSE). Backtesting the CFI showed that all machine learning portfolios significantly outper-
formed the benchmark but with higher risk metrics. NN and OLS portfolios had the highest
returns, followed by XGB portfolios. The best-performing portfolio, GES NN, had a 0.21 mean
excess return, offering higher returns and lower risk metrics than the carry portfolio, the most
competitive traditional portfolio. We observed that the use of (direct) causal factors improve
portfolio profitability compared to regular factors with NN portfolios, but not with XGB or OLS.
Nonetheless, (direct) causal factors provide a deeper understanding of factor-return relationships,
addressing the black-box nature of machine learning.

Despite the promising results, this research has several limitations. In financial markets,
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there is a high likelihood of hidden confounders, which led us to use FCI. However, FCI did
not always produce valid causal graphs. We resorted to GES, which assumes causal sufficiency
and may therefore be prone to errors. Nevertheless, due to the greedy optimization nature of
GES, which uses likelihood functions to score graphs relative to the data, we still believe GES
provides valuable insights. In general, validating causal graphs obtained via causal discovery
is challenging, as there is no true graph available. Additionally, exploring time-series causal
discovery (approach 6), which might involve creating models for each asset individually, could
lead to more accurate causal graphs and improved performance. Another limitation lies in the
computational demands of machine learning and causal discovery methods; both FCI and GES
have exponential computational complexity as the dimensionality increases. Also, transaction
costs of rebalancing portfolios were not included in our analysis, which is another limitation.

The findings of this thesis suggest several options for future research. One potential direction
is to extend the CFI framework to other asset classes, such as equities, to evaluate its adapt-
ability and performance in different market environments. In such contexts, it could be easier
to experiment with time-series causal discovery methods and higher-dimensional data. This can
potentially initiate a comparative study of various causal discovery algorithms where also the
reduction of computational time and resources is explored. Moreover, integrating additional fac-
tors, such as macroeconomic and environmental factors, or more asset characteristics might also
enhance the accuracy of future return predictions.

From an investor’s perspective, the machine learning portfolios indicate high returns but
also a higher risk profile. Financial institutions often face risk and transaction constraints,
making it interesting to see the maximization of returns and minimization of risk constraints
as a optimization problem. Using optimization approaches on predicted future returns and risk
constraints at time t, investors can construct optimized portfolios.

In conclusion, this thesis demonstrates the feasibility and potential benefits of integrating
causal theory and machine learning into factor investing through the development of CFI. Trough
the use of causal discovery and machine learning, CFI pioneers in addressing causal relations
and model misspecifications in existing factor investing strategies. As the financial industry
continues to evolve, CFI presents promising path forward for enhancing both performance and
explainability in quantitative investing.
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A | Mathematical Concepts of Machine
Learning Methods

This appendix covers the basic mathematical theory of three supervised machine learning meth-
ods used in thesis. Let us introduce the generic notation used in this chapter. Let us assume we
have a dataset (X,y) of N data points (xi, yi) where xi ∈ RK and yi ∈ R with i ∈ {1, . . . , N}.
In matrix notation, X is an N×K matrix and y is an N-dimensional vector. Here y is called the
target variable which we try to predict with the features X. The general equation in supervised
learning is

y = g(X) + ϵ. (A.1)

The goal is to model the function g such that error ϵ is minimized while maintain high predictive
out-of-sample accuracy.

One of the most basic models, ordinary least squares (OLS), is covered in Section A.1. The
two subsequent sections elaborate on more complex machine learning methods. The mathemat-
ical concepts of tree-based methods and neural networks are covered in Section A.2 and Section
A.3, respectively.

A.1 Ordinary Least Squares

We initiate this chapter with the most simple model, a simple linear model, which is estimated
using ordinary least squares (OLS). While we anticipate that this model may not perform opti-
mally in our context it serves as a baseline for comparison with more complex methods.

The simple linear model assumes that the target variable y can be decomposed as a linear
combination of features x. In matrix notation we have

y = Xβ + ϵ (A.2)

where ϵ is the error. The optimal choice of β is the one that minimizes the error term. The
OLS method seeks to minimize the sum of squared residuals, which is given by L :=

∑N
i=1 ϵ

2
i .

To find the optimal β, OLS intuitively differentiates L with respect to β and find the minimum
by setting the gradient equal to 0. The analytical solution is

β∗ = X′X
−1

X′y (A.3)

and does not require complex numerical calculations.

A.2 Tree-based Methods

Simple trees

This section contains the fundamental concepts related to simple trees. As mentioned in the
introduction of this chapter, trees are structured to divide observations into groups with similar
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behaviors. The target variable in tree models can assume either discrete values, in the case
of classification trees, or continuous (numerical) values, in the case of regression trees. This
thesis focuses exclusively on regression trees. To provide a clearer understanding, an illustrative
example is displayed in Figure A.1 and further explained in the following paragraph.

Figure A.1: Visual example of a simple tree. Adopted from Coqueret et al. [9].

In this example we have 12 starts with, for each star, three variables: size, color and com-
plexity. Our dependent variable is the color and the two features are size and complexity. In
each of the three layers, which we call depth d, a split is made to obtain the most homogeneous
subsets in the final layer of the tree. Here, the first split is made based on complexity, and the
second split is made according to size. If one would make the split the other way around, it
would have created groups of mixed colors, which is not the preferred result. This visual image
can be linked with factor investing by letting the color represent the return of an asset and the
features represent bond factor scores. By finding the optimal splitting order and splitting point
of the factor scores we can split our dataset into subsets with different month-ahead returns.

We follow Coqueret et al. [9] which is based on the standard literature on simple trees of
Breiman et al. [4] and Hastie et al. [20]. Simple regression trees cut the feature space X into
rectangles or regions Rm and then assign an output for the target variable, for instance a constant
cm, in each of them.

Let us start with an example regression problem where we have target variable Y and two
features X1 and X2. The feature space is split sequentially into regions Rm with m ∈ {1, . . . ,M}
and the target variable is modelled by a certain output in each region; in this example we just
denote this as Exit m. This continues until it some stopping rule is triggered. In this case, the
first splitting is done at X1 > 0.15 and the seconds split divides the region X1 > 0.15 into two
regions based on X2 > 0.5. In Figure A.2 one can see the the regions on the left panel, and the
decision tree on the right panel.

The fitted regression model f̂ predicts Y with an output variable (Exit m), in this case a
constant cm, in each region Rm. Our fitted (trained) regression model can be expressed as

f̂(X) =
M∑

m=1

cm1{X ∈ Rm} (A.4)

It remains to determine the optimal splitting points. We try to find the splitting points that
minimize the total variation within the two corresponding clusters after the split. We call these
clusters child clusters and they do not have to be the same size. This requires two steps:

1. Find the optimal splitting point for each feature xki with k ∈ {1, . . . ,K} such that the
clusters are homogeneous



64 A.2. TREE-BASED METHODS

Figure A.2: Regression tree example. Adopted from Cherief et al. [6]

2. Select the feature that causes the highest homogeneity in the child clusters with respect to
the target variable

One question that immediately comes to mind is how do we measure homogeneity in the
clusters. As we aim to have clusters similar yi inside, we seek to minimize the dispersion inside
the two clusters. Variance cannot be used since the summation of two variance values does not
take into account the relative size of the clusters. Therefore, often total variation is used, where
the variance is multiplied by the number of elements in the clusters (see Coqueret et al. [9]).

Let us start with a sample (xi, yi) of the dataset of size I. In the first step, we seek the
optimal splitting point for each feature xki for every k by reducing the total variation in the two
clusters. That is, we solve

argmin
ck

∑
xk
i <ck

(
yi −mk,−

I

(
ck
))2

︸ ︷︷ ︸
Total dispersion of first cluster

+
∑

xk
i >ck

(
yi −mk,+

I

(
ck
))2

︸ ︷︷ ︸
Total dispersion of second cluster

. (A.5)

Here mk,−
I and mk,+

I are the average values of Y conditional on Xk being smaller or than ck

respectively. If we let #{·} be the cardinal function that counts the number of instances based
on inserted argument, mk,−

I and mk,+
I can be expressed as

mk,−
I

(
ck
)
=

1

#{i, xki < ck}
∑

{xk
i <ck}

yi and (A.6)

mk,+
I

(
ck
)
=

1

#{i, xki > ck}
∑

{xk
i >ck}

yi. (A.7)

The optimal splitting point for feature k is the solution of equation (A.5) and is denoted as
ck∗. This optimal splitting point is found for all k ∈ {1, . . . ,K}. In step 2 we select the optimal
splitting point that has the lowest total dispersion of the two child clusters. We split the sample
by the splitting point chosen in step 2 to obtain two new clusters of data points and we repeat
the process again on these clusters.

Pruning

The process described in the previous section can continue until the tree is fully grown. In such
cases, every instance belongs to a separate leaf, or some clusters cannot be split further. Fully
grown trees, featuring numerous variables, almost perfectly fit the trained data. However, this
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scenario is not desirable as it leads to overfitting. The most valuable splits are typically those
made at the beginning of the algorithm, as they capture the most general information. Therefore,
it is prudent to limit the size of the tree through a process known as pruning, by implementing
a stopping criterion.

One can set certain hyperparameters to characterise the stopping criterion of your regression
tree. Hyperparameters are parameters used for tuning the model; they allow to control the
learning process. The most common ways of pruning a tree are listed below:

• Fix the depth d of the tree.

• Impose a minimum gain for each split. The split must result in a significant reduction in
dispersion; otherwise, the split will not be executed.

• Impose a minimum size of a cluster in each leaf node. A leaf node is a terminal node of
the tree.

• Impose a minimum size of of a cluster before each split.

Random forest

Random forests are an ensemble learning method leveraging the power of multiple decision trees
to improve predictive accuracy and control over-fitting. The underlying principle of random
forests is to build multiple decision trees at training time and use the combined result as output.

Random forests makes use of different decision trees, which lead to different prediction models,
in two ways:

1. One can create each tree from a different random sample of the data. This sampling is
typically performed with replacement, known as bootstrap sampling. Each tree in a random
forest learns from a unique subset of data points, and this randomness helps to make the
model more robust than a single decision tree.

2. Random subsets of features can be selected during each split in the learning process. This
is mostly used when a large number of features are available.

Therefore, one can train multiple different trees on a large dataset. The fitted random forest,
denoted as f̂RF can be defined as weighted combination, usually equal weighted, of the different
trained decision trees as in equation (A.4). If we use L decision trees f̂i we can express the fitted
random forest as

f̂RF (X) =
1

L

L∑
i=1

f̂i(X). (A.8)

Boosted trees

Similarly as random forests (see Section A.2), boosting makes use of multiple trees. However,
boosting is slightly more refined. Rather than relying on averaging multiple trees, boosting is an
iterative process where the model is improved whenever a new tree is added in each iteration.
In this thesis we focus on XGBoost, which is a highly effective machine learning method that is
widely used across a variety of domains. Again, we follow the notation of Coqueret et al. [9]
which is based on the original algorithm XGBoost.
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A.3 Neural Networks

Neural networks, named after the neuronal structures found in the brain, are powerful tools in the
field of machine learning. In this thesis we focus on the traditional feed forward neural network,
which is simple. This section outlines the fundamental mathematical concepts underlying neural
networks from a high-level perspective starting from the basic fundamentals of a neural network.
The theory is in line with the book of Coqueret et al. [9].

The Perceptron

A perceptron is a fundamental building block of neural networks, originally introduced by 1958.
The perceptron can be viewed as a single ‘neuron’ in a neural network, and its mathematical
formulation serves as the basis for more complex models. Generally speaking, a perceptron
takes inputs, applies a calculation and gives an output which we have visualized in Figure A.3.
Mathematically, a perceptron maps an input vector x to an output y by computing a weighted
sum of these features. Then, a bias term b is added and is followed by usage of the activation
function. This can be expressed as:

y = ϕ(w⊤x+ b), (A.9)

where y is the output w represents the weights associated with each input feature, b is the bias
term, and ϕ(·) is the activation function. The role of the activation function ϕ is to introduce
non-linearity into the model, allowing the perceptron to capture more complex patterns in the
data.

x1

x2

x3

y

w1

w2

w3

Figure A.3: Visual representation of a perceptron

Activation Functions

Activation functions require to be non-linear and differentiable preferably on the whole domain.
Logically, a non-linear activation function is necessary to allow for non-linear relations in the
model. Differentiability is required during the training process, i.e. updating the weights, using
the stochastic gradient descent which is covered in Section A.3. Similar as Gu et al. [18], this
thesis will make use of the Rectified Linear Unit (ReLU) activation function:

ReLu(x) = max{0, x}. (A.10)

It is resistant to a vanishing gradient descent because the derivative is for x > 0 is equal to 1
(see Glorot et al. [16]). In addition, is computationally efficient, making it on of the most widely
used activation functions in deep learning. Two other common activation functions are:

• Sigmoid Function: Defined as σ(z) = 1
1+e−z , this function maps input values to the

range (0, 1), making it suitable for binary classification problems.
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Figure A.4: Visual representation of a multi-layer perceptron. Adopted from Coqueret et al.
[9].

• Hyperbolic Tangent (tanh): The tanh function, given by tanh(z) = ez−e−z

ez+e−z , maps
inputs to the range (−1, 1). It is a rescaled version of the sigmoid function with zero-
centered outputs.

Multi-Layer Networks

When various single perceptrons are chained to eachother, we obtain a network, which allows
for greater complexity and has the possiblity to approximate many functions. A multi-layer
neural network, also known as a multi-layer perceptron (MLP), is constructed of multiple layers
of perceptrons. One single layer can be defined as a group of perceptrons, usually displayed as a
vertical stack, that depend on the same previous input. Simple feed forward neural networks are
typically categorized into an input layer, one or more hidden layers, and an output layer. Each
perceptron in a hidden layer receives input from the previous layer and applies an activation
function to generate an output, which is then passed to the next layer. A perceptron can be
connected to multiple other perceptrons of a different layer. A visualization of a multi-layer is
shown in Figure A.4.

Let y(l) denote the output of the l-th layer, and W(l) and b(l) represent the weight matrix
and bias vector for the l-th layer, respectively. The forward propagation through the network
can be described as:

y(l+1) = ϕ(W(l)h(l) + b(l)), (A.11)

where h(0) = xi represents the input features. The final output of the network is obtained after
the last layer’s output have been computed. It is important to note that the final output of the
neural network, g(x, θ), is a composition of simple functions with parameters θ. θ are all the
parameters of the neural network.

Multi-layer networks have the capacity to approximate any continuous function, known as
the universal approximation theorem. The depth and the width, the amount of perceptrons on
each layer, influence its performance. Deeper networks are generally more powerful, though they
may require more data and computational resources to train.

Gradient Descent

Now that we have discussed how the neural network operates, it is left discuss how to train
the neural network. Training a neural network involves optimizing the weights W and biases b
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such that the network’s predictions ŷ closely match the target variable y. This optimization is
typically framed as a minimization problem, where the objective is to minimize a loss function
L(θ). Generically, the loss function can be defined as the distance of the target output y and
the output of the neural network g(x, θ):

L(θ) = ||y − g(x, θ)|| (A.12)

Gradient descent is the most common optimization algorithm used to train neural networks.
The algorithm iteratively updates the network’s parameters in the direction that reduces the loss
function. The iterative updating rule for each parameters θ is given by:

θ ← θ − η
∂L
∂θ

, (A.13)

Here, η > 0 is the learning rate, a hyperparameter controlling the step size of the updates.
The gradient ∂L

∂θ is computed via backpropagation by applying the chain rule through the layers
of the network.



B | Graphs

B.1 FCI

Expanding Window

(a) FCI 2009-2013 (b) FCI 2009-2014 (c) FCI 2009-2015

(d) FCI 2009-2016 (e) FCI 2009-2017 (f) FCI 2009-2018

Figure B.1: Causal graphs obtained via FCI expanding window (1/2)
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(a) FCI 2009-2019 (b) FCI 2009-2020 (c) FCI 2009-2021

(d) FCI 2009-2022

Figure B.2: Causal graphs obtained via FCI expanding window (2/2)
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Moving window

(a) FCI 2009-2013 (b) FCI 2010-2014 (c) FCI 2011-2015

(d) FCI 2012-2016 (e) FCI 2013-2017 (f) FCI 2014-2018

Figure B.3: Causal graphs obtained via FCI moving window (1/2)



72 B.1. FCI

(a) FCI 2015-2019 (b) FCI 2016-2020 (c) FCI 2017-2021

(d) FCI 2018-2022

Figure B.4: Causal graphs obtained via FCI moving window (2/2)
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B.2 GES

Expaning Window

(a) GES 2009-2013 (b) GES 2009-2014 (c) GES 2009-2015

(d) GES 2009-2016 (e) GES 2009-2017 (f) GES 2009-2018

Figure B.5: Causal graphs obtained via GES expanding window (1/2)



74 B.2. GES

(a) GES 2009-2019 (b) GES 2009-2020 (c) GES 2009-2021

(d) GES 2009-2022

Figure B.6: Causal graphs obtained via GES expanding window (2/2)
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Moving Window

(a) GES 2009-2013 (b) GES 2010-2014 (c) GES 2011-2015

(d) GES 2012-2016 (e) GES 2013-2017 (f) GES 2014-2018

Figure B.7: Causal graphs obtained via GES moving window (1/2)



76 B.2. GES

(a) GES 2015-2019 (b) GES 2016-2020 (c) GES 2017-2021

(d) GES 2018-2022

Figure B.8: Causal graphs obtained via GES moving window (2/2)
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Causal Analysis

Here we present the (direct) causal factors obtained via FCI and GES using a moving window.

FCI

Table C.1: (Direct) Causal Factors obtained with FCI (moving window)

Period Causal Factors

2009-2013 (siz, val, lr,mom, car)
2010-2014 (siz, val, lr,mom, car)
2011-2015 (siz, val, lr,mom, car)
2012-2016 (siz, val, lr,mom, car)
2013-2017 (siz, val, lr,mom, car)
2014-2018 (siz, val, lr,mom, car)
2015-2019 (car)
2016-2020 (siz, val, lr,mom, car)
2017-2021 (siz, val, lr,mom, car)
2018-2022 (mom)

Period Direct Causal Factors

2009-2013 (siz, val, lr,mom, car)
2010-2014 (siz, val, lr,mom, car)
2011-2015 (siz, val, lr,mom, car)
2012-2016 (siz, val, lr,mom, car)
2013-2017 (siz, val, lr,mom, car)
2014-2018 (siz, val, lr,mom, car)
2015-2019 (car)
2016-2020 (siz, val, lr,mom, car)
2017-2021 (siz, val, lr,mom, car)
2018-2022 (mom)

There are seven periods where FCI could not provide sufficient causal factors. This could
imply that the causal graph was wrong or that other latent factors are the cause of month-ahead
returns. Because there are only three years where (direct) causal factors could be identified, we
will not use FCI in CFI using a moving window.

GES

The causal factors and direct causal factors, obtained via GES, are stated in Table C.2.
Only in two periods (2014-2018 and 2016-2020) did the GES algorithm fail to provide sufficient

causal factors. This is significantly fewer than the seven insufficient graphs produced by the FCI
algorithm. Therefore, we will use the causal factors and direct causal factors identified via GES
for CFI, rather than those obtained via FCI. In the periods where a usable causal graph is
available, there is always a minimum of three causal factors. The causal factors omitted by
the causal selection algorithm (Table C.2) include value (2013-2017), momentum (2015-2019),
low-risk (2017-2021), and size and carry (2018-2022).
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Table C.2: (Direct) Causal Factors obtained from GES (moving window)

Period Causal Factors

2009-2013 (siz, val, lr,mom, car)
2010-2014 (siz, val, lr,mom, car)
2011-2015 (siz, val, lr,mom, car)
2012-2016 (siz, val, lr,mom, car)
2013-2017 (siz, lr,mom, car)
2014-2018 (siz, val, lr,mom, car)
2015-2019 (siz, val, lr, car)
2016-2020 (siz, val, lr,mom, car)
2017-2021 (siz, val,mom, car)
2018-2022 (val, lr,mom)

Period Direct Causal Factors

2009-2013 (mom, car)
2010-2014 (mom, car)
2011-2015 (lr,mom, car)
2012-2016 (siz, val,mom, car)
2013-2017 (lr, car)
2014-2018 (siz, val, lr,mom, car)
2015-2019 (lr, car)
2016-2020 (siz, val, lr,mom, car)
2017-2021 (mom, car)
2018-2022 (mom)

Empirical Asset Pricing via Machine Learning

The results are stated in Table C.3. The predictive performance of the machine learning methods
using a moving window is slightly less accurate then using a expanding window as in Chapter 6.

Table C.3: Performance of machine learning methods on the prediction of month-ahead returns
(moving window)

Model Features R2
OOS MSE

OLS Regular -0.0025 2.0307E-04
OLS GES -0.0032 2.0321E-04
OLS D-GES -0.0041 2.0338E-04

XGB Regular -0.0027 2.0311E-04
XGB GES -0.0031 2.0318E-04
XGB D-GES -0.0032 2.0320E-04

NN Regular -0.0024 2.0305E-04
NN GES -0.0013 2.0281E-04
NN D-GES -0.0025 2.0306E-04

Investment Strategy

In this section the results of Causal Factor Investing in the credit market using a moving window
are stated. We have followed the investment strategy of CFI as described Section 5.3. For more
information on the portfolio metrics, we refer the reader to Section 2.2.3. The cumulative returns
are displayed in Figure C.1 and additional metrics are given in Table C.4.

Compared to results using an expanding window, the machine learning portfolios have slightly
worse returns and slightly better risk metrics.

1Monthly average excess return over LIBOR
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Cumulative Excess Returns

Regular OLS
GES OLS
D-GES OLS
Regular XGB
GES XGB
D-GES XGB
Regular NN
GES NN
D-GES NN
Benchmark

Figure C.1: Cumulative excess returns machine learning portfolios 2014-2023 (moving window)

Table C.4: Performance of machine learning portfolios (moving window)

Model Features Return1 Duration z-Spread TTM Rating IR

OLS Regular 0.15 6.64 141.15 7.60 3.61 0.08
OLS GES 0.15 6.69 140.65 7.65 3.65 0.08
OLS D-GES 0.13 6.53 139.59 7.46 3.62 0.07

XGB Regular 0.11 6.53 155.50 7.49 3.81 0.05
XGB GES 0.11 6.71 146.21 7.70 3.79 0.04
XGB D-GES 0.12 6.49 145.71 7.45 3.77 0.06

NN Regular 0.14 6.35 138.34 7.22 3.70 0.09
NN GES 0.17 6.39 143.32 7.28 3.76 0.10
NN D-GES 0.15 6.44 145.20 7.37 3.69 0.09

Benchmark - 0.07 5.06 73.84 5.58 3.38 nan
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