

Delft University of Technology

Get Me Out of This Payment! Bailout
An HTLC Re-routing Protocol
Ersoy, Oğuzhan; Moreno-Sanchez, Pedro; Roos, Stefanie

DOI
10.1007/978-3-031-47751-5_6
Publication date
2024
Document Version
Final published version
Published in
Financial Cryptography and Data Security - 27th International Conference, FC 2023, Revised Selected
Papers

Citation (APA)
Ersoy, O., Moreno-Sanchez, P., & Roos, S. (2024). Get Me Out of This Payment! Bailout: An HTLC Re-
routing Protocol. In F. Baldimtsi, & C. Cachin (Eds.), Financial Cryptography and Data Security - 27th
International Conference, FC 2023, Revised Selected Papers (pp. 92-109). (Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics);
Vol. 13951). Springer. https://doi.org/10.1007/978-3-031-47751-5_6
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/978-3-031-47751-5_6
https://doi.org/10.1007/978-3-031-47751-5_6

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Get Me Out of This Payment! Bailout:
An HTLC Re-routing Protocol

Oğuzhan Ersoy1,3(B), Pedro Moreno-Sanchez2, and Stefanie Roos3

1 Radboud University, Nijmegen, The Netherlands
oguzhan.ersoy@ru.nl

2 IMDEA Software Institute, Madrid, Spain
pedro.moreno@imdea.org

3 Delft University of Technology, Delft, The Netherlands

s.roos@tudelft.nl

Abstract. The Lightning Network provides almost-instant payments to
its parties. In addition to direct payments requiring a shared payment
channel, parties can pay each other in the form of multi-hop payments
via existing channels. Such multi-hop payments rely on a 2-phase com-
mit protocol to achieve balance security; that is, no honest intermediary
party loses her coins. Unfortunately, failures or attacks in this 2-phase
commit protocol can lead to coins being committed (locked) in a pay-
ment for extended periods of time (in the order of days in the worst case).
During these periods, parties cannot go offline without losing funds due
to their existing commitments, even if they use watchtowers. Further-
more, they cannot use the locked funds for initiating or forwarding new
payments, reducing their opportunities to use their coins and earn fees.

We introduce Bailout, the first protocol that allows intermediary
parties in a multi-hop payment to unlock their coins before the pay-
ment completes by re-routing the payment over an alternative path. We
achieve this by creating a circular payment route starting from the inter-
mediary party in the opposite direction of the original payment. Once
the circular payment is locked, both payments are canceled for the inter-
mediary party, which frees the coins of the corresponding channels. This
way, we create an alternative route for the ongoing multi-hop payment
without involving the sender or receiver. The parties on the alterna-
tive path are incentivized to participate through fees. We evaluate the
utility of our protocol using a real-world Lightning Network snapshot.
Bailouts may fail due to insufficient balance in alternative paths used
for re-routing. We find that attempts of a node to bailout typically suc-
ceed with a probability of more than 94% if at least one alternative path
exists.

1 Introduction

Payment channels have emerged as one of the most promising mitigations to
the blockchain scalability problem [22]. A payment channel enables two users to
perform many payments between them while requiring only two transactions to
be published on the blockchain. In a bit more detail, Alice and Bob open a chan-
nel between each other by submitting a transaction to the blockchain that locks
c© International Financial Cryptography Association 2024
F. Baldimtsi and C. Cachin (Eds.): FC 2023, LNCS 13951, pp. 92–109, 2024.
https://doi.org/10.1007/978-3-031-47751-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47751-5_6&domain=pdf
https://doi.org/10.1007/978-3-031-47751-5_6

Get Me Out of This Payment! Bailout: An HTLC Re-routing Protocol 93

coins in a shared deposit. A (off-chain) payment only requires that Alice and
Bob exchange an authenticated agreement of a new deposit’s balance, i.e., the
split of the funds in the deposit between the two. This off-chain payment oper-
ation can be repeated arbitrarily often until the channel is closed by publishing
a transaction on the blockchain that releases the deposited coins according to
the last authorized balance. However, opening a channel only pays off if parties
transact with each other repeatedly.

To enable parties to conduct a transaction without establishing a new chan-
nel, payment channel networks (PCNs) [3–5,15,16,31,38] allow routing pay-
ments from a sender to a receiver via multiple channels. In such a multi-hop
payment, each channel in the route is updated with the payment amount (and a
fee) from the sender to the receiver. The most important requirement for a multi-
hop payment protocol is balance security [5,18,31], i.e., no honest party other
than the sender should lose coins and the sender should only lose the payment
amount and the fees. While there exist several proposals to achieve balance secu-
rity [5,18,32,38], hash-time lock contracts (HTLC) are currently implemented in
the Lightning Network (LN).

An HTLC-based multi-hop payment works as follows: When agreeing to con-
duct a payment, the receiver chooses a random value and then gives the hash of
that value to the sender. The sender decides on one payment path. The first node
on each channel making up the path commits to paying the second node if the
second node provides the preimage of the hash within a certain time. The time,
which depends on the node’s individual preference and its position in the path,
is called the timelock of the conditional payment. More details on the HTLC
construction and timelocks are given in Sect. 2. Once all the commitments are
made, the receiver provides the preimage and the preimage is forwarded along
the path back to the sender, concluding the promised payments.

While the protocol provides balance security, it causes issues with regard to
the availability of coins. After a node has committed to a payment, neither the
node nor their successor on the path can use the payment amount for concurrent
payments, as it is not yet known whether the coins will be successfully trans-
ferred. The typical amount of time funds can be locked in this manner is in the
order of seconds, assuming that all parties are responsive. However, there can
sometimes be delays in the order of days [36].

The delays can be caused by nodes being offline or payment failure. Thus,
the locked coins can severely limit a node’s liquidity and prevent them both
from initiating payments of their own and from forwarding other payments due
to the lack of available funds, which can drastically reduce the ability of the
network to conduct payments [36,40]. Also, if there are several locked HTLCs,
the parties may not able to accept new HTLCs (even if they have enough funds)
because of the upper limit in the number of concurrent HTLC [11]. Moreover,
it is important to note that intermediary parties cannot go offline until all the
locked payments are released. This holds even with watchtowers, as there is no
watchtower protocol that updates the channel state without the presence of the
channel owner [7,8,14,24,26,34].

94 O. Ersoy et al.

These negative effects of unexpectedly long-locked coins give rise to the ques-
tion: Is it possible to unlock coins of an intermediary party if the multi-hop pay-
ment is not completed and the timelock has not expired?

Our Contributions. In this work, we positively answer this question by pro-
viding Bailout, which allows an intermediary party, who has locked her coins
for an unfinished multi-hop payment, to unlock her coins before the expiration of
the corresponding timelock. In a nutshell, Bailout allows the intermediary party
to re-route the on-going multi-hop payment, so that other nodes with a better
availability situation take over the payment, freeing up coins for the intermediary
party to use in other payments. We incentivize the other parties to take over the
payment through offering them extra fees, typically higher than the standard
fee for routing a payment. In this manner, we offload payments from overloaded
nodes to nodes with a low load and available funds. Our contributions are:

– We introduce Bailout, the first protocol that allows intermediary parties
to unlock their coins from an ongoing HTLC payment and provably achieves
balance security. Bailout re-routes the payment over an alternative path that
connects the neighboring parties of the intermediary. It is compatible with
HTLC-based multi-hop payments in Lightning: (i) it can be implemented
with the scripting language of Bitcoin, (ii) it does not require any additional
information than the existing knowledge in Lightning, e.g., the intermediary
party knows only her neighbors on the payment path.

– We evaluate our protocol in the face of parties that want to go offline and
bailout of their ongoing payments. The level of concurrency and the frequency
of long delays determine the amount of locked collateral in the network and
hence affect the ability of a party to find an alternative path with sufficient
funds. Still, even for high concurrency and frequent delays, less than 6% of
bailouts fail.

2 Building Blocks

Transactions and Ledger. In this work, we utilize a simplified version of
Bitcoin to model transactions and the ledger as in [3]. The transactions are
based on the unspent transaction output (UTXO) model, where the coins are
represented by outputs. An output �θ is defined as a tuple (cash, θ) where cash
denotes the number of coins in the output and θ is the corresponding spending
condition. For readability, we extract away the details of the ledger functionality.
We require that the ledger handles the notion of time in rounds, and the round
number corresponds to the number of blocks on the ledger. Also, we assume that
a valid transaction is included in a block on the ledger after at most Δ rounds.
Details of transactions and ledger functionality are given in [21].

Payment Channels. A payment channel is defined as a tuple of
γ:=(id , users, cash, st) where γ.id is the id of the channel between parties P ∈

Get Me Out of This Payment! Bailout: An HTLC Re-routing Protocol 95

γ.users, γ.cash denotes the capacity of the channel and γ.st:=(�θ1, . . . , �θn) is the
state of the channel. We denote channel between A and B as γA,B . A channel
has three phases: (i) create where the channel is opened by publishing the fund-
ing transaction on the ledger, (ii) update where parties update the state of the
channel, and (iii) close where parties close the channel by publishing the latest
channel state on-chain. The payment channel functionality is given in [21].

Payment Channel Networks. A payment channel network is a network
where parties are nodes and channels are edges. One can route payments
from a payer to a payee along multiple channels without requiring a direct
channel between them. A Multi-hop payment (MHP) is constructed over
a path of channels path:=(path[0], . . . , path[n − 1]) and conditional payments
(MHP[0], . . . ,MHP[n − 1]) (one for each channel) where n is the payment route
length. path[i] is the ith channel in the payment route and path[i].payer (and also
MHP[i].payer) denotes the ith party in the path who pays to the (i + 1)th party,
path[i].payee.

We present the ideal functionality of MHP FMHP in [21], which has two
phases: Setup and Lock, and Pay or Revoke phases. In the Setup and Lock phase,
the payment path is created and the channels on the path lock the corresponding
amounts. More concretely, at each channel path[i], amt[i] coins of path[i].payer
are locked. Here, the order of the locking corresponds to the order of channels on
the path, starting with the channel adjacent to the sender. If the locking fails in
a channel on the path, then the locking stops. When all channels in the path are
locked, this phase is finished. In the Pay (or Revoke) phase, for each channel of
path[i], the locked coins are paid to path[i].payee. Unlike in the previous phase,
the channel updates are executed in the order from the receiver to the sender. If
the payment is not completed before TL[i], then the locked coins can be revoked
and given back to the path[i].payer.

Lightning Network achieves multi-hop payments via the HTLC (hash time
locked contract) protocol. An HTLC is a conditional payment where the receiving
party can claim the payment amount by providing the preimage of the given
hash value. If the preimage is not provided within a certain time, the payment
amount returns to the sending party. We write an HTLC tuple with the following
attributes HTLC:=(mid, cpid, γ, payer → payee, cond, TL, amt) where HTLC.cpid
is the id of the HTLC in channel HTLC.γ between the payer HTLC.payer and the
payee HTLC.payee. If the HTLC is part of a multi-hop payment, then HTLC.mid
stores the corresponding id, otherwise it is ⊥. The payment amount of the HTLC
is HTLC.amt that is locked for the condition HTLC.cond. If the HTLC is part
of a MHP, the amount is deducted from the available coins of HTLC.payer. If
a witness witness is provided s.t. H(witness) = cond until time HTLC.TL, then
the payment amount is given to HTLC.payee. Otherwise, at time HTLC.TL,
the amount is returned to HTLC.payer. Note that a channel γ can have several
ongoing HTLCs at the same time. For readability, unless it is necessary, we skip
the first three attributes of the HTLC tuple, also we omit the payer and payee in
figures where they are visually ascertainable. The scripts of an HTLC are given
in [21].

96 O. Ersoy et al.

Fig. 1. A multi-hop payment with HTLCs. h denotes MHP[i].cond where x is the
corresponding preimage, and ti and vi represents MHP[i].TL and MHP[i].amt.

As explained previously, a MHP in Lightning is done by locking HTLCs in
the payment path from sender to receiver wrt. the condition cond chosen by the
receiver. Note that each intermediary party Pi plays the role of payee in the
channel (of MHP[i]) closer to sender, and the role of payer in the subsequent
channel (of MHP[i + 1]), which is closer to the receiver. Party MHP[i + 1].payer
accepts locking the conditional payment MHP[i + 1] if the following conditions
are satisfied: (i) the previous channel should be updated first with the same hash
condition, MHP[i+1].cond = MHP[i].cond, (ii) the locked amount should be equal
to the one in previous channel minus the fee, i.e., MHP[i].amt −MHP[i + 1].amt
is equal to the fee amount chosen by the channel, and the locked amount can be
at most the channel balance, and (iii) the timelock of the HTLC is less than or
equal to the timelock of the previous channel plus the timelock of the channel
chosen by the intermediary, MHP[i + 1].TL = MHP[i].TL − Ti where Ti is the
timelock of the channel. In Lightning Network, the timelock and fee values of a
channel is publicly known. An illustrative example of a MHP is given in Fig. 1.

After the last channel before the receiver has been updated with an HTLC
condition, the receiver reveals the preimage and obtains the payment. Subse-
quently, all intermediaries forward the preimage to their predecessor. If the
receiver does not share the preimage, each channel returns to its initial state
after the timelock. In this case, the coins in each channel will be locked and
cannot be used until the timelock is over.

3 The Bailout Protocol

Assume there is an ongoing multi-hop payment (MHP0) including the channels
from A to B and B to C (seen at the Initial State of Fig. 2). Let HTLCA and
HTLCC be the existing HTLCs with condition h and amounts amtA and amtC
in channels γA,B and γB,C , defined as: HTLCA:=(A → B, h, TLA, amtA) and
HTLCC :=(B → C, h, TLC , amtC), where TLC < TLA and amtC < amtA. In
both channels, coins have been locked for longer than expected by B. If the
payment is not completed, B has to wait until the timelock of HTLCC expires,
which can be days.

Get Me Out of This Payment! Bailout: An HTLC Re-routing Protocol 97

Motivation. Here, we list some of the potential reasons that B may request
to be removed from the long-lasting payment. First, B may want to go offline
with minimal monitoring of the blockchain. If there are no ongoing payments
locked, B only needs to monitor the blockchain (wrt. the channel timelock, once
per day) for potential fraud of the other party of the channel, and this can
even be delegated to a watchtower [26]. However, if there are ongoing HTLCs,
the channel needs to be updated wrt. the outcome of them, and this cannot be
delegated. Note that even if every party in the MHP is honest and online but
B is offline, then the MHP cannot be completed until B is online again or the
timelocks of B are expired. Thus, other parties also benefit from removing B
from the ongoing payment as B’s absence may delay the payment further.

Secondly, B may want to close his channels and spend the coins immediately.
Even though, B can close the channel with ongoing payments, he needs to wait
for them to be finalized. Thirdly, B may want to make an off-chain payment
but due to the ongoing payment and the locked coins, there are not enough
funds available. In the last scenario, B could also want to unlock his funds to
participate in off-chain payments as an intermediary and make profits in the
form of fees from other payments using the currently locked coins.

Security and Compatibility Requirements. Here, we aim to design a pro-
tocol that unlocks the coins of B, which is compatible with Bitcoin’s scripting
language and the Lightning Network. The protocol requires the participation of
B’s neighbors A and C as they need to be involved in unlocking previously made
commitments. Without the cooperation of these neighbors, B cannot update the
channels. The Lightning Network uses onion routing such that the intermediary
only learns the identity of the previous and next node on the path. Thus, our
protocol should also not require the identities of other parties on the path, in
particular the sender and receiver. Finally, but most importantly, the protocol
should provide balance security to every honest intermediary, meaning that no
honest party should lose coins regardless of the acts of other parties.

3.1 Overview of Bailout

In this work, we design Bailout and show that it satisfies all the requirements
given above. Bailout re-routes the ongoing locked HTLCs via an alternative
path such that coins of B are released. In a nutshell, the idea is creating new
HTLCs in the opposite direction with the same payment amounts and then
cancelling them out. For that reason, we create a circular MHP (MHP1) of
length four starting from B that goes through A, D (party in the new route,
called a bailout party), C and ends at B again (see Step 2 in Fig. 2).1 Once the
new MHP is locked, both payments are canceled for B, which frees the coins
of the corresponding channels, which is illustrated in the Step 3 of Fig. 2. The

1 Here, we require that there is an alternative path between Alice and Carol via only
one intermediary, Dave. Later on, we generalize it to multiple intermediaries.

98 O. Ersoy et al.

Fig. 2. Simplified protocol phases for the full cancellation/re-routing. In Setup and
Lock Phase, the new multi-hop payments (MHP1 and MHP2) are locked. In Cancella-
tion Phase, the HTLCs of B are cancelled in the channels with A and C. In Pay and
Reroute Phase, MHP2 is payed by sharing the preimage of hB and the condition of
MHP1 is reduced to h. For simplification of the figure, we use a constant fee f , which
can actually differ among parties. HTLCs of MHP0, MHP1 and MHP2 are colored with
black, blue and green respectively. (Color figure online)

re-routing of the original payment can be seen in the path difference between
the Initial and Final State given in Fig. 2.

Naive Approach. A naive solution is creating a circular MHP1 with the same
condition as MHP0, then HTLCA and MHP1[0] have the same amount and the
same hash condition but in opposite directions. Then, for the parties A and
B, it would be the same if they cancel both of them, rather than waiting for
the payments to be completed. It is similar for the channel between B and C.
However, there is a security problem: if the preimage of h is known to A during
the locking phase of MHP1, then B loses his coins. More specifically, just after
locking MHP1[0], and before locking the other hops in MHP1, if A knows the
preimage2, A can claim the payment in MHP1[0] from B. Yet, if the last hop
MHP1[3] is not locked, then B is not be compensated in MHP1.

To overcome the aforementioned problem, the conditional payments in MHP1

should include an additional condition chosen by B, say hB . In this way, if MHP0

is completed during the process, then the new MHP (MHP1) cannot be spent,
and B does not lose his coins. In this case, MHP1 is cancelled since there is no
need to execute the protocol. With the additional condition, after re-routing,
we need to ensure that parties A and C do not lose their coins because of the

2 A can learn the preimage from B (or the other parties on the path if she is colluding
with them).

Get Me Out of This Payment! Bailout: An HTLC Re-routing Protocol 99

differences in conditions of MHP0 and MHP1. From A’s perspective, since A is
the payer for conditions (h, hB) in MHP1[1], and payee for h in MHP0 (if she is
not the sender), she is guaranteed that after paying in MHP1[1], she can get paid
in MHP0. However, for C, it is the opposite. For that reason, we have an interim
step for the update between B and C where B needs to reveal the preimage of
hB, which we explain in more detail while presenting the protocol phases.

Incentives. Note that the reason of re-routing HTLCs of B in MHP0 is that
it was not completed in the expected time. The delay can be due to i) a node
not forwarding the payment or preimage, ii) a node not peacefully settling the
payment that she knows will fail and instead waiting for the timelock to expire,
and iii) a receiver (intentionally) not providing the preimage, e.g., in a griefing
attack. In case ii) and iii), the payment fails and the cancellation happens at the
last possible moment, leading to very long delays. If the payment fails, interme-
diaries do not receive fees. As a consequence, the bailout party D is unlikely to
agree to take over the payment if a fee is only paid when the original payment
is successful. For this reason, there should be an additional incentive for D to
be involved in the re-routing.

We introduce a secondary MHP, MHP2 with the sole purpose of paying fees
to the bailout party D, as well as A and C, for their involvement in the protocol.
The condition of MHP2 is hB, which is revealed by B to C after the cancellation
of HTLCs in their channel. Thus, the intermediary parties will get paid just after
the HTLCs of B are cancelled, which is independent of the completion of MHP0.
D can negotiate its fee with B.

A simplified overview of Bailout steps is given in Fig. 2. The locking of the
new MHPs, MHP1 and MHP2, is done in the Setup and Lock phase. After that,
the Cancellation phase starts. In this phase, the previous HTLCs, HTLCA and
HTLCC , together with the new ones in MHP1 belonging to channels γA,B and
γB,C are cancelled, i.e., they are simultaneously revoked. Thus, the coins of B
are released. Then, in the last phase, B reveals the secret xB , so that each party
can claim the payment in MHP2 and also reduce the conditions of HTLCs in
MHP1 to only h.

Extension I - Multiple Bailout Parties and Timelocks. So far we
explained the protocol for only one bailout party D that connects A and C.
However, such a party may not exist because of the network topology or insuffi-
cient balance. Thus, we extend the protocol to multiple bailout parties, Di’s. For
the multiple case, the protocol steps do not change. The only concern of having
multiple Di’s is that the timelocks of the re-routing payments (MHP1) have to
be divided by the number of new parties. In practice, a default timelock of a
channel is either 40 or 144 blocks, with one block being published roughly every
10 min [36]. The average transaction confirmation time is not higher than one
hour in the last three months (as of Oct. 17, 2022), yet, in the past, it had spikes
higher than five days [10]. Thus, we assume the bailout parties can assess a safe

100 O. Ersoy et al.

timelock value regarding the transaction confirmation time at the moment, and
whether they are willing to participate in the protocol with a lower timeout.

Extension II - Partial Re-routing (or Cancellation). Until now, Bailout
is defined over the scenario where HTLCA and HTLCC of MHP0 are completely
cancelled and MHP0 is re-routed over the bailout parties. Yet, it is also possible
that the payment is partially re-routed and the HTLCs in γA,B and γB,C are
updated accordingly. Let amtcxl be the amount that party B aims to re-route
via the new path. We can achieve partial re-routing by replacing the amount
locked in MHP1 with amtcxl (instead of the amount in MHP1). Then, during the
cancellation phase, instead of completely cancelling the corresponding HTLCs
in γA,B and γB,C , we replace HTLCA and HTLCC with HTLCnew

A and HTLCnew
C

with the only difference of amount reduction by amtcxl. Hereby, we re-route the
amount amtcxl over the channels of bailout parties and keep the remaining in
channels γA,B and γB,C .

3.2 The Phases of Bailout

In [21], we give the protocol, ΠBO in the UC framework. Here, we explain the
phases of Bailout: Setup and Lock, Cancellation and Pay and Reroute.

First, we should discuss the path of new multi-hop payments. The protocol
requires existence of bailout parties, Di’s, that connect A and C. Here, finding
an alternative path is not sufficient, it is also necessary that all channels on the
new path have sufficient funds and the new bailout parties charge a fee that
is acceptable. Also, as mentioned in the previous section, the more parties are
involved, the lower the timelock values are. Thus, having only one bailout party
is preferable to not shortening the timelock values. For completeness, we write
the protocol for multiple ones.

Setup and Lock Phase. In this phase, the new MHPs are created and locked
wrt. to the initial HTLCs, HTLCA and HTLCC . B constructs the new MHPs of
length n with mhpInfo1:=(amt1,TL, path) and mhpInfo2:=(amt2,TL, path) such
that:

– path[0].payer = path[n − 1].payee = B, path[0].payee = path[1].payer = A,
path[n − 2].payee = path[n − 1].payer = C and path[i].payee = path[i +
1].payer = Di for i ∈ [1, n − 3].

– For i ∈ [0, n − 1], amt1[i]:=amtcxl ≤ amtC , and amt2[i] =
∑n−1

j=i fj where fj
is the fee of channel path[j].

– TL[0] = TLA + Δ, TL[n − 1] = TLC − Δ, and for i ∈ [1, n − 2], TL[i] =
(n−2−i)

n−3 × (TLA − TLC) + TLC .

B chooses a random value xB and computes hB = H(xB). Then, B computes
the HTLCs of MHP1 and MHP2 (for i ∈ [0, n − 1]):

MHP1[i] = (payeri → payeei, {h, hB},TL[i], amt1[i]),
MHP2[i] = (payeri → payeei, {hB},TL[i], amt2[i]),

Get Me Out of This Payment! Bailout: An HTLC Re-routing Protocol 101

where payeri = path[i].payer and payeei = path[i].payee.
Once the HTLCs are created, starting from i = 0 to n − 1, each channel of

path[i] is locked with both MHP1[i] and MHP2[i]. In the locking phase, parties
follow the standard Lightning MHP locking procedure with the only difference
being the two parallel HTLCs. If there is failure in any of them, the parties do
not continue. Once both MHPs are successfully locked, the phase is completed.

Cancellation Phase. In this phase, B updates his channels with both parties
P ∈ {A,C} by (partially or fully) canceling the existing HTLCs and unlocking
the coins in his channels. B updates his channels γA,B and γB,C . To ensure
balance security of B, both channels are updated atomically. Also, the new
states of both channels should not be publishable on the blockchain until the
old ones are revoked. Otherwise, an old state of one channel (e.g., γA,B) and a
new state of the other channel (γB,C) can be published. To achieve this, we use
the idea presented in [4] where the updated states have an additional timelock
condition. This additional timelock gives enough time for B to make sure that
the previous state of both channels are revoked. If not, then he can publish the
old states of both channels before the timelocks of the new states.

Another atomicity is required in the channel update of γB,C . The update
of the channel γB,C and revealing of xB should be atomic. On the one hand,
B should not share xB with C before updating their channel. Otherwise, a
malicious C can stop the update, and if x is revealed between MHP1[n − 1].TL
and MHP1[2].TL, C can get paid by B from HTLCC of MHP0 without paying
MHP1[n − 1]. On the other hand, C should not update the channel without
learning xB. Otherwise, if a malicious B does not share xB , then C might pay for
MHP0 when receiving x (assuming C is not the receiver of MHP0), but cannot
claim the payment from Dn−3 in MHP1[n − 2]. For that reason, we have an
additional condition payment HTLC′

C that updates the channel where B needs
to reveal xB to claim his coins with the timelock of MHP1[n − 1].TL:

HTLC′
C ← (C → B, hB , TLC − Δ, amtC) (1)

where Δ is the time required to publish a transaction on the ledger. It is impor-
tant to note that, unlike other HTLCs, the amount amtC in HTLC′

C is not
deducted from C, but B, which is the released amount in HTLCC . It is better to
interpret HTLC′

C as a conditional payment that uses collateral of B, and B can
re-claim it by revealing xB, otherwise, it goes to C after the timelock period.

For the channel γB,C , there are three existing HTLCs: HTLCC has condition
h for the amount of amtC from B to C, MHP1[n − 1] has conditions {h, hB}
for the amount of amtcxl from C to B and MHP2[n − 1] has condition {hB}
for the amount of fn−1 from C to B. For full cancellation where the amounts
are the same, i.e., amtC = amtcxl, B and C update γB,C by canceling HTLCC

and MHP1[n− 1], and locking HTLC′
C . Otherwise, for partial cancellation where

amtC > amtcxl, parties additionally lock HTLCnew
C where HTLCnew

C :=(B →
C, h, TLC , amtC − amtcxl).

102 O. Ersoy et al.

For the channel γA,B , there are also three ongoing HTLCs: HTLCA has con-
dition h for the amount of amtA from A to B, MHP1[0] has conditions {h, hB}
for the amount of amtC from B to A and MHP2[0] has condition {hB} for the
amount of

∑n−1
j=0 fj from B to A. For full cancellation, since atomic reveal of

xB is not necessary for A, A and B will update γA,B by canceling HTLCA and
MHP1[0]. Here, the difference of cancelling HTLCA and MHP1[0], amtA − amtC ,
can be seen as an additional fee gain for A. For partial cancellation, parties lock
HTLCnew

A where HTLCnew
A :=(A → B, h, TLA, amtA − amtcxl).

In the honest case where both channels of B are updated, B can reveal xB to
C and update their transitory state by unlocking HTLC′

C and receiving payment
MHP2[n − 1]. Here, B can also share xB with A and execute MHP2[0].

If a malicious A or C does not complete the channel update, then B publishes
the previous state of both channels, which includes the pending HTLCs of MHP0,
MHP1 and MHP2. Then, B does not reveal xB and waits until the end of all
timelocks that require xB . For the initial HTLCs, HTLCA and HTLCC , he follows
the standard HTLC protocol. Hence, even if A and/or C are malicious, B doesn’t
lose any funds.

Pay and Reroute. In this phase, the bailout parties get paid by MHP2 once B
reveals xB . Here, parties follow the standard MHP payment procedure. Also, the
intermediaries update the locking condition of MHP1 by eliminating hB there.
For each i ∈ [1, n − 2], MHP1[i] is updated with

MHPnew
1 [i] = (payeri → payeei, h,TL[i], amt1[i]). (2)

This implies that MHP0 is re-routed. In the full cancellation case, HTLCA

and HTLCC are replaced by MHPnew
1 [1], . . . ,MHPnew

1 [n− 2]. In other words, the
new payment path goes via D1, . . . , Dn−3, and B is no longer involved in the
payment. In partial cancellation case, the locked amounts in channels γA,B and
γB,C are reduced by amtcxl, which is now locked in the alternative path.

3.3 Security Discussion

Here, we briefly argue the balance security of the parties. For parties A and C,
they are replacing their existing HTLCs of MHP0 with the ones in MHP1 where
the timelocks are hash conditions are the same. Thus for them, only the path is
changing. For the bailout intermediaries, the balance security mainly relies on
the security of MHPs since they are regular intermediaries. For B, the balance
security comes from the fact that the new MHPs depend on the secret xB chosen
by him. Thus, if the HTLC updates and the cancellation phase are incomplete,
then B can always ignore the new HTLCs since only he has the witness xB of
them. Because of the page limitations, we present the detailed security discussion
of the HTLC updates with timelines in [21]. Also, in [21], we provide the ideal
functionality FBO and we show that our protocol Bailout (ΠBO) emulates the
ideal functionality FBO.

Get Me Out of This Payment! Bailout: An HTLC Re-routing Protocol 103

4 Evaluation

We consider the scenario that a party (Bob) wants to go offline and bailout of
all of his payments. In [21], we also treat the case of a party wanting to bailout
to re-gain liquidity. While in the first scenario, the party wants to get out of all
ongoing payments, for the second case he only wants to bailout of a subset of
payments that allows him to freely use a certain amount of locked funds.

Metrics. Our evaluation is focused on the rate of successful bailouts. For this,
we classify the result of a bailout in three categories:

1. No Loop: the network does not contain an alternative path that can be used
for bailout for at least one of the payments the party aims to bailout from.

2. Failed : the party finds an alternative path for all payments but the bailout
fails nevertheless, e.g., due to insufficient balance on the alternative paths.

3. Successful : the party managed to bailout of all payments.

During a simulation, we count the number of occurrences of each of the above,
and the sum of all these three numbers (called number of bailout events).

The first possible cause of failure, ‘No Loop’, results from the topology of
the network. Our algorithm does not directly impact the topology, since no new
channel is created or deleted during the protocol execution. However, it stands to
reason that if parties have the option to use Bailout, they ensure that bailout
parties are present by establishing channels such that alternative paths exist.
Consequently, we expect a lower amount of ‘No Loop’ cases when our protocol
is deployed than for the current Lightning topology, which we use as a model in
our evaluation. In order to focus on protocol-related rather than topology-related
aspects, we compute the failure ratio as (Failed)/(Successful + Failed).

Simulation Model. We implemented the protocol by extending a known simu-
lator, and the code is open-source3. We simulate the Lightning Network by using
real-world topology snapshots. As 92% of parties use the LND client [36], our
simulation implements the routing behavior of LND. Other clients differ slightly
in the path selection but otherwise execute the same behavior.

Payments are executed concurrently. For simplicity, we disregard the time
required for local operations and only add network latency for the communi-
cation. As Lightning only requires relatively fast operations such as encryption
and decryption of messages of 1300 bytes as well as hashing [12], the network
latency should dominate the local computation time.

Generally, the latency of payments that are properly executed are chosen
such that parties do not bailout during this time but only if additional delays
happen. In order for parties to use Bailout, we consider the following behaviors
that cause additional delays:

3 https://github.com/stef-roos/PaymentRouting/tree/bailout.

https://github.com/stef-roos/PaymentRouting/tree/bailout

104 O. Ersoy et al.

– Delaying : with a certain probability p, an intermediary or receiver delays the
payment (e.g., by being offline) until the maximal timeout.

– Not settling : a fraction p of intermediaries does not cancel failed payments
but rather waits until the timeout expires.

Parameters. We run our simulation on a real-world Lightning snapshot [39].
We restricted our evaluation to the largest connected component with nearly
7,000 nodes and about 65,000 channels to ensure that every node had a path to
every other node. For each channel and direction, we choose the balance expo-
nentially with an average of 4 million satoshi, similar to the statistics of Lightning
from early 2022 [1]. For the normal Lightning fees, we roughly approximated the
statistics as follows: More than 75% of the parties choose a base fee of 0 or 1,
so we chose each with a probability of 50%. For the fee rate, the probability to
have a rate of 0.000001 was 25%, otherwise the fee rate followed an exponen-
tial distribution with parameter λ = 1/0.000004. We chose the local timelock
of each party to be the widely used value of 144 blocks. We generated 100,000
transactions with random source-destination pairs, an exponentially distributed
payment value of 10% of the average channel balance, and an average of 10
transactions per party and hour. There is no real-world data on transactions in
Lightning as they are considered private. Thus, we took the same parameters as
previous work [18]. For the additional delays, i.e., Delaying and Not Settling, p
was varied between 0.1 and 0.5 in steps of 0.1. All results were averaged over
10 runs. When the last transaction is initiated, a party B decides that he wants
to go offline. He waits 60 s such that any ongoing payments without additional
delays can terminate. 60 s was chosen as Lightning payments should terminate
within a minute [2]. During the 60 s, he no longer forwards new payments. After
the 60 s, he attempts to bailout of all remaining payments. For simplicity, we
assume that bailout parties are not paid fees here, but we consider them in [21].

The party aiming to use Bailout considers each ongoing payment and first
determines a list of alternative paths for the payment. The discovery of alter-
native paths works as follows: We initialize a queue containing paths, with the
first path in the queue being a path containing only the party A, i.e., the party
preceding the party B that aims to go offline. We want to find loop-free path
from A to B’s successor C, which does not contain B. In each step of the path
discovery algorithm, we remove the first path from the queue. We iterate over all
neighbors I of the last node in the path. If I = C, we extend the path by I and
add it to the list of alternative paths. Otherwise, if I is not B and appending
it to the path does not create a loop, we add the path with I appended to the
queue. For efficiency reasons, we limit the alternative path length to at most 4
and the maximal queue size to 1000. If no alternative paths are found, we record
‘No Loop’ to note that the bailout failed due to the absence of alternative paths.

After determining a list of alternative paths, the party checks whether he can
bailout of the payment using one or several of the alternative paths. Concretely,
we consider the first path and determine the amount of funds that can be sent via
it in accordance with the balance constraints. If the balance is sufficient to take

Get Me Out of This Payment! Bailout: An HTLC Re-routing Protocol 105

over the complete payment value, we bailout out of the payment by moving the
value to this alternative paths. Note that the balance of the path is accordingly
reduced. Otherwise, we split the payment value and execute Bailout for the
amount that can be moved to the alternative path. For the remaining funds,
we consider the second path found, for which we repeat the same process. We
continue the algorithm until we have either moved all funds to another path or
there are no alternative paths left. In the later case, the bailout fails.

The party executes the above process for all ongoing payments he is an inter-
mediary for. Note that the party can only go offline if he can bailout of all these
payments. Thus, we mark the bailout as ‘Successful’ if all separate bailouts are
successful. If we experience ‘No Loop’ for any of them, we terminate and record
‘No Loop’ as the result of the overall bailout attempt. Otherwise, the bailout is
‘Failed’. We count the number of ‘No Loop’, ‘Failed’, and ‘Successful’ by exe-
cuting the above bailout protocol for every party that has at least one ongoing
payment. Based on these value, we compute the success ratio of bailouts. Note
that parties cannot bailout of payments that they are the source off. However,
as they do not need to relay a preimage to their predecessor when they are the
source, these payments do not prevent them from going offline, so that we do
not consider them in the set of ongoing payments.

 0.01

 0.1

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6

F
ai

lu
re

 r
at

io

Probability p

Delaying-Low
Delaying-High

No-Settling-Low
No-Settling-High

(a) Failure Rate

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6

N
od

es
 w

ith
ou

t p
ay

m
en

ts

Probability p

(b) No Need

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6

N
o

Lo
op

Probability p

(c) No Path

Fig. 3. a) Failure ratio for bailing out of all ongoing payments; b)+c) Fraction of parties
that do not attempt to bailout because they b) do not have ongoing payments or c)
do not have an alternative path.

As concurrency has a major impact on the number of ongoing payments, we
consider a low-concurrency and a high-concurrency scenario. In the former, a
party on average sends 0.04 transactions per hour, or roughly 1 transaction per
day. In the latter, parties send an average of 10 transactions per hour.

Results. Figure 3a shows the failure ratio. Note that since few payments fail,
the figure uses a log scale. High concurrency indicates that at any time, there
is more collateral locked and hence the probability that an alternative path has
sufficient collateral is lower. Furthermore, Delaying can be executed during any
payment and by any party whereas Not Settling only happens when payments
fail, which is less frequent. As a consequence, there are less ongoing payments
to bail out for Not Settling, resulting in a lower failure ratio.

106 O. Ersoy et al.

The main difference between the various parameter selections lies in the
number of parties that attempt to bailout. Parties may not attempt a bailout
because they do not need to as they have no ongoing payments or because they
cannot find an alternative path. Thus, we divide the parties in the snapshot in
four classes: ‘No Loop’, ‘Successful’, and ‘Failed’, as defined in Sect. 4, as well
as ‘No Need’, the parties without ongoing payments. Figures 3b and 3c show
the fraction of parties that all fall into the ’No Need’ and ‘No Loop’ category,
respectively. As there are more concurrent payments and a higher probability
of delay, more parties have ongoing payments and consequently, the fraction
of parties not discovering an alternative path increases. In particular, when few
parties have ongoing parties, ongoing payments mainly affect central parties with
a large number of links. These parties can easily find alternative paths. As more
parties are affected, parties with few connections that are not part of any loops
have ongoing payments as well. Establishing channels such that alternative paths
are possible is hence an important aspect when aiming to use Bailout. We can
see that as long as alternative paths exist, Bailout is nearly always successful.

5 Related Work

There have been several works on the different channel constructions: Lightning
channels [38], generalized channels [3,17], and virtual channels [4,6,15,16,23,25].
A network of channels can be used for atomic multi-channel updates and multi-
hop payments over parties who do not have a direct channel [5,18,19,32,35,38].

An important aspect regarding multi-hop payments concerns the channel
balances. The balance in each side of a channel determines the usability of that
channel in a multi-hop payment in that direction. Thus, if a channel is depleted in
one direction, then that direction cannot be used for multi-hop payments. There
have been studies on reducing depletion by (i) active re-balancing with circu-
lar payments [9,28,37,42], and (ii) passive re-balancing with fees and incentive
mechanisms [13,20,41]. It is also possible to change the capacity, and thereby the
balance, of a channel by Loop-in and Loop-out protocols [27], which require on-
chain transactions. Recently, Spider [40] has been proposed to improve channel
balances and network throughput. It utilizes a packet-switched architecture that
allows splitting transactions into smaller units for better load balancing. These
re-balancing protocols re-locate the available (unlocked) coins in the channels,
yet they do not solve the unavailability of locked coins.

The existing multi-hop payment protocols require locking coins in each chan-
nel in the path for a period of time, which can be days. The coins can be
unlocked if the payment is completed (with success or honest immediate cancel-
lation). However, the locking period can be abused by griefing and congestion
attacks [29,36,43], which lock the available balances in the channels, and limit
their usability for the period of time. The attacks can be against the whole
network or some specific parties/channels. The effect of the griefing attack can
be reduced by changing the path selection algorithm [43], limiting the number
of hops [36], or decreasing the locked time [5,35]. Also, recently, an alterna-
tive HTLC protocol with a griefing-penalty mechanism is proposed [33], which

Get Me Out of This Payment! Bailout: An HTLC Re-routing Protocol 107

requires the receiving parties (payees) to lock coins as well, which are paid in
the case of griefing. With this mechanism, the budget of executing the griefing
attack is increased by a factor of 4 for a path length of 4. Note that all these
(partial) countermeasures are preventive, i.e., they aim to reduce the effect of
the attack before the payment is locked. To the best of our knowledge, there was
no reactive countermeasure that frees (unlocks) the locked coins of a party from
an ongoing multi-hop payment.

Watchtowers [7,8,14,24,26,34] address the issue of offline parties for single
payment channels. In a single channel, one party may publish an invalid balance
on the blockchain with the goal of earning more coins than their actual balance.
Then, the other party has to publish a dispute including the correct balance
within a certain time. In a watchtower protocol, the responsibility of raising
a dispute is delegated to third party. However, watchtowers are not designed
for relaying multi-hop payments as they are observing the blockchain rather
than local payments. Indeed, multi-hop payments aim for value privacy [30,31],
meaning that no party not involved in the payment should learn the payment
value, which seems to contradict the involvement of an outside party.

Acknowledgements. This work has been partially supported by Madrid regional
government as part of the program S2018/TCS-4339 (BLOQUES-CM) co-
funded by EIE Funds of the European Union; by grant IJC2020-043391-
I/MCIN/AEI/10.13039/501100011033; by PRODIGY Project (TED2021-132464 B-
I00) funded by MCIN/AEI/10.13039/501100011033/ and the European Union
NextGenerationEU/PRTR; and by Ripple’s University Blockchain Research Initiative.
The Distributed ASCI supercomputer (https://www.cs.vu.nl/das5/) was used to run
the experiments.

References

1. Lightning network statistics. https://1ml.com/statistics
2. Antonopoulos, A.M.: Mastering Bitcoin: Programming the Open Blockchain.

O’Reilly Media, Inc., Boston (2017)
3. Aumayr, L.: Generalized channels from limited blockchain scripts and adaptor

signatures. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol.
13091, pp. 635–664. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
92075-3 22

4. Aumayr, L., et al.: Bitcoin-compatible virtual channels. In: IEEE SP (2021)
5. Aumayr, L., Moreno-Sanchez, P., Kate, A., Maffei, M.: Blitz: secure multi-hop

payments without two-phase commits. In: USENIX Security Symposium (2021)
6. Aumayr, L., Moreno-Sanchez, P., Kate, A., Maffei, M.: Donner: utxo-based virtual

channels across multiple hops. IACR Cryptol. ePrint Arch., p. 855 (2021)
7. Avarikioti, G., Laufenberg, F., Sliwinski, J., Wang, Y., Wattenhofer, R.: Towards

secure and efficient payment channels. In: FC (2018)
8. Avarikioti, Z., Litos, O.S.T., Wattenhofer, R.: Cerberus channels: incentivizing

watchtowers for bitcoin. In: FC (2020)
9. Awathare, N., Suraj, Akash, Ribeiro, V.J., Bellur, U.: REBAL: channel balancing

for payment channel networks. In: MASCOTS, pp. 1–8. IEEE (2021)

https://www.cs.vu.nl/das5/
https://1ml.com/statistics
https://doi.org/10.1007/978-3-030-92075-3_22
https://doi.org/10.1007/978-3-030-92075-3_22

108 O. Ersoy et al.

10. Blockchain.com: average confirmation time (2022). https://www.blockchain.com/
charts/avg-confirmation-time

11. Community, L.N.: Lighning network specification. https://github.com/lightning/
bolts/blob/master/02-peer-protocol.md#rationale-7

12. Community, L.N.: Lightning network specification. https://lightning-bolts.
readthedocs.io/en/latest/

13. Conoscenti, M., Vetrò, A., Martin, J.C.D.: Hubs, rebalancing and service providers
in the lightning network. IEEE Access 7, 132828–132840 (2019)

14. Dryja, T., Milano, S.B.: Unlinkable outsourced channel monitoring. Scaling Bitcoin
Milan (2016)

15. Dziembowski, S., Eckey, L., Faust, S., Hesse, J., Hostáková, K.: Multi-party virtual
state channels. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol.
11476, pp. 625–656. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17653-2 21

16. Dziembowski, S., Eckey, L., Faust, S., Malinowski, D.: Perun: virtual payment hubs
over cryptocurrencies. In: IEEE SP (2019)

17. Dziembowski, S., Faust, S., Hostáková, K.: General state channel networks. In:
CCS, pp. 949–966. ACM (2018)

18. Eckey, L., Faust, S., Hostáková, K., Roos, S.: Splitting payments locally while
routing interdimensionally. IACR Cryptol. ePrint Arch. 2020, 555 (2020)

19. Egger, C., Moreno-Sanchez, P., Maffei, M.: Atomic multi-channel updates with con-
stant collateral in bitcoin-compatible payment-channel networks. In: CCS (2019)

20. van Engelshoven, Y., Roos, S.: The merchant: avoiding payment channel depletion
through incentives. In: DAPPS, pp. 59–68. IEEE (2021)

21. Ersoy, O., Moreno-Sanchez, P., Roos, S.: Get me out of this payment! bailout: an
htlc re-routing protocol (full version). Cryptology ePrint Archive, Paper 2022/958
(2022). https://eprint.iacr.org/2022/958

22. Gudgeon, L., Moreno-Sanchez, P., Roos, S., McCorry, P., Gervais, A.: SoK: layer-
two blockchain protocols. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS,
vol. 12059, pp. 201–226. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-51280-4 12

23. Jourenko, M., Larangeira, M., Tanaka, K.: Lightweight virtual payment channels.
In: CANS (2020)

24. Khabbazian, M., Nadahalli, T., Wattenhofer, R.: Outpost: a responsive lightweight
watchtower. In: ACM AFT (2019)

25. Kiayias, A., Litos, O.S.T.: Elmo: recursive virtual payment channels for bitcoin.
IACR Cryptol. ePrint Arch., p. 747 (2021)

26. Lab, T.M.D.C.I..M.: Watchtower - watch channels for fraudulent transactions
(2018). https://github.com/mit-dci

27. Labs, L.: Loop. https://lightning.engineering/loop/
28. Li, P., Miyazaki, T., Zhou, W.: Secure balance planning of off-blockchain payment

channel networks. In: INFOCOM, pp. 1728–1737. IEEE (2020)
29. Lu, Z., Han, R., Yu, J.: General congestion attack on HTLC-based payment channel

networks. IACR Cryptol. ePrint Arch., p. 456 (2020)
30. Malavolta, G., Moreno-Sanchez, P., Kate, A., Maffei, M.: Silentwhispers: enforcing

security and privacy in credit networks. In: NDSS (2017)
31. Malavolta, G., Moreno-Sanchez, P., Kate, A., Maffei, M., Ravi, S.: Concurrency

and privacy with payment-channel networks. In: ACM CCS (2017)
32. Malavolta, G., Moreno-Sanchez, P., Schneidewind, C., Kate, A., Maffei, M.: Anony-

mous multi-hop locks for blockchain scalability and interoperability. In: NDSS
(2019)

https://www.blockchain.com/charts/avg-confirmation-time
https://www.blockchain.com/charts/avg-confirmation-time
https://github.com/lightning/bolts/blob/master/02-peer-protocol.md#rationale-7
https://github.com/lightning/bolts/blob/master/02-peer-protocol.md#rationale-7
https://lightning-bolts.readthedocs.io/en/latest/
https://lightning-bolts.readthedocs.io/en/latest/
https://doi.org/10.1007/978-3-030-17653-2_21
https://doi.org/10.1007/978-3-030-17653-2_21
https://eprint.iacr.org/2022/958
https://doi.org/10.1007/978-3-030-51280-4_12
https://doi.org/10.1007/978-3-030-51280-4_12
https://github.com/mit-dci
https://lightning.engineering/loop/

Get Me Out of This Payment! Bailout: An HTLC Re-routing Protocol 109

33. Mazumdar, S., Banerjee, P., Ruj, S.: Griefing-penalty: countermeasure for griefing
attack in lightning network. arXiv preprint arXiv:2005.09327 (2020)

34. McCorry, P., Bakshi, S., Bentov, I., Meiklejohn, S., Miller, A.: Pisa: arbitration
outsourcing for state channels. In: ACM AFT (2019)

35. Miller, A., Bentov, I., Bakshi, S., Kumaresan, R., McCorry, P.: Sprites and state
channels: payment networks that go faster than lightning. In: FC (2019)

36. Mizrahi, A., Zohar, A.: Congestion attacks in payment channel networks. In:
Borisov, N., Diaz, C. (eds.) FC 2021. LNCS, vol. 12675, pp. 170–188. Springer,
Heidelberg (2021). https://doi.org/10.1007/978-3-662-64331-0 9

37. Pickhardt, R., Nowostawski, M.: Imbalance measure and proactive channel rebal-
ancing algorithm for the lightning network. In: IEEE ICBC, pp. 1–5. IEEE (2020)

38. Poon, J., Dryja, T.: The bitcoin lightning network: scalable off-chain instant pay-
ments (2016). https://lightning.network/lightning-network-paper.pdf

39. roher: discharged-pc-data (github project). https://git.tu-berlin.de/rohrer/
discharged-pc-data/

40. Sivaraman, V., et al.: High throughput cryptocurrency routing in payment channel
networks. In: NSDI, pp. 777–796. USENIX Association (2020)

41. Stasi, G.D., Avallone, S., Canonico, R., Ventre, G.: Routing payments on the light-
ning network. In: iThings/GreenCom/CPSCom/SmartData. IEEE (2018)

42. Subramanian, L.M., Eswaraiah, G., Vishwanathan, R.: Rebalancing in acyclic pay-
ment networks. In: PST, pp. 1–5. IEEE (2019)

43. Tochner, S., Zohar, A., Schmid, S.: Route hijacking and dos in off-chain networks.
In: AFT, pp. 228–240. ACM (2020)

http://arxiv.org/abs/2005.09327
https://doi.org/10.1007/978-3-662-64331-0_9
https://lightning.network/lightning-network-paper.pdf
https://git.tu-berlin.de/rohrer/discharged-pc-data/
https://git.tu-berlin.de/rohrer/discharged-pc-data/

	Get Me Out of This Payment! Bailout: An HTLC Re-routing Protocol
	1 Introduction
	2 Building Blocks
	3 The Bailout Protocol
	3.1 Overview of Bailout
	3.2 The Phases of Bailout
	3.3 Security Discussion

	4 Evaluation
	5 Related Work
	References

