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Digital Twin of the Mooring Line Tension
for Floating Offshore Wind Turbines

Jake Walker, Member, IEEE, Andrea Coraddu, Member, IEEE,
Luca Oneto, Member, IEEE, and Stuart Kilbourn

Abstract—The number of installed Floating Offshore Wind
Turbines (FOWTs) has doubled since 2017, quadrupling the total
installed capacity, and is expected to increase significantly over
the next decade. Consequently, there is a growing consideration
towards the main challenges for FOWT projects: monitoring the
system’s integrity, extending the lifespan of the components, and
maintaining FOWTs safely at scale. Effectively and efficiently
addressing these challenges would unlock the wide-scale deploy-
ment of FOWTs. In this work, we focus on one of the most
critical components of the FOWTs, the Mooring Lines (MoLs),
which are responsible for fixing the structure to the seabed. The
primary mechanical failure mechanisms in MoLs are extreme
load and fatigue, both of which are functions of the axial tension.
An effective solution to detect long term drifts in the mechanical
response of the MoLs is to develop a Digital Twin (DT) able to
accurately predict the behaviour of the healthy system to compare
with the actual one. Authors will leverage operational data
collected from the world’s first commercial floating wind farm
(Hywind Pilot Park1) in 2018, to investigate the effectiveness
of the DT for the prediction of the MoL axial tension. The DT
will be developed using state-of-the-art data-driven methods, and
results based on real operational data will support our proposal.

Index Terms—Floating Offshore Wind Turbines, Mooring
Lines, Axial Tension, Digital Twins, Data-Driven Models

I. INTRODUCTION

Floating Wind is one of the fastest-growing sectors within
the Offshore Renewable Energy Industry and internationally
recognised as one of the most promising renewable energy
sources to satisfy a significant proportion of global energy
demands [1]. The ability to economically deploy Floating Off-
shore Wind Turbines (FOWTs) in deepwater areas, that were
previously unfeasible for development using fixed-bottom
turbines, is one of the fundamental driving forces behind
the success of Floating Wind [2]. In fact, deepwater areas
are often characterised by higher average wind speeds and
consequently an higher average capacity factors that could
improve the economic viability of offshore wind energy [3].
However, Floating Wind is still an emerging market, and only
a limited number of pilots have been deployed, so there is
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still a significant amount work required to address the unique
aspects to Floating Wind: monitoring the system’s integrity,
extending the lifespan of the components, and maintaining
FOWTs safely at scale [1], [2], [4]. Nevertheless, due to the
success of Pilot FOWTs around the world, the industry is
now focused on addressing these remaining challenges before
deploying FOWTs at scale in deepwater [4]. In particular,
the use, monitoring, and maintenance of the station-keeping
devices (i.e., the Mooring Lines - MoLs) devoted to anchor
the FOWT structure in place pose some of the most prominent
challenges to overcome [4].

Experience from the Oil&Gas industry indicates that the
demanding environmental conditions such as the corrosive
salt-water and forceful waves, combined with the isolation
of the deployment sites, are particularly damaging to the
MoLs and may pose issues for checking and maintaining
the integrity of FOWTs [5]. In addition, unlike Floating
Production Storage and Offloading (FPSO) vessels, where
there are typically between 12 and 24 MoLs, economic drivers
within the renewables sector tend to produce designs with no
redundancy [6]. For this reason, each MoL is critical to the
FOWT structure, and failure is catastrophic [7]. Nevertheless,
the extreme conditions in which MoLs operate call for reg-
ular inspections to prevent disastrous failures and downtime.
Inspections are usually performed in two ways: close visual
inspection by divers and through Remotely Operated Vehicles
(ROVs) [8], being both options uneconomical [9]. For these
reasons, within the Oil&Gas industry, alternative strategies
for monitoring MoLs integrity are actually employed, like
using load cell to detect rapid failure by extreme load [10] or
using GPS-based devices (e.g., LifeLine JIP [11]) to detect an
unusual excursion caused by the loss of a single mooring [11].

Regarding FOWT failures and maintenance activities, since
this industry is in its infancy, there is very little publicly avail-
able data describing the expected failure rates of FOWTs or
the required maintenance schedules [12]. According to [13] for
a fixed-bottom offshore wind farm with 200 turbines, it may
be necessary to perform up to 3, 000 maintenance visits per
year. Since the mechanics of FOWTs are similar to the fixed-
bottom turbines, it is safe to consider Floating Wind farms will
require (at least) a similar number of maintenance visits. With
this in mind, the ability to schedule maintenance by forecasting
the health status of FOWTs becomes fundamental to deploy
FOWTs maintenance at scale [14]. Similar considerations
should also be made towards the safety of the maintenance
operations. In fact, since a failure could be catastrophic [7],
developing an early warning system able to predict a failure
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early enough to secure a safe working environment is essential
to ensure the safety of maintenance operations.

In order to estimate the health conditions it is required
to develop computational models of the mooring systems.
Contrarily to visual inspections, computational models can
ensure an economic, reliable, and effective monitoring tools
for the integrity of the MoLs [15].

In the literature, it is possible to find a large body of
work addressing MoL failures [16], [17], [8], [18], [19], [20],
[21], [22], [23], [24], [25], [26], [27], [28], [29], [30]. The
primary mechanical failure mechanisms in mooring systems
are extreme load and fatigue, both of which are functions of the
axial tension [17]. By exploiting this relationship, it is possible
to use the MoL axial tension as an indicator for the health
status of the Mooring System. In addition, [8] acknowledge
MoL failures are often focused at the top of the chain, as
these are the points of highest tension and the most stressed
locations. The works available in the literature can be grouped
into two main families: Physical Models (PMs) and Data-
Driven Models (DDMs). PMs and DDMs can be used to detect
long term drifts in the mechanical response of the MoLs by
developing a Digital Twin (DT) able to accurately predict the
behaviour of the healthy system to compare with the actual
one. A DT is a specific type of model that embodies a precise
digital copy of a physical system [31]. Consequently, DTs are
an effective method of forecasting the future behaviour of a
system after the DT has learned the behaviour from historical
examples [32].

PMs are primarily based on the mechanistic knowledge
of the MoLs behaviour. Authors of [21] provided a good
overview of the mooring dynamics PMs considering their
advantages and limitations, describing in details simple, ap-
proximate (linear force-displacement or force-displacement-
velocity models), and high fidelity (finite-element approach)
methods.

Instead, DDMs allow us to develop computationally aware
real-time monitoring systems for MoLs by learning the input-
output behaviour of a system from historical examples without
any a-priori knowledge about the MoLs. DDMs require a
single intensive learning phase (i.e., model construction) and
benefit from a computationally inexpensive forward phase (i.e.,
model used as a predictor) [33], making them well suited to
develop DTs. [26], [27], [28], [29] have all proposed using
DDMs to monitor other marine energy systems (Floating
platforms, FPSO vessels, etc.), and noted the potential for
predictive models to reduce the cost of operational monitor-
ing. In particular, [27] propose a DDM to approximate the
MoL tension in place of a computationally expensive PM
(specifically a Finite Element Analysis) by use of a non-
linear autoregressive exogenous model. Fatigue damage of
MoLs has been investigated by [30] using an Artificial Neural
Network (ANN), where they observe the significant influence
of the environmental conditions (waves, winds, and currents)
on the tension bands. Additionally, [23], [34] demonstrate
the potential benefits of using DDMs for FOWT MoLs when
scaling health monitoring tools site-wide.

To the best of the authors’ knowledge, no one has yet
developed DTs of the FOWT MoLs to detect long-term drifts

in the mechanical response. Moreover, the previous literature
on monitoring FOWTs has been focused only on synthetic
data and scenarios. Developing strategies to address these
problems and testing the solutions with real data could provide
the necessary information to address the outlined challenges
sufficiently.

For these reasons, to detect long-term drifts in the me-
chanical response of the MoLs, we will develop a DT able
to accurately predict the behaviour of the healthy system to
compare with the actual one. The DT will be developed using
state-of-the-art data-driven methods [35], [36] and results
based on real operational data will support our proposal.

The rest of the paper is organised as follows. Section II
summarises the problem we aim to address and the related
available dataset. Section III describes the proposed modelling
approach, based on DDMs, to address the problem summarised
in Section II using the previously described dataset. Section IV
reports the experimental results showing the effectiveness of
our proposal. Finally, Section V concludes the paper.

II. PROBLEM AND DATASET DESCRIPTION

In this section we will summarise the problems under
investigation and the available data that can be exploited for
building models able to address them.

In this work, we aim to face the problem of detect long
term drifts in the mechanical response of the MoLs. For
this purpose, as described in Section I, we will develop a
DT able to infer the expected behaviour of the MoLs in
healthy conditions to compare with the actual one. Drifts in
the differences between the actual and the predicted (healthy)
behaviour is an indicator of decay in the condition of the
MoL [37]. This DT will take as inputs the current status of
the factors influencing the MoL behaviour (i.e., the motions
of the turbine and the environmental conditions) and as output
the MoL axial tension.

In order to develop our DT we will exploit the publicly
available Hywind dataset [38]. The dataset describes the
weather, motion, and mooring line axial tension of an SWT-
6.0-154 turbine floating in depths of between 95-120m, 25
km off the coast of Scotland. The dataset is composed of 11
intervals of the turbine motion and response, in 30 minute
windows over the course of 2018. Table I describes the
features of the data set. Table II reports the data collection
periods together and the key operational information (i.e., the
significant wave height - Hs and the peak waves period - Tp).
A schematic of the turbine and the relevant sensor placement
is seen in Figure 1.

III. PROPOSED APPROACH

In the proposed context, predicting the axial tension of
the FOWT MoLs, a general modelisation framework can be
defined, characterised by an input space X ⊆ Rd, an output
space Y ⊆ Rb, and an unknown relation µ : X → Y
to be learned [35], [39]. For what concerns this work, X
is composed by the the motions of the turbine and the
environmental conditions (i.e., De, Dn, θN , φN , θT , φT , ψT ,
v, and ψdir in Table I) while the output space Y refers to the
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TABLE I: Hywind data set [38] features.

Variable
ID Unit

Sampling
Name Rate [Hz]

Date-Time t [s] 10
Drift (Easting) De [m] 10

Drift (Northing) Dn [m] 10
Nacelle Pitch θN [rad] 10
Nacelle Roll φN [rad] 10
Tower Pitch θT [rad] 10
Tower Roll φT [rad] 10
Tower Yaw ψT [rad] 1
Wind speed v [ m

s ] 10
Yaw Direction ψdir [◦] 10

Tension Line 1 - Bridle 1 TML1B1 [kN] 5
Tension Line 1 - Bridle 2 TML1B2 [kN] 5
Tension Line 2 - Bridle 1 TML2B1 [kN] 5
Tension Line 2 - Bridle 2 TML2B2 [kN] 5
Tension Line 3 - Bridle 1 TML3B1 [kN] 5
Tension Line 3 - Bridle 2 TML3B2 [kN] 5

TABLE II: Hywind data set [38] data collection periods
together and the key operational information.

Interval Date-Time Range Hs [m] Tp [s]

1 2018-03-26 23:15 - 23:45 2.23 10.6
2 2018-01-14 15:25 - 15:55 4.21 8.7
3 2018-04-14 00:25 - 00:55 2.07 10.5
4 2018-02-13 01:05 - 01:35 2.13 6.5
5 2018-02-24 04:35 - 05:05 2.51 7.3
6 2018-01-09 09:25 - 09:55 3.25 9.3
7 2018-01-06 07:45 - 08:15 4.41 10.9
8 2018-07-29 03:45 - 04:15 3.02 7.85
9 2018-05-02 03:15 - 04:45 2.28 6.5
10 2018-01-24 11:15 - 11:45 3.87 8.3
11 2018-01-24 11:25 - 11:55 3.85 8.3

axial tensions of the FOWT MoL bridles (i.e., TML1B1 , TML1B2 ,
TML2B1

, TML2B2
, TML3B1

, and TML3B2
in Table I).

In this context, the authors define the model h : X → Y as
an artificial simplification of µ. Now, the model h represents
a DT of the FOWT MoL bridles. In our work, we aim to
develop a DT (see Section II) to infer the expected behaviour
of the MoLs in healthy conditions to compare with the actual
one. Then the input space is composed by instantaneous
information at time t (i.e., De, Dn, θN , φN , θT , φT , ψT ,
v, and ψdir in Table I) while the output space is the axial
tensions of the FOWT MoL bridles at time t (i.e., TML1B1 ,
TML1B2

, TML2B1
, TML2B2

, TML3B1
, and TML3B2

in Table I).
The model h, as described in Section I can be obtained

with different kinds of techniques, for example, requiring
some physical knowledge of the problem, as in PMs, or the
acquisition of large amounts of data, as in DDMs. In this
paper we will use a state-of-the-art DDM for the reasons
described in Section I. Between the DDMs it is possible to
identify two families of approaches [35], [40]. The first one,
comprising traditional Machine Learning methods, needs an
initial phase where the features must be defined a-priori from
the data via feature engineering or implicit or explicit feature
mapping [35], [41], [42]. The second family, which includes

(a) Wind Turbine Tower.

(b) Mooring Lines.

Fig. 1: Schematic of an FOWT including the relevant sensor
placement for the features described in Table I.

deep learning methods, automatically learns both the features
and the models from the data [40]. For small cardinality
datasets and outside particular applications (e.g., computer
vision and natural language processing) Deep Learning does
not perform well since they require huge amount of data to
be reliable and to outperform traditional Machine Learning
models [43], [44].

Machine Learning maps the problem of building the two
DTs in a typical regression problem [45], [42]. In fact, ML
techniques aim at estimating the unknown relationship µ
between input and output through a learning algorithm AH
which exploits some historical data to learn h and where H is
a set of hyperparameters which characterises the generalisation
performance of A [36]. The historical data consists on a series
of n examples of the input/output relation µ and are defined
as Dn = {(x1,y1), · · · , (xn,yn)} where x ∈ X and y ∈ Y .
For simplicity we will indicate with y one of the elements in
y since predicting a series of targets is equivalent to make a
model for each one of the targets [35].
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In this paper we will leverage on a Machine Learning
model coming from the Kernel Methods family called Kernel
Regularised Least Squares (KRLS) [46]. The idea behind
KRLS can be summarised as follows. During the training
phase, the quality of the learned function h(x) is measured
according to a loss function `(h(x), y) [47] with the empirical
error

L̂n(h) =
1

n

n∑
i=1

`(h(xi), yi). (1)

A simple criterion for selecting the final model during the
training phase could then consist in simply choosing the
approximating function that minimises the empirical error
L̂n(h). This approach is known as Empirical Risk Mini-
mization (ERM) [45]. However, ERM is usually avoided in
Machine Learning as it leads to severe overfitting of the model
on the training dataset. As a matter of fact, in this case the
training process could choose a model, complicated enough
to perfectly describe all the training samples (including the
noise, which afflicts them). In other words, ERM implies
memorisation of data rather than learning from them. A more
effective approach is to minimise a cost function where the
trade-off between accuracy on the training data and a measure
of the complexity of the selected model is achieved [48],
implementing the Occam’s razor principle

h∗ : min
h

L̂n(h) + λ C(h). (2)

In other words, the best approximating function h∗ is chosen as
the one that is complicated enough to learn from data without
overfitting them. In particular, C(·) is a complexity measure:
depending on the exploited Machine Learning approach, dif-
ferent measures are realised. Instead, λ ∈ [0,∞) is a hyper-
parameter, that must be set a-priori and is not obtained as an
output of the optimisation procedure: it regulates the trade-off
between the overfitting tendency, related to the minimisation
of the empirical error, and the underfitting tendency, related to
the minimisation of C(·). The optimal value for λ is problem-
dependent, and tuning this hyperparameter is a non-trivial task,
as will be discussed later in this section. In KRLS, models are
defined as

h(x) = wTϕ(x), (3)

where ϕ is an a-priori defined Feature Mapping (FM) [35]
allowing to keep the structure of h(x) linear. The complexity
of the models, in KRLS, is measured as

C(h) = ‖w‖2, (4)

i.e., the Euclidean norm of the set of weights describing the
regressor, which is a standard complexity measure in ML [35],
[46]. Regarding the loss function, the square loss is typically
adopted because of its convexity, smoothness, and statistical
properties [47]

L̂n(h) =
1

n

n∑
i=1

`(h(xi), yi) =
1

n

n∑
i=1

[h(xi)− yi]2 . (5)

Consequently, Problem (2) can be reformulated as

w∗ : min
w

n∑
i=1

[
wTϕ(x)− yi

]2
+ λ‖w‖2. (6)

By exploiting the Representer Theorem [49], the solution h∗

of the Problem (6) can be expressed as a linear combination
of the samples projected in the space defined by ϕ

h∗(x) =
n∑
i=1

αiϕ(xi)
Tϕ(x). (7)

It is worth underlining that, according to the kernel trick, it is
possible to reformulate h∗(x) without an explicit knowledge
of ϕ, and consequently avoiding the curse of dimensionality of
computing ϕ, by using a proper kernel function K(xi,x) =
ϕ(xi)

Tϕ(x)

h∗(x) =
n∑
i=1

αiK(xi,x). (8)

Several kernel functions can be retrieved in literature [50],
[51], each one with a particular property that can be exploited
based on the problem under exam. Usually the Gaussian kernel
is chosen

K(xi,x) = e−γ‖xi−x‖2 , (9)

because of the theoretical reasons described in [52], [53] and
because of its effectiveness [43], [44]. γ is another hyperpa-
rameter, which regulates the nonlinearity of the solution that
must be tuned as explained later. Basically the Gaussian kernel
is able to implicitly create an infinite dimensional ϕ and thanks
to this, the KRLS are able to learn any possible function [52].
The KRLS problem of Eq. (6) can be reformulated by exploit-
ing kernels as

α∗ : min
α

‖Qα− y‖2 + λαTQα, (10)

where y = [y1, . . . , yn]
T , α = [α1, . . . , αn]

T , the matrix Q
such that Qi,j = K(xj ,xi), and the identity matrix I ∈ Rn×n.
By setting the gradient equal to zero w.r.t. α it is possible to
state that

(Q+ λI)α∗ = y, (11)

which is a linear system for which effective solvers have been
developed over the years, allowing it to cope with even very
large sets of training data [54].

The problems we still have to face is how to tune the
hyperparameters for this approach (λ and γ) and how to
estimate the performance of the final model. Model Selection
(MS) and Error Estimation (EE) deal exactly with these
problems [36]. Resampling techniques are commonly used
by researchers and practitioners since they work well in
most situations and this is why we will exploit them in this
work [36]. Other alternatives exist, based on the Statistical
Learning Theory, but they tend to underperform resampling
techniques in practice [36]. Resampling techniques are based
on a simple idea: the original dataset Dn is resampled once or
many (nr) times, with or without replacement, to build three

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on June 01,2022 at 18:31:33 UTC from IEEE Xplore.  Restrictions apply. 



5

independent datasets called learning, validation and test sets,
respectively Lrl , Vrv , and T rt , with r ∈ {1, · · · , nr} such that

Lrl ∩ Vrv = �, Lrl ∩ T rt = �, Vrv ∩ T rt = � (12)
Lrl ∪ Vrv ∪ T rt = Dn (13)

Subsequently, to select the best hyperparameters’ combination
H = {λ, γ} in a set of possible ones H = {H1,H2, · · · } for
the algorithm AH or, in other words, to perform the MS phase,
the following procedure has to be applied:

H∗ : arg min
H∈H

nr∑
r=1

M(AH(Lrl ),Vrv ), (14)

where h = AH(Lrl ) is a model built with the algorithm A
with its set of hyperparameters H and with the data Lrl , and
where M(h,Vrv ) is a desired metric. Since the data in Lrl
are independent from the data in Vrv , H∗ should be the set
of hyperparameters which allows achieving a small error on
a data set that is independent from the training set. Then,
to evaluate the performance of the optimal model which is
h∗A = AH∗(Dn) or, in other words, to perform the EE phase,
the following procedure has to be applied:

M(h∗A ) =
1

nr

nr∑
r=1

M(AH∗(Lrl ∪ Vrv ), T rt ). (15)

Since the data in Lrl ∪ Vrv are independent from the ones in
T rt , M(f∗A ) is an unbiased estimator of the true performance,
measured with the metric M , of the final model [36]. In this
work we will rely on Complete k-fold cross validation which
means setting nr ≤

(
n
k

)(n−n
k

k

)
, l = (k− 2)nk , v = n

k , and t =
n
k and the resampling must be done without replacement [36].

For what concerns the metric M that we will use in our
paper we will rely on the Mean Absolute Error (MAE) which
computes the average absolute distance between the prediction
and the actual value to predict [55]. Since in regression it is
quite hard to synthesise the quality of a predictor in a single
metric we will also rely on visualisation techniques like the
scatter plot [56] (see Section IV).

IV. EXPERIMENTAL RESULTS

This section is devoted to the presentation of the results of
applying and testing the methodology described in Section III
leveraging on the data presented in Section II.

As first step we have to report the hyperparameters ranges
of the MS phase which is common to all experiments. The
set of hyperparameters tuned during the MS phase is H
= {γ, λ} chosen in H = {10−4.0, 10−3.8, · · · , 10+4.0} ×
{10−4.0, 10−3.8, · · · , 10+4.0}. All of the tests have been
repeated 30 times, and the average results are reported together
with their t-student 95% confidence interval, to ensure the
statistical validity of the results.

The proposed DT was designed to predict the MoL tension
in healthy conditions to monitor the drift between the expected
and true behaviour. This DT has to predict the instantaneous
MoL tension from the current factors influencing the MoLs
(i.e., the motions of the turbine and the environmental condi-
tions) to accurately forecast the MoLs tension.

TABLE III: MAE for the different MoLs and bridles.

ML1B1 ML1B2 ML2B1 ML2B2 ML3B1 ML3B2

11.4±0.1 11.6±0.1 14.7±0.1 22.9±0.2 12.2±0.2 12.5±0.1

Table III reports the MAE for the different MoLs and
bridles. Moreover Figure 2 reports the scatter plot (Real versus
Predicted) the real distribution, and the error distribution for
the axial tension of the different MoLs and bridles.

From Table III and Figure 2 it is possible to observe that
the proposed DT is able to accurately predict the MoL tension
in healthy conditions from the current factors influencing the
MoLs (i.e., the motions of the turbine and the environmental
conditions). In particular, with the exception of the ML2B2
the MAE error for the remaining 5 bridles is under 15 [kN]
across our tests as reported in Table III). At this point, it
is important to remember that the dataset is composed of
sporadic periods throughout the year (as described in Table II)
and such captures a wide range of operating conditions (which
is clear from the metocean features reported in the same
table). Despite this wide range of operating conditions, the
DTs exhibit small error variance indicating that the models
performed consistently well across all conditions. Figure 2
allows us to better understand the quality of the developed
DTs, further supporting the discussion raised from the tabular
results, showing the behaviour of the predictions against
the measured MoL tension by means of scatter plots and
distributions of the measured MoL tension and errors. As one
can observe from Figure 2 the DTs consistently performs well
across the different MoLs and bridles. Based on these results
we can safely state that the family of DTs we developed in
this section would be well suited for monitoring the health
status of the MoLs by detecting drifts between the expected
MoL tension and the real one.

V. CONCLUSIONS

The number of installed FOWTs has exponentially grown
in the last decade, quadrupling the total installed capacity.
This growth is expected to continue in the next decade
leading to an increasing need to address main challenges for
FOWT projects: monitoring the system’s integrity, extending
the lifespan of the components, and maintaining FOWTs safely
at scale. Effectively and efficiently addressing these challenges
would unlock the wider-scale deployment of FOWTs.

For these reasons, in this work, we developed a DTs to
predict the MoL tension of a FOWT exploiting state-of-the-
art data-driven methods and leveraging the data coming from
the Hywind Pilot Park to test our proposals. The proposed DT
was able to predict the MoL tension under healthy conditions
to monitor the drift between the expected and true behaviour.
This DT represents an effective solution to detect long term
drifts in the mechanical response of the MoLs, and accurately
predict the behaviour of the healthy system to compare with
the actual one.

As a concluding remark, it is important to stress that this
work is just a preliminary step forward validated on a limited
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(a) ML1B1 MAE = 11.4±0.1 [kN] (b) ML1B2 MAE = 11.6±0.1 [kN]

(c) ML2B1 MAE = 14.7±0.1 [kN] (d) ML2B2 MAE = 22.9±0.2 [kN]

(e) ML3B1 MAE = 12.2±0.2 [kN] (f) ML3B2 MAE = 12.6±0.1 [kN]

Fig. 2: Scatter plot (Real versus Predicted) the real distribution, and the error distribution for the axial tension of the different
MoLs and bridles.

amount of data. The commercial use of FOWTs is still in
its infancy, and the available dataset only captures sporadic
periods throughout the year. For this reason, more tests with
a more extensive set of data need to be conducted. Moreover,
these DTs need to be integrated into real monitoring, control,
and safety systems to validate the potentiality of the models.
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