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ABSTRACT

This paper develops an enhanced low-rank structured covariance
reconstruction (LRSCR) method based on the decoupled atomic
norm minimization (D-ANM), for super-resolution two-dimensional
(2D) harmonic retrieval with multiple measurement vectors. This
LRSCR-D-ANM approach exploits a potential structure hidden in
the covariance by transferring the basic LRSCR to an efficient D-
ANM formulation, which permits a sparse representation over a
matrix-form atom set with decoupled 1D frequency components.
The new LRSCR-D-ANM method builds upon the existence of
a generalized Vandermonde decomposition of its solution, which
otherwise cannot be guaranteed by the basic LRSCR unless a very
conservative condition holds. Further, a low-complexity solution of
the LRSCR-D-ANM is provided for fast implementation with negli-
gible performance loss. Simulation results verify the advantages of
the proposed LRSCR-D-ANM over the basic LRSCR, in terms of
the wider applicability and the lower complexity.

Index Terms— Super-resolution, 2D harmonic retrieval, MMV,
LRSCR, D-ANM.

1. INTRODUCTION

In harmonic retrieval with multiple measurement vectors (MMV), to
fix the computational complexity of the atomic norm minimization
(ANM) methods [1, 2], a super-resolution technique called the low-
rank structured covariance reconstruction (LRSCR) was proposed
based on the covariance matrix whose size does not increase with the
number of MMV [3–5]. The LRSCR jointly utilizes two important
properties of the covariance matrix, i.e., the low-rankness and the
Toeplitz structure, which have been treated separately in [6, 7].

For two-dimensional (2D) scenarios, the LRSCR originally de-
veloped in 1D cases [3, 4], can be straightforwardly extended to
its 2D version [8]. However, such a simple extension of the basic
LRSCR leads to a very conservative condition in terms of the max-
imum number of detectable 2D harmonics with MMV. When the
number of 2D harmonics goes beyond such an upper-bound, an ex-
tra checking mechanism has to be adopted to check the existence of
the solution [9, 10]. This checking scheme was however originally
designed for the single measurement vector (SMV) case, and intu-
itively could be skipped thanks to the supplementary measurements

This work was supported in part by the US National Science Foundation
(NSF) grants #1527396 and #1547364, and the National Science Foundation
of China (NSFC) grants #61871218, #61471191, #61801211 and #61501228.
This work was partly carried out in the frame of the ASPIRE project (project
14926 within the OTP program of NWO-TTW).

collected from MMV beyond SMV. Moveover, although the com-
plexity of the LRSCR is independent of the number of MMV, its im-
plementation in 2D scenarios still causes a tremendously high com-
putational cost in order to implement the two-level Toeplitz structure
of the large-size covariance.

To overcome the aforementioned problems under the LRSCR
framework, this paper proposes an efficient super-resolution tech-
nique for 2D harmonic retrieval with MMV. It exploits the structure
of a kernel matrix of reduced size, which is hidden in the large-
size two-level Toeplitz structured covariance. This structure is ef-
fectively captured, when the basic LRSCR based on the covariance
matrix is transformed as a decoupled atomic norm minimization (D-
ANM) formulation (termed LRSCR-D-ANM) based on this kernel
matrix. It is the utilization of the sparse structure of the kernel ma-
trix through the D-ANM that essentially boosts the upper-bound on
the number of detectable 2D harmonics beyond that of the basic
LRSCR. Further, for fast implementation, we also provide an alter-
native low-complexity version of the LRSCR-D-ANM, by removing
the largest-size constraint from its semidefinite programming (SDP)
formulation with negligible performance degradation. This reflects
a desired tradeoff between the estimation accuracy and the compu-
tational complexity, which can be achieved by the LRSCR-D-ANM.
Simulation results indicate that the proposed LRSCR-D-ANM so-
lutions outperform the basic LRSCR by accurately retrieving more
detectable 2D harmonics in less runtime.

Notations: a, a, A , and A denote a scalar, a vector, a matrix,
and an atom set, respectively. (·)T , (·)∗, and (·)H are the transpose,
conjugate, and conjugate transpose of a vector or matrix, respec-
tively. ‖a‖2 is the `2-norm of a. diag(a) generates a diagonal ma-
trix with the diagonal elements constructed from a. ‖A‖F , ‖A‖A
Tr(A), and Rank(A) are the Frobenius norm, the atomic norm, the
trace, and the rank of A, respectively. I is an identity matrix. T and
T′ represent Hermitian Toeplitz and Toeplitz matrices, respectively.
S(A) indicates a unique mapping from A to a two-level Toeplitz
matrix T2D . E{·} represents expectation. ⊗ and � denote the Kro-
necker product and the Khatri-Rao product operations, respectively.

2. SIGNAL MODEL

Consider an MMV model withL snapshots where the signal of inter-
est x(t) ∈ CNM is a linear mixture ofK 2D sinusoidal components
contaminated by additive Gaussian noise n(t) ∼ CN (0, σ2I)) in
the form of

x(t) =

K∑
i=1

si(t)aN (f1,i)⊗ aM (f2,i) + n(t)

=(AN (f1)�AM (f2))s(t) + n(t), t = 1, . . . , L,

(1)

5720978-1-5090-6631-5/20/$31.00 ©2020 IEEE ICASSP 2020

Authorized licensed use limited to: TU Delft Library. Downloaded on August 26,2021 at 08:20:03 UTC from IEEE Xplore.  Restrictions apply. 



where s(t)=[s1(t), . . . , sK(t)]T , f1=[f1,1, . . . , f1,K ] and f2 =
[f2,1, . . . , f2,K ] denote the complex amplitudes and the digital fre-
quencies along two orthogonal dimensions of the K sources with
{f1,i, f2,i}∈[−0.5, 0.5)2, and AN (f1)=[aN (f1,1), . . .,aN (f1,K)]
and AM (f2)=[aM (f2,1), . . . ,aM (f2,K)] are the manifold ma-
trices with their columns aN (f1,i) and aM (f2,i) exhibiting the
Vandermonde structures of size N and M respectively [11–13],

aN (f1,i) =[1, exp(j2πf1,i), . . . , exp(j2π(N − 1)f1,i)]
T ,

aM (f2,i) =[1, exp(j2πf2,i), . . . , exp(j2π(M − 1)f2,i)]
T .

(2)

In many applications, x(t) in (1) is not observed directly, but
over a linear compressive measurement matrix J ∈ CM

′×NM with
M ′ ≤ NM as

y(t) = Jx(t) = J(AN (f1)�AM (f2)) s(t) + Jn(t). (3)

Then, the covariance matrix of y(t) can be expressed as

Ry = E{y(t)y(t)H} = JRxJ
H + σ2JJH , (4)

where Rx is the covariance matrix of x(t) given by

Rx = (AN (f1)�AM (f2))Rs(AN (f1)�AM (f2))H , (5)

where Rs = diag([r1, . . . , rK ]T ) = diag(r) � 0 is a positive
semidefinite (PSD) diagonal matrix under the assumption that si(t)
in s(t) is uncorrelated with each other. Given a collection of suffi-
cient MMV, the estimation of Ry in (4) can be approximately calcu-
lated as its sample covariance R̂y = 1

L

∑L
t=1 y(t)y(t)H . Then, the

goal of the covariance-based 2D harmonic retrieval is to recover the
unknown harmonics f1 and f2 from R̂y .

3. ENHANCED LOW-RANK STRUCTURED COVARIANCE
RECONSTRUCTION

In this section, we present a super-resolution 2D harmonic retrieval
with MMV under the LRSCR framework. Specifically, we enhance
the basic LRSCR by reformulating it to an improved version named
LRSCR-D-ANM. It better captures the strong structure hidden in the
covariance matrix via D-ANM, which otherwise cannot be explicitly
exploited by the basic LRSCR formulation. In doing so, we start by
rewriting (5) as

Rx=

K∑
i=1

ri(aN (f1,i)⊗aM (f2,i)) (aN (f1,i)⊗aM (f2,i))
H (6a)

=

K∑
i=1

ri(aN (f1,i)a
H
N (f1,i))⊗ (aM (f2,i)a

H
M (f2,i)). (6b)

3.1. Basic LRSCR

On the one hand, according to (6a), Rx is obviously a Hermitian
matrix with a two-level Toeplitz structure that can be represented as

Rx = T2D (uRx ,vRx), (7)

where uRx =
∑K
i=1 riaN (f1,i) ⊗ aM (f2,i) ∈ CNM and vRx =∑K

i=1 riaN1(f1,i) ⊗ a∗M1
(f2,i) ∈ C(N−1)(M−1) with aN1(f1,i)

and aM1(f2,i) being the last N−1 and M−1 rows of aN (f1,i) and
aM (f2,i) in (2), respectively. Accordingly, Rx is not only a low-
rank matrix with rank equal to K, but it is also equipped with a
two-level Toeplitz structure.

Then, following the low-rank covariance matrix recovery the-
ory [6], the covariance matrix in (7) can be recovered by solving
a relaxed problem of the nonconvex rank minimization via a trace
minimization, which leads to the basic LRSCR for 2D frequency
retrieval [8]

{ũRx , ṽRx} = arg min
uRx ,vRx

Tr (T2D (uRx ,vRx))

s.t.
∥∥∥R̂y − JT2D (uRx ,vRx)JH

∥∥∥2
F
≤ β,

T2D (uRx ,vRx) � 0,

(8)

where β is a user-specified parameter based on a certain error toler-
ance, which can be set according to σ2. When the noise statistics are
unavailable or hard to obtain in practice, β can be determined via the
covariance matrix sparse representation method [14], or by using the
covariance matrix fitting criterion [15, 16].

Remark 1: Noticeably, the recovered T2D (ũRx , ṽRx) from (8)
cannot be guaranteed to be the exact solution of Rx as indicated
by (7). This is because the existence of the generalized Vander-
monde decomposition of T2D (ũRx , ṽRx) cannot be guaranteed un-
less Rank(T2D (ũRx , ṽRx)) ≤ min{N,M} − 1 holds, according
to the generalized Vandermonde decomposition lemma [10]. How-
ever, given the more measurements available from MMV compared
to SMV, this condition seems too conservative for the MMV case as
it is solely based on the SMV case [10].

3.2. LRSCR-D-ANM

On the other hand, based on (6b), Rx can be rewritten as

Rx = S(K)

=


T′(u0) T′(u−1) . . . T′(u−(N−1))

T′(u1) T′(u0) . . . T′(u−(N−2))
...

...
. . .

...
T′(uN−1) T′(uN−2) . . . T′(u0)

 , (9)

where T′(ul) ∈CM×M , l=−(N−1), . . . , 0, . . . , N−1 is a Toeplitz
matrix given by

T′(ul) =


ul0 ul−1 . . . ul−(M−1)

ul1 ul0 . . . ul−(M−2)

...
...

. . .
...

ulM−1 ulM−2 . . . ul0

 , (10)

with ulm=
∑K
i=1rie

j2π(lf1,i−mf2,i),m=−(M−1), . . . , 0, . . . ,M−1

and ul = [ul−(M−1), . . . , u
l
−1, u

l
0, u

l
1, . . . , u

l
M−1]T ∈ C2M−1 col-

lecting the unique elements of T′(ul).
We define K as the kernel matrix of the covariance matrix Rx =

S(K) in (9) as

K = [u−(N−1), . . . ,u−1,u0,u1, . . . ,uN−1] ∈ C
(2M−1)×(2N−1)

.
(11)

Now, we study how to exploit the potential structure of K, in order
to enforce the existence of the generalized Vandermonde decompo-
sition of the estimation of Rx which however cannot be guaranteed
by the solution from (8). From (6), (9) and (10), it can be shown that
the columns of K in (11) can be equivalently expressed by

ul=

K∑
i=1

rie
j2πlf1,ia′M (f2,i), l=−(N−1), . . . , 0, . . . , N−1, (12)
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where a′M (f2,i) ∈ C2M−1 is defined as

a′M(f2,i)

= [e−j2π(M−1)f2,i,. . ., e−j2πf2,i, 1, ej2πf2,i,. . ., ej2π(M−1)f2,i ]
T

.

(13)

Then, given (12), K defined in (11) can be rewritten as

K=

K∑
i=1

ria
′
M (f2,i)a

′T
N (f1,i)=A′M (f2) diag(r)A′TN (f1), (14)

where a′N (f1,i) ∈ C2N−1 is defined similarly to (13) by replacing
M and f2,i in (13) with N and f1,i, and A′M (f2) and A′N (f1) are
formed with a′M (f2,i) and a′N (f1,i) being their columns, respec-
tively. Connecting (6b) and (14), we have the following proposition.

Proposition 1: If K has a decomposition in the form of (14)
and is a low-rank matrix satisfying K ≤ 2 min{N,M} − 2, then
S(K) has the generalized Vandermonde decomposition in the form
of (6b) and is a low-rank matrix with the same rank of K, i.e.,
Rank(S(K)) = Rank(K) = K.

Proof: Going through (9) to (14), we have: if S(K) has the
generalized Vandermonde decomposition in the form of (6b) and is
a low-rank matrix satisfying K ≤ 2 min{N,M} − 2, then K has
the decomposition in the form of (14) and is a low-rank matrix with
the same rank of S(K), i.e., Rank(K) = Rank(S(K)) = K, and
vise versa since S(K) is uniquely determined by K.

According to (9) and Proposition 1, if Rx is low-rank with
Rank(Rx) ≤ 2 min{N,M} − 2 and we can obtain the estimation
of the low-rank K as K̃ with a decomposition in the form of (14),
then S(K̃) is guaranteed to be the exact estimation of Rx.

Next, considering the equivalence between (6a) and (6b), to
implement the structure of K as (14) in the solution, we relax
Rank(K) to its convex `1-norm form

∑K
i=1 ri, and then obtain the

formulation

{K̃, r̃, f̃1, f̃2} = arg min
K,r,f1,f2

K∑
i=1

ri

s.t.
∥∥∥R̂y − JS(K)JH

∥∥∥2
F
≤ β,

K = A′M (f2) diag(r)A′TN (f1),

S(K) � 0.

(15)

Noticeably, following the definition of the decoupled-based
atomic norm [17,18], a decoupled-based atomic norm of K over the
matrix-form atom set A′d =

{
a′M (f2)a′HN (f1)

∣∣ f1, f2 ∈ (− 1
2
, 1
2
]
}

can be expressed as

‖K‖A′
d

= inf

{
K∑
i=1

ri

∣∣∣∣∣K=

K∑
i=1

ria
′
M (f2,i)a

′T
N (f1,i)

}
. (16)

Accordingly, under the condition K ≤ 2 min{N,M} − 2, we
rewrite (15) into the D-ANM form

K̃ = arg min
K
‖K‖A′

d

s.t.
∥∥∥R̂y − JS(K)JH

∥∥∥2
F
≤ β,

S(K) � 0.

(17)

Finally, we obtain the enhanced-LRSCR via D-ANM (LRSCR-
D-ANM), by reformulating (17) as its SDP formulation [17, 18]

{K̃, ũ′N , ũ
′
M} = arg min

K,u′
N
,u′

M

1

2c
(Tr(T(u′N )) + Tr(T(u′M )))

s.t.
∥∥∥R̂y − JS(K)JH

∥∥∥2
F
≤ β,[

T(u′M ) K
KH T(u′N )

]
� 0,

S(K) � 0,

(18)

where u′N ∈C2N−1, u′M ∈C2M−1, and c=
√

(2N − 1)(2M − 1).
Remark 2: It is worth noting that the two-level Toeplitz matrix

S(K̃) constructed by the optimal solution K̃ from (18) is guaran-
teed to hold the generalized Vandermonde decomposition as long as
K ≤ 2 min{N,M}− 2. Obviously, this condition is 2× looser
than the original one K ≤ min{N,M}−1 required by the basic
LRSCR in (8) which is however too conservative for the MMV case
as discussed in Remark 1. Such a boost in the upper-bound on K is
due to the enlarged sizes 2N − 1 and 2M − 1 of the 2D manifolds
a′N(f1,i) and a′M(f2,i) in (13) through utilizing the structure of K
in (14), compared with the N -size aN (f1,i) and M -size aM (f2,i)
in (2).

3.3. Harmonic Retrieval

Given K̃, T(ũ′N ) and T(ũ′M ) from (18), specific off-the-shelf spec-
tral analysis tools can be employed for estimating the 2D frequen-
cies f1 and f2, such as, the matrix pencil and pairing (MaPP) based
on S(K̃) [10], the Vandermonde decomposition based harmonic re-
trieval and pairing based on T(ũ′N ) and T(ũ′M ) [17, 18], etc.

4. LOW-COMPLEXITY IMPLEMENTATION

According to [19], the computational complexity in solving LRSCR-
D-ANM in (18) is O((NM)4.5) which is in the same order as
that of the basic LRSCR in (8), due to their comparable problem
scales dominated by the same largest-size PSD constraints, i.e.,
T2D (uRx ,vRx) � 0 in (8) and S(K) � 0 in (18), respectively.

On the other hand, thanks to the strong structure of K in (14)
captured via the D-ANM as (16), the LRSCR-D-ANM in (18) can
also be implemented without the third PSD constraint S(K) � 0
(LRSCR-D-ANM-w/o3). Accordingly, with the remaining smaller-
size PSD constraint

[
T(u′M),K;KH,T(u′N)

]
�0, the complexity of

the LRSCR-D-ANM-w/o3 drops down to O((NM)2(N+M)2.5),
which is 2.5 orders lower than that of the LRSCR-D-ANM when
N = M . In this sense, the LRSCR-D-ANM-w/o3 actually enables
a tradeoff option to balance the performance and the complexity of
2D harmonic retrieval, which is unavailable to the basic LRSCR.

5. SIMULATIONS

This section presents numerical results to evaluate the performance
and the complexity of the LRSCR-D-ANM solutions, while the
basic LRSCR is considered as benchmark. For a fair compari-
son, all methods use an off-the-shelf SDP-based solver [20], and
incorporate the MaPP as mentioned in Subsection 3.3 for obtain-
ing the 2D frequencies [10]. All simulations run on a computer
with a 4-core Intel i7-6500U 2.50GHz CPU and 8GB memory.
The root mean squared error (RMSE) is measured to evaluate
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Fig. 1. RMSE vs. M ′: MUSIC, LRSCR-D-ANM and LRSCR-D-
ANM-w/o3, when N=M=5, L=200, K=3 and SNR=5dB.

the estimation accuracy of 2D harmonic retrieval as RMSE =

1
K

∑K
i=1

(
1
Mt

∑Mt
n=1

(
(f̃n1,i − f1,i)2 + (f̃n2,i − f2,i)2

)) 1
2
, where

Mt, f̃n1,i and f̃n2,i denote the number of Monte-Carlo trials, and the
estimates of f1,i and f2,i in the n-th trial, respectively. In each
trial, for K uncorrelated sources, their frequencies are generated
under a sufficient frequency separation condition, i.e., ∆min ,
min maxi6=j{|f1,i − f1,j |, |f2,i − f2,j |} ≥ 1.19

min{N,M} [21], and
observed through a compressive random Gaussian matrix J as (3)
with the compression ratio M′

NM
[22], at SNR = 10 log10

(
r
σ2

)
with

ri = r ∀i for simplicity.

5.1. Influence of the Third PSD Constraint

First, we evaluate the influence of the third PSD constraint in (18)
on the performance of the proposed LRSCR-D-ANM. Fig. 1 shows
that the LRSCR-D-ANM with the third PSD constraint slightly out-
performs the one without this constraint (LRSCR-D-ANM-w/o3),
which indicates the role of the PSD property of the covariance in en-
hancing the estimation performance. However, as can be observed
the performance gap diminishes as M ′ goes large. Similar results
have also been observed as SNR and L increases. Considering that
the removal of the third PSD constraint can reduce the computa-
tional complexity as has been discussed in Section 4, the LRSCR-D-
ANM-w/o3 is an efficient alternative to the LRSCR-D-ANM with a
negligible loss in accuracy, for example when M ′ ≥ 13 in Fig. 1.
Meanwhile, the performance of the classic subspace method is also
tested in Fig. 1, where the LRSCR-D-ANM always outperforms
MUSIC [23].

5.2. Condition on the Number of 2D Harmonics

Next, we test different methods using a varying number of 2D har-
monics. For the basic LRSCR, when the conservative condition on
K does not hold, i.e., K > min{N,M} − 1, an extra checking
mechanism is used as proposed in [10]. In Fig. 2, the performance
of the basic LRSCR degrades dramatically after K becomes larger
than 4. This is because the checking mechanism mostly outputs the
”false” status, which indicates it judges that the generalized Van-
dermonde decomposition does not exist. On the other hand, the
proposed LRSCR-D-ANM and LRSCR-D-ANM-w/o3 both work
properly without using any extra checking mechanism as long as
K ≤ 2 min{N,M}−2.

1 2 3 4 5 6
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K

R
M

S
E
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LRSCR−D−ANM

LRSCR−D−ANM−w/o3

Fig. 2. RMSE vs. K: basic LRSCR, LRSCR-D-ANM and LRSCR-
D-ANM-w/o3, when N=M=5, M ′=15, L=200 and SNR=5dB.
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⌋
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5.3. Computational Complexity

The computational complexity in terms of runtime are measured
and compared among different methods. As shown in Fig. 3, the
LRSCR-D-ANM-w/o3 runs (much) faster than the basic LRSCR
and the LRSCR-D-ANM especially when N and M grow large,
thanks to the reduced problem scale after removing the largest-size
PSD constraint. Combining this complexity result with the estima-
tion performance from Fig. 1 and Fig. 2, the LRSCR-D-ANM-w/o3
works as an excellent option to balance the estimation accuracy and
the computational costs for practical implementations.

6. CONCLUSION

Given the sample covariance, an efficient 2D harmonic retrieval
technique is developed under the LRSCR framework. The strong
structure of the kernel matrix hidden in the covariance is well cap-
tured by transferring the basic LRSCR based on the covariance to an
enhanced LRSCR based on its kernel matrix, through D-ANM over
a matrix-form atom set defined according to the enlarged manifolds.
This thus enables the LRSCR-D-ANM to retrieve more detectable
2D harmonics than the basic LRSCR. Further, a low-complexity so-
lution of the LRSCR-D-ANM is proposed to achieve a nice tradeoff
between the performance and complexity in 2D harmonic retrieval.
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