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An Extrinsic Calibration Tool for Radar, Camera and Lidar

Joris Domhof1, Julian F. P. Kooij1 and Dariu M. Gavrila1

Abstract— We present a novel open-source tool for extrinsic
calibration of radar, camera and lidar. Unlike currently avail-
able offerings, our tool facilitates joint extrinsic calibration of
all three sensing modalities on multiple measurements. Fur-
thermore, our calibration target design extends existing work
to obtain simultaneous measurements for all these modalities.
We study how various factors of the calibration procedure affect
the outcome on real multi-modal measurements of the target.
Three different configurations of the optimization criterion are
considered, namely using error terms for a minimal amount of
sensor pairs, or using terms for all sensor pairs with additional
loop closure constraints, or by adding terms for structure
estimation in a probabilistic model. The experiments further
evaluate how the number of calibration boards affect calibra-
tion performance, and robustness against different levels of zero
mean Gaussian noise. Our results show that all configurations
achieve good results for lidar to camera errors and that fully
connected pose estimation shows the best performance for lidar
to radar errors when more than five board locations are used.

I. INTRODUCTION

Mobile robots are often equipped with multiple heteroge-
neous sensors, enabling perception in various sensing modal-
ities. For instance, automated vehicles heavily rely on lidars,
radars and cameras for environmental perception to improve
robustness [1], [2]. In order to represent sensor observations
in a common reference frame, the rigid transformations (i.e.
3D rotation and translation) between all sensors coordinate
frames must be known. A rough estimate could be obtained
by assessing the sensor placement itself, e.g. with Computer-
Aided Design models. However, extrinsic calibration can
provide more precise estimates, as it aligns corresponding
sensor measurements of real targets directly (see figure 1).

Up till now, existing calibration tools only addressed pair-
wise sensor calibrations of maximally two sensing modalities
[3]–[12]. Since each modality has a different measurement
principle, each proposed calibration procedure used different
target designs. In sensor setups with more modalities, this
results in duplicated calibration efforts, which is especially
concerning for mobile robots at which sensors are frequently
dismounted or repositioned. We instead pursue joint extrinsic
calibration using a single target design for more than two
modalities, namely lidar, camera, and radar. Apart from
reduced effort, a single target enables us to optimize all
sensors jointly which could improve accuracy and robustness.
We therefore present an open-source tool and a suitable
calibration target design to facilitate extrinsic calibration of
three sensing modalities. The calibration tool has bindings
with the commonly used Robotics Operating System (ROS).

1 Intelligent Vehicles group, Cognitive Robotics Dept., Delft Univer-
sity of Technology, the Netherlands; j.f.m.domhof@tudelft.nl,
j.f.p.kooij@tudelft.nl, d.m.gavrila@tudelft.nl
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Fig. 1: Schematic overview of three reference frames: lidar,
camera and radar with transformation matrices from one
reference frame to another, e.g. l2c for lidar to camera. Joint
multi-sensor calibration requires multiple targets which can
be detected by all sensors simultaneously.
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Fig. 2: Optimization configurations for joint calibration. The
symbols Si stand for sensors, and T i,j for coordinate frame
transformations from sensor i to j. (a) Minimally connected
pose estimation (MCPE) relies on a reference sensor S1; (b)
Fully connected pose estimation (FCPE) adds the loop con-
straint T 2,3 · T 1,2 = T 1,3. (c) Pose and structure estimation
(PSE) also estimates latent variables M that represent the
true board locations (i.e. the structure).

Since our sensor setup consists of more than two sensing
modalities, we are faced with multiple options on how to
formulate the optimization problem over all sensor-to-sensor
transformations. Based on a review of existing methods and
other related techniques (see Section II), we identify three
possible configurations, as shown in figure 2: Minimally con-
nected pose estimation (MCPE) estimates transformations for
all sensors to a single reference sensor. Fully connected pose
estimation (FCPE) all transformations between all sensors
jointly, and enforces a loop closure constraint to ensure
their consistency. Pose and structure estimation (PSE) in-
stead optimizes transformations to an explicit estimate of all
calibration target poses (i.e. the structure).

After discussing the related work, we shall formalize these
options mathematically, and present experiments to illustrate
the benefits of our tool, and investigate factors that affect the
calibration result.
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II. RELATED WORK

A first distinction in calibration methods is the difference
between intrinsic and extrinsic calibration. Intrinsic calibra-
tion estimates the operational parameters of a single sensor.
For instance, intrinsic camera calibration is the process of
estimating focal length, the principal point, skewness and
lens distortion parameters [13]. Likewise, the intrinsic lidar
parameters for a single laser beam include range offset, scale
factor, vertical offset, elevation angle and azimuth angle [11].
On the other hand, extrinsic calibration concerns estimating
the spatial transformation of the sensor coordinates to other
sensors or reference frames, and this is our main focus here.
This problem is also known as pose estimation [14] and
sensor registration [15].

Extrinsic calibration can in turn be divided into target-
less and target-based procedures. Target-less methods [16],
[17] use natural environmental features as an input to the
calibration procedure. However, robustly finding correspond-
ing natural features in all sensing modalities to jointly
calibrate all sensors is challenging, since each sensor works
with a different sensing principle. Target-based procedures
avoid this difficulty by using a calibration target that is
designed to facilitate robust and accurate feature extraction.
A checkerboard pattern is a common example of a camera
calibration target, as it facilitates corner detection. By moving
the calibration pattern around to various locations in Field
of View (FOV) of the sensors, multiple target detections can
be obtained with known correspondences.

Table I shows an overview of extrinsic calibration proce-
dures, specifically those concerning lidar, radar, and camera.
It reveals that the available tools focus on calibration of two
sensing modalities only. In addition, existing methods use
either meters or pixels as error measures. However, robots
are equipped with heterogeneous sensors, which should
result in minimization of a heterogeneous error function. We
will discuss the relevant methods for pair-wise cross-modal
calibration now in more detail.

A. Multi-modal calibration with lidar, camera and radar

There are many methods to estimate the relative pose
of a camera with respect to a lidar sensor [3], [4], [6]–
[8], [10], [17]. Dhall et al. [10] use a square plate as
calibration target, which has an ArUco marker (a square
black-white pattern) [18] to facilitate pose estimation in
monocular camera. The corners of the plate are features for
both lidar and camera, and the Kabsch algorithm [19] is used
to estimate the transformation between the sensors. Alismail
et al. [7] propose a method to estimate both intrinsic and ex-
trinsic parameters using point-to-plane Iterative Closest Point
(ICP) [20], and Levenberg-Marquardt (LM) optimization for
the rigid transformation. Geiger et al. [4] have developed a
calibration method to calibrate a lidar and a camera using
multiple checkerboard patterns as calibration targets. Fine
registration is performed by first minimizing point-to-plane
distances using the normal vectors and the centroids of
the checkerboard patterns, and then minimizing point-to-
point distances using ICP. Raw lidar and vision data can be

uploaded to a publicly available web toolbox that performs
intrinsic (camera) and extrinsic calibration. [11] estimates the
intrinsic lidar parameters, and its extrinsic calibration with
respect to a camera. The authors argue that the non-linear
estimation problem requires precise initial estimates of the
intrinsic and extrinsic parameters, therefore they propose an
analytical solution to obtain good initial estimates, which are
subsequently be refined using iterative least squares.

Velas et al. [6] have developed a method for joint lidar and
monocular camera calibration using a target (plate) with four
circular holes. The authors obtain coarse estimate based on
projective geometry. After that, the pose estimate is refined
by maximizing a cost function based on cross correlation
between edges in images and point clouds. Guindel et al. [3]
use the same calibration target to calibrate a lidar and a stereo
camera. ICP is now used to minimize the error between the
circle centers of lidar and stereo camera.

Recently, [17] proposed an online calibration method for
lidar and camera using a Convolutional Neural Network
to replace the traditional feature extraction, matching and
registration steps. Several expert networks are developed to
handle different calibration ranges (coarse to fine).

Several methods have been proposed to calibrate a radar
with another sensor [5], [9], [21], [22]. To calibrate a radar
and monocular camera, both [21] and [22] use a homography
projection in a least squares formulation, without estimating
the full 3D transformation. El Natour et al. [5] calibrate radar
and monocular camera using a system of equations, with
additional spherical and geometrical constraints.

Peršić et al. [9] use a triangular shaped styrofoam cal-
ibration target which also equips a metal trihedral corner
reflector. The triangular shape can be detected in the lidar
point cloud, while trihedral corner reflectors are commonly
used targets for radars, because of their accurate localization
and their distinct reflectivity: Radar Cross Section (RCS)
value. Their calibration routine minimizes the reprojection
error between lidar and radar. In addition, they propose a
FOV refinement step using the RCS value of multiple targets.

B. Calibrating more than two sensors

While most works only focus on calibrating two sensors,
to calibrate multiple sensors, one could minimize the effort
with the discussed pair-wise calibration techniques by cali-
brating all sensor towards a single reference sensor, which
we term minimally connected pose estimation. However,
other configurations are suggested by studying related pose
estimation problems in mobile robotics.

Simultaneous Localization and Mapping (SLAM) is the
process of constructing a map of the environment and at the
same time localizing a mobile sensor in the map [23]. When
the system detects that it has returned to a previously visited
location, it can use this ‘loop closure’ constraint to readjust
all past poses along the trajectory. In extrinsic calibration,
loop closure can similarly be added as a constraint too when
optimizing all transformations between many sensors at once,
which we will term fully connected pose estimation. Sim et
al. [12] use it to calibrate a lidar and multiple cameras.
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TABLE I: Related work on extrinsic sensor calibration. The columns with L ,R, S and M stand for lidar, radar, stereo
camera and monocular camera, respectively. Symbols � and � indicate whether the method can calibrate a particular
sensor. Symbol ∼ indicates that a stereo camera could be calibrated as two separate monocular camera, in principle, which
is suboptimal. Furthermore, the abbreviations in column Int./Ext. refer to intrinsic calibration routine (Int.) and extrinsic
calibration routine (Ext.). The column SW indicates if the software is open-source and available to the community.

Configuration Int./Ext. Error Measure L R S M SW Toolbox name
Guindel et al. [3] MCPE Ext. m � � � � � velo2cam calibration (ROS)
Geiger et al. [4] MCPE Int.&Ext. m � � ∼ � ∼ Online web toolbox

El Natour et al. [5] MCPE Ext. m � � ∼ � �
Velas et al. [6] MCPE Ext. pixels � � ∼ � � but calibration camera velodyne (ROS)

Alismail et al. [7] MCPE Int.&Ext. m � � ∼ � � calidar (MATLAB)
Zhang & Pless [8] MCPE Ext. m, pixels � � ∼ � � RADLOCC (MATLAB)

Peršić et al. [9] MCPE Ext. m � � � � �
Dhall et al. [10] MCPE Ext. m � � ∼ � � lidar camera calibration (ROS)

Mirzaei et al. [11] MCPE Int.&Ext. m � � ∼ � �
Sim et al. [12] MCPE/FCPE Ext. pixels � � ∼ � �

Proposed MCPE/FCPE/PSE Ext. m, likelihood � � � � �

Visual Odometry involves estimating the ego-motion from
visual features extracted from consecutive images, after that
bundle adjustment can be used for pose estimation refinement
[24]. Since multiple poses are considered, bundle adjustment
fuses all information in a probabilistic model which explicitly
represents the 3D structure of the features, and optimizes a
maximum likelihood criterion [13]. Such a formulation could
also benefit joint calibration of more than two sensors, which
was not explored for most available methods (see table I).

C. Contributions

In contrast to the discussed related work, our work
provides the following contributions. First, three extrinsic
calibration configurations to jointly calibrate lidar, camera
and radar are investigated. We study the three configurations,
required number of calibration board locations, and choice
for the reference sensor using a real multi-modal sensor
setup. Second, we propose a calibration target design that
is detectable by lidar, camera and radar. Third, we provide
an open-source extrinsic calibration tool for these sensors,
with bindings to Robot Operating System (ROS)1.

III. PROPOSED APPROACH

This section details our novel tool, which uniquely cal-
ibrates lidar, camera and radar jointly, see table I. It is
implemented as an open-source tool with bindings to the
ROS middleware, and which includes a tool that can update
Unified Robot Description Format (URDF), to facilitate
extensibility and application on real robotic platforms.

First, the design of the calibration board is described,
then the detectors that extract features from the raw sensor
data are presented. Then, a mathematical description of the
calibration of two sensors is given, which we then extend to
the joint calibration of more sensors.

a) Calibration target design: In order to jointly cal-
ibrate multiple sensors, the calibration target should be
detectable in all relevant modalities. For lidar and camera,
edges and corners are features which can be detected ac-
curately and robustly. However, rectangular shaped objects

1github.com/tudelft-iv/multi_sensor_calibration

Fig. 3: From left to right, front view drawing, side view
drawing, and an image of the back of the target. The trihedral
corner reflector is indicated in red (triangle and arrow).

are difficult to localise in lidar as a nearly horizontal edge
might not intersect with any of the lidar scan planes [9].
We follow [3], [6] and use circular shapes, which can be
accurately detected when intersecting with few lidar beams.
Our proposed calibration target design has four circular holes
and additionally contains a single metal trihedral corner
reflector in the center at the back of the board to provide
strong radar reflections as well. Furthermore, our calibration
board is made from styrofoam to not affect the detectability
of the corner reflector [9]. Figure 3 illustrates the layout of
the target, with a size of 1.0 m by 1.5 m, with circle diameter
a1 = 15 cm, and distance between the centres a2 = 24 cm.
The reflector is at a3 = 10.5 cm from the front.2

b) Detection of calibration target: Both the lidar de-
tector and the stereo detector are an adapted version of the
detector of [3]. Both camera and lidar detectors return the 3D
locations of the four circle centers. Having four feature points
facilitates identifying incorrect detections, since the ratio
between the maximum distance (diagonal) and the minimum
distance (side of square) should equal

√
2. Outlier boards that

deviate from this ratio are discarded.
The radar returns detections in a 2D plane and generates

for each reflection a measurement in polar coordinates and
a RCS value. Of all detections that are within the expected
RCS range, the closest radar detection to the car is taken.

2See README file in the repository for details on the calibration board.
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Finally, our tool also includes a monocular camera detector
however our experiments will focus on stereo, lidar and radar.

c) Calibration procedures: To formalize the calibration
of more than two sensors, we will first introduce extrinsic
calibration for two sensors.

Consider two sensors, indicated by numbers 1 and 2. After
placing the target calibration board at K different locations
in front of the sensors, each detector provide K detections
y1 = {y1

1, · · · ,y1
K} and y2 = {y2

1, · · · ,y2
K} of the targets,

relative to coordinate frames of sensor 1 and 2 respectively.
For camera and lidar, each detection consists of four 3D
coordinates of the circle centers, i.e. yk = (yk(1), · · · , yk(4)).
A radar detection yk = (yk(1)) has only a single location
yk(1) for the detected trihedral corner reflector, which is
expressed in 2D Euclidean coordinates.

Since each sensor has a different Field of View (FOV),
the calibration target may not always be detectable by all.
Variables μi

k indicates if calibration board k was detected
for sensor i, thus μi

k = 0 if the target was not found or
discarded, and 1 otherwise. Extrinsic calibration between the
two sensors aims to estimate the relative rigid transformation
T 1,2 which projects a point from sensor 1 onto the coordinate
frame of sensor 2. The rigid transformation consists of a 3×3
rotation matrix R and 3D translation t, which is described
as a 4× 4 matrix for homogeneous coordinates,

T 1,2 =

[
R t
0 1

]
. (1)

Similarly, we will assume homogeneous representations in
y1 and y2, hence each 3D point (x, y, z) is represented
as an augmented 4D vector (x, y, z, 1). To parameterize
the 6 degrees of freedom of transformation T 1,2, we use
parameter vector θ1,2 = (tx, ty, tz, vx · α, vy · α, vz · α). The
rotation is here expressed by an axis-angle representation
(using Rodrigues’ rotation formula), namely as a unit vector
(vx, vy, vz) for the axis of rotation, and an angle α.

For the k-th target location, the transformation error be-
tween camera and/or lidar detections is the total squared
Euclidean distance of the four detected circle centers,

εk
(
θ1,2

)
=

4∑
p=1

∥∥∥y2k(p) − T 1,2 · y1k(p)
∥∥∥2 . (2)

If one of the sensors is a radar, however, a different error
term is used. Let yR

k represents the radar measurement of
target k, then the squared Euclidean error now becomes

εk
(
θ1,R

)
=

∥∥∥yRk(1) − p(T 1,R · g(y1
k))

∥∥∥2 . (3)

Here g(yk) computes the expected 3D position of the
trihedral corner reflector given the four 3D circle positions in
detection yk, using the known calibration target’s geometry.
The function p(qk) first converts 3D Euclidean point qk to
spherical coordinates (rk, φk, ψk), then disregards the eleva-
tion angle ψk, and converts the remaining polar coordinates
(rk, φk) to their 2D Euclidean equivalent.

Additionally, we enforce the constraint that the projected
3D points lie within radar Field of View (FOV). For instance,

we add constraints that the elevation angles ψk for all
calibration board locations k are within the maximum view
angle ψmax of the radar,

|ψk| − ψmax ≤ 0, ∀k. (4)

Pose estimation can now be formulated as an optimization
problem to find the optimal transformation which minimizes
the total error f(θ1,2) between all K calibration targets,

f(θ1,2) =

K∑
k=1

μ2
k · μ1

k · εk
(
θ1,2

)
. (5)

The indicator variables μ2
k · μ1

k ensure that only terms are
included where the target was detected in both sensors. The
optimal calibration parameters are thus found by minimizing
the error criterion f(θ), which could be subject to zero or
more (in)equality constraints (e.g. equation (4)).

Our tool uses Sequential Least SQuares Programming
(SLSQP) from the SciPy library [25] for optimization. An
initial solution is obtained by using the Kabsch algorithm.
For radar, it is assumed that detections lie on the radar plane
(zero elevation angle) in order to find an initial pose estimate.

d) Joint calibration with more than two sensors:
Generally, a sensor setup can contain more than two sensors.
We now consider three possibilities to adapt the extrinsic cal-
ibration procedure to optimize θ, the set of all transformation
parameters for N sensors. The first two configurations can be
considered different generalizations of the standard pairwise
calibration discussed before. The third configuration is based
on explicit structure estimation, similar to pose estimation
found in graph SLAM [26] and bundle adjustment [27]. Each
configuration will now be discussed in detail.

1) Minimally connected pose estimation (MCPE): First,
sensors can be calibrated pairwise with respect to a selected
‘reference’ sensor. This results in a minimally connected
graph, where the edges describe the transformation of the
’reference’ to sensor, see figure 2a. Without loss of generality,
let’s assume that the first sensor is selected as reference. The
optimization function is now reformulated as

f(θ) =
N∑
i=2

[
K∑

k=1

μi
k · μ1

k · εk
(
θ1,i

)]
. (6)

Note that transformations between any non-reference sensors
i, j, follow from joining the transformations on the unique
path of this graph, i.e. T i,j = T 1,j · (T 1,i)−1.

2) Fully connected pose estimation (FCPE): Next, we
consider optimizing transformations between all sensors at
once, without a special reference sensor. As shown in figure
2b, this results in optimizing terms in a fully connected
graph, akin to a loop closure optimization in SLAM methods.
Instead of estimating N − 1 transformation matrices with
respect to a reference sensor, all transformation matrices
between all

(
n
2

)
combinations of two sensors are estimated,

resulting in the following total error function,

f(θ) =
N∑
i=1

N∑
j=i+1

[
K∑

k=1

μi
k · μj

k · εk
(
θi,j

)]
. (7)
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In addition, the closed loop constraint is introduced to ensure
that all loops l equal the identity matrix, namely

(T sl,1 · T sl−1,sl · . . . · T 1,2)− I = 0, ∀l (8)

where sl equals the number of sensor in this loop l. By
adding more error terms, the optimization is potentially more
robust against noisy observations from one reference sensor.
The downside is that the number of error terms increases
quadratically with the number of sensors. Furthermore, ad-
ditional loop constraints must be added as well.

3) Pose and structure estimation (PSE): The third and
final considered configuration is pose and structure esti-
mation, which has similarities to bundle adjustment. This
configuration explicitly estimates the calibration board poses
and the observation noise of each sensor. The objective is to
estimate both the unknown structure M = (m1, · · · ,mK)
of the true target poses in a fixed coordinate frame, and the
transformation TM,i from the fixed frame to each sensor
i, see figure 2c. Observations are considered samples from
a probabilistic measurement model, which uses ŷMk(p) =
h(mk, p), with zero-mean Gaussian noise,

yik(p) = TM,i · ŷMk(p) + ηi, ηi ∼ N (0,Σi). (9)

As a result from this formulation, we use the squared Maha-
lanobis distance instead of the squared Euclidean distance,
which for vectors a and b, and covariance Σ is written as

D2
Σ (a, b) = [a− b]

�
(Σ)−1 [a− b] . (10)

For pose estimation, we first initialize all Σi as identity, and
jointly optimize the transformations and structure,

εk
(
θM,i,M

)
=

4∑
p=1

D2
Σi

(
yik(p), T

M,i · ŷMk(p)
)
, (11)

f(θ,M) =
N∑
i=1

[
K∑

k=1

μi
k · εk

(
θM,i,M

)]
. (12)

The result is used to re-estimate the diagonal elements of the
noise covariances, after which the optimization of f(θ,M)
is repeated. This process is iterated until all variances have
converged. Note that one transformation TM,i must be fixed
in order to avoid that a solution is not uniquely determined.

The potential benefit is that this is a homogeneous error
metric. For every sensor, we can express the error as a
negative log likelihood whereas combining squared errors
might result in heterogeneous error functions (pixel versus
Euclidean). Another benefit of such a probabilistic formu-
lation is that prior knowledge on board and sensor poses
could be included, we have not pursued this direction here.
The disadvantages are that the optimization is more complex
and that the loop closure constraint is not explicitly enforced.

IV. EXPERIMENTS

For our experiments, we use a sensor setup that is mounted
on a Toyota Prius. It consists of: a Velodyne HDL-64E lidar
(on roof), a Continental ARS430 radar (behind bumper), and
a stereo camera 2× UI-3060CP Rev. 2 (behind windscreen)

using dense Semi-Global Matching [28]. With these sensors,
we have recorded a dataset with sensor measurements of 29
calibration board locations that are located in the FOV of all
sensors and in the working range of 5 m from the car.

We report the calibration performance for the three sensor
pairs: lidar to camera (l2c), lidar to radar (l2r), camera to
radar (c2r). The used measure is the Root Mean Squared
Error (RMSE) on all available detections of all 29 calibration
boards when applying the estimated transformation.

a) Choice of MCPE reference sensor: First, we assess
if the choice for the reference sensor in the configuration
MCPE affects the calibration performance. Table II lists the
performance for all three reference sensors, as well as the
other two configurations when using 5 random calibration
board locations. All reference sensor choices show similar
performance, however selecting the radar as reference sen-
sors lacks optimization of the only full 3D transformation of
l2c, resulting in less accurate results in some cases. We will
use lidar as MCPE reference sensor in the other experiments.
Note that l2c and l2r generally obtain the most accurate
results, and that both FCPE and PSE perform better than
MCPE for the l2r and c2r transforms.

TABLE II: Mean and standard deviation of the RMSE [m]
for 100 combinations of 5 calibration board locations.

RMSE l2c [m] RMSE l2r [m] RMSE c2r [m] Summed RMSE
MCPE(camera) 0.018±0.002 0.023±0.003 0.031±0.004 0.071
MCPE(lidar) 0.018±0.002 0.022±0.003 0.030±0.004 0.070
MCPE(radar) 0.018±0.002 0.022±0.003 0.031±0.004 0.071
FCPE 0.018±0.002 0.020±0.004 0.027±0.005 0.065
PSE 0.018±0.003 0.019±0.003 0.025±0.003 0.062

5 10 15 20 25
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0.025

# calibration board locations

R
M

SE
l2

c
[m
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MCPE(lidar)
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PSE
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0.015
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# calibration board locations

R
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SE
l2

r
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]

Fig. 4: The mean and standard deviation of the RMSE on
50 board locations for varying K. The top figure shows the
RMSE for l2c and the bottom figure the RMSE for l2r.

b) Comparison to baseline method: Next, we assess the
benefit of our tool handling multiple targets by comparing
our tool with the publicly available calibration method of
Guindel et al. [3] for lidar to stereo camera calibration only.
Table III shows that no differences were found for single
board calibration with [3] and our MCPE implementation,
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Fig. 5: RMSE error as function of observation noise added to the lidar observations with standard deviation as defined on the
x-axis. The median and the median absolute deviation are plotted based on 50 combinations of 5 calibration board locations.

Fig. 6: The left image shows the recorded scene to test the calibration. There is a parked car ∼ 6m in front of the sensor
setup, and a person with a checkerboard at ∼ 13m. The middle two plots show the lidar (black) and stereo (blue) point
cloud, and radar detections (red) before extrinsic calibration (based on manual adjustments). The right two plots visualize
the sensor data after extrinsic calibration. Radar detections are drawn as arcs since the elevation angle is not measured.

TABLE III: Single board versus multiple board methods.

lidar to stereo method # boards RMSE [m]
Guindel et al. [3] single board 0.0393 ± 0.0104
MCPE single board 0.0393 ± 0.0104
MCPE all boards (29) 0.0153
FCPE all boards (29) 0.0153
PSE all boards (29) 0.0153

which we repeated for all 29 board locations. For single
board methods, the mean and standard deviation of the
RMSE are reported. Furthermore, the table shows that using
more board locations can yield a 2× reduction of the RMSE.

c) Required number of calibration board locations: We
follow up the previous experiment by investigating how the
number of available board locations affects the result. All
our methods are tested on varying the number of locations
K, where for each value of K we use 50 fixed sets of K
randomly selected locations. Figure 4 shows how the mean
and standard deviation of the RMSE over all 50 sets changes
with K. The figure shows that when 10 boards are used, the
errors for FCPE and PSE have converged to ≤ 2 cm for
both l2c and l2r transforms. MCPE performs the worst for
the RMSE of l2r, whereas FCPE performs the best with a
RMSE of less than 1.5 cm when using all 29 board locations.
We have observed that PSE is sometimes less robust.

d) Sensitivity to observation noise: For each method,
we also study the sensitivity to sensor observation noise
by adding varying amounts of zero-mean Gaussian noise
N (0, σ2I3) to the 3D measurements of the lidar detections.
Figure 5 shows the median and median absolute deviation
of the RMSE for various values of σ. It can be seen that
all errors related to lidar increase when the noise levels
increase. Unlike MCPE, both FCPE and PSE are robust

against additive Gaussian noise for the c2r error. Since the
c2r link is not present in MCPE, its performance is affected
more when noise levels increase.

e) Qualitative results: Finally, we validated our tool
in an outdoor scene. Initial sensor poses were obtained by
manually adjusting the relative sensor poses, and then extrin-
sic calibration was performed using the PSE configuration.
Figure 6 shows the lidar and stereo point clouds, as well
as the radar detections, before and after calibration. Initially,
the lidar and stereo point cloud did not align, especially in
the Z direction, and the left-most radar detection did not
correspond to points in the lidar or stereo point cloud. After
calibration, the two point clouds closely match, and the radar
detections also coincide with the objects.

V. CONCLUSION

We presented an open-source extrinsic calibration tool for
lidar, camera and radar, and proposed three configurations
to estimate the sensor poses from simultaneous detections
of multiple calibration board locations. Experiments on a
setup with all sensing modalities show that all configurations
can provide good calibration results. Furthermore, the results
with five calibration board locations show that the expected
RMSE is approximately 2 cm for lidar to camera and lidar to
radar, and approximately 2.5 cm for camera to radar. When
using more than five board locations, fully connected pose
estimation shows the best performance. Future work involves
investigating the effect of more than three sensors on the
calibration performance.
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