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Preface
As the final year of high school approached, I found myself pondering what university life would en-
tail. It would be a mix of studying and enjoying time with friends beyond the confines of lecture halls.
My primary concern at that point was choosing my field of study. From a young age, I always loved
building, drawing, and designing, which led me to consider Architecture at the TU Delft. However, in
the end, I made the decision to pursue Mathematics, which was also offered at the TU Delft, as I loved
the subject in high school and since it provided a broad range of possibilities for my future. With that
choice made, I believed the hardest part was behind me.

Little did I know that things wouldn’t start off smoothly. COVID-19 abruptly brought my high school
days to a halt and forced a virtual beginning to my university journey. It was only at the start of my
second year that I finally experienced in-person lectures, joined the study association, and forged in-
credible friendships.

Having begun in isolation, I was unaware of what I had been missing, but I managed to adapt.
Reflecting on those times, I now realize how swiftly one’s social circle at university can change. This
realization serves as motivation for me to delve deeper into the robustness of surgical planning. Al-
though an event like COVID-19 might have an overwhelming impact that is beyond our control, having
a solid foundation can provide hope during times of stress.

Before I proceed, I would like to express my gratitude to the bachelor end project coordinator and
my supervisor at the TU Delft, Theresia van Essen, for granting me the opportunity to work in such an
important field. Initially, the amount of feedback I received was intimidating, but looking back, I appre-
ciated the time you dedicated to help me. I hope we were able to catch and correct most of the spelling
errors.

I would also like to thank my friends and family for their support, especially during the past year.
Lastly, I want to give a special thanks to my fellow RiCie committee members. While conducting this
research, we had a demanding schedule preparing for our visit down the east. Your faith in me and
patience while I completed my tasks are greatly valued.

M. van der Tuin
Delft, June 2023
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Abstract
Surgical scheduling is a complex task that requires consideration of various factors, including the proba-
bility of overtime. In this study, we address the research problem of surgery scheduling while accounting
for the likelihood of exceeding scheduled operating room (OR) time. To tackle this problem, we employ
integer linear programming (ILP) models to determine the optimal number of surgeries per group, with
the objective of maximizing OR utilization while incorporating the probability of overtime as a constraint.

To capture the probabilistic nature of surgery durations, we investigate suitable probability distri-
butions. Existing literature suggests that surgery durations follow a lognormal distribution. However,
since the sum of lognormally distributed random variables lacks a closed form solution, we initially as-
sume a normal distribution for analytical convenience. Subsequently, we approximate the lognormal
distribution using the Fenton-Wilkinson method to account for its realistic behavior. To incorporate the
lognormalistic behavior and solve the ILP models efficiently, we employ a column based approach.
This approach enables us to handle the complexities introduced by the lognormal distribution.

Our study utilizes data provided by a hospital in the Netherlands, including information on surgeries,
specialties, groups, and the master surgery schedule (MSS). Given the consideration of both normal
and lognormal distributions for surgery durations, we assess the goodness of fit using appropriate sta-
tistical tests.

Our results reveal that using averages or expected values yields the highest OR utilizations. How-
ever, there is a discussion regarding the validity of this method, as it does not explicitly incorporate
the probabilistic overtime constraints. Nevertheless, we observe that all methods include cases which
surpass the predetermined overtime threshold, suggesting that utilizing averages or expected values
can be a valid alternative. However, utilizing averages or expected values gives rise to high percentage
of cases surpassing our overtime threshold. So, we suggest to use a method which explicitly uses the
probabilistic nature of the surgery durations.

During the examination of our methods, we had to take a minimum number of mandatory sched-
uled surgeries for each group into account. This means that another dataset, with different mandatory
numbers, might lead to different results. Additionally, we noticed that our overtime definition might not
be the most optimal, as we still have cases that surpass our overtime threshold. In future research,
it would be valuable to include financial and staff factors, which can further enhance the scheduling
process.

Overall, this study contributes to the field of surgery scheduling by addressing the probability of
overtime and presenting insights into the trade-offs between OR utilization and the inclusion of proba-
bilistic constraints. Further research can build upon these findings to refine the scheduling approaches
and incorporate additional factors for a more comprehensive solution.
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1
Introduction

Amidst the challenges posed by the COVID-19 pandemic, the field of surgery scheduling has gained
even more significance. The disruption caused by the pandemic has highlighted even more the need
for efficient and effective scheduling strategies in healthcare institutions. However, the motivation for
optimizing surgery scheduling extends beyond the pandemic itself. It arises from the aim to enhance
patient care, maximize resource utilization, and improve overall operational efficiency. By developing
efficient scheduling strategies, we can minimize patient waiting times, ensure timely access to surgical
interventions, and prevent unnecessary delays or cancellations. Moreover, optimal surgical schedul-
ing plays a crucial role in maximizing the utilization of valuable resources such as operating rooms,
equipment, and healthcare personnel. By efficiently allocating these resources, healthcare institutions
can maximize the utilization of their available operating room capacity and enhance cost-effectiveness,
since operating rooms are one of the most expensive resources in a hospital. So, efficiently scheduling
surgical procedures is a fundamental aspect of healthcare management. However, considering limiting
overtime complicates surgical scheduling. limiting overtime in surgical scheduling include restrictions
intended for healthcare professionals regarding the number of hours they can work beyond their regular
shifts. Including limiting overtime in surgical scheduling is crucial for ensuring a balanced workload and
maintaining high-quality patient care. In the first place, these constraints are implemented to ensure
the well-being and performance of healthcare staff as excessive work hours can lead to physical and
mental health issues. Therefore, developing scheduling strategies that limit overtime is essential for
achieving a sustainable and resilient healthcare workforce.

To determine these, we pose the following research questions:

1. Which methods have already been developed to incorporate limiting overtime?

2. How do these methods perform?

3. Which method performs best?

In order to address these questions, we undertake a thorough investigation of various methods
for developing a tactical surgery scheduling system, which takes limiting overtime into account. In
Chapter 2, we examine the relevant literature to gain insights into the challenges, implications, and
potential solutions associated with the integration of overtime considerations in surgical scheduling.
Next, in Chapter 3, the problem description and formulation are presented. This chapter includes a
detailed examination of the fundamental constraints and objective function underlying the scheduling
model. By explicitly mentioning the constraints and objectives, the framework for incorporating limiting
overtime into the surgical scheduling process is established. In Chapter 4, the focus shifts towards
the incorporation of limiting overtime within the formulated model, while taking previous research into
account. Chapter 5 is dedicated to the analysis of the available data used to validate and test the
proposed scheduling models. Following the data analysis, Chapter 6 presents the evaluation of the
obtained results. This chapter critically assesses the performance of the developed models in terms
of their ability to incorporate limiting overtime effectively. Finally, in Chapter 7, a conclusion is drawn
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2 1. Introduction

based on the findings and outcomes of the research. The conclusion provides a concise summary of
the key findings, an in-depth discussion of the study’s implications, and valuable recommendations for
future research directions.



2
Literature

Over the past twenty years, surgery scheduling has sparked more interest. To see an overview of the
available literature dealing with this topic, we refer the reader to the articles published by Cardoen et
al. [4], Guerriero and Guide [5] and Wang et al. [12] . Since this topic can take many factors into
consideration, we define in this chapter the relevant definitions for our scope of research.

2.1. Elective patients
Elective surgeries are typically planned procedures that do not require immediate attention or emer-
gency intervention. By scheduling elective patients, hospitals can allocate resources, including operat-
ing rooms, surgical teams, and equipment, in an organized and efficient manner. This helps to ensure
that critical resources are available for both elective and emergency cases. Elective scheduling helps
to reduce waiting times for patients who require non-emergency surgical procedures. By assigning
specific time slots for elective surgeries, hospitals can provide patients with a clear schedule and min-
imize delays. In the next section, we explain how the master surgery scheduling can help with the
allocation of the elective surgeries.

2.2. Master surgery scheduling
Master surgery scheduling is the strategic and organized planning of elective surgical procedures in a
healthcare facility, typically spanning weeks or months. Its objective is to efficiently allocate operating
rooms (ORs), surgical teams, and resources to meet the demand for surgical services while optimizing
resource utilization and enhancing patient flow. The creation of a master surgery schedule (MSS)
involves considering multiple factors, including surgeon availability, OR availability, patient priorities,
surgical complexity, equipment requirements, and staff availability. Different definitions exist for an
MSS. According to Van Oostrum et al. [11], it entails a cyclical arrangement of surgery types, while
Beliën andDemeulemeester [1] define it as a cyclical schedule of time blocks within theORs allocated to
surgeons or specialized areas. For this research, we adopt the MSS definition proposed by Beliën and
Demeulemeester [1]. However, the MSS has limited flexibility, primarily stemming from the assumption
of uniform resource capacity across all periods. Periodically updating the MSS might be helpful, but
this contradicts the cyclic nature of an MSS.

2.3. ILP
An Integer Linear Program (ILP) is a mathematical optimization model that incorporates discrete integer
variables in a linear programming framework. Schneider [10] uses decision variables which determine
the number of surgeries per group for each OR and each day. To maximize the utilization, we can
use the approach proposed by Beliën and Demeulemeester [1], who studied the problems of building
robust cyclic master surgery schedules. Their focus was on minimizing the shortage of beds, but even
though we don’t consider the bed shortage, their approach can still be applied effectively.

In their research, Santibanez et al. [9] explore the scheduling of surgical blocks for each specialty
using a mixed integer programming model. Their objective is to find the optimal balance between the
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4 2. Literature

availability of OR time, downstream resources, and patient waiting lists. By analyzing these factors,
they aim to identify the best trade-off that ensures efficient utilization of resources while minimizing
patient waiting times.
In another study, Van Oostrum et al. [11] focus on planning elective surgical procedures that are fre-
quently performed within a cyclic schedule. The primary objective of their research is to minimize the
utilization of OR-capacity while also leveling the requirement of hospital beds. The authors incorporate
planned slack into their scheduling approach in order to include the stochastic nature of surgery dura-
tions. However, they assume that the length of stay (LoS) for patients is deterministic. The solution
approach consists of two phases. In the first phase, they ignore the requirement of hospital beds and
formulate an ILP. This ILP is then solved using an implicit column generation approach. By employing
this method, they aim to generate an initial solution that meets the scheduling constraints while opti-
mizing the OR capacity utilization. Moving to the second phase, the researchers formulate the problem
as a mixed integer linear program (MILP). The objective in this phase is to minimize the maximum
number of hospital beds needed. This MILP formulation takes into account the cyclic scheduling and
the requirement of hospital beds, allowing for the identification of an optimal solution within reason-
able time bounds. By utilizing this two-phase approach, Van Oostrum et al. [11] effectively address
the challenges associated with elective surgical scheduling. Their research offers valuable insights
into minimizing OR capacity utilization, leveling the requirement of hospital beds, and optimizing the
scheduling of frequently performed surgical types within a cyclic schedule. For our research, only the
first phase is relevant, since we do not take bed occupation into account.

2.4. Surgery duration
Normally, surgery duration is defined as the time span from the moment the patient enters the OR
until the moment the patient leaves it. According to the findings presented in the review conducted by
Wang et al. [12], the log-normal distribution emerged as the most frequently observed distribution for
fitting surgery duration. Assuming a lognormal distribution, the calculation of the probability of overtime
becomesmore challenging as there is no exact expression for the sum of log-normal distributed random
variables. Therefore, Van Oostrum et al. [11] and Hans et al. [6] assume that surgery durations follow
a normal distribution. One advantage of assuming normal distributions for surgery durations is that the
sum of these durations is also normally distributed. This allows for relatively straightforward calculation
of the probability of overtime. On the other hand, Nguyen [8] incorporated the lognormal distribution
with a column generation based approach. Before her model was executed, she made a set with all
feasible group combinations satisfying the probabilistic overtime constraint. Based on this set, the
model chose a combination for each OR and each day.

2.5. Overtime
To account for the probability of overtime, Hans et al. [6] use a scheduling approach for surgeries that
integrates the average durations of surgeries. They also allocate supplementary slack time, based on
managerial assessment of overtime tolerance, to accommodate the potential occurrence of overtime.
Similarly, Schneider [10] incorporates the probability of overtime by explicitly incorporating the proba-
bility distribution of the normal distribution as a constraint. This constraint incorporates the expected
duration and variance of the duration of surgeries, enabling a more comprehensive consideration of
overtime probabilities. Alternatively, Kauwenbergh [7] determines the end time of a surgery based
on the starting time and the expected surgery duration. By obtaining the estimated end time, we can
minimize the probability of overtime.



3
Model

This chapter describes the model that has been constructed for our research. In the first section, we
give the problem description. In Section 3.2, we formulate the corresponding mathematical model,
including the constraints and objective function.

3.1. Problem description
In our model, we let 𝐽 be the set of operating rooms (ORs), 𝑇 the set of days and 𝑆 be the set of spe-
cialties. In our scheduling framework, we utilize a Master Surgery Schedule (MSS), which specifies the
allowable scheduling of specialties in each OR 𝑗 ∈ 𝐽 on day 𝑡 ∈ 𝑇, referred to as OR-day (𝑗, 𝑡). Our pri-
mary objective in this problem is to maximize OR utilization while minimizing overtime occurrence. To
achieve this, we define our objective function as the maximization of OR utilization, with the constraint
of minimizing the probability of overtime. In order to simplify this problem, we divide each specialty
into groups of surgeries, based on surgery duration. In total, each specialty has at most three groups.
With |𝑆| specialties, this means we have to consider at most 3 ⋅ |𝑆| groups of surgeries. For each
specialty 𝑠 ∈ 𝑆, we define 𝐼𝑠 as the set of surgery groups belonging to specialty 𝑠. Consequently, the
set of all groups ⋃

𝑠∈𝑆
𝐼𝑠, is denoted by 𝐼. Since the groups belong to one specialty, we have that ⋂𝑠∈𝑆 𝐼𝑠 = ∅.

Based on this simplification, we establish the following constraints. Firstly, surgeries belonging to
specialty 𝑠 ∈ 𝑆 can only be scheduled on specific OR-days assigned by the MSS. Secondly, we impose
a minimum number of scheduled surgeries for each group to ensure that all groups are included in the
schedule. These constraints are our basis constraints, since they can be easily implemented in our
(M)ILP-model. Now, let 𝐷𝑗𝑡 be the random variable representing the total surgery duration in OR-day
(𝑗, 𝑡). Each OR-day (𝑗, 𝑡) has a specific capacity, denoted by 𝑐𝑗𝑡. Consequently, overtime will occur if
𝐷𝑗𝑡 ≥ 𝑐𝑗𝑡 for some 𝑗, 𝑡. Besides our basis constraints, we aim to incorporate the non-linear constraint
of overtime probability. This research explores multiple approaches to address this non-linearity and
compares their effectiveness.

3.2. Problem formulation
Now that we have given a description of our problem, the next crucial step in the process of mathemat-
ical modeling is formulating the mathematical model itself. In the following subsections, we delve into
the details of formulating the mathematical model. Therefore, we identify the decision variables, define
the objective function and express the constraints mathematically.

3.2.1. Constraints
For this model, we do not consider every surgery separately. Instead, we look at each group, and decide
how many surgeries from this group we should schedule. This gives rise to the following non-negative
integer decision variables:

𝑁𝑖𝑗𝑡 = Number of surgeries of group 𝑖 ∈ 𝐼 scheduled in OR 𝑗 ∈ 𝐽 on day 𝑡 ∈ 𝑇.
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6 3. Model

Besides the decision variables, we need some input parameters. We need to schedule the surgeries
according to the MSS, which is given by input parameters 𝑎𝑠𝑗𝑡.

𝑎𝑠𝑗𝑡 = {
0 surgeries of specialty 𝑠 ∈ 𝑆 are not allowed to be scheduled in OR 𝑗 ∈ 𝐽 on day 𝑡 ∈ 𝑇.
1 surgeries of specialty 𝑠 ∈ 𝑆 are allowed to be scheduled in OR 𝑗 ∈ 𝐽 on day 𝑡 ∈ 𝑇.

Note, that the MSS allows at most one specialty for each OR-day (𝑗, 𝑡).

As our first constraints, for each specialty 𝑠 ∈ 𝑆, we need to take into account whether or not those
surgeries are allowed to be planned in OR-day (𝑗, 𝑡). The corresponding constraints are given by

∑
𝑖∈𝐼𝑠

𝑁𝑖𝑗𝑡 ≤ 𝑀𝑠 ⋅ 𝑎𝑠𝑗𝑡 , ∀𝑠 ∈ 𝑆, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, (3.1)

where 𝑀𝑠 is the maximum number of surgeries for specialty 𝑠 ∈ 𝑆 which can be scheduled in one
OR-day. Although Constraints (3.1) are sufficient for the scheduling of our surgeries, they do not guar-
antee that surgeries of every group are considered in the schedule. In order to provide more equal
healthcare, management also provides us with a minimum required number of planned surgeries per
group, denoted by 𝛽𝑖.

∑
𝑡∈𝑇
∑
𝑗∈𝐽
𝑁𝑖𝑗𝑡 ≥ 𝛽𝑖 , ∀𝑖 ∈ 𝐼. (3.2)

Lastly, we need to incorporate the overtime constraints. Since the occurrence of overtime cannot
be determined beforehand with certainty, we look at the probabilistic constraints, given as

ℙ(𝐷𝑗𝑡 ≥ 𝑐𝑗𝑡) ≤ 𝛼 ∀𝑗, 𝑡, (3.3)

where 𝛼 ∈ [0, 1]. In most hospitals, 𝛼 is chosen by management. Since Constraints (3.3) are not
linear, we have to find a way to linearly incorporate it in our model. In the next chapter, we investigate
several ways to deal with this issue, as discussed in Chapter 2.

3.2.2. Objective function
Now that we have defined our decision variables, we can mathematically formulate our objective func-
tion. We want to maximize the utilization of ORs, i.e. we want to maximize the total surgery duration
per OR-day. Let 𝐷𝑖 be stochastic variables representing the duration of surgeries from group 𝑖 ∈ 𝐼. In
order to estimate 𝐷𝑖, we use 𝔼[𝐷𝑖], the expected surgery duration of group 𝑖 ∈ 𝐼. This results in the
following objective function:

max∑
𝑡∈𝑇
∑
𝑗∈𝐽
∑
𝑖∈𝐼
𝑁𝑖𝑗𝑡 ⋅ 𝔼[𝐷𝑖]. (3.4)

Since we incorporate the probabilistic overtime constraints in multiple ways, we use different values
for 𝔼[𝐷𝑖]. Therefore, we specify the value of 𝔼[𝐷𝑖] for each method.



4
Solution methods

Relying solely on the expected duration of elective surgeries for scheduling tends to lead to high OR-
utilization. However, as the variability of surgery duration increases, there is a higher probability of
overtime. Balancing this variability leads to a trade-off between maximizing OR utilization and minimiz-
ing the probability of OR overtime. In this chapter, we incorporate the probability overtime constraint
into our model. In Section 4.1, we reduce the available capacity in order to take the possible overtime
into account. Next, in Section 4.2, we approximate the duration with a normal distribution. Lastly, in
Section 4.3, we approximate the surgery duration with a lognormal distribution.

4.1. Average duration
Our first approach for dealing with the probabilistic constraints, is to reduce the available capacity 𝑐𝑗𝑡 for
each OR-day (𝑗, 𝑡) by a factor, which we refer to as our overtime factor 𝑞. Let 𝑒𝑖 be the average surgery
duration for group 𝑖 ∈ 𝐼. Since every group 𝑖 ∈ 𝐼 contains different surgeries, with different durations,
we use the average group duration 𝑒𝑖 in our model to approximate 𝔼[𝐷𝑖]. Using the reduced capacity,
we determine the allowed surgery duration for each OR-day (𝑗, 𝑡). These constraints are given by

∑
𝑖∈𝐼
𝑁𝑖𝑗𝑡 ⋅ 𝑒𝑖 ≤ (1 − 𝑞) ⋅ 𝑐𝑗𝑡 , ∀𝑗, 𝑡. (4.1)

Since the duration of mandatory surgeries might exceed the reduced capacity of some OR-days,
we only consider valid input minimum numbers 𝛽𝑖 for each group 𝑖 ∈ 𝐼.

This model incorporates the probability of overtime by reducing the available capacity using a factor
𝑞. Consequently, the choice of 𝑞 is crucial for our model. Our goal is to select a value for 𝑞 that ensures
the overtime fraction, given by

𝐹𝑞 =
Number of OR-days having overtime

Total number of OR-days ,

is less than or equal to a specified threshold 𝛼, which lies between 0 and 1. In order to determine this
factor 𝑞, we utilize binary search. Initially, we create a set containing values from 0 to 1 in increments
of 0.01: [0, 0.01, 0.02, ..., 0.98, 0.99, 1]. In each iteration, we calculate the overtime fraction for the middle
value, which is 0.50 at the start. If 𝐹0.50 is greater than 𝛼, we focus on the right half of the interval;
otherwise, we consider the left half. The chosen half becomes the set for the next iteration. We repeat
this process until we find a value of 𝑞 that satisfies the conditions 𝐹𝑞 ≤ 𝛼 and 𝐹𝑞−0.01 ≥ 𝛼.

4.2. Normal distribution
Schneider [10] uses the normal distribution to incorporate the probabilistic overtime constraints. This
means we have to fit the corresponding normal distribution for each surgery group duration 𝐷𝑖 for all
𝑖 ∈ 𝐼 with parameters 𝜇𝑖 and 𝜎𝑖.

7



8 4. Solution methods

4.2.1. Expected duration
At first, we use the expected value of the random variables 𝐷𝑖 assuming they have the normal distribu-
tion for each group 𝑖 ∈ 𝐼. Consequently, it becomes necessary to estimate the distribution parameters
for each individual group. The expected value of a normally distributed random variable 𝑋 with param-
eters 𝜇𝑋 and 𝜎𝑋 is given by 𝜇𝑋. We use the same model as outlined in Section 4.1. Assuming the
normal distribution, we know that 𝔼[𝐷𝑖] = 𝜇𝑖. Consequently, in our objective function (3.4) 𝑒𝑖 = 𝜇𝑖.

4.2.2. Closed form
In the previous subsection, we incorporated the probability of overtime by reducing the available ca-
pacity with a factor 𝑞. However, this approach does not consider the probability distribution of the
random variable 𝐷𝑗𝑡, the total duration of surgeries of OR-day (𝑗, 𝑡). In this subsection, we use the
normal distribution to approximate 𝐷𝑗𝑡. Therefore, we assume that 𝐷𝑖 has a normal distribution with
parameters (𝜇𝑖 , 𝜎𝑖). It is known that, the sum of normally distributed random variables also has the
normal distribution. Consequently, the total duration of surgeries in OR-day (𝑗, 𝑡) is approximated by
a normal distribution with parameters 𝜇𝑗𝑡 = ∑𝑖∈𝐼 𝑁𝑖𝑗𝑡 ⋅ 𝜇𝑖 and 𝜎2𝑗𝑡 = ∑𝑖∈𝐼 𝑁𝑖𝑗𝑡 ⋅ 𝜎2𝑖 . To incorporate the
probabilistic overtime constraint, we proceed as follows:

ℙ(𝐷𝑗𝑡 ≥ 𝑐𝑗𝑡) ≤ 𝛼 ⟺ ℙ(𝐷𝑗𝑡 ≤ 𝑐𝑗𝑡) ≥ 1 − 𝛼 ⟺ ℙ(
𝐷𝑗𝑡 − 𝜇𝑗𝑡
𝜎𝑗𝑡

≤
𝑐𝑗𝑡 − 𝜇𝑗𝑡
𝜎𝑗𝑡

) ≥ 1 − 𝛼.

Using the properties of the normal distribution, we get that

Φ(
𝑐𝑗𝑡 − 𝜇𝑗𝑡
𝜎𝑗𝑡

) ≥ 1 − 𝛼 ⟺ 𝜇𝑗𝑡 +Φ−1(1 − 𝛼)𝜎𝑗𝑡 ≤ 𝑐𝑗𝑡 , ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇. (4.2)

Furthermore, we can use 𝜇𝑗𝑡 = ∑𝑖∈𝐼 𝑁𝑖𝑗𝑡 ⋅ 𝜇𝑖 and 𝜎2𝑗𝑡 = ∑𝑖∈𝐼 𝑁𝑖𝑗𝑡 ⋅ 𝜎2𝑖 to rewrite Constraints (4.2) as

∑
𝑖∈𝐼
𝑁𝑖𝑗𝑡 ⋅ 𝜇𝑖 +Φ−1(1 − 𝛼)√∑

𝑖∈𝐼
𝑁𝑖𝑗𝑡 ⋅ 𝜎2𝑖 ≤ 𝑐𝑗𝑡 , ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇. (4.3)

Since we are working with an ILP, we need to linearize Constraints (4.3), i.e. we need to linearly
approximate the square root function. To achieve this, we use the approach described by Schneider et
al. [10] to approximate the square root function by piecewise linear functions. Following this approach,
we first determine the interval [𝑥𝑚𝑖𝑛,𝑥𝑚𝑎𝑥] in which we approximate the square root function. We choose
𝑥𝑚𝑖𝑛 = 0, since this means there are no surgeries scheduled in some OR-day. To determine 𝑥𝑚𝑎𝑥, we
calculate the largest possible variance in an OR-day. Subsequently, we split the interval into smaller
sub-intervals, such that each linear function approximates the square root function in some sub-interval.
Let 𝑥0, … , 𝑥𝑁 be the 𝑁+1 breakpoints, where each consecutive pair of breakpoints are the starting and
ending points of a respective sub-interval. These breakpoints are the values on the x-axis in our interval.
Note that 𝑥0 = 𝑥𝑚𝑖𝑛 and 𝑥𝑁 = 𝑥𝑚𝑎𝑥.
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Figure 4.1: Approximating the square root function in the interval [0:90] by two piecewise linear functions (Source: Bosch [3])

In Figure 4.1, an example is demonstrated, in which the square root function is approximated in the
interval [0, 90] by using two piecewise linear funcions. It can be observed that the linear approximations
(gray) and square root function (black) are equal in the tangent points 𝑡1 and 𝑡2. The breakpoints 𝑥0
and 𝑥2 correspond with the minimum and maximum values of the interval, while breakpoint 𝑥1 is the
intersection point of the two piecewise linear functions.

In general, each linear function is a tangent line of the square root function in the point 𝑡𝑛 for 𝑛 ∈
{1, 2, … , 𝑁}. The linear functions are described by ℎ𝑛(𝑥) = 𝑎𝑛 + 𝑏𝑛𝑥 for 𝑛 ∈ {1, 2, … , 𝑁}. Here, 𝑏𝑛 is the
derivative of the square root function in the point 𝑡𝑛. Since our approximation functions are equal to
the square root function in the point 𝑡𝑛, we can calculate the value of 𝑎𝑛.

√𝑡𝑛 = 𝑎𝑛 + 𝑏𝑛𝑡𝑛 , 𝑏𝑛 = (√𝑡𝑛)′ =
1

2√𝑡𝑛
⟹ 𝑎𝑛 =

1
2√𝑡𝑛 . (4.4)

Using the values of 𝑎𝑛 and 𝑏𝑛, we get

ℎ𝑛(𝑥) =
1
2√𝑡𝑛 +

1
2√𝑡𝑛

𝑥. (4.5)

Let 𝑦𝑛 = ℎ𝑛(𝑥𝑛), i.e. 𝑦𝑛 is the function value of the linear approximation in the breakpoint 𝑥𝑛. The
𝜆-formulation, as described in AIMMS Optimization Modelling Manual [2], can be used to model the
piecewise linear functions. According to this formulation, the function value of any point between two
breakpoints is the weighted sum of the function values of these two breakpoints. Let 𝜆𝑛 be nonnegative
weights for 𝑛 ∈ {1, 2, … , 𝑁} such that their sum equals one.
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Figure 4.2: Approximating the square root function in the point x.

Say, we need to determine the square root of 𝑥, as shown in Figure 4.2. Then we have the following
situation:

𝜆0𝑥0 + 𝜆1𝑥1 = 𝑥 (4.6)
𝜆0 + 𝜆1 = 1 (4.7)

𝜆2 = 0 (4.8)
𝜆0ℎ1(𝑥0) + 𝜆1ℎ1(𝑥1) = ℎ1(𝑥) (4.9)

Firstly, Constraint (4.6) makes sure 𝑥 is the weighted sum of two consecutive breakpoints 𝑥0 and 𝑥1.
Next, Constraint (4.7) makes sure that the weighted sum of these two breakpoints sum up to one.
This means that the other 𝜆’s are zero, as given by Constraint (4.8). At last, Constraint (4.9) uses the
determined weights to determine the linear approximation of 𝑥. In general, the following constraints
are incorporated to model the use of piecewise linear functions.

𝜆0ℎ1(𝑥0) +
𝑁

∑
𝑛=1

𝜆𝑛ℎ𝑛(𝑥𝑛) = ℎ𝑛̃(𝑥), (4.10)

𝑁

∑
𝑛=0

𝜆𝑛𝑥𝑛 = 𝑥, (4.11)

𝑁

∑
𝑛=0

𝜆𝑛 = 1. (4.12)

Note that in Constraint (4.10), the right-hand side incorporates a linear approximation function ℎ𝑛̃.
This particular function is chosen in such a way that the positive consecutive breakpoints align with
the start and end points in which this function is defined. Now that we have described how we can
approximate the square root function with piecewise linear functions, we need to determine the values
of the breakpoints and the tangent points. For a detailed procedure, we refer the reader to Schneider
et al. [10]. Once the tangent points, breakpoints and corresponding approximation function values
have been determined, we can use the 𝜆-formulation for each OR-day (𝑗, 𝑡), consequently, giving rise
to the introduction of decision variables 𝜆𝑗𝑡𝑛. By combining the 𝜆-formulation for each OR-day (𝑗, 𝑡)
with Constraints (4.3), we obtain the following set of constraints:
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∑
𝑖∈𝐼
𝑁𝑖𝑗𝑡 ⋅ 𝜇𝑖 +Φ−1(1 − 𝛼)

𝑁

∑
𝑛=0

𝜆𝑗𝑡𝑛𝑦𝑛 ≤ 𝑐𝑗𝑡 , ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, (4.13)

𝑁

∑
𝑛=0

𝜆𝑗𝑡𝑛𝑥𝑛 =∑
𝑖∈𝐼
𝑁𝑖𝑗𝑡𝜎2𝑖 , ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, (4.14)

𝑁

∑
𝑛=0

𝜆𝑗𝑡𝑛 = 1, ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇. (4.15)

There are some necessities in order to make sure these constraints are satisfied for all rooms on
every day. Firstly, we must make sure that for every closed room, we have that:

∑
𝑖∈𝐼
𝑁𝑖𝑗𝑡𝜎2𝑖 =

𝑁

∑
𝑛=0

𝜆𝑗𝑡𝑛𝑥𝑛 = 0 ⟹
𝑁

∑
𝑛=0

𝜆𝑗𝑡𝑛𝑥𝑛 = 𝑥0 = 0 ⟹
𝑁

∑
𝑛=0

𝜆𝑗𝑡𝑛𝑦𝑛 = 0. (4.16)

In Schneider’s [10] approximation, we use a linear approximation tangent to 𝑡1 to determine 𝑦0.
So, even though 𝑥0 = 0, we have that 𝑦0 ≠ 0, since it is an over approximation with maximum error
Δ𝑚𝑎𝑥. Consequently, the constraint is not satisfied for empty rooms. To address this issue, we consider
Schneider’s approach again. However, this time it is applied in the interval [𝜖, 𝑥𝑚𝑎𝑥] for some sufficiently
small 𝜖 to determine breakpoints 𝑥1, 𝑥2, ..., 𝑥𝑁+1 with their corresponding 𝑦𝑛-values. Afterwards, we add
𝑥0 = 𝑦0 = 0 and the parameter 𝑚 = 𝑁+1 is introduced for convenience. Since no approximations are
made between 𝑥0 and 𝑥1, the shift does not affect the other approximations. Secondly, we must make
sure that at most two consecutive 𝜆’s attain positive values, in order to make sure our approximation
errors are less than or equal to Δ𝑚𝑎𝑥. In order to do this, we introduce binary decision variables 𝛿𝑗𝑡𝑛
and the following constraints:

𝑚−1

∑
𝑛=0

𝛿𝑗𝑡𝑛 = 1, ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, (4.17)

𝜆𝑗𝑡0 ≤ 𝛿𝑗𝑡0, ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, (4.18)
𝜆𝑗𝑡𝑚 ≤ 𝛿𝑗𝑡𝑚−1, ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, (4.19)

𝜆𝑗𝑡𝑛 ≤ 𝛿𝑗𝑡𝑛−1 + 𝛿𝑗𝑡𝑛 , ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, 𝑛 ∈ {1,… ,𝑚 − 1}. (4.20)

The Constraints (4.15) combined with (4.17) - (4.20) correspond to special ordered set type two
(SOS2) constraints. Most software packages are already taking these SOS2 constraints into account,
without explicitly including Constraints (4.17) - (4.20).

4.2.3. Column based approach
This method uses a column generation based approach to incorporate the probabilistic overtime con-
straint assuming the normal distribution into our model. We define𝐾𝑠 as the set of feasible combinations
containing only groups of specialty 𝑠 ∈ 𝑆, such that ℙ(𝐷𝑘 ≥ 𝑐𝑗𝑡) ≤ 𝛼, for some 𝛼 ∈ [0, 1]. Here, 𝐷𝑘 is
the duration of surgeries in combination 𝑘 ∈ 𝐾. For each specialty 𝑠 ∈ 𝑆, we consider all possible com-
binations of number of surgeries within each group associated to this specialty. Given our assumption
that the durations of surgery groups follow a normal distribution, we approximate the sum of these du-
rations with a normal distribution. This enables us to determine the parameters and evaluate whether
our probabilistic constraint is met for every OR-day (𝑗, 𝑡), which in turn determines if this combination
is added to 𝐾𝑠. Moreover, we define 𝐾 as the set of all feasible combinations, i.e. 𝐾 = ⋃

𝑠∈𝑆
𝐾𝑠. Again,

since groups only belong to one specialty, we have that ⋂
𝑠∈𝑆
𝐾𝑠 = ∅. The set 𝐾 can be found in Appendix

B. In this model, we choose at most one combination 𝑘 ∈ 𝐾 for each OR-day (𝑗, 𝑡). This leads to the
following decision variables:
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𝑈𝑘𝑗𝑡 = {
0 combination 𝑘 ∈ 𝐾 is not scheduled in OR 𝑗 ∈ 𝐽 on day 𝑡 ∈ 𝑇.
1 combination 𝑘 ∈ 𝐾 is scheduled in OR 𝑗 ∈ 𝐽 on day 𝑡 ∈ 𝑇.

As input, we know for all combinations 𝑘 ∈ 𝐾 the number of surgeries from each group 𝑖 ∈ 𝐼.

𝑣𝑘𝑖 = Number of surgeries of group 𝑖 ∈ 𝐼 in combination 𝑘 ∈ 𝐾.
Note, that 𝑁𝑖𝑗𝑡 can be replaced by ∑

𝑘∈𝐾
𝑈𝑘𝑗𝑡 ⋅ 𝑣𝑘𝑖.

Since OR-days can have different available capacities, we need to indicate which combinations can
be used for each OR-day. Therefore, we introduce the following input parameters:

𝑝𝑘𝑗𝑡 = {
0 combination 𝑘 ∈ 𝐾 cannot be scheduled in OR 𝑗 ∈ 𝐽 on day 𝑡 ∈ 𝑇.
1 combination 𝑘 ∈ 𝐾 can be scheduled in OR 𝑗 ∈ 𝐽 on day 𝑡 ∈ 𝑇.

For each OR-day, we can choose at most one combination 𝑘 ∈ 𝐾 and we must make sure that the
MSS is preserved:

∑
𝑘∈𝐾

𝑈𝑘𝑗𝑡 ≤ 1, ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇. (4.21)

𝑈𝑘𝑗𝑡 ≤ 𝑝𝑘𝑗𝑡 , ∀𝑘 ∈ 𝐾, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇. (4.22)

We also need to make sure that the minimum required number 𝛽𝑖 is met for each group 𝑖 ∈ 𝐼:

∑
𝑘∈𝐾

∑
𝑗∈𝐽
∑
𝑡∈𝑇
𝑈𝑘𝑗𝑡 ⋅ 𝑣𝑘𝑖 ≥ 𝛽𝑖 , ∀𝑖 ∈ 𝐼. (4.23)

Combining 𝑁𝑖𝑗𝑡 = ∑
𝑘∈𝐾

𝑈𝑘𝑗𝑡 ⋅ 𝑣𝑘𝑖 and using the expected value 𝜇𝑖 in (3.4), we get

max∑
𝑘∈𝐾

∑
𝑖∈𝐼
∑
𝑗∈𝐽
∑
𝑡∈𝑇
𝑈𝑘𝑗𝑡 ⋅ 𝑣𝑘𝑖 ⋅ 𝜇𝑖 . (4.24)

4.3. Lognormal distribution
In the previous section, we considered the normal distribution to approximate the probability of over-
time. However, it is important to note that the surgery duration is lognormally distributed, as mentioned
by Wang et al. [12]. Hence, the total surgery duration is approximated by the sum of lognormal distri-
butions. Yet, there has been no closed form to calculate this sum.

4.3.1. Expected duration
At first, we again use the expected value of the random variables 𝐷𝑗𝑡. However, this time, we approxi-
mate them using the lognormal distribution for each group 𝑖 ∈ 𝐼. Consequently, it becomes necessary
to estimate the distribution parameters for each individual group. The expected value of a lognormally
distributed random variable 𝑋 with parameters 𝜇𝑋 and 𝜎𝑋 is given by exp(𝜇𝑋 +

𝜎𝑋
2 ). We use the same

model as outlined in Section 4.1, where 𝑒𝑖 = exp (𝜇𝐷𝑖 +
𝜎𝐷𝑖
2 ).

4.3.2. Column based approach
Again, we use a column generation based approach to incorporate our probabilistic overtime con-
straints. However, this time we assume the surgery durations are lognormally distributed. Secondly,
we assume that the sum of surgery durations also has the lognormal distribution. To determine the
corresponding parameters we use the Fenton-Wilkinson approximation.
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Consider 𝑋1, … , 𝑋𝐻 as 𝐻 independent two-parameter log-normal random variables. Let 𝑋 be the
log-normal random variable which approximates ∑𝐻𝑖=1 𝑋𝑖. The Fenton-Wilkinson method is used to
approximate the scale and shape parameters of 𝑋 by matching the first and second moments of 𝑋
about the origin to those of ∑𝐻𝑖=1 𝑋𝑖. For each 𝑖 ∈ 𝐼, we determine parameters of 𝐷𝑖 and use those to
calculate the corresponding expected value and variance. Consequently, we get that 𝔼[𝑋] = ∑𝐻𝑖=1 𝔼[𝑋𝑖]
and Var(𝑋) = ∑𝐻𝑖=1 Var(𝑋𝑖). Once we calculated 𝔼[𝑋] and Var(𝑋), we can use the explicit formula for
expected value and variance of a lognormally distributed random variable, given by

𝔼[𝑋] = exp(𝜇𝑋 +
𝜎2𝑋
2 ) ,

Var(𝑋) = (exp(𝜎2𝑋) − 1)(𝔼[𝑋])2,

to calculate the parameters of 𝑋. Consequently,

𝜎2𝑋 = log(Var(𝑥)𝔼[𝑋]2 + 1) ,

𝜇𝑥 = log (𝔼[𝑋]) − 𝜎
2
𝑋
2 .

Once these parameters are known, we use the same model as described in Subsection 4.2.3.





5
Data

In this chapter, we examine the data which is used to test our models. In Section 5.1, we elaborate on
the surgeries, specialties and MSS we used. In the next section, we execute goodness of fit tests to
evaluate which distribution is most suitable for the surgery duration.

5.1. Context
This data has been retrieved from an academic hospital in the Netherlands. It consists of 6426 surg-
eries, distributed among 9 specialties, which are listed in Table 5.1.

Table 5.1: Specialties

Abbreviation Specialty
ENT Ear, Nose and Throat
EYE Ophthalmology
GYN Gynaecology
NS Neurological surgery
OB Obstetrics
OMS Oral and maxillofacial surgery
ORT Orthopaedic urgery
PLA Plastic surgery
URO Urology

Given that each specialty has at most 3 groups, in total we have at most 27 groups. In fact, it turns
out there are 25 groups. In Table 5.2, the number of groups per specialty is listed.

Table 5.2: Group division per specialty

Specialty ENT EYE GYN NS OB OMS ORT PLA URO
Number of groups 3 3 3 3 2 3 2 2 3

15
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We also use a MSS of 14 days (2 weeks, with 5 working days per week) to schedule the surgeries,
as shown in Table 5.3.

Table 5.3: Master surgery scheduling for first and second week

OR Monday Tuesday Wednesday Thursday Friday
OR1 ORT ORT ORT ORT
OR2 ORT ORT / NS ORT ORT ORT
OR3 URO URO URO URO URO
OR4 OB
OR5 NS NS NS NS
OR6 NS NS NS NS NS
OR7 NS GYN NS NS NS
OR8 NS NS NS NS NS
OR9 GYN PLA / GYN GYN GYN GYN
OR10 OMS OMS NS OMS
OR11 EYE EYE EYE EYE EYE
OR12 ENT ENT / — ENT ENT ENT
OR13 ENT ENT ENT ENT ENT
OR14 PLA PLA PLA

This MSS also determines if OR-day (𝑗, 𝑡) is open. If it is open, we assume it can be open for 240,
480, 780 or 900 minutes. The opening times are specified in Table 5.4.

Table 5.4: Opening times for first and second week in minutes

OR Monday Tuesday Wednesday Thursday Friday
OR1 480 480 480 480
OR2 480 480 / 480 480 480 480
OR3 480 480 480 480 480
OR4 480
OR5 480 480 480 480
OR6 480 480 480 480 480
OR7 480 480 480 480 480
OR8 480 480 480 480 480
OR9 480 900 / 480 480 480 480
OR10 240 480 240 480
OR11 480 480 480 480 480
OR12 480 480 / 0 780 480 480
OR13 480 480 480 480 480
OR14 240 240 240

5.2. Surgery duration fitting
As described by Wang et al. [12], we saw that surgery durations have the lognormal distribution. Since
we also work with the normal distribution, we compare the fit of both distributions per group using
the two-sided Kolmogorov-Smirnov test (KS-test), Cramer-Von Mises test (CvM-test) and Anderson-
Darling test (AD-test).

Let 𝑋1, … , 𝑋𝑛 be a sample having an unknown cumulative probability distribution 𝐹. The KS-test
uses the empirical distribution function 𝐹𝑛 of our sample, which is given by

𝐹𝑛(𝑥) =
1
𝑛

𝑛

∑
𝑖=1
𝟙𝑋𝑖≤𝑥 =

Number of observations ≤ 𝑥
Total number of observations .
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The KS-test tests the null hypothesis 𝐻0 that 𝐹 = 𝐹0, which tests if our distribution 𝐹 equals the
tested distribution 𝐹0. Therefore, it uses the statistic

𝑇 = sup
𝑥∈ℝ

|𝐹𝑛(𝑥) − 𝐹0(𝑥)|.

For large values, the KS-test will reject the null-hypothesis. Another test used in statistics, is the
CvM-test. This test uses another statistic to test the null hypothesis, given by

𝑇 = 𝑛∫
∞

−∞
(𝐹𝑛(𝑥) − 𝐹0(𝑥))

2 𝑑𝑥.

Lastly, we use the AD-test, which uses

𝑇 = 𝑛∫
∞

−∞

(𝐹𝑛(𝑥) − 𝐹0(𝑥))
2

𝐹0(𝑥)(1 − 𝐹0(𝑥))
𝑑𝑥

as its test statistic. The AD-test uses another weight function compared to the CvM-test, to take the
observations in the tail more into account.

Now, we evaluate the null hypothesis for each group. This involves determining whether we can
reject the null hypothesis based on the available evidence. To make this determination, we calculate
the p-value and compare it with a predetermined significance level, denoted as 𝜉. A commonly used
significance level is 𝜉 = 0.05. The p-values are computed using the following formula:

2min (ℙ(𝑇 ≤ 𝑡), ℙ(𝑇 ≥ 𝑡)) ,

where 𝑇 represents the observed statistic. If the p-value is below or equal to 𝜉, we have strong
evidence to reject the null hypothesis. Conversely, if the p-value exceeds 𝜉, we lack sufficient evidence
to reject the null hypothesis.
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Table 5.5: Goodness of fit p-values for the distribution per group.

KS-test CvM-test AD-test
group normal lognormal normal lognormal normal lognormal
NS1 0.006 0.489 0.061 0.620 0.058 0.681
NS2 0.001 0.684 0.001 0.703 0.000 0.756
NS3 0.000 0.176 0.000 0.189 0.000 0.171
GYN1 0.320 0.214 0.346 0.227 0.239 0.221
GYN2 0.002 0.636 0.005 0.476 0.002 0.554
GYN3 0.321 0.857 0.380 0.857 0.338 0.934
OMS1 0.450 0.801 0.534 0.743 0.422 0.785
OMS2 0.272 0.858 0.256 0.856 0.243 0.903
OMS3 0.026 0.295 0.018 0.254 0.012 0.223
ENT1 0.020 0.010 0.041 0.028 0.026 0.023
ENT2 0.000 0.315 0.000 0.368 0.000 0.368
ENT3 0.000 0.033 0.000 0.032 0.000 0.020
EYE1 0.001 0.160 0.015 0.325 0.013 0.257
EYE2 0.030 0.046 0.039 0.081 0.014 0.076
EYE3 0.000 0.032 0.000 0.144 0.000 0.147
ORT1 0.469 0.514 0.616 0.475 0.591 0.517
ORT2 0.035 0.457 0.070 0.219 0.021 0.203
ORT3 0.000 0.045 0.000 0.031 0.000 0.024
PLA1 0.795 0.825 0.775 0.884 0.794 0.920
PLA2 0.100 0.680 0.093 0.778 0.084 0.852
URO1 0.011 0.600 0.020 0.571 0.013 0.486
URO2 0.628 0.427 0.856 0.612 0.928 0.689
URO3 0.508 0.537 0.858 0.663 0.853 0.728
OB1 0.459 0.835 0.454 0.969 0.445 0.974
OB2 0.023 0.371 0.030 0.236 0.019 0.202

Table 5.5 shows that most groups are more likely to have the lognormal distribution, compared to
the normal distribution. For example, in Figure 5.1 we see that groups ENT2 and GYN2 are more likely
to have the lognormal distribution.

(a) Group ENT2 (b) Group GYN2

Figure 5.1: Two groups which are more likely to have the lognormal distribution.
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However, we cannot ignore that some groups are not very likely to have the lognormal distribution.
One reason could be, because these groups have some values which cannot be included in the tail of
their approximated lognormal distribution, as shown in Figure 5.2.

(a) Group ENT3 (b) Group ORT3

Figure 5.2: Two groups which have problems fitting the distribution in the tail.

Another reason could be, that some groups have the tendency to follow a normal distribution, be-
cause they are more symmetrical around the mean, as shown in Figure 5.3.

(a) Group ORT1 (b) Group URO2

Figure 5.3: 2 groups which are more symmetrical.

Although, we see that not all groups have the same distribution, we consider in each method at
most one and the same distribution for all groups.





6
Results

In this chapter, the models are implemented using the PuLPmodule version 2.4 in Python version 3.7.5.
In PuLP, multiple solvers can be used. For our test, we use CPLEX version 20.1.0. Furthermore, to test
our models, we use a PC with an Intel Core i5-10210U 1.60 GHz with 8.00 GB RAM. We execute our
different models, simulate and compare the results. In order to compare the different models, we con-
sider different aspects, such as utilization, overtime and computing times. In our overtime constraints,
we take 𝛼 = 0.05.

Firstly, we determine OR-utilization (percentage) obtained by running the corresponding ILP. Our
model determines for each group and each OR-day the number of surgeries that are scheduled. To sim-
ulate how the resulting schedule would perform in practice, we randomly pick surgeries per group from
our data set. We perform both 1000 and 10,000 simulations to compare the simulated OR-utilizations
with our model. Moreover, we use the simulations to calculate the overtime percentage, which is de-
fined as

Overtime percentage = Number of OR-days with overtime
Total number of OR-days ⋅ 100%.

6.1. Binary search
In this section, we test our binary search models. Since we have three models which use binary search,
we show the results individually first. For the results of each method, we look at the objective function
value of our models. Afterwards we look at the average simulated utilization and overtime. Lastly,
we examine the computing time, which has been divided into two components: model and simulation.
Consequently, their sum represents the total computing time. After executing the three models, we
compare the results.

Firstly, we test the binary search method which uses the average group duration, as described in
Section 4.1. The results obtained from this method are presented in Tables 6.1 and 6.2. Interestingly,
in both simulations, it is found that an overtime factor of 𝑞 = 0.25 is the optimal choice for this method.

Table 6.1: Simulating by reducing the capacity with factor 𝑞 using the average, 1000 times.

𝑞 𝐹𝑞 comp. time model comp. time simulation total comp. time

0.5 infeasible 1.5 s 0 s 1.5 s
0.25 0.043 8.2 s 11.3 s 19.5 s
0.12 0.144 8.9 s 13.9 s 22.8 s
0.18 0.094 8.7 s 11.5 s 20.2 s
0.21 0.077 4.7 s 11.3 s 15.9 s
0.23 0.054 5.3 s 11.5 s 16.8 s
0.24 0.053 7.3 s 11.0 s 18.3 s

21



22 6. Results

Table 6.2: Simulating by reducing the capacity with factor 𝑞 using the average, 10000 times.

𝑞 𝐹𝑞 comp. time model comp. time simulation total comp. time

0.5 infeasible 1.2 s 0 s 1.2 s
0.25 0.042 9.4 s 102.2 s 111.6 s
0.12 0.143 9.7 s 103.6 s 113.3 s
0.18 0.094 8.2 s 104.3 s 112.5 s
0.21 0.076 4.8 s 103.7 s 108.5 s
0.23 0.054 5.3 s 106.0 s 111.3 s
0.24 0.053 7.5 s 105.4 s 112.9 s

Secondly, we test the binary search method using the normal distribution, as described in Section
4.2.1. The obtained results are presented in Tables 6.3 and 6.4. Again, in both simulations, it is found
that an overtime factor of 𝑞 = 0.25 is the optimal choice for this method.

Table 6.3: Simulating by reducing the capacity with factor q using the expected value of a normal distribution, 1000 times.

𝑞 𝐹𝑞 comp. time model comp. time simulation total comp. time

0.5 infeasible 1.5 s 0 s 1.5 s
0.25 0.042 8.4 s 11.1 s 19.5 s
0.12 0.143 7.9 s 11.6 s 19.5 s
0.18 0.094 8.5 s 11.7 s 20.2 s
0.21 0.077 5.5 s 11.3 s 16.8 s
0.23 0.056 5.4 s 12.0 s 17.4 s
0.24 0.051 7.2 s 11.7 s 18.9 s

Table 6.4: Simulating by reducing the capacity with factor q using the expected value of a normal distribution, 10000 times.

𝑞 𝐹𝑞 comp. time model comp. time simulation total comp. time

0.5 infeasible 1.4 s 0 s 1.4 s
0.25 0.043 10.9 s 104.0 s 114.9 s
0.12 0.143 7.6 s 103.9 s 111.6 s
0.18 0.094 8.2 s 108.2 s 116.4 s
0.21 0.076 5.4 s 106.3 s 111.8 s
0.23 0.054 5.0 s 105.7 s 110.8 s
0.24 0.052 7.3 s 104.9 s 112.2 s

Finally, we show the results from the binary search method using the lognormal distribution, as
descibed in Section 4.3.1. These results are presented in Tables 6.5 and 6.6. Interestingly, in both
simulations, it is found that an overtime factor of 𝑞 = 0.23 is the optimal choice for this method.

Table 6.5: Simulating by reducing the capacity with factor q using the expected value of a lognormal distribution, 1000 times.

𝑞 𝐹𝑞 comp. time model comp. time simulation total comp. time

0.5 infeasible 1.3 s 0 s 1.3 s
0.25 infeasible 7.1 s 0 s 7.1 s
0.12 0.131 5.9 s 12.3 s 18.1 s
0.18 0.077 7.9 s 11.1 s 19.0 s
0.21 0.062 5.7 s 11.3 s 16.9 s
0.23 0.046 4.9 s 11.1 s 16.0 s
0.22 0.057 6.2 s 12.6 s 18.8 s
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Table 6.6: Simulating by reducing the capacity with factor q using the expected value of a lognormal distribution, 10000 times.

𝑞 𝐹𝑞 comp. time model comp. time simulation total comp. time

0.5 infeasible 1.5 s 0 s 1.5 s
0.25 infeasible 9.0 s 0 s 9.0 s
0.12 0.131 8.0 s 111.6 s 119.6 s
0.18 0.077 8.1 s 104.6 s 112.7 s
0.21 0.060 5.5 s 109.1 s 114.6 s
0.23 0.047 4.8 s 104.9 s 109.8 s
0.22 0.057 5.5 s 109.1 s 114.6 s

Now that we have looked at the results of our model, let us have a look at the results of the corre-
sponding simulations. In Figure 6.1, the simulated overtime factors for the binary search methods are
displayed. Followed by the results from our model and simulation in Table 6.7.

(a) Average group duration. (b) Expected group duration normal distribution.

(c) Expected group duration lognormal distribution.

Figure 6.1: Boxplot showing the simulated overtime factors for binary search methods.

Table 6.7: Comparing the results.

Binary search method Average Normal distribution Lognormal distribution
Simulated scenarios 1000 10000 1000 10000 1000 10000
Model OR-utilization 38640 38640 38643 38643 40863 40863

Model OR-utilization percentage 67.9% 67.9 % 67.9% 67.9% 71.8% 71.8%
Average simulation OR-utilization 38655 38649 38643 38651 40856 40864

Average simulation OR-utilization percentage 67.9% 67.9 % 67.9% 67.9% 71.8% 71.8%
Average simulation overtime percentage 4.3% 4.2% 4.2% 4.3 % 4.7% 4.7%

Percentage of cases exceeding the threshold 25.4% 25.6% 26.0% 25.5 % 32.3% 34.3%
Computing time 115.1 s 671.6 s 114.0 s 679.2 s 97.5 s 582.2 s

The results obtained from conducting the three binary search methods are presented in Table 6.7.
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Upon examining the table, we observe that the simulated OR-utilization closely resembles the model’s
expected values. Additionally, the average percentages of overtime derived from the simulations are
slightly lower than our predefined 5% overtime threshold. This can be explained by the nature of the
binary search method, which selects the largest value that is still below the specified threshold.

However, looking at Figure 6.1, we see the range of simulated overtime factors. Notice, that there
are values surpassing our threshold. Defining the overtime factor as an average, might be the cause of
this phenomenon. Our binary search method stops when the average simulated overtime is below our
threshold of 0.05. However, as Figure 6.1 suggests, there are still some values above this threshold.
In fact, it turns out that the percentage of simulated cases exceeding this threshold is way higher for
all three methods. Consequently, employing a 95% confidence interval could potentially yield better
results. This interval implies that 95% of the calculated overtime factors should be equal to or below our
predetermined threshold. Upon analysis, it becomes apparent that increasing the simulation sample
size does not yield substantial improvements in the results. The marginal benefits obtained from larger
samples are overshadowed by the substantial increase in computational time. Considering the trade-
off between computational resources and the marginal gains achieved, it is advisable to refrain from
employing larger sample sizes.

6.2. Column based approach

In this section, we test our column based approach, considering both the normal and lognormal dis-
tribution. In order to use this method, we first have to create the set 𝐾, containing combinations of
feasible group numbers for the different used capacities, as described in Section 4.3.2. This set can
be found in Appendix B. When considering OR-days with capacities of 240, 480, or 900 minutes, there
is minimal difference observed between the sets generated assuming normal and lognormal distribu-
tions. However, when we examine the set of combinations for OR-days with a capacity of 780 minutes,
a noticeable difference becomes apparent. Specifically, assuming the lognormal distribution results in
a higher number of feasible group combinations compared to the normal distribution. This discrepancy
suggests that the lognormal distribution assumption allows for a wider range of group combinations,
enhancing the flexibility of our column generating based approach.

(a) Normal distribution. (b) Lognormal distribution.

Figure 6.2: Boxplot showing the simulated overtime factors for column based approach.
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Table 6.8: Comparing the results.

Column based approach Normal distribution Lognormal distribution
Simulated scenarios 1000 10000 1000 10000
Model OR-utilization 39036 39036 38908 38908

Model OR-utilization percentage 68.6% 68.6 % 68.3% 68.3%
Model computing time 8.7 s 8.7 s 8.9 s 8.9 s

Average simulation OR-utilization 39053 39030 38869 38879
Average simulation OR-utilization percentage 68.6% 68.5 % 68.3% 68.3%
Average simulation overtime percentage 3.2% 3.2 % 2.9% 2.9%

Percentage of cases exceeding the threshold 7.5% 8.6 % 6.7% 6.4%
Simulation computing time 25.0 s 251.5 s 24.7 s 247.1 s

Looking at the results in Table 6.8, we again see that the model’s expected values are similar to
the average simulated values. However, in contrast to the binary methods, this time the average sim-
ulated overtime percentage is significantly lower, as well as the percentage of exceeding cases in the
simulations. This observation can be attributed to the incorporation of a probabilistic constraint utilized
in the creation of a predefined set. While it is true that the average simulated overtime percentage is
below our predefined threshold, it is important to note, that there are still instances where the values
exceed this threshold, as shown in Figure 6.2. Though, in this case, the percentage of simulated cases
exceeding the threshold is not as high as in the binary search methods.

6.3. Closed form
Laslty, we use a closed form model to incorporate the probabilistic overtime constraints assuming the
normal distribution, as described in Section 4.2.2. Firstly, we have to determine 𝑥𝑚𝑎𝑥. With the retrieved
data, we have that 𝑥𝑚𝑎𝑥 = 45367 minutes. We choose the maximum approximation error Δ𝑚𝑎𝑥 = 1
minute. This means we need 11 piecewise linear functions, such that our approximation error is always
less than or equal to 1.

Figure 6.3: Boxplot using closed form.
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Table 6.9: Comparing the results.

Simulated scenarios 1000 10000
Model OR-utilization 39036 39036

Model OR-utilization percentage 68.6% 68.6 %
Model computing time 55.4 s 55.4 s

Average simulation OR-utilization 39036 39044
Average simulation OR-utilization percentage 68.6% 68.6 %
Average simulation overtime percentage 3.1% 3.1%

Percentage of cases exceeding the threshold 9.3% 8.9%
Simulation computing time 20.8 s 211.8 s

Table 6.9 displays the results for reference. Additionally, Figure 6.3 visually represents the range
of average overtime factors obtained from the simulations. Examining the average values in Table
6.9, we notice minimal differences between the two simulation scenarios. However, there is a notable
variation in the spread of the data. This suggests that when conducting a higher number of simulations,
a greater number of outliers can be observed. It is interesting to note that although the percentage of
cases for simulating 10,000 instances is lower than simulating 1000 cases, the presence of outliers is
more pronounced in the former.

Considering the nature of the simulations, where random surgeries fill the Master Surgery Schedule
(MSS), the variation in the spread of data could potentially be attributed to chance occurrences. As
each simulation creates a set of random surgeries, the presence of outliers might be coincidental.

6.4. Distribution time OR-day

In this section, we examine the fit of OR-days by considering the assumption that the total surgery
durations 𝐷𝑗𝑡 for OR-day (𝑗, 𝑡) either have a normal or lognormal distribution. Therefore, we again use
the KS-test, CvM-test and AD-test, as described in Section 5.2. As displayed in Figure 6.4, the p-values
of the lognormal distribution have higher values, for both number of simulations. This implies that the
duration of OR-days are more likely to have the lognormal distribution.

(a) 1000 simulations. (b) 10000 simulations.

Figure 6.4: Boxplot with p-values testing normal and lognormal distribution for OR-days.

Figures 6.5 and 6.6 present the graphical representations of some fitted OR-day distributions.
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(a) null hypothesis is not rejected. (b) null hypothesis is rejected.

Figure 6.5: Fitted normal distribution.

(a) null hypothesis is not rejected. (b) null hypothesis is rejected.

Figure 6.6: Fitted lognormal distribution.

Observing some results in Figures 6.5 and 6.6, it becomes apparent that not all OR-days adhere to
either a normal or lognormal distribution. In Chapter 7, we provide an in-depth analysis and discussion
of this phenomenon. It is important to note that comparing the sameOR-day under different distributions
is not feasible, as our column based models may yield different combinations for each OR-day.

6.5. Overview
In this section, we give an overview of the results, given in the previous sections. Once this overview
has been shown, we compare the results and draw a conclusion. For convenience, we use the following
abbreviations in our overviews:

• 𝑀1 = Average duration;
• 𝑀2 = Expected duration normal;
• 𝑀3 = Closed form normal;
• 𝑀4 = Column based approach normal;
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• 𝑀5 = Expected duration lognormal;
• 𝑀6 = Column based approach lognormal.

Table 6.10: Comparing the results for models.

𝑀1 𝑀2 𝑀3 𝑀4 𝑀5 𝑀6
OR-utilization 38640 38643 39036 39053 40863 38908

OR-utilization percentage 67.9% 67.9% 68.6% 68.6% 71.8% 68.3%
Computing time 115.1 s 114.0 s 55.4 s 8.7 s 97.5 s 8.9 s

Table 6.11: Comparing the results for 1000 simulations.

𝑀1 𝑀2 𝑀3 𝑀4 𝑀5 𝑀6
Average OR-utilization 38655 38643 39036 39053 40856 38869

Average OR-utilization percentage 67.9% 67.9% 68.6% 68.6% 71.8% 68.3%
Average overtime percentage 4.3% 4.2% 3.1% 3.2% 4.7% 2.9%

Percentage of cases exceeding the threshold 25.4% 26.0% 9.3% 7.5% 32.3% 6.7%
Computing time 115.1 s 114.0 s 20.8 s 25.0 s 97.5 s 24.7 s

Table 6.12: Comparing the results for 10000 simulations.

𝑀1 𝑀2 𝑀3 𝑀4 𝑀5 𝑀6
Average OR-utilization 38649 38651 39044 39030 40864 38879

Average OR-utilization percentage 67.9% 67.9% 68.6% 68.5% 71.8% 68.3%
Average overtime percentage 4.2% 4.3% 3.1% 3.2% 4.7% 2.9%

Percentage of cases exceeding the threshold 25.6% 25.5% 8.9% 8.6% 34.3% 6.4%
Computing time 671.6 s 679.2 s 211.8 s 251.5 s 582.2 s 247.1 s

Upon analyzing the outcomes presented in Table 6.10, we can draw several observations. Firstly,
method𝑀5 demonstrates superior performance in terms of OR-utilization compared to the other meth-
ods. However, it is important to note that this improvement comes at the expense of increased com-
puting time. Furthermore, the reduced capacity methods, namely 𝑀1,𝑀2, and 𝑀5, exhibit significantly
higher average overtime percentages compared to the closed form method (𝑀3) and the column based
approachmethods (𝑀4 and𝑀6). This discrepancy arises due to the nature of the binary searchmethod,
which aims to identify an overtime factor 𝑞 that remains slightly below the predefined threshold of 0.05.
However, it is worth noting, that despite this optimization strategy, there are still cases where the thresh-
old is exceeded, as indicated by the range of overtime values in Figure 6.7.

While method 𝑀5 stands out in terms of OR-utilization, it may not be the most suitable approach
for our problem, since it does not explicitly consider the probabilistic nature of our constraints. Instead,
it relies on reducing the capacity to ensure that the average overtime percentage of the simulation
remains below the threshold. However, the presence of cases exceeding the threshold indicates the
limitations of this approach. In contrast, methods 𝑀3,𝑀4, and 𝑀6 explicitly incorporate probability
distributions into the model. Among these methods, the normal distribution slightly outperforms the
lognormal distribution, although the difference is not as significant as observed in method 𝑀5.

Examining the results of the simulations in Tables 6.11 and 6.12, we find minimal differences be-
tween the simulations for each model in terms of average values. However, there is a slight variation
in the average overtime percentage and the percentage of cases exceeding the threshold.

Considering these observations, it is important to strike a balance between OR-utilization, overtime
percentage, and computing time when selecting an appropriate method for our problem. While method
𝑀5 demonstrates impressive utilization, the presence of cases exceeding the threshold and the longer
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computing time raise concerns. On the other hand, methods 𝑀3,𝑀4, and 𝑀6 offer a more probabilis-
tic approach, resulting in lower overtime percentages. Moreover, when considering the percentage of
cases exceeding the threshold, an important factor in evaluating the performance of the methods, we
observe that methods 𝑀1,𝑀2, and 𝑀5 raise concerns. These methods exhibit a relatively high per-
centage of cases (at least 25%) that surpass our predefined threshold. This finding highlights the need
to carefully assess the suitability of these methods for our problem. In contrast, methods 𝑀3,𝑀4, and
𝑀6 demonstrate better performance in terms of the percentage of cases exceeding the threshold, as
well as computing time, compared to the aforementioned methods. Although these methods slightly
underperform in terms of OR-utilization, the significant improvement in the percentage of cases be-
low the desired threshold and the reduced computing time make them viable alternatives to consider.
Overall, when making a decision, we should weigh the trade-offs between OR-utilization, the percent-
age of cases exceeding the threshold, and computing time. While methods 𝑀1,𝑀2, and 𝑀5 excel in
OR-utilization, their higher percentage of cases exceeding the threshold raises concerns. On the other
hand, methods 𝑀3,𝑀4, and 𝑀6 demonstrate better performance in terms of controlling overtime and
computing time, albeit with a slight sacrifice in OR-utilization.
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(a) Average.
(b) Normal expected.

(c) Lognormal expected. (d) Normal column.

(e) Lognormal column. (f) Norm closed.

Figure 6.7: Boxplot showing the simulated overtime factors.
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Conclusions and recommendations

In Chapter 1, we have stated our research goals:

• maximizing OR utilization

• minimizing overtime

Section 7.1 discusses the conclusions from this research. In Section 7.2, we give recommendations
for further research.

7.1. Conclusions
In Chapter 2, we defined the relevant topics for our research. We discussed the elective patient, master
surgery scheduling (MSS), integer linear programming (ILP), surgery duration and overtime. In Chap-
ter 3, we gave a formal problem description and formulated the corresponding mathematical model.
In Chapter 4, we incorporated the overtime constraints. Firstly, we used the average surgery group
duration combined with an overtime factor to reduce the available capacity. This method was devel-
oped by us. Secondly, we used a normal distribution for the total OR-day durations. Three methods
were applied assuming the normal distribution, namely overtime factor, direct form and column based
approach. Lastly, we incorporated the probabilistic constraints using the lognormal distribution with an
overtime factor and column based approach. In Chapter 5, we elaborated the data which was used
to test our models. By fitting the data, we examined if the lognormal and normal distribution were
an appropriate distribution to base our research on. In Chapter 6, we tested our models. Next, we
evaluated the resulting utilization, overtime and computation time obtained from our simulation. Upon
examination, it appears that using the expected value assuming the lognormal distribution yields the
highest level of OR-utilization. However, it is important to note that this approach does not explicitly
consider the probability of overtime. Moreover, looking at the simulated cases exceeding the threshold,
we should use a column based or closed form method.

7.2. Recommendations
Our findings are derived from a specific dataset that includes a minimum number of mandatory surg-
eries for each group. It is important to acknowledge that results can significantly vary when using
different datasets. Conducting experiments with diverse datasets can provide valuable insights into
the robustness and generalizability of our model and findings. It is worth noting, that the current defi-
nition of overtime may not be the best approach, as the range of our simulations still allows numerous
values surpassing the predefined threshold. Considering the use of a (95%-)confidence interval could
be more appropriate in order to provide a more comprehensive assessment of overtime probabilities.
In the future, it might be possible that a more accurate approximation method may be developed to
effectively incorporate the sum of lognormally distributed random variables, providing a more efficient
and accurate modeling framework. Moreover, it would be valuable to consider the financial aspects of
surgery scheduling, as well as taking into account the specific needs and preferences of the hospital
staff. Incorporating these factors into the scheduling process can contribute to a more comprehensive,
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realistic and well-rounded decision-making framework. Although we used the normal and lognormal
distributions to approximate the surgery duration, we suggest for further research to use the empirical
distribution. The advantage is that you do not need to fit a distribution to your data. Lastly, it is important
to acknowledge that despite our efforts to stay below the overtime threshold, the inherent variability in
surgery duration introduces the possibility of forced overtime. This variability is a natural occurrence
in surgical settings and must be taken into account when designing our model. In other words, it is
crucial to recognize that there will be instances where the actual surgery duration exceeds the planned
duration, leading to unavoidable overtime. This is a reality that needs to be accepted and appropriately
incorporated into a scheduling model.
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Mathematical model

This appendix is written to give a general overview of the different models we used in our research.

A.1. Average duration & expected duration

max∑
𝑡∈𝑇
∑
𝑗∈𝐽
∑
𝑖∈𝐼
𝑁𝑖𝑗𝑡 ⋅ 𝑒𝑖 . (A.1)

s.t.

∑
𝑖∈𝐼
𝑁𝑖𝑗𝑡 ⋅ 𝑒𝑖 ≤ (1 − 𝑞) ⋅ 𝑐𝑗𝑡 , ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, (A.2)

∑
𝑡∈𝑇
∑
𝑗∈𝐽
𝑁𝑖𝑗𝑡 ≥ 𝛽𝑖 , ∀𝑖 ∈ 𝐼, (A.3)

∑
𝑖∈𝐼𝑠

𝑁𝑖𝑗𝑡 ≤ 𝑀𝑠 ⋅ 𝑎𝑠𝑗𝑡 , ∀𝑠 ∈ 𝑆, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, (A.4)

𝑁𝑖𝑗𝑡 ∈ ℤ≥0, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇. (A.5)

A.2. Column based approach

max∑
𝑘∈𝐾

∑
𝑖∈𝐼
∑
𝑗∈𝐽
∑
𝑡∈𝑇
𝑈𝑘𝑗𝑡 ⋅ 𝑣𝑘𝑖 ⋅ 𝑒𝑖 . (A.6)

s.t.

∑
𝑘∈𝐾

𝑈𝑘𝑗𝑡 ≤ 1, ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, (A.7)

𝑈𝑘𝑗𝑡 ≤ 𝑝𝑘𝑗𝑡 , ∀𝑘 ∈ 𝐾, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, (A.8)

∑
𝑘∈𝐾

∑
𝑗∈𝐽
∑
𝑡∈𝑇
𝑈𝑘𝑗𝑡 ⋅ 𝑣𝑘𝑖 ≥ 𝛽𝑖 , ∀𝑖 ∈ 𝐼. (A.9)
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A.3. Normal distribution closed form

max∑
𝑡∈𝑇
∑
𝑗∈𝐽
∑
𝑖∈𝐼
𝑁𝑖𝑗𝑡 ⋅ 𝑒𝑖 . (A.10)

s.t.

∑
𝑖∈𝐼
𝑁𝑖𝑗𝑡 ⋅ 𝜇𝑖 +Φ−1(1 − 𝛼)

𝑁

∑
𝑛=0

𝜆𝑗𝑡𝑛𝑦𝑛 ≤ 𝑐𝑗𝑡 , ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, (A.11)

𝑁

∑
𝑛=0

𝜆𝑗𝑡𝑛𝑥𝑛 =∑
𝑖∈𝐼
𝑁𝑖𝑗𝑡𝜎2𝑖 , ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, (A.12)

𝑁

∑
𝑛=0

𝜆𝑗𝑡𝑛 = 1, ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, (A.13)

𝑚−1

∑
𝑛=0

𝛿𝑗𝑡𝑛 = 1, ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, (A.14)

𝜆𝑗𝑡0 ≤ 𝛿𝑗𝑡0, ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, (A.15)
𝜆𝑗𝑡𝑚 ≤ 𝛿𝑗𝑡𝑚−1, ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, (A.16)

𝜆𝑗𝑡𝑛 ≤ 𝛿𝑗𝑡𝑛−1 + 𝛿𝑗𝑡𝑛 , ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, 𝑛 ∈ {1, … ,𝑚 − 1}, (A.17)

∑
𝑡∈𝑇
∑
𝑗∈𝐽
𝑁𝑖𝑗𝑡 ≥ 𝛽𝑖 , ∀𝑖 ∈ 𝐼, (A.18)

∑
𝑖∈𝐼𝑠

𝑁𝑖𝑗𝑡 ≤ 𝑀𝑠 ⋅ 𝑎𝑠𝑗𝑡 , ∀𝑠 ∈ 𝑆, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, (A.19)

𝑁𝑖𝑗𝑡 ∈ ℤ≥0, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇. (A.20)

𝜆𝑗𝑡𝑛 ∈ [0, 1], ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, 𝑛 ∈ {0,… , 𝑁}. (A.21)

𝛿𝑗𝑡𝑛 ∈ [0, 1], ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, 𝑛 ∈ {0,… ,𝑚 − 1}. (A.22)



B
Combinations

In this appendix, the combinations sets for both normal and lognormal column generating methods are
displayed, divided into the different capacity categories.

B.1. 240-capacity
Table B.1: Feasible combination set for 240-capacity OR-days.

index specialty combination normal distribution lognormal distribution
0 NS (0, 1, 0) 1 0
1 NS (1, 0, 0) 1 1
2 NS (2, 0, 0) 1 1
3 OMS (0, 1, 0) 1 1
4 OMS (1, 0, 0) 1 1
5 PLA (0, 1) 1 1
6 PLA (1, 0) 1 1
7 PLA (1, 1) 1 1
8 PLA (2, 0) 1 1

B.2. 480-capacity
Table B.2: Feasible combination set for 480-capacity OR-days.

index specialty combination normal distribution lognormal distribution
9 NS (0, 0, 1) 1 1
10 NS (0, 1, 0) 1 1
11 NS (0, 2, 0) 1 1
12 NS (1, 0, 0) 1 1
13 NS (1, 1, 0) 1 1
14 NS (2, 0, 0) 1 1
15 NS (2, 1, 0) 1 1
16 NS (3, 0, 0) 1 1
17 NS (3, 1, 0) 1 1
18 NS (4, 0, 0) 1 1
19 NS (5, 0, 0) 1 1
20 GYN (0, 0, 1) 1 1
21 GYN (0, 1, 0) 1 1
22 GYN (0, 2, 0) 1 1
23 GYN (1, 0, 0) 1 1
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24 GYN (1, 0, 1) 1 1
25 GYN (1, 1, 0) 1 1
26 GYN (1, 2, 0) 1 1
27 GYN (2, 0, 0) 1 1
28 GYN (2, 1, 0) 1 1
29 GYN (3, 0, 0) 1 1
30 GYN (3, 1, 0) 1 1
31 GYN (4, 0, 0) 1 1
32 GYN (5, 0, 0) 1 1
33 GYN (6, 0, 0) 1 0
34 OMS (0, 0, 1) 1 1
35 OMS (0, 1, 0) 1 1
36 OMS (0, 1, 1) 0 1
37 OMS (0, 2, 0) 1 1
38 OMS (1, 0, 0) 1 1
39 OMS (1, 0, 1) 1 1
40 OMS (1, 1, 0) 1 1
41 OMS (1, 2, 0) 1 1
42 OMS (2, 0, 0) 1 1
43 OMS (2, 1, 0) 1 1
44 OMS (3, 0, 0) 1 1
45 ENT (0, 1, 0) 1 1
46 ENT (0, 2, 0) 1 1
47 ENT (0, 3, 0) 1 1
48 ENT (1, 0, 0) 1 1
49 ENT (1, 1, 0) 1 1
50 ENT (1, 2, 0) 1 1
51 ENT (2, 0, 0) 1 1
52 ENT (2, 1, 0) 1 1
53 ENT (2, 2, 0) 1 1
54 ENT (3, 0, 0) 1 1
55 ENT (3, 1, 0) 1 1
56 ENT (4, 0, 0) 1 1
57 ENT (4, 1, 0) 1 1
58 ENT (5, 0, 0) 1 1
59 ENT (6, 0, 0) 1 1
60 EYE (0, 0, 1) 1 1
61 EYE (0, 0, 2) 1 1
62 EYE (0, 0, 3) 1 1
63 EYE (0, 1, 0) 1 1
64 EYE (0, 1, 1) 1 1
65 EYE (0, 1, 2) 1 1
66 EYE (0, 1, 3) 1 1
67 EYE (0, 2, 0) 1 1
68 EYE (0, 2, 1) 1 1
69 EYE (0, 2, 2) 1 1
70 EYE (0, 3, 0) 1 1
71 EYE (0, 3, 1) 1 1
72 EYE (0, 4, 0) 1 1
73 EYE (0, 4, 1) 1 1
74 EYE (0, 5, 0) 1 1
75 EYE (1, 0, 0) 1 1
76 EYE (1, 0, 1) 1 1
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77 EYE (1, 0, 2) 1 1
78 EYE (1, 0, 3) 1 1
79 EYE (1, 1, 0) 1 1
80 EYE (1, 1, 1) 1 1
81 EYE (1, 1, 2) 1 1
82 EYE (1, 2, 0) 1 1
83 EYE (1, 2, 1) 1 1
84 EYE (1, 2, 2) 1 1
85 EYE (1, 3, 0) 1 1
86 EYE (1, 3, 1) 1 1
87 EYE (1, 4, 0) 1 1
88 EYE (1, 5, 0) 1 0
89 EYE (2, 0, 0) 1 1
90 EYE (2, 0, 1) 1 1
91 EYE (2, 0, 2) 1 1
92 EYE (2, 0, 3) 1 1
93 EYE (2, 1, 0) 1 1
94 EYE (2, 1, 1) 1 1
95 EYE (2, 1, 2) 1 1
96 EYE (2, 2, 0) 1 1
97 EYE (2, 2, 1) 1 1
98 EYE (2, 3, 0) 1 1
99 EYE (2, 3, 1) 1 0
100 EYE (2, 4, 0) 1 1
101 EYE (3, 0, 0) 1 1
102 EYE (3, 0, 1) 1 1
103 EYE (3, 0, 2) 1 1
104 EYE (3, 1, 0) 1 1
105 EYE (3, 1, 1) 1 1
106 EYE (3, 1, 2) 1 0
107 EYE (3, 2, 0) 1 1
108 EYE (3, 2, 1) 1 1
109 EYE (3, 3, 0) 1 1
110 EYE (3, 4, 0) 1 0
111 EYE (4, 0, 0) 1 1
112 EYE (4, 0, 1) 1 1
113 EYE (4, 0, 2) 1 1
114 EYE (4, 1, 0) 1 1
115 EYE (4, 1, 1) 1 1
116 EYE (4, 2, 0) 1 1
117 EYE (4, 2, 1) 1 0
118 EYE (4, 3, 0) 1 1
119 EYE (5, 0, 0) 1 1
120 EYE (5, 0, 1) 1 1
121 EYE (5, 1, 0) 1 1
122 EYE (5, 1, 1) 1 1
123 EYE (5, 2, 0) 1 1
124 EYE (6, 0, 0) 1 1
125 EYE (6, 0, 1) 1 1
126 EYE (6, 1, 0) 1 1
127 EYE (6, 2, 0) 1 1
128 EYE (7, 0, 0) 1 1
129 EYE (7, 0, 1) 1 1
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130 EYE (7, 1, 0) 1 1
131 EYE (8, 0, 0) 1 1
132 EYE (8, 1, 0) 1 0
133 EYE (9, 0, 0) 1 1
134 ORT (0, 1, 0) 1 1
135 ORT (0, 2, 0) 1 1
136 ORT (1, 0, 0) 1 1
137 ORT (1, 1, 0) 1 1
138 ORT (1, 2, 0) 1 1
139 ORT (2, 0, 0) 1 1
140 ORT (2, 1, 0) 1 1
141 ORT (3, 0, 0) 1 1
142 ORT (3, 1, 0) 1 1
143 ORT (4, 0, 0) 1 1
144 ORT (5, 0, 0) 1 1
145 PLA (0, 1) 1 1
146 PLA (0, 2) 1 1
147 PLA (0, 3) 1 1
148 PLA (1, 0) 1 1
149 PLA (1, 1) 1 1
150 PLA (1, 2) 1 1
151 PLA (1, 3) 1 1
152 PLA (2, 0) 1 1
153 PLA (2, 1) 1 1
154 PLA (2, 2) 1 1
155 PLA (3, 0) 1 1
156 PLA (3, 1) 1 1
157 PLA (3, 2) 1 1
158 PLA (4, 0) 1 1
159 PLA (4, 1) 1 1
160 PLA (5, 0) 1 1
161 PLA (6, 0) 1 1
162 URO (0, 0, 1) 1 1
163 URO (0, 1, 0) 1 1
164 URO (0, 2, 0) 1 1
165 URO (1, 0, 0) 1 1
166 URO (1, 0, 1) 1 1
167 URO (1, 1, 0) 1 1
168 URO (2, 0, 0) 1 1
169 URO (2, 1, 0) 1 1
170 URO (3, 0, 0) 1 1
171 URO (3, 1, 0) 1 1
172 URO (4, 0, 0) 1 1
173 URO (5, 0, 0) 1 1
174 OB (0, 1) 1 1
175 OB (0, 2) 1 1
176 OB (0, 3) 1 1
177 OB (0, 4) 1 1
178 OB (1, 0) 1 1
179 OB (1, 1) 1 1
180 OB (1, 2) 1 1
181 OB (1, 3) 1 1
182 OB (1, 4) 1 0
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183 OB (2, 0) 1 1
184 OB (2, 1) 1 1
185 OB (2, 2) 1 1
186 OB (2, 3) 1 1
187 OB (3, 0) 1 1
188 OB (3, 1) 1 1
189 OB (3, 2) 1 1
190 OB (4, 0) 1 1
191 OB (4, 1) 1 1
192 OB (4, 2) 1 1
193 OB (5, 0) 1 1
194 OB (5, 1) 1 1
195 OB (6, 0) 1 1
196 OB (6, 1) 1 1
197 OB (7, 0) 1 1
198 OB (8, 0) 1 1

B.3. 780-capacity
Table B.3: Feasible combination set for 780-capacity OR-days.

index specialty combination normal distribution lognormal distribution
199 ENT (0, 0, 1) 1 1
200 ENT (0, 1, 0) 1 1
201 ENT (0, 1, 1) 1 1
202 ENT (0, 2, 0) 1 1
203 ENT (0, 2, 1) 0 1
204 ENT (0, 3, 0) 1 1
205 ENT (0, 4, 0) 0 1
206 ENT (0, 5, 0) 0 1
207 ENT (1, 0, 0) 1 1
208 ENT (1, 0, 1) 1 1
209 ENT (1, 1, 0) 1 1
210 ENT (1, 1, 1) 1 1
211 ENT (1, 2, 0) 1 1
212 ENT (1, 3, 0) 0 1
213 ENT (1, 4, 0) 0 1
214 ENT (1, 5, 0) 0 1
215 ENT (2, 0, 0) 1 1
216 ENT (2, 0, 1) 1 1
217 ENT (2, 1, 0) 1 1
218 ENT (2, 2, 0) 1 1
219 ENT (2, 3, 0) 0 1
220 ENT (2, 4, 0) 0 1
221 ENT (3, 0, 0) 1 1
222 ENT (3, 0, 1) 1 1
223 ENT (3, 1, 0) 1 1
224 ENT (3, 2, 0) 0 1
225 ENT (3, 3, 0) 0 1
226 ENT (3, 4, 0) 0 1
227 ENT (4, 0, 0) 1 1
228 ENT (4, 1, 0) 1 1
229 ENT (4, 2, 0) 0 1
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230 ENT (4, 3, 0) 0 1
231 ENT (5, 0, 0) 1 1
232 ENT (5, 1, 0) 1 1
233 ENT (5, 2, 0) 0 1
234 ENT (5, 3, 0) 0 1
235 ENT (6, 0, 0) 1 1
236 ENT (6, 1, 0) 0 1
237 ENT (6, 2, 0) 0 1
238 ENT (7, 0, 0) 1 1
239 ENT (7, 1, 0) 0 1
240 ENT (7, 2, 0) 0 1
241 ENT (8, 0, 0) 0 1
242 ENT (8, 1, 0) 0 1
243 ENT (9, 0, 0) 0 1
244 ENT (9, 1, 0) 0 1
245 ENT (10, 0, 0) 0 1
246 ENT (11, 0, 0) 0 1

B.4. 900-capacity
Table B.4: Feasible combination set for 900-capacity OR-days.

index specialty combination normal distribution lognormal distribution
247 PLA (0, 1) 1 1
248 PLA (0, 2) 1 1
249 PLA (0, 3) 1 1
250 PLA (0, 4) 1 1
251 PLA (0, 5) 1 1
252 PLA (0, 6) 1 1
253 PLA (0, 7) 1 1
254 PLA (1, 0) 1 1
255 PLA (1, 1) 1 1
256 PLA (1, 2) 1 1
257 PLA (1, 3) 1 1
258 PLA (1, 4) 1 1
259 PLA (1, 5) 1 1
260 PLA (1, 6) 1 1
261 PLA (1, 7) 1 1
262 PLA (2, 0) 1 1
263 PLA (2, 1) 1 1
264 PLA (2, 2) 1 1
265 PLA (2, 3) 1 1
266 PLA (2, 4) 1 1
267 PLA (2, 5) 1 1
268 PLA (2, 6) 1 1
269 PLA (3, 0) 1 1
270 PLA (3, 1) 1 1
271 PLA (3, 2) 1 1
272 PLA (3, 3) 1 1
273 PLA (3, 4) 1 1
274 PLA (3, 5) 1 1
275 PLA (4, 0) 1 1
276 PLA (4, 1) 1 1
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277 PLA (4, 2) 1 1
278 PLA (4, 3) 1 1
279 PLA (4, 4) 1 1
280 PLA (4, 5) 1 1
281 PLA (5, 0) 1 1
282 PLA (5, 1) 1 1
283 PLA (5, 2) 1 1
284 PLA (5, 3) 1 1
285 PLA (5, 4) 1 1
286 PLA (6, 0) 1 1
287 PLA (6, 1) 1 1
288 PLA (6, 2) 1 1
289 PLA (6, 3) 1 1
290 PLA (6, 4) 1 0
291 PLA (7, 0) 1 1
292 PLA (7, 1) 1 1
293 PLA (7, 2) 1 1
294 PLA (7, 3) 1 1
295 PLA (8, 0) 1 1
296 PLA (8, 1) 1 1
297 PLA (8, 2) 1 1
298 PLA (9, 0) 1 1
299 PLA (9, 1) 1 1
300 PLA (9, 2) 1 1
301 PLA (10, 0) 1 1
302 PLA (10, 1) 1 1
303 PLA (11, 0) 1 1
304 PLA (12, 0) 1 1





Bibliography
[1] Jeroen Beliën and Erik Demeulemeester. “Building cyclic master surgery schedules with leveled

resulting bed occupancy”. In: European Journal of Operational Research 176.2 (2007), pp. 1185–
1204. ISSN: 0377-2217. DOI: https://doi.org/10.1016/j.ejor.2005.06.063. URL:
https://www.sciencedirect.com/science/article/pii/S0377221705006946.

[2] Johannes Bisschop. URL: https://documentation.aimms.com/_downloads/AIMMS_
modeling.pdf.

[3] J.M. Bosch. Better utilisation of the OR with less beds : a tactical surgery scheduling approach
to improve OR utilisation and the required number of beds in the wards. Aug. 2011. URL: http:
//essay.utwente.nl/61486/.

[4] Brecht Cardoen, Erik Demeulemeester, and Jeroen Beliën. “Operating room planning and schedul-
ing: A literature review”. In: European Journal of Operational Research 201.3 (2010), pp. 921–
932. ISSN: 0377-2217. DOI: https://doi.org/10.1016/j.ejor.2009.04.011. URL:
https://www.sciencedirect.com/science/article/pii/S0377221709002616.

[5] Francesca Guerriero and Rosita Guido. “Operational research in the management of the oper-
ating theatre: A survey”. In: Health care management science 14 (Mar. 2011), pp. 89–114. DOI:
10.1007/s10729-010-9143-6.

[6] Erwin Hans et al. “Robust surgery loading”. English. In: European journal of operational research
185.3 (2008), pp. 1038–1050. ISSN: 0377-2217. DOI: 10.1016/j.ejor.2006.08.022.

[7] M Kauwenbergh. “Reducing the required number of beds at the holding and recovery department
using a stochastic approach”. PhD thesis. 2018.

[8] Thao Nguyen. “Nguyen, T. (n.d.). Scheduling surgical specialties Leveling the bed occupancy
through stochastic master surgery scheduling [Thesis Scheduling surgical specialties Leveling
the bed occupancy through stochastic master surgery scheduling].nbsp;  ”. PhD thesis. 2023.

[9] Pablo Santibáñez, Mehmet Begen, and Derek Atkins. “Surgical block scheduling in a system
of hospitals: An application to resource and wait list management in a British Columbia health
authority”. In: Health care management science 10 (Oct. 2007), pp. 269–82. DOI: 10.1007/
s10729-007-9019-6.

[10] A.J. Thomas Schneider et al. “Scheduling surgery groups considering multiple downstream re-
sources”. In: European Journal of Operational Research 282.2 (2020), pp. 741–752. ISSN: 0377-
2217. DOI: https://doi.org/10.1016/j.ejor.2019.09.029. URL: https://www.
sciencedirect.com/science/article/pii/S0377221719307854.

[11] J.M. Van Oostrum, E. Bredenhoff, and Erwin Hans. “Suitability and managerial implications of a
Master Surgical Scheduling approach”. In: Erasmus University Rotterdam, Econometric Institute,
Econometric Institute Report (Jan. 2008).

[12] LienWang et al. “Operating room planning and scheduling for outpatients and inpatients: A review
and future research”. In:Operations Research for Health Care 31 (2021), p. 100323. ISSN: 2211-
6923. DOI: https://doi.org/10.1016/j.orhc.2021.100323. URL: https://www.
sciencedirect.com/science/article/pii/S2211692321000394.

43

https://doi.org/https://doi.org/10.1016/j.ejor.2005.06.063
https://www.sciencedirect.com/science/article/pii/S0377221705006946
https://documentation.aimms.com/_downloads/AIMMS_modeling.pdf
https://documentation.aimms.com/_downloads/AIMMS_modeling.pdf
http://essay.utwente.nl/61486/
http://essay.utwente.nl/61486/
https://doi.org/https://doi.org/10.1016/j.ejor.2009.04.011
https://www.sciencedirect.com/science/article/pii/S0377221709002616
https://doi.org/10.1007/s10729-010-9143-6
https://doi.org/10.1016/j.ejor.2006.08.022
https://doi.org/10.1007/s10729-007-9019-6
https://doi.org/10.1007/s10729-007-9019-6
https://doi.org/https://doi.org/10.1016/j.ejor.2019.09.029
https://www.sciencedirect.com/science/article/pii/S0377221719307854
https://www.sciencedirect.com/science/article/pii/S0377221719307854
https://doi.org/https://doi.org/10.1016/j.orhc.2021.100323
https://www.sciencedirect.com/science/article/pii/S2211692321000394
https://www.sciencedirect.com/science/article/pii/S2211692321000394

	Introduction
	Literature
	Elective patients
	Master surgery scheduling
	ILP
	Surgery duration
	Overtime

	Model
	Problem description
	Problem formulation
	Constraints
	Objective function


	Solution methods
	Average duration
	Normal distribution
	Expected duration
	Closed form
	Column based approach

	Lognormal distribution
	Expected duration
	Column based approach


	Data
	Context
	Surgery duration fitting

	Results
	Binary search
	Column based approach
	Closed form
	Distribution time OR-day
	Overview

	Conclusions and recommendations
	Conclusions
	Recommendations

	Mathematical model
	Average duration & expected duration
	Column based approach
	Normal distribution closed form

	Combinations
	240-capacity
	480-capacity
	780-capacity
	900-capacity


