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Retrofitting residential buildings can help mitigate the effects of climate change. Cognitive biases are sys-
tematic deviations from rationality in decision making and can lead to inaction, delay, and uncertain deci-
sions. Understanding the cognitive biases involved in residential renovation decisions and developing
interventions to overcome them can help increase residential renovation rates. Despite their importance,
few studies have examined the impact of cognitive biases on energy retrofits. The question addressed in
this study is: ‘‘Can accounting for cognitive biases improve the prediction of homeowners’ actual invest-
ment decisions, and how can the outcomes be used to recommend potential behavioural interventions?”.
Expected Utility Theory (EUT) and Cumulative Prospect Theory (CPT) are compared to evaluate which
model(s) more accurately describes actual decision-making behaviour regarding energy retrofits. The
EUT assumes a rational decision maker. The CPT is a quantitative model that assumes a decision-
maker operating under risk and uncertainty and subject to the cognitive biases of reference dependence,
loss aversion, decreasing sensitivity, and probability weighting. The influences of cognitive biases on
energy retrofit decisions can be quantified if the relative performance of CPT versus EUT is more accurate.
The data for these analyses come from housing surveys conducted in the Netherlands in 2012 and 2018,
which also collected data on energy modules. 2,784 and 2,878 homeowners were surveyed, respectively.
The model is validated by estimating the coefficients of EUT and CPT and identifying the similarities and
differences between the results of the two datasets. Before estimating the parameters, four household
clusters are identified using grey relational analysis and the K-Means cluster. For the first time, the
EUT and CPT parameters are estimated for four clusters and two energy retrofits, double glazing and insu-
lation, using a genetic algorithm because the equations are nonlinear. The results confirm that CPT pro-
vides a better description of the actual decision behaviour than EUT using the two previously established
initial values of Layard et al. (2008) and Häckel et al. (2017) as well as the parameters estimated by the
genetic algorithm. In the latter case, CPT correctly predicts the decisions of 86% of homeowners to ren-
ovate their homes to be energy efficient or not. EUT, on the other hand, overestimates the number of deci-
sions to renovate: it incorrectly predicts retrofit for 52% of homeowners who did not renovate for energy
efficiency reasons. Using the estimated parameters of CPT, the cognitive biases of reference dependence,
loss aversion, diminishing sensitivity, and probability weighting can be clearly seen for different target
groups. The groups with the highest average incomes and house values had the highest loss risk aversion
parameters. These households invested more in installing insulation and double glazing.

� 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Two hundred countries have agreed to the Paris Climate Agree-
ment, which states that global temperatures should be less than 2
�C and ideally less than 1.5�C above the pre-industrial era baseline.
Energy inefficient buildings account for about 75% of the EU build-
ing stock. EU countries need to double their retrofit rates if they are
to achieve the energy and climate targets set by the EU Commis-
sion. In the Netherlands, the housing stock consumes a large
amount of natural gas, which accounts for almost 71% of the coun-
try’s total energy consumption. The Dutch government has there-
fore set a target to eliminate natural gas as an energy source in
this sector by 2050. The technical and financial solutions to
improve the rates are in place, but homeowners are not using them
as much as expected.
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Recent research suggests that cognitive biases are important
factors influencing home investment behaviour [78,14,20]. Cogni-
tive biases are systematic deviations from rationality in decision
making and can lead to inaction, delay, and unstable decisions.
Understanding the cognitive biases involved in retrofit decisions
and developing interventions to overcome them can help increase
retrofit rates. Often, homeowners choose not to renovate due to
risk aversion, which explains why energy retrofit rates remain
low despite energy targets and policy interventions. In order to
encourage homeowners to renovate, it is important to understand
their behaviour in terms of their preferences, expectations, experi-
ences and especially their cognitive biases during the retrofit deci-
sion process. Despite their importance, few studies have examined
the impact of cognitive biases on energy retrofits.

Expected utility theory (EUT) and various variants of prospect
theory (PT) are probably the most widely used models for evaluat-
ing decisions under risk. EUT assumes a perfectly rational individ-
ual who maximises the highest expected utility. In contrast,
Cumulative Prospect Theory (CPT) describes what occurs in a situ-
ation rather than what should occur. This theory considers the
influencing factors that lead to less optimal, less rational decisions.
CPT offers potential explanations for many cognitive biases and
allows for the quantitative study of these biases. CPT considers
the cognitive biases of reference dependence, loss aversion, dimin-
ishing sensitivity, and probability weighting [64,71,43]. Policy
makers can benefit from quantifying cognitive biases because the
effectiveness of policies can be subsequently analysed given the
presence of cognitive biases.

In a very recent study, Rockstuhl et al. [65] mentioned that vola-
tile future energy cost savings is one of the main barriers to imple-
menting energy retrofits. The authors applied the EUT to
investigate the investment decisions using the averaged data of
German commercial buildings. The highest optimal investment
amount is achieved when decision makers aim to maximise energy
cost savings compared to the investment-only perspective (consid-
ering expected wealth in the future, as well as related perceived
risk). The use of CPT has the potential to improve the results of this
study by accounting for cognitive biases. The impacts of beha-
vioural biases on energy efficiency investments were investigated
by Häckel et al. [33]. The authors used the original specifications
by Tversky and Kahneman [71] and compared the EUT and CPT
results based on different scenarios.

Few studies have examined energy efficiency investments using
CPT [30,33]. Empirical investigations of the parameters of CPT have
not been conducted for energy efficiency investments in previous
studies. This study aims to investigate the impact of cognitive
biases on energy retrofit investment decisions. To achieve this goal,
the models with and without cognitive biases are compared. The
questions to be answered by our study are as follow: (a) Whether
CPT describes the actual decision-making behaviour more accurate
compared to EUT in the context of energy efficiency investments?,
(b) Which cognitive biases significantly determine the Dutch
homeowners’ behaviours towards energy efficiency investments?,
(c) Whether CPT parameters vary for different groups of individu-
als and types of energy efficiency investments?, and (d) How can
the results of CPT be used to recommend potential behavioural
interventions for promoting the energy efficiency renovations in
the Dutch owner-occupied sector?.

We are the first to empirically estimate the parameters of CPT.
The parameters of EUT and CPT are estimated from actual data to
avoid potential problems associated with assumed responses, such
as not accounting for cognitive biases [75,37]. The energy modules
of the 2012 and 2018 Dutch household surveys are used to inves-
tigate the parameters of CPT in terms of predicting the actual beha-
viour of homeowners in their decisions to renovate or not. The
approach used in this study is innovative in several ways: (a) the
2

EUT and CPT parameters are estimated for 2,784 and 2,878 home-
owners, respectively; previous studies have examined only one
building type and individual homeowners (e.g., [33]); (b) home-
owners are grouped based on building and household characteris-
tics so that different parameters are estimated for each group of
households; and (c) two types of energy retrofits, insulation and
double-glazing, are examined from actual data using the 2012
and 2018 energy modules.

This article is organised as follows: cognitive biases and beha-
vioural interventions are discussed in Section 2. Section 3 describes
EUT and CPT. Section 4 explains the data sets and research
methodology. The results of the analyses, discussion, and conclu-
sions are presented in Sections 5–7, respectively.
2. Review of earlier studies on cognitive biases and behavioural
interventions in the energy efficiency literature

2.1. Overview of cognitive biases in the energy efficiency literature

The energy efficiency gap shows the difference between the
theoretical potential energy efficiency and the actual achieved
energy efficiency. Neoclassical theory explains the existence of
the energy efficiency gap through market failures, environmental
externalities or imperfect information. In contrast, behavioural
economics attributes energy efficiency gaps to systemic biases,
such as high uncertainty about future energy savings [7]. The
determinants of the energy efficiency gap are examined in classi-
cal, institutional and behavioural economics literature by Gilling-
ham and Palmer [28]. These determinants are shown in Table 1.
Häckel et al. [33] compared expected utility theory and prospect
theory, following the work done by Mayer; Greene [54,32]. Based
on cumulative prospect theory, the behavioural biases of reference
dependence, loss aversion, diminishing sensitivity/risk aversion,
and probability weighting/uncertainty explain the energy effi-
ciency gap. Furthermore, the energy efficiency gap is determined
by high sunk costs and uncertainty of energy prices. More impor-
tantly, loss aversion influences investment decisions drastically,
compared to other cognitive biases.

The barriers from individual, organisational, and institutional
perspectives are evaluated for the construction of green buildings
in the United States by Hoffman and Henn [38]. Two main theories
of behavioural economics are adopted: (1) bounded rationality:
individuals are restricted in their ability to achieve pure rational-
ity; and (2) heuristics thinking: individuals rely on simplifying
strategies, which cause a wide variety of decision-making biases.
For individuals, the following barriers are considered: (a) over-
discounting the future; (b) ego-centrism; (c) positive illusions;
(d) presumed associations; (e) mythical fixed-pie bias; and (f) envi-
ronmental literacy. The authors proposed the following strategies
to overcome the decision-making biases: issue framing, targeting
the right demographic, education, structural and incentive change,
compensating risk, green building standard improvements, and tax
reform.

Klotz et al. [45] examined the anchoring effect on the energy per-
formance goals of commercial buildings in the United States. Three
surveys were conducted. The first four questions asked about ben-
efits and incentives for energy consumption reduction. In each of
these surveys, identical questions were asked, but with different
energy consumption reductions, thereby creating different
anchors. One survey arranged an anchor of 90% energy consump-
tion reduction over standard practice; one arranged a 30% anchor;
and one set no anchor. At the end of the surveys, participants
exposed to different anchors were asked to set an energy efficiency
target for a new project. Participants exposed to either the 90%
energy consumption reduction anchor or no anchor set higher tar-



Table 1
Determinants of the energy efficiency gap [28].

Category Factors influencing the energy efficiency gap

Behavioural
anomalities
and failures

Non_standard preferences: self-
control problems, reference -

dependent preferences

Non_standard beliefs:
systematic incorrect beliefs

about the future

Non_standard decision making:
limited attention, framing, sub-

optimal decision heuristics
Market
Failures

Imperfect information, regulatory
failures

Principal-agent issues Credit constraints Learning by using: no evidence for
energy efficiency technologies

Other reasons Transaction Costs, Uncertainty Consumer Heterogeneity Rebound effect because of engineering calculation, e.g.
not including the interactions between

different investments
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gets. Therefore, building rating systems that only support incre-
mental energy improvements may accidentally generate low
anchors and, thereby, discourage more advanced energy perfor-
mance goals that are both technically and economically feasible.
In an analytical framework study, Klotz et al. [44] indicated that
cognitive biases are one of the main hindrances to achieving sus-
tainability targets of commercial buildings in the United States.
Professional bias and group thinking bias were specifically identi-
fied in the study. Motivational framing, e.g. achieving a healthier
neighbourhood by using less greenhouse gases, changes behaviour
more than sacrifice framing, e.g. getting used to driving less, turning
off the lights and reducing the heat. These conclusions were based
on a survey among 1,000 householders in Ontario, Canada [27].
Taranu and Verbeeck [68] highlighted the role of both rational
and heuristic thinking in explaining pro-environmental behaviour.
The results verified that homeowners’ positive arguments in favour
of energy retrofit are mostly rational, and that negative arguments
are mainly heuristic. In a very recent study by Good [30], a beha-
vioural economics model was developed to evaluate the impact
of behavioural biases on reducing energy consumption for a
demand-responsive electricity system. Among biases, the endow-
ment effect and the time-discounting were considered. These biases
influence the demand-response provision, particularly when the
demand of an entity is high.
2.2. Overview of behavioural interventions in the energy efficiency
literature

The household behaviours can be influenced by behavioural
interventions and nudge tools. The current study also focuses on
proposing potential behavioural interventions using the results of
CPT for different target groups of households and buildings.
Osbaldiston and Schott [58] and Abrahamse et al. [2] reviewed arti-
cles and provided a list of interventions targeting the householder’s
behaviours with regard to energy. They categorised them into: (1)
convenience: easy and prompt interventions; (2) information:
information on justifying behaviours and guidance on changing
behaviours; (3) monitoring: feedback and rewards; and (4) social
influence: social modelling, cognitive dissonance, commitment
and setting goals. Many of these interventions change the context
in which the behaviour takes place, e.g. smart meters provide live
information about the current and accumulated energy consump-
tion of a household. Context change is the core pillar of the ‘nudge’
tools. 1 These tools are generally similar to behavioural interventions
[36].

Thaler and Sunstein [70] used the term ‘nudge’ and defined it as
‘any aspect of the choice architecture that predictably alters peo-
ple’s behaviour, without forbidding any options or significantly
changing their economic incentives’ [p.6]. A nudge can also be seen
as a tool to modify people’s choices, without removing or changing
1 ‘Libertarian paternalism’. Nudge tools are policies designed to encourage
individuals toward better choices without restricting their freedom [35].
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the number of choices. For example, changing the default setting
leads to different choices by households. In an experiment, two
default choices of ‘green’ and ‘grey’ utility electricity providers
were suggested to two groups of households. People in the green
utility group were more likely to choose this default option, com-
pared to other groups [1]. These types of behavioural interventions
and nudges are not widely covered in ongoing studies.

Frederiks et al. [25] extensively reviewed cognitive biases and
behavioural anomalities, in predicting household behaviours with
regard to energy consumption. The most prevalent biases were sta-
tus quo bias, loss and risk aversion, sunk-cost effects, temporal and
spatial discounting, and availability bias. Additionally, psychologi-
cal factors such as normative social influence, intrinsic and extrin-
sic rewards, and trust significantly change household behaviours
with regard to energy use. See also [57]. In addition to the most fre-
quent biases, more effective policies in terms of energy consump-
tion were attributed to each bias. Table 2 shows the behavioural
biases, definitions, and associated policies. In similar studies, tak-
ing account of behavioural biases when designing effective envi-
ronmental and climate change policies is recognised as being
crucial [31,72]. Providing transparent information stimulates
energy saving behaviour among households, and giving feedback
can considerably reduce the energy bills of households [5]. Dietz
et al. [16] proposed an integrated framework from economic, engi-
neering, behavioural and social science, for designing energy poli-
cies that aim to increase the energy efficiency of the residential
sector. Households use cognitive shortcuts and different mental
considerations in making their decisions. Energy policies need to
concentrate on the decisions with the highest impact on energy
consumption, by the highest number of capable households with
the highest probability of making changes.
2.3. Review of energy-efficiency literature on the main influencing
factors and barriers of energy retrofits

Previous studies are reviewed to investigate the importance of
identifying the barriers for specific groups of households. Accord-
ing to the literature review [76,10,19], the household characteris-
tics, socio-demographics, property characteristics, and salient
events (e.g. moving house) determine EER decisions. For instance,
in a study of eight European countries, considerable differences
in adoption of energy-efficiency technologies were recognised,
among different income groups of households. The willingness to
pay is considerably lower for the lowest income groups and all
types of energy-efficient technologies [66]. In another study, the
effectiveness of subsidy programs was investigated by Lihtmaa
et al. [51]. Subsidies were assigned equally for all residents. How-
ever, an unequal distribution occurred on a regional basis. Low-
performing regions gained a lower proportion of national subsi-
dies, leading to the inequalities between regions increasing further,
over and above current socio-economic differences.

Abreu et al. [3] emphasised the importance of designing specific
policies for different groups of homeowners, with regard to



Table 2
A list of biases, definitions and the policy implications influencing the energy consumption.

Biases Definition Policy implications

Status quo bias and defaults people are not willing to change and prefer to go with the
flow of default settings, even where other options may have

better outcomes.

Applying the energy related practices with easy and effortless
changes to the default settings, e.g. introducing the energy efficient
option as default rather than encouraging them to choose energy

efficient option between others.
Satisficing Applying only the effort needed to achieve a satisfactory

rather than an optimal result
Inessential complexity and sensory overburden need to be avoided

by framing messages in a clear, concise and comprehensible
format.

Be loss averse Considering losses more with the same size gains, Emphasizing on the cost/ loss reductions of using energy efficiency
measures rather than energy savings

Be risk averse People are more likely to engage in a risky behaviour to avoid
a certain loss rather than to engage in a similarly risky

behaviour to obtain a comparable gain.

Focusing on low-risk, safe, stable, and secure energy saving
measures and investments

Sunk cost effects After purchasing appliances, people insist to use them even if
better choices become available.

Reduce the importance of old energy efficient investments and
emphasize on the costs of any inefficient investments

Temporal discounting/spatial
discounting

Less valuable further away in time/space. Avoiding on
expenses on energy efficiency appliances if the benefits are

further away in the future.

Emphasise to the longer-term payoffs of energy consumption

Conform to social norms The behaviours and attitudes of other people always influence
peoples behaviours, such as herd behaviour, the Bandwagon

effect.

Formulate energy-saving practices socially desirable behaviour

Be motivated by rewards and
incentives

The incentives lead to more behavioural responses. Use non-monetary rewards such as praise, recognition and social
approval

Free-riding effect Tendency to contributing less for public good when possible
and believing that others are contributing less.

Making a group and showing the participations of other people in
energy saving activities

Trust A trustworthy professional is an effective source to influence
the decision-making process.

Providing information that originates from a high-credibility
source (e.g., public service commission)

Availability bias People usually use the available information Specifying the well-publicised popular energy-saving behaviours
and favourable to consumers
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energy-saving retrofits. In addition to household and building
characteristics, daily activities and social practices are identified
as important influencing factors. The authors focused on different
age groups of homeowners in single-family dwellings. They exam-
ined which home-related activities and social practices drive this
group of households to conduct energy-efficiency retrofits. The
authors concluded that younger homeowners appeared to be more
environmentally conscious and implemented ‘little-by-little’
energy retrofits. The motivational factors for older groups must
be stronger, despite their higher incomes. The use of framing is also
recognised: when energy-related retrofits are linked with other
aspects of the home, such as aesthetics and indoor comfort, the
likelihood of those retrofits being undertaken increases. In a study
of German homeowners, installation of insulation was assessed, to
examine the effect of policy interventions for this group of house-
holds [26]. For this type of energy-efficiency retrofit, the policies
focused on wall insulation. Furthermore, the homeowners’ deci-
sions on energy-efficiency retrofits were highly dependent on their
financial resources, age and attitude towards insulation, as well as
the structural conditions of the walls. Compelling new homeown-
ers to insulate their walls within the first year can potentially
increase the total insulation rate by up to 40%.

Another group of studies focused on multi-family dwellings
[17,69,9,11,61]. Dodoo et al. [17] analysed the cost-effectiveness
of various energy-efficiency measures, such as insulation,
improved windows, or a glass-enclosed balcony, for a typical
1970s multi-family buildings in Sweden. The results indicated that
the highest energy saving for a single measure is achieved by
improved windows. Furthermore, the cost-effectiveness showed
sensitivity to both the real discount rate and energy price growth.
The energy-saving potential of deep energy-efficiency retrofits,
such as various types of insulation and improved energy-efficient
windows and doors, were evaluated for Swedish multi-storey res-
idential building of the 1970s by Tettey and Gustavsson [69].
Energy savings for space heating were significantly increased by
the use of energy-efficient windows and doors, balanced ventila-
4

tion with heat recovery (VHR), and additional insulation to exter-
nal walls. The benefits of energy-efficiency s, such as insulation,
window glazing, and district heating for individuals and national
government, were investigated for apartment buildings con-
structed during the 1970s and 1980s in Estonia [61]. The authors
used the net present value (NPV) method to calculate the economic
benefits of energy-efficiency s, following the European commis-
sion’s cost optimality methodology [22]. The authors concluded
that energy-efficiency s contributed considerably to economic ben-
efits for both individuals and national governments. These eco-
nomic benefits would be even higher, if one could place a
monetary figure on non-energy benefits whose economic value is
difficult to calculate. Similarly, Bonakdar et al. [9] investigated
the cost-optimum level of building fabric elements, of extra insula-
tion thicknesses for considered opaque elements, and different U-
values for new windows in a multi-storey Swedish residential
building. A variety of different economic outcomes was assessed,
by including different discount rates and energy price growth
rates. However, the results were not particularly sensitive to
changes in the lifespan, to figures of 40, 50 or 60 years. Brown
et al. [11] evaluated the economic, indoor environmental quality
(IEQ), and environmental aspects of energy-efficiency packages
for a Swedish multi-family building. A base case, and two packages
with higher initial investment costs and higher levels of energy-
efficiency s, were defined for each building. Based on the results,
the packages that reduced the energy demand considerably (50%
energy reduction) have a higher life-cycle cost. Hence, higher ini-
tial investment costs for multi-family dwellings are essential to
achieving national and international energy efficiency goals.

Another group of studies evaluated the energy-efficiency for
single-family dwellings [40,53]. In a study for the Nordic countries
(i.e. Denmark, Sweden, Norway, Finland), the behavioural, eco-
nomic, and market-related hindrances to promoting energy-
efficiency s of single-family detached houses built before 1980
were analysed. These dwellings are expected to have substantial
primary energy saving potential [53]. The identified barriers were:
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lack of need; lack of regulatory requirements on the energy stan-
dard of a renovated building; insufficient information; lack of
knowledge/awareness about the energy-efficiency measures and
the energy and non-energy benefits; lack of trust; uncertainties
among financiers and end-users regarding the energy saving
levels; difficulty in measuring the monetary values of non-energy
benefits, such as improving quality of life; no agreement on the
suitable discount rate; difficulty in controlling the occupants’
energy use behaviours; and, finally, difficulty in predicting future
energy prices. In the current study, different target groups of
households, such as by age or type of dwelling, are investigated,
to identify their cognitive biases and recommend potential beha-
vioural interventions for each group of homeowners. In a very
recent study, Cristino et al. [13] examined the barriers to energy
retrofits in Brazil. The first main identified category of barriers
was related to governmental and financial aspects. Residents
believe that the government is responsible for the implementation
of energy retrofits in the country. The importance of behavioural
barriers was also explored. Many households were reluctant to
invest because they lacked concrete information about the benefits
of energy efficient technologies.
3. Expected utility theory and cumulative prospect theory in
explaining the individual decision-making processes regarding
the energy retrofits

Two psychologist, Amos Tverskey and Daniel Kahneman, devel-
oped ‘prospect theory’ which explains the relation of preferences
with regard to attitudes to gains and losses. They won the Nobel
memorial prize in economic sciences’ for developing this theory
and comparing their cognitive models of decision-making under
risk and uncertainty to economic models of rational behaviour
[71,43]. This study also uses cumulative prospect theory (i.e., in
which a decision-maker unintelligently confronts risk and uncer-
tainty) and compares this theory with expected utility theory
(i.e., in which a decision-maker who intelligently confronts risk).
By comparing these models, appropriate model/s that predict the
homeowners’ decisions about energy retrofits can be examined.
The following subsections describe the EUT and CPT theories.
3.1. Expected Utility Theory (EUT)

Standard neoclassical theory assumes that individuals behave
and make decisions rationally under risk by maximising their
expected utility. The formal representation of decision-making
under risk is as follows:

EUT ¼
Xn
i¼1

pðXiÞ � uðuiÞ ð1Þ

Where n shows the number of payoffs, Xi indicates the payoffs, p(Xi)
presents the probability of payoffs Xi and u(ui) indicates the indi-
vidual utility of total wealth ui. The total utility is calculated based
on the initial wealth and the payoffs (u 0+Xi). The utility function is
defined based on Eqs.2 and 3. This utility function indicates the
constant risk aversion by individuals [33,49].

uðuiÞ ¼
1

1�h � ðu1�h
i � 1Þ for h– 1 ðaÞ
lnðuiÞ for h ¼ 1

(
ðbÞ ð2Þ

When the EUT is higher with the payoffs. The investment increases
the utility and must be implemented.
5

3.2. Cumulative Prospect Theory (CPT)

Few studies have investigated energy-efficiency investments
using behavioural economic theory. Previous work mainly used
this model and simulated the behaviour by making assumptions
regarding the parameters in the model [30,33]. Häckel et al. [33]
suggested empirical investigations of the parameters of CPT as sub-
jects for future research. The current study aims to examine and
verify the CPT parameters empirically. The cumulative prospect
theory advances the prospect theory by modifying the possible
error of first- order stochastic dominance. Furthermore, CPT
enables comparison with EUT. CPT defines a value function that
depends on the differences in the payoffs. CPT offers advantages
in the quantification of many cognitive biases. CPT mainly covers
four cognitive biases as presented in Table 3:

Two functions are defined for positive and negative differences
[71,33,64]. The value functions are as follows:

vðDxiÞ ¼
ðDxiÞa Dxi P 0 ðaÞ

�kðDxiÞb Dxi 6 0 ðbÞ

�
ð3Þ

a and b>0 (usually a;b 61) indicate the curve for the positive and
negative payoffs, respectively. The k>0 parameter shows the loss
aversion, i.e., weighting the loss more than equal gain. For instance,
k equal to 2 means that individual perceives loss twice more than
gain.

Diminishing sensitivity (i.e., risk avoidance in gain situations
and risk seeking in loss situations) are included in CPT. This bias
is applied in the model by objective probabilities instead of
weighting with their subjective values.

wðpðDxiÞÞ ¼
pðDxiÞc

ðpðDxÞcþð1�ðpðDxiÞÞcÞ1=c
for Dxi P 0

pðDxiÞd

ðpðDxÞdþð1�ðpðDxiÞÞdÞ
1=d for Dxi 6 0

8><
>: ð4Þ

Different studies validate this functional form [48,29]. The weight-
ing function uses the objective probabilities pðDxiÞ to the subjective/
perceived probabilities wðpðDxiÞ. Two parameters of d and c control
the curve of the value function. Diminishing sensitivity is incorpo-
rated in the model by the parameters of c and d 2 (0,1]. The higher
sensitivities are expected for individuals with lower values of c and
d. Furthermore, larger values for loss d are expected compared to
gain c as specified by [71]. CPT differs in weighting cumulative
probabilities compared to PT by weighting single probabilities
(pðDxiÞ). CPT applies weighting to the cumulative probability distri-
bution. There are a few steps in calculating the weight pi (1) ranking
the payoffs (ascending), (2) using the probabilities of each payoff,
(3) using the right function for positive and negative payoffs, and
(4) calculating the differences in neighbouring probability weight-
ings. The weighting for the positive payoffs depends on the proba-
bilities of the payoffs being at least as good as the payoff i and the
higher payoffs compared to payoff i. The weighting for negative
payoffs depends on the weighted probabilities of the payoffs being
at least as bad as the payoff i and the weighted probabilities of the
payoffs being worse than payoff i. Eqs.8 and 9 show the decision
weight pi.

pi ¼
wðpðDxiÞ þ . . .þ pðDxnÞÞ �wðpðDxiþ1Þ þ . . .þ pðDxnÞÞ for Dxi P 0
wðpðDx1Þ þ . . .þ pðDxiÞÞ �wðpðDx1Þ þ . . .þ pðDxi�1ÞÞ for Dxi 6 0

�
ð5Þ

The equations are valid for:

Dxi P 0 for kþ 1 6 i 6 n� 1; and
Dxi 6 0 for 2 6 i 6 k:

Where k indicates the number of negative payoffs. CPT is calculated
by multiplying the decision weight (pi) and value function (vðDxiÞ)



Table 3
Cognitive biases of cumulative prospect theory.

Cognitive bias Definition

Reference
dependence

Individual decision-making depends on the difference
between the changes in the utility of the current wealth
with their reference point or status quo (usually in the
past).

Loss aversion Individuals perceive the value of loss higher compared to
the same value of gain.

Diminishing
sensitivity

Generally speaking, people prefer to avoid risk given the
prospect of a positive outcome (i.e., gain), but the reverse
is true given the prospect of negative outcomes (i.e., loss).

Probability
weighting

Individuals use the probabilities of the outcomes instead
of statistical probabilities and place a lower weight on the
average payoffs (the centre of the distribution), but a
higher weight on events with low probabilities (the tails of
the distribution).
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CPT ¼
Xn
i¼1

pi � vðDxiÞ ð6Þ

A CPT more and less than 0 indicates a favourable and unfavourable
decision, respectively. The values of CPT are not in monetary terms.
Although the CPT is originally formulated for one period, the value
function can be extended for the long term as well. To achieve this,
the status quo, aggregation of future outcomes, and consideration of
the time value of money need to be considered. This study uses a
multi-period NPV including the status quo (the initial wealth of
the individual) to extend the one-period CPT function to the
multi-period CPT similar to studies done by Häckel et al.
[33,61,22,9]. Therefore, Dxi is replaced by NPV in all the formulas
(Eq.11). Energy-efficiency investments are similar to any other
types of investment. An initial financial cost and usually uncertain
outcomes are the components of energy- efficiency investments.
Therefore, in this case, Net Present value (NPV) is used to evaluate
the energy-efficiency investments over the long term. If the total
present value of an energy-efficiency investment is higher than
the initial investment costs, people might invest in it. The mathe-
matical form of the NPV is:

NPV ¼ �I0 þ
XT
n¼0

CFt

ð1þ rÞt
ð7Þ

Where I0 is the initial investment. T is the lifetime of the energy-
efficiency investments. r is the indicator of the time value of money
discounted by the interest rate. The following formula is used to cal-
culate the CFt in each period:

CFt ¼ Pt � Ct � eþ UCBt ð8Þ
Where Pt is the stochastic price per source of energy (for instance,
for gas it is kWh) for period t. Ct is the energy consumption for per-
iod t, and e indicates the percentages of energy savings per source of
energy. UCBt shows costs and benefits that are difficult to measure
Table 4
Data sets for the estimation of EUT and CPT parameters.

Datasets Number of
respondents

Variables

Energy module 2012 2784 Time series of energy consumpt
household characteristics, energ
energy retrofit in the coming tw
households are collected using

Energy module 2018 2787 The only difference with energy
new version.
- Energy consumption 2018

Eurostat _ The initial values of the gas and
Milieu Centraal _ The initial values for energy sav
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and not observable, such as time and effort expended to find reli-
able information or contractors (i.e., transaction costs) [20,21].
Regarding the benefits, energy saving is the main and observable
benefit of implementing energy-saving measures. This benefit
might be calculated more easily compared to other benefits such
as enhanced quality of life.
4. Methodology

4.1. Database

The data of the main variables defined in EUT and CPT models is
collected from the Netherlands Household Survey Energy modules
2012 and 2018. This dataset is released every 5–6 years. Table 4
shows the datasets of this study.

4.2. Methods of analyses

Building and household characteristics significantly influence
the energy retrofits according to the previous studies
[76,78,6,20,21]. In this subsection, the clustering method is
explained. The cluster of households is defined using building
and household characteristics. Before finalising the main influenc-
ing factors for clustering the data, more variables were used to
define different clusters. However, the identified numbers of obser-
vations per cluster are not very well distributed. A sufficient
amount of data per cluster is required for examining the parame-
ters of EUT and CPT. Therefore, these variables are removed one
by one to evaluate the distribution of data per cluster of house-
holds. Based on this investigation, it was found that the variables
with so many missing values cause a very uneven distribution of
the numbers of observations for different clusters. The main build-
ing and household characteristics are as follows: (a) building char-
acteristics including building types (multi and single family
houses); type of single-family dwellings (detached, two under
one roof, middle houses, row houses); type of multi-family dwell-
ings (flat and maisonette); number of rooms; construction period;
type of heating system (gas boiler, block or neighbourhood heating,
district heating, etc.). (b) household characteristics: number of
households; whether relocated or not in the last two years; age;
income; and education.

4.2.1. Cluster analysis
The purpose of clustering is to group observations into the

classes or clusters, so that objects in the same group have high sim-
ilarity, and objects in other groups are not alike. ’n’ buildings and
’n’ households are in the datasets that are called ’instances’. ’m’
attributes, i.e. specific characteristics, are defined for each instance.
Each instance is assigned to a group. One important step needs to
be conducted before the main cluster analysis. The degrees of influ-
ence of these attributes differ. For instance, the construction period
ion (2004–2010), energy labels, energy savings in the dwelling stock, building and
y efficiency in the past five years (i.e. insulation and double glazing), planning for
o years, investment costs, the house values. The data regarding the expectation of
a survey among almost 5000 of buildings.
module 2012 is that the time-series of energy consumption is not included in this

electricity prices in the Netherlands.
ing percentages, initial investment costs.
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is expected to influence energy retrofit considerably more than
other factors, such as the number of rooms in the buildings. There-
fore, a weighting system is needed to consider the importance of
different attributes in the clustering process. Furthermore, the val-
ues of attributes need to be normalised to prevent two important
miscalculations in grouping the instances: (a) most of the
attributes have different units of measurement, and the differences
between units influence the quality and accuracy of clustering; (b)
this weighting system prevents data with large ranges from having
more weight than attributes with smaller ranges.

Grey relational analysis (GRA) is conducted to normalise and to
identify the weights of different attributes [47,79,50,81]. First, the
min–max normalisation is conducted to make the scale of attri-
butes comparable and within the same range. This method of nor-
malisation retains the relationship between the initial data since it
performs a linear normalisation. In this study, the new range is
defined between [0,1].

X0 ¼ X � Xmin

Xmax � Xmin
X0

max � X0
min

� �þ X 0
min ð9Þ

For categorical variables with meaningful orders, it is essential to
make an order and then to assign the values between [0,1].

X0 ¼ ranki � 1
rankmax � 1

ð10Þ

Based on geometrical mathematics, grey relational analysis (GRA) is
performed to identify the grey relational grades and a grey rela-
tional order (i.e., the rank of grey relational grades). These values
can show the primary values between the influencing factors and
the target variable, i.e. the decision. As mentioned, the influencing
factors are defined within two categories of attributes: building
and household characteristics. The grey relational grades indicate
the degree of the influencing factors on the energy retrofit decision.
The advantages of this method are its simplicity and its lack of
assumptions regarding the type of probability distributions of the
attributes [79. X and Y indicate the influencing factors and the
energy retrofit decision, respectively. To calculate the GRA, these
steps are followed: 1) normalisation of the data, 2) calculate the
grey relational coefficients using Eq.15 (normally alpha = 0.5):

niðkÞ ¼
min

i
min

k
yðkÞ � XiðkÞj j þ amax

i
max

k
yðkÞ � XiðkÞj j

yðkÞ � XiðkÞj j þ amax
i

max
k

yðkÞ � XiðkÞj j ð11Þ

3) compute the grey relational grades 4) rank the obtained grey
relational grades, so that the grey relational order can be identified.
The grey relational grades are used to weight related attributes in
cluster analysis. This grade is between [0,1].

K-Means clustering is used to group similar instances within
one group [74,4,55,56]. In this method, no target variable is pre-
dicted, i.e., an unsupervised learning problem. Each cluster should
have different features: (1) all instances should be very much alike.
The sum of squares of distances of each instance from the centroid
of a cluster, also called the ’intra cluster distance’, are calculated. In
this regard, lower values result in a better cluster; (2) the instances
in one cluster should be as distinct as possible from other clusters.
The ’inter cluster distance’ is calculated to indicate the distances
between clusters. After calculating these two values, the Dunn
index is calculated using Eq. (16). The Dunn index is applied. The
values of this index need to be maximised, and a higher value of
the Dunn index indicates better clustering. The K-means clustering
is an algorithm for minimising the sum of distances between the
instances in a cluster with their corresponding cluster centroid
[18,60,52].

Dunni ¼ minðInter � cluster � distanceÞ
maxðIntra� cluster � distanceÞ ð12Þ
7

A few criteria are used to rely on the clusters by the K-means algo-
rithm: centroids of new clusters do not change in the new iteration;
instances stay in the same cluster; and finally, the maximum num-
ber of iterations is obtained. It is a challenge to achieve the appro-
priate size of different clusters in terms of scale. If a cluster is too
large, a cluster analysis can be conducted for this specific cluster
to make several clusters out of it. Another challenge is when the
densities of different clusters differ. Again, the k-means clustering
algorithm and the use of a higher number of clusters can be applied
to solve this issue. The elbow method is used to determine the opti-
mal number of clusters for each data set. In the elbow method, data
clustering is performed several times, in each attempted data is
clustered in predefined number of clusters. Then, the sum of
squared distanced of each data point from the centre of the corre-
sponding cluster is plotted as a function of the number of clusters.
The resulting plot should have a shape of an arm where the number
of clusters at the location of the elbow will correspond to the high-
est Dunn index and indicated the optimal number of clusters
[80,8,46].

4.2.2. Calculation of the main components of EUT and CPT models
Net present values of energy efficiency investments
Energy saving depends on gas and electricity prices. Future gas

and electricity prices are sources of uncertainty in the NPV model.
Therefore, different NPVs are calculated for the same values of
energy consumption and energy saving percentages for different
paths of energy prices. First, these NPVs are computed for each
household per type of energy saving measure in the samples
(2,784 and 2,878 instances). The NPVs are used as the inputs for
calculating the values of the EUT and CPT.

Predicting the energy prices using ‘‘Geometric Brownian Motion”
Energy prices are a source of uncertainty for energy retrofit

decisions. As with Häckel et al. [33]; Postali and Picchetti [62],
energy prices are simulated using Geometric Brownian Motion
(GBM). The main reason for using this method is the characteristics
of energy prices, chiefly the uncertainty of predicting their increase
over time. Extended periods of low and high energy costs are both
apparent. The GBM contains two important parameters: the long
term average of (l) and the degree of randomness surrounding this
average (r).

dPt ¼ lPt dt ¼ 1yearð Þ þ rPtdWt ð13Þ
Where Pt is the gas price, l is the average trend of the gas price, r is
the randomness or volatility of gas prices, and W is the Brownian
Motion. The Brownian Motion is the random part of the equation.
The W is the result of using the actual continuous-time stochastic
process, known also as the Wiener process. W has the standard nor-
mal distribution, W � N(0,1). Each W is calculated using a standard
random variable z by the square root of the time changes. We fore-
cast gas prices on a yearly basis because these are usually decided
annually. We calculate 50 energy price paths for each building. A
higher number of energy price simulations was not possible, due
to computational burdens in terms of time and the capacity of the
computer. Häckel et al. [33] estimated the energy prices for
10,000 simulation runs per year. However, that analysis was per-
formed for only one type of building. In this paper, analyses were
conducted for 2,784 and 2,878 buildings. Therefore, it was not pos-
sible to create a greater number of energy price simulations.

Probability of each NPV
For deriving EUT and CPT, the probability of each NPV needs to

be estimated. For this purpose, a kernel density estimator (KDE) is
employed. This probability density estimator has advantages over
other estimators, such as normal distribution. A density estimator
is an algorithm which aims to model the probability distribution
that generated a dataset. A histogram is a widely-used density esti-
mator for one-dimensional data. The data is divided into different



Fig. 1. Schematic presentation of the value function for cumulative prospect theory.
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ranges and the number of data is calculated for each range. The
advantage of KDE is that it is more precise in terms of estimation
of probabilities. The histogram calculates the probabilities for a
range and block of data. KDE instead estimates the probability
for each point in the dataset. The results are more robust in esti-
mating the actual data characteristics compared to a histogram
density estimator [34,59,33]. For KDE, a Gaussian kernel is used,
which gives more accurate results on the shape of data distribu-
tion, and the results are changed less due to the differences in sam-
pling 2. One input parameter of KDE is the bandwidth. The
bandwidth is estimated for each house using the optimisation
method, which is incorporated in the Scikit-Learn library in Python
3.3

Energy consumption and energy saving
In the energy module 2012 dataset, energy consumption is pro-

vided for 2784 houses and for seven years before collection of the
dataset (2004–2010). The data is the official energy consumption
for each house, and is not taken from a survey. The average values
for energy consumption are calculated. These average values are
used as indicators of energy consumption for each household.
The energy module 2018 contains the energy consumption for
the year 2018. Therefore, the energy consumption for the year
2018 is considered to be the reference for energy consumption of
these dwellings. For energy saving, the percentages of energy sav-
ing per measure, i.e. insulation, and double glazing, are collected
using reliable sources such as Milieu Centraal, and Netherlands
Enterprise Agency (RVO). Similar to Häckel et al. [33], UCB = 0 is
assumed, i.e., the unobserved benefits and costs compensate for
each other. (See Fig. 1).
5. Results

5.1. Cluster analysis

To achieve more meaningful clusters, weight factor are used for
different attributes based on their grey relational grades. The grey
relational grade shows the relative importance of factors in deter-
mination of the outcome. Therefore, factors with higher grey rela-
tional grades should be given more weights in formation of
clusters. The results of grey relational grades are presented in
Table 5. For energy module 2012, building characteristics: type of
single family/multi-family dwellings, year of construction, and
type of heating system, show a higher correlation to decisions
compared to household characteristics. Regarding household char-
acteristics, the number of people in the households and relocation
in the last two years are important factors. For energy module
2018, the type of building has the highest degree of correlation
with investment decisions, followed by the household composition
(i.e. one person, a family with or without children, etc.) (Tables 5
and 6).

The K-means clustering method is used to cluster similar
instances in one group. Considering the number of instances and
their distribution, the k-mean method is more suitable for the
dataset used in this publication. The algorithm disregards the miss-
ing values, and the calculation is completely based on the actual
observations. The cluster analysis is conducted from one to thirty
2 we used sklearn package in python 3 because of its flexibility and efficiency. This
package can estimate KDE in multiple dimensions with one of six kernels and one of a
couple dozen distance metrics. Because KDE can be fairly computationally intensive,
the Scikit-Learn estimator uses a tree-based algorithm under the hood and can trade
off computation time for accuracy using the atol (absolute tolerance) and rtol (relative
tolerance) parameters.

3 GridSearchCV implements a ‘fit’ and a ‘score’ method. It also implements ‘predict’,
‘predict_proba’, ‘decision_function’, ‘transform’ and ‘inverse_transform’ if they are
implemented in the estimator used. The parameters of the estimator used to apply
these methods are optimized by crossvalidated grid-Ssearch over a parameter grid.
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clusters. Therefore, the population per cluster and the distribution
of instances per cluster can be depicted. The elbow method is used
to determine the optimal number of clusters for each data set. In
the elbow method, data clustering is performed several times, in
each attempted data is clustered in predefined number of clusters.
Then, the sum of squared distanced of each data point from the
centre of the corresponding cluster is plotted as a function the
number of clusters. The resulting plot should have a shape of an
arm where the number of clusters at the location of the elbow will
correspond to the highest Dunn index and indicated the optimal
number of clusters [80,8,46]. Using the elbow method, the number
of clusters equal to 4 has the highest Dunn index for two datasets
of the energy modules 2012 and 2018. Furthermore, this number of
clusters contains the most appropriate population per cluster, as
well as distribution of instances across different clusters. (See
Fig. 2).

The clustering analysis is performed with an in–house python
script. The number of observations is shown in Fig. 3. The optimal
values of the squared sum of the cluster analysis is equal to 0.19
and 0.27 using the energy modules 2012 and 2018, respectively.
Later, the characteristics of these clusters are investigated. The
cluster analysis is an unsupervised learning process, and these
clusters are grouped without connection to any type of target
variable.

After clustering all data point into the optimal number of clus-
ters, in Tables 7 and 9 the number of conducted energy retrofit
measures are compared in different clusters per type of retrofit.
Tables 7–10 indicate the characteristics of different clusters using
the average values. It can be seen that cluster number 2 in module
2012 and cluster number 8 in module 2018 have the highest num-
ber of implemented energy retrofits. These clusters have highest
average income and value of the house among other clusters. The
occupants of these clusters are around 55 to 60 years old. In terms
of construction year, the average year is equal to 1988 and 1969 in
clusters 2 and 8, respectively. Conversely, the cluster with the low-
est number of installed energy-saving measures has the lowest
house values and household incomes.

This study focuses on households that with only one or no
energy-saving measure for estimating the EUT and CPT. The main
reason for this choice is that it is not possible to separate the effect
of various energy efficiency measures in case of multiple energy
retrofits.

5.2. Variables in calculating the Net Present Values (NPVs)

NVP includes the effects of all costs and benefits throughout the
life time of a measure. Most of the cost is paid upfront while the
benefits are accumulated later on. To be able to calculate the ben-



Table 5
Grey relational grades for each attribute using the energy module 2012.

Target variable Number of people Household relocated Age Income Type of house
(S/M)

Type of
multi-family house

Construction
year

Energy efficiency decision 0.6014 0.6176 0.5750 0.5203 0.6537 0.7345 0.6252
Type of heating system Building type,

e.g. detached houses
Gas Electricity Number of rooms Type of single family house

0.6216 0.5722 0.5323 0.5576 0.5222 0.5605

Table 6
Grey relational grades for each attribute based on the energy module 2018.

Target variable Number of
people

Household
relocated

Age Income Type of house (S/M) Type of
multi-family house

Construction year

Energy efficiency decision 0.5479 0.5780 0.5433 0.5879 0.5631 0.6964 0.5384
Household composition Building type Gas Electricity Number of rooms Type of single family house

0.6905 0.5507 0.5052 0.5235 0.5378 0.6044

Fig. 2. Elbow Method for the optimal number of clusters.

Fig. 3. Population per cluster.

Table 7
Different characteristics of four clusters - National Household Survey energy module 2012.

Cluster Insulation Boiler Double glazing PV_panel Number_energy_saving House_value Income

1 25 104 68 1 198 217,445 47,708
2 160 329 223 38 750 353,921 65,922
3 112 265 205 14 596 262,960 56,292
4 136 188 171 15 510 240,183 58,932
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Table 8
Different characteristics of four clusters - the energy module 2012.

Cluster Number_of_people building year EI Type of house Number_of_rooms Relocated Age

1 1.7 1994 1.81 multi_family 3.4 0.153 54.5
2 2.6 1988 1.84 single_family 5.4 0.016 59.8
3 2.3 1984 1.89 single_family 4.9 0.005 60.7
4 3.3 2004 1.71 single_family 4.9 0.210 38.0

Table 9
Different characteristics of four clusters - the energy module 2018.

Cluster Insulation Boiler Double glazing PV_panel Number_energy_saving House_value Income

5 79 121 79 67 346 256,437 43,182
6 232 311 247 223 1013 263,199 69,418
7 72 136 72 19 299 257,196 58,097
8 258 317 243 285 1103 370,734 84,051

Table 10
Different characteristics of four clusters - the energy module 2018.

Cluster Number_of_people building year EI Type of house Number_of_rooms Relocated Age

5 1.08 1964 1.71 single_family 4.7 0.087 56
6 2.79 1972 1.66 single_family 5.1 0.129 48.5
7 1.64 1959 1.68 multi_family 3.5 0.224 51.5
8 2.6 1969 1.6 single_family 5.7 0.068 55
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efits of each energy efficiency measure in terms of monetary sav-
ings by consuming less energy, the energy consumption in case
of no energy saving measure, the expected percentages of energy
saving per type of energy-saving measure, and the future energy
prices must be known.

5.2.1. Predicting gas prices
Knowing the long-term price trend l , and price volatility r, dif-

ferent possible trajectories can be estimated gas price in the future
using geometric Brownian motion. The values for the l = 5.7%, and
r = 17% are obtained from historic data from the Eurostat dataset.
This study aims for the long-term evaluation of investment deci-
sions; therefore, energy prices are estimated for 30 years. Gas
prices are simulated 50 times per year. Fig. 4 shows 10 examples
of gas price predictions over 30 years. Given bi-yearly data, 60
instances are generated to compute data for 30 years. (See Fig. 5).

5.2.2. Energy-saving measures
Table 11 shows the total numbers and percentages of installed

insulation and double glazing for houses with one energy saving
measure. To calculate the energy saving for each measure, the
expected energy saving is required. The expected energy savings
are collected from reliable data sources such as the Netherlands
Environmental centre and the Netherlands Enterprise Agency
(RVO). From this source, the expected energy savings of insulation
and double glazing are 12% and 14%, respectively. These percent-
ages are multiplied by average gas consumption to calculate the
average energy saving per type of energy-saving measure. (See
Table 12).

5.2.3. Energy efficiency investment
In the dataset, households provide information on the invest-

ment costs of energy-saving measures. The information is not
available for all households. The average investment cost per clus-
ter of households is computed in place of the missing household
cost. The outliers, such as investment costs less than 100 euros,
were removed. Previous studies identify high upfront costs as
one of the main barriers to conducting energy retrofits
[21,39,33]. Therefore, the investment costs, including subsidies
10
and no-subsidies, are used to test the importance of these influenc-
ing factors. Another reason for calculating with both subsidies and
no-subsidies is to examine the cognitive bias of the reference
dependence.

5.3. Expected utility theory (EUT) and cumulative prospect theory
(CPT)

This study aims to estimate the input parameters of the EUT and
CPT models to more accurately predict individual energy efficiency
investment decisions. First, the initial input parameters are applied
following previous studies [49,33,71,64]. The EUT and CPT param-
eters are calculated using the Eqs. (1–10) and (11–17), respec-
tively. The initial values are presented in Table 13.

The EUT and CPT parameters are calculated for 2,779 and 2,878
homeowners of the two datasets using the initial parameter values.
The results show that the CPT predicts the decisions of 86% of
homeowners correctly. However, the EUT overestimates decisions
and shows a positive value for 1441 homeowners who did not
invest in any type of energy-saving measure. In the following sub-
sections, the parameters of EUT and CPT per each cluster are iden-
tified. The differences between the predicted and actual
percentages of households that made energy retrofits are min-
imised to estimate these parameters.

5.4. Identification of the parameters of expected utility theory (EUT)
and cumulative prospect theory (CPT)

Genetic algorithm is used to estimate EUT and CPT parameters.
The goal of this optimisation is to minimise the deviation between
the retrofit rate estimated by EUT and CPT and actual retrofit rate
obtained from the data set by changing the parameters. Estimating
the values of all these parameters necessitates high computational
times resulting from the complexity and non-linearity of the CPT
parameters as well as the need to calculate 50 different energy
price scenarios. The values of b; h; c; d, and k are calculated. To
reduce the computational times, boundaries are defined for these
parameters. The possible range for different parameters were iden-
tified using trial and error to narrow down the domain space. The



Fig. 4. Population per cluster.

Fig. 5. the value function of CPT for cluster 3, installation of double-glazing, and the
investment costs with subsidies.
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maximum number of generations is constrained as well. An initial
population of 100 with 10 generations appear to be sufficient to
achieve sufficient results. increasing the number of generation
above 10 and population size about 100 resulted in minimal
improvement in the goodness of the objective function, therefore,
these values are selected. The optimisations are conducted for four
clusters of households and two types of energy-saving measures,
Table 11
Total numbers and percentages of energy-saving measures per cluster from the energy m

2012

Insulation Double glazing

name numbers percentages numbers percentages nam

cluster 1 2 0.43 26 5.60 cluster
cluster 2 24 2.66 67 7.42 cluster
cluster 3 24 3.06 74 9.44 cluster
cluster 4 25 3.95 50 7.90 cluster

11
i.e. insulation and double-glazing. The percentage of households
that made positive decisions to conduct energy-saving measures
is the indicator in estimating the parameters for each cluster and
per type of energy-saving measure. Two reference points (RPs)
are used to estimate the parameters and to examine the reference
dependency of preferences proposed by Tversky and Kahneman
[71] (NPV ¼ I0 þ

PT
n¼0

CFt
ð1þrÞt þ RP). Following this formula, the

investment costs can be decreased or increased to include different
reference points. Here, the investment costs with subsidies and
without subsidies are included to evaluate the cognitive bias of ref-
erence dependence. The subsidy data is collected from the Milieu
Centraal website. Tables 14 and 15 show the optimisation param-
eters for EUT and CPT models using the energy modules 2012 and
2018.

5.4.1. Comparing the expected utility theory (EUT) and cumulative
prospect theory parameters (CPT) and overall results of CPT
parameters

As mentioned, the EUT has a utility function that includes the
wealth level and shows the constant relative risk aversion (CRRA)
for each individual. The values of CRRA (i.e. h) are calculated using
the genetic algorithm method. The objective function is similar to
CPT. Therefore, the differences between the actual percentages and
the predicted ones are minimised. Based on the results and similar
to previous studies [64,23,33,71], CPT captures the actual beha-
viours reasonably well for the majority of the clusters, for two
energy-saving measures, as well as, two reference points with
and without subsidies. As mentioned by Rieger et al. [64], the CPT’s
more accurate parameters are not solely due to the fact that CPT
contains a large number of parameters. The main reason for better
performance of CPT in comparison with EUT in predicting the rate
of retrofit is due to inclusion of reflection effect and probability
weighting. The reflection effect is another term for risk-seeking
behaviour for loss and risk-averse behaviour for gain. Probability
weighting refers to the fact that the demand of high gain to repay
odule 2012 and 2018 (households with one energy-saving measure).

2018

Insulation Double glazing

e numbers percentages numbers percentages

5 24 5.84 21 5.11
6 57 5.77 68 6.89
7 22 4.45 24 4.86
8 55 5.58 40 4.06



Table 12
The average investment costs for different types of energy-saving measures and per cluster of households (Euro)-the energy modules 2012 and 2018

2012 2018

Cluster Insulation Double-glazing Cluster Insulation Double-glazing

cluster 1 1875 2750 cluster 5 2589 2061
cluster 2 1250 1200 cluster 6 2277 2670
cluster 3 1950 3500 cluster 7 1300 2000
cluster 4 2500 2267 cluster 8 2358 3111

Table 13
Initial values for input parameters.

Input parameters h a b c d k

Values 1.26 0.88 0.88 0.61 0.69 2.25

Table 14
Cluster-level CPT estimates and Mean Error using the energy module 2012.

CPT EUT

Reference Subsidies No_subsidies Subsidies

b c d k h dev b c d k h dev h dev

Insulation
cluster 1 0.33 0.71 0.71 1.37 9.94 0 0.24 0.92 0.07 1.81 3.53 2.48 1.84 21.43
cluster 2 0.68 0.11 0.05 4.85 7.28 4.23 0.21 0.45 0.46 6.35 0.32 2.08 26.59 3.28
cluster 3 0.28 0.34 0.41 2.86 8.16 12.46 1.31 0.87 0.56 8.77 8.56 6.1 2.50 32.13
cluster 4 1.11 0.01 0.31 0.52 7.82 9.19 0.76 0.78 0.03 7.12 9.42 3.67 2.48 37.80

Double-glazing
cluster 1 0.26 0.57 0.39 4.45 0.78 0.29 0.53 0.93 0.24 3.22 0.02 10.43 0.78 5.79
cluster 2 0.03 0.31 0.71 2.26 1.60 0.43 0.06 0.54 0.24 7.05 0.21 3.00 2.49 17.17
cluster 3 0.86 0.10 0.48 3.76 0.14 0.61 0.04 0.44 0.41 6.91 0.65 0.61 3.08 19.94
cluster 4 0.30 0.55 0.91 6.44 1.33 1.07 0.38 0.53 0.02 7.61 7.54 4.64 3.06 21.35

Table 15
Cluster-level CPT estimates and Mean Error using the energy module 2018.

CPT EUT

Subsidies No_subsidies Subsidies

b c d k h dev b c d k h dev h dev

Insulation
cluster 5 1.53 0.60 0.83 0.29 1.12 0.0 0.36 0.35 0.14 7.26 0.31 0.93 0.62 21.49
cluster 6 1.03 0.98 0.61 5.16 0.35 1.78 0.91 0.68 0.03 7.55 6.05 0.25 1.02 16.01
cluster 7 1.40 0.85 0.03 3.35 0.91 0.33 0.02 0.94 0.06 4.29 7.11 6.62 1.90 3.64
cluster 8 0.76 0.77 0.18 3.27 3.51 2.68 0.41 0.95 0.47 4.13 0.28 0 0.42 28.69

Double-glazing
cluster 5 1.14 0.96 0.70 4.62 0.35 1.78 0.05 0.91 0.45 6.24 0.63 1.78 1.37 16.11
cluster 6 0.11 0.51 0.67 9.54 0.70 0.24 0.20 0.45 0.23 5.73 0.21 9.11 0.79 8.87
cluster 7 0.37 0.64 0.43 0.65 0.30 1.97 0.37 0.71 0.21 4.28 0.25 7.57 1.89 3.29
cluster 8 0.01 0.71 0.52 2.34 6.45 0.56 0.64 0.83 0.06 4.20 8.41 0.28 1.32 22.35
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loss with equal chances cannot be described by a reasonable
degree of risk aversion in the EUT model [63].

Evaluating the parameters of CPT determines several interest-
ing results for the overall clusters as shown in Table 16:

Next, the parameters of CPT models are interpreted per cluster
and per type of energy-saving measure, i.e. insulation and double-
glazing, using the energy modules 2012 and 2018.

5.4.2. Results of the CPT’s parameters for each cluster using the
Netherlands Household Survey Energy module 2012

The parameters of different clusters using the energy module
2012 are explained in the following:

Insulation—subsidies Cluster 2 shows high risk-seeking beha-
viour (b=0.68) of this group in losses compared to other clusters
(similar to the proposed parameter value by [71]). Furthermore,
the loss-aversion parameter is the highest as well (k=4.85). There-
fore, the individuals in this cluster prefer to accept higher risk to
12
prevent future losses or to gain in future compare with other clus-
ters. this results in higher rate for implementation of energy retro-
fits in this cluster compared to others (Tables 7 and 8). The level of
average incomes and house values are the highest, as well. In con-
trast, cluster 4 shows the least risk-seeking behaviour in losses for
insulation (b=1.11). This group is the youngest with newly con-
structed buildings (average year of construction of 2004). Appar-
ently, people with higher income and more expensive houses are
more likely to invest in energy retrofits compared to the young
and low income group.

Clusters 2 and 4 have the lowest values for the parameters c and
d, respectively. Therefore, cluster 2 (d=0.05) would be highly con-
cerned regarding the low probability of losses. In contrast, cluster
4 (c=0.01) is more concerned about the small probability of gains
with the second-highest number of installation of insulation
(Tables 7 and 8). Clusters 2 and 4 overweight the small probability
of losses and gains, respectively. Cluster 1 has the highest and



Table 16
Overall interpretation of CPT parameters.

Parameters Interpretations

c; d; k; h Changing the reference point has a statistically significantly
influence on the coefficient values of c and d.
No-significance impacts are identified for the coefficients of
k; h (t-test, P60).

b The parameter b (i.e. 0 < b 61) shows the convexity of the
value functions in 81% of CPT parameter estimations.
This indicates the risk-seeking behaviours for loss on energy
efficiency investments.

h The parameter of h (i.e. P0) indicates the concavity of the
value functions in all cases. Namely, it shows the risk-averse
behaviours of individuals in gain regarding energy efficiency
investments.

b; h The average b (0.52) is smaller than h (3.25). The differences
between these two parameters are statistically significant.
Therefore, asymmetric value functions in gain and loss are
identified. It means that in loss, the risk-seeking behaviour
increase considerably with more losses. However, the rate of
risk-aversion behaviour does not increase considerably with
more gains from energy efficiency investments (Fig. 5).

c and d Studies in decision making indicate that decision-makers do
not weight rare events according to their actual probability
chances of happening. Instead, small probability events are
inclined to be overweighted for two reasons: (1) decision-
makers may overestimate the chance that rare events
happen; and (2) small probabilities are overweighted in
terms of their impact on decisions. Considering these two
reasons, rare events are given greater psychological weight
in our minds than actual weight [12,71]. The obtained values
for c and d are between 0 and 1. Based on these values, the
overweighting of small probabilities is confirmed for both
gain and loss.

k The estimated values for k for almost all and except for two
cases are greater than 1.
This indicates that the majority of homeowners consider
losses more important compared to gains. For instance, the
maximum value of k is equal to 9.54. Therefore, on average,
the individuals of this cluster perceive losses almost 10 times
more important than gains.

Reflection
principle

The results of the CPT parameters are tested by the reflection
principle. Reflection principle means that there should be no
correlations between the estimated parameters of CPT
modelas stated by Kahneman [41].
The bi-variate correlations of the five CPT parameters are
tested using the Pearson correlation and Superman’s rho
tests.
The results show that no-significant correlations are identi-
fied. Therefore, the interpretation of coefficients using the
CPT model is not influenced, and these coefficients can be
interpreted independently.
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equal values of the parameters c ¼ 0:71 and d ¼ 0:71. This group
overweights the small probability of losses and gains less than
other clusters and behaves consistently in the domain of losses
and gains. Cluster 1 contains multi-family dwellings with less than
two household members. This result indicates when multiple fam-
ilies are living in the same building they will probably make deci-
sions collectively. Therefore, they will cancel out individual
tendencies to overweight probability of losses or gains.

Double-glazing—subsidies The parameters of the CPT model for
cluster 3 are estimated similarly to the original parameter values
(i.e. b=0.86 and h=0.86) proposed by Kahneman and Tversky [42].
The individuals of this cluster are less risk averse in gains but risk
seeking in losses for installation of double-glazing. In addition,
cluster 3 has the lowest c (=0.10) and mean error (0.14) compared
to other clusters. This could be due to the fact that buildings in this
cluster are mainly from the construction period of 1984 and house-
holds are about 61 year old. Therefore, most of the houses are lack-
ing double glazing in the original construction and as elderly
people have a preference for higher indoor temperatures they are
likely to install double glazing. Cluster 4 has the highest loss-
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aversion coefficient for the installation of double-glazing (low
number of double-glazing installations). Cluster 1 has the lowest
d (=0.39) for double-glazing, which means that this group would
be highly concerned about the small probability of losses. This
cluster also has the lowest number of installations of double-
glazing compared to other groups.

Insulation—no-subsidies The reference point is changed in the
NPV formula by including the investment costs of insulation with-
out subsidies. Different values for five parameters of CPT are iden-
tified. In this new optimisation, the lowest mean error is calculated
for cluster 2, similar to the RP with subsidies. The inclusion of sub-
sidies makes the proposed optimisation model more realistic as
subsidies could have significant effect in decision towards imple-
mentation of energy efficiency measures. As excepted inclusion
of subsidies in the reference point improved the goodness of the
objective function 50% in almost all cases. The highest values of b
equal to 1.31 and 0.76 are calculated for clusters 3 and 4. Therefore,
these two groups are risk seeking in the domain of losses for insu-
lation. For these two groups, the values of loss aversion parameters
are the highest, as well. Namely, clusters 3 and 4 consider losses
more than 8.77 and 7.12 as important as gains.

Double-glazing—no-subsidies Compared to the insulation, the
mean errors are increased when the RP includes the investment
costs without subsidies. In addition, three hs (out of four) are 0
6h 61. This range of hmakes the value functions of CPT more com-
parable to the one proposed by Kahneman and Tversky [42]. The
results for the parameter c are not changed in terms of interpreta-
tion. However, the order of magnitude has increased.

5.4.3. Results of CPT’s parameters for each cluster using the energy
module 2018

The results of CPT parameters for different clusters are
explained using the Netherlands National Household Survey
Energy module 2018.

Insulation—subsidies The mean errors are smaller using the
energy module 2018. The parameter b shows risk-seeking beha-
viour and risk aversion in gains. For all clusters, the h follows the
original curvature proposed by Kahneman and Tversky [42]. By
comparing the parameter b, cluster 8 has the lowest b8=0.76. This
indicates the highest risk-seeking behaviours of cluster 8 in losses
for insulation compared to other clusters. Cluster 6 has the second-
lowest value for parameter b. In terms of dwelling and household
characteristics, cluster 8 has the highest number of installed insu-
lation, highest average income, and average house values com-
pared to the other clusters. Furthermore, cluster 6 ranks second
for all these attributes. Furthermore, cluster 6 has the lowest value
for h, which means this group has the least risk aversion to gains.
Considering the household characteristics (Table 10), cluster 6
has the youngest average compared to other clusters. Regarding
the parameter c, the value of this parameter for cluster 6 is the
highest. Therefore, this group would be less concerned about the
small probability of gains for insulation. At the same time, the
loss-aversion coefficient (k=5.16) is the highest compared to other
clusters. Furthermore, cluster 6 also has the lowest value of h.
Hence, this group is the lowest risk-averse in gains. Based on
Tables 9 and 10, cluster 6 ranks second in terms of insulation, aver-
age income, and house value compared to other clusters. Clusters 7
and 8 have the lowest d7=0.03 and d8=0.18, respectively. Therefore,
these groups would be highly concerned about the small probabil-
ity of losses.

Double-glazing—subsidies For both datasets, double-glazing with
investment costs including subsidies has the lowest mean error
compared to other combinations of investment costs with no sub-
sidies. Regarding the parameter results, clusters 6, 7, and 8 are risk-
seeking in preventing losses. Based on the values of h, clusters 5, 6,
and 7 confirm the curvature proposed by Kahneman and Tversky
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[42]. Among these clusters, cluster 7 with h ¼ 0:30 is less risk-
averse in gains. This cluster belongs to multi-family dwellings with
the highest probability of relocation over the last two years com-
pared to other clusters. The highest value of parameter k is equal
to 9.54, which implies that individuals of cluster 6 perceive losses
to be more than 9 times as important as gains. Based on Table 9,
this group’s number of double-glazing installations (=247) is the
highest compared to other clusters. Regarding the probability
weighting function parameters, cluster 5 has the highest values
of c ¼ 0:96 and d ¼ 0:70, which indicates that these individuals
are less concerned about the small probability of losses and gains
from double-glazing installation. This cluster has the lowest num-
ber of double-glazing installations in the past 5 years (Table 9).

Insulation-no—subsidies The mean errors of clusters 5,6, and 8
are declined when the reference point is set to the investment
costs without subsidies. In this case, cluster 6 and 5 have the high-
est loss aversion parameters of k ¼ 7:55 and k ¼ 7:26 compared to
other clusters, respectively. The values of h for clusters 5 and 8 are
equal to 0.31 and 0.28, respectively. This implies that these groups
tend to be risk averse in the gains for installation of insulation.
Cluster 6 has the highest b ¼ 0:91 and k ¼ 7:55 values, which indi-
cates less risk seeking in losses and high loss aversion in insulation
installation. Based on Table 10, this cluster ranks second in insula-
tion installation. The highest values of parameter c are identified
for clusters 7 and 8 (0.94 and 0.95, respectively). In addition to this,
cluster 8 has the highest values of d, which indicates these people
would be less concerned about the small probability of losses. This
high-income group of households has the highest rate of installed
insulation in the past five years (Table 9). Double-glazing—no-subsi
dies Similar to the results using the energy module 2012, the mean
errors are increased for clusters 6 and 7 compared to the previous
RP. Again, the values of the parameter h of cluster 5, 6, and 7 are
0 6 h 6 1, which confirm the proposed shape of value functions
by Kahneman and Tversky [42]. The parameter values of b for all
clusters conform to the proposed convexity as well (risk-seeking
for loss). Cluster 8 has the lowest parameter value of d ¼ 0:06,
which implies this group would be highly concerned about small
probabilities of loss. Based on Table 10, this group has the highest
average income, highest average house value, and the second most
installations of double-glazing.
6. Discussion

This study has applied quantitative methods to examine the
impacts of cognitive biases on energy efficiency investment deci-
sions. It has compared expected utility theory (EUT) and cumula-
tive prospect theory (CPT) and evaluating their potential to
predict and explain decision-makers’ behaviours. EUT assumes
rational decision-making under risk, an assumption CPT disputes
by explaining actual behaviours. According to CPT, decision-
makers display different cognitive biases: reference dependency,
loss aversion, diminishing sensitivity, and probability weighting.
These agents generally behave asymmetrically, to their loss and
gain.

6.1. Comparing the performance of expected utility theory (EUT) and
cumulative prospect theory (CPT) in predicting the decision-makers
behaviours

This study has demonstrated CPT’s superiority in explaining
renovators’ decision-making behaviours. EUT is useful in a minor-
ity of cases, but CPT can predict these cases as well [64,23,15],
while also providing deeper insights into qualitative and quantita-
tive studies on energy efficiency [33,30,25,28,77]. CPT’s explana-
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tory strength derives from its consideration of cognitive biases,
such as the reflection/framing effect (i.e. risk-seeking in loss and
risk aversion in gain), probability weighting (over/underweighting
small/average probabilities), and loss aversion [64,33,15]. The evi-
dence of CPT’s superiority is as follows:

1. Using the initial parameters from previous research [49,33],
EUT overestimated the actual decisions of approximately 50%
of homeowners. However, CPT predicted the decisions of 86%
of individual homeowners accurately.

2. CPT determined homeowners’ risk-seeking behaviours for
losses for 81% of the total number of groups. Furthermore,
homeowners’ risk-averse behaviours of homeowners were
identified for all cases, confirming the function proposed by
Tversky and Kahneman [71]. Furthermore, CPT verified over-
weighting of small probabilities based on estimations for the
corresponding parameters (i.e. c and d). For the majority of
the groups, the loss aversion factors were considerably greater
than those proposed by Tversky and Kahneman [71].

3. CPT’s mean errors were in many cases smaller than EUT’s.

Cognitive bias of reference dependence
Modifying the reference points significantly influences the

parameter values of c and d. Therefore, the results of this study
are somewhat similar to the quantitative study by Häckel et al.
[33], which found the determination of a reference point to be very
important. Reference dependence’s importance is stated in previ-
ous qualitative studies on energy efficiency (e.g. [25,28,77]). For
cases involving insulation, using the reference point of no-
subsidies slightly improved CPT’s results. The reverse was identi-
fied for cases involving double-glazing; namely, the reference point
including subsidies resulted in closer predictions of homeowners’
actual behaviours. The conclusions were the same using both
datasets.

6.2. Identifying and comparing cognitive biases for different groups
regarding the installation of insulation and double-glazing

This study mainly contributes to extant knowledge by empiri-
cally examining CPT’s parameters for each group of homeowners.
The cognitive biases of reference dependency, loss aversion, dimin-
ishing sensitivity, and probability weighting were quantified for
four clusters of homeowners, using household and building charac-
teristics, as well as the probability of relocation in the past two
years. The energy retrofits of insulation and double-glazing were
also investigated. Rieger et al. [64] estimated the CPT parameters
for different groups using an international survey of 53 countries.
The author investigated the risk preferences of a large number of
undergraduate students, as shown through hypothetical choices
in a predefined set of lotteries. This is the first study in the field
of energy efficiency that empirically investigates CPT parameters
for clusters of homeowners.

Table 17 presents the main findings of this study. The main
clusters’ highlights are illustrated for different types of energy sav-
ing measures, using different reference points using the energy
modules 2012 and 2018. Based on the investigation of CPT param-
eters, the study identified the importance of risk-seeking in loss,
concern about small probabilities and loss aversion factors:

1. For insulation, the households that invested more in installing
insulation were also more risk-seeking in loss and highly con-
cerned about the small probabilities of loss and gain, as well
as being highly loss-averse. These households often had the
highest average income and house values. For cluster 4 of
energy module 2012, this group was the youngest and had



Table 17
Identifying and comparing CPT’s parameters among different clusters and energy saving measures (i.e. Insulation and Double-glazing).

2012 2018

CPT parameters household and building characteristics CPT parameters household and building
characteristics

insulation-subsidies Cluster 2 and 4: (1) highest values for the b, i.e. the
highest value for risk-seeking behaviour in loss, (2)
lowest values for c and d, i.e. highly concerned about
small probabilities of loss and gain - cluster 2: has
the highest loss aversion parameter = 4.85

Highest number of installed insulation, single-
family, highest number of rooms highest
average income and highest average house
value cluster 4: higher probability of
relocation in the past 2 years

cluster 8: (1) highest value of 0 6 b 6 1 proposed by
[71], other clusters have b values more than 1. (2)
the lowest d, i.e. highly concerned about small
probabilities of loss cluster 6: highest loss aversion
parameter = 5.16, highest value of c, i.e., least risk
aversion in gain

the highest number of installed
insulation, highest income and
house values single-family highest
number of room average
construction year: 1970s

double-glazing-
subsidies

Cluster 3: (1) highest value of b, i.e. highest values
for risk-seeking behaviour, (2) the lowest value for c,
i.e. highly concerned about small probabilities of
gain
Second ranking of installed double-glazing, second-
ranking of house value average construction-year:
1984

cluster 6: highest loss aversion
parameter = 9.54

the highest number of installed double-glazing,
highest income and house values

Cluster 1: the highest value of c, not highly
concerned about small probabilities of gain

the lowest ranking of installed double-glazing cluster 3: lowest loss aversion parameter the lowest number of installed
double-glazing, highest income
and house values

insulation-no subsidies - cluster 2: (1) high loss aversion = 6.35, (2) the value
of c is less than d, which is exactly following the
pattern proposed by [71]. cluster 2 concerned more
about the small probabilities of loss compared to
gain. - cluster 4: results remain the same: (1) highest
0 6 b � 1, i.e. risk-seeking behaviour in loss, (2) high
loss aversion = 7.12.

- highest number of installed insulation,
income and house value - second highest
number of installed insulation, income, and
house value

cluster 6: results remain the same: (1) highest b, i.e.
risk seeking behaviour in loss, (2) highest loss
aversion = 7.55

the second-highest number of
installed insulation, income, and
house value

double-glazing- no
subsidies

cluster 2 and 3: (1) high loss aversion parameters
(7.05 and 6.91, respectively), cluster 3: (2) more risk-
averse in gain

cluster 2 and 3: first and second-ranking of the
number of installed double-glazing cluster 2:
highest income, house value cluster 3: highest
house value

cluster 8: (1) highest value of 0<b<1 proposed by
[71]. (2) lowest d, i.e. highly concerned about small
probabilities of loss cluster 6: (1) highest loss
aversion parameter = 5.73, (2) lowest value of
d=0.23, i.e. highly concerned about small probabili-
ties of losses

the highest number of installed
double- glazing, highest income
and house values
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Table 18
Behavioural interventions using the identified cognitive biases.

Cognitive bias Behavioral interventions

Loss aversion The loss-averse people were recognised in different clusters. Furthermore, the groups of homeowners with the most installed
energy saving measures were often risk seekers in loss. For these people who are highly loss-averse, highlighting the cost/loss
reductions from using energy retrofits can be more effective than emphasising the benefits of energy saving measures, as also
mentioned by Frederiks et al. [25].

Risk averse in gain The majority of homeowners were risk-averse in gain. That is, they would rather engage in a risky behaviour to avoid certain loss
than to engage in a similarly risky behaviour to obtain a comparable gain [71]. Promoting low-risk and secure energy retrofit might
be more persuasive for risk-averse homeowners [25].

Social influence Multi-family dwellings often invest less compared to single-family dwellings. This might be due to barriers preventing an
agreement among the homeowners for conducting energy retrofits. This group can be motivated by other people’s attitudes; for
instance, a trusted, well-informed neighbour can explain the benefits of energy efficiency retrofits to other neighbours successfully.
Furthermore, formulating energy retrofits as a socially desirable behaviour can increase the probability of other people conducting
retrofits. The importance of these behavioural interventions are specified by [24,25].
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the highest probability of relocation. The results remained the
same upon modifying the reference point. In this case, the
groups of people who invested more were extremely loss-
averse as well.

2. For double-glazing, the highly loss-averse people had invested
more in double-glazing than other groups. For cluster 8 of
energy module 2018, homeowners who invested the highest
amount in double-glazing were risk-seekers in loss and highly
concerned about the small probabilities of loss. These groups
always had high house values and were often the highest aver-
age income group. For instance, cluster 3 had the second high-
est house values. However, in terms of income, they were
ranked third.

6.3. Insights for behavioural interventions using the identified
cognitive biases

This study did not evaluate the impact of behavioural interven-
tion. However, based on the results, potential behavioural inter-
ventions can be identified. Table 17 presents the cognitive biases
in energy retrofit decisions regarding insulation and double-
glazing for homeowners. Using this table and the results of Sec-
tions 5.4.2 and 5.4.3., the identified cognitive biases and potential
behavioural interventions can be proposed as presented in
Table 18.
7. Conclusion and policy implications

The current study contributes to the identification of cognitive
biases in energy retrofits by developing a theoretical framework
and conducting empirical analyses of homeowners’ retrofit deci-
sions in the Netherlands. From the theoretical perspective, models
and approaches incorporating specific cognitive biases have been
presented, including prospect theory as proposed by Tversky and
Kahneman [71] (considering the cognitive biases of isolation effect,
certainty effect, endowment effect, and reflection effect); and the
theory of moral sentiments proposed by Smith [67] (social norm,
social approval and status). The study has also reviewed current
studies on cognitive biases to identify the main known cognitive
biases in the field of energy efficiency. The identified cognitive
biases include status quo bias/default setting, loss aversion, risk
aversion, availability bias, and sunk cost fallacy.

This study compared expected utility theory (EUT), which
assumes a rational decision-maker, to cumulative prospect theory
(CPT), which assumes the influence of risk and uncertainty, when
studying homeowners’ retrofit decisions. EUT as developed by
Von Neumann and Morgenstern [73] and CPT as proposed by Tver-
sky and Kahneman [71] were presented. For the empirical applica-
tion, CPT was applied for investigating cognitive biases in
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homeowners’ energy retrofits. These cognitive biases included:
(a) reference dependence/status quo bias/default setting (b) dimin-
ishing sensitivity/reflection effect/framing effect/certainty effect
(i.e. different behaviours for gains vs. losses), (c) loss aversion,
and (d) probability weighting. Furthermore, the cognitive biases
were investigated for four homogeneous groups of individuals, as
well as two types of energy retrofits, i.e. insulation and double-
glazing. The differences and similarities of cognitive biases for dif-
ferent groups were then evaluated. Finally, potential behavioural
interventions for each cluster of individuals biases were proposed.

Overall, there is evidence of reference dependency, reflection
effect, loss aversion, and probability weighting. CPT was consider-
ably better than EUT at predicting the energy efficiency decision
behaviours for four clusters and two types of energy retrofits (insu-
lation and double-glazing). Furthermore, changing the reference
points significantly influenced the parameter values of the proba-
bility weighting function (i.e. c and d). This indicates the impor-
tance of status quo bias in individuals’ decision-making. For the
reflection effect, individuals’ risk-seeking in losses and risk aver-
sion in gains were also identified as significant. Furthermore,
diminishing sensitivity in losses was less compared to gains, since
the average of b (for negative outcomes) was less than h (for pos-
itive outcomes). Based on CPT, people overweigh the small proba-
bility of both gains and losses. For this purpose, the corresponding
parameters of CPT were 0 < c; d 6 1. These ranges of parameter
values were estimated for four clusters of individuals. Finally, peo-
ple prevented losses significantly. The maximum loss aversion
parameter is equal to 9.54 for energy saving investment, which is
almost 5 times more than the estimated value by Tversky and Kah-
neman [71].

The groups with highest average income and house values in
the National Household Surveys of 2012 and 2018 showed highest
risk-seeking parameter for losses. These groups installed the high-
est number of insulation and overweighted the small probabilities
of losses. In data for both years, the youngest group of individuals
were among the least risk-averse in gains. However, the correlation
between age and installation of insulation is not clear. The average
income and house values are significantly more important in
determining the decision towards installing insulation. For
double-glazing, similar conclusions could be drawn using the
2012 and 2018 datasets (cluster 3 of 2012, cluster 6 of 2018).
The risk-seeker individuals for losses, who also overweighted the
small probabilities of losses/gains more than other groups,
installed more double-glazing compared to other groups (second-
ranking). In 2018 dataset, the cluster with the lowest amount of
installed double-glazing, showed less risk-seeking behaviours in
losses. Similar conclusions are achieved for the reference point
no-subsidies. Our findings show that cost/loss reductions for
installing energy retrofits can be more effective, compared to pro-
moting energy retrofits by their advantages and benefits.
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