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ABSTRACT
Alluvial stratigraphy builds up over geologic time under the complex interplay of exter-

nal climatic and tectonic forces and internal stochastic processes. This complexity makes it 
challenging to attribute alluvial stratigraphic changes to specific factors. Geological records 
indicate pronounced and persistent climatic changes during the Phanerozoic, while the ef-
fects of these changes on alluvial stratigraphy remain insufficiently documented. We provide 
evidence for 405 k.y. long-eccentricity climate forcing of alluvial stratigraphy in the lower 
Eocene Willwood Formation of the Bighorn Basin, Wyoming (USA). Two ∼90-m-thick inter-
vals, characterized by a relative paucity of sand, dominance of sinuous-river channels, and 
floodplain sediments with better-developed paleosols, coincide with eccentricity maxima as 
determined through integrated stratigraphic methods. These intervals are interspersed with 
three contrasting intervals, marked by relatively high sand content, prevalent braided-river 
channels, and less-developed paleosols, corresponding to eccentricity minima. A comprehen-
sive genetic model that integrates climate, source-to-sink system, and alluvial dynamics to 
explain these findings remains to be elucidated. Given the consistent presence of the 405 k.y. 
eccentricity cycle throughout Earth’s history, it is plausible to infer that its influence may be 
discernible across a wide array of alluvial stratigraphic records.

INTRODUCTION
Alluvial stratigraphy serves as a tangible 

archive of Earth’s history, shaped by dynamic 
and complicated processes (Hajek and Straub, 
2017). These processes encompass both internal 
river dynamics, such as channel migration and 
avulsion, and external environmental influences, 
including climate, tectonics, and eustasy (Blum 
and Törnqvist, 2000). Distinguishing between 
changes in alluvial stratigraphy caused by inher-
ent river behaviors and external forces is chal-
lenging due to their intertwined impacts. This 
complexity is amplified by the temporal and 
spatial variability of river systems, which may 
respond differently to similar external factors 
(Vandenberghe, 2001).

River styles reflect the quasi-equilibrium 
form of channels in response to water dis-

charge, sediment flux, and slope (Lyster et al., 
2022). The spectrum of river styles is broad, 
encompassing straight, sinuous, braided, and 
anastomosing rivers as end members, along with 
numerous intermediate forms (Church, 2006). 
Among these, braided and sinuous rivers are 
prevalent in current fluvial landscapes and allu-
vial stratigraphic records. These river styles are 
not mutually exclusive and can coexist within 
the same geographical region (Vandenberghe, 
2001). Transitions between the styles can occur 
in response to climatic changes (Gibling, 2006; 
Foreman et al., 2012), such as the transition from 
sinuous to braided rivers during the Permian–
Triassic mass extinction (e.g., Ward et al., 2000), 
and the frequent river style changes in response 
to Holocene glacial-interglacial cycles (Huis-
ink, 2000).

Earth’s orbital cycles significantly influ-
ence climate, leaving their imprint on alluvial 
records (Fielding and Webb, 1996; Westerhold 
et al., 2020; Opluštil et al., 2022). The 405 k.y. 

eccentricity cycle has been correlated with sig-
nificant fluvial changes, including alternations 
in fluvial progradation and retrogradation (Olsen 
and Kent, 1996; Smith et al., 2014), incision and 
aggradation (Vandenberghe, 2003; Noorbergen 
et al., 2020), and high and low amalgamation 
(Sharma et al., 2023). Despite these advances, 
the extent of astronomical climate control on 
alluvial stratigraphy remains under-explored and 
possibly under-appreciated.

We characterize the alluvial architecture 
of a 300-m-thick stratigraphic succession of 
excellent exposures of the lower Eocene Will-
wood Formation in the northern Bighorn Basin, 
Wyoming (United States). We built a compos-
ite stratigraphic framework based on flood-
plain aggradation cycles defined by Wang et al. 
(2023), which we dated by integrated strati-
graphic data and compared to an astronomical 
target curve. The analysis shows and helps to 
explain variations in river styles and associated 
floodplain sediments. Lastly, we contextualize 
these changes in alluvial architecture within 
the broader scope of extrinsic climate forcing, 
intrinsic dynamics, and their interactions.

OUTCROP DATA SET AND METHODS
Study Area and Succession

We studied the Eocene Willwood Forma-
tion in the Deer Creek area of the McCullough 
Peaks in the northern Bighorn Basin, Wyoming 
(Fig. 1). The Bighorn Basin is a Laramide inter-
montane basin, with predominant northward 
drainage during the early Eocene (Owen et al., 
2017; Wang et al., 2022) (Fig. 1). It has been 
reconstructed as a warm-temperate to subtropi-
cal environment with seasonal precipitation on 
a landscape resembling modern-day savannahs, 
where broad open areas are interspersed with 
forest-bordered streams (van Houten, 1944).
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Floodplain Deposit Characterization and 
Stratigraphic Framework

We determined color reflectance (a*) by 
measuring matrix color in freshly broken rocks 
at 10 cm vertical resolution from four sections: 
Deer Creek Amphitheater (DCA) (Abels et al., 
2013), Purple Butte (PB), Upper Deer Creek 
(UDC), and Creek Star Hill (CSH) (Fig. 2A). 
A measure for the degree of soil development 
was developed by Abels et al. (2013) for these 
series, correlating soil B (subsoil) horizon red-
ness with pedogenesis intensity and identifying 
a* > 7 as indicative of significant pedogenesis. 
We used this threshold to identify well-devel-
oped paleosols.

A composite two-dimensional stratigraphic 
section was created using floodplain aggrada-
tion cycles identified by Wang et al. (2023). 
These cycles feature alternations between two 
distinct units: (1) overbank deposits with sub-
stantial pedogenic influence; and (2) avulsion 
belt deposits that lack extensive pedogenic influ-
ence (Abels et al., 2013) (Fig. 2B). These cycles 
are postulated to have formed during alternating 
phases of channel stability and instability (Abels 
et al., 2013; Wang et al., 2021) resulting from 
precession-scale climate change.

Sandstone Bodies and Their Stratigraphic 
Locations

Sandstone bodies were documented by 
Wang et al. (2022), including both field descrip-
tions (n = 66; Fig. 2A) and photogrammetric 
images (n = 19). For simplicity, each sand-
stone body was interpreted as one of two end-
member river styles: braided and sinuous rivers 
(Fig. 2C). Sandstone bodies showing extensive 
channel features (e.g., crossbedding, lateral 
accretion surfaces) were mapped in the photo-
grammetric model. Sandstone body width data 
were corrected for their inclination relative to 

the average flow direction of 3° east of north 
(Wang et al., 2022).

Sandstone bodies were stratigraphically 
positioned by correlating them with the nearest 
laterally adjacent paleosol layer that is tied into 
the floodplain stratigraphic framework. When 
the intersection of a channel sandstone with a 
paleosol layer was not evident, its elevation was 
projected using data from the photogrammetric 
model.

Age Control
Age control is achieved by integrated con-

straints from biostratigraphy, magnetostratig-
raphy, and stable carbon isotope stratigraphy, 
which demonstrates the quasi-stable sedimen-
tation rates in the northern Bighorn Basin on 
100 k.y. time scales (Abels et al., 2012, 2016). 
The δ13C record in pedogenic carbonate (Abels 
et al., 2012, 2016; Fig. 3C) has been correlated 
with the deep marine record at Ocean Drilling 
Program Site 1262 (Walvis Ridge, southern 
Atlantic Ocean; Zachos et al., 2010; Fig. 3B), 
revealing a high similarity that indicates both 
records accurately capture the carbon isotope 
signature of the global ocean–atmosphere res-
ervoir (Abels et  al., 2012). This correlation 
allows for importing the marine age model 
into the Bighorn alluvial stratigraphy, further 
enabling correlation to the normalized eccen-
tricity curve constructed by Zeebe and Lourens 
(2019) (Fig. 3A).

RESULTS
There are two types of stratigraphic intervals: 

one characterized by predominantly (>60%) 
sinuous river styles and redder floodplain sedi-
ments (i.e., the proportion of a* > 7 is higher than 
20%); the other featuring predominantly braided 
river styles coupled with less-red sediment (i.e., 
the proportion of a* > 7 is less than 20%).

Interval I has a limited distribution in the pho-
togrammetric model, and it includes three flood-
plain aggradation cycles (cycles A to C; Fig. 3E), 
totaling 18 m. Of three sandstone bodies, two are 
interpreted as braided (Fig. 3), based on charac-
teristics of sandstone bodies and less-red sedi-
ment (i.e., the proportion of a* > 7 is 16%).

Interval II encompasses 12 floodplain aggra-
dation cycles (cycles D–O; Fig. 3E), totaling 
87 m. It includes 22 sinuous and 14 braided 
channel sandstone bodies, with average dimen-
sions of 299 m × 9.0 m and 165 m × 6.2 m, 
respectively (Fig. S2 in the Supplemental Mate-
rial1). Intensely red intervals (a* > 7) constitute 
22% of the total thickness (Fig. 4B).

Interval III includes 11 floodplain aggra-
dation cycles (cycles Q–Z), totaling 73 m. 
It features 24 braided and 4 sinuous channel 
sandstone bodies, with average dimensions of 
204 m × 6.2 m and 106 m × 9.0 m, respectively 
(Fig. S2). Floodplain deposits are overall less 
red, with intensely red intervals constituting 
17% of the total thickness (Fig. 4).

Interval IV (cycles P1–P13), totaling 90 m 
and with Eocene Thermal Maximum 2 (ETM2) 
and H2 hyperthermals (Abels et al., 2016), dis-
plays a balanced distribution of river styles (10 
sinuous, 8 braided) but leans toward sinuous 
dominance compared to Interval III. Intensely 
red intervals (a* > 7) constitute 27% of the total 
thickness, similar to Interval II.

Interval V, stratigraphically above Interval 
IV, lacks quantitative data in the current study. 
 Qualitative observations in the field and pho-

1Supplemental Material. Figure S1 (UAV-based pho-
togrammetric model in the LIME software) and Figure 
S2 (comparison of channelized sandstone width and 
depth in Intervals II and III exhibiting varying domi-
nance of river styles). Please visit https://doi .org /10 .1130 
/GEOL .S.25683864 to access the supplemental mate-
rial; contact editing@geosociety .org with any questions.

Figure 1. (A) Geographic 
location of the study area, 
McCullough Peaks, and 
the provenances of the 
Bighorn Basin, Wyoming, 
USA. Paleocurrent data 
are from Owen et al. (2017). 
Fm—Formation; Mtns—
Mountains. (B) δ13Cbulk data 
from Zachos et al. (2010). 
ETM—Eocene Thermal 
Maximum; PETM—Paleo-
cene-Eocene Thermal 
Maximum. H, I, J, K, and 
X are warming events. 
C24n.1n, C24n.3n, and 
C24r are magnetic polar-
ity chrons.
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togrammetric models suggest that Interval V 
resembles Interval III, where braided river styles 
and less-red floodplain deposits are predominant 
(Fig. 2B).

As described above, the stratigraphic section 
of the Bighorn Basin (Fig. 3F) was correlated 
with the normalized eccentricity curve (Zeebe 
and Lourens, 2019; Fig. 3A) using carbon iso-

tope excursions as tie points (Figs. 3B and 3C). 
Eccentricity maxima were separated from min-
ima by the mean normalized eccentricity. The 
correlation suggests that Intervals II and IV cor-
respond closely to eccentricity maxima, while 
Intervals I, III, and V coincide with eccentricity 
minima.

DISCUSSION AND CONCLUSIONS
Long-Eccentricity Control on Alluvial 
Architecture

Long-eccentricity minima align with domi-
nant braided channels, less-developed paleosols, 
and higher sand content, while long-eccentricity 
maxima are associated with prevalent sinuous 
channels, more-developed paleosols, and lower 
sand content. Classifying river styles introduces 
an element of subjectivity (Fielding et al., 2018; 
Lyster et al., 2022), and some of the identified 
river styles may represent transitional states 
between sinuous and braided categories (Church, 
2006). This could be complicated by the coexis-
tence of sinuous and braided river styles in both 
present-day landscapes and the geologic record 
(Vandenberghe, 2001). Therefore, our approach 
attributing sandstone bodies to one or the other 
of two formative river styles may be simplistic. 
Nonetheless, the predominance of one river style 
over the other within each interval provides a 
compelling link between astronomical climate 
forcing and alluvial stratigraphy.

This temporal overlap complicates the direct 
interpretation of the impact of eccentricity on 
alluvial stratigraphy in Interval IV, as part of 
the observed changes may be attributable to the 
hyperthermal events occurring in that interval. 
The Paleocene–Eocene Thermal Maximum 
(PETM), having a magnitude twice that of the 
ETM2 (Abels et al., 2012), is linked with expan-
sion and coarsening of alluvial facies (Fore-
man et al., 2012; Pujalte et al., 2015), a shift to 
more red-purple soil hues, and overall stronger 
pedogenesis in the Bighorn Basin (Kraus et al., 
2015). The PETM is characterized by increased 
runoff variability, leading to a predominance 
of braided-river patterns in the Bighorn Basin 
(Foreman, 2014). A similar, although less pro-
nounced, effect on river styles is likely to occur 
during ETM2 and H2 events, potentially result-
ing in a greater prevalence of braided over sinu-
ous river styles in Interval IV, as compared to the 
preceding eccentricity maximum in Interval II. 
However, the specific impact of ETM2 on allu-
vial systems remains insufficiently understood 
(Abels et al., 2012), leaving this hypothesis open 
for further investigation.

Environmental Interpretation of Observed 
Alluvial Stratigraphic Changes

On the Willwood Formation floodplains, 
a higher degree of soil B redness has been 
interpreted to indicate stronger pedogenesis 
(Abels et al., 2013), which could be driven 

A

B

C

Figure 2. Unmanned aerial vehicle–based photogrammetric model and field photographs 
of the study area in the Bighorn Basin, Wyoming, USA (see Fig. 1). (A) Locations of field-
documented sandstones in photogrammetric panels. The red dashed line indicates how the 
composite section of Figure 3F was constructed. Trenched sections (white bars) include Deer 
Creek Amphitheater (DCA), Purple Butte (PB), Upper Deer Creek (UDC), and Creek Star Hill 
(CSH). (B) Field photograph showing the floodplain-rich nature of the studied stratigraphy. (C) 
Field photograph comparing sinuous and braided channel deposits viewed from a distance. 
Locations of panels B and C are approximated in panel A.
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by prolonged periods of oxidation, increased 
soil turnover, and sediment type conducive to 
enhanced drainage (Kraus and Aslan, 1993; 
Abels et al., 2013). Age control indicates over-
all constant sedimentation rates over the stud-
ied stratigraphy (Abels et al., 2016), and thus 
changing aggradation rates are not assumed to 
be the cause of changes in pedogenic inten-
sity. Therefore, enhanced soil development 
may result from augmented channel stability 
that results in prolonged floodplain exposure to 

pedogenesis, and from climatic conditions more 
suitable for paleosol development.

Mechanisms of Eccentricity Forcing of 
Alluvial Stratigraphy

In the Bighorn Basin, quasi-constant subsid-
ence and substantial geographical separation from 
the paleo-shoreline have been reported (Foreman, 
2014; Abels et al., 2016). Therefore, the observed 
alluvial stratigraphic change could result from cli-
matic variations affecting both upstream areas and 

the basin itself, which in turn influence water dis-
charge, sediment flux, and vegetation cover (Van-
denberghe, 2003; Kleinhans and van den Berg, 
2011; Gibling and Davies, 2012). Walters et al. 
(2023) reported an increase in summer moisture 
and annual precipitation in southern Wyoming 
during periods termed OrbMaxN, which corre-
sponds to periods of maximal eccentricity and 
obliquity and minimal precession. Their climate 
modeling suggests these trends are particularly 
valid for the Cordilleran uplift region, with simi-

A B C D E F

Figure 3. (A) Normalized eccentricity curve of Zeebe and Lourens (2019). ETM—Eocene Thermal Maximum; H2—hyperthermal event. (B) Stable 
carbon isotope stratigraphy from Ocean Drilling Program site 1262 (Walvis Ridge, southern Atlantic Ocean) of Zachos et al. (2010). (C) Stable 
carbon isotope stratigraphy from the Bighorn Basin (Wyoming, USA) of Abels et al. (2016). (D) Redness color reflectance record (data from 
Abels et al., 2013, 2016). (E) Notations for identified floodplain aggradation cycles from Wang et al. (2023). (F) Proportionally scaled sandstone 
bodies within the stratigraphic framework (see legend for scale).
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lar trends extending northward to the Bighorn 
Basin area. Consequently, eccentricity maxima 
in the Bighorn Basin are likely characterized by 
wetter conditions, and they are shown to produce 
predominant sinuous channels, more-developed 
paleosols, and lower sand content.

Building upon these past findings of climate 
modeling, we briefly explore the link between the 
long eccentricity-scale climatic variability and 
the observed stratigraphy, while acknowledging 
that this analysis is not exclusive. Specifically, 
the increased moisture levels during eccentricity 
maxima are posited to enhance vegetation den-
sity within both the catchment and basin. Such 
denser vegetation cover could diminish sediment 
transport and increase bank cohesion, thereby 
favoring sinuous channel formation and promot-
ing paleosol development. Conversely, reduced 
vegetation during drier periods associated with 
eccentricity minima could lead to increased sedi-
ment fluxes and decreased bank stability, favor-
ing braided channel formation and constraining 
paleosol development. This interpretation aligns 
with the eccentricity-driven landscape destabili-
zation phases described by Smith et al. (2014). 
Our findings contribute to an improved under-
standing of how long-term climatic cycles may 
influence water discharge, sediment supply, and 
vegetation, thereby shaping alluvial stratigraphy. 
This improved understanding is vital for recon-
structing past climate and predicting future land-
scape evolution.
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