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Adaptive Parameterization for Solving
of Thermal/Compositional Nonlinear
Flow and Transport With Buoyancy

Mark Khait, Delft University of Technology, and
Denis Voskov, Delft University of Technology and Stanford University

Summary

The nonlinear nature of flow and transport in porous media requires a linearization of the governing numerical-model equations. We
propose a new linearization approach and apply it to complex thermal/compositional problems. The key idea of the approach is the
transformation of discretized mass- and energy-conservation equations to an operator form with separate space-dependent and state-
dependent components. The state-dependent operators are parameterized using a uniformly distributed mesh in parameter space. Multi-
linear interpolation is used during simulation for a continuous reconstruction of state-dependent operators that are used in the assembly
of the Jacobian and residual of the nonlinear problem. This approach approximates exact physics of a simulation problem, which is sim-
ilar to an approximate representation of space and time discretization performed in conventional simulation. Maintaining control of the
error in approximate physics, we perform an adaptive parameterization to improve the performance and flexibility of the method. In
addition, we extend the method to compositional problems with buoyancy. We demonstrate the robustness and convergence of the
approach using problems of practical interest.

Introduction

Numerical simulations are essential for the modern development of subsurface reservoirs (Aziz and Settari 1979). They are widely used
for the evaluation of oil-recovery efficiency, performance analysis, and various optimization problems. Because of the complexity of
underlying physical processes and considerable uncertainties in the geological representation of reservoirs, there is a persistent demand
for more-accurate models. To increase the accuracy of a model, one can apply a more-refined computational grid in space or time, or
use a more-detailed description of the fluids, such as in a thermal/compositional model. However, an improvement in the accuracy of
numerical models is usually counterbalanced by a reduction in the overall performance of simulation. In addition, both space and time
approximations introduce nonlinearity to the system of governing equations that needs to be solved numerically.

After the discretization stage is complete, a nonlinear system needs to be linearized. Usually, linearization is made using a Newton-
based method, which demands an assembly of the Jacobian and the residual for the combined system of equations. Depending on the for-
mulation, different types of nonlinear unknowns and strategies can be used to perform the nonlinear update (Aziz and Wong 1989). The
most frequently used approaches for reservoir simulation are natural (Coats 1980) and molar formulations (Acs et al. 1985; Collins et al.
1992). Usually, the natural formulation in combination with different bypassing strategies for a stability test (Rasmussen et al. 2006;
Voskov and Tchelepi 2009) performs better in immiscible gas displacement, whereas the molar formulation does better for miscible gas
injection (Voskov and Tchelepi 2012; Zaydullin et al. 2013). It was shown recently that some specific treatments on phase appearance or
disappearance may help to improve the nonlinear behavior of the natural formulation in the miscible regimes (Cao et al. 2017).

Once the linear system with the Jacobian and residual is constructed, it needs to be solved. Because the dimensionality of a typical
reservoir-simulation problem is rather high, iterative linear solvers are usually used with effective preconditioning (e.g., two-stage pre-
conditioning using constrained pressure residual) (Wallis et al. 1985). Once the solution to the linear system with predefined tolerance
is found, we need to update the nonlinear unknowns and repeat the nonlinear iteration. The nonlinear solution may require several non-
linear iterations to converge, depending on the nonlinearity of a problem. The number of nonlinear iterations can be sufficiently reduced
by using advanced nonlinear solvers. For example, the natural formulation can benefit from the nonlinear solvers that include an inflec-
tion-point correction (Jenny et al. 2009), specifically designed for transport problems. The possibility to apply a direct correction to a
saturation in the nonlinear loop helps to design more-advanced strategies, such as the trust-region correction (Wang and Tchelepi
2013). In addition, the extension of the natural formulation can help to avoid variable substitution and apply corrections to discontinu-
ous changes in the derivative usually related to phase appearance and disappearance (Voskov 2012).

Although different advanced nonlinear solvers were developed for the natural formulation, there is a lack of advanced strategies for
the molar formulation. A version of a trust-region correction was developed for molar formulation (Voskov and Tchelepi 2011), but it
still lacks robustness compared with the natural formulation. This can be explained by the more-complicated nonlinear update proce-
dure, which requires performing an exact flash for every block at a two-phase state in each nonlinear iteration. This problem can be
avoided by using parameterization in compositional space instead. A strategy derived from the compositional-space-parameterization
idea (Voskov and Tchelepi 2009), was designed by Zaydullin et al. (2013). The nonlinear solver dependent on a special-point correction
along the fractional-flow curve shows robustness and efficiency (Zaydullin et al. 2013). However, this approach requires reformulation
of a nonlinear problem in a tie-line space, and formally cannot be applied to the conventional molar formulation.

Another approach for the molar formulation, called operator-based linearization (OBL), was proposed by Voskov (2017). It could
be seen as an extension of the idea to abstract the representation of properties from the governing equations, suggested by Zaydullin
et al. (2013) and Haugen and Beckner (2015). In the OBL approach, the parameterization is performed dependent on the conventional
molar variables. A similar approach can be designed for the natural formulation, but it requires dealing with interpolation between
regions with different numbers of variables. In the OBL approach, all properties involved in the governing equations are lumped in a
few operators, which are parameterized in the parameter space of the simulation problem either in advance or adaptively during the
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simulation process. The control on the size of parameterization hypervolume helps to preserve the balance between the accuracy of
approximation and the performance of the nonlinear solver (Khait and Voskov 2016). In the current version of the OBL approach, we
do not reduce the number of unknowns and only use the fact that the physical description (i.e., fluid properties) is represented using
piecewise linear interpolation.

In this paper, we show the applicability of the OBL approach for general-purpose simulation using the thermal/compositional
description. We demonstrate the numerical convergence of the physical solution using the OBL technique for problems with a large
number of components (up to six). In addition, we extend the method for cases with buoyancy. We describe an approach for the robust
treatment of gravity forces and demonstrate its applicability for challenging problems, including a full-field example.

Governing Equations and Nonlinear Formulation

In this section, we briefly consider the governing equations and nonlinear formulation for a general-purpose thermal/compositional sim-
ulator. These equations describe the conservation of mass and energy in a system with 7, phases and n. components:

a n, ‘ n, n, }
By <¢Zxc1,pps,,) + dlvz,vc,,ppﬁ + qu,p,,qp =0, =1, My (1)
p=1 p=1

p=1

a n,, ) ﬂp ] n,, ~
gy [(bz ppspUp + (1 = $)U, | + leZ hpp,ity + div(kVT) 4 Zh,,ppqp =0, (2)
p=1 p=1

p=1

All terms of the system in Eqgs. 1 and 2, written for an arbitrary control volume, can be characterized as functions of the spatially dis-
tributed properties—& of control volume, physical state @ of the control volume (and that of its neighbors), and well-control variable
u—as follows: ¢ (&, ) is effective rock porosity; x,(®) is component mole fraction in a phase; p,(®) is phase molar density; s,(®) is
phase saturation; 1, (&, ®) is phase velocity; g, (&, @, u) is phase influx/outflux; U, (e) is phase internal energy; U, (&, @) is rock internal
energy; /i, () is phase enthalpy; and (&, @) is thermal conduction.

Phase-flow velocity is assumed to follow Darcy’s law as

Fj) = f[K)J(Vp] - (SJVD)], .................................................................. (3)

where K(§) is the effective permeability tensor; 4;(®) is phase mobility; p;(®) is phase pressure; J;(®) is the vertical pressure gradient;
and D (&) is the vertical-depth vector (up/down-oriented).

Egs. 1 and 2 are approximated in space using the two-point flux approximation (TPFA) and in time using the fully implicit method.
This introduces strong nonlinearity into the system of governing equations. Another effect to the nonlinearity of the problem is related to
the closure assumption of instantaneous thermodynamic equilibrium. To satisfy this assumption, one needs to define the number of coex-
isting phases and compute the phase mole fractions x,,, and phase saturations s, using the masses of components from the multiphase

flash (Iranshahr et al. 2013). In our formulation, we use the overall composition of each component z, = prq, PpSp / Zp ppsp and pres-

sure p as nonlinear unknowns following the overall molar-formulation approach (Collins et al. 1992; Voskov and Tchelepi 2012).

After the multiphase flash determines all related properties, one needs to linearize the problem, which requires the determination of all
partial derivatives with respect to nonlinear unknowns and the assembly of the Jacobian and residuals. After the linearization step, we apply
a version of the Newton-Raphson method, where the following linear system of equations should be solved at each nonlinear iteration:

J@) (@ —of) = —r(0f), (4)

where J(@y) and r(e;) are the Jacobian and residual defined at the nonlinear iteration .

OBL Approach
In this section, we briefly describe the application of the OBL approach to the general-purpose thermal/compositional problem.

Transformation of Governing Equations. To apply the OBL approach, the discretized version of the governing equations, Egs. 1 and
2, should be rewritten to represent each term as a product of state-dependent and space-dependent operators (Khait and Voskov 2016).
In addition, we assume that the porosity is a pseudophysical-state variable (¢ € ®).

The resulting mass-conservation equation, written for a control volume i, is

a(&)[o(0) — oe(w,)] + ;L(:) b(E, @) () + 0 (B, 0,u) =0, €= 1,000 My e (5)
where

A(E) = PoiVis e e (6)

2(@) = [1+ ¢, (pi — pref)}i:xc,,?,-pms,,,,, ......................................................... (7)

B(E,®) = ATy (D) = Pi)s «  + e oo e e e e 8)

B.(®) = Iixﬁ,,‘,,pp,,,zp,,-j, .................................................................... 9)

XepiPpitpi L pi > p

where X iip, idpij = : S
P iiPpi i {xl.,,ﬁ,-pp_/w,,,_,- otherwise
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In Eqgs. 5 through 9, @ and ®, are nonlinear unknowns on the current and previous timestep, respectively; L(i) is the set of neighbors
of the control volume /; and 0.(&, ®,u) is the influx/outflux term. In addition, ¢, V;, and p;, are initial porosity, volume, and pressure
in the control volume i, respectively, while x,;, p,; and 4,; are the component ¢ mole fraction, density, and mobility of a phase p in
the control volume i. In addition, ¢, is rock compressibility, p,.¢ is the reference pressure, and I'; is a constant geometrical part of trans-
missibility, combining permeabilities and geometries of neighboring control volumes i and j. For simplicity, we neglect both gravity
and capillary forces here, which makes the phase potential differences equal across all phases at any interface. We will describe the
extended OBL approach with buoyancy later in this paper.

The modified energy conservation becomes

a0 (&)[oe (@) = (@) + D be(&,0)B,(0) + Y co(§,0)7,(0) +0.(&0,u) =0, ... (10)
JEL(i) jeL(i)
where
GeE) = Vi e (11)

%e(®) = ¢; (Z PpiSpiUpi — U,.> U, e (12)
p=1

De(B,0) = D&, M), + o (13)
"p h“'p i)vp,' lfp, > Pj
B.(®) = hp iiPy iitpis  Where hy ip iidy i = PP .
¢ ; PAEPGTPY PAEPYTPY hpjp, idpj Otherwise, ... (14)
CeB@) = AT —T5), « oo oo e e (15)
i Syl AfT; > T]

v.(®@) = ¢ Spiikpij — Kr | +%r, wheres;-;c;-:{ P .

(@) (,;21 P ') ' P Spikpj otherwise. .. ... ... ... ... ... ... ... (16)

In Egs. 10 through 16, 0. (&, ®,u) is energy influx/outflux; T} is the temperature in the control volume i; and U, ;, h,,;, and x,,; are in-
ternal energy, enthalpy, and thermal conduction of phase p in the control volume i, respectively. We also assume that rock internal
energy U, and rock thermal conduction x, are defined homogeneously for the whole reservoir.

This representation allows us to identify and distinguish the physical-state dependent operators—u,., f3., &, f., and y,—in both the
mass-conservation (Eq. 1) and energy-conservation (Eq. 2) equations. The source/sink terms can also be processed in a similar manner,
but in this work, we apply a conventional treatment for these operators.

Adaptive Parameterization and Coarsening. The proposed approach simplifies the description of fluid and rock properties by build-
ing approximation interpolants for the operators o, f3., o, ., and . within the parameter space of a simulation problem. For a general
thermal/compositional problem with 7. components, the method requires (27, + 3) operators, which depend on N = (n. + 1) independ-
ent variables {p,T,zy,...,z,,—1}. The values of the operators are fully determined by this set. The pressure and temperature ranges in
the compositional parameter space can usually be determined by the conditions, assigned to wells, whereas the overall mole fraction is
naturally bounded by the interval (0,1). As mentioned previously, we add the porosity as a pseudophysical-state variable with the corre-
sponding range, as proposed by Khait and Voskov (2016).

Next, we parameterize the interval of each state variable using, for simplicity, the same number n=n; = ... = ny of uniformly dis-
tributed supporting points on the intervals of parameters. This results in a set of supporting points in N-dimensional space
o" = (p", T2, .., 27 ") sy, .oyl 2 = 1,...,n, which can be interpreted as a discrete representation of the parameter space
in the simulation. At the preprocessing stage, or adaptively in the course of simulation, the operators f= {o, f3, %, f., 7.} are evaluated
at every supporting point in the discrete parameter space and stored in multidimensional tables F" = {A”, B", A" B" T""}. During the
simulation, we interpolate the values and evaluate the partial derivatives of all state-dependent operators f for each gridblock, using sup-
porting points in created tables.

The details of the partial-derivative evaluation can be found in Khait and Voskov (2016).

This provides a continuous description taken from the interpolation operator, the accuracy of which is controlled by the resolution
of the discretization in parameter space. For an isothermal compositional problem, the parameter space is defined by {p,zi, ...,z 1},
while in thermal simulation, an extended set {p, T, ¢, z1, ...,z,.—1} is used. This representation significantly simplifies the implementa-
tion of general-purpose simulation frameworks. Instead of keeping track of each property and its derivatives with respect to nonlinear
unknowns, we can construct an algebraic system of equations with abstract algebraic operators representing the complex physics. The
performance of this formulation benefits from the fact that all expensive evaluations can be performed using a limited number of sup-
porting points. Finally, the performance of the nonlinear solver can be improved because the Jacobian is constructed using a combina-
tion of piecewise linear operators, directly dependent on the nonlinear unknowns, as shown in Voskov (2017). Note that this approach
is different from the numerical derivatives often used in reservoir simulation (CMG 2009; Xu et al. 2011) because the nonlinear physics
are fully defined by interpolated properties f= {a,, ., %, Pe, 7.} and are consistent with their derivatives.

The total size of the interpolation tables is defined by the number of dimensions N and the number of interpolation points 7 as 1.
Although the dimensionality depends on the number of components and thermal assumptions in a problem of interest, the number of
interpolation points corresponds to the desired accuracy of the physical representation. Therefore, parameterization at the preprocessing
stage would require a substantial amount of memory for the multicomponent systems modeled at a high interpolation precision. Further-
more, the necessity of searching supporting points (i.e., operator values) for every interpolation in a huge array of data affects the per-
formance of the simulation. Notice that because of the hyperbolic nature of some variables (e.g., overall compositions), the vast
majority of parameter space remains unused (Voskov and Tchelepi 2009; Zaydullin et al. 2013).
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The adaptive parameterization approach avoids these disadvantages by removing the need for the entire preprocessing stage
(Zaydullin et al. 2013). In this approach, supporting points are computed only when they are required by the current physical state of a
control volume. The obtained operator values are then used in the interpolation process and stored for future use. Consequently, the
method adds a new supporting point and computes appropriate operators, if the supporting point was not evaluated before, as shown in
Fig. 1. On the left, an example of 2D parameter space is shown at the moment, when simulation occupies Rectangle 2, whereas Rectan-
gle 1 was already used. Each rectangle has four vertices (for n-dimensional space, there will be hyperrectangles, or n-orthotopes, with
2" vertices each), depicted as colored circles. They represent supporting points (i.e., operator values) required to perform interpolation
within the rectangle. Because rectangles share vertices, and the simulation process is likely to spread continuously over parameter
space, in the most cases some operator values can be reused.

v

Hyperrectangle

storage
1 2

Vertex storage

Fig. 1—Representation of adaptive OBL storage.

The current implementation of adaptive parameterization includes two storages—hyperrectangle and vertex—which are associative
containers of key-value(s) pairs with unique hash-based keys. This choice was made to ensure rapid data access for high-dimensional
cases. In the hyperrectangle storage, all vertices of each occupied hyperrectangle are kept together to maximize interpolation perform-
ance. The vertex storage is used when a new hyperrectangle is requested by simulation process. If the new hyperrectangle shares some
vertices with already-visited hyperrectangles, then those vertices will be simply copied to the first storage, as shown by black arrows on
the right in Fig. 1. Missing supporting points will be calculated and added to both storages (shown with green arrows). This approach is
crucial in high-dimensional cases when each vertex is shared among many hyperrectangles.

In the end of the simulation, the resulting sparse multidimensional table of stored operators represents an actual subspace of physical
parameters being used in the process. For example, Fig. 2 shows an adaptive parameterization in the parameter space for a black-oil
simulation at two different timesteps (at the beginning and the end of simulation). The adaptive approach reproduces the exact numeri-
cal results of the preprocessing method used in Khait and Voskov (2016) with greatly improved overall performance, especially for
multicomponent systems.

350 350
< 800 j < 300
% 250 % 250
5 200 i 5 200
7] h 7]
8 150 K 8 150
a 100 b, - 100
50 3 50
1 : ; 1 :
0.8 AN e e 0.8 3 _ )
06 o == =7 08 09 o 04 B 62 08 OF
- - — 0.4 05 0.6 - - 0.4 05 0.6
o2 04 0203 e 02 01 0203
Gas Composition b Oil Composition Gas Composition . Oil Composition
After 10 days of simulation After 1,900 days of simulation

Fig. 2—Adaptive parameterization in the OBL approach for black-oil physical kernel: after 10 days of simulation; after 1,900 days
of simulation.

The Performance of the OBL Approach

In this section, we present the results of modeling with the OBL approach, implemented in the Automatic Differentiation General Pur-
pose Research Simulator (ADGPRS) (Voskov and Tchelepi 2012; Zaydullin et al. 2014). A performance study and an error analysis are
provided for different resolutions of the physical parameter space, using the results of the conventional approach as a reference solution.
The improvement in the performance of OBL-based simulations is achieved by a smaller number of nonlinear iterations, the absence of
iterative phase-behavior computations in OBL method, and avoidance of derivative computations in the Automatic Differentiation
Expression Templates Library (ADETL) (Younis 2011), which is the underlying automatic differentiation library used by ADGPRS for
construction and assembly of the Jacobian. However, the necessity of artificial-data injection (values and derivatives obtained by inter-
polation) back to automatic-differentiation-based data structures negatively affects the performance. That can be avoided if a standalone
simulator is implemented entirely from the OBL perspective, as shown by Khait et al. (2017)

For all simulations, we used the same discretization operators (Eqs. 6 and 8) derived from the seventh layer of the SPE10 model (Christie
and Blunt 2001) shown in Fig. 3. An injection well is placed in the middle of the reservoir, with four producers set at the corners. We
applied TPFA discretization and coupled this model with different physical kernels to demonstrate the applicability of the OBL method for
a general-purpose simulation.

Isothermal Black-Oil Kernel. Here, we used a standard black-oil model, where only the gas component can dissolve in the oil phase
and most of the properties are described as table-based correlations. The water-injection well operated with bottomhole-pressure (BHP)
control at a pressure P; =350 bar, and the producer well operated at P, = 270 bar for the first 2,000 days and then switched to P, =170
bar for the rest of simulation. The reservoir was initialized uniformly with pressure Py =300 bar, water saturation S,, = 0.2, gas satura-
tion S, =0, and bubblepoint pressure Py, =270 bar. All simulations were run for 6,000 days with a maximum timestep of Ar=10
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days, which corresponds to average Courant—Friedrichs—Lewy (CFL) condition = 5.3. The pressure/volume/temperature properties and
relative permeabilities were used from the SPEO test case (Killough 1995).

PROD1

PROD2

PROD3

Cell Results:
PERMX
20000.000000
3000.000000
400.000000

60.000000
10.000000
2.000000
0.300000
0.050000
0.008185

z

Fig. 3—Reservoir-permeability map used for all simulations.

The obtained performance results are shown in Table 1. The resolution of parameter space, defined by the number of interpolation
points 7, is shown in the first column. The total number of nonlinear iterations for each test case is presented in the second column. The
next two columns show the error in pressure and compositions (average for all components). The next column shows the percentage of
points used for the adaptive parameterization of parameter space by the OBL approach. The next column reflects the central-process-
ing-unit (CPU) time required for a serial run on an Intel Xeon E5-1620 and 3.5-GHz processor. Finally, the last two columns show the
percentage of CPU time spent on generation and interpolation of all operators, respectively.

Resolution Iterations E, (%) E; (%) Space (%) CPU (seconds) Generation (%) Interpolation (%)
Standard 6,404 - - - 1,217.2 - -

64 4,206 1.12 2.60 1.7447 659.4 <0.1 19.7

32 3,544 1.60 3.18 3.8681 555.9 <0.1 19.7

16 3,303 1.69 4.09 9.3506 542.2 <0.1 18.8

8 2,916 2.26 7.53 22.5586 482.2 <0.1 18.8

Table 1—Results of black-oil simulation.

Table 1 demonstrates that a smaller number of interpolation points results in a simpler nonlinear system because it requires fewer
Newton iterations to be solved. Note that the number of Newton iterations performed in the OBL method is significantly lower than that
for the standard simulation. Based on this and other CPU improvements provided by the OBL approach (e.g., simplified Jacobian
assemble), the corresponding CPU time is significantly reduced compared with the conventional approach implemented in ADGPRS.
For a black-oil kernel, the generation stage is quite inexpensive and requires almost no extra time. The time spent on interpolation of
operators is almost independent of the resolution of parameterization space, and represents the time spent for complete Jacobian and re-
sidual assembly, including property and derivative evaluation.

In this test, the overall composition of the water component introduces the largest error with respect to the remaining unknowns.
Maps of water overall composition and distribution of errors (in %) after 6,000 days of the simulation are shown in Fig. 4. It is clear
that the error is distributed near the displacement front and for the finest resolution (n = 64) is significantly lower than typical time- and
space-truncation errors.

Isothermal Compositional Kernel. Next, we demonstrate an applicability of the OBL technique for an isothermal process of carbon
dioxide (CO,) and methane (CH,4) injection into an oil with composition from Orr et al. (1995). The initial oil was made of four compo-
nents, CO,, C;, C4, and Cyy, at corresponding compositions: 1% of CO,, 11% of CHy, 38% of n-butane, and 50% of decane. We
injected a mixture of 80% of CO, and 20% of C; at a BHP P; = 120 bar. The production wells operated at BHP P, = 60 bar. The initial
pressure was Po=90 bar and initial temperature was T, =80°C. The simulation period was 4,000 days with a maximum timestep
At=50 days, which corresponds to the average CFL =110. The description of phase behavior and properties dependent on the
Peng and Robinson (1976) equation of state and the Lohrenz-Bray-Clark correlations for viscosity (Lohrenz et al. 1964) was used in
this kernel.
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Fig. 4—Composition of water and error distribution for two OBL resolutions after 6,000 days of simulation: reference solution;
OBL error (n = 8) (%); OBL error (n = 64) (%).

Table 2 shows the main results of the isothermal/compositional simulation. The difference in the number of Newton iterations
between the standard and OBL simulations is fewer than in the previous case, but the trend is similar, with an exception for eight points
where the number of nonlinear iterations is slightly larger than for the previous resolution. This reflects the fact that the location of
interpolation-supporting points in the current version of the approach was blindly determined by uniform distribution without any anal-
ysis of nonlinearity.

Resolution Iterations E, (%) E; (%) Space (%) CPU (seconds) Generation (%) Interpolation (%)
Standard 626 - - - 562.2 - -

64 561 0.33 0.71 0.1262 152.6 11.6 20.3

32 531 0.34 1.00 0.4392 129.8 3.0 217

16 498 0.34 1.73 1.7006 119.5 0.8 22.0

8 509 0.54 3.96 7.4463 123.7 0.2 215

Table 2—Results of compositional (four-component) simulation.

At the same time, the performance of simulation with the OBL approach was improved even more significantly compared with the
conventional simulation than it was for the black-oil kernel. It can be explained by more-expensive phase behavior, usually required for
conventional compositional simulation, compared with black oil. Notice that these phase-behavior calculations are nearly completely
absent in the OBL approach, which explains an additional CPU gain. On the other hand, the interpolation kernel still performs effec-
tively (see the Generation and Interpolation columns of Table 2) because the dimension of parameter space is relatively small. In this
test, the overall composition of the CO, component generates the largest error. The distribution of CO, composition and error maps (in
%) after 2,000 days of the simulation are shown in Fig. 5. It is clear that the error is distributed near the displacement front and is signif-

icantly lower than typical time- and space-truncation error.
35 12
0.7
30 10
0.6
125
-8
20
-6
-15
0.3
> 0.2 10
' 0.1 5
0 0

0.4
Reference solution OBL error (n = 8) (%) OBL error (n = 64) (%)

IS

N

Fig. 5—Composition of CO, and error distribution for two OBL resolutions after 2,000 days of simulation: reference solution; OBL
error (n = 8) (%); OBL error (n = 64) (%).

To estimate the performance of the OBL approach for a system with a larger number of components, we ran a similar simulation
with six-component oil made of CO, (1%), C; (10%), C5 (9%), C5 (10%), C4 (15%), and Cyg (55%). The same mixture of CO, (80%)
and C; (20%) was used as an injection stream and the same timestep AT =50 days, which corresponds to average CFL = 139, was used
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in this case. The results of the simulation are presented in Table 3. Here, the performance of the OBL approach still improves compared
with the conventional technique, but the speedup is lower. This is because the performance of the OBL approach is directly dependent
on the performance of a piecewise multilinear interpolation, which becomes more expensive in the case of high-dimension parameter
space, as discussed in Weiser and Zarantonello (1988).

Resolution Iterations E, (%) E, (%) Space (%) CPU (seconds) Generation (%) Interpolation (%)
Standard 577 - - - 829.5 - -

64 466 0.31 0.91 0.0001 393.6 44.0 18.5

32 448 0.31 1.51 0.0017 249.2 15.0 27.4

16 431 0.35 3.02 0.0280 213.8 4.4 30.5

8 416 0.70 7.53 0.4761 202.6 1.0 31.2

Table 3—Results of compositional (six-component) simulation.

In Table 3, both the generation and interpolation times significantly increase compared with the previous (four-component) simula-
tions. Here, the generation of operator tables becomes the slowest procedure for a high-resolution case because of the larger dimension-
ality of parameterization space. In this case, it is more convenient to switch to the barycentric interpolation, which requires fewer
supporting points and was fully used in Zaydullin et al. (2013) for compositional simulation using tie-line space parameterization.
Another possibility is to improve the generation stage by optimizing flash calculations (Haugen and Beckner 2013). Still, the most ex-
pensive high-resolution OBL case performs more than two times faster than the conventional compositional approach implemented in
ADGPRS. The error distribution in this case is similar to that of a four-component-test case.

Thermal/Compositional Kernel. The next simulation model is related to a problem of a CH, coproduction from geothermal reser-
voirs. This problem has a thermal/compositional kernel with only two components, but it corresponds to the most nonlinear physics
among all examples. We used the same reservoir for this model and consider an initial composition of water (80 mol%) and CH, (20
mol%) at saturated conditions (p =60 bar, T=210°C) close to the superheated regime. The well in the middle injects cold water
(T =35°C), triggering the propagation of a cold condensation front to the production wells at the corners. The simulation period was
600 days with a maximum timestep of Ar=25 days, which corresponds to an average CFL =22.2.

The convergence results of the thermal/compositional simulation are presented in Table 4. Here, the improvement in the nonlinear
behavior (i.e., the number of iterations) is less significant than in previous simulations. It can be understood as a consequence of a
more-nonlinear nature of the physical kernel. A similar observation is valid in relation to the errors between approximate and reference
solutions. However, the improvements in the CPU performance are still significant compared with the default ADGPRS performance
because of the absence of phase-behavior computations and the improved Jacobian assembled in the OBL method. The water distribu-
tion and error map are presented in Fig. 6.

Resolution Iterations E, (%) Er (%) E, (%) Space (%) CPU (seconds) Generation (%) Interpolation (%)

Standard 808 - - - - 429.2 - -
64 774 0.06 0.14 0.41 2.5978 279.9 0.8 12.9
32 762 0.32 0.64 1.33 4.6994 268.9 0.1 12.6
16 741 0.71 1.34 4.49 9.2095 263.5 <0.1 124
8 753 1.10 2.19 7.90 21.8750 265.6 <0.1 12.3

Table 4—Results of thermal/compositional simulation.

0.95 6
15
0.9

4
0.85 -3
0.8 2
1

0.75
0

Reference solution OBL error (n = 8) (%) OBL error (n = 64) (%)

Fig. 6—Composition of water and error distribution for two OBL resolutions after 200 days of simulation: reference solution; OBL
error (n = 8) (%); OBL error (n = 64) (%).
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OBL With Buoyancy

In the conventional modeling approach, the introduction of buoyancy in multiphase flux calculations assumes that each phase has its
own phase potential difference at a given interface ij, allowing countercurrent flow:

(D[U'j = [p/ —pi — 5[7,1:/'(Dj — D,‘)]7 .............................................................. (18)
Opi+0pj
% , if phase p appears in both cell i and j
i = Op,is if phase p appears only in cell i
Op,j» if phase p appears only in cell j
0, if phase p does notexistineithercelliorj, . ... .. ... ... .. . ... ... . (19)

m
i’
fluxes are usually computed using the phase-potential-upwinding (PPU) strategy, in which phase mobilities are selected depending on a
sign of the corresponding phase potential difference separately for each phase.

Straightforward implementation of PPU within the OBL approach implies the increase in the number of flux operators from 7, to
n.n,, because phases should be treated separately. In addition, a mass-density operator 6, has to be introduced for each phase. Striving
to reduce the amount of required interpolations, we evaluate a single mass-density value per each phase for united control volume of ad-
jacent blocks, instead of averaging of two values obtained for each of the blocks. Hence, Eq. 19 becomes

where 0,; = J,(®;) = gpJ';, g is gravitational acceleration, and Py is the mass density of a phase p in a control volume i. Numerical

5p,ij = 5p(wif), .......................................................................... (20)
o; :‘“"’2””" .......................................................................... (21)

Considering buoyancy, Eq. 5 is transformed into

a(8)[oe(@) = ae(@,)] + > > bp(E0)B,(0) + 0c(E0,u) =0, =1, n, oo (22)
JeL(@) p
where
bp(g, (1)) = Al‘r,jd)pﬁ, ..................................................................... (23)
ﬁ(y.p((l)) = xlfp‘fjpp,ij;bp,ijv ..................................................................... (24)

Xep,iPp.itp.i if®,; <0

where Xy ip, iiApii =
P, Pp,ijp,ij ) ) .
Xep jPpAp. Otherwise. (25)

Similarly, the energy-balance equation (Eq. 10) becomes

4 (8) [0 (0) = % (@)] + DD bep(&, 0B, (0) + D o€, 0)7,(0) + 0c(E,0,u) =0, ... (26)
) P !

JeL(i
where
bep(8, @) = b,y(§,0), <o (27)
Bop(O) = Ty iy iiApijs  + o+ o v e (28)

h,,‘,-pp.,»ﬂ,p’,- if (Dp.,‘j <0

here b, 0, A i =
WRETE 1y, i Py, i p.ij {/’l,,».fpﬂj’{l’ﬂ/ otherwise. . . . .. (29)
Therefore, OBL with PPU requires n.+n.n,+ n, operators for the isothermal problem with n. components and n, phases, and
ne 4 nenp +2n, 4 2 for the nonisothermal problem.

Results of OBL With Buoyancy

1D Dead-Oil Model With Gravity Segregation. We started with a simple 1D domain for a vertical segregation model with buoy-
ancy-driven flow. It consists of five grid cells that are 10 x 10 x 10 m each, extending over a depth of 50 m overall. The rock permeabil-
ity is equal to 100 md, and the porosity is equal to 0.2. We started with dead-oil kernel, filling the top three grid cells with water (with a
constant density pj; = 1000 kg/m?), whereas the bottom two cells were filled by oil (with a constant density pl =800 kg/m?). The res-
ervoir was initialized with Py = 100 bar. We ran the model for 10,000 days until the system reached an equilibrium. The dynamic distri-
bution of fluids is shown in Fig. 7. It can be seen that the heavier-water phase, placed on top, exchanges position with the oil phase by
the end of the simulation time.

In Fig. 8a, the error between the reference and OBL simulations is shown depending on parameterization resolution. It is clear that
the error is converging to zero when at high OBL resolution. Next, Fig. 8b demonstrates the dynamic cumulative number of nonlinear
iterations vs. time for two OBL resolutions of 16 and 100 points. The plot covers only the first 1,800 days, because later the system is
close to equilibrium and requires a single Newton iteration to converge for all simulations. The lower resolution demonstrates better
convergence in the beginning of the simulation and requires more iterations by its end. The finer-resolution model behaves similarly to
the model with the reference physics.
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Fig. 7—Dead-oil gravity segregation: initial fluid distribution; after 1,000 days; after 2,000 days; after 10,000 days.
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Fig. 8—OBL behavior for dead-oil kernel. (a) Final solution error of OBL compared with reference model. (b) Comparison of nonlin-

ear solver behavior.

1D Compositional Model With Gravity Segregation. Next, we ran the gravity-segregation test with the four-component isothermal/
compositional model used previously. The initial oil with 1% of CO,, 11% of C;, 38% of n-C,4, and 50% of C;o was placed in the top
three grid cells, while the mixture of gas with 80% of CO, and 20% of C; was placed in the two bottom cells. The initial reservoir pres-
sure was set to Pp = 120 bar and initial temperature was set to 7o =350 K, forming a pure-liquid phase in the top and a pure-gas phase
in the bottom. The dynamic distribution of phases is shown in Fig. 9. Unlike in the dead-oil kernel, the gravity segregation here is com-
bined with extensive mass exchange between liquid and vapor phases, which dramatically changes the composition of fluids.

Liquid Saturation Liquid Saturation

1.0 1.0
I'0.75 |-0.75
-0.50 -0.50
-0.25 - 0.25
I0.0 IO.O

Initial fluid distribution After 100 days
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Liquid Saturation

1.0
l-0.75
-0.50
-0.25
I0.0

Liquid Saturation
I 1.0

-0.75
-0.50
10.25
I0.0

After 1,000 days

Fig. 9—Compositional gravity segregation: initial fluid distribution; after 100 days; after 200 days; after 1,000 days.

Fig. 10a shows the corresponding error in pressure and composition (maximum over all components) final solutions of the OBL
model, compared with reference physics, depending on the resolution of the OBL approach. It is clear that the error is converging
slower than in the dead-oil kernel because of a more-complicated process dynamic. At the same time, the nonlinear performance (Fig.
10b) behaves more predictably, being slightly better for the low-resolution and slightly worse for the high-resolution OBL simulation.
Again, the plot covers only the most intense first 140 days, because later the nonlinear behavior of all simulations is equal.
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Fig. 10—OBL error behavior for compositional kernel. (a) Final solution error of OBL compared with reference model. (b) Compari-
son of nonlinear solver behavior.

Full-Field Brugge Model. To demonstrate the applicability of the OBL approach for a full-field model, we use the Brugge Field,
which is often used as the optimization benchmark for reservoir-simulation study (Peters et al. 2010). This model is derived from realis-
tic reservoir structures and properties shown in Fig. 11. The simulation time spans 10 years, with BHP controls changing every 3
months for both injection and production wells. For reservoir parameters and well controls, we used the base-case realization described
in Bukshtynov et al. (2015).

PORO
0.3

[ 0.225

0.15

I 0.075
0.0

Fig. 11—Porosity distribution of the Brugge Field.

In Fig. 12, we compare total well rates for both production and injection wells for the reference dead-oil kernel and the OBL imple-
mentation (with the resolution n = 64) with and without gravity. It can be seen that the buoyant forces play an important role in this
model, and only the simulation using OBL with buoyancy successfully recovers reference-well rates.

The corresponding errors and nonlinear behavior are shown in Fig. 13. It can be seen that the overall error is quite insignificant, even
for the coarsest resolution (n = 8). The error stabilizes at n = 32 and remains stable up to the finest resolution # = 96. The nonlinear behav-
ior is nearly equivalent between the reference solution and OBL at different resolutions in the first half of the simulation. Afterward,
OBL-based simulations require slightly more nonlinear iterations to converge. The CPU cost of simulation with the reference physics is
comparable with the OBL approach without buoyancy (592 vs. 582 seconds, respectively, whereas linearization takes approximately 260
seconds in both). The corresponding number of operators in the OBL approach with gravity grows significantly (from two to six for dead-
oil kernel) increasing the overhead because of ADETL. That can explain why the simulation time for the OBL approach with buoyancy is
larger (793 seconds with linearization cost of 470 seconds). As mentioned previously, the proper implementation of the OBL approach
can speed up Jacobian assembly by a factor of 14. Moreover, the migration and optimization of algorithms for emerging architectures
(e.g., graphics processing unit or GPU) improve the linearization performance by another order of magnitude (Khait et al. 2017).

Conclusion and Discussion

In this work, we studied the applicability of a new linearization approach for petroleum-related simulation. In our approach, the govern-
ing equations of a general-purpose reservoir-simulation problem are represented in the operator form, where each term in the governing
equations is a product of two operators. The first type of operator is fully defined by the physical state of the problem, while the second
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is characterized by spatial and temporal discretization. To perform the linearization of the governing equations, we introduced a uni-
form parameterization in the space of physical unknowns, where each state-dependent operator is evaluated and stored at every support-
ing point of the parameterization. An adaptive parameterization in the discretized parameter space was applied to improve the
performance of the parameterization procedure. The operators responsible for spatial and temporal discretization were involved in a
conventional manner using TPFA approximation for flux and fully implicit approximation for time.
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Fig. 13—OBL error behavior for Brugge Field model: final solution error; nonlinear solver behavior.

Next, we demonstrated the applicability of the OBL approach to the general-purpose reservoir-simulation problems. In particular, we
applied different physical kernels that include black-oil, isothermal/compositional, and thermal/compositional kernels with a different
number of components. We showed that the OBL approach reproduces the results of the reference solution at any reasonable resolution
with insignificant errors, localized at displacement fronts. On the other hand, the limited coarsening of parameter space improves the non-
linear solution in most cases. The performance of the OBL approach benefits from the simplified assembly of the Jacobian of the simula-
tion problem, the nearly complete bypass of phase-behavior calculations (except supporting points), and the better resolution of
nonlinear physics. The new approach provides almost unlimited flexibility for the extension of the physical model in a simulation frame-
work without the overhead related to the application of the automatic-differentiation technique. The method also constitutes a promising
option for implementation of a full nonlinear loop on emerging architectures, for example on GPU, as shown by Khait et al. (2017).

Finally, we described the extension of the OBL approach for multiphase flow and transport with buoyancy. We introduced a phase-
based treatment of the buoyancy term and parameterized it in the physics space of a problem. We demonstrated the convergence of this
scheme on both simplified segregation problems and a realistic 3D reservoir (Brugge Field). In the current realization of the OBL
approach, the nonlinear behavior does not benefit directly from the piecewise linear approximation of the state operators. However,
with the specifically designed nonlinear solvers and more-efficient implementation of the numerical framework, we expect that the
OBL approach can improve the performance time quite significantly.

Our future work will include a development of the more-robust component-based strategy for an approximation of the gravity flux.
This scheme will potentially reduce the number of operators in the OBL approach and improve the nonlinear convergence. In addition, we
will develop an extension of the component-based OBL approach to the systems with capillary-dominated flow. These systems usually
introduce a significant challenge to the standard Newton-based nonlinear solver and require more-robust nonlinear strategy. That defines
another direction of our research, where we will develop advanced nonlinear solvers using the trust region in the parameter space.
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Nomenclature

I = interpolation operator
J = Jacobian
n. = number of components
n,, = number of phases
r = residual
u = control properties
I';; = geometrical part of transmissibility
& = spatial properties
o = physical properties

Linearization Operators
a = spatial term of mass-accumulation operator
a, = spatial term of energy-accumulation operator
b = spatial term of mass-convection operator
b, = spatial term of energy-convection operator
¢, = spatial term of energy-conductive operator
o, = physical term of mass-accumulation operator
o, = physical term of energy-accumulation operator
f. = physical term of mass-convection operator
f. = physical term of energy-convection operator
v = physical term of energy-conductive operator
J = mass density operator
0. = mass influx/outflux term
0. = energy influx/outflux term

Physics Relations
D = vertical-depth vector (up/down-oriented)
h,, = phase enthalpy
p; = phase pressure
g, = phase in/outflux
s, = phase saturation
u, = phase velocity
U, = phase internal energy
U, = rock internal energy
X = component mole fraction in a phase
0; = vertical pressure gradient
k = thermal conduction
K = effective permeability tensor
/; = phase mobility
pp = phase molar density
¢ = effective rock porosity
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