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Abstract

This thesis describes the design and implementation of µLightDigit, which is the second iteration
of the LightDigit project: a contactless air-writing system based on ambient light detection with
embedded deep learning using only simple photodiodes. The system is able to classify digits 0–9
written in the air by detecting the dynamic hand shadow using a 3×3 array of simple photodiodes.
A novel TinyML system is developed by transforming LightDigit from a Raspberry Pi 4 single-
board computer to an STM32H743 microcontroller. This transition is burdened with a significant
reduction in computation power while having the goal of creating a more robust and adaptable
system. To achieve this, a new photodiode array is designed to overcome the saturation issues of
the photodiode array developed for LightDigit. A preliminary analysis is performed to investigate
the performance of three deep learning models on the microcontroller: a tiny convolution neural
network (CNN), a tiny long short-term memory (LSTM) model, and a tiny Conv-LSTM hybrid.
For the final system evaluation, the tiny CNN and ConvLSTM models are chosen which provided
the best performance in the preliminary evaluation. In order to test the system’s robustness,
three different indoor setups and one outdoor setup are created. These setups are created to be
reproducible and serve for the verification of the system in different ambient lighting conditions
and light intensities. Shadow patterns are recorded for each of the setups and are compared
to explain the digit recognition results. The tiny CNN model results in an average accuracy of
84.6% with a maximum of 97.0% and a minimum of 77.8% accuracy across the four different test
setups. The tiny ConvLSTM model achieves an average accuracy of 82.4%, with a maximum of
89.3% and a minimum of 72.4%. The tiny ConvLSTM model outperforms the CNN model in
the outdoor setup but is generally outclassed by the CNN in all indoor setups. The CNN model
is the lightest model with 792 ms inference time and a total size of 138k parameters, which
translates to 147 kB. The tiny ConvLSTM model is larger with 446k parameters at 494 kB and
947 ms inference time. For the real-time inference time on the STM32H743 microcontroller, both
the tiny CNN and ConvLSTM models remain below 1 second, which is fast enough for real-time
applications.
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Chapter 1

Introduction

When the COVID-19 pandemic started at the end of 2019, nobody had any idea how profound
the impact on daily life would be. Lockdowns lasting for weeks or months and obligatory face
masks and social distancing became the new normal. Even though the end is in sight almost
3 years later, some regions still have restrictions in place to hamper the spread of the disease.
As part of these restrictions, it was advised to wash your hands frequently and avoid touching
public surfaces. This made seeing people wearing latex gloves in public a common occurrence.
Consequently, the idea was sparked for a system that allows people to enter numbers in a contact-
free manner using ambient light. Such a system could be used to replace keypads or touchscreens
in public settings, such as in elevators, payment terminals and ATMs.

In existing research, a plethora of hand gesture recognition techniques are used, such as wear-
able sensors, computer vision, WiFi, Radar, radio-frequency identification (RFID), ultrasound
and many more [2]. However, visible light is chosen as it is ubiquitous in both indoor and outdoor
environments, and it is already naturally contactless, which is the goal of this research. Addi-
tionally, no involved transmitter-receiver setup is required such as is the case with radio-based
systems. Virtually all state-of-the-art research used deep learning as the preferred classification
approach, as it is well suited to the time-series data which is collected, and when applied correctly
can provide excellent results [3].

The system which is proposed in this work uses visible light as the sensing medium and provides
natural and intuitive interaction by allowing digits to be written in the air. The core principle of
operation is capturing the shadow created by the hand of the user, and inferring the written digit
from the movement of the shadow. No camera or additional information is used for classifying the
written digit. The first version of this system was created by Hao Liu as his master thesis project
which he presented in 2021 [4]. The resulting system was dubbed LightDigit, a term that will be
used throughout this thesis. The work done by Hao resulted in the LightDigit dataset, containing
a total of 26440 instances of air-written digits from 0 to 9, and includes data from a total of 24
participants. This data was collected using a sensor grid of 16 simple photodiodes, which was
developed specifically for the project. Using this dataset, two deep learning models were trained
and ran on a Raspberry Pi which were able to classify digits in real-time with approximately
90% accuracy. However, challenges still exist which prevent the system from being practically
viable. Therefore, the focus of this thesis will be to create a second version of the system, which
will attempt to address the problems and limitations of the first version. The focus of this thesis
will be two-fold. The first area of focus will be to move from a Raspberry Pi based system to a
TinyML, i.e., Tiny Machine Learning system, which runs machine learning algorithms on cheap,
low-power hardware, both in terms of energy consumption and computing capability. TinyML is

1



Deep learning model

Photodiode array

Microcontroller

Number 0-9

Time series data

Time → 

L
i
g
h
t
 
i
n
t
e
n
s
i
t
y
 
→
 

Hand shadow

Ambient light

Figure 1.1: Concept of the µLightDigit system.

an emerging field of research that has surged in popularity in recent years. Moving the system to
a TinyML platform could greatly decrease power consumption, increase efficiency, reduce cost,
and also enables the potential for battery-powered operation of the system. Due to this transition
to a microcontroller, the system is named µLightDigit, with the letter µ meaning micro as it
represents a smaller, more efficient system compared to the original LightDigit. The second area
of focus will be to address the problems and limitations of the first system, predominantly to
improve the dynamic range in different ambient light intensities. The following sections will
reformulate the areas of focus mentioned above into a research objective, and associated research
challenges and provide an overview of the contents of this thesis.

1.1 Research objective

The objective of this thesis is to create a TinyML system that is able to correctly classify digits
0–9 written in the air, using only visible ambient light as the sensing medium. This should
be done using simple photodiodes while being robust against different lighting conditions. In
other words, a tiny machine learning model should be developed for a microcontroller, which can
classify time-series light information to digits 0–9.

1.2 Research challenges

For the original LightDigit project, three major research challenges were formulated, which
can be summarized as follows: Firstly, the system should work for different people who have
different writing styles. Secondly, it should work in many lighting environments. And finally, it
should work with limited computational resources on low-power hardware. While these challenges
remain relevant, the focus of µLightDigit is placed on low-computational resources and system
robustness in different lighting conditions, which follows directly from limitations in the old
system and to further advance research in the field of TinyML. The research challenges of this
thesis are formulated as follows:

1. Design and implement a TinyML gesture recognition system using a commodity micro-
controller. This challenge presents a paradigm shift compared to the previous LightDigit
system, as this further reduces the already limited computational resources of a Raspberry
Pi. The amount of RAM on a microcontroller generally ranges from kilobytes to mega-
bytes. The same is true for the amount of storage, which is generally in the megabytes
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range. Both of these specifications are orders of magnitude lower than a Raspberry Pi. On
top of that, the microcontroller will run bare metal, thus without an operating system.

2. Improve the system robustness against variation in light conditions. There are two facets to
this challenge, with the first one resulting directly from limitations in the previous system.
Due to the old photodiode array having a fixed light sensitivity, it suffers from dynamic
range issues in bright lighting conditions. These issues already start at 500 lux, which
greatly limits the practical applicability in both indoor and outdoor scenarios. Secondly,
there is no clear data on the robustness of the system in environments with multiple light
sources, which in turn cause malformed shadow patterns. Such environments are ubiquitous
indoors and should be investigated.

1.3 Contributions

The following list summarizes the contributions brought forth by this thesis:

1. An in-depth review of state-of-the-art research into hand gesture recognition techniques and
TinyML. For gesture recognition, there will be a focus on methods used for data acquisition
through various sensing media, such as computer vision, radar, and infrared. Additionally,
the used classification methods and their achieved accuracies. For TinyML, there will be a
focus on current application research, available software frameworks, hardware for creating
TinyML systems and new developments in the TinyML hardware market. To aid the
reader in their possible future TinyML projects, there will also be an overview provided
for frequently used TinyML development boards.

2. New research into the development of a TinyML gesture recognition system and perform-
ance analysis of a convolutional neural network (CNN), long short-term memory (LSTM)
model, and a convolutional-LSTM (ConvLSTM) hybrid model. The models are run on an
STM32H743 with ARM Cortex-M7 CPU, and are analyzed in terms of accuracy, inference
time, and robustness by evaluating them in various test setups.

3. A novel design of a low-cost photodiode array on a custom PCB using OPT101 photodiodes
with adjustable ambient light sensitivity, up to 15k lux. This is paired with automatic
calibration and an improved sensing algorithm using an APDS9930 proximity sensor.

4. Analysis of the system in four different reproducible test setups, showing the system per-
formance in different light conditions. Additionally, the shadow patterns are recorded for
each different lighting condition and its impact on model performance is discussed.

5. Two different optimized deep learning models, a tiny CNN and ConvLSTM are able to
run inference in real-time (under 1 second) on a commodity microcontroller. The CNN
model results in an average accuracy of 84.6%, with a maximum of 97.0% and a minimum
of 77.8% accuracy across the four different test setups. The ConvLSTM model achieves an
average accuracy of 82.4%, with a maximum of 89.3% and a minimum of 72.4%.

1.4 Thesis content

This thesis aims to provide a full overview of the design process, implementation, and evaluation
of creating the TinyML-based digit recognition system, µLightDigit. Moreover, a review is
performed of the related work in TinyML research and gesture recognition. The contents can be
summarized as follows:
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1. Introduction provided the motivations and main challenges which will be addressed in this
work.

2. Related Work will be a review of state-of-the-art research in TinyML and gesture recogni-
tion.

3. System Architecture will provide a high-level overview of the system, which is split into
three parts: the photodiode array, microcontroller, and classification algorithm.

4. System Design describes the hardware and software used for developing the system, and
explains the design process of a new, photodiode array with adaptable light sensitivity.

5. Tiny Deep Learning Algorithm details the classification algorithm, which consists of two
main parts: data preprocessing and the deep learning model. The data preprocessing steps
are explained and three model architectures are provided for testing on the microcontroller:
a CNN, LSTM and ConvLSTM hybrid model. Additionally, the photodiode calibration
algorithm is explained, and an in-depth analysis of the input data is performed.

6. Performance Evaluation will outline the methods used to test and verify the designed
hardware and deep learning models. A preliminary evaluation is performed using the
LightDigit dataset to establish model performance, and which of the models are suitable
for the system, the main restraints being inference time and model size. Additionally,
model robustness to sampling distortion and the influence of data input formats are ex-
amined. After choosing suitable models, they are optimized and tested in four different
reproducible test setups. The final results are analyzed using shadow patterns, input data
image patterns, and confusion matrices for each model.

7. Conclusion summarizes the results obtained in the thesis and provides future work and
recommendations.
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Chapter 2

Related Work

2.1 Hand gesture recognition

Hand gesture recognition (HGR) aims to interpret human hand movements by a computer using
sensors and algorithms. HGR can be categorized into static and dynamic gestures. Static
gestures refer to the hand remaining still during the gesture, and dynamic gestures refer to the
hand moving during the gesture. The main application of gesture recognition is contactless
human-computer interaction [5]. More specific examples of applications include clinical surgery,
robot control, domestic and industrial automation, virtual reality, and gaming [6]. The HGR
workflow starts with data acquisition through some sensing medium, after which the data is
processed and finally classified [7]. In recent research, classification is usually performed through
deep learning with artificial neural networks. However, classical machine learning methods, such
as k-nearest neighbors (kNN) and support vector machines (SVMs) are also used. The structure
of this section is as follows. First, we will explore current research in gesture recognition, focusing
on which types of technologies are used. Secondly, we look at air-writing, which can be considered
a subcategory of gesture recognition. Finally, a more in-depth review is performed on gesture
recognition and air writing using visible light as the sensing medium, since it is of greater relevance
to this thesis.

2.1.1 Hand gesture recognition techniques

To determine the state of the art in gesture recognition research, recent papers and surveys on
gesture recognition have been summarized below. The focus lies on which different types of
sensing media and the classification methods are used, after which their relevance to this work
is briefly discussed.

• Infrared light [8] - In this work, the sensor is an array of infrared photodiodes and infrared
LEDs are placed in a line. Users move their hand over the sensor array and the infrared
sensors capture the infrared light reflected from the hand of the user. They collect data for
27 different gestures ranging from simple swiping motions to more complex circular and
shaking motions. This data is passed to a recurrent neural network (RNN) for classification,
and they are able to achieve an accuracy of 95% for simple gestures and 93% for complex
gestures.

• Time-of-flight camera [9] - In this study, a time-of-flight camera is used to collect depth
information from the hand of the user. The authors record 9 different gestures indicating

5



various actions in a car. The gesture estimation algorithm works in two steps. Firstly, a
hand pose is inferred using a CNN, after which a long short-term memory (LSTM) model
is used for further feature extraction. Combined they can achieve an accuracy of 89.5%.

• Computer vision [10] - This study uses a camera to capture video of user hand motions.
They then extract only three representative frames from the video sequence which are
used for classification. For training, they use the Cambridge gesture recognition dataset
which contains nine gesture classes. Using a long convolutional recurrent neural network
(CNN-LSTM combination) model, they report an accuracy of 91%.

• RFID [11] - This study uses commercially available RFID tags which are arranged in a grid-
like array. A single RFID antenna behind the array continuously measures signals emitted
from the tags. As the user moves their finger close to the array, the reflection properties of
individual tags change due to the multipath effect, allowing the system to determine the
position of the finger. They design the system to both track a single finger of the user and
allow multitouch gestures. The gestures which are defined are the 26 letters of the alphabet
and 4 shapes and the multitouch gestures are rotating, swiping, and pinching motions. For
classification, they use a CNN which is able to provide up to 92% classification accuracy.

• Ultrasound [12] - This study uses the reflection of high-frequency sound waves to capture
hand gestures. They use the microphone and speaker which are already available on devices
such as smartphones and smartwatches. A system is developed which estimates the user
hand position from the phase shift of the received signal. Using this method they can
successfully recognize short words and gestures with an accuracy of 91%.

• Capacitive sensor [13] - This study features a wearable bracelet with capacitive plates
which is attached to the wrist of the user. As the corresponding hand moves, a change
in capacitance between the hand and the capacitive plates can be measured. The authors
define seven different static hand poses for classification, and create a TinyML model
running on an Arduino Nano 33. By using only a single-layer CNN they are able to achieve
a classification accuracy of 97%.

From [14] and [13] it is clear that wearable sensors can be successfully applied, however, we
do not consider them relevant to this research. Using this method might be convenient when a
user already has a device such as a smartwatch, but our work is aimed at deployment in a public
setting. Therefore, wearables would defeat the purpose of a publicly available system. A large
amount of gesture detection research is performed on sign language interpretation such as in [15]
which is also corroborated by literature reviews such as [7]. Much of the modern research on this
topic employs computer vision through both still images and video. For real-time computer vision
applications, powerful hardware is required, as it is a computationally intensive task. However,
as shown in [15], using smaller models which can run on embedded devices can be successfully
deployed.

2.1.2 Air writing

Air writing can be considered a subcategory of gesture recognition, the goal being to classify the
symbol which is being written in the air. This can be done through various sensing media such
as the ones described above. The focus of this section is to assess the techniques used specifically
for air writing data acquisition and relevant classification methods.

• Time-of-flight camera [16] - In this study, the authors use a Microsoft Kinect camera to
extract the position of the user’s fingertips. The Kinect can retrieve depth information
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through the use of a regular camera and infrared transmitters and receivers. This informa-
tion can then be used to determine the position in 3D space of various joints in the human
body, including the fingertips. The authors use the position of the fingertip to train a deep
neural network and are able to classify both digits and letters with an accuracy of over
90%.

• Computer vision [17] - This study uses images captured using a simple webcam to infer
hand movements. The hand movements are converted to a trajectory and are projected as
a simple 2-dimensional handwritten digit. This enables the use of the well-known MNIST
handwritten digit dataset for model training. As a deep-learning based data processing
pipeline combined with an LSTM classifier, enabling both single and multi digit numbers,
they can classify with 98.7% and 85% accuracy respectively.

• Radio [18] - Three impulse radio ultra-wideband radar sensors are placed in triangular
geometry. The user moves their hand between the sensors, while the sensors measure the
delay of radio pulses that reflect off the hand of the user. The position of the hand is
tracked by measuring the signal delay, allowing a trajectory of the hand to be inferred.
They collect a dataset of 1000 samples for each digit and using a CNN they can achieve a
classification accuracy of 97%.

• Ultrasound [19] - This work uses an array of four ultrasonic transceivers, placed 5 cm apart
in a square-shaped matrix arrangement. Similar to the radar approach, using sound they
are able to infer a trajectory of the hand of the user by measuring the delay of ultrasonic
signals. Using a combination model of CNN and LSTM layers, they can achieve 99.5%
accuracy.

• Inertial measurement unit [20] - The researchers attach a wearable inertial measurement
unit (IMU) to the user’s hand and test the writing of uppercase letters from the Latin al-
phabet. They use dynamic time warping to compare the written letters to a template to de-
termine which letter was written. The classification accuracy is heavily person-dependent,
but using data collected and tested by the same user is able to achieve 84.6% accuracy.

Vision-based approaches provide a large portion of research into gesture recognition. However,
the approach proposed in this work aims to use only simple photodiodes, which in turn conserves
user privacy. Another approach that has been researched frequently and applied successfully are
radar based solutions. However, such solutions are impractical in the use case scenarios we
propose, because radar requires several transceivers spaced around the sensing area in a specific
orientation, making it more difficult to install as well as it being immobile. The research also
shows that a common approach to tackling air-writing is to first extract the trajectory of the
hand or finger of the user, such that classification can be performed on a 2d projection of the
trajectory. Figure 2.1 shows examples of hand tracking techniques that are used in practice.

2.1.3 Hand gesture recognition using visible light

As the primary focus of this thesis is ambient light-based gesture recognition, the following section
reviews research performed in this specific area. However, available research on air writing using
visible light is limited and only one study was found that specifically targets the air writing of
digits.

• In [22], the authors research/study dynamic ambient light-based gesture recognition of
air-written digits and sliding gestures. The authors used a 4×3 array of photodiodes,
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(a) Time-of-Flight (TOF) based finger
tracking using Microsoft Kinect V2
camera [21]

(b) Radar based hand tracking [18]

(c) RFID based finger tracking [11]

Figure 2.1: Examples of finger tracking techniques.

which they assume are calibrated to the light condition wherein the system is used. The
classification model is a k-Nearest Neighbours with dynamic time warping (DTW) [23] as
the distance metric. They classified 8 different sliding gestures with 100% accuracy and
digits 0–9 with an accuracy of 82.3%. It should be noted that they assume only a single
writing direction and general shape for each of the digits.

• In [24], 7 different static hand gestures were captured using two rows of photodiodes.
The top and bottom rows contain 3 and 5 SD5421 photodiodes respectively. The gestures
which are considered mimic key presses on a keyboard, with each individual finger pressing
down constituting a keypress, as well as an open hand and a fist. The classification was
performed using an RNN and resulted in 99.3% accuracy.

• The work done in [25] does not focus on hand gestures specifically, but it is included as
they do use ambient light in their proposed system. They use a large 6×6 sensing grid
of TSL237 photodiodes that are placed 30 cm apart. Using this setup they measure the
influence of the entire body, not just the hands. They define 5 different gestures: punch,
hug, clap, step, and jump and collect 15k samples from 22 participants in total. Using an
LSTM-based model they report an achieved accuracy of 96.3%.

As can be seen from the summary above, recurrent neural networks (RNN), especially long
short-term memory (LSTM), convolutional neural network (CNN), or a combination of the two
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architectures are by far the most popular approach to gesture recognition in recent research.
This makes sense, as RNNs and CNNs are frequently used with time series data, and dynamic
gesture recognition results in time series data. Of course, all except two of the research papers
mentioned in this section use TinyML, and the authors use much more powerful hardware to
run their models. Therefore, it remains to be seen if recurrent neural networks are a good fit
for running on a microcontroller, as they are notorious for being slow, as they contain many
complex operations and are not parallelizable. In this respect, convolutional neural networks are
more promising as they intrinsically reduce dimensionality, especially when paired with pooling
layers.

2.2 TinyML

In recent years, the field of TinyML has seen a surge in popularity. TinyML is machine learning on
small, low-cost microcontroller units (MCUs), such as IoT devices. Inherently, the devices used
for TinyML are much more resource restricted when compared to hardware that is conventionally
used to run machine learning models. The power usage typically ranges from a few mW at the
low end to several hundred mW at the high end [26]. This stands in stark contrast with hardware
commonly used to train large machine learning models, e.g., an Nvidia RTX3090 has a TDP of
350 W. In the past, when machine learning models were required on the edge, the data would be
sent to the cloud where powerful hardware runs the computations. TinyML shifts this paradigm
to run such models either directly or partially on the device itself [27]. The advantages of this
approach are reduced network traffic, latency, and lower cost. Furthermore, it can also improve
energy efficiency, privacy, and security [28, 29, 30].

2.2.1 Application research

The field of TinyML is fairly new, however, it has been used successfully in many applications.
The following sections will explore recent research focusedd on different applications of TinyML,
what kind of models are used and what inference time and accuracy one might expect to attain
using such models.

• Keyword spotting [31] - This study attempts to classify 12 different keywords from speech
signals. They use a convolutional neural network running on the MAX78000, a neural
network accelerator specifically designed for CNNs. With this model, they are able to
achieve a classification accuracy of 96% with an inference time of only 3.5 ms.

• Voice recognition [32] - This study attempts to differentiate adults and children through
voice recognition of certain keywords. Using a deep neural network obtained through the
Edge Impulse platform and deployed on an Arduino Nano 33 with a Cortex-M4 at 64 MHz,
they are able to get an accuracy of 97%.

• Computer vision [15] - This study uses a CNN to facilitate the real-time classification of
sign language from a video feed. Using an OpenMV H7 development board running ARM
Cortex-M7 at 400 MHz they are able to achieve real-time image classification at 20 fps
with 75% accuracy.

• Gesture recognition [14] - In this study, the authors use a ring worn on the finger of the
user which contains an accelerometer. The accelerometer data is fed into an LSTM-based
model to classify digits 0-9 written by the user. They design the model to run on an ARM
Cortex-M4 at 84 MHz, and are able to achieve accuracy between 75-95% for different
gestures.
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• Healthcare [33] - In this study the authors achieve background noise suppression and speech
enhancement in hearing aids by using an LSTM model. They are able to reduce the size
of the model by 11.9x through weight quantization and model pruning. Using an ARM
Cortex-M7 running at 216 MHz they achieve an inference time of only 2.39ms without a
statistical difference in accuracy compared to a larger model.

• Anomaly detection [34] - This study focuses on mechanical anomaly detection in household
appliances, however, this applies to industrial applications as well. An autoencoder model
is designed which is able to classify anomalous vibrations with an accuracy of 92% running
on an ARM Cortex M4 at 64 MHz.

Apart from these studies which implement a TinyML system for a specific application, many
applications have been proposed in literature, including but not limited to: biometric authentic-
ation, object detection, activity recognition, health monitoring and data (pre)processing [26, 35,
36]. The research also proves that it is attainable to run complex models in real-time on a range
of low-spec hardware.

2.2.2 Software

Many advances in development tools of TinyML systems have been made over the past few years,
improving development flows and enabling the technology to grow [37]. Additional benchmarking
and profiling tools have also been developed. [38, 39]. Listed below are several of the most popular
libraries and frameworks for developing TinyML systems.

• Tensorflow Lite Micro [40] - The most popular open-source framework for neural network
models [35], of which the book was released at the end of 2019. This framework is actively
maintained by developers at Google and has an active community. It supports many of
the most common neural network architectures and layer types and provides examples to
get started.

• GLOW [41] - A compiler made by NXP to convert models from Open Neural Network
Exchange (ONNX) format to low memory footprint format. It supports models generated
by the most popular frameworks such as TensorFlow and PyTorch and has a fairly extensive
tutorial and documentation.

• Embedded Learning Library [42] - A framework created by Microsoft and offers cross-
compiling pre-trained models to optimized C++ code which can be deployed on several
MCU platforms, such as Arduino and micro:bit.

• EmbML [43] - can convert trained models from WEKA or scikit-learn to C++. It has
support for MLPs, logistic regression, decision trees and support vector machines (SVM)
and attempts to minimize RAM usage and coverts operations to fixed point. However,
there are limited documentation and examples available.

• emlearn [44] - A software library that allows models to be written in Python using Keras or
Scikit-learn and converted to C code. The library supports Decision trees, Random forest,
MLPs and Naive Bayes. However, it has limited documentation and examples.

• CMSIS-NN [45]: ARM Cortex-M specific highly optimized kernels for Neural Networks and
is integrated with TensorFlow Lite Micro. The library makes use of the DSP acceleration
capabilities of Cortex M4 and M7 microcontrollers, which can also be used to speed up
neural network computations.
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• X-CUBE-AI [46] - The only proprietary software on this list. It is an AI expansion package
specifically for STM32 microcontrollers which can generate optimized code from pre-trained
neural network and classical machine learning models. It supports models exported from
TensorFlow and other frameworks which can export to the standard ONNX format.

2.2.3 Hardware

A large variety of MCUs exist, and many types have been used in research. However, almost all
the chips used are ARM Cortex-M based devices. The ARM Cortex-A line is also mentioned fre-
quently in literature, however these are not considered. These chips are present in the Raspberry
Pi and mobile phones (among others), and are deemed to powerful for the scope of this project.
Table 2.1 provides an overview of common hardware used for convenience of the reader which
has been collected from surveys on TinyML research. This is a general overview, and most of
the devices which are listed are general-purpose MCUs, based on ARM Cortex-M architectures.
Boards which are similar to each other have been left out. However, the hardware listed in
this table may be interchanged with similar from other manufacturers to better match system
requirements such as the amount of I/O or peripherals. The exception to this is the ESP32,
which uses a Tensilica Xtensa LX6 CPU, the advantage of which is that it includes on-board
Wi-Fi and Bluetooth connectivity. The most specialized chip is the MAX78000 by Maxim In-
tegrated (see Figure 2.3b), which contains a 64-core neural network accelerator. It is paired with
an ARM Cortex M4 for general computing and interfacing with the neural network chip. This
results in high power efficiency and inference which is several orders of magnitude faster than a
general-purpose microcontroller [47].

The following sources were used in the compilation of this Table: [27, 35, 48, 49, 50, 47, 51].
As the hardware listed in Table 2.1 is commonly used in TinyML, it is easy to find performance
analysis for these chips with various model architectures and datasets. Note that some spe-
cialized neural-network accelerator chips which are mentioned in Section 2.2.4 are not included,
resulting from either lack of available research or them not being commercially available. Fig-
ures 2.2 and 2.3 show examples of commodity and specialized hardware platforms, respectively.
Experimental hardware, hardware currently under development, and lesser-known hardware are
discussed in Section 2.2.4.

2.2.4 Hardware developments

There are several hardware platforms specially designed for TinyML applications currently under
development. These platforms aim to make machine learning more energy efficient and inference
time faster since many edge devices are powered by batteries. Unsurprisingly, it shows a trend
towards neural network accelerators with a large number of low-power cores, as deep learning
models benefit greatly from heavy parallelization. It should be noted that at the time of writing
some of these products are not yet commercially available, which is in part due to the recovering
chip market after the large shortage during the COVID-19 pandemic.

• XCORE.AI [52] - Developed by XMOS, it is a new chip design heavily focused on IoT
connectivity in conjunction with machine learning hardware acceleration (see Figure 2.3c).

• PULP [53] - Stand for Parallel Ultra-Low-Power and is an open-source CPU design for
neural network acceleration developed at ETH Zurich and the University of Bologna. A
hardware implementation of this design is the GAP8 by Greenwaves Technologies, an 8-core
ultra low-power processor, which is commercially available (see Figure 2.3a).
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• ARM Cortex-M55 [54] - a new ultra-low-power microcontroller featuring new vector exten-
sions (MVE) specifically designed to improve digital signal processing and machine learning
capabilities.

• ARM Ethos U-55 [54] - a neural processing unit designed to work in conjunction with
Cortex-M chips, designed to speed up CNN and RNN operations.

(a) Arduino Nano 33 (b) STM32H743 (c) Raspberry Pi Pico

Figure 2.2: Examples of general-purpose microcontrollers used for TinyML.

(a) GAP8 (b) MAX 78000 (c) X-CORE-AI

Figure 2.3: Examples of specialized microcontrollers containing neural network accel-
erators used for TinyML.
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Table 2.1: Comparison of different hardware used for TinyML.

Board Chip CPU
Clock
speed

Flash SRAM
Hardware

acceleration
Board
cost

Chip
cost

Comments

Arduino Nano 33 nRF52840 ARM Cortex M4 64 MHz 1 MB 256 KB
DSP accelerator including
4×8-bit fixed point SIMD

e25.00 e8.00 On-board WiFi/Bluetooth

Arduino Due Atmel SAM3x8E ARM Cortex M3 84 MHz 512 KB 96 KB No e40.00 e11.00 No floating point hardware

Sparkfun Edge Ambiq Apollo3 ARM Cortex M4 96 MHz 1 MB 384 KB
DSP accelerator including
4×8-bit fixed point SIMD

e25.00 e3.50
Highly optimized for
low-power

Raspberry Pi Pico RP 2040 ARM Cortex M0+ 133 MHz 16 MB 264 KB No e5.00 e1.00 No floating point hardware

MAX78000FTHR MAX78000 ARM Cortex M4 140 MHz 1 MB 512 KB
Neural network accelerator \w 64
cores and 432KB weight storage

e35.00 e20.00 Highly optimized for CNNs

Espressif ESP32 Tensilica Xtensa LX6 Tensilica Xtensa LX6 240 MHz 4 MB 520 KB No e5.00 e2.00 On-board WiFi/Bluetooth
STM32

NUCLEO-H743
STM32H7 ARM Cortex M7 480 MHz 2 MB 1 MB

DSP accelerator including
4×8-bit fixed point SIMD

e30.00 e12.00
6-stage pipeline and 64-bit
FPU compared to M4

Teensy 4.1 IMXRT1062DVJ6 ARM Cortex M7 600 MHz 8 MB 1 MB
DSP accelerator including
4×8-bit fixed point SIMD

e35.00 e15.00
6-stage pipeline and 64-bit
FPU compared to M4
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Chapter 3

System Architecture

This section will provide a high-level rundown of the system µLightDigit, and in the following
sections, the design details will be presented. An overview of µLightDigit can be seen in Fig-
ure 3.1, with a snapshot of the prototyped system presented in Figure 3.2. The system consists
of three main components: the photodiode sensing array, the microcontroller for computing and
the tiny deep learning based classification algorithm. An infrared proximity sensor is attached
to the photodiode array and is used for the detection of the user’s hand. The photodiode array
measures the light intensity at different points, converts it to voltage signals and sends them to
the microcontroller. The microcontroller samples the voltages using the internal ADC, provides
control of all peripherals, and is the computational backbone of µLightDigit. The classification
algorithm performs data preprocessing and passes it to the tiny deep learning model, which clas-
sifies the air-written digit. µLightDigit can be placed in environments with different ambient
light conditions because the system can perform calibration to automatically adjust its light sens-
itivity level. When placed in a new environment or when the light conditions change, calibration
should be performed again for finding the optimal dynamic range for sensing the ambient light.

Figure 3.1: µLightDigit system architecture.
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(a) Top view of the system.

Proximity sensor

(b) Front view of the system, showing the
proximity sensor (purple board).

Figure 3.2: The prototype of µLightDigit.

3.1 Photodiode sensing array

The photodiode array is a 4×4 grid of Texas Instruments OPT101s, which is a photodiode and
amplifier combination package. For each classification of the air-written digits, only 9 out of
the 16 photodiodes are used, which corresponds to a 3×3 grid in one of the 4 corners of the
array. This subset is used to conform to the training data, as it consists of only 9 channels, and
gives some flexibility with regard to the position of the hand and surrounding light sources. By
measuring which corner of the photodiode array receives the most shadow, this can be chosen
dynamically to achieve the best accuracy. This can be helpful, especially in lighting conditions
where the light comes in at an angle, causing a shift in the hand shadow. The dimensional layout
of the photodiodes on the photodiode array can be seen in Figure 3.3. As the hand of the user
moves over the photodiodes, the shadow projected onto them will change. As each photodiode
measures the light intensity at a particular location, a particular shadow pattern is captured
in every sample. The light intensity is converted to an analog voltage, which is captured and
digitized by the microcontroller. The photodiode array from LightDigit is replaced by a new
design for µLightDigit, which will be explained in detail in Section 4.3. The primary difference is
that in µLightDigit the light sensitivity of the photodiodes is adaptive to a wide range of ambient
lighting conditions, making the system be able to work outdoors with sunlight.
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Figure 3.3: Photodiode array dimensions and spacing.

3.2 Computing unit

Because of the objective of designing µLightDigit as an embedded system, we choose an STM32
microcontroller as the computing unit. The microcontroller handles all the control of the system
such as signal sampling and processing and runs the inference of the tiny deep learning algorithm
in real-time . It is responsible for converting the analog signal received from the photodiode array
using its internal ADC, preprocessing this data, and feeding it into the tiny deep learning model.
Additionally, it responds to interrupts from the proximity sensor –which tells the system when
the user starts/stops the air-writing– such that it knows when to stop and start sampling the
photodiodes. Finally, it performs calibration to tune the sensitivity of the photodiodes, in order
to obtain maximum dynamic range in different ambient lighting intensities.

3.3 Tiny deep learning algorithms

To design a reliable gesture recognition system, one of the most crucial parts is the classification
algorithm. In µLightDigit, the designed classification algorithm consists of data preprocessing,
photodiode sensitivity calibration and the deep learning model which facilitates the recognition of
the air-written digits. Convolutional neural networks (CNN), long short-term memory (LSTM)
and a ConvLSTM hybrid architecture are used for the tiny embedded deep learning model. All
of these have been successfully employed in related research, and are well-known to be suitable
for time-series data processing. As it needs to be able to run in real time on a microcontroller,
Chapter 4 will provide the rundown on how to reduce the size of these learning models to match
the limited computational resources of the microcontroller.
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Chapter 4

System Design

This chapter outlines the hardware and software designs of µLightDigit. The main focus of the
hardware design is the processing unit and the design of the photodiode array. The latter has
been redesigned compared to the original LightDigit [4] to improve the system’s robustness. In
the software design, the software framework which is used for designing the deep learning models
will be highlighted, and a complete description of the model deployment flow will be given.

4.1 Microcontroller selection

LightDigit used a Raspberry Pi 4 for running the model, while the goal of the TinyML system
is to port it to a low-power microcontroller Several considerations were made when choosing
the right microcontroller for this project. From preliminary research, it had already become
clear that some kind of on-chip hardware acceleration would help realize real-time inference
time below 1 second. Additionally, dedicated floating point hardware would be convenient for
data preprocessing. This narrows down the search to an ARM Cortex-M4 or Cortex-M7, with
the latter being the most powerful chip of the Cortex-M line. Both chips contain ARM DSP
extensions which provide single instruction multiple data (SIMD) instructions for the acceleration
of certain operations which are useful in neural network computations.

The Arduino Nano 33 was considered, which has an ARM Cortex-M4 based CPU. However,
it was dismissed in favor of a Cortex-M7 based device, as it has a flexible clock with a higher
possible clock speed. This in turn makes the development flow more forgiving by allowing
more inefficiencies and allows for easier experimenting with larger model sizes and different
architectures. Eventually, the choice was settled on the STM32NUCLEO-H743ZI2 development
board, which features an ARM Cortex-M7 running at a maximum of 480 MHz, and has a generous
amount of I/O because of the 144-pin package. It is at the high end of microcontrollers because
of its relatively high clock speed and contains a dedicated floating point unit (FPU). However, it
is by no means a match for a Raspberry Pi 4 which has an order of magnitude higher computing
ability. Table 4.1 can be used as a reference for a rough hardware comparison between the
LightDigit and µLightDigit systems.

It was decided to use a general-purpose microcontroller, as opposed to a more specialized chip
that includes dedicated neural network accelerators. This allows for inter-device compatibility
if the model should be ported to a different device. Furthermore, it does not require the use of
proprietary software or specialized libraries which can onlfy be used on one specific chip.
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Table 4.1: Comparison of specs between the Raspberry Pi 4 and STM32H743.

Specification Raspberry Pi 4 STM32H743

CPU
ARM Cortex-A72

(Quad-core)
ARM Cortex-M7
(Single-core)

Clock speed 1.5 GHz 480 MHz
RAM 4 GB 1 MB
Storage >GBs 2 MB
Peak power 6.4 W 0.45 W

4.2 Software development flow

To implement deep learning models, a well-supported and rich software framework is required.
This avoids the time-consuming, error-prone and tedious process of implementing neural networks
by hand. The following considerations are made before choosing a framework:

• The framework must be compatible with ARM Cortex-M devices.

• The most essential neural network layers should be supported, such as dense layers, con-
volutional layers, LSTM layers, and pooling layers.

• There should be ample documentation and educational material for learning the framework.

• For development speed and convenience, network architectures should be allowed to be
written in a high-level programming language such as Python.

• The framework should be focusedd on microcontrollers and have included support for
memory and run-time optimizations such as automatic quantization.

4.2.1 TensorFlow Lite for Microcontrollers

The only framework which fulfills these requirements is TensorFlow Lite for Microcontrollers [55],
which often gets abbreviated to TFLM, TFLu, or TFLµ (in this thesis TFLM is used to remain
consistent with the developers). The project is based on the already popular and widely used
TensorFlow, which is already a mature, popular and very well documented deep learning frame-
work. It allows models to be written in Python using TensorFlow, which in turn is converted to
an optimized format using the TFLite converter, creating a TFLite model. The TFLite model in
combination with the TFLM runtime and operation kernels allows the model to run efficiently on
a microcontroller. Operation kernels provide the most low-level computations which are chained
together to execute all operations in a neural network layer.
In contrast to some frameworks, it does not attempt to transpile source code to run on a

microcontroller, but instead, it has ported TensorFlow operation kernels to C++ targeted at
microcontrollers. This means there are no C/C++ standard libraries, no dynamic memory al-
location and the core runtime fits in 16 kB RAM. It also includes model optimization techniques
out of the box and it is relatively easy to port models between different devices, as many popular
32-bit microcontrollers are supported. An added benefit of TFLM is that the model can be run
and verified on the host computer, which already includes automatic parameter quantization.
This eliminates the need to transfer each model individually to the microcontroller before being
able to test the accuracy. For model hyperparameter tuning, keras-tuner [56] is used in conjunc-
tion with the HyperBand algorithm [57]. A complete overview of the creation and deployment
of a model can be seen in Figure 4.1.
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Figure 4.1: Model development flow using TensorFlow Lite for Microcontrollers.
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4.2.2 Model Quantization

TFLM provides automatic post-training quantization of model weights to 8-bit integers. This
can be achieved by providing the TFLite converter with a generator function that provides a
representative sample from the training data. The data samples are used to scale the weights
internally, such that the dynamic range is optimized.

4.2.3 Limitations

On-device training is not supported, which means all models must be trained on a separate host
computer. An important step to take is to fix the input and output size of the model which
is created. This needs to be done to avoid the TFLite converter from inserting flexible tensor
operations, which are (at the time of writing this thesis) not supported in TFLM. STM32H743
is not directly supported with a makefile, therefore, this needs to be developed as well. Cmake
is used to generate the makefile.

4.2.4 CMSIS-NN

As briefly discussed in Section 4.1, the Cortex-M7 has special instructions to speed up certain
computations which are useful for digital signal processing. It drastically speeds up 8-bit integer
arithmetic by using SIMD operations. Besides, they can also be used for neural network accel-
eration. CMSIS-NN is the library developed by Arm aiming at neural network acceleration, and
is directly integrated into TFLM. It can be turned on by simply adding a compiler flag. As will
be seen in later chapters, it works especially well for convolutional neural network acceleration.

4.3 Photodiode array redesign

While testing using the first version of the photodiode array, it was observed that the output of
the OPT101 would saturate when the ambient light intensity exceeded approximately 500 lux.
Practically, this means that in bright conditions the photodiodes quickly saturate. This has a
great impact on shadow detection capability in many indoor and almost all outdoor environments,
since they are often much brighter than this. As an example, in the measured light intensity in the
office where many of these experiments were performed, the brightness is already 500 lux due to
the overhead lighting, without considering sunlight entering through the window. Comparatively,
on sunny days this can easily reach 1k lux indoors and upwards of 50k lux outdoors. As a result,
using the photodiode array in such environments could result in inaccurate data, because some
shadows are not correctly detected. To better illustrate the problem, let us consider the scenario
in Figure 4.2. The light sensor is partially covered, therefore, one would expect to see a drop in
voltage at the output. Saturation happens when the average light intensity on the sensor would
cause a voltage at the output of OPT101 which it is unable to provide. This causes the output
to be stuck at the maximum output voltage, which is determined by the supply voltage. Thus,
even though the sensor should detect a shadow, it is not able to do so as the output is saturated.

4.3.1 Improving the dynamic range of photodiodes

In order to understand the details of exactly why saturation occurs, the inner workings of the
OPT101 must be considered. Figure 4.3 shows the schematic of the internal architecture which
was taken from the datasheet [58]. As can be seen from Figure 4.3, the OPT101 package combines
a photodiode, a transimpedance amplifier and a feedback network. Because photodiodes are
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Figure 4.2: Top view of an OPT101 with a shadow partially covering its light sensor.
The dashed red line indicates the shadow boundary.
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Figure 4.3: OPT101 with internal schematic and notable parts highlighted. Notice
that the internal feedback network (pin 4) is connected to the output (pin 5).

current sources, the transimpedance amplifier converts the photodiode current into a usable
voltage, which in turn can be sampled by an ADC. The output voltage is linear with respect to
the illuminance of the photodiode, until it is limited by the positive power supply rail. With the
specific opamp used in the OPT101, the maximum output that can be reached is the positive
power supply - 0.8 V. When this happens, the output is considered saturated as it can no longer
increase. The supply voltage can range from 2.7 V to 36 V, thus opting for a higher supply
voltage is one way of improving the dynamic range of the output.

Another way of improving the dynamic range is by tuning the gain of the amplifier. In
a transimpedance amplifier, the gain is equivalent to the feedback resistor value. Therefore,
the feedback resistor determines the sensitivity of the output. The OPT101 includes an internal
feedback network with a 1 MΩ resistor and 3 pF capacitor. The capacitor is required to maintain
the stability of the internal opamp due to the capacitance of the photodiode [59], in turn also
limiting the bandwidth of the amplifier. The combination of a low supply voltage and high
sensitivity results in the internal opamp quickly reaching the positive power supply rail and
saturating. Therefore, the dynamic range can be improved either through increasing the supply
voltage and/or changing the feedback resistor value. To accommodate this, the internal feedback
network can be disconnected and a custom feedback network can be used.

23



4.3.2 Previous design

The photodiode array designed for LightDigit uses a 4×4 grid of OPT101 photodiodes, with the
centers of the sensors placed exactly 13 mm apart. Each of the OPT101 uses the internal 1 MΩ
feedback network, resulting in a fixed light sensitivity. The outputs are sampled using 2 external
10-bit, 8-channel MCP3008 ADCs which are addressed through an SPI interface. The supply
voltage is 5 V, resulting in the output of the OPT101s reaching approximately 4.2 V.

4.3.3 Requirements

The biggest challenge will be to improve upon the old design by adding adaptability to different
ambient light intensities and at the same time keeping the new design compatible with the already
existing dataset. In addition, more requirements are added for practical considerations and to
keep costs down. The design requirements are formulated as follows:

• The photodiodes’ position and the photosensitive area should be the same as the old design.

• The system should be able to operate at least from 100 lux to 10k lux, covering practically
all indoor scenarios.

• The array should be powered from the same supply as the microcontroller.

• The cost of the design must be as low as possible.

• The photodiodes should be sampled at a high enough frequency such that there is at most
20% distortion in each retrieved sample and model accuracy is maintained.

4.3.4 Design

When coming up with the new design, it was first considered to use a new type of photodiode
with an external amplifier circuit. This would be able to relieve some spacing constraints which
the OPT101 package size brings. The OPT101 uses a DIP8 package, which is quite large relative
to the photosensitive area. This leaves a space of only 3 mm between sensors, which is not large
enough for placing most component packages. However, in order to avoid the need to investigate
the impact of using differently spaced photodiodes or using photodiodes with a different size
photosensitive area, it was decided to keep using the OPT101 as the photodetector. As a result,
the main goal of the new design became to replace the internal feedback network with a variable
resistor, which can be changed depending on the ambient light intensity. The most flexible way
to achieve this is through using a digital potentiometer. It has a wide range of programmable
resistor values and can be rapidly interacted with through some serial interface. However, digital
potentiometers with values in the mega ohms are fairly uncommon and relatively expensive
at around e5 each. Due to this restriction, combined with the limited spacing between the
photodiodes, it was investigated if it would be possible to use a single feedback network for
all OPT101s. The obvious advantage would be that only a single digital potentiometer and
stabilization capacitor would be necessary for all photodiodes. The main question following this
was whether the response time of the OPT101s would be fast enough to switch between them
while keeping the distortion at an acceptable level. In the datasheet the settling time to reach 1%
of the final output is said to be 70 µs. For the entire array, this would be x16, resulting in 1.120
ms for the total array. At first glance this seems like a sufficiently short sampling time given the
user does not move their hand extremely quickly. From this initial evidence of feasibility, the
design as shown in Figure 4.4 was created.

24



16x

Amplifier

Variable resistor

ADC

MCU

Low-pass 
filter

OPT101

OPT101

Figure 4.4: Basic schematic showing the design principle of the new photodiode array.

The final design is the result of several iterations, using simulations and creating several
prototypes. It was made to be modular and robust, allowing the ability to leave out certain
parts of the design while maintaining a functioning system. Compared to the old design, the
feedback network was redesigned, an output low-pass filter was added and the external ADCs
were removed in favor of the MCUs internal ADC. An external proximity sensor was added to
detect the presence of the hand of the user. Moreover, supporting circuitry was required to make
the design work. First, an overview of the system can be seen in Figure 4.5 and a component list
in Table 4.2. The sections after that will discuss each different part of the design in more detail.
Additionally, the simulating and testing of the circuit will be explained.

Components

The components used are listed in Table 4.2.

Table 4.2: Components used in the new photodiode array design

Component Manufacturer Function Amount Price Total price

OPT101 Texas Instruments Light detection 16 e2,00 e32,00
AD5242BRZ1M Analog devices Digital potentiometer 1 e5,00 e5,00
AD5242BRZ100 Analog devices Digital potentiometer 1 e5,00 e5,00
TMUX1121 Texas Instruments Precision analog switch 3 e1,75 e5,25
TS3A24157 Texas Instruments SPDT analog switch 16 e0,90 e14,40

RB531VM-40FH ROHM Schottky diode 16 e0,05 e0,80
Generic resistors - - 5 e0,01 e0,05
Generic capacitors - - 6 e0,01 e0,06

Total e62,56

25



I2C

Output

Diode bias

Output filter

Feedback network

Photodiode array

Power

Auxiliary power

SPDT switches

Diodes

Front Back
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Overview

An overview of the final designed PCB can be seen in Figure 4.5. All the design files and
schematic can be found in Appendix A. Each of the separate modules is explained in further
detail in the following sections.

Power supply

The power supply for the general electronics is 3.3 V. The OPT101s are connected to a secondary
auxiliary power supply which can either be connected to 3.3 V, or connected through a separate
power supply which can be increased to 4.1 V. This allows for a slightly higher output voltage
range, thus increasing the dynamic range further. Increasing beyond this point is not possible
with the internal ADC of the microcontroller, as the reference voltage for the ADC can be at
most 3.3 V. However, it could be possible to add circuitry to the output which scales the voltage
back to 3.3 V range, which would allow for a supply voltage of around 5 V. Increasing it further
then this could potentially damage the switching electronics, as the maximum allowed voltage
at their inputs is Vdd + 0.5 V.

Switches and diodes

Each of the OPT101s is controlled by a TS3A24157, a 2-channel single-pole dual-throw switch.
The switch isolates both the internal photodiode and the OPT101 output from the feedback
network. The switches are controlled directly through GPIO pins on the microcontroller, and
allow the OPT101s to be individually activated and deactivated. When an OPT101 is activated,
it is connected to the output and the feedback network. In a deactivated state, a Schottky
diode is connected to the internal photodiode and keeps the voltage at the inverting input at
a low (around 50 mV) positive voltage. At first glance, this might seem unnecessary, however
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the CMOS switches inside the TS3A24157 start conducting when a negative voltage is applied.
Secondly, this keeps the output of each of the deactivated OPT101s low, avoiding leakage current
through the switches. The diode is biased through the diode bias network, which is either tunable
with a potentiometer or can be applied using an external power supply.

Feedback network

The feedback network consists of two digital potentiometers combined with 4 activatable feedback
capacitors. Each of the digipots have 255 step RDACs for resistance adjustment and can be
programmed using I2C. The first one is the AD5242BRZ1M - a 2-channel 1 MΩ resistor, the
2-channels are connected which allows for course feedback resistance adjustments up to 2 MΩ.
Similarly, the second one is the AD5242BRZ100 - a 2-channel 100 kΩ resistor, the 2-channels are
connected which allows for fine feedback resistance adjustments up to 200 kΩ. The activatable
feedback capacitors can be switched on or off using a TMUX1121 precision analog switch. The
capacitance values are 10, 22, 30 and 47 pF and have been chosen such that the feedback
resistor value that can be used lies between 20 kΩ and 2 MΩ. Additionally, the fact that they
are switchable ensures the system bandwidth is high enough such that switching delays do not
exceed the desired time.

Output filter

A low-pass filter is added to the output to filter small output perturbations which were observed
on the output of the OPT101 during testing. To decrease the possible cutoff frequency to the
desired value, circuitry was added which is able to more quickly drain and charge the filter
capacitor. This essentially provides the output filter with 2 separate cutoff frequencies, one to
facilitate faster switching and the other to facilitate noise filtering. The cutoff frequency can be
calculated using Equation 4.1 and is directly related to the RC (τ) time. The 5 τ is considered,
which is the time it takes to reach 1% of the final voltage. The output low pass filter uses a
resistance of 1 kΩ and capacitance of 22 nF, resulting in fcutoff = 7.2kHz and 5τ = 110µs. On
the other hand, the secondary resistors have a resistance of 200 Ω, reducing 5 τ to 22 µs and
allowing for a faster response time at the output. This allows flexibility in choosing the primary
filter cutoff frequency, as the output response time is not limited by the filter cutoff frequency.
For example, if the cutoff frequency of 7.2 kHz is found to be too high, it can be further reduced
by placing a higher resistor and/or lower capacitor value. A secondary resistance value of 200 Ω
was chosen to limit the maximum possible output current, as the opamp can provide a maximum
of 15 mA.

fc =
1

2πRfCf
(4.1)

Proximity sensor

To facilitate the detection of the hand of the user, support for adding an APDS-9930 infrared
proximity sensor was added to the design. It can be attached to the PCB using a 3D-printed
mounting bracket and can be adjusted in 3 dimensions and inclination angle. It can be pro-
grammed using I2C and is connected to the same bus as the feedback network. The sensor will
generate an interrupt when it detects the hand of the user, which in turn triggers sampling to
start. When to user removed the hand, a second interrupt is generated to stop the sampling.
For convenience, dedicated power pins and I2C pins are added to the PCB for connecting the
proximity sensor. It is connected to the same I2C bus as the feedback resistors.
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Figure 4.6: OPT101 stability simulation setup. The phase margin is determined by
examining the phase shift caused by the loop gain.

4.3.5 Stability analysis

Using an inappropriate feedback network or introducing stray capacitance in an opamp design
might cause stability issues. This can cause them to oscillate, ring or result in other kinds
of unwanted behavior such as lockup (i.e., the output gets stuck on the positive or negative
power rails). This is relevant since the OPT101 contains an internal opamp which might require
additional compensation when using an external feedback network. In Section 4.3.1, it was
already briefly stated that the capacitor in the feedback network is needed to ensure stable
operation. To elaborate on this further, the capacitor is necessary to compensate for the phase
shift caused by the capacitance of the photodiode at the inverting input. At 180°phase shift
between the inverting and non-inverting inputs, negative feedback becomes positive feedback
and the circuit is unstable. Phase margin indicates the amount of phase shift required to reach
this critical point of 180°phase shift and can be seen as a safety margin before the circuit
becomes unstable. In industry, the rule of thumb is to have at least 45° of phase margin to
ensure the stability of an opamp circuit [60]. Having a lower phase margin will result in ringing
and overshoot. As detailed in [59], Equation 4.2 is used to calculate the required feedback
capacitor value to ensure a phase margin of 45°.

Cf =

√
Cin + Cpd

2πRfFGBW
(4.2)

Cin is the stray parasitic capacitance from surrounding components and opamp inputs. The
most significant contributor to this capacitance is the switches, which have up to 140 pF stray
input capacitance in on-state and 50 pF stray input capacitance in off-state. Both the capacitance
at the input and output can be calculated as 15× 50nF +140nF = 890nF , which is modeled as
2 nF at the input, and 2 nF at the output. This gives a safety margin for the PCB traces and
for other components which will be placed. Cpd is the photodiode capacitance, which is caused
by the depletion region in the PN-junction of the photodiode. Rf is the feedback resistance
and FGBW is the gain-bandwidth product of the opamp, which is 2 MHz. In order to verify
the stability of the final circuit, SPICE simulations were performed using Ngspice [61] and the
SPICE model provided by Texas Instruments, which can be found in Appendix B.2. The phase
margin is determined by breaking the feedback loop of the opamp and inserting a very large
capacitor and inductor as described in [62] and shown in Figure 4.6. This allows SPICE to find
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Figure 4.8: Measured output with
Rf=480 kΩ and Cf=20 pF.

the correct DC operating points for performing the AC analysis. Using this circuit, and the
values obtained through Equation 4.2, the stability of the circuit was verified.

4.3.6 Simulations

To further examine switching behavior and to ensure the proper functioning of the output fil-
ter, transient SPICE simulations are performed using the OPT101 SPICE model. The photo-
diode current is modeled using the current source I photodiode, and the switching behavior
is modeled as a pulsed current source. The setup for the OPT101 simulation with feedback
network and the output filter can be found in Appendix B. Double push buttons are used to
model the analog switches, which are controlled using control voltages v control charge and
v control discharge. Figure 4.7 shows 3 simulated pulses, with the output filter being activ-
ated on the second pulse. After activation, both switches are closed for 25 µs, moving the output
of the filter to V(output opamp)/2. Then, the discharge switch is closed and the filter output
moves to a stable voltage after approximately 15 µs. For comparison Figure 4.8 shows actual
measured switching behavior in roughly the same conditions.

4.3.7 Prototype and PCB

To verify the simulation results, a breadboard and soldered prototype were created to test the
design concept, and can be seen in Figure 4.9. The parasitic capacitances from surrounding
electronics are modeled as 2.2 nF capacitors, which are placed at the inverting input and output
to ground. Additionally, the diode to compensate for the negative voltage at the inverting input
was verified in the prototype. The diode was biased using an external power supply and kept
the voltage of the inverting input at approximately 30 mV. This is low enough for the output
of the opamp to remain at 0, limiting leakage currents and giving a fast response time. From
measurement on the prototype, using a potentiometer as a feedback resistor, it was found that
resistor values below 15 kΩ resulted in oscillations on the output signal. Therefore, the internal
opamp can be considered unstable at low gains, which should be taken into account when using
the system. For reference, the final PCB design files and schematics can be found in Appendix A.
The electrical schematics and PCB were designed using KiCad 6 and manufactured by Aisler.net.
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Figure 4.9: Prototype on a breadboard with a single OPT101, switches and diode.
Parasitic capacitances are modeled as 2.2 nF capacitors at the inverting input and
the output.

(a) Front of the assembled PCB. (b) Back of the assembled PCB.

Figure 4.10: Assembled PCB.

4.3.8 Results

The final assembled PCB can be seen in Figure 4.10. The resulting circuit is highly adaptable
to ambient light intensity but has some drawbacks. Figure 4.11 shows 2 full samples of the
photodiode array, sampling all 16 photodiodes within 1.05 ms and a subset of 9 photometries
within 0.6 ms. The array can handle light intensities up to 15k lux, but beyond that saturation
becomes a problem, even with the lowest possible feedback resistance. As the opamp is not
unity-gain stable, a minimum feedback resistance of 15 kΩ is required for stability. High-to-low
transitioning is occasionally paired with a dip in the signal from the output opamp. It is not
quite clear what causes this, but it was observed that the voltage eventually settles close to the
average voltage resulting from the ADC samples. Therefore, it is not considered a problem as it
does not cause signification variations in the output.

Response time issues

During testing, it was observed that a combination of a positive voltage at the inverting input and
the input capacitance could cause a delay in response time. Figure 4.12a shows a measurement
that illustrates this problem. It can be seen that it takes some time for the inverting input
voltage to reach a low enough value for the opamp to respond and the output to rise. This is due
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(a) Full sample with the photodiode array uncovered.
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(b) Full sample with the right side of the photodiode array covered.

Figure 4.11: Measured output of the photodiode array over one full sample. In this
case, the output is sampled 3 times by the ADC, which is indicated by the vertical
blue lines. Switching between photodiodes is indicated by the vertical red lines.

to the input capacitance needing some time to discharge. As the only discharge path is through
the generally high-valued feedback resistor, this time can be significant compared to the total
sampling time. In order to mitigate this problem, some additional circuitry was added to the
bottom of the PCB. First, a switch controlled through GPIO pins is connected to a relatively
small resistor value of 1 kΩ, which can be opened to drain the opamp input capacitance more
quickly. Secondly, a potentiometer is placed instead of a static resistor in the diode bias network
and can be used to manually tweak the diode bias voltage to keep it at a sufficiently low value.
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Figure 4.12: Response time issues caused by positive voltage at the inverting input.
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Chapter 5

Tiny Deep Learning Algorithm

The classification algorithm is made up of two main components: data preprocessing and the
embedded deep learning model. Data preprocessing is required to transform the raw ADC values
into data that the deep learning model can use. First, a deep analysis of the data is performed,
which explains how the data can be interpreted visually and how movement is encoded in the
input data. Additionally, the concept of sampling delay distortion is explained. Secondly, three
different deep learning models are designed: a convolutional neural network (CNN), a long short-
term memory (LSTM) model, and a ConvLSTM hybrid model, which uses elements from the
CNN and LSTM. The architecture of each of the models is explained and visualized. Finally,
the photodiode calibration algorithm is discussed

5.1 Data interpretation

The data is received as a 1×9 array of numbers, one number for each channel which is used
for sensing. This data can be visualized as a 3×3 grid, analogous to the layout of the physical
photodiodes. Figure 5.1 shows an example of how data can be interpreted visually. Numbers are
normalized from 0 to 1, representing a low light intensity and a high light intensity respectively.
The dark pixels roughly indicate the location of the fingertip, which traces a trajectory over time.
To represent an entire sample in a single 2D array, the raw 1×9 array of measurements can be

Figure 5.1: Example drawing of the number 2.
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stacked vertically. This results in particular patterns, which can be seen in Figure 5.2. These
patterns contain movement information of the users’ hand, encoded in the particular pattern
which is formed. This is explained in detail in Section 5.2.4.

5.2 Data processing

The data processing is performed on the microcontroller and consists of 3 main steps. Figure 5.3
shows the different steps performed in the data processing. Before being sampled and converted
into 16-bit values, the analog low-pass filter on the photodiode array removes high-frequency
noise and data spikes. Doing this in hardware saves processing time and reduces the complexity
of the data preprocessing algorithm.

Figure 5.2: Image patterns created by stacking samples.
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Figure 5.3: Data processing pipeline.

34



5.2.1 Data collection

The input data to the microcontroller are analog voltages and are digitized using the internal
16-bit ADC with a 3.3 V reference voltage. A single-channel internal ADC is used, and each
photodiode is sampled in quick succession to get a single sample. Depending on the input
dimensions of the model, the photodiodes which are sampled are adjusted. For example, given
a model which requires only 9 input channels, not all 16 photodiodes need to be sampled, but
only the corresponding 9. Data collection is activated through the proximity sensor, or manually
by pressing a button. When manual data collection is activated, the default sampling time is 3
seconds at 200 Hz, collecting a total of 600 samples. On the other hand, when data collection is
activated through the proximity sensor the sampling time is dynamic and depends on how long
the proximity sensor remains active. The maximum dynamic sampling time is 10 seconds. If
this is exceeded the system will output an error and the sampling should be restarted.

5.2.2 Data stripping

The first step of the actual data preprocessing is stripping “Empty” data from the beginning and
end of the collected signals. This data is introduced when sampling of the photodiodes starts
too early or ends too late. As can be seen in Figure 5.3, this data does not capture any shadow
and therefore contains no useful information. Stripping is done by calculating the variance of
each sample, normalizing the variance to a value between 0 and 1, and removing samples that
lie below a certain threshold. The threshold is determined by a method similar to the elbow
method used in clustering [63]. A large amount of samples is taken from the training and test
set, and data is stripped using thresholds ranging from 0 to 1. The average amount of samples
left over after stripping is plotted against the threshold, and the inflection point is found in this
data. Figure 5.4 shows this plot and the inflection point at a threshold of 0.20. A second, more
sophisticated data stripping method was tried which also considered the variance across several
samples by splitting the data into windows. However, this did not result in additional gains; so
the simpler method was used.
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Figure 5.4: Leftover samples after stripping vs. variance threshold with a highlighted
inflection point.
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5.2.3 Data downsampling and normalization

The model expects input data with fixed dimensions. However, during the data preprocessing
dimensions can vary, because data is either not sampled for a fixed amount of time due to the
proximity sensor or a certain amount of samples is stripped from the data. Assume the input
dimensions of the model are N×C, with C the number of channels and N the number of samples.
The original data contains an arbitrary amount of samples X, so to conform to the model input
dimensions the data is downsampled to a fixed length N . To achieve this, all samples are split
into groups of size floor(len(X)/N). If the remainder X mod N ̸= 0, the excess samples are split
randomly across groups, i.e. some randomly chosen groups will increase in size. Then, all samples
in each group are averaged, resulting in data of dimensions N ×C. The impact of different data
lengths is investigated in more detail, while also considering model accuracy loss in Section 6.1.3.

5.2.4 Channel ordering and information encoding

As the user moves their hand over the photodiodes and casts a shadow, a pattern is formed
when this data is shown as a 2D image. From this pattern, movements can be extracted by
examining how the shadow transitions over the different channels. Different patterns are created
when the channels are placed in particular orders and encode movement information differently.
To demonstrate the encoding of movement in the image patterns, three channel orderings are
shown in Figure 5.5. Horizontal channel ordering, meaning all horizontal channels side by side.
Vertical channel ordering, meaning all vertical channels are stacked side by side. Diagonal channel
ordering, meaning the diagonal channels are stacked side by side. The numbers next to the
photodiodes indicate the index in the image of where the channel is placed. The horizontal and
vertical orderings are annotated to show which patterns match specific hand movements. The
blue and red lines with markers indicate the channels which are related, i.e. they give information
about the direction of movement. Red channels indicate side-to-side movement, with left or right
indicated by the arrows in the patterns. Similarly, the blue channels indicate the up and down
movement of the hand of the user. For additional explanation, let us consider the horizontal
image and the first blue line as an example. Channels 1, 4, and 7 are connected with a blue
line, with channel 7 getting dark first, then 4, and then 1. This indicated the shadow moving
from channel 7 to 4 and then to 1, meaning the hand of the user is moving up, i.e. the upward
movement if encoded in this specific channel transition. The diagonal case is not annotated, as
it is not intuitively obvious which channels are related. However, a deep learning model might
be able to extract this information if it is there. In Section 6.1.2, the influence of channel order
is tested on two different models, and the resulting accuracy is measured.

5.2.5 Sampling delay distortion

In an ideal scenario, all the photodiodes are sampled at the same time instance. In that case,
the output voltage from each of the photodiodes is measured at the same time. However, in
practice, this is often not efficient as this requires a lot of extra hardware, and it might also be
unnecessary as long as the system can tolerate some amount of distortion. The photodiodes are
sampled one by one, from top left to bottom right. This can be compared to how digital cameras
sample their sensors, scanning line by line. In the context of the digital camera, distortion can
be caused by movement in either the camera or the image, which can result in blurry images.
For the photodiode array, distortion can be defined as the relative change in illuminance of
the photodiodes between times tstart sample and tend sample, i.e., the time it takes to sample
the whole array from photodiode 1 to 16. The first sampled photodiode will experience no
distortion, and the last sampled photodiode will experience the highest distortion. The factors
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Figure 5.5: Different channel ordering and how movement is related to shadow shifts.

that influence the amount of distortion are the users’ hand movement speed, sampling speed,
and gradient of the shadow. An upper bound for the amount of distortion can be derived, based
on a given hand movement speed and sampling speed and assuming no gradient. The distortion
is directly proportional to the change in illuminance of the photodiode, as the current through
the photodiode is an approximately linear function of illuminance (if it is within the proper
operating region). The maximum change in illuminance is obtained when a shadow with an edge
gradient ≪ d is moving at a 45° angle over the photodiode. Figure 5.6 shows how the upper
bound can be derived, with the relative change in shadow area marked in red. An estimate of 0.1
m/s for hand movement speed was determined by moving a user’s hand over a measuring tape,
taking a top-view video of it, and extracting the speed using the video timestamp. The change
relative to the sensor area is then obtained by dividing by the area of the sensor L2, resulting in
Equation 5.1.
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d = Vhand * (tend-tstart)  

Light

Figure 5.6: Example of distortion caused by the delay in sampling the first photodiode
and the last photodiode in the array.

Arelative change =
Ld

√
2− 1

2d
2

L2
(5.1)

This equation shows the maximum change in the shadow area covering the photosensitive
area between the sampling start and end times. Filling in L=2.3e-3 m as the photodiode side
length and d=0.1*1.05e-3 m results in 0.075 or 7.5%. However, when using only a subset of
the photodiodes this is reduced further. As the LightDigit dataset contains only 9 channels, the
sampling time becomes 0.59 ms, resulting in 0.036 or 3.6%. To evaluate the impact of sampling
delay distortion on classification accuracy, it is tested on 3 different deep learning models in
Section 6.1.4.

5.3 Expanding the LightDigit dataset

For model training, the LightDigit dataset is used. It is a dataset constructed by Hao Liu in 2021
for tackling the problem of digit recognition. The dataset consists of 20880 samples of air-written
digits collected by one person, who simulated different writing styles. Additionally, it contains
5500 samples from 24 different participants with different nationalities. The dataset contains 9
channels collected from a 3×3 grid out of the total 16 photodiodes on the photodiode array.
In µLightDigit, we expand the original dataset by mirroring all training data across the time

axis. These “new” samples are exactly the same digits as before, except for the written in the
reverse direction. This is highly beneficial since this data is very easy to obtain and results in
higher accuracy, and makes the models generalize better.

5.4 Tiny deep learning algorithm

Three deep learning models are considered for facilitating digit classification: a convolutional
neural network (CNN), long short-term memory (LSTM) model, and a convolutional-LSTM
hybrid model. This section provides background information on the model architectures and
provides the designs of each of the models which will be tested. Model distortion resilience
and the photodiode calibration algorithm will also be discussed. In Chapter 6, the models’
architectures outlined here will undergo a preliminary evaluation to determine the feasibility
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of running them on the microcontroller and to choose which models will be used in the final
evaluation. The final evaluation will test model performance and robustness in 3 indoor and 1
outdoor scenario.

5.4.1 Convolutional neural network model

Convolutional neural networks (CNNs) are most widely used for image recognition tasks. They
can extract spatial patterns from images by performing convolutions over the original image with
small, trained images called kernels. However, in research, they are also frequently used to classify
time series data, such as finding specific segments in audio (keyword spotting). Considering our
specific use case, the patterns which are created from drawing digits can be considered images,
as different digits provide a unique spatial pattern. The architecture which was used for the
evaluation can be seen in Figure 5.7, and is based on LeNet-5 [64], an old but still widely used
architecture. CNNs provide the added benefit of dimensionality reduction through convolutional
and pooling layers, reducing the number of operations required. From previous tests using keras-
tuner it was found that kernels of 9×3 and 5×3 are beneficial for the data which is provided. This
makes sense, as the input data is not square but rectangular and most changes in the patterns
happen along the vertical axis. The amount of filters is varied between N = 16 . . . 64 and is kept
the same in both layers.

5.4.2 Long short-term Memory model

A long short-term memory model (LSTM) [65] is considered. It is frequently used in related
research, as it is suitable for classifying time series data. This model has a large number of
parameters, as the intermediate hidden state needs to be returned (return sequences=True in
TensorFlow) to get accuracy that is comparable to the CNN. Without this setting, the TFLite
model greatly suffers in accuracy when the model is converted to TFLite and quantized. The
architecture can be seen in Figure 5.8. The model uses a single LSTM layer and a dense layer,
with the number of units in the LSTM layer varied between N = 16, . . . , 128.
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5.4.3 ConvLSTM model

A hybrid model using both convolutional layers and an LSTM layer [66]. The idea is to combine
the strengths of both convolutional layers and LSTM layers. The first part consists of convo-
lutional layers which are meant to extract spatial patterns from each time step and reduce the
dimensionality. The second part consists of an LSTM layer that extracts temporal patterns,
i.e., patterns along the time dimension. To realize this, TimeDistributed layers are used to
apply the convolutional and pooling layers to every time step, which is input as a 3×3 grid. The
amount of filters for both convolutional layers is kept constant at 32, with kernel sizes 3×3 and
2×2, while varying the amount of LSTM units between N = 16, . . . , 128. The architecture can
be seen in Figure 5.9.
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Figure 5.10: Output measurements of the photodiode array during calibration.

5.4.4 Photodiode calibration

An algorithm was developed for automatically calibrating the photodiode array to the ambient
light intensity. The goal of the calibration is to provide the output of the photodiode’s maximum
dynamic range, i.e. the highest possible output resolution. This is done through a series of
measurements with different feedback resistance values. The measurements are started with
the maximum possible resistance value, i.e. the highest sensitivity. In almost all except dark
environments, this will cause the photodiodes to reach saturation. Then the resistance value
is reduced until a significant drop in output voltage is measured, after which the resistance
is gradually increased. If consecutive measurements then fall within a predefined range the
measurements are considered the same and calibration is complete. During calibration, the light
intensity is averaged over the entire photodiode array and measured several times per iteration.
The light intensity should remain constant across the photodiode array during calibration, which
can take up to 2 seconds to complete. Figure 5.10 show the output of the photodiode array in 2
different ambient light intensities. Note how the signal approaches the maximum possible output
as the calibration converges. Also, at the start of the calibration, the photodiodes are saturated,
which can be seen by the negative voltage at the inverting input. This happens because the
opamp cannot provide the required voltage to compensate for the photodiode current.
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Chapter 6

Performance Evaluation

This chapter describes the evaluation of the proposed deep learning models for µLightDigit. It
consists of two main parts: the preliminary evaluation and the final evaluation.
Preliminary evaluation. All three model architectures which were described in Chapter 5:

a CNN, LSTM, and ConvLSTM are tested if running them on the microcontroller is feasible.
Two practically applicable evaluation scenarios from the LightDigit dataset are used to determ-
ine model accuracy. These scenarios are also used to perform three tests using transformed input
data: several input data length dimensions, three different channel orderings, and the influence
of sampling delay distortion are investigated and their impact on accuracy is measured. Through
post-training quantization, model weights and biases are quantized from regular 32-bit floating
point numbers to 8-bit integers. The models are again evaluated to see the impact the quant-
ization process had on the accuracy. Then, the models are evaluated on the microcontroller to
determine inference time and model size. Two of the best models in terms of accuracy in both
testing scenarios are chosen to continue to the final evaluation.
Final evaluation. The robustness is investigated on the two best-performing models from the

preliminary evaluation. This is done by measuring the accuracy of the CNN and the ConvLSTM
models in different lighting conditions. Simultaneously, the new photodiode array is tested if it
is capable of functioning in a wide range of light intensities. A set of four different reproducible
test setups have been created for model testing, covering one outdoor and three indoor scenarios,
in a wide range of light intensities. Using two people, test data is collected in the scenarios, each
providing 20 samples for every digit. Besides, for each test setup, the corresponding shadow pat-
tern is collected. For the evaluation, the accuracy of each model is measured, and the results are
scrutinized with the help of collected shadow patterns, confusion matrices, and image patterns.

6.1 Preliminary evaluation with LightDigit dataset

For the preliminary evaluation, only data from the LightDigit dataset is used. Two reference
evaluation scenarios are constructed specifically for the preliminary evaluation of the models.
The dataset is split into two sets, 80% of the data is dedicated to the training set and 20% to
the test set. Each model is trained using only the training set and its performance is evaluated
by the accuracy it is able to achieve on the test set. The way this split is made is different for
both evaluation scenarios, and is detailed below:

1. Intra subjects: The test set contains data from people who are also in the training set.

2. Inter subjects: The test set does not contain data from people who are in the training set.
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Figure 6.1: Intra subjects accuracy comparison.
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Figure 6.2: Inter subjects accuracy comparison.

Both scenarios are considered realistic in a practical sense. For example, if the system would is
placed in a new environment with unknown users the inter subjects scenario applies. However, as
the system is used and the model is updated with new data it would transition to intra subjects.
Inter subjects represents the most challenging scenario, as some writing styles might not be in
the training set. Therefore, this scenario results in lower accuracy compared to the intra subjects
scenario. In order to eliminate randomness in the training process, the results of each scenario
are averaged over 5 runs.

The main goal of the preliminary evaluation is to determine which kind of model architecture
would be suitable for running on the microcontroller in terms of inference time and model size.
Both evaluation scenarios detailed in Section 5.3 are tested on all three model architectures
discussed in Chapter 5. Figures 6.1 and 6.2 show accuracy performance of the reference model,
unquantized TFLite model and 8-bit quantized TFLite model. The accuracy received from the
TensorFlow model is considered the baseline, and the TFLite and quantized TFLite are compared
to the baseline model to establish the effects of model conversion and quantization on accuracy.
To make a reasonable comparison, each model type is provided with roughly the same layout,
with the output layers being the same for all the models. The output layers consist of a flatten
layer, dense layer and the output layer. Before varying parameters specific to the different model
architectures, an evaluation of the amount of dense nodes in the dense layer was performed.
After the evaluation the amount of dens nodes is fixed at 128, as adding extra nodes made only
a very slight difference in accuracy, while adding significantly to model size.

6.1.1 Model comparison

The CNN experiences no decrease in accuracy from the TFLite conversion and in some cases, the
quantized model even outperforms the reference model. This is contrary to both the LSTM and
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Figure 6.3: Inference time comparison for models run on the MCU.

20 40 60 80 100
Number of parameters 1e3

100

200

300

400

M
od

el
 si

ze
 (k

B)

Reference
Quantized

(a) CNN

200 400 600 800
Number of parameters 1e3

0

1000

2000

3000

M
od

el
 si

ze
 (k

B)

Reference
Quantized

(b) LSTM

200 400 600 800
Number of parameters 1e3

0

1000

2000

3000

M
od

el
 si

ze
 (k

B)

Reference
Quantized

(c) ConvLSTM

Figure 6.4: Model size comparison.

ConvLSTM models, which do suffer an accuracy loss of up to 10% for some model sizes. This
is most likely due to the inference reliability LSTM being much more sensitive to quantization
than the CNN, and as the ConvLSTM also uses an LSTM layer it is also negatively affected by
this. Besides accuracy, the other important factors are inference time and model size, which are
compared in Figures 6.3 and 6.4 respectively. The CNN has the slowest inference time using the
reference kernels but benefits greatly from the optimized kernels, providing a 10-fold decrease
in inference time. On the other hand, the LSTM sees almost no benefit from the optimized
kernels, and the ConvLSTM has a moderate constant benefit, as the convolutional layer is kept
at the same size. The CNN is also the smallest of the models in terms of size. However, with
quantization, even the largest of both the pure LSTM and ConvLSTM models still remain below
1 MB in size, which is acceptable for the microcontroller. For the final evaluation, two model
architectures are picked which perform best in both scenarios of the preliminary evaluation. The
pure LSTM is disregarded because of its slow inference time and poor quantized performance.
Due to excellent post-quantization performance, a high-parameter CNN is the first choice, as it
performs with an accuracy of 95% and 85% in both testing scenarios. For the second model, a
medium-parameter ConvLSTM model is chosen, as it has better performance than the CNN in
inter subjects, and inference time remains below 1 second.

6.1.2 Influence of channel order

As mentioned in Section 5.2.4, the input data can be altered by changing the order in which
channels appear in the image patterns. Doing so changes the way movement information is
encoded in the input data. This might change the way the models perceive the input data, and
influence their accuracy. Especially the CNN, as this is a model which extracts its information
from spatial patterns. Horizontal, vertical, and diagonal channel orderings are tested for the
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Table 6.1: Different channel orders with accuracy from LSTM and CNN models for
the intra subjects scenario.

Channel order LSTM CNN

Horizontal
1 2 3
4 5 6
7 8 9

0.953 0.941

Vertical
1 4 7
2 5 8
3 6 9

0.948 0.939

Diagonal
1 2 4
3 5 7
6 8 9

0.952 0.924

Table 6.2: Impact of different data lengths on model accuracy for the inter subjects
scenario.

Data length (N) LSTM CNN

100 0.958 0.941
75 0.963 0.942
50 0.956 0.945
25 0.953 0.933

LSTM and CNN models. The ConvLSTM is left out, as it is a combination of the two other
models. The results can be found in Table 6.1. It is observed that changing channel order has
only a small influence on model accuracy, staying virtually equal for the LSTM and only dropping
1.7% in the diagonal case for the CNN.

6.1.3 Influence of data length

Several data input lengths have been considered (N = 100 . . . 25), with Table 6.2 showing different
dimensions of N with resulting accuracies tested for the intra subjects evaluation scenario. It
was chosen to use a length of N = 50 samples for the models, as at this point it begins to drop
in accuracy for the convolutional model, while still being small enough to not cause an excessive
number of parameters in the models.

6.1.4 Robustness to distortion

To ensure the sampling delay does not cause the models to significantly drop in accuracy, the
impact of distortion is investigated on the most significant models. An estimation of distortion
was calculated for the test set of the model, and the model was evaluated using this test data.
The maximum distortion is the maximum attainable distortion on the channel (i.e. photodiode)
which is sampled last, as illustrated in Figure 5.6. As distortion increases approximately linearly
for subsequently sampled channels, the value is linearly interpolated between each channel. Then
this value is either subtracted from or added to the values of the test set, depending on the sign
of the time derivative of the samples. If the time derivative is positive, meaning the channel is
getting brighter, the distortion value is added to the corresponding channel. Vice versa for when
the time derivative is negative. Figure 6.5 shows the distortion robustness for the medium-sized
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Figure 6.5: Distortion robustness of the different reference models using the intra
subjects scenario.

model for each of the model types. The accuracy remains stable until 20% distortion, after which
it starts to decline. This is well below the 7.5% maximum distortion calculated in Section 5.2.5,
so this has no influence on model performance.

6.2 Final evaluation setups

This section details the test setups which were used to collect verification data, which is used for
the final evaluation. All data was collected using the new photodiode array design. The data
will be used to test the robustness of the models in different lighting environments, which causes
different shadow patterns. Setups 1, 2, and 3 used a tripod with Sencys 2700k 10 W light bulbs
attached to the handle. The distance between the hand of the user and the photodiode array
was attempted to be kept between 5 and 10 mm. The exact parameters of the test setup are
listed in table 6.3. The data is collected by two people, one of which is in the training data and
one is not. The results are averaged to represent a scenario somewhere between inter and intra
subjects, to provide some sense of the average performance of the system.

• Setup 1: Single light source directly overhead, with light at different heights to create
different light intensities. This setup is mainly to show performance in different light
intensities.

• Setup 2: Symmetrically placed light sources on the center line of the photodiode array.
Height h remains the same but angle of incidence θ is varied. This setup is to show the
influence of wider shadow patterns on model accuracy.

• Setup 3: Asymmetrically placed light sources, with the left light source rotated φ°around
the mid-point of the photodiode array. This setup is to show the impact of a non-symmetric
shadow pattern.

• Setup 4: Sunlight, however since photodiode saturation remains a problem at high light
intensities (above 15k lux), the data collection is performed during overcast conditions.
This setup is to show performance in natural light, which causes a vastly different shadow
pattern as light is incident from all sides.
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Figure 6.6: Evaluation setups.

Table 6.3: Test setup parameters

Test setup h1,2 θ1,2 φ Illuminance Rf

1a 0.17 m - - 5000 lux 63 kΩ
1b 0.5 m - - 1000 lux 226 kΩ
1c 0.6 m - - 500 lux 525 kΩ
2a 0.4 m 15 ° - 1350 lux 195 kΩ
2b 0.4 m 15 ° - 900 lux 280 kΩ
3 0.6, 0.4 m 30 °, 15 ° 45 ° 900 lux 280 kΩ
4 - - - 10k lux 15 kΩ

6.3 Shadow patterns

To better inspect the shape and dimensions of each shadow created in different testing scenarios
the shadow patterns have been recorded. To obtain the shadow pattern, a 3D printed box with
a light diffuser lid was created and is shown in Figure 6.7. The lid is a light diffuser plate with
a drawing of the approximate positions of the photodiodes and provides a reference for shadow
dimensions. A slot at the bottom of the box was created such that it fits a smartphone for video
recording. Each shadow pattern image contains the approximate dimensions of the photodiode
array. The shadow patterns were edited to enhance the visibility of the shadow, by turning the
image to greyscale and increasing the contrast. It is very obvious that the shadow pattern in
setup 4 is much weaker compared to the other scenarios.
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Figure 6.9: Shadow patterns in setup 2
Figure 6.10: Shadow
pattern in setup 3

Figure 6.11: Shadow
pattern in setup 4

6.4 Final evaluation

For the final evaluation, two model architectures that performed the best in both the intra and
inter subject scenarios are chosen from the preliminary evaluation. The first model is a relatively
small CNN model with 64 filters and 100k parameters. The second model is a larger ConvLSTM
model with 32 LSTM units and 400k parameters. These models will be tested in the final
evaluation.
Hyperparameter optimization. The model hyperparameters are further optimized using

keras-tuner through the hyperband algorithm to find possible better combinations of first and
second layers filters, kernel sizes, and amount dense nodes, resulting in the models which can be
found in Table 6.4. The model parameters are varied around the existing parameters in order to
find the optimal combination of hyperparameters for the two chosen models. For the ConvLSTM
model, a 1d convolution approach, as well as a 2d convolution approach, is tried as well as trying
variations in the number of filters, kernel size, and amount of LSTM and dense nodes. However,

49



Table 6.4: Scenario accuracy and statistics for the quantized tuned models

Scenario CNN ConvLSTM

Intra subjects 0.957 0.954
Inter subjects 0.870 0.857

Statistics

Parameters 138k 446k
Inference time 792 ms 947 ms
Model size 147 kB 494 kB

Table 6.5: Prediction accuracy for both models in all scenarios

Test setup CNN ConvLSTM

1a (one light source) 0.807 0.787
1b (one light source) 0.818 0.836
1c (one light source) 0.897 0.892

2a (two light sources, symmetric) 0.868 0.743
2b (two light sources, symmetric) 0.783 0.724
3 (two light sources, asymmetric) 0.970 0.893

4 (outdoor with sunlight) 0.778 0.892

Average 0.846 0.824

to keep both the inference time below 1 second and the quantized performance as high as possible,
the maximum LSTM nodes of the ConvLSTM model are set at 40. For the pure CNN models,
the kernel sizes and amount of filters are varied in the convolutional layers. For the pooling
layers, the pool sizes, and strides are varied. For both models, there is also experimented with a
dropout layer, but this is disregarded as it does not provide any extra accuracy improvements.
Additionally, the output dense layer of both models has been tuned between 128 and 256 nodes.

Final models. For an initial comparison, the final tuned models are quantized and tested
again using the LightDigit dataset reference scenarios. By tuning the number of filters, LSTM
nodes, and dense layer size the models increased in size compared to the baseline models. To
ensure the inference time and model size are still at an acceptable level, this was tested on the
microcontroller. Both the reference accuracy and model statistics can be found in Table 6.4. The
accuracy of both models is close, however, the CNN performs 1.5% better in the inter subjects
scenario. This is likely due to the quantization causing accuracy degradation in the ConvLSTM.
The inference time is also still within 1 second and the model size is within 1 MB.

6.4.1 Accuracy in different setups

The accuracy results for each setup are given in Table 6.5. In order to investigate the model
accuracy differences across the test setups, we use the shadow patterns as described in Section 6.3
and examples of image patterns from each test scenario, which can be seen in Figure 6.12.
In the following section, the accuracy of each setup is discussed. When averaging the CNN
and ConvLSTM accuracy across all test setups, it can be concluded that both model types
have comparable accuracy. However, it can be observed that the ConvLSTM performs slightly
worse than the CNN, lagging behind 2% in accuracy. When considering specific setups, setup
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1 accuracies are comparable, while the CNN performs best on setups 2 and 3 and ConvLSTM
performs best on setup 4. It should be noted that the dataset for performing these tests is not
large, as it only contains 40 samples per digit per setup. This can give an idea of the model
performance in the real world, but could also lead to variation in the results. To minimize the
influence of variation due to the training process, the models have been trained and tested 5
times, and the results are averaged.

Setup 1 (one light source)

As can be seen from the shadow patterns for setup 1 in Figure 6.8, they all look very similar to
each other. All of them have a single connected shadow with strong contrast. This is reflected
in Figure 6.12 by very clear lines separating shadow from light areas. Both models are also
performing on par with each other, differing at most 2%. Results for setup 1c are better than
for 1a and 1b, showing an accuracy of close to 90% for both models, compared to 78.7–83.6%.
It may be performing slightly better because the shadow pattern is somewhat narrower at the
base of the finger, with a larger gradient compared to 1a and 1b.

Setup 2 (two light sources, symmetric)

Setup 2 yields the overall worst performance of all setups and the CNN greatly outperforms the
ConvLSTM. The CNN is still able to achieve 86.8% and 78.3% accuracy on setups 2a and 2b
respectively, while the ConvLSTM only reaches 74.3% and 72.4%. While the lines in the image
pattern in 2a are already fading compared to setup1, setup 2b proves the most challenging of all.
Associated with this setup is a wide, relatively homogeneous shadow with only a small central
dark spot which can be seen in Figure 6.9b. By having a poorly defined shadow of the fingertip,
the shadow captured creates weak, low-contrast lines in the corresponding image pattern. It
is also highly sensitive to changes in finger height, as raising the finger higher will cause the
secondary shadows to diverge. This can be observed in Figure 6.12, as the top part is darker
than the bottom part. Having such poor separation between channels makes it harder for the
models to identify channel shifts.

Setup 3 (two light sources, asymmetric)

Setup 3 is the best setup for both models, with the CNN reaching 97.0% while the ConvLSTM
is able to achieve 89.3%. The shadow pattern can be seen in Figure 6.10, and is similar to setup
2a, showing a large concentrated shadow area below the fingertip. The fact that the secondary
shadows are asymmetric does not seem to influence the model performance. The general trend
seems to be that shadow patterns with a large, concentrated shadow below the fingertip and a
secondary shadow with lower contrast surrounding it performs the best. This may be explained
by the fact that the larger, surrounding shadow can bridge the relatively large gaps between the
photodiodes more easily, allowing the capture of more sublet hand movements. While at the
same time, the exact fingertip position is very clear because of the high-contrast center shadow.

Setup 4 (outdoor with sunlight)

Setup 4 is the only one where the CNN gets heavily outperformed by the ConvLSTM, with 77.8%
accuracy against 89.2%. The associated shadow pattern shows a low-contrast point shadow
directly below the fingertip, which results in line fading in the corresponding image pattern.
This explains why the CNN is having trouble in this case, as the lines have low contrast and get
blurry between channels. However, the true reason for the performance difference between the
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Figure 6.12: Comparison of image patterns for every setup for the number 0 with the
reference from the training set.

two models in the same setup is quite difficult to explain, as it is not straightforward to show
what the models “know” and what information they extract from the input data. However, as
the CNN is solely focused on spatial patterns, the results from this model are more interpretable
by humans as opposed to the ConvLSTM. As lines in the image patterns fade, it becomes more
difficult for the CNN model to extract as many distinct and detailed characteristics, such as is
the case in 2b and 4. On the other hand, the ConvLSTM is able to extract spatial information
from individual samples and combine it with time information. In other words, the pure spatial
features lose information as the lines become blurry, but the ConvLSTM is able to compensate
for the loss of information with the addition of the temporal features. This is why, in the case of
setup 4, the ConvLSTM has superior performance to the CNN. To conclude, both models have
their strengths, but overall the CNN is the preferred model. It is smaller, has a lower inference
time, no quantization error, and is faster to train, which outweighs the fact that the ConvLSTM
is able to outperform it in some scenarios.

6.4.2 Digit misclassifications

To provide a deeper performance analysis of µLightDigit, a subset of all confusion matrices
is used for explaining differences in accuracy (setups 1a, 2b, and 4), which can be seen in
Figures 6.13, 6.14 and 6.15 respectively. The entire collection of confusion matrices can be found
in Appendix C. By comparing confusion matrices in Figure 6.13, similarities in misclassifications
can be observed by the different models. This could indicate problems with the data causing the
misclassifications. By combining this information with the observed shadow patterns and image
patterns, several explanations can be given which may lead to misclassification. It should be
noted that these problem do not occur in isolation, but often in conjunction.
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Figure 6.13: Confusion matrices for Setup 1a (one light source).
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Figure 6.14: Confusion matrices for Setup 2b (two light sources, symmetric).

Motion similarities between digits

The writing motion of specific digits is very similar. An example of such cases happening can be
observed in setup 1 in particular, where the 4 is frequently mistaken as being a 9. Depending
on the handwriting, someone might write a 4 with exactly the same motion as writing a 4, but
without closing the top circle. However, the similarity between digits on its own is often not
enough to cause misclassification. This happens due to added distortions that are introduced
through other ways which are discussed below.

Fly-in and fly-out distortion

Before someone starts writing, the hand is moved in position to where a person starts writing
a certain number. For different handwriting, this starting location might vary. This problem is
called fly-in and refers to the hand of the user “flying into” the sensing area, causing shadows to
be detected and sampling to start. An example of where this might cause a problem is between
the digits 4 and 9. Moving the hand towards the starting position of the 4 might exactly mimic a
portion of writing the 9. Similarly, fly-out is the opposite case, where the hand “flies out” of the
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Figure 6.15: Confusion matrices for Setup 4 (outdoor with sunlight).

sensing area after writing is complete. This can cause numbers such as 5 and 8 to be confused.

Low resolution aliasing

The third cause for classification problems that can be observed is the photodiodes not capturing
any shadow for some period of time. This means the combination of finger location and shadow
pattern causes the shadow to fall between photodiodes or outside the sensing area. This results
from both the number of photodiodes and the photodiode area being low and the distance
between the photosensitive area being relatively large. Some parts of shadow patterns might
be missed if they are not directly moved over a photodiode, such as is the case for setups 2b
and 4. Visual evidence of cases of low-resolution aliasing can be observed in 6.12 setups 2b, 3,
and 4. The lack of grey in the middle part of these image patterns indicates that no shadow is
captured. This could be solved by creating a more densely packed photodiode array with more
photodiodes.

6.4.3 Photodiode array limitations

During testing in the different verification setups, it became clear that the photodiode array is
only able to handle illumination of up to 15k lux. Beyond this point, the output gets locked at
the positive power supply rail and does not decrease even when the photodiode is fully covered.
It is not quite clear why this happens, but light entering the side of the package has some
influence. There might also be internal effects in the photodiode package, such as excessive
leakage, which lock the output in saturation. However, this could not be confirmed through
simulation or testing. Even though this forms a problem outside in sunny conditions, virtually
all indoor use cases for the system are covered. Therefore, it does not cause problems in most
practical scenarios.
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Chapter 7

Conclusion

The µLightDigit project is the second iteration of the LightDigit project, which has developed
a contactless air-writing system based on ambient light detection using embedded deep learning
on a Raspberry Pi 4, using only a 4×4 grid of simple photodiodes. The main challenges of this
project were to develop a novel TinyML system using a commodity microcontroller, which is
robust in a large variety of lighting conditions. This was achieved by transitioning LightDigit to
an STM32H743, an ARM Cortex-M7 based microcontroller. To facilitate classification, a deep
learning model was created which can run in real-time on this hardware. Additionally, a new
photodiode array was designed to overcome the saturation issues of the photodiode array initially
developed for LightDigit, which greatly increased system robustness. The photodiode array was
made to have an adjustable light sensitivity, which is made possible through a programmable
potentiometer in the feedback network. The newly designed photodiode array has excellent
adaptability to light intensities up to 15k lux. Through a calibration algorithm, the photodiode
array can automatically be calibrated to the surrounding light intensity to provide the optimal
dynamic range.

To investigate the right kind of deep learning model, an analysis was performed that tested
multiple types of deep learning architectures. Three different kinds of embedded deep learning
models were tested: a convolutional neural network (CNN), long short-term memory (LSTM),
and a CNN-LSTM hybrid model. The models were developed using TensorFlow, converted to an
optimized and quantized format using TensorFlow Lite and finally were run on the microcontrol-
ler using TensorFlow Lite for microcontrollers. Using the LightDigit dataset, the models were
trained using the inter and intra subject scenarios. A preliminary evaluation of the three different
models was performed, where each of the models was tested on the microcontroller, reporting
on inference time and model size. The influence of data length, channel order, and sampling
delay distortion was also investigated. Data length was set at 50 samples, the channel ordering
horizontal and the amount of distortion that can be tolerated is up to 20%, which is well below
the calculated maximum of 7.5%. Through comparison of accuracies achieved in the evaluation
scenarios, it was found that the CNN and ConvLSTM (with a low number of LSTM units) are
able to maintain accuracy after post-training quantization, while also maintaining satisfactory
inference time. Through highly optimized operation kernels provided by the CMSIS-NN library
integrated into TFLM, the inference time of the models can be greatly reduced, especially the
CNN. The pure LSTM was found to suffer from accuracy loss after quantization and was not
able to greatly benefit from inference time speedup through CMSIS-NN.

For the final evaluation, a CNN and ConvLSTM were chosen which provided the best perform-
ance in the preliminary evaluation. In order to test system robustness, 4 different, reproducible
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verification setups were created to test different ambient lighting conditions and light intensities.
Shadow patterns were recorded and compared to explain the results. The CNN resulted in an
average accuracy of 84.6% and the ConvLSTM an average accuracy of 82.4%. The top result
for both was achieved in setup 3, with the CNN achieving 97% accuracy, while the ConvLSTM
achieved 89.3%. The CNN was the lightest model with 792 ms inference time and a total size
of 138k parameters, which translated to 147 kB. ConvLSTM was larger with 446k parameters
at 494 kB and 947 ms inference time. Both models remain below 1 second inference time, fast
enough for real-time application. The ConvLSTM performed best in the outdoor testing scen-
ario with 89.2% compared to 77.8% of the CNN. However, the CNN was generally superior in
all other indoor test setups, which will be the primary deployment environment of the system.
Given the extra advantages that the CNN provides, such as excellent quantized performance,
low inference time, low model size, and fast training it is preferred over the ConvLSTM. At the
inference time is deemed too long, this can be shortened by reducing the number of filters in the
convolutional layers, and the number of dense nodes in the dense layer. It will be at the cost of a
few percentage points of accuracy, however good results above 90% accuracy are still attainable.

7.1 Future work

During the development of µLightDigit, new ideas have come up for improvements that could
be implemented in future iterations. Even though the photodiode array has been improved by
having adaptable sensitivity, it is not able to handle bright sunlight. There also exist unresolved
problems which can be addressed in future revisions, such as dealing with modulated led light.

7.1.1 Fly-in and fly-out distortion

An investigation can be performed to determine the impact of fly-in and fly-out distortion during
the air-writing phase. An algorithm can be developed that strips off some part of the data, or
by using some other method, minimizes the influence of fly-in and fly-out distortion.

7.1.2 Modulated LED light

In recent years, dimmable LED lights are more frequently used in indoor lighting scenarios.
These lights are pulse-width modulated (PWM) with high-frequency signals to facilitate the
dimming of the LEDs. The human eye is not able to pick up these signals, but the photodiodes
do see this signal. It is present as high-frequency noise in light measurements, which can be
detrimental to the accuracy of the models. An algorithm can be devised which can detect the
modulation frequency and adapts the photodiode sampling in such a way that the photodiode
is only sampled on the high pulse. This would make the system even more robust in different
lighting conditions.

7.1.3 Data collection during operation

As it is a large effort to collect more data, this can be performed while the device is being used
in practice. New data samples can be saved to the internal flash of the microcontroller and
offloaded to another device that can train a new model. The model can then be swapped out
with a new model which should be able to achieve higher accuracy.
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7.1.4 Finger trajectory estimation

First extracting a trajectory and then performing digit classification on a simpler, 2D image has
been successfully performed in existing research. This eliminates the time aspect of the data and
greatly simplifies the classification problem. It would also allow the use of the MNIST dataset
for handwritten digits, and can perhaps also be relatively easily expanded to other handwritten
symbols. Estimating the trajectory of the finger was attempted using optical flow techniques.
Experiments were performed using the Lucas-Kanade and Horn-Schunck methods to extract the
optical flow vectors from individual samples. However, it was found that the optical flow vectors
were moving with heavy biases in certain directions and the results were not good enough to be
usable. A likely cause for this might be the small size of the individual samples (3×3). Another
method could be developed to estimate a finger trajectory from the data.

7.1.5 Improved photodiode array design

The existing photodiode array can be further improved to avoid low-resolution aliasing and bright
light saturation. The OPT101 is already a very old design IC, and modern photodiodes have
advantages. Using a different photodiode with lower junction capacitance, such as VBP104S
(48 pF compared to 1.2 nF), avoids needing large stabilization capacitors which result in faster
response time and higher system bandwidth. Another advantage would be a smaller package
size, which means more photodiodes can fit closer together for higher resolution.

Recommendations for photodiode array design

When building a new photodiode array with an external op amp, it is recommended to use a
high bandwidth rail-to-rail operational amplifier suitable for low supply voltage. Also, note that
transimpedance amplifiers used with photodiodes should take DC parameters into account. The
most important is the input bias current, which should be much smaller than the photodiode
current. A good choice would be a precision rail-to-rail opamp such as the OPA320. A challenge
would be to investigate how well the existing dataset translates to the use of different photodiodes.
Modern, digital photodiodes can also be considered. This saves the trouble of finding a proper
photodiode and opamp combination, stabilizing the circuit, and converting the output signal.
All values can immediately be read digitally, however one should take note of the conversion time
of these digital sensors. These can be relatively long, e.g. in the range of several hundreds of
milliseconds, which is not fast enough to capture dynamic hand shadows as it would cause too
much distortion.

Powering the system through the photodiodes

As photodiodes are simply small solar cells, they generate current which can be used to power
devices. If µLightDigit can be fitted with a battery and larger photodiode array, it might be
possible to run the device using only the power provided by the photodiode array. This would
require substantial design changes to the current design, so decent knowledge of electronics design
would be recommended.
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Appendix A

PCB design files

A.1 Electrical schematics

Figure A.1: OPT101 with switch.
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Figure A.2: Feedback network.

Figure A.3: Output filter.
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Figure A.4: Connectors.
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A.2 PCB layout

Figure A.5: PCB track layout.
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Appendix B

SPICE simulations

B.1 Simulation layouts

Figure B.1: Simulation layout OPT101.
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Figure B.2: Simulation layout output filter.
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B.2 OPT101 SPICE model

* OPT101P,W SPICE MACROMODEL-- Copyright 1994 Burr-Brown Corp.

* Bandwidth: 14kHz, Iq = 0.12mA, Single-Supply: +2.7 - +36V

* REV.A 12-13-94 EM

*

* Connections: vs

* | inverting input

* | | vpin3

* | | | feedback

* | | | | vout

* | | | | | common

* | | | | | |

.subckt OPT101 vs in vpd feed vout com

*

c1 11 12 1E-12

c2 6 7 1E-12

cee 10 99 9E-12

cpar in feed 5.5e-12

cf in vout 9e-12

cphoto in com 1200e-12 ; photodiode capacitance

dc vout 53 dx

de 54 vout dx

dlp 90 91 dx

dln 92 90 dx

dp 4 vs dx

egnd 99 0 poly(2) (vs,0) (4,0) 0 .5 .5

fb 7 99 poly(5) vb vc ve vlp vln 0 1.061E9 -1E9 1E9 1E9 -1E9

ga 6 0 11 12 22.5E-6

gcm 0 6 10 99 314.2E-12

iee vs 10 dc 10.00E-6

hlim 90 0 vlim 1K

q1 11 in 13 qx

q2 12 1 14 qx

jpd ed vout vout jp ; JFET pulldown

r2 6 9 100e3

rc1 44 11 79.58E3

rc2 44 12 79.58E3

re1 13 10 74.40E3

re2 14 10 74.40E3

ree 10 99 20.00E6

ro1 8 vout 3

ro2 7 99 3

rp vs 4 2.8e6

rf in feed 1e6

vb 9 0 dc 0

vc vs 53 dc 1.815

ve 54 4 dc 0

vlim 7 8 dc 0
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vlp 91 0 dc 15

vln 0 92 dc 15

vls 4 44 dc 0.7

vped 1 com dc 7.5e-3

vbulk 4 0 dc 0

vdrain ed vpd dc 0

iq vs 4 dc 100u

fdrain vs 4 vdrain 1

.model dx D(Is=800.0E-18)

.model qx PNP(Is=800.0E-18 Bf=25.00E3)

.model jp PJF(VTO=-1.2 BETA=72U LAMBDA=7M)

.ends

72



Appendix C

Test setup confusion matrices
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Figure C.1: Setup 1 confusion matrices.
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Figure C.2: Setup 1 confusion matrices.
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(b) ConvLSTM 5000 lux

Figure C.3: Setup 1 confusion matrices.
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Figure C.4: Setup 2 confusion matrices.
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(a) CNN θ=30°
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(b) ConvLSTM θ=30°

Figure C.5: Setup 2 confusion matrices.
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(a) ConvLSTM φ=45°
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(b) ConvLSTM φ=45°

Figure C.6: Setup 3 confusion matrices.
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(a) CNN 10k lux
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(b) ConvLSTM 10k lux

Figure C.7: Setup 4 confusion matrices.
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Appendix D

NUCLEO-H743ZI2 pins

Table D.1: NUCLEO-H743ZI2 pin assignment.

Pin name Connector Pin

OPT101 1 CN11 PD4
OPT101 2 CN11 PC1
OPT101 3 CN11 PG3
OPT101 4 CN11 PF2
OPT101 5 CN11 PD5
OPT101 6 CN11 PC0
OPT101 7 CN11 PE2
OPT101 8 CN11 PF8
OPT101 9 CN11 PD6
OPT101 10 CN11 PD3
OPT101 11 CN11 PE4
OPT101 12 CN11 PF9
OPT101 13 CN11 PD7
OPT101 14 CN11 PG2
OPT101 15 CN11 PE5
OPT101 16 CN11 PG1
CF1 10pf CN11 PE6
CF2 22pf CN11 PG15
CF3 10pf CN11 PG10
CF4 47pf CN11 PG13

COUT DISCHARGE CN11 PD2
COUT CHARGE CN11 PC11

VMIN DISCHARGE CN11 PG11
I2C1 SDA CN9 PB7
I2C1 SCL CN9 PB6
ADC IN CN10 PF5

APDS9930 INT CN10 PE8
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