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Abstract
Coastal and offshore infrastructure must be designed to withstand extreme wave-induced loading con-
ditions. Extreme Value Analysis (EVA) is often employed to infer probabilistic distributions that provide
information about extreme design conditions. In traditional practices, EVA is performed under the as-
sumption of stationarity. This means that the probability of extreme events is constant in time. However,
hydraulic loading conditions are expected to exhibit temporal variability in severity and frequency as
a result of climate change. Therefore, the assumption of stationarity becomes questionable. Non-
stationary extreme value analysis (NEVA) for inferring extreme hydraulic loads have become more
attractive in recent years. However, the applicability of NEVA models is debatable ansd differs on a
case-by-case basis. Large scale oceanic bodies can be characterized by spatially and temporally vary-
ing extreme wave characteristics. Clustering analyses have proven to be successful to identify regions
exhibiting similar extreme wave characteristics. Creating clusters based on similar extreme wave char-
acteristics can potentially improve extreme value modelling because intra-cluster information can be
pooled to derive more accurate extreme value models.

This research presents a practical assessment of the applicability of clustering analysis and non-stationary
extreme value modeling of extreme wave statistics at cluster level in the North Sea. The primary ob-
jectives of this research are: (1) Study the temporal variability extreme significant wave height (Hm0)
and extreme wind speeds (U10) in the North Sea domain, (2) Investigate how hierarchical clustering
analysis (HAC) can be employed to cluster grid points that exhibit similar extreme wave characteristics,
(3) How the obtained clusters and temporal variability can be employed to derive extreme value mod-
els describing extreme Hm0 statistics at cluster level and (4) assess whether NEVA models at cluster
level form a practical alternative compared to conventional stationary analysis in the design and risk
assessment of hydraulic infrastructure in light of climate change.

Temporal trend analysis of Hm0 in the North Sea showed that the period between 1990 and 2020 can
be characterized by a decreasing trend. Between 1950 and 2020, a decrease in Hm0 intensity is ob-
served in the Western regions and an increase is observed in the East. This is reason to believe that
the variability in extreme wave climate is cyclical rather than monotonic. There is reason to believe
that temporal variations of extreme U10 are responsible for the temporal variability of extreme Hm0.
Initial clustering results partition the North Sea domain into 50 clusters based on characteristic values
for the significant wave height (Hm0), peak period (Tp), and dominant wave directions (θ1 and θ2). Af-
ter splitting clusters based on geo-location and merging clusters based on the intra-cluster statistical
properties of the wave parameters, 63 clusters are obtained. The identified clusters and temporal vari-
ability are used to define NEVA models describing extreme Hm0 statistics at cluster level. Intra-cluster
Hm0 observations are detrended before fitting the GEV parameters by means of Bayesian Inference.
Informative priors are constructed by pooling the GEV parameter information from the intra-cluster grid
points. Potential non-stationarity is accounted for by adding the Theil-Sen parameters (b and b0) to the
location parameter (µ∗), making the location parameter a linear function of time. The model parame-
ters subsequently read: Hm0 ∼ GEV (µ∗ + (b · t+ b0) , σ

∗, ξ∗). Using the extreme Hm0 data from the
clustering centroid yields the most promising results for describing extreme Hm0 statistics at cluster
level under the condition that the intra-cluster exhibits homogeneous values for b and b0.

The applied HAC analysis presented in this research is not the optimal strategy. The identified clusters
exhibit heterogeneous values for b and b0 Because non-stationarity ofHm0 was not accounted for during
the HAC analysis. This hinders the performance of the NEVA models at cluster level. Also, whether
the derived methodology can be applied for the long-term projection of future extreme wave events in
the North Sea is debatable. The non-stationary of extreme Hm0 is best described by a cyclic pattern.
Without a thorough understanding of the underlying causes of the non-stationary in Hm0 and without
future projections of the extreme wave climate, the applicability of NEVA for deriving extreme Hm0

design conditions in light of climate change cannot be guaranteed.
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1
Introduction

Coastal and offshore infrastructure such as flood defenses (dunes and dikes), breakwaters, offshore
wind turbines, oil and gas platforms and lighthouses must be designed to withstand extreme environ-
mental loading conditions. Physical processes such as extreme wave events play an important role
in the design and risk assessment of said hydraulic infrastructure. In coastal regions, wave-induced
erosion of dunes and overtopping of dikes increase flood hazards (Jonkman et al., 2018). In offshore
regions, extreme waves endanger the structural integrity of offshore wind turbines, oil and gas plat-
forms (Jiang et al., 2017), and lighthouses (Antonini et al., 2019; Raby et al., 2019).

The design and risk assessment of hydraulic infrastructure require a comprehensive understanding of
the extreme wave climate. This includes the incoming significant wave height, (peak) wave period, and
wave direction with a corresponding return period. The Sixth Assessment Report of the Intergovern-
mental Panel on Climate Change (IPCC) states that since 1960, anthropogenic activities have had a
significant effect on the climate and corresponding weather effects (Masson-Delmotte et al., 2021). As
a result, weather and climate extremes are expected to increase in severity and frequency and have
changing spatial patterns (Allen et al., 2012). The increased intensity of storms and subsequent ex-
treme wave events will have a direct effect on the design loads of hydraulic infrastructure making the
safety of hydraulic infrastructure uncertain, both in coastal and offshore regions.

In designs and risk assessments, Extreme Value Analysis (EVA) is often employed to infer probabilistic
distributions that can be used to obtain design values for the hydraulic variables corresponding to the
return period of interest. In traditional practices, the parameters of the extreme value distributions are
calculated under the assumption of stationarity (i.e. time-invariant parameters). This is a reasonable
assumption if there are no significant changes in the magnitude or frequency of the extreme events
over time. Under the assumption of a stationary climate, the concept of return period provides a one-
to-one relationship between the magnitude and the frequency of extreme loading conditions. However,
in light of climate change, the assumption of stationarity becomes questionable.

In recent years, several studies promoted to move away from stationary models. Non-stationary prob-
abilistic models to infer extreme hydraulic loads are becoming increasingly popular in the design and
risk assessment of hydraulic infrastructure (Cheng et al., 2014; Ragno et al., 2019). In a non-stationary
model the parameters of the extreme value distribution function change over time or in response to
a physical process (Cheng et al., 2014; Ragno et al., 2019). Non-Stationary Extreme Value Analysis
(NEVA) potentially forms a useful alternative to study extreme loading conditions in light of climate
change.

The applicability of non-stationary models for the design of hydraulic infrastructure is topic for debate
with successful and lesser successful attempts. Lowe et al. (2021) applied NEVA to study extreme
water levels along the West Coast of Australia. De Leo et al. (2020) andDe Leo et al. (2021) studied
the non-stationary of the significant wave height in the Mediterranean Sea and performed a critical
assessment whether NEVA models provide a useful alternative for inference of design values com-
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pared to conventional stationary modelling. Wang et al. (2021) performed a similar analysis for the
South China Sea. De Leo et al. (2021) and Wang et al. (2021) stated that NEVA provides advantages
over conventional EVA only when a significant trend is present in the data. Antonini et al. (2019) and
Raby et al. (2019) applied both stationary and non-stationary extreme value models to derive extreme
wave conditions in the safety assessment of rock-mounted lighthouses. Luke et al. (2017) assessed
the applicability of updated stationary models (AST) to compute design conditions for extreme river
discharges in watersheds that underwent physical changes. A more comprehensive analysis of the
different studies mentioned above is presented in Chapter 2.

To our knowledge, a study regarding non-stationary extreme wave models in the North Sea domain
has not yet been performed and forms the basis of this research. Hydraulic infrastructure in the North
Sea includes offshore oil & gas platforms and wind turbines that are critical for the energy supply of
surrounding counties. Furthermore, flood defense structures like dunes, dikes, and dams can be found
along the coasts of the low-lying countries that surround the North Sea domain. NEVA is potentially
useful when accounting for increasing extreme wave conditions during design and risk assessment
of hydraulic infrastructure. However, because the applicability of NEVA is case-dependent, a critical
assessment of the applicability of NEVA in design and risk assessment of hydraulic infrastructure in the
North Sea is required.

Extreme wave parameters such as the significant wave height, peak wave period, and dominant wave
directions are influenced by, among others, the wind and wave direction, the available fetch for wave
growth and dispersion the and the available depth. It is expected that the extreme wave characteris-
tics vary throughout the North Sea domain, as a result of the extent of the North Sea basin and the
spatially varying physical properties described above. Furthermore, extreme wave events in different
regions may be the result of different storms. To study the extreme wave climate, this research applies
a gridded dataset consisting of 1200 time-series for wind and wave parameters throughout the North
Sea domain. A complete analysis of the extreme wave statistics at all grid points is too computationally
expensive.

Clustering analysis can be applied to partition a gridded dataset into a select number of clusters. The
intra-cluster grid points exhibit similar characteristics. Clustering analysis concerning the extreme wave
climate in the North Sea potentially provides useful information regarding regions with similar extreme
wave characteristics. This provides useful information about extreme wave loading conditions for the
design and risk assessment of hydraulic infrastructure. Grid points with similar extreme wave char-
acteristics can pool data to produce more accurate extreme value models describing extreme wave
loading conditions. Moreover, clustering analysis can help to reduce the data volume required to study
the North Sea basin’s extreme wave climate. Potentially, one representative time-series per cluster
needs to be studied to get a comprehensive understanding of the extreme wave statistics throughout
the North Sea domain.

Several studies have employed clustering analysis to partition ocean basins into clusters that exhibit
similar extreme wave characteristics. Sartini et al. (2018) and Weiss et al. (2014) applied regional fre-
quency analysis (RFA) on the Eastern regions of the North Atlantic Ocean to identify regions with similar
storm footprints. Within the identified regions, the extreme wave climate can subsequently be analyzed
using univariate techniques (Sartini et al., 2018). Goharnejad et al. (2022) employed Self Organizing
Maps (SOM) to partition the Northern Atlantic Ocean into clusters that exhibit similar extreme statistics
of significant wave height, period, and direction. They did so using complete time-series of the afore-
mentioned parameters at the grid points. Subsequently, the intra-cluster extreme wave characteristics
can be described using time-series of the clustering centroid. A more comprehensive analysis of the
different studies mentioned above is presented in Chapter 2.

In this research, hierarchical clustering analysis will be performed to define characteristic regions
throughout the North Sea domain that exhibit similar extreme wave characteristics. Subsequently,
extreme value analysis is coupled to the clustering output to study the applicability of representative
extreme value models that describe the extreme wave statistics at cluster level. Non-stationary compo-
nents are added to the extreme value models to study the evolution of extreme wave loading conditions
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in light of a changing climate.

1.1. Research Objectives
This research studies the applicability of clustering analysis and subsequent non-stationary extreme
value modelling at cluster level. This is done to improve the methodology in which extreme wave con-
ditions are derived for the design and risk assessment of hydraulic infrastructure in light of a changing
climate. The main research objective can be covered by the following research question:

How can clustering analysis and non-stationary extreme value models at cluster level be
used to characterize the statistics of extreme Hm0 events in the North Sea and when do
non-stationary extreme value models form a practical alternative compared to traditional
stationary models for the design and risk assessment of hydraulic infrastructure?

To answer this question, the research question is split up into three sub-research questions:

Sub-research question 1: What are the observed changes over time of the extreme Hm0

events in the North Sea basin and what are the underlying causes?

Temporal trend analysis will be used to better understand the non-stationary behavior of the extreme
wave climate in the North Sea area. Whether NEVA provides a useful alternative to conventional
stationary modelling depends on whether a statistically significant trend is present in the data. Also,
because this research concerns temporal variability in light of climate change, the underlying causes of
non-stationarity in the extreme wave climate must be addressed. Extreme value models are developed
at the cluster level. Therefore, the non-stationarity of extremeHm0 must be investigated at cluster level.
To answer this research question, the following tasks will be performed:

1. Analyze the presence and magnitude of statistically significant trends of the extreme Hm0 events
in the North Sea on a basin scale through Mann-Kendall (MK) and Theil-Sen (TS) tests using
several extreme value selection methods and temporal horizons;

2. Analyze the presence and magnitude of statistically significant trends in extreme wind speeds
(U10 to determine whether they provide an explanation for the observed temporal variability of
extreme Hm0;

3. Analyze the presence and magnitude of statistically significant trends of extreme Hm0 at cluster
level by accounting for the intra-cluster dominant wave directions. Subsequently, compare the
results at cluster-level with the results at basin scale.

Sub-research question 2: How can Hierarchical Agglomerative Clustering (HAC) be em-
ployed to identify regions in the North Sea that exhibit similar extreme wave characteristics?

To study the extreme wave statistics in different regions of the North Sea, it is vital to have information
about the extreme wave characteristics throughout the North Sea basin. Hierarchical Agglomerative
Cluster (HAC) analysis will be performed to partition grid-points with similar extreme wave characteris-
tics into clusters. To this end, the following research objectives are identified:

1. Identify important wave parameters and representative values that can be used as input for the
HAC analysis;

2. Explore parameter combinations and weight configurations and study their effect on the HAC
analysis by. Evaluate several internal evaluation metrics to find the best clustering output;;



4 Chapter 1. Introduction

3. Validate the clustering output for the different configurations by performing a careful comparison
between the clustering output and the HAC input values;

4. Further development of cluster map by means of splitting and merging clusters if there is enough
physical and statistical evidence of the extreme wave parameters.

Sub-research question 3: How can the derived clustering output and temporal variability
be applied to derive representative non-stationary statistical models that describe extreme
Hm0 at cluster level?

The main goal of the cluster analysis is to identify regions that exhibit similar extreme wave character-
istics. Extreme value models are derived that are describe the extreme wave climate at cluster level.
Also, a method must be found to include potential non-stationarity. To this end, the following tasks will
be performed:

1. Detrend extreme Hm0 data and form representative time-series for extreme Hm0 at cluster level
using different aggregation and selection strategies;

2. Perform stationary extreme value analysis on the representative data by means of Bayesian In-
ference (BI) techniques implemented in the ProNEVA toolbox (Ragno et al., 2019);

3. Evaluate how the temporal trends for extreme Hm0 can be included in the extreme value models
to account for potential non-stationarity of extreme Hm0;

4. Assess the performance of the derived non-stationary extreme value model using several assess-
ment methods, including QQ-plots, RL-plots and goodness-of-fit (GOF) tests;

5. Determine which representative time-series yields the best results with respect to its ability to
describe the extreme wave climate on a cluster level.

Sub-research question 4: Do representative extreme value models at cluster level form a
useful alternative compared to stationary modelling at grid point-level in the design and risk
assessment of hydraulic infrastructure in light of a changing climate?

Whether non-stationary extreme value modelling is applicable is debatable and often differs on a case-
by-case basis. The applicability of NEVA models at cluster level to derive extreme wave conditions in
the North Sea in light of climate change must be assessed. To this end, a critical comparison between
NEVA models at cluster level and conventional stationary modelling is required. Furthermore, before
using NEVA in light of climate change, a thorough review of the consideration that must be taken into
account is essential. To answer this research question, the following tasks are performed:

1. Provide a practical example where typical extreme Hm0 return derived using both NEVA models
at cluster level and conventional stationary models at grid-point level are compared;

2. Explore different considerations to be accounted for before using non-stationary modelling over
conventional stationary modelling.

3. Assess if and when non-stationary extreme value models at cluster level form a useful alternative
compared to conventional stationary models at grid-point level.

1.2. Research Limitations
Despite the magnitude of this research, some things are left outside the scope. This section presents
a list of limitations relevant to this research:
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• This research only considers the significant wave height (Hm0) to study non-stationarity in the
extreme wave climate and to assess the applicability of non-stationary extreme value models in
the design and risk assessment of hydraulic infrastructure. Other parameters typically used in the
design of Hydraulic infrastructure, such as the peak wave period and dominant wave direction
are not accounted for in the temporal trend analysis and extreme value analysis;

• This research considers historical data only. Future climate projections are not studied to make
projections about the extreme wave climate in the North Sea. The research aims to arrive at con-
clusions surrounding the applicability of non-stationary extreme value models based on historical
observations only;

• To study the underlying causes of non-stationarity in extreme Hm0, non-stationarity in extreme
wind speeds (U10) are evaluated. It is assumed that all observed changes in time for both Hm0

and U10 can be attributed to climate change. A further attribution study of climatic drivers to better
understand temporal variability of Hm0 and U10 in light of climate change is not performed;

• Local water levels are not considered. The North Sea is a relatively shallow basin, meaning that
the extreme waves are not always in deep water conditions. Bottom effects play a significant role
in wave development in the North Sea because higher water depths can accommodate higher
waves. Climate change induced sea level rise can therefore have a significant effect on the
temporal development of the extreme wave climate in the North Sea. However, the effect of sea
level is not considered in this research.

1.3. Document Structure
This report starts with a literature review (Chapter 2) presenting all necessary background information
relevant to this research. This includes a description of the North Sea storm climate generating ex-
treme wave events and several studies that performed non-stationary extreme value analysis to derive
hydraulic boundary conditions in light of a changing climate and several studies that applied cluster-
ing analysis of large scale oceanic bodies with respect to extreme waves. Chapter 3 presents the
research methodology applied in this research. This includes all information required to understand
extreme value selection, temporal trend testing, hierarchical clustering, and (non-stationary) extreme
value analysis and how they were applied in this research.

Chapter 4 provides an exploration of the North Sea domain. This includes a description of the applied
ERA 5 reanalysis dataset that provides time-series for waves and wind parameters in the research
domain. Furthermore, temporal trend analysis is performed on extreme Hm0 and U10 observations to
get a better understanding of the temporal non-stationarity of these parameters. Next, in Chapter 5, the
results of the clustering analysis and extreme value analysis are presented in the North Sea domain
are presented. This includes the evaluation of the Hierarchical Agglomerative Clustering analysis, a
temporal trend analysis to better understand the non-stationarity ofHm0 and U10 at cluster level and the
derivation of non-stationary extreme value models at cluster level. The applicability of non-stationary
extreme value models at cluster level in light of climate change is evaluated in Chapter 6. This includes
a practical example where the non-stationary extreme value models at cluster level are compared with
conventional stationary models in their ability to derive typical design values for hydraulic infrastruc-
ture. Also, the limitations surrounding the use of non-stationary models in light of climate change are
discussed.

Finally, the results are reviewed and put into context by examining the research’s assumptions and
limitations in the Discussion. Finally, the research questions are answered in the Conclusion.





2
Literature Review

This chapter presents a literature review about the topics relevant to this research. An overview the
characteristic storm climate in the North Sea resulting in extreme sea states is given in Section 2.1.
This study explores the applicability non-stationary extreme value analysis (NEVA) to derive design
conditions for hydraulic infrastructure in light of a changing climate. Section 2.2 explores previous stud-
ies at explored the applicability of NEVA to derive hydraulic design conditions. hierarchical Clustering
Analysis is applied in this research to identify spatial clusters that exhibit similar extreme wave charac-
teristics. Section 2.3 presents several studies that performed clustering analysis to cluster large scale
oceanic bodies based on wave characteristics.

2.1. North Sea Storm Activity
TheNorth Sea is located in the Northernmid-latitudes (between 50 and 60 degrees North of the equator)
and therefore under the influence of the prevailing West Wind Belt, i.e. the dominant west-to-east wind
motion in the northern mid-latitudes. Dominant weather phenomena resulting in storms in this area are
the so-called extra-tropical cyclones and the less frequent polar vortexes (Weisse et al., 2012). Extra
tropical cyclones and polar vortexes develop at the interface between colder and warmer air in the mid-
latitudes and Arctic regions respectively. Both phenomena are characterized by eastward migrating
atmospheric low pressure disturbances, often in combination with large pressure gradients resulting
in high wind speeds (Weisse et al., 2012). Extra tropical cyclones tend to occur within and propagate
along regionally confined areas, so-called storm tracks. The North Sea is under the influence of the
North-Atlantic storm track.

In short, extreme wave events in the North Sea domain are caused by cyclonic low pressure areas
resulting in anti-clockwise wind fields travelling in Eastward direction (Weisse et al., 2012). Extra trop-
ical cyclones may be in order of 1000 km across. The location of the low-pressure center determines
the prevailing wind directions (See also Figure 2.1) and subsequently the wave development. How
the location of the low-pressure area influences the development of the extreme wave development
is illustrated in Figure 2.1. Here, two historic storm events are illustrated, each with an opposite wind
and wave direction in the North Sea. The illustrated storms correspond to the 1953 flood disaster and
storm Deirdre in December 2018, respectively. Both storms are examples of extratropical windstorms.
Looking at the 1953 storm, it can be seen that the low pressure center of the extratropical cyclone
lies above Denmark (Weisse et al., 2012), resulting in Northerly winds and corresponding waves that
travel and grow in Southward direction. Contrarily, for the 2018 storm, it can be seen that the low pres-
sure center lies above the Irish Sea (UK Meteorological office, 2020). This results in extreme southerly
winds in the North Sea domain, resulting in waves travelling and gaining energy in Northward Direction.

Weisse et al. (2012) and Huthnance (1989) state that the storm activity in The North Sea is not constant
and is subjected to consistent changes in both frequency and intensity on inter-annual and decadal time
scales. In recent history, observations show that storm activity was relatively low in the 1960’s. A strong
increase in storm activity towards the mid 1990’s can be observed after that. After the 1990’s, another
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Figure 2.1: Illustration showing the extreme wave climate during two extratropical cyclones in the North Sea. The left figures
show the location of the low pressure center during the storm peak (defined by the highest observed wind speeds during the
storm). Middle figures show contours of the significant wave height and the mean wave direction during the peak of the storm.

Right figures show the contours of the wind speed and the wind direction during peak of the storm.

decrease in storm activity can be inferred (Weisse et al., 2012). Other studies also observed significant
spatial movement of North Sea storm activity. Most notably, McCabe et al. (2001) showed that, the
following spatial development can be observed based on reanalysis data. Storm frequency in the mid-
latitudes (between 30 and 60 degrees N) decreased in the second half of the twentieth century, while
an increase in the Northern latitudes (60 degrees N and above) can be observed. Storm intensity also
increased in the Northern latitudes, while they remained nearly constant for the mid latitudes.

Studies have shown that the variability in storm activity in North-Western Europe can partially be ex-
plained by the North Atlantic Oscillation (NAO) and the Arctic Oscillation (AO) (Weisse et al., 2012).
The NAO is an atmospheric circulation mode driven by changes in the atmospheric pressure gradient
between the Azores and the North Atlantic region. Through fluctuations of the Icelandic low pressures
and the Azores high pressures, it controls the strength and direction of westerly winds and the location
of storm tracks across the North Atlantic (NOAA, 2022). The Arctic Oscillation (AO) is characterized by
pressure anomalies between the arctic regions (low pressure areas), and areas South of 55 degrees
latitude. Centres of action can be found near Greenland and the Azores (Baldwin, 2001). The Arctic
Oscillation (AO) is closely related to the NAO, and it is often said that the NAO is a more regional
expression of the AO. Thee AO has a larger spatial scale whilst the NAO is constricted to the North
Atlantic Ocean (Baldwin, 2001). Large pressure difference for the NAO and AO (expressed as a pos-
itive NAO and AO index respectively) leads to increased westerly wind speeds and storm tracks that
are located in the Northern regions of the mid latitudes. This typically results more frequent and more
intense storms in the North Sea region. In contrast, if the pressure difference is low (indicated by a
negative index), westerlies are suppressed and the storms track southwards toward the Mediterranean
Sea (NOAA, 2022).

Appendix A explains that extreme wave fields might consist of locally generated wind waves, swell
waves or a combination of the two. For the design and risk assessment of hydraulic infrastructure, it is
critical to understand which wave type is dominant during extreme wave events. 7 location throughout
the North Sea are studied to determine the dominant wave type during extreme wave events. (See
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Appendix D for more information). Information about the significant wave height (Hm0) and the peak
wave period Tp is plotted on wave steepness plots. The most extreme wave events are of special
interest because these are normative during design and risk assessment of hydraulic infrastructure.
The steepness plots show that the extreme waves have a steepness values between s = 0.03 and
s = 0.05, which typically correspond to locally generated wind waves. Based on this analysis, it is
assumed that the extremewave climate in all regions of the North Sea is dominated by locally generated
wind waves.

2.2. Non-Stationary Extreme Value Analysis
Most risk assessments of hydraulic infrastructure are performed under the assumption of stationarity.
However, as a result of climate change and subsequent evolution of the intensity and frequency of
extreme events (Allen et al., 2012), the assumption of stationarity becomes debatable. In recent years,
non-stationary probabilistic models to infer extreme hydraulic loads are becoming increasingly popular
in the design and risk assessment of hydraulic infrastructure (Cheng et al., 2014; Ragno et al., 2019).
However, the applicability of non-stationary models for the design and risk assessment of hydraulic
infrastructure is debatable and recent studies present successful and lesser successful attempts. This
section presents several studies that have evaluated the applicability of non-stationary models to derive
extreme hydraulic loading conditions.

Lowe et al. (2021) used a non-stationary extreme value analysis to study the extreme sea-level vari-
ability and to study how individual sea level contributors interact to trigger extreme sea-level events
at several locations along the West coast of Australia. To better understand past events as well as
make projections for future extreme water level events, the behavior of the individual contributors must
be better understood. The individual contributors were subjected to a thorough analysis to study their
significance towards extreme water level events in light of past events to better understand their non-
stationary behavior. Besides temporal covariates, several physical processes were identified that af-
fected extreme water level distributions (e.g. El Niño and La Niña events). The significance of the
covariates differed on a spatial scale, emphasizing the need to study the necessity of a non-stationary
study for the different hydrodynamic processes on a case by case basis (Lowe et al., 2021).

De Leo et al. (2020) studied long term non-stationarity of extreme significant wave height (Hm0) events
in the domain of the Mediterranean Sea. Furthermore, they studied the applicability of several methods
to detect the presence of statistically significant trends, including the Mann-Kendall (MK) test and the
Theil-Sen (TS) test. De Leo et al. (2020) found that there is a strong anti-correlation between the TS
estimator (b, i.e. slope of linear trend) and the p-value of the MK-test (pMK ), thereby concluding that
the TS test is a suitable method to assess non-stationarity of the extreme wave climate. Subsequently,
the MK and TS tests are used to study the non-stationarity of extremeHm0 events in the Mediterranean
Sea using several extreme value selection methods. The TS test was only applied when the MK test
detected the presence of a statistically significant trend. It was found that the direction and magnitude
of the temporal trends strongly varied depending on the spatial location. Wang et al. (2021) performed
a similar study and found similar results for the South China Sea.

De Leo et al. (2021) provides a practical assessment of the reliability of non-stationary extreme value
analysis under the assumption that non-stationary behavior of extreme events can be described by
a linear trend. Furthermore, they show how and when non-stationary models for extreme waves pro-
vide a potentially better alternative to conventional stationary models. De Leo et al. (2021) used linear
temporal covariates to study the non-stationary behavior for the significant wave height (HS) and peak
period (TP ). Results show that the non-stationary analysis provides advantages over the stationary
analysis only when a significant trend is present in the data. Moreover, De Leo et al. (2021) empha-
sized the need for a careful analysis of the reference data before fitting the extreme value distributions
since the presence and magnitude of a trend may vary depending on the considered temporal horizon.
In short, when applying Non-Stationary EVA, the hypothesis of a (linear) trend and the length of the ref-
erence data used for the inference of the non-stationary Extreme Value Distribution should be carefully
considered (De Leo et al., 2021).
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Raby et al. (2019) and Antonini et al. (2019) studied the extreme wave climate in the safety assessment
of rock-mounted lighthouses. Antonini et al. (2019) employed Bayesian Inference to find stationary ex-
treme value distributions for significant wave height and peak period. Raby et al. (2019) used Bayesian
Inference to find the non-stationary behavior of the extreme wave climate. The analysis aims to cap-
ture a long-term trend in the wave climate by making the location parameter of the Generalized Pareto
distribution time-dependent by adding a linear component. The idea of this non-stationary method is to
hold the design probability of occurrence constant in time, but allow the corresponding return value of
the design parameters to vary in time (Raby et al., 2019). Thereby, Raby et al. (2019) attempts to de-
termine design values for future extreme wave climates based on historic data only. Raby et al. (2019)
assessed the structural integrity of the lighthouse in both the present and in the year 2067, under the
assumption that the detected upward, linear trend prevails in the future.

Luke et al. (2017) assessed the applicability of NEVA for quantifying the magnitude and frequency of
extreme river discharges in The United States. They applied split sample testing to 1250 annual river
maximum discharge time-series in the United States and compared the predictive capabilities of ex-
treme discharge events between stationary and non-stationary extreme value analysis. Split sample
testing involves the definition of the fitting period and evaluation period of a time-series. The fitting
period involves the first half of the time-series and was used to infer extreme value distributions. The
evaluation period involves the latter half of the time-series and was used to assess the predictive capa-
bilities of the extreme value models. Luke et al. (2017) challenged the use of NEVA because flood risk
management relies on predictions of out-of-sample extreme events. Luke et al. (2017) concluded that
for the prediction of extreme river discharges, stationary models are favorable over non-stationary mod-
els, to avoid over- and under-extrapolation of extreme events in the future. However, when information
about watershed alterations is available, an updated stationary model which accounts for the detected
changes in the watershed should be adopted (Luke et al., 2017). In updated stationary modelling, the
non-stationary parameter values at the end of the fitting period are used to predict extreme discharge
events in the evaluation period under the assumption of stationarity.

Although non-stationary extreme value analyses are becoming increasingly popular in the design of
civil infrastructure, some have challenged the use of non-stationary models. Matalas (1997) argued
that observed trends in hydrological records cannot be firmly established because of the parameter’s
natural variability and limited length of observations. This means that the observed trend might only be
part of slow oscillations. Limited observations could affect the results of diagnostic tests used to justify
the use of non-stationary approaches. This could lead to potentially higher uncertainties in the results
of the extreme value analysis. Moreover, a non-stationary approach may involve a future prediction of a
covariate which in itself may be uncertain. This adds to the overall uncertainty surrounding future return
values of extreme loads (Ragno et al., 2019). Montanari and Koutsoyiannis (2014) stated that efforts
should focus on including relevant physical processes in stochastic models and suggested stochastic-
process-based models. These can serve as a bridge to fill the gap between ”physically-based models
without statistics and statistical models without physics.” In the case of extreme wave climate, extreme
waves are the result of extreme wind speeds. However, it is still essential to make the distinction
between locally generated wind waves and traveling swell waves that find their origin in a completely
different location.

2.3. Clustering Analysis of Large Scale Oceanic Bodies
The hydrodynamic conditions during extreme wave events potentially vary between different regions
in the North Sea. Extreme wave characteristics are influenced by, among others, the dominant wind
and wave direction, the available fetch and local water depth (see Appendix A). Creating clusters with
similar extreme wave characteristic helps to gain a better understanding of the extreme wave statis-
tics in different regions of the North Sea. Several studies have performed clustering analysis of large
scale oceanic bodies. In this section, emphasis is placed on clustering analyses performed based on
extreme wave characteristics.

Sartini et al. (2018) and Weiss et al. (2014) applied Regional Frequency Analysis (RFA) on Eastern
parts of the North Atlantic ocean to identify regions with similar storm footprints. RFA is applied to
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calculate the probability that neighboring grid points are impacted by the same extreme wave events.
The probability of occurrence between grid points is subsequently used to calculate the dissimilarity
between grid points which enables the clustering of areas based on the storm footprint. Within the
identified clusters, the extreme wave statistics can be analyzed using univariate techniques (Sartini
et al., 2018).

Goharnejad et al. (2022) employed Self OrganizingMaps (SOM) to partition the Northern Atlantic Ocean
into clusters that exhibit similar extreme statistics of significant wave height, period, and direction. They
did so using complete time-series of the aforementioned parameters at the grid points. The coordinates
of the grid point is applied as additional input to separate clusters based on geo-location. The primary
reason to do so is that grid points in different geographical locations are typically not affected by the
same storms and should therefore be assigned to different clusters. Subsequently, the extreme wave
climate can be described at cluster level using a representative time-series, namely the clustering cen-
troid. Using characteristic time-series decreases the time required to do a full extreme value analysis
while still being able to analyze the extreme wave statistics throughout the research domain.

Instead of applying clustering analysis of wave time-series at several locations to analyze their spatial
relationship, Camus et al. (2011) applied SOM to cluster different sea states at a single location. The
SOM analysis was performed using complete time-series of the significant wave height, peak period,
mean wave direction and wind variables including the wind speed and direction. Camus et al. (2011)
show that SOM identifies the relevant multivariate sea-state types at the research location, and enables
the analysis of the dependency between wave and wind parameters by means of visual inspection. The
information about the different sea-states at grid point level can be used to set up a clustering analysis
to identify spatial clusters that share characteristic sea-states. A temporal analysis of the different sea-
states is performed to see if there are changes for the dominant sea-states, which is relevant information
for the design and risk assessment of hydraulic infrastructure. Changing sea-states potentially result
in changing normative design conditions for the hydraulic infrastructure in question.





3
Methodology

This chapter discusses themethodology applied in this research. The chapter discusses the techniques
applied in this research in chronological order. Section 3.1 explains extreme value sampling techniques.
Section 3.2 explains the methods for deterction and quantification of statistically significant temporal
trends in extreme observations. A hierarchical clustering analysis is applied to identify clusters base on
similar extreme wave characteristics. The most important principles behind hierarchical clustering are
explained in section 3.3 as well as how hierarchical clustering is applied in this research. The clustering
output and detected temporal variability are used to perform extreme value analysis at cluster level. This
includes the derivation of non-stationary extreme value models describing the significant wave height
(Hm0) at cluster level. The most important principles behind extreme value modelling under stationary
and non-stationary conditions are explained in Section 3.4. The derivation of the extreme value models
at cluster level is explained in Section 3.5.

3.1. Approaches for Sampling Extremes
In extreme value analysis, we are particularly interested in the extreme events within the long term
statistics of hydraulic loading parameters. The long term statistics describe how one extreme event
differs from the next (Van Den Bos & Verhagen, 2018). This poses the challenge of selecting the
extreme events. The goal is to select the extreme events corresponding to the tail of its extreme value
distribution (Coles, 2001). Requirements are that the selected storm observations in the dataset are
both independent and homogeneous, i.e. the storm events originate from the same meteorological
events and only vary in magnitude, (Van Den Bos & Verhagen, 2018). This requires careful analysis of
the available dataset such that a homogeneous subset of extreme observations is obtained. Typically,
selection of extreme events is performed using Block Maxima (BM) and Peak over Threshold (POT),
both of which have been widely applied in studying the behaviour of extreme loading conditions in the
design and risk assessment of civil infrastructure.

3.1.1. Block Maxima
In Block Maxima (BM), the time-series is divided into blocks of equal duration, and from each block,
the maximum (or minimum) values are obtained (see Figure 3.1). The block duration depends on the
application and the available data (Coles, 2001). The selected observations are fitted to one of three
distributions form the Generalized Extreme Value (GEV) distributions: Gumbel, Freichet or Weibull
(Cheng et al., 2014; Katz et al., 2002). Although being straightforward, BM has its disadvantages.
Most notably is the potential loss of useful information (Lang et al., 1999). Within a block, multiple
relevant extreme events may be present. However, from each block, only the most extreme event
is selected. The contrary may also be true. Within each block, one value is sampled, regardless of
whether that value can be characterized as an extreme event.

3.1.2. Peak Over Threshold
In extreme value analysis for engineering purposes, Peak Over Threshold (POT) has become a well-
established method, especially for relatively short time-periods when the number of extreme events is

13
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Figure 3.1: Illustration of extreme value selection for Block Maxima (BM) and Peak over Threshold methods (POT). Orange
dots indicate values selected for block maxima, while cyan dots indicate selected peaks exceeding threshold u. Note how the
third peak in block 3 is not selected, because the inter cluster time δ2 is smaller than the appropriate declustering time lag δ.

Also note how the highest value in block 4 is selected for BM, but not for POT, as the peak does not exceed u.

relatively limited. In a POT analysis, extreme values that exceed a threshold (u) are sampled (Coles,
2001). The POT approach provides the ability to control the number of extreme events to be included
in the EVA depending on the selected value for u. Therefore, POT is able to capture more information
than the BM approach. There are some challenges associated to the Peak Over Threshold method.
An appropriate threshold (u) and declustering time lag (δ) must be selected such that the observed
extreme events follow a Poisson distribution (Antonini et al., 2019). This relies on three properties of
the peaks over the selected threshold:

• Peaks should occur randomly in time according to the Poisson process;
• The exceedances should have an approximate GP distribution;
• Exceedances should be sufficiently far apart to be considered independent.

In a Poisson process, the observed events are defined as points in time (Antonini et al., 2019). In
the study of the hydraulic boundary conditions, these events are storm events that can be defined as
follows. A storm starts when the variable (i.e. water level, significant wave height) exceeds a defined
threshold (u) and has been less than u for at least n consecutive days. The storm event finishes when
the variable drops below u and remains below u for at least n consecutive days (Antonini et al., 2019).

The choice for a threshold u in the POT analysis results in a trade-off between bias and variance
(Roscoe et al., 2010). If the selected threshold is too low, the number of observations used to compute
the model is very high. This likely leads to violation of the asymptotic basis of the model, leading to
bias. A very high threshold may result in too few observations to compute the model with. This likely
means that the model meets the mathematical requirements (i.e. independent and homogeneous) but
also results in a larger uncertainty (Roscoe et al., 2010). It is possible to select appropriate thresholds
(u) and declustering times (δ) using the diagnostic tests mean residual life (MRL), dispersion index (DI)
and extremal index (EI) and the stability of the Generalized Pareto (GP) distribution parameters (An-
tonini et al., 2019; Coles, 2001; Davison & Smith, 1990). The process of selecting appropriate POT
threshold values with the use of diagnostic tests is further explained in Appendix E.

Apart from analysing the intensity of extreme events (i.e. magnitude of the peak values), POT analysis is
also useful for the analysis of the frequency and duration of extreme events. The frequency of extreme
events in this research is defined as the number of annual threshold exceedances, and is denoted
by Nexc. The duration of an extreme events is defined as the time between the start and end of the
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threshold exceedance and is denoted by Tdur. The definitions of Nexc and Tdur are also illustrated in
Figure 3.1.

3.2. Temporal Trend Analysis
Whether a non-stationary approach in Extreme Value Analysis is applicable, depends on whether a
statistically significant trend can be detected in the data. Several methods for the detection and mea-
surements of trends exist. In this study, the non-parametric Mann-Kendall hypothesis test (Kendall,
1955; Mann, 1945) is applied to detect the presence of a statistically significant temporal trend. The
Theil-Sen (TS) test (Sen, 1968; Theil, 1992) is applied to quantify the detected temporal trend. Both
will be explained in the following sections.

3.2.1. Mann-Kendall Test
The Mann-Kendall (MK) test is an hypothesis test aimed at evaluating whether a significant monotonic
trend can be detected in the dataset. The hypotheses in the MK-test are stated as follows:

• H0 (Null Hypothesis): There is no monotonic trend in the data;
• HA (Alternative): There is a monotonic trend in the data.

For an arbitrary time-series containing n observations, the test statistic SMK for the MK-test can be
found using the sign function over the differences between subsequent observations:

SMK =
∑
i<k

sign (xk − xi) sign(x) =

 1 x > 0
0 x = 0
−1 x < 0

(3.1)

The significance of the trend can be obtained by converting the test statistic SMK to the standardized
test statistic ZMK as follows:

ZMK =


S−1
σ(S) if S > 0

0 if S = 0
S+1
σ(S) if S < 0

σ(S) =

√
n(n− 1)(2n+ 5)
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(3.2)

In equation 3.2, ZMK denotes the standardized test statistic of S, σ(S) is the standard deviation, and
n is the sample size. The value of ZMK is then compared to the percentile of the standard normal
distribution, leading to the p-value pMK of the statistic:

pMK = 2Φ (− |ZMK |) (3.3)

In Equation 3.3, Φ stands for the cumulative distribution function of the standard normal distribution. If
pMK is larger than the significance level α (typically 0.05), the null hypothesis (H0) cannot be rejected,
and there is no significant trend in the data. In its common use, the MK-test does not provide any
information about the direction or magnitude of temporal trends. It only detects the presence of a trend.
De Leo et al. (2020) states that ZMK and α can be used to determine the direction of the trend (i.e.
upward or downward oriented) using the following equations: ZMK > Φ−1(1− α/2) → upward trend

ZMK < −Φ−1(1− α/2) → negative trend
ZMK <

∣∣Φ−1(1− α/2)
∣∣ → no trend.

(3.4)

3.2.2. Theil-Sen Test
The Theil-Sen (TS) test (Sen, 1968; Theil, 1992) is a method of linear regression and can be used to
quantify the trend under the assumption that the non-stationarity can be described by a linear trend.
The TS test is insensitive to outliers, and is therefore preferred over other linear regression methods
(De Leo et al., 2020). Consider a series of data points xi (i = 1...n ) where n is the total number of data
points in the dataset. The TS-slope can be computed as:

b = Median
(
xj − xl

j − l

)
∀ l < j, l, j = 1 . . . n (3.5)
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In equation 3.5, xj and xl are the jth and lth data of the series respectively, such that every combination
between two data points in the series is included. Note that the values for j and l can be replaced by
for example date numbers (e.g. days or years) to find the rate of change over time (De Leo et al.,
2020). This can be done as long as j and l are consistent with the data points xj and xl. Apart from the
slope of the trend, we are also interested in calculating the intercept (b0) at the start of the considered
temporal horizon. The value for b0 can be calculated as follows:

b0 = median(Xi − b · ti) (3.6)

In equation 3.6, Xi is the magnitude of observed variable i, and ti is the elapsed time since the start of
the considered temporal horizon. Finally, b is the slope of the trend as determined using Equation 3.5.

3.3. Hierarchical Clustering
Themain goal of a Hierarchical Agglomerative Clustering (HAC) analysis is to partition a gridded dataset
into a select number of clusters such that the established clusters exhibit similar characteristics. In this
research, hierarchical clustering analysis will be performed with the aim to define characteristic areas
with similar extreme wave characteristics in the North Sea domain. The extreme wave characteristics
vary throughout the North Sea. The local extreme wave climate in influenced by numerous factors,
including the wind and wave direction, available fetch for wave growth and dispersion and the available
depth which potentially limits wave growth.

Creating clusters with similar characteristic extreme wave conditions helps to gain a better understand-
ing of the presence of regions with similar extreme wave characteristics, with the aim of improving
extreme value analysis (EVA) intended for the design and risk assessment of hydraulic infrastructure.
The second objective is to reduce the data volume required to process to get a better understanding
about the North Sea wave climate. Potentially, one representative time-series per cluster must be stud-
ied instead of the entire population of spatial grid points.

As the name suggests, hierarchical clustering is a clustering method that aims to build a hierarchy
of clusters, often visualized using dendrograms (Everitt et al., 2011; Maimom & Rockach, 2010). A
dendrogram is a multilevel hierarchy in which objects on one level are joined as clusters on the next
level. This hierarchical structure enables the selection of an appropriate cut-off point that determines
the number of clusters that yields the optimal clustering division of the extreme wave climate in the
North Sea. Hierarchical clustering is an unsupervised learning algorithm, which means that no prior
information about the system are presented to the algorithm, leaving the algorithm on its own to find
structure in the input values (Sokal & Michener, 1958). Within hierarchical clustering, two strategies
exist (Maimom & Rockach, 2010):

• Agglomerative clustering (bottom-up): Each grid point starts as its own cluster. The grid points
(and subsequently the newly found clusters) are merged as one moves higher up the dendrogram
until all objects are in the same cluster;

• Divisive clustering (top-down): All grid points start as one cluster, and splits within the cluster are
formed as one moves down the hierarchy until each grid point can be described as an individual
cluster.

This research employs Hierarchical Agglomerative Clustering (HAC). HAC was selected because it is
straightforward to understand and implement. Furthermore, the output in the form of a dendrogram
provides a good understanding of the established cluster boundaries. This section explains how HAC
analysis was applied in this research.

3.3.1. Input Data for Hierarchical Clustering Analysis
Prior to running the HAC algorithm, the input must be generated. This includes the careful selection
of wave parameters and representative input values that form the basis of the clustering output. Fur-
thermore, pre-processing and standardization of the input values and assigning weights to the input
parameter that must be prioritized in the clustering analysis form the initiation of the HAC analysis.
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3.3.1.1. Parameter selection
In this research, we perform a clustering analysis to identify regions that exhibit similar extreme wave
characteristics. This requires the careful selection of wave parameters that describe the extreme wave
climate at the grid points. In HAC analysis, all parameters are represented by a single, characteristic
value. This limits the amount of information about the parameter that is presented to the HAC algorithm.
Furthermore, the clustering output of the HAC analysis depends on the specific pre-selected input
values. That means, if grid-points share similar values for the input data, they are assigned to the
same cluster. These two limitations mean that a careful consideration of the wave parameters as well
as the input values representing the wave parameter is required. Section 4.4.1 explains the motivation
and derivation of the wave parameters that serve as input for the HAC analysis in this research.

3.3.1.2. Pre-Processing of Input Values
Clustering analysis involves the evaluation of input values at grid points over a very large surface area.
It is possible that the input values vary smoothly across the research domain, resulting in continuous
input values. Clustering spatially continuous data is potentially problematic because of the small dissim-
ilarities between spatially neighboring grid points. Due to these small dissimilarities, the HAC algorithm
continuously links spatially neighboring grid points into one big cluster because it cannot determine a
clear cut off point. This is often referred to as the Chaining Problem (Everitt et al., 2011). To overcome
the Chaining Problem, pre-processing of the input values is required. This typically includes rounding
the input values to increase the dissimilarity between grid points. It should be noted that pre-processing
of the input data is very subjective and directly influences the clustering output.

3.3.1.3. Standardization of Input Values
Before running the HAC algorithm, the input values must be normalized. Otherwise, the difference
in magnitudes between the wave parameters may become problematic whilst calculating the pairwise
dissimilarities. Without normalization, greater importance is given to parameters with greater magni-
tude (Mohamad & Usman, 2013; Suarez-Alvarez et al., 2012). Within HAC, several methods for stan-
dardization exists, e.g. the min-max linear transformation approach and the z-score standardization
(Suarez-Alvarez et al., 2012). The min-max normalization can be calculated as follows:

X∗
i =

Xi −min(X)

max(X)−min(X)
(3.7)

Min-Max normalization is a method of linear scaling and will transform the data so that all values are in
the domain [0, 1]. Another method is z-score standardization and can be calculated as follows:

X∗
i =

Xi − µX

σX
(3.8)

in equation 3.8, µX is the mean of all observations for variable X and σX is the standard deviation
for X. Z-score standardization transforms the values for X in such a way that the mean of the input
values X∗ becomes 0 and the standard deviation 1. A critical assessment of the best normalization
technique lies outside the scope of this thesis. However, Suarez-Alvarez et al. (2012) states that z-
score standardization is best suited when calculating the dissimilarities using Euclidean distance as
it best preserves the relative difference between the individual observations. Min-Max normalization
usually performs worse than z-score standardization, as it depends on the two most extreme values,
which tend to be outliers (Suarez-Alvarez et al., 2012).

3.3.1.4. Weight Configurations
Because the input values are standardized, it is possible to assign weights to the different parameters.
Weight may be assigned to emphasize particular parameters in the clustering that are thought more
significant or to add additional steering to improve the quality of the clustering output (Fern Tay, 2021).
Weights must be assigned in such a way that the sum of the weights assigned to the input parameters
is equal to 1:

M∑
k=1

Wk = 1 (3.9)

In this equation, Wk is the weight assigned to wave parameter k, and M represents the total number
of dimensions, i.e. the number of wave parameters included in the HAC analysis
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3.3.2. Pairwise Dissimilarity
The first step in the Hierarchical Agglomerative Clustering (HAC) algorithm is to determine the dissim-
ilarity between every pair of grid points in the dataset. For a dataset containing N grid points, there
exist N ∗ (N − 1)/2 pairs for which the dissimilarity can be calculated. In this research, Euclidean dis-
tance is employed to calculate the dissimilarity between grid points (Everitt et al., 2011). The Euclidean
distance between two grid points (i and j) can be calculated as follows:

d (i, j) = ∥i− j∥2 =

√√√√ M∑
k=1

(ik − jk)
2 (3.10)

In this equation, M represents the number of dimensions, i.e. the number of different parameters
involved in the clustering process. This research includes several circular parameters, for example the
mean wave direction (θ). The Euclidean distance between two circular parameters can be calculated
using the shortest distance around the circle, and the equation for Euclidean distance becomes (Camus
et al., 2011):

d (i, j) = ∥i− j∥2 =

√√√√ M∑
k=1

(min ((ik − jk) , 2π − (ik − jk)))
2 (3.11)

3.3.3. Linkage Mechanisms
The next step in the HAC algorithm is to determine how the pairwise dissimilarity between grid points
should be applied to link grid points to form clusters. This requires the selection of the appropriate link-
age mechanism. The linkage mechanism how the dissimilarities between a pair of objects is calculated.
This is also referred to as the cophenetic dissimilarity (T ). At each step during the linkage process, the
two objects separated by the lowest value for T are combined to form a new cluster at the next level.
Subsequently, the linkage function links the newly formed clusters to create bigger clusters until all
grid points are linked together in a hierarchical tree. The calculation of T is straightforward when only
individual grid points are considered, but becomes ambiguous when clusters consisting of multiple grid
points must be linked together. Different linking mechanisms apply different definitions of dissimilarity
between established clusters. This section explains the linkage mechanisms that are employed in this
thesis.

Figure 3.2: Illustration describing Complete Linkage. Arrows show the considered grid points in the clusters to calculate the
dissimilarities between a pair of clusters (T (I,J ), T (I,K) and T (J ,K)). Green Arrows indicate the clusters linked together

based on Complete Linkage.

3.3.3.1. Complete (Maximum) Linkage Function
In complete linkage clustering, the dissimilarity between clusters is defined by the dissimilarities be-
tween those two grid points (one in each cluster) that are farthest away from each other. This is il-
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Figure 3.3: Illustration describing Single Linkage. Arrows show the considered grid points in the clusters to calculate the
dissimilarities between a pair of clusters (T (I,J ), T (I,K) and T (J ,K)). Green Arrows indicate the clusters linked together

based on Single Linkage.

lustrated in Figure 3.2. Mathematically, the dissimilarities between two clusters as calculated by the
Complete linkage function can be described using equation 3.12 (Sokal & Michener, 1958).

T (I,J ) = max
i∈I,j∈J

d(i, j) (3.12)

In equation 3.12, d(i, j) is the euclidean distance between elements i ∈ I and j ∈ J . I and J are
two clusters that are potentially linked together at a given step during the linkage process. T (I,J ) is
the determined dissimilarity between clusters I and J as determined by the complete linkage function.
The value T can be calculated for every pair of clusters (see Figure 3.2). The cluster combination that
yields the lowest value for T are linked to form a new cluster. Complete is less vulnerable to chaining
than Single linkage, but potentially suffers from crowding (Everitt et al., 2011). Because the calculated
dissimilarity is based on the worst-case dissimilarity between two clusters (i.e. grid points that are
farthest apart from each other), a point can be closer to points in other clusters than to points in its own
cluster

3.3.3.2. Single (Minimum) Linkage Function
In single-linkage clustering, the dissimilarity between two clusters is determined by the pair of grid points
(one in each cluster) that are closest to each other. This is illustrated in Figure 3.3. Mathematically, the
dissimilarity between two clusters as calculated by the Single linkage function can be described using
the following expression (Sokal & Michener, 1958):

T (I,J ) = min
i∈I,j∈J

d(i, j) (3.13)

Similarly to complete linkage, the lowest value of T for all pairs of clusters determines which two clusters
should be merged. Comparing Figures 3.2 and 3.3 shows that different linkage mechanisms can result
in different clusters to linked. Single linkage is particularly vulnerable to chaining. In order to merge
two clusters, only need one pair of grid-points to be close, irrespective of all others (Everitt et al., 2011;
Murtagh & Contreras, 2012).

3.3.3.3. Average Linkage Function
In the average linkage criterion, the distance between the two clusters is determined based on the
average distance between any member from one cluster to any member of the other cluster (Sokal &
Michener, 1958). This process is illustrated in Figure 3.4. This can mathematically be expressed as
Equation 3.14. In equation 3.14, |I| and |J | are the sizes of the clusters, i.e. the number of objects in
each of the clusters.
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Figure 3.4: Illustration describing Average Linkage. Arrows show the considered grid points in the clusters to calculate the
dissimilarities between a pair of clusters (T (I,J ), T (I,K) and T (J ,K)). Green Arrows indicate the clusters linked together

based on Average Linkage.

T (I,J ) =
1

|I| · |J |
∑
i∈I

∑
j∈J

d(i, j) (3.14)

3.3.3.4. Ward Linkage Function
Ward’s linkage criterion (Ward, 1963) is different from the three aforementioned linkage mechanisms as
it is based on minimizing the within cluster sum of squares (WCSS). Ward linkage is illustrated in Figure
3.5. WCSS is defined as the sum of squares of the dissimilarities between all grid-points in the cluster
and the centroid of the resulting cluster (Ward, 1963) after merging. To implement this method, at each
linkage step, the algorithm finds the pair of clusters that leads to minimum increase in WCSS after
merging (Ward, 1963). This is illustrated in Figure 3.5. Ward linkage can mathematically be expressed
as Equation 3.15. In equation 3.15, I and J are the centroids of clusters I and J and ∥I −J ∥2 is the
Euclidean distance between the centroids.

T (I,J ) =

√
2|I||J |
|I|+ |J |

∥I − J ∥2 (3.15)

3.3.3.5. Dendrograms
The hierarchical linkage is best understood when viewed graphically using dendrograms. In a den-
drogram, the horizontal axis represents the objects included in HAC. The links between objects are
represented by upside-down U-shaped lines. The height of the U-shapes represents the dissimilarity
between the objects (grid points or clusters) as calculated by the selected linkage mechanism (T ). This
is also referred to as the cophenetic dissimilarity (Maimom & Rockach, 2010).

3.3.3.6. Cophenetic Correlation
It must be verified that the cophenetic dissimilarities in the dendrogram accurately reflect the dissimilari-
ties in the original dataset. One measure to study the performance of the linkage process is to compare
the cophenetic dissimilarities (T ) between grid points with the original pairwise dissimilarities (d), using
the cophenetic correlation coefficient (C, see Equation 3.16). If the clustering is valid, the cophenetic
dissimilarities in the dendrogram should correlate strongly with grid point dissimilarities, and C yields
values close to 1.

C =

∑
i<j

(
d(i, j)− d

) (
T (i, j)− T

)√∑
i<j

(
d(i, j)− d

)2 ∑
i<j

(
T (i, j)− T

)2 (3.16)
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Figure 3.5: Illustration describing Ward Linkage. The dashed areas indicate the pairs of clusters considered in this clustering
step. The green area indicates the two clusters linked together based on Ward Linkage. The green area has the smallest

surface area, and therefore the smallest value for WCSS.

In equation 3.16, di,j is the pairwise Euclidean distance between grid points, and d is the mean Eu-
clidean distance for all Euclidean distances. Let T (i, j) be the cophenetic dissimilarity between objects
i and j and T be the average cophenetic distance of all cophenetic correlations. The closer the value
of the cophenetic correlation coefficient (C) is to 1, the more accurately the clustering solution reflects
your data.

3.3.4. Internal Evaluation Metrics
The final step in HAC is to select the appropriate cut-off points that determines the number of clus-
ters (K) that adequately describes the extreme wave climate in the North Sea. To determine the ideal
number of clusters, two types of clustering validation criteria exist. External validation criteria evaluate
the clustering results with respect to a pre-specified structure (e.g. knowledge about North Sea wave
climate presented to algorithm prior to clustering), which is not available for unsupervised learning algo-
rithms. Internal criteria on the other hand evaluate the clustering results with respect to the information
intrinsic to the input data alone, and is therefore the preferred method in this research. The Internal
validation methods that are used in this research are the silhouette coefficient (SC), Calinski-Harabasz
(CH) Criterion and the Davies-Bouldin (DB) score.

3.3.4.1. Silhouette coefficient
The silhouette value is a measure of how similar a grid point i is to its own cluster (hereafter denoted
by I) compared to other clusters (hereafter denoted by J , (Rousseeuw, 1987)). The silhouette (s(i))
for every grid point in the dataset can be calculated as follows:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
, if |NI | > 1 (3.17)

In equation 3.17, NI is the number of grid points in cluster I. If NI is equal to 1, s(i) is equal to zero.
Furthermore, a(i) is the mean dissimilarity between object i and all other objects included in cluster
I, and is often referred to as cohesion (Kaufman & Rousseeuw, 1990). Let b(i) be the smallest mean
dissimilarity of object i to all points in any other cluster than I (Rousseeuw, 1987). b(i) is often referred
to as separation. The cluster with the smallest mean dissimilarity is said to be the neighboring cluster,
as it would be the “second best” cluster for i to be assigned to (Kaufman & Rousseeuw, 1990). The
equations for a(i) and b(i) are as follows:

a(i) =
1

|NI | − 1

∑
j∈CI ,i ̸=j

d(i, j) (3.18)
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Figure 3.6: Illustration showing how the silhouette of a grid point (i) is determined. Parameter a(i) is the mean dissimilarity
between object i and all other objects in cluster I. Parameter b(i) is the smallest mean dissimilarity of object i to all points in

any other cluster than I.

b(i) = min
J ̸=I

1

|NJ |
∑
j∈CJ

d(i, j) (3.19)

The silhouette value ranges between −1 and 1. A high value for s(i) indicates that the object i is
well matched to its own cluster and poorly matched to neighboring clusters. For s(i) to be close to
1, it should hold that b(i) >> a(i). If all objects in the clustering analysis have a high value for s(i),
the clustering output is appropriate. The mean of all s(i) values (denoted by S) is a measure of how
tightly grouped the grid points are within the clusters they are assigned to. This is an indication of how
well the grid points have been clustered (Rousseeuw, 1987). To this end, Kaufman and Rousseeuw
(1990) introduced the term silhouette coefficient (SC) to determine the optimal number of clusters for
the objects in the dataset, and can be written as follows:

SC = S(K) (3.20)

In Equation 3.20, S(K) is the mean value of all s(i) for the selected number of clusters K. SC can be
calculated for any number of clusters K. The value for K that gives the highest value for SC, is the
ideal number of clusters.

3.3.4.2. Calinski-Harabasz Criterion
The Calinski-Harabasz (CH) criterion (Caliński & Harabasz, 1974) aims to minimize the within cluster
variance and to maximize the between cluster variance. The equation for the CH criterion is as follows:

CH(K) =
SSB

SSW
· N −K
K − 1

(3.21)

In Equation 3.21, N is the total number of grid points in the cluster analysis, and K is the number of
clusters. Furthermore, SSB is a measure of the between-cluster variance, and SSW is a measure of
the within cluster variance (Caliński & Harabasz, 1974). Mathematically, SSB and SSW can be defined
as:

SSB =

K∑
I=1

NI
∥∥MI −M

∥∥
2

(3.22)

SSW =

K∑
I=1

∑
i∈CI

∥∥i−MI
∥∥
2

(3.23)
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Figure 3.7: Illustration showing how the Calinski-Harabasz Score is calculated.
∥∥MI −M

∥∥
2
is the Euclidean distance

between the centroid of cluster I and the overall mean of the input data M. Furthermore,
∥∥i−MI

∥∥
2
be the Euclidean

distance between an observation i in cluster I and the centroid of the cluster MI .

In equations 3.22 and 3.23, K is the number of clusters, NI is the number of grid points in cluster I,
and

∥∥MI −M
∥∥
2
is the Euclidean distance between the centroid of cluster I (denoted by MI and

the overall mean of the input data M. Finally, let
∥∥i−MI

∥∥
2
be the Euclidean distance between an

observation i in cluster I and the centroid of the cluster MI . According to Caliński and Harabasz
(1974), well defined clusters have a small value for SSW and large value for SSB . This means that
better clustering solutions yield higher values for CH(K).

3.3.4.3. Davies-Bouldin Index
The final evaluation criterion applied in this research is the Davies-Bouldin (DB) index (Davies & Bouldin,
1979). Similar to SC, DB compares within-cluster and between-cluster dissimilarities. The Davies-
Bouldin index is mathematically defined as:

DB(K) =
1

K

K∑
I=1

max
I̸=J

{DI,J } (3.24)

In equation 3.24, DI,J is the within-to-between cluster distance ratio for the clusters I and J . DI,J
can be defined as:

DI,J =

(
d̄I + d̄J

)
d̄I,J

(3.25)

In equation, 3.25, d̄I is the average dissimilarity between all points included in cluster I and the centroid
of cluster I. Similarly, d̄J is the average dissimilarity between all points included in cluster J and
the centroid of cluster J . d̄I,J is the Euclidean distance between the centroids of clusters I and J .
According to (Davies & Bouldin, 1979), for a clustering solution to perform well, the values for d̄I and
d̄J must be as low as possible, meaning that the within-cluster grid points are tightly grouped. Also, the
value for d̄I,J must be as high as possible, meaning that dissimilarities between the clusters are high.
Davies and Bouldin (1979) then selects max (DI,J ), because it gives relatively high values for d̄I and
d̄J and low values for d̄i,j , referring to the two clusters that give the poorest clustering results. This
means that the optimal number of clusters is the value for K that gives the lowest value for DB(K).

3.3.5. Initial Number of Clusters
Before running the Hierarchical Agglomerative Clustering (HAC) algorithm, a maximum number of clus-
ters (Kmax) that must be considered by the HAC-algorithm should be selected. The HAC algorithm
assesses the clustering output for all numbers of clusters (K) between 1 and Kmax to find the value for
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Figure 3.8: Illustration showing how the Davies-Bouldin ratio is calculated. d̄I is the average dissimilarity between all points
included in cluster I and the centroid of cluster I. Similarly, d̄J is the average dissimilarity between all points included in

cluster J and the centroid of cluster J . d̄I,J is the Euclidean distance between the centroids of clusters I and J .

K that yields the best clustering output.

One of the goals of the clustering analysis is potential data volume reduction. To maximize data volume
reduction, the value of K should not be too high. However, in HAC analysis, there is always a trade-
off between K and the quality of the clustering output. If the value of K is too low, grid-points with
different extreme wave characteristics will be linked together. Contrarily, if the value of K is too high,
the clustering output will be a good representation of the extreme wave characteristics, but the data
volume reduction will not be as efficient. To limit the number of clusters identified by the HAC-algorithm,
this research imposed a maximum number of clusters to be analyzed,: Kmax = 50.

3.3.6. Assessing Clustering Output
The HAC analyses in this research are performed for different wave parameter combinations and weight
configurations. For each configuration, different linkage mechanisms are evaluated that subsequently
give different values for the number of clusters (K) that yields the best clustering output. For each
configuration, the best clustering output must be identified. This section explains the steps required
to determine the best clustering output for each configuration. This involves the selection of the the
best linkage mechanism, determining the ideal value for K for each linkage mechanism and a critical
assessment of the clustering output to compare how well the clustering output represents the input
values. Once the best clustering output for each configuration is determined, the best overall clustering
output to be used in the research must be determined.

3.3.6.1. Selecting Linkage Mechanism
The linkage mechanisms Single, Complete, Ward and Average are used to form clusters based on the
dissimilarity information. The first step is to compare the performance of the different linkage mecha-
nisms using the cophenetic correlation C (See Section 3.3.3.6). However, the best scoring dendrogram
does not always result in the best clustering solution. Based on the value for C, the two best scoring
dendrograms are selected for further analysis.

3.3.6.2. Selecting Number of Clusters
For the two linkage mechanisms selected in Section 3.3.6.1, the internal evaluation criteria - Silhouette
Coefficient (SC), Calinski Harabasz criterion (CH) and the Davies-Bouldin value (DB) are assessed
to find the value for K that yields the best clustering output. For each of the internal evaluation criteria
(SC, CH and DB), an optimal number of clusters is given (denoted by KSC , KCH and KDB). The
values for KSC , KCH and KDB are analyzed to see how much agreement there is for an ideal number
of cluster between the different internal evaluation metrics.
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The ideal number of clusters may differ between the different internal evaluation metrics. This is be-
cause HAC is an unsupervised learning approach, where no prior information is presented to the clus-
tering algorithm. This leaves the HAC algorithm on its own to establish a structure in the data. When
the values for KSC , KCH and KDB are close, there is a lot of agreement regarding an optimal value
for K. If there is a large range between the values for KSC , KCH and KDB , a careful analysis of the
clustering output for different values for K is required. This means that there is always a level of subjec-
tiveness involved in HAC analysis. It is critical that for each value of K, the clustering output is carefully
compared against input values of the wave parameters to ensure that the found clusters are a good
representation of the extreme wave characteristics in different regions of the North Sea. The optimal
value for K is the value that yields the best representation of the HAC input values.

It should be noted that the internal evaluation metrics (SC, CH and DB) are only used to assess the
performance of the HAC analysis for different values of K for a fixed parameter combination and weight
configuration (Yanchi Liu et al., 2013). It is not possible to analyze C, SC, CH and DB to compare
the clustering performance between different configurations. This is because the (1) assigned weight
configuration, (2) the resulting dissimilarities, (3) linkage mechanisms and (4) the internal evaluation
metrics form a closed system as points (2), (3) and (4) all depend on the assigned weight configu-
ration(Yanchi Liu et al., 2013). The assigned weight configuration influences the calculated pairwise
dissimilarities between grid points. Subsequently, the cophenetic distances (T ) are determined by the
linkage mechanisms. Furthermore, SC, CH andDB use the pairwise dissimilarities to assess the clus-
tering output for different values of K, thus are also dependent on the assigned weight configuration.

3.3.6.3. Selecting Best Clustering Output
The next step is to select the best clustering output. This is done in two steps. First, the best clustering
output for each weight configuration must be determined by selecting the linkage mechanisms and K
that yields the best clustering output. Both clustering solutions under considerations have the same
weight configuration. This means that the performance of the two clustering solutions can be assessed
by a comparison of the relative scores for SC, CH, and DB. Furthermore, the clustering output is di-
rectly influenced by the input values representing the wave parameters. Therefore, a careful analysis
of the clustering output against the input values is required to see linkage mechanism and K give the
best representation of the input values. The best clustering output is determined based on how well
the cluster boundaries represent the differences between the HAC input values. In this research, 5
different weight configurations for each wave parameter combination are evaluated. This means that
5 different clustering outputs are obtained.

After the best clustering output for each weight configuration has been determined, the best clustering
solution for each wave parameter combination must be determined. Weight can be assigned to the
parameters to place more emphasis on parameters that are deemed more important, or to add addi-
tional steering to optimize the clustering output. However, too much weight can cause the clustering
algorithm to miss some essential details while determining the cluster boundaries. A critical analysis
of the clustering output is required to see if the resulting clusters are a good representation of the back-
ground data. In the end, for each wave parameter combination, 1 clustering solution is selected for
further development (see Section 3.3.6.4).

3.3.6.4. Further Development of Clustering Output
The final clustering output is subjected to further development to improve the cluster map. Because
Hierarchical Clustering is an unsupervised learning approach, the clustering output is always a direct
representation of the input data. If the input values representing Hm0, Tp, θ1 and θ2 are similar for
different grid points, they are assigned to the same cluster. This means that some ambiguity may arise
in the clustering output that must be assessed by the modeler (Kaufman & Rousseeuw, 1990). This
is involves a critical (but very subjective) assessment of the clustering output by analyzing statistical
properties of the different clusters. Because the clustering output always is a direct result of the in-
put values, grid-points in different geographical locations may be assigned to the same cluster, while
there is no evidence that the statistical properties between the geographical locations are the same.
Therefore, clusters in different geographical locations are preferably split. Similarly, grid points in close
proximity may share similar statistical properties but are assigned to different clusters because the input
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values between the grid points are different as a result of the pre-processing of the input values prior to
clustering (see Section 3.3.1.2. Preferably, these clusters are merged together. The post-processing
of the clustering output in this research is further explained in Section 5.1.2.

3.4. Extreme Value Analysis
The design and risk assessment of hydraulic infrastructure requires a comprehensive understanding of
the extreme wave climate. Extreme value theory provides tools for modelling the stochastic behavior at
unusually large or small magnitudes (Coles, 2001). Typically, this involves the estimation of events not
observed within the available dataset because the available data has a limited temporal horizon with
respect to the normative return period (Coles, 2001). Extreme events of interest can then be inferred
by fitting an extreme value distribution to a dataset of observed events. Subsequently, unobserved ex-
treme events can be inferred by means of extrapolation of the fitted extreme value distribution (Coles,
2001).

Most current risk assessment models rely on the assumption of stationarity when performing extreme
value analysis (EVA). This is a reasonable assumption if there are no significant changes in the mag-
nitude and frequency of the extreme events over time. However, climate change is likely to influence
the frequency and magnitude of extreme events. This potentially requires the application of EVA under
the non-stationary assumption. In a non-stationary model the parameters of the underlying probability
distribution function change over time or in response to a physical covariate (Cheng et al., 2014; Ragno
et al., 2019).

This section provides an overview of the theory of Extreme Value Analysis, both under the stationary
and non-stationary approach. Furthermore, Bayesian Inference (BI) to obtain extreme value distribution
parameters will be explained. Finally, Section 3.4.3 explains methods to verify the performance of
extreme value distributions.

3.4.1. Extreme Value Distributions
The behavior of the extreme events can be captured by extreme value distributions. The distribution
parameters of these extreme events are largely determined by the tail behavior of the extreme events
(Coles, 2001). The goal is to find the extreme value distribution that describes the sampled extreme
events best (Coles, 2001). In this section, the Generalized Extreme Value (GEV) distribution, General-
ized Pareto (GP) distribution will be explained under both stationary and non-stationary conditions.

3.4.1.1. Generalized Extreme Value Distribution
The generalized extreme value (GEV) distribution is used to model the extreme values that have been
obtained using BlockMaxima. TheGEV distribution is a family of continuous distributions that combines
three types of extreme value distributions. In its general form, the cumulative density function (CDF) of
the GEV distribution is expressed as follows (Coles, 2001; Ragno et al., 2018):

ΨGEV (x) = exp

{
−
(
1 + ξ

(
x− µ

σ

))−1
ξ

}
(3.26)

where: (
1 + ξ

(
x− µ

σ

))
> 0 (3.27)

The Generalized Extreme Value distribution is flexible for modelling different behaviors of extremes
using the three distribution parameters (θ, Cheng et al. (2014)):

• µ is the location parameter and specifies the center of the distribution;
• σ is the scale parameter and determines the deviations surrounding the location parameter;
• ξ is the shape parameter and determines the tail behavior of the GEV distribution. Three different
cases can be identified. The limiting case of ξ → 0 gives the Gumbel distribution, ξ < 0 gives the
Weibull distribution and ξ > 0 gives the Fréchet distribution.
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Stationarity is defined as the time-invariance of extreme events (Cheng et al., 2014; Ragno et al., 2019).
The extreme events are independent and identically distributed. As a result, the GEV parameters
(θ = (µ, σ, ξ)) have fixed values and the resulting values for ΨGEV (x) are constant in time. Under
non-stationary modelling, extreme events are still independent but are no longer identically distributed.
θ becomes time or process dependent. That means the properties of the extreme value distribution
vary with the given covariate (Cheng et al., 2014; Ragno et al., 2019). In this research only temporal
covariates (t) are studied. Under non-stationary conditions, the distribution parameters become:

θ(t) = µ(t), σ(t), ξ(t) (3.28)

The CDF of the non-stationary GEV distribution is defined as follows (Ragno et al., 2019):

ΨGEV (x | t) = exp

{
−
(
1 + ξ(t)

(
x− µ(t)

σ(t)

))− 1
ξ(t)

}
(3.29)

Where: (
1 + ξ(t)

(
x− µ(t)

σ(t
)

))
> 0 (3.30)

Because we are looking at non-stationary processes, the GEV parameters become dependent on tem-
poral covariates. For example, if we consider µ to have a linear trend in time, it can be expressed as
follows (Cheng et al., 2014; Coles, 2001; Ragno et al., 2019):

µ (t) = µ1 · t+ µ0 (3.31)

The set of distribution parameters of a GEV distribution with a non-stationary location parameter ac-
cording to equation 3.31 can be expressed by θ = (µ1, µ0, σ, ξ). This means that there are additional
distribution parameters that must be estimated compared to stationary modelling. The total number of
parameters to be estimated depends on the parameters that are assumed to be non-stationary, and
the assumed temporal trend of said parameters (e.g. linear or polynomial, (Cheng et al., 2014; Ragno
et al., 2019)).

3.4.1.2. Generalized Pareto Distribution
The Generalized Pareto (GP) Distribution is used for modelling extreme values that have been obtained
using Peak over Threshold (POT) analysis. Consider a set X of independent extreme observations
exceeding a threshold (u). The CDF of the exceedances (ye = x − u), can be expressed as follows
(Antonini et al., 2019; Pickands, 1975; Ragno et al., 2019):

ΨGP (ye) = 1−
(
1 + ξ ·

(ye
σ

))− 1
ξ (3.32)

In equation 3.32, ye is the exceedance of x above u (ye|x > u = x–u), σ is the scale parameter and
ξ is the shape parameter. Similar to the GEV distribution, ξ determines the tail behavior of the GP
distribution (Coles, 2001). If ξ < 0, the GP distribution of the exceedances has an upper bound of
u–σ/ξ. In the case that ξ > 0, the GP distribution has no upper limit. And finally, for the limiting case
that ξ → 0, the GP distribution can be rewritten as:

ΨGP (ye) = 1− exp

(
1

σ

)
(3.33)

This corresponds to an exponential distribution with parameter 1/σ. In the non-stationary GP distribu-
tion, both the threshold value (ye) as well as the distribution parameters (σ and ξ) can be expressed
as a function of a temporal covariate. The CDF of the non-stationary GP distribution is then defined as
(Ragno et al., 2019):

ΨGP (ye | t) = 1−
(
1 + ξ (t) ·

(
ye (t)

σ (t)

))− 1
ξ(t)

(3.34)
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3.4.2. Bayesian Inference
In this research, The parameters of the extreme value distributions will be inferred using Bayesian In-
ference (BI). The Matlab toolbox ProNEVA (Ragno et al., 2019) applies Bayesian Inference techniques
to infer the extreme value distributions under both stationary and non-stationary conditions. Bayesian
Inference combines prior knowledge about the extreme value distribution parameters and a set of
additional observations (Cheng et al., 2014) to update its belief about the extreme value distribution.
Bayesian inference, as the name suggests, makes use of Bayes’ theorem, which in its general form
can be expressed as follows:

P (A | B) =
P (B | A)P (A)

P (B)
(3.35)

Simply explained, Bayes’ theorem is a mathematical equation used for updating probabilities when new
observations or information becomes available. Within this framework, the interest lies in estimating
the distribution parameters (θ) of the Extreme Value distributions given a set of observations (Yobs). It
is possible to rewrite Bayes’ Theorem as follows:

p (θ | Yobs) =
p (θ) · p (Yobs | θ)

p (Yobs)
(3.36)

In equation 3.36, θ denote the parameters of the extreme value distribution, and Yobs is a set of ob-
servations. Within equation 3.36, we distinguish the following terms (for more information, see Figure
C.1):

• p (θ) is the prior. It is the probability of the parameters θ and represents prior knowledge about
the parameters of the extreme value distribution;

• p (Yobs | θ) is the likelihood, and can conceptually be described as the probability of occurrence
of the observations (Yobs) given the distribution parameters θ;

• p (Yobs) is the marginal likelihood of the observations, often also referred to as ”evidence”. It is the
overall probability of the newly obtained information. Within this framework, this will be neglected
because it is assumed that it is a constant value (Ragno et al., 2019);

• p (θ | Yobs) is the posterior. The posterior represents the updated probability and confidence in-
terval of the distribution parameters θ given an updated set of observations or information Yobs.

Given the fact that the marginal likelihood p (Yobs) is neglected, equation 3.36 can be rewritten as:

p (θ | Yobs) ∝ p(θ) · p (Yobs | θ) (3.37)

Assuming independence between observations, Bayes theorem for the estimation of the non-stationary
GEV distribution with a linear location parameter (See Equation 3.31) can be written as follows (Cheng
et al., 2014; Ragno et al., 2019):

p (µ1, µ0, σ, ξ | Yobs) ∝ p (µ1) p (µ0) p(σ)p(ξ) ·
N∏
i=1

p (yi | µ1, µ0, σ, ξ) (3.38)

In Equation 3.38, θ = (µ1, µ0, σ, ξ) are the distribution parameters of the non-stationary GEV distribution.
The stationary case can be treated as a special case of equation 3.38, but without the dependence on
a covariate, and the equation becomes (Cheng et al., 2014):

p (µ, σ, ξ | Yobs) ∝ p(µ)p (σ) p(ξ) ·
N∏
i=1

p (yi | µ, σ, ξ) (3.39)

The resulting posterior distributions p (µ1, µ0, σ, ξ | Yobs) and p (µ, σ, ξ | Yobs) provide information about
the distribution parameters under non-stationary and stationary conditions respectively.
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3.4.2.1. Bayesian and Frequentist Approach for Parameter Estimation
Within the framework of EVA, it is important to make a clear distinction between the Frequentist ap-
proach and the Bayesian approach in the estimation of distribution parameters. Within the Frequentist
approach, the distribution parameter of the extreme value distribution has a fixed value. No probabili-
ties can be assigned to describe its uncertainty (Bickel & Lehmann, 2012). The value of the mentioned
distribution parameter is also known as the maximum likelihood estimate (MLE). The MLE of the distri-
bution parameter is equal to the sample parameter.

The Bayesian approach agrees that the distribution parameter (e.g. the location parameter) of the
extreme value distribution has a fixed but unknown value. The uncertainty surrounding its true value
can be represented using a probabilistic distribution (Cheng et al., 2014). An assumption is made
about the possible values of the distribution parameters by defining a prior probability distribution, and
sample data is used to update the extreme value distribution (likelihood). In the Bayesian setting,
Bayes’s theorem is applied to the newly obtained data to make probability distribution over the unknown
parameter narrower (the posterior). In the end, this results in a probabilistic distribution of the GEV
distribution parameters.

3.4.3. Model Checking
The performance of extreme value distribution must be assessed to determine their applicability to
accurately project extreme return levels. The lack of data with respect to the normative return periods
and the requirement of extrapolation is a fundamental difficulty when assessing the performance of the
extreme value distributions (Coles, 2001). However, assessment of the characteristic GEV distributions
can be made with reference to the observed data. To this end, Quantile-Quantile plots (QQ-plots) and
goodness of fit (GOF) tests including the Bias and Root Mean Square Error (RMSE) are used to assess
the performance of the GEVmodel. Furthermore return level plots are used to study the expected return
level estimates of extreme Hm0 for long return periods.

3.4.3.1. Quantile-Quantile (QQ) plots
Quantile-Quantile (QQ) plots compare the performance of the fitted extreme Value distribution against
the extreme observations (Coles, 2001). This allows us to study how well the theoretical extreme value
distribution describes the extreme observations. Consider two sets of extreme observations. The first
set includes N extreme observations derived using Annual Maxima, denoted by zi. The second set
includes K observations derived using peak over threshold, denoted by yj . The extreme data can be
ordered so that z1 ≤ z2 ≤ · · · ≤ zN and y1 ≤ y2 ≤ · · · ≤ yK . Subsequently, the empirical cumulative
distribution functions (CDF) G̃ and H̃ of the extreme observations is given as follows (Coles, 2001):

G̃
(
z(i)

)
= i/(N + 1) (3.40)

G̃
(
y(i)

)
= j/(K + 1) (3.41)

For the QQ-plot, the inverse of the fitted GEV or GP model (Ĝ−1 and Ĥ−1 respectively) is used to
compute the theoretical extreme values corresponding to the empirical CDFs G̃ and H̃. The inverse
CDFs of theGEV andGP distribution canmathematically represented by the following equations (Coles,
2001).:

Ĝ−1

(
i

N + 1

)
= µ̂− σ̂

ξ̂

[
1−

{
− log

(
i

N + 1

)}−ξ̂
]

(3.42)

Ĥ−1(
j

K + 1
) = u+

σ̂

ξ̂

[
y−ξ̂ − 1

]
(3.43)

The QQ-plot can then be constructed by plotting the theoretical extreme values as derived by Ĝ−1 and
Ĥ−1 against the extreme observations zi and yj as given in Equation 3.42. If the fitted extreme value
models are a reasonable estimate of the extreme wave climate, the QQ-plots show points close to the
diagonal reference line (Coles, 2001). Departures from linearity in the quantile plot could represent
model failure, in the sense that Ĝ−1 Ĥ−1 may either under- or overestimate the extreme values for
Hm0.
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{(
Ĝ−1(i/(N + 1)), z(i)

)
, i = 1, . . . ,m

}
(3.44)

{(
Ĥ−1(j/(K + 1)), y(j)

)
, j = 1, . . . ,K

}
(3.45)

3.4.3.2. Return Level Plots
Return level plots can be used to study the expected return level estimates of extreme Hm0 for long re-
turn periods. For extreme events selected using Annual Maxima the return period (R̂) can be calculated
from Ĝ using the following equation:

ˆRGEV =
1

1− Ĝ
(3.46)

For the extreme value models derived using POT analysis (i.e. GP distributions), this is a little less
straightforward. POT analysis results in an unequal distribution of the number of extreme events se-
lected for each year. An approximation can be made by including the average annual threshold ex-
ceedances (Nexc) as follows:

ˆRGP =
1

Nexc(1− Ĥ)
(3.47)

In equations 3.46 and 3.47, ˆRGEV and ˆRGP are the return period of extreme for the theoretical GEV
and GP distributions respectively.

3.4.3.3. Goodness of Fit Equations
The performance of the modelled extreme value distributions can be analysed using several goodness
of fit tests, including bias and Root Mean Square Error (RMSE). Bias is the discrepancy between the
theoretical extreme values and the observation data. Bias is used to determine whether Extreme value
model tends to over- or underestimate the data compared to the observations. The Root Mean Square
Error (RMSE) is employed to reflect the standard deviation of the differences between the extreme
value distribution and the extreme observations. Bias and RMSE can be calculated using the following
equations (here only given for the GEV distribution):

Bias =
1

N

N∑
i=1

(
Ĝ−1

(
i

N + 1

)
− zi

)
(3.48)

RMSE =

√√√√ 1

N

N∑
i=1

(
Ĝ−1

(
i

N + 1

)
− zi

)2

(3.49)

In equations 3.48 and 3.49, N is the number of extreme observations included to fit the extreme value
distribution.

3.5. Extreme Value Analysis on Cluster Level
This section explains the derivation of the representative extreme value models describing the extreme
significant wave height (Hm0) at cluster level. Before performing the (non-stationary) extreme value
analysis at cluster level, characteristic time-series describing extreme Hm0 at cluster level must be ob-
tained. This includes the detrending of the extreme Hm0 observations and the generation of 5 different
representative time-series. Subsequently, Bayesian Inference (BI) is employed to infer the parameters
of the Generalized Extreme Value (GEV) distribution corresponding to the detrendedHm0 observations.
Subsequently, potential non-stationarity of extreme Hm0 is accounted for by adding the temporal trend
information to the location parameter. This makes the location parameter of the GEV distribution a
function of time.
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Figure 3.9: Visualization of detrending AM Hm0 observations. The Theil Sen parameters b and b0 are used to fit a linear
regression line which is subtracted from the AM Hm0 observations to arrive at H∗

m0.

3.5.1. Pre-Processing of Data at Grid Points
Within the considered cluster, the time-series at the grid point level have been filtered according to the
dominant wave direction. This ensures that the selected extreme events are both homogeneous and
independent. The performed hierarchical clustering analysis ensures that all intra-cluster grid point
have similar values for the dominant wave direction (θ1). Subsequently, the dominant range surround-
ing θ1 is identified from which the extreme Hm0 observations are selected. The relevant range of the
dominant wave directions (i.e. upper and lower bounds of θ1) are given in Table 5.4.

Annual Maxima (AM) was applied to select the extremeHm0 events. This was done for several reasons.
Extreme Hm0 values selected using AM are better suited for the quantification of long-term temporal
trends than those selected using POT because POT requires the careful selection of a threshold. For
more information, see Discussion. Furthermore, the POT approach results in different numbers of ex-
ceedances for every year, thereby posing further challenges for the temporal trend analysis. Annual
maxima (AM) ensures that one extreme sample per year is considered at each grid point (Laface et al.,
2016; Liang et al., 2019).

Before constructing representative time-series, the AMHm0 data must be detrended at each of the grid
points. Despite the fact that hierarchical clustering analysis is performed to identify clusters with simi-
lar extreme Hm0 characteristics, the intra-cluster range for extreme Hm0. This is a direct result of the
pre-processing of the HAC input values for Hm0 prior to clustering. To ensure that the intra-cluster AM
Hm0 observations are homogeneous, detrending is required. Detrending the annual maxima removes
any long-term trend and forces the mean for intra cluster AM H∗

m0 observations to be approximately
equal.

Detrending AM Hm0 is performed under the assumption that potential non-stationary of extreme Hm0

can be described by a linear trend. The temporal trends are calculated at grid-point level by fitting the
Theil-Sen (TS) estimator b and intercept b0 (see Section 3.2.2) to the AM Hm0 data. Subsequently, the
temporal trend for AM Hm0 (yHm0) can be described by the following linear relation:

yHm0(t) = b0 + b · t; (3.50)

In this equation, t is the time in years. This chapter only considers the full length of the wave data, i.e.
spanning between 1950 and 2020. The AM Hm0 values are detrended by subtracting the trend yHm0,
resulting in H∗

m0.
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Figure 3.10: Illustration visualizing Series and Parallel Aggregation for a hypothetical cluster containing Ngp grid points. For
series aggregation, the Ngp sets of annual maxima are placed behind each other. For parallel aggregation, 1 observation is

selected for each time-stamp to construct the representative time-series.

3.5.2. Constructing Representative Time Series
TheH∗

m0 observations at the grid-points are evaluated to select characteristic datasets that describe the
extreme Hm0 at the cluster level. Five methods to construct representative time-series for the clusters
will be evaluated in this research. Three aggregation methods will be evaluated to see how intra-cluster
extreme wave data can be pooled to generate characteristic datasets. Two methods involve grid points
selection to study whether the extreme wave data from a single grid-point is sufficient to describe the
wave climate at cluster level. The following sections elaborate on the different methods.

3.5.2.1. Series Aggregation (Method 1)
The first method to generate representative time-series is series aggregation. In series aggregation,
the H∗

m0 series for all intra-cluster grid points are placed ”behind each other”, thereby creating a single
time-series consisting ofNgp ∗Thor observations (See figure 3.10), whereNgp is the number grid points
in the considered cluster, and Thor is the considered temporal horizon expressed in years. The benefit
of this aggregation method is that it contains all detrended values for AM H∗

m0, thereby maximizing the
available knowledge about extreme waves in the cluster.

3.5.2.2. Parallel Aggregation (Methods 2 and 3)
The second and third method to compute Representative H∗

m0 time-series of extreme is parallel ag-
gregation. In parallel aggregation, a single value for H∗

m0 from each year is selected to construct the
dataset (See figure 3.10). For aggregation method 2, the maximum annualH∗

m0 value is selected. And
for aggregation method 3, the median H∗

m0 value between all intra-cluster grid points is selected. For
both methods 2 and 3, the assumption is made that the selected AMH∗

m0 observations at the grid-points
occurred during the same storms and therefore the relative magnitude of the extreme wave events after
detrending remains constant between the different grid points.

3.5.2.3. Grid-point of clustering Centroid (Method 4)
The fourth method involves the selection of extreme wave data from a single grid-point. This method
assumes that the time-series of Hm0 at the grid point corresponding to or closest to the clustering
centroid is representative for modelling extreme Hm0 at cluster level. This method is adopted from
Goharnejad et al. (2022), who obtained promising results using this method to assess the extreme
wave climate at cluster level in the North Atlantic Ocean. See Figure 3.11 for an illustration how this
representative time-series is selected.
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Figure 3.11: Illustration visualizing the selection of the grid point that yields the clustering centroid. Consider a cluster from a
HAC analysis based on two cluster parameters, X and Y . The cluster variables can be standardized and plotted against each

other. The selected grid point is the grid point that yields the centroid (given in red).

Figure 3.12: Illustration visualizing the selection of the grid point that yields the maximum return levels for the detrended
values of AM Hm0. The return level plots can be plotted for all Ngp grid points. The selected grid point in this analysis is the

grid point that yields the highest return levels.

3.5.2.4. Grid-point with Highest Return Levels (Method 5)
The fifth and final method is to select the grid-point that yields the highest return values for the GEV
distributions of Hm0 before detrending to describe extreme Hm0 at cluster level. The resulting return
levels for the model derived using this representative time-series are expected to remain relatively high
compared to the individual intra-cluster grid points after deriving the extreme value model. This allows
this extreme value model to yield safe estimates regarding extreme Hm0 conditions when used for the
design and risk assessment of hydraulic infrastructure.

3.5.3. Extreme Value Analysis using Bayesian Inference
The representative time-series of AMH∗

m0 are subsequently subjected to Extreme Value Analysis (EVA)
to determine the Generalized Extreme Value (GEV) distribution parameters (θ = {µ, σ, ξ}). Because
H∗

m0 concerns detrended data, the GEV parameters represent the detrended data, and will be denoted
by θ∗ = {µ∗, σ∗, ξ∗}. The parameters for θ∗ will be inferred using Bayesian Inference (BI). See Section
3.4.2 for more information. BI is preferred over Maximum Likelihood Estimation (MLE) because BI
allows the construction of informative priors based on extreme value information from the grid points
that share similar extreme wave characteristics. This provides more accurate extreme value models
than using MLE (Rickets, 2021). Furthermore, BI is selected because the posterior distribution allow for
straightforward uncertainty quantification of the GEV parameters. This section presents the BI process
applied in this research including the appropriate informative priors (P (θ)) and analysis of the posterior
distributions. The aggregated H∗

m0 datasets are used as the observations in the BI process.

3.5.3.1. Priors for GEV parameters
For the extreme value analysis of H∗

m0, appropriate prior distributions must be selected. This research
adopts its approach to determine informative priors from Antonini et al. (2019) and Raby et al. (2019).



34 Chapter 3. Methodology

The aim is to combine the information about θ∗ at the intra-cluster grid points to construct informative
normal priors. This makes it possible to maximize the available prior information about the extreme
value distribution, thereby enhancing the performance of the extreme value model at cluster level. The
general assumption is that within the cluster, the properties of θ∗ at each grid point are similar compared
to neighboring grid points. As a result, the values for θ∗ vary smoothly throughout the cluster.

At each of the intra-cluster grid-points, the values for H∗
m0 have been examined. The GEV distribution

has been fitted to the H∗
m0 observations at each grid point by means of maximum likelihood estimation

(MLE), resulting inNgp values for µ∗
gp, σ∗

gp and ξ∗gp within the considered cluster. Note that the subscript
gp refers to grid points, and not to the Generalized Pareto distribution. The values for µ∗

gp, σ∗
gp and ξ∗gp

are subsequently used to determine the mean and standard deviations of the normal prior distributions.
In Antonini et al. (2019) and Raby et al. (2019), the distance between the grid points and an extraction
point of interest is considered to assign weight to θ∗gp before fitting the normal prior distribution. In
this study, all values for µ∗

gp, σ∗
gp and ξ∗gp at the grid points are assigned equal weight. The reason for

this is that information from multiple grid points is combined in the aggregation process, and therefore
appropriate weights cannot be assigned.

3.5.3.2. ProNEVA for Bayesian Inference
The Bayesian Inference procedure will be performed using MATLAB toolbox ProNEVA developed by
Ragno et al. (2019). ProNEVA applies a Hybrid Evolution Markov Chain Monte Carlo (HE-MCMC)
algorithm (Ragno et al., 2019; Sadegh et al., 2017). The (HE)-MCMC approach for obtaining the
posterior distribution of parameters has become increasingly popular and is used in several studies of
extremes (Cheng et al., 2014). More information about MCMC and how ProNEVA applies MCMC to
infer distribution parameters is presented in Appendix C. A detailed sensitivity analysis studying the
effects of the HE-MCMC settings on the resulting GEV distribution parameters lies outside the scope
of this thesis. Nevertheless, it is important to carefully select the settings of the HE-MCMC algorithm
to obtain optimal results. For each evaluation of the prior and observation distributions, 5 chains are
selected to run in parallel. The total number of iterations for each evaluation is equal 10 000. The
considered burn-in period is equal to 1 000 iterations, meaning that the first 1 000 iterations of each
run are neglected and the subsequent analysis is based on the remaining 9 000 iterations for each
chain, resulting in a total of 45000 samples forming the posterior distributions (P (θ∗ | H∗

m0)) of the GEV
distribution parameters.

3.5.3.3. Analyzing the Posterior Distributions
The posterior (P (θ∗ | H∗

m0)) distributions are subsequently analyzed to determine the GEV distribution
parameters (for θ∗ = {µ∗, σ∗, ξ∗}. In contrast to Maximum Likelihood Estimation (MLE), the GEV distri-
bution parameters inferred using Bayesian Inference must be derived from the posterior distributions
(see Section 3.4.2.1). The median values the posterior distributions are selected to represent the best
estimate of the GEV distribution parameters. Furthermore, the 5 and 95 percentile values of the poste-
rior distributions are used to the derive the GEV distribution parameters that yield the 90% confidence
interval.

3.5.4. Including Non-Stationarity in GEV Distribution
In this research, we account for potential non-stationarity of Hm0 by adding a linear component that
represents the temporal trend to µ∗. This essentially results in a horizontal shift of the cumulative
distribution function (CDF) over time (See figure 3.13). The expression of CDF of the GEV distribution
for H∗

m0 is given as follows:

H∗
m0 ∼ GEV (µ∗, σ∗, ξ∗) (3.51)

Ψ∗
GEV (H

∗
m0) = exp

{
−
(
1 + ξ∗

(
(H∗

m0 − µ∗

σ∗

))− 1
ξ∗
}

(3.52)

In equation 3.52, µ∗, σ∗ and ξ∗ are the location, scale and shape parameters respectively, derived using
Bayesian Inference. The CDF of the non-stationary GEV model is then computed by adding a linear
component representing the temporal trend of extreme Hm0 to µ∗. This causes the GEV distribution to
shift horizontally with time (See figure 3.13). From Equation 3.50, we know that:
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Figure 3.13: Illustration showing the reinstatement of the trend back in to the GEV distributions. Black line illustrates
Ψ∗

GEV (H∗
m0). The green, blue and red line illustrate ΨGEV (Hm0) for the years, 1950, 1990 and 2020 respectively.

Hm0 = H∗
m0 + yHm0(t) = H∗

m0 + (b · t+ b0) (3.53)

For simplicity reasons, this research only considers non-stationarity of the location parameter. Non-
stationarity for the scale parameter (σ∗) is not considered because it is assumed that extreme deviations
for Hm0 do not change with time. The shape parameter (ξ∗) are also considered to be fixed in time in
this research. There is no reason to believe that the extreme distributions will switch from bounded to
un-bounded distributions (or vice versa). Equation 3.53 can be substituted into Equation 3.52, yielding
the following equation for the GEV distribution for Hm0:

Hm0 ∼ GEV (µ∗ + (b · t+ b0) , σ
∗, ξ∗) (3.54)

ΨGEV (Hm0 | t) = exp

{
−
(
1 + ξ∗

(
(Hm0 − (µ∗ + b · t+ b0)

σ∗

))− 1
ξ∗
}

(3.55)

Finally, the inverse CDFs for H∗
m0 and Hm0 can be written as follows (adopted from (Coles, 2001)):

Ψ−1∗
GEV (Ψ) = µ∗ − σ∗

ξ∗

[
1− {− log (Ψ)}−ξ∗

]
(3.56)

Ψ−1
GEV (Ψ, t) = µ∗ − σ∗

ξ∗

[
1− {− log (Ψ)}−ξ∗

]
+ b · t+ b0 (3.57)

Using Equation 3.55, return level plots for year of interest can be inferred by selecting the appropriate
value for t. The selected value for t must be between 0 (corresponding to the start of the considered
temporal horizon) and Thor (the length of the temporal horizon). For this, the assumption is made that
the temporal evolution of extreme Hm0 can described using a linear trend defined by b and b0.

3.5.4.1. Updated stationarity
Under non-stationary models, the non-stationarity of the distribution parameters is applied to extrapo-
late design values throughout the evaluation period (e.g. the considered lifetime of a structure). Under
updated stationary models (UST, Luke et al. (2017)), the values of the GEV parameters corresponding
to the end of the observation period are used to project extreme Hm0 return levels under the assump-
tion that Hm0 can be described by a stationary process after the observation period has ended. UST
models show promise in cases where physical changes have affected the extreme wave climate over
the observation period or when the future non-stationary behavior of the design parameter is uncertain
(Luke et al., 2017).
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Figure 3.14: Illustration showing the temporal evolution of the effective return levels for non-stationary (red), updated
stationary, and approximated stationary modelling.

3.5.4.2. Approximated Stationarity
When the applicability of non-stationary models in certain, stationary modelling is potentially preferred.
Applying the derived representative model is challenging because the value of the location parameter
changes over time (t). To derive return level return period curves as in the stationary case, this research
proposes approximated stationarity (AST). In AST modelling, the GEV parameters corresponding to
the median of the observation period are used to approximate Hm0 return levels for the evaluation
period under the assumption of stationarity. The major assumption is the median value of the linear
trend in effective return levels during the observation period can be used to derive design values under
stationary conditions. This means that applying t corresponding to the median of the observation period
describes the average conditions of extremeHm0 return levels over the observation period. IfHm0 does
not exhibit significant trends, then the AST model are expected to project extreme Hm0 return levels
that are very close to the return levels as derived using conventional stationary modelling.

3.5.4.3. Non-Stationary Parameters
The question that remains is how to select the appropriate values for b and b0 for the five representative
time-series. In this research, the values for b and b0 are selected in accordance with the method used
to derive the representative time-series. That means that for the five representative time-series, the
following values for b and b0 are selected:

1. For series aggregation, the median values of b and b0 between all intra-cluster grid points are
selected;

2. For parallel maximum aggregation, the maximum values of b and b0 between all intra-cluster grid
points are selected;

3. For parallel median aggregation, the median values of b and b0 between all intra-cluster grid points
are selected;

4. For the clustering centroid, the values of b and b0 corresponding to the clustering centroid are
selected;

5. For the grid point that yields the maximum return level (before detrending), the corresponding
values for b and b0 to the grid point are selected.
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Exploratory Analysis North Sea

This chapter presents an exploratory analysis of the North Sea. Section 4.1 provides an overview of
the ERA5 Reanalysis dataset that provides time-series for wave and wind parameters at over 1200 grid
points in the research domain. This includes a quality control check assessing the applicability of ERA5
in light of this research. Furthermore, temporal trend analyses are performed for the extreme signifi-
cant wave height (Section 4.2.2) and extreme wind speeds (Section 4.3) to get a better understanding
about non-stationarity of waves and wind in the research domain. Finally, Section 4.4 computes the
input values for the wave parameters of interest in the Hierarchical Agglomerative Clustering (HAC)
analysis.

The significant wave height (Hm0) is themain variable of interest in this research. It is themost important
parameter in design and risk assessment of hydraulic infrastructure and is included in numerous failure
modes. Furthermore,Hm0 is the parameter for which extreme value models at cluster level are derived.
Therefore, most analyses presented in this chapter are focused on Hm0. This includes the quality
control of the ERA5 Reanalysis dataset and the temporal trend analysis in Section 4.2. The peak period
(TP ) and the mean wave direction (θ) are not considered in the quality control check and temporal trend
analysis (see also Section 1.2. However, they are included in the HAC analysis as it enables clustering
results based on a more complete representation of the extreme wave climate in the North Sea domain.

4.1. ERA5 Reanalysis Dataset
For the analysis of wave and wind parameters in the North Sea, time-series were obtained through
ERA5 Reanalysis (Hersbach et al., 2020). ERA5 is the fifth generation atmospheric and oceanic
reanalysis of the global climate produced by the European Center of Medium Range Weather Fore-
casts (ECMWF). ERA5 provides hourly estimates for a large number of atmospheric, oceanic and
land-surface parameters between 1950 and the present (Hersbach et al., 2020). Currently the ERA5
reanalysis data is split into two parts, with a dataset that spans the period between 1979 and the present
and a back extension of the data between 1950 and 1978. The ERA5 reanalysis data is available on
a longitude-latitude grid providing spatial resolution of 0.25 degrees for atmospheric data and 0.5 de-
grees for ocean wave parameters. The back extension is only available as a preliminary version, since
it encounters problems with tropical cyclones around Australia and the Equator (Hersbach et al., 2020).
However, the data in the rest of the world (including the North Sea) is reliable and therefore will be used
in this research. A higher resolution for the ocean wave data can be achieved by interpolation (Wang
et al., 2021). in this research, the resolution of the ocean wave data is interpolated to match the spatial
resolution of the atmospheric data.

Reanalysis combines global observations with numerical model data to construct globally complete and
consistent dataset that respect the laws of physics (Hersbach et al., 2020). In the present, forecasts
are combined with newly available observations to produce a new best estimate of the state of the
atmosphere. This is called analysis. Using this technique, the ECMWF models can be updated to give
the best description of the atmospheric and oceanic climate. Reanalysis works in much the same way.

37
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Figure 4.1: Schematic overview of ERA5 Reanalysis data assimilation (Hersbach et al., 2020).

The modern forecasting numerical models are used to connect historical observations at a point in time,
thereby producing a reconstruction of the historical global climate (Hersbach et al., 2020). A schematic
overview of the Reanalysis process is given in Figure 4.1.

For this research, various parameters describing the wave and wind climate in the North Sea have
been acquired. An overview of the considered parameters is presented in Table 4.1. The boundaries
of the dataset have been determined based on the boundaries of the North Sea (see Figure 4.2). The
Northern and Western boundary has been set along the Shetland islands. The Eastern boundary has
been set such that it includes the Skagerrak. Finally, the Southern boundary has been set such that
it includes the English channel. This way, it is possible to have a better understanding of the extreme
wave conditions between Dover and Calais. The extreme wave climates in the Atlantic Ocean and the
North Sea are likely to differ, resulting in complex extreme wave characteristics in the English Chan-
nel. A temporal horizon spanning between 1950 and 2020 is considered in this research. To speed up
processing, the wave and wind data have been filtered such that the maximum Hm0 observations at 4
hour intervals are obtained. subsequently, the corresponding values for Tm−1,0, TP , θ, u10 and v10 are
obtained. The oceanic data in ERA5 reanalysis has a spatial resolution of 0.5 degrees in longitude and
latitude (Hersbach et al., 2020). A higher resolution has been achieved by interpolation (Wang et al.,

Table 4.1: Overview of wave and wind parameters used in this research that were retrieved from the ERA5 Reanalysis dataset.
The variable column corresponds to the variable name given by the ECMWF. The symbol corresponds to the nomenclature

used in this research.

Variable Symbol Unit Interpolation Description

SWH Hm0 m yes Significant wave height from wave energy spectrum
MWP Tm−1,0 s yes Mean wave energy period from wave energy spectrum
PP1D TP s yes Peak Wave Period derived from wave energy spectrum
MWD θ oN yes Mean incoming wave direction, mean over all frequencies

and directions of the two-dimensional wave spectrum
U10 u10 m/s no Eastward component of 10m elevation windspeed
V10 v10 m/s no Northward component of 10m elevation windspeed
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Figure 4.2: Bathymetry map of North Western Europe showing the North Sea research domain in red. Also, the locations used
for the quality control check of Hm0 are given

2021), increasing the spatial resolution to 0.25 degrees. ERA5 provides windspeed data in Northward
(v10) and Eastward components (u10) of the 10 meter elevation windspeed. The windspeed data is
converted to a more conventional notation describing the absolute magnitude of the 10 meter elevation
windspeed (U10) and the incoming wind direction (ϕ) in degrees with respect to true north (see appendix
D).

To assess the applicability of ERA5 Reanalysis in light of this research, time-series for Hm0 from the
ERA5 datasets were compared against in-situ Hm0 measurements performed at offshore platforms
along the Dutch coast (see Figure 4.2). Several goodness-of-fit metrics are employed. The correlation
coefficient (R) is employed tomeasure the linear correlation between ERA5 and the in-situ observations.
Bias (bias) was calculated to study whether EAR5 Reanalysis tends to under- or overestimate Hm0

observation. Finally, the Root Mean Square Error (RMSE) reflects the deviation of ERA5 Reanalysis
compared to the in-situ observations. An elaborate description of the quality control of the ERA5 dataset
is given in Appendix D. Regarding the performance of ERA5, the following conclusions can be made:

• The scatterplots (Figures D.1 and D.2) show that ERA5 reanalysis has good agreement with the
in-situ observations, with the highest density of the scatter points on or very close to the identity
line. For extreme Hm0 observations, the dispersion is a bit larger, but still within a reasonable
limit (RMSE percentage is within 5% for higher observations);

• The bias shows very good agreement with the in-situ observations, with station J6, K13 and Euro-
platform showing bias values ≤ 5 cm. ERA5 time-series near A12 and D15 tend to overestimate
Hm0, but are still within reasonable values (≤ 20 cm);

• Comparing the original and interpolated Hm0 datasets, it can be observed that interpolation is
beneficial, because R, bias and RMSE for nearly all 5 station show better results. Only bias at
station J6 does not give better results compared to the original data. However, with a bias of
−0.037m, the bias is still very much within acceptable limits.
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Based on these considerations, it can be concluded that the interpolated ERA5 reanalysis data is
suitable for the analysis of the extreme wave climate in the North Sea. Quality control for the wind data
was not performed. Rijkswaterstaat (RWS) does not provide historical data for the wind speed at sea
and the KNMI only provides land based measurements for wind speed. For land based observations,
care should be taken when comparing ERA5 with in-situ observations, because wind observations
typically vary on (very) small spatial and temporal scales and are affected by the local terrain (Hersbach
et al., 2020). This means the error between ERA5 reanalysis and the land based in-situ observations
is potentially quite large. The exact parameters for wind speed and direction are not important in this
research. Rather, the wind data must allow for the derivation of long-term temporal patterns in wind
climate as a potential cause of changing storm climate in the North Sea. As a result, a comprehensive
goodness-of-fit analysis for the wind climate was deemed unnecessary for the aims of this research
and was not performed.

4.2. Temporal Trend Analysis Significant Wave Height
This section presents the results of the temporal trend analysis of the significant wave height in the
North Sea. Whether a non-stationary approach for extreme value modelling is a useful alternative to
the stationary approach, depends on whether a statistically significant trend can be detected in the data.
Because of the extent of the North Sea basin, it is expected that temporal trends in the North Sea vary
on a spatial scale. Therefore a temporal analysis is executed over the entire North Sea domain. Also,
due to the variability of the storm climate over the last 70 years (see Chapter 2.1), it is expected that
non-stationarity depends on the considered temporal horizon. To this end, two temporal horizons will
be considered in this analysis. The first is the so-called short-term horizon which spans between 1990
and 2020. The second horizon is the long-term horizon and spans between 1950 and 2020.

4.2.1. Mean Significant Wave Height
First, the temporal trends in mean Hm0 in the North Sea domain are studied. The annual mean value
for Hm0 is selected at each grid point. To detect the presence of significant monotonic trends, the
Mann-Kendall (MK) test is employed (see Section 3.2.1) with a significance level of α = 0.05. The
Theil-Sen (TS) test (See section 3.2.2) is employed to calculate the slope of the detected significant
trends. The major assumption made in this research is that potential non-stationarity can be described
by a linear trend in time. Figure 4.3 presents the values for the Theil-Sen estimator for mean Hm0 ob-
servations (denoted by bHm0,mean) in regions where the MK-test detected a significant monotonic trend.

Figure 4.3 shows that in recent history (1990-2020), the Mann-Kendall tests found significant downward
trends for mean Hm0 in large areas of the North Sea, especially near the British Coast. Despite the

Table 4.2: Statistics for the comparison between interpolated Hm0 observations obtained through ERA5 Reanalysis and in-situ
Hm0 observations in the research domain. Table contains the location of the offshore platforms. The values in brackets give
the coordinates of the considered ERA5 grid-point. The number of observations included in the quality control is given by N .
Next, the correlation coefficient (R), bias (bias) and root mean square error (RMSE) are given. For more information, please

see Appendix D.

Station Latitude Longitude Duration N R bias (m) RMSE (m)

A12 55.30 3.80 2009 -2018 84790 0.979 0.102 0.222(55.25) (3.75)

D15 54.31 2.93 2009 - 2017 67128 0.967 0.158 0.277(54.25) (3.00)

J6 53.82 2.94 2009 - 2018 82136 0.971 -0.037 0.212(53.75) (3.00)

K13 Alpha 53.22 3.22 1990 - 2018 249814 0.970 0.023 0.214(53.25) (3.25)

Eurplatform 51.98 3.26 1990 - 2018 250688 0.968 -0.012 0.193(52.00) (3.25)
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Figure 4.3: Results for the temporal trend analysis for annual mean values of Hm0. The figures show the magnitude and
direction for a trend (bHm0,mean) here the MK-test detected the presence of a monotonic trends. Left figures show the results
for 1990-2020 and right figures show the period 1950-2020. Blue indicates a downward trend and red indicates an upward

trend.

presence of downward monotonic trends, the magnitude of bHm0,mean is quite small, with all values
for bHm0,mean lying below 0.5 cm/year. Shifting our attention to the long term temporal horizon (1950-
2020), it there is a significant upward trend in the mean Hm0 throughout the majority of the North Sea
basin. Especially for the regions towards the North of the research domain and towards the south of
the English Channel. Also for the long term temporal horizon the magnitude of bHm0,mean lies below
0.5 cm/year.

4.2.2. Extreme Significant Wave Height
The temporal trend analysis for extreme Hm0 is performed using extreme events identified using an-
nual maxima (AM) and peak over threshold (POT). For the selection of extreme events, the dominant
wave directions are not accounted for. At this stage, there is no knowledge about the dominant wave
directions at the grid points. For the POT analysis, the values for the threshold (u) and declustering
time lag (δ) are carefully selected based on the diagnostic tests for mean residual life (MRL), disper-
sion index (DI), extremal index (EI) and the associated stability of the GPD parameters. This process
is explained in more detail in Appendix E. The appropriate values for u and δ are determined for 7
grid-points throughout the research domain. For these 7 grid points, the 99.5 percentile of Hm0 and 72
hours for u and δ respectively were determined to be most appropriate. The assumption is that these
values for u and δ are appropriate for all grid-points in the research domain. The values for u and δ
are subsequently used for the POT selection at all grid points. Apart from analyzing Hm0 intensity (i.e.
magnitude of the peak values), POT analysis is also used to study non-stationarity of the frequency and
the duration (Tdur) of extremeHm0 events. The frequency is defined as the number of annual threshold
exceedances and is denoted by Nexc. The duration is defined as the time between the start and end
of the threshold exceedance, and is denoted by Tdur (See figure 3.1). It should be noted that for the
temporal trend analysis of Nexc and Tdur, only the MK-test is considered. The results for the temporal
trend tests can be seen in Figure 4.4. The parameters bHm0,AM and bHm0,POT are the TS-estimator
(i.e. trend slope) of extreme events selected using AM and POT respectively.

The temporal trends for AM Hm0 (top-left figures in Figure 4.4) show that for the short temporal hori-
zon (1990-2020), downward trends are observed in large areas of the Western and Central North Sea
domain. Also, a small region near the German and Danish coast is identified showing a downward
trend in AM Hm0. The presence of downward trends for this temporal horizon is in accordance with
the downward trends identified in mean Hm0. In the areas where the MK-test detected the presence of
a trend, the magnitude of bHm0,AM exceeds 3 cm/year and even exceeds 4 cm/year in the central ar-
eas of the North Sea, suggesting a large decrease in extreme wave magnitude over the last thirty years.

Shifting our attention to the long temporal horizon (1950-2020), an upward trend for AM Hm0 is ob-
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Figure 4.4: Results of trend analysis of extreme Hm0 identified using AM and POT in the North Sea. The top and bottom sets
of figures represent the short and long term analysis respectively. For each set, top figures show magnitude of trends for AM
and POT Hm0 respectively in regions where the MK-test detected a significant trend. Bottom left and right figures show

MK-test results for Nexc and Tdur respectively. Red indicates an upward trend and blue a downward trend.
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served in the Eastern areas of The North Sea (near the Danish Coast and The Skagerrak), while a
downward trend is observed in the western Areas (British Coast). Furthermore, increasing trends can
be seen South of the United Kingdom and along the Northern boundaries of the research domain (West
of Norway). The magnitude of the downward trend near the British coast does not exceed 1 cm/year,
while magnitude of the increasing trend in the Eastern North Sea is higher, showing values between 1
and 2 cm/year.

For the temporal trend analysis for extreme Hm0 observations selected using POT analysis, compara-
ble trends can be observed as for AM Hm0 events. For the short temporal horizon, strictly downward
trends can be observed. However, values for bHm0,POT are lower than values for bHm0,AM . The values
for bHm0,POT do not exceed 2cm/year. Also, the regions where the significant trends for POTHm0 are
detected are smaller than for AMHm0 and show more spatial spreading. For the long temporal horizon,
downward trends are observed in the Western North Sea, while upward trends are observed in several
other regions. This is consistent with the detected trends in AM Hm0. The only exception being near
the Danish coast, where almost no statistically significant trends were detected. Similar to the findings
for the short term analysis, the extent of the areas where the MK-test detected a trend in POT selected
Hm0 extremes is small compared to AM Hm0 observations. Furthermore, values for bPOT are smaller
than for bAM with the magnitude of the detected trends not exceeding 1 cm/year.

Themagnitude of the temporal trends for extremeHm0 observations selected using POT is smaller than
for AM. This phenomenon can be explained by the nature of the POT analysis and the fixed threshold
applied in this research. Whereas AM selects the most extreme Hm0 observation for every year, the
POT analysis only selects extreme Hm0 observations exceeding the threshold (u). Subsequently, the
MK and TS tests only consider the magnitude of the Hm0 observations exceeding u. This means that
all values included in the temporal trend analysis have a minimum value for Hm0 equal to u, making
it more difficult to detect and quantify a statistically significant trend, especially for longer time scales.
If Hm0 occurrences no longer exceed u for a given period within the investigated temporal horizon,
the presence of long-term trends may be obscured. The implications of using a fixed threshold on the
temporal trend analysis, and suggestions to overcome this problem, are further elaborated upon in the
discussion.

Apart from the peak magnitudes of Hm0, the POT analysis was also applied to detect the presence of
temporal trends in the frequency (Nexc) of extreme events and the average duration (Tdur) of extreme
Hm0 events (see Figure 4.4). The temporal trends in Nexc are consistent with the trends in extreme
Hm0 events selected using AM and POT. For the short temporal horizon, a strictly downward trend
in Nexc can be observed in large regions of the North Sea domain. For the long temporal horizon, an
upward trend in the Eastern areas of the North Sea, and a downward trend in the Western regions, can
be observed. Regarding Tdur, almost no trends are observed for both the the short and long temporal
horizons. Notable is that for both temporal horizons, the few observed trends are strictly downward.
However, no explanation for this phenomenon has been found.

In conclusion then, extremeHm0 shows different temporal trends depending on the location and consid-
ered temporal horizon. For the short temporal horizon, strictly downward trends for both the magnitude
of Hm0 and the frequency of extreme events (Nexc) are observed. For the long temporal horizon, vari-
ous regions throughout the research domain show an upward trend for the magnitude ofHm0 andNexc,
especially near the Danish coast. Downward trends for Hm0 and Nexc are observed near the British
coast. Because the direction and magnitude of temporal trends in AM Hm0 depend on the considered
location and temporal horizon, the extreme wave climate in the North Sea does not exhibit monotonic
non-stationarity. The magnitude and direction of the temporal trends are important factors to consider
in the (non)-stationary extreme value analysis of Hm0 as will be further explained in Chapter 5.2.

4.3. Temporal Trend Analysis Extreme Wind Speeds
Wind is the physical driver of wave growth (see Appendix A). A temporal trend analysis of extreme wind
speed (U10) is performed to study if non-stationarity in extreme U10 can (partially) explain the detected
non-stationarity of Hm0. This potentially provides a better understanding of the non-stationarity of ex-
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treme Hm0 in the North Sea.. This section studies the trends for extreme U10 selected using Annual
Maxima (AM) and Peak over Threshold (POT). A similar selection of the threshold (u) and declustering
time lag (δ) as performed in Section 4.2.2 showed that the appropriate values for u and δ are the 99.5
percentile of u10 and 96 hours respectively. The results for the temporal trend analysis of extreme U10

can be seen in Figure 4.5. In Figure 4.5, bu10,AM and bu10,POT represent the TS estimators (i.e. slope
of the temporal trend) for extreme U10 events selected using AM and POT respectively.

Comparing the results of the temporal trends for AMHm0 and U10 for the short temporal horizon shows
that a large region in the Central North Sea where a downward trend for AMHm0 was observed, is also
characterized by a decrease in AM u10. Themagnitude of this trend varies between 0 and 0.15m/s/year.
Combined with the knowledge that extreme waves in the North Sea are mostly wind waves (See Ap-
pendix D) gives reason to believe that the downward trend inHm0 between 1990 and 2020 can partially
be explained by decreasing U10. However, there are also areas in the North Sea that show a decrease
in wind speed but no decrease in the resulting extreme Hm0, for example in The Channel (See figures
4.4 and 4.5).

Shifting our attention to the long-term temporal horizon (1950-2020) for AM U10, we can observe that
the large region with an upward trend for AM Hm0 in the Eastern region of the North Sea is accompa-
nied by a similar region with an upward trend for AM U10. This can also be observed in the Northern
parts of the research domain (West of Norway) and the South-West of the research domain (South of
England and the English Channel). For these regions, it can be said that the increase in Hm0 can at
least partially be attributed to an increase in extreme U10. However, for AM Hm0, a decreasing trend
was observed East of the British coasts. This downward trend is not observed for AM U10 observations.

The plots for the POT analysis of U10 show similar results compared toHm0. For the short term horizon,
a large region with a downward trend for U10 can be observed in the central North Sea regions. For the
long temporal horizon, a downward trend can be observed for the British coast, that was not detected
for the AM U10. Despite the trend not being detected for AM u10, the resulting trends for the POT u10

are enough reason to suggest that the downward trend for the extreme wave climate in Western parts
of the North Sea are caused by a downward trend in wind speed.

Finally looking at the trends for the frequency (Nexc) and duration (Tdur) of extreme U10, it can be seen
that for the short temporal horizon, the regions with temporal trends inNexc and Tdur are relatively small
and spread out over the research domain. For the long term horizon, a large region with increasing
Nexc can be observed for the regions West of Denmark and the Skagerrak. Regarding Tdur, a down-
ward trend can be observed for the British coast. This suggests that the decrease in extremeHm0 near
the British coast between 1950 and 2020 is not only caused by a decrease in the magnitude of U10 but
also by a decrease in storm duration.

In conclusion, it can be said that the observed temporal trends in extreme Hm0 can at least partially
be explained by trends in the extreme wind speeds. The observed trends for extreme Hm0 are ac-
companied by similar trends for U10. An attribution study to better understand the underlying cause of
the non-stationarity of Hm0 and U10 is not performed in this research. It is assumed that the detected
temporal non-stationarity is a result of climate variability.

4.4. Wave Parameters for Hierarchical Clustering Analysis
This research assesses the practicability of Hierarchical Agglomerative Clustering (HAC) analysis to
cluster grid-points in the North Sea based on similar extreme wave characteristics. This requires the
careful selection of wave parameters and representative input values for the HAC analysis. The moti-
vation behind the selected wave parameters is explained in Section 4.4.1. Next, the derivation of the
input values representing the wave parameters in the HAC analysis is explained in Section 4.4.2.

4.4.1. Motivation for Wave Parameters
The primary goal of this research is to study the methodology how extreme wave loading conditions
are derived for design and risk assessment of hydraulic infrastructure in light of climate change. design
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Figure 4.5: Results of trend analysis of extreme U10 identified using AM and POT in the North Sea. The top and bottom sets of
figures represent the short and long term analysis respectively. For each set, top figures show magnitude of trends for AM and
POT U10 respectively in regions where the MK-test detected a significant trend. Bottom left and right figures show MK-test
results for Nexc and Tdur for extreme U10 events respectively. Red indicates an upward trend and blue a downward trend.
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and risk assessment of hydraulic infrastructure concern the most extreme wave conditions a hydraulic
structure is subjected to during its lifetime. The clustering output is based on grid points exhibiting
similar extreme wave characteristics, thereby helping in the derivation of extreme loading conditions.
To obtain useful clustering output requires the careful selection of wave parameters to be used to gen-
erate the input for the HAC analysis. This research is aimed at practitioners working on design and
risk assessments of hydraulic infrastructure. As a result, wave parameters for the HAC analysis are
selected based on the parameters often used in design and risk assessment of hydraulic infrastructure.
Engineers and design practitioners use parameters that describe the extreme wave climate directly,
such as the significant wave height and wave period. Using clear parameters enables the design prac-
titioner to better interpret the cluster boundaries.

The first wave parameter selected for HAC-analysis is the dominant wave direction (θ1 and θ2). The
dominant wave direction is especially important for the design for coastal infrastructure because it
provides vital information about the incoming wave angle. More importantly, information about the
dominant wave directions helps to filter time-series at the grid points, thereby creating subsets of ho-
mogeneous and independent extreme observations required for the extreme value analysis (Van Den
Bos & Verhagen, 2018). Often, multiple dominant wave directions are relevant for coastal structures.
Therefore, the HAC analysis also includes a secondary dominant wave direction (θ2) to identify clusters
for which multiple dominant wave directions must be considered.

The second wave parameter is the significant wave height (Hm0). TheHm0 is one of the most important
parameters when performing risk assessments on hydraulic infrastructure. It is used in most limit state
functions describing the failure modes associated with hydraulic infrastructure (Jonkman et al., 2018;
Voorendt & Molenaar, 2019). Also, this research aims to derive extreme value models that describe
Hm0 on the cluster level. Therefore, Hm0 is a crucial parameter to include in the HAC analysis. Finally,
the peak period (Tp) is selected. Apart from Hm0, the Tp is often used in the design and risk assess-
ment of hydraulic infrastructure because provides information about the maximum wave energy in the
extreme wave field (Van Den Bos & Verhagen, 2018).

The number of input parameters in this analysis is limited to 4 parameters. In hierarchical clustering,
there is a trade-off between the number of input parameters and the number of clusters required to
give a good representation of the input. One of the primary benefits of clustering analysis is the data
volume reduction to study the extreme wave climate throughout the North Sea. More parameters
require a higher number of clusters, meaning that potentially the goal of data volume reduction is not
met. Therefore, it is decided to keep the number of input parameters limited to 4.

4.4.2. Derivation of HAC Input Values
Now that the wave parameters for the Hierarchical Clustering (HAC) analysis are selected, the input
values must be derived. Due to the nature of HAC Analysis, each wave parameter must be character-
ized by a single representative value at the grid point. This means that 4 input values representing the
4 wave parameters of interest must be derived for each grid point. The main focus is to derive wave
characteristics associated with extreme wave events. This requires the careful selection of an extreme
threshold based on the significant wave height. All wave events with Hm0 exceeding the threshold
are selected with corresponding values for TP and θ. From this subset, the HAC input values for the
dominant wave direction (θ1 and θ2), the significant wave height (Hm0,P99.5) and the peak period (Tp)
are selected.

4.4.2.1. Definition of Extreme Wave Climate
For design and risk assessment of hydraulic infrastructure, the most extreme wave loading conditions
that the structure will be subjected to during its lifetime are of interest. These extreme loading condi-
tions will occur during storm conditions. This requires a careful definition of an extreme wave climate.
This research defines the extreme wave climate based on the appropriate threshold (u) for significant
wave height (Hm0) in a Peak over Threshold (POT) analysis. The value of u in a POT analysis can
be decided based on the diagnostic tests for mean residual life (MRL), dispersion index (DI), extremal
index (EI) and the stability of the GPD parameters. The selection of the appropriate storm threshold
is described in detail in Appendix E. Here a short summary is presented about the most important as-
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Figure 4.6: Peak over threshold analysis to determine an extreme wave threshold for the derivation of input values
representing the parameters in the HAC analysis.

sumptions and simplifications made for the definition of the extreme wave climate.

In a POT analysis, extreme observations should be both homogeneous and independent (see Sec-
tion 3.1.2). Because we have little prior knowledge about the dominant wave directions at each grid
point, the complete directional wave spectrum was used to determine the extreme wave threshold. It
should be noted that this violates the requirement of homogeneity, for which the selected extreme wave
events should come from similar directions. However, given the limited understanding about the domi-
nant wave direction(s) prior to this investigation, it was determined that it was a necessary compromise
to make at this time. An appropriate declustering time lag was selected using MRL, DI, and EI, meaning
that the requirement of independent observations in the POT analysis is still satisfied.

Because performing a full POT analysis would require too much processing, the diagnostic tests for
MRL, EI, DI and the stability of the GPD parameters are performed at 7 grid locations throughout the
research domain. These 7 grid points are selected to give the best representation of potentially differ-
ent extreme wave climates throughout the research domain. The aim is to find one value for u and
one value for δ that are appropriate at all 7 grid points. The assumption is that the determined values
for u and δ at the 7 grid points are appropriate at all grid points in the research domain. In the end, it
was found that the 99.5 percentile for (Hm0) is an appropriate threshold (u) at all 7 locations and the
declustering time lag (δ) should be equal to 72 hours at all 7 locations.

Using the established values for u and δ for the significant wave height, a POT analysis is performed
giving information about the wave parameters (Hm0, TP and δ) at all grid points in the North Sea domain.
The obtained observations for Hm0, TP and δ are subsequently used to determine the input values for
the HAC analysis.

4.4.2.2. Dominant Wave Directions
The first wave parameter included in the clustering analysis is the dominant wave direction. Knowledge
about the dominant wave direction in each location helps to create homogeneous and independent sub-
sets of extreme Hm0 observations that can be used in the temporal trend analysis and the intra-cluster
extreme value analysis (See Section 3.1). The input value representing the dominant wave direction(s)
in the HAC analysis is determined as follows. For every grid point in the research domain, the values
for Hm0 exceeding the storm threshold and the corresponding value for θ are filtered (see Figure 4.7).
Next, the marginal probability density functions (PDF) are fitted over the observations of θ. It should
be noted that the parameters for mean wave directions are circular on the domain [0,360]. This means
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Figure 4.7: Top row: Extreme observations for significant wave height and corresponding mean wave directions for the Dutch
coast (left) and Danish coast (right). Bottom row, marginal distributions of the mean wave direction and selected dominant

wave directions based on the highest probability density.

that the PDF must be continuous for the wave directions from the north.

Finally, the direction with the highest probability density is selected as the primary dominant wave
direction (θ1). This means that θ1 is defined as the extreme wave direction with the highest probability
of occurrence. In case there are multiple directions that are sufficiently far apart to be considered
separate wave directions (difference between peaks of the PDF for θ should be ≥ 45o), both dominant
wave directions are included in the analysis. The secondary dominant wave direction is denoted by θ2.
This process is repeated for every grid point in the research domain. Figure 4.8 shows the resulting
map of dominant wave directions in the North Sea domain.

4.4.2.3. Significant Wave Height
The input values for the significant wave height (Hm0) for the HAC analysis are based on the estab-
lished extreme wave threshold. At each grid point, the 99.5 percentile values for Hm0 are determined
based on the entire wave time-series. This value is denoted byHm0,P99.5 and serves as the input value
for the HAC analysis. It should be noted that non-stationarity inHm0 is not accounted for whilst deriving
the HAC input values. Therefore, the value of Hm0,P99.5 is potentially affected by the non-stationarity
of Hm0 at the grid points. The computed values of Hm0,P99.5 are a representation of the examined
temporal horizon and are thus (partially) dependent on the non-stationarity inHm0. The HAC algorithm
potentially links grid points together with similar Hm0,P99.5 values whilst ignoring non-stationarity. The
implications of this on the research are further elaborated upon in the Discussion.

Hm0,P99.5 varies smoothly across the North Sea domain, meaning that it is a continuous parameter.
Clustering spatially continuous data is potentially problematic because of the small dissimilarities be-
tween spatially neighboring grid points that may result in the Chaining Problem (see Section 3.3.1.2).
To overcome the chaining problem, the values for Hm0,P99.5 are rounded down to the nearest integer.
This way, the dissimilarity between different locations is increased allowing for a better HAC analysis.
Also, regions can be identified based on a minimum value for Hm0,P99.5 to account for during extreme
wave conditions. The resulting map for Hm0,P99.5 in the North Sea domain can be seen in Figure 4.9.
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Figure 4.8: Dominant wave directions in the North Sea domain as calculated in Section 4.4.2.2. Orange quivers correspond to
θ1, yellow quivers correspond to θ2.

4.4.2.4. Peak Wave Periods
In this research, clustering of extreme wave characteristics is also based on the peak periods (Tp) re-
lated to extremewave conditions. Only includingHm0 is not sufficient to have a complete understanding
of the extreme wave climate, and information about TP is required for the design and risk assessment
of hydraulic infrastructure (De Leo et al., 2021). Furthermore, Tp corresponds to the waves where the
maximum amount of energy is stored (see Appendix A). To account for potential fetch and wave dis-
persion effects related to waves from different (dominant) directions, the characteristic value for TP in
each grid point is determined based on the primary dominant wave direction (θ1). First, the time-series
for the extreme wave observations have been filtered so that all extreme wave events with a mean
wave direction θ1 ± 45o remain. The minimum value of TP from the filtered time-series of extreme
waves has been selected to serve as HAC input value. Because Hm0 and TP are positively correlated,
it is assumed that the minimum value for Tp is closest related to the value for Hm0,P99.5. Similar to
Hm0,P99.5, Tp is a continuous parameter with small dissimilarities between spatially neighboring grid
points, making clustering challenging because of the Chaining Problem. To overcome the Chaining
Problem, it decided to round the obtained values down to the nearest integer. This gives information
on a minimum value for TP to account for during storm conditions in different regions of the North Sea.
The characteristic values for TP can be seen in Figure 4.9.
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Figure 4.9: Spatial distributions of the characteristic values for Hm0,P99.5 (top left), TP (top right), ξGEV (bottom left) and
ξGEV (bottom right) in the North Sea basin.

4.5. Summary
This chapter presents an exploratory analysis of the North Sea and the research domain. Section 4.1
presents an overview of the ERA5 Reanalysis that provides the time-series for wave and wind parame-
ters used in this research. The ocean wave data was interpolated to increase the spatial resolution and
the wind parameters are converted to a more conventional notation including the absolute windspeed
and (U10) and wind-direction (θ) with respect to true North. The quality control check of the significant
wave height (Hm0) against in-situ measurements showed that the interpolated ERA5 data is suitable
for this research because it gives a sufficiently accurate representation of the wave climate.

Section 4.2.2 provides a temporal trend analysis of Hm0 to get a better understanding of the non-
stationarity in the North Sea domain. Temporal trend analysis was carried out by means of selecting
extremeHm0 observations using Annual Maxima (AM) and Peak over Threshold (POT). The presence
of statistically significant trends was tested using the Mann-Kendall (MK) test with a significance level
of α = 0.05. The slope of statistically significant trends was calculated using the Theil-Sen (TS) test.
Furthermore, two different temporal horizons are studied. The short term horizon primarily showed
downward trends for Hm0 whilst the long term horizon showed a combination of upward trends in the
East and downward trends in the Western parts of the research domain. From the opposite trends de-
tected for the two temporal horizons, it is concluded that the non-stationarity of Hm0 is not monotonic
but more likely shows long term oscillatory cycles.

Temporal trends for the extreme wind speeds (U10) showed similar results, i.e. strictly downward trends
for the short temporal horizon and a combination of upward trends (East) and downward trends (West)
for the long temporal horizons. Albeit not exact matching, the spatial distribution of temporal trends in
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U10 is very similar to the distribution of temporal trends in extremeHm0 observations, for both temporal
horizons. With the North Sea extreme wave climate being characterized by locally generated wind
waves, there is enough reason to conclude that the temporal evolution of extreme Hm0 can at least
partially be explained by similar temporal evolution in extreme U10.

Finally, in Section 4.4.2, the input values of the wave parameters for the Hierarchical Agglomerative
Clustering (HAC) analysis are computed. The wave parameters are used for hierarchical clustering are
selected based on parameters often used in the design and risk assessment of hydraulic infrastructure.
These include the dominant wave directions (θ1 and θ2), the significant wave height (Hm0) and the
Peak Period (TP ). The derivation of the HAC input values includes the definition of an extreme wave
threshold and subsequent POT analysis used to select the extreme wave observations. Fromt the
extreme observations, the HAC input values for Hm0, TP , θ1 and θ2 are derived. Values for θ1 and
θ2 are derived based on the frequency of occurrence of θ above the extreme wave threshold. The
HAC input value for Hm0 is the extreme wave threshold Hm0,P99.5. Finally, the HAC input values for
TP are the lowest observed value for TP corresponding the primary dominant wave directions. Further
processing ofHm0,P99.5 and TP is required because of the small spatial dissimilarities between spatially
neighboring grid points. Otherwise, the chaining problemmight result in the continuous linkage of these
grid points because the HAC algorithm is unable to detect a clear cut-off point.





5
Hierarchical Clustering Analysis and

Extreme Value Analysis at Cluster Level
This chapter presents the results of the clustering analysis and extreme value analysis at cluster level.
Section 5.1 presents Hierarchical Agglomerative Clustering (HAC) analysis in which 63 clusters are
derived based on extreme wave characteristics for the significant wave height (Hm0,P99.5), Peak Wave
Period (TP ) and the dominant wave directions (θ1 and θ2). A detailed analysis of the derivations of
the input parameters is presented in Section 4.4.2. Furthermore, this chapter presents the intra-cluster
extreme value analysis. This consists of a temporal trend analysis of extreme significant wave height
(Hm0) and extreme windspeeds (U10) on a cluster level and the derivation of representative extreme
value models describing the significant wave height (Hm0) on a cluster level.

5.1. Hierarchical Cluster Map of the North Sea
The first step in this research is to apply Hierarchical Agglomerative Clustering (HAC) to partition the
grid-points of the research domain into clusters based on similar extreme wave characteristics. The
primary goal is to identify clusters that exhibit similar extreme wave characteristics, which is important
knowledge for the design and risk assessment of hydraulic infrastructure. The information from the
intra-cluster grid-points can be pooled to improve extreme value models at cluster level. Moreover,
clustering analysis potentially results in a reduction of the data volume that must be studied to obtain
an understanding of the wave climate in the North Sea. This research performs HAC analysis based
on input values of the significant wave height (Hm0,P99.5), the peak wave period (TP ) and the dominant
wave directions (θ1 and θ2) corresponding to extreme wave events at the grid-points. More information
about the HAC input values is presented in Section 4.4.2.

Before taking a closer look at the clustering results, a quick summary of the steps involved in assessing
the clustering output is presented. A comprehensive description is presented in Section 3.3.6. Assess-
ment of the clustering output for each configuration can be divided into the following steps:

1. Compare the performance of the different linkage mechanisms using the cophenetic correlation
C and select the 2 linkage mechanisms that yield the highest values for C.

2. Determine the number of clusters (K) that yields the best clustering output for the two linkage
mechanisms based. Evaluation of K is done by assessing the following internal evaluation met-
rics: Silhouette Coefficient (SC), Calinski Harabasz criterion (CH) and the Davies-Bouldin value
(DB). If values for K are similar between metrics, a choice for K is straightforward. If values for
K are far apart, a critical analysis of the clustering output for different values of K is required to
select the optimal value for K.

3. For each weight configuration, select the linkage mechanism and value for K that yields the best
clustering solution based on the relative scores for SC, CH and DB and how well the cluster
boundaries represent the HAC input values.

53
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4. For each parameter combination, select the weigh configuration, corresponding linkage mecha-
nism and value forK that yields the best clustering solution. This is based on a critical assessment
of the clustering output against the HAC input values for the five weight configurations.

The final clustering output is then subject to further development to improve the cluster quality. This
involves the splitting of clusters with grid-points in different geographical locations and the merging of
neighboring clusters when the wave parameters provide sufficient statistical evidence between to do so.

One of the goals of clustering is potential data volume reduction. This means that the value for K
must result in a sufficient data volume reduction. In Hierarchical clustering, there is always a trade-
off between K and the quality of the resulting clusters. Too few clusters results in grid-points with
different input values to be linked together. Too many clusters will lead to well-defined clusters based
on the extreme wave characteristics, but the data volume reduction will not be as efficient. To limit the
number of clusters identified by the HAC-algorithm, a maximum possible number of clusters is imposed
(Kmax = 50). A comprehensive motivation for Kmax is presented in Section 3.3.5.

5.1.1. Initial Clustering Results
This research presents HAC analysis for two wave parameter combinations to see which combination
yields the best clustering results. For each wave parameter combination, the best clustering solution
must be identified. A comprehensive description of the complete HAC analysis for each configuration
(different parameter combination and assigned weights) is presented in Appendix F. The following sec-
tions provide a summary describing how the best performing clustering output for each wave parameter
combination is presented. In section 5.1.1.4, the overall best performing cluster analysis is selected
that is used for subsequent further development in Section 5.1.2.

5.1.1.1. Wave Parameter Combinations
The specified wave parameters are used in two combinations in the HAC analysis performed in this
study. Both combinations use information about the dominant wave directions (θ1 and θ2) and the
number of dominant wave directions (Nθ). Extreme wave fields are not always uni-directional and
may show different dominant wave directions. Knowledge about the dominant wave direction(s) helps

Table 5.1: Weight configurations for the different wave parameter combinations used in HAC analysis. The top table gives the
configurations for the first wave parameter combinations. The bottom table gives the weights for wave parameter combination
2. The first weight configurations at more weight to Hm0,P99.5 (and TP if applicable), and the last configurations apply more

weight to θ1 and θ2.

Configuration Assigned Weights (%)

θ1 θ1 Nθ Hm0,P99.5

1.1 15 15 15 55
1.2 20 20 20 40
1.3 25 25 25 25
1.4 27.5 27.5 25 20
1.5 30 30 25 15

Configuration Assigned Weights (%)

θ1 θ1 Nθ Hm0 TP

2.1 10 10 10 35 35
2.2 15 15 15 27.5 27.5
2.3 20 20 20 20 20
2.4 25 25 25 12.5 12.5
2.5 30 30 30 5 5



5.1. Hierarchical Cluster Map of the North Sea 55

to create time-series that contain homogeneous and independent extreme Hm0 observations, which
is critical for the extreme value analysis at the cluster level in Section 5.2. Nθ is added to provide
additional steering to the clustering analysis.

Combination 1: Significant Wave Height
The first combination of parameters is a combination of the dominant wave directions (θ1, θ2 and Nθ)
and the significant wave height (Hm0) at each grid-point. The peak period (Tp) is not included in this
analysis for the benefit of the clustering output. Including more parameters requires a higher value for
K, for the clusters to properly respect the dissimilarities between the input values. Moreover, in design
practices, Hm0 is a more important parameter than Tp (Jonkman et al., 2018). A separate analysis
with only Tp is not performed because information about the peak period requires information about the
extreme significant wave height, and not vice versa.

Combination 2: Significant Wave Height and Peak Period
In the second parameter combination, both Hm0,P99.5 and TP are included next to θ1, θ2 and Nθ. In-
formation about Hm0 alone is typically not sufficient, and information about TP is required to have a
complete understanding of the extreme wave climate (De Leo et al., 2021). Furthermore, TP is an
important parameter in the design and risk assessment of hydraulic infrastructure because it provides
information about the waves that contain the most energy. Therefore, it makes sense to divide the
North Sea into areas that share similar characteristics for bothHm0 and Tp. Because the number of pa-
rameters is increased, it is expected that the overall quality of the HAC analysis will decrease if the total
number of clusters is not increased. The clustering output for combination 2 should therefore be criti-
cally assessed to see whether adequate cluster boundaries are still obtained for this wave parameter
combinations.

Weight Configurations
The input values are normalized by means of z-score standardization prior to HAC analysis. Therefore,
it is possible to assign weights to the different parameters (See Section 3.3.1.3). Weight may be as-
signed to emphasize particular parameters in the clustering that are thought more significant or to add
some additional steering to obtain clustering output that best serves the engineering goals. In total, five
different weight configurations were assigned for both parameter combinations to the wave parameters.
For the first runs of each parameter combination, more weight is assigned toHm0 and/or TP compared
to the directional parameters θ1, θ2 andNθ respectively. Then for each subsequent configuration, more
weight is removed from Hm0 and TP and is added to θ1, θ2 and Nθ respectively. The applied weight
configurations are given in Table 5.1.

5.1.1.2. Combination 1: Significant Wave Height
The first combination of parameters included θ1, θ2, Nθ and Hm0,P99.5. For a complete overview of
the values of the diagnostic parameters, see Table 5.2. For configuration 1.1, it was decided that the
best clustering results were obtained using Ward linkage with K = 50. Ward linkage yields superior
values for CH compared to Average linkage. Moreover, Ward linkage provides better cluster bound-
aries based on θ1 and θ2. Similar results where found for configuration 1.2. Average linkage scored
much better compared to Ward linkage when comparing the values for C. Also, the range of KSC , KCH

and KDB is much smaller for Average linkage than it is for Ward linkage (see Table 5.2). Nevertheless,
Ward linkage still produced the better cluster divisions that respected the boundaries between θ1 and
θ2. In both configurations 1.1 and 1.2, average linkage placed to much emphasis on Hm0,P99.5.

When studying configuration 1.3, it was quickly found that due to to the superior scores for SC, CH and
DB, the clear agreement between KSC , KCH and KDB and the well-defined cluster divisions based on
θ1, θ2 and Hm0,P99.5, the ideal clustering solution for this configuration is Ward linkage clustering with
a total of 50 clusters (K).

For configuration 1.4, Ward linkage provides the highest values for SC, CH and DB. Despite this, Av-
erage linkage was found to give better clustering results for configuration 1.4. Average linkage yields
better cluster boundaries, higher values for C and KSC , KCH and KDB for Average Linkage give a
clear agreement on the ideal value for K (K = 50). For configuration 1.5, Ward linkage yields better
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Figure 5.1: Comparison between the results for configuration 1.3 clustered with Ward linkage (left), and configuration 1.4 with
average linkage (right). Top figures compare the clustering output with the contours of Hm0,P99.5 and the middle and bottom

compare the clustering output with θ1 and θ2 respectively.

results than Average linkage. However, neither Ward and Average linkage provides good clustering
solution. Both Linkage mechanisms place high emphasis on θ1 and θ2. This can be explained by the
weight configuration. Moreover, no clear clustering solution can be identified based on the values for
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Figure 5.2: Optimal cluster solution for wave parameter combination 1. Figures on the left shows the plots for SC, CH and DB
for different values of K. The final selected value for K is givnen in yellow. The right figure shows the resulting clustering output

for wave parameter combination 1.3 using Ward linkage and K = 50.

SC, CH and DB.

Based on the initial analysis of parameter combination 1, it was decided that the best clustering so-
lutions for this wave parameter combination are given by configurations 1.3 using Ward linkage, and
configuration 1.4 using average linkage. These configurations gave the best cluster boundaries based
on the input data for θ1, θ2, and Hm0,P99.5 (see Figures F.3 and F.4). Now a choice must be made
between these two solutions. The optimal clustering solution was assessed by comparing the cluster-
ing output against the input data for θ1, θ2, and Hm0,P99.5. In the end, Configuration 1.3 using Ward
linkage yield the best results for wave parameter combination 1 because of its superior ability to de-
fine cluster boundaries between the input values for θ1, θ2, and Hm0,P99.5. Two notable regions where
configuration 1.3-Ward performed better are:

• Between Denmark and Norway at the entrance of the Skagerrak. Here 1.3-Ward found a cluster
boundary based on θ1. 1.4-Average assigned these regions to the same cluster despite there
being evidence that the values for θ1 are not completely similar throughout the cluster. Further-
more, there is also a larger difference between the local water depth (See Figure 5.1), further
supporting cluster divisions in this region;

• North West of the Dutch coast. Here 1.3-Ward identified a cluster boundary based on Hm0,P99.5

that was not identified by 1.4-Average.

From the comparative analysis of the clustering output between the different weight configurations, it
becomes apparent that Average linkage is very sensitive for different weight configurations, because
it emphasizes clustering divisions based on the input parameters that were assigned the most weight.
Only for configuration 1.4, Average linkage provides well-defined cluster divisions based on θ1, θ2, Nθ

and Hm0,P99.5. This is due to the characteristics of the linkage mechanisms. This further explained in
the discussion.

5.1.1.3. Combination 2: Significant Wave Height and Peak period
The second parameter combination included θ1, θ2, Nθ, Hm0,P99.5 and TP . The main goal of this pa-
rameter combination was to see whether the amount of information presented to the HAC algorithm
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Figure 5.3: Final clustering solution for wave parameter combination 3.

could be increased without a significant loss of the clustering quality. The peak period (TP ) because
of its importance in the design of hydraulic infrastructure next to Hm0. For configurations 2.1 and 2.2,
Ward linkage yields the best clustering results with values for K equal to 50. Ward linkage provides
better values for CH and better cluster divisions based on the input parameters. Moreover, Average
linkage is very sensitive to the higher weights assigned to Hm0,P99.5 and TP in configurations 2.1 and
2.2. It must be said that neither linkage mechanism scores particularly well for configuration 2.1 (see
Appendix F for more information).

For configuration 2.3, Ward linkage with K = 50 yielded the best clustering results. This is mainly
because of better values for CH and SC and the better defined cluster divisions detected in the clus-
tering output (see Figure F.8). Combined with the fact that values for KSC , KCH and KDB are closer
for Ward linkage than for Average linkage, we can be certain that this is the best clustering solution for
this configuration.

For configuration 3.4, Ward linkage yields the best results for K equal to 50. However, both Ward and
Average linkage show significant bias regarding cluster boundaries based on θ1 and θ2. This can be
explained by the fact that more weight was assigned to these parameters. However, more divisions
for different values of Hm0,P99.5 and TP are desired due the different design conditions that may be
normative in these regions. During pre-processing, the input values for Hm0,P99.5 and TP are rounded
down to the nearest integer. This results high intra-cluster ranges for Hm0,P99.5 and TP (in the order
of 1 meter 1 second respectively). To ensure that the intra-cluster range of Hm0,P99.5 and TP does
not become to high, cluster boundaries based on these variables are desired. A close investigation of
configuration 2.5 (see Figure F.10) quickly led to the conclusion that neither Ward nor Average linkage
yielded suitable clustering results. Both linkage mechanisms result in strong bias towards cluster divi-
sions based on θ1 and θ2. Cluster divisions based on Hm0,P99.5 and TP were completely neglected.

In conclusion, for this parameter combination, only one clustering solution provided suitable results in
light of this research, namely clustering solution 2.3 computed using Ward linkage with K equal to 50.
The clustering output for this configuration can be seen in Figure 5.3.
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Figure 5.4: Comparison of the cluster output of configuration 2.3-Ward with the input parameters Hm0,P99.5 (top left), TP (top
right), θ1 (bottom left) and θ2 (bottom right). Top panels show contour lines for Hm0,P99.5 and TP . The dominant wave
directions (bottom panels) are represented by quivers. Areas of interest where the cluster boundaries do not respect the

dissimilarities between the input parameters are given in shaded grey.

5.1.1.4. Selection Final cluster solution
In the end, the optimal clustering solution between the two parameter combination must be selected
for further analysis. Preferably, the selected clustering output provides as much information as possi-
ble about the extreme wave characteristics in the North Sea. This allows engineers to have a better
understanding about the relevant hydraulic boundary conditions throughout the North Sea. The main
question is whether the inclusion of TP as a clustering parameter next to Hm0,P99.5 does not reduce
the quality of the clustering output too much. Because the internal evaluation metrics cannot be used
to compare the quality of different parameter combinations (see Section 3.3.6), the best clustering so-
lution is selected based on how well the clustering output respects the dissimilarities between the wave
parameter input values. For parameter combination 1, configuration 1.3 usingWard linkage andK = 50
gives the best clustering solution (see Figure 5.2). In this section, a careful analysis of the clustering
output of configuration 2.3 is performed to study whether the divisions in the input data between θ1, θ2,
Hm0,P99.5 and Tp are sufficiently respected by the cluster boundaries detected by the HAC algorithm.

The top left panel in Figure 5.4 shows that the clustering output for configuration 2.3 match the input divi-
sions between Hm0,P99.5 throughout the research domain. The only region where this is not respected
is found in the English Channel. Here the cluster (indicated by the grey shaded cluster in Figure 5.4)
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is intersected by the contour representing the boundary between the input of Hm0,P99.5. The top right
panel of Figure 5.4 shows that differences in TP are well respected by the cluster boundaries in con-
figuration 2.3. A close inspection of the TP contours shows that there are two smaller regions where
the cluster division do not match with the input divisions of TP . The first region can be seen North-East
of the Scottish coast, and the second region is North-West of the Dutch coast (indicated by the grey
shaded cluster in Figure 5.4. Finally, a closer inspection of θ1 and θ2 shows that the cluster boundaries
match the input boundaries in θ1 (bottom-left panel). The bottom-right panel in Figure 5.4 shows that
the cluster divisions for configuration 2.3 match very well with the values for θ2 in the regions where
secondary dominant wave directions are present.

Looking at the three areas where the cluster boundaries for configuration 2.3 did not respect the dissim-
ilarities between the input values for Hm0,P99.5 or TP , it can be observed that the clusters do respect
input values ford θ1 and θ2. This means that these clusters provide extreme waves that typically result
from the similar storms. Based on these findings, it was established that the missed boundaries based
on values for Hm0,P99.5 or TP are not problematic. The dominant wave directions are deemed more,
because information about θ1 and θ2 helps to create homogeneous subsets that be used in extreme
value analysis on the cluster level. Despite the clusters that miss divisions based on Hm0,P99.5 or TP ,
configurations 2.2 provides more information about the hydraulic boundary conditions throughout the
North Sea domain. This information is critical for the design and risk assessments in different areas
of the North Sea. Furthermore, only 3 clusters were identified where the cluster boundaries did not re-
spect the dissimilarities between the input values for Hm0,P99.5 and/or TP . This number is not deemed
problematic. It is therefore decided to use configuration 2.3-Ward in the remainder of this study.

5.1.2. Further Development of Cluster Map
In Section 5.1.1.4, we determined that the best initial clustering solution was given by configuration 2.3
using Ward linkage with K being equal to 50. Configuration 2.3 provides the most information about ex-
treme wave characteristics for the significant wave height (Hm0) peak wave period (TP ), and dominant
wave directions (θ1 and θ2). A closer inspection of Figure 5.3 shows that especially along in coastal
regions, several smaller clusters that only contain very few grid-points can be identified. Furthermore,
often grid-points are assigned to the same cluster even though they are in different geographical loca-
tions. The aforementioned observations potentially cause ambiguity when using the clustering output
for the risk assessment of hydraulic infrastructure. Because this research is primarily aimed towards
engineers, it is important to remove this ambiguity. A critical assessment of the clustering output is
required to study whether the clustering output can be improved.

The first step is to remove grid-points outside the research domain. Next, clusters containing grid-
points in different geographical locations will be addressed. The clusters will be split if there is reason
to believe that the extreme wave characteristics differ between the geographical locations. Finally,
clusters in the same geographical area will be compared to study whether these clusters share similar
extreme wave characteristics so that these clusters can be merged.

5.1.2.1. Removing Points Outside Research Domain
Due to the selected boundaries of the study domain, two locations are included in the dataset while
they are not of interest to this Research. This includes the points in the Irish Sea (West of Wales) and
Kiel Bay (East of Denmark). These grid-points are removed from the final clustering solutions

5.1.2.2. Splitting Clusters Based on Geographical Locations
The next step is to split clusters that contain grid-points in different geographical locations. The applied
HAC algorithm determines cluster boundaries based on input values for the significant wave height
(Hm0,P99.5), peak period (TP ), and dominant wave directions (θ1 and θ2). Each of these parameters
are represented by a single value. More information, either in the form of more wave parameters or
more values representing the selected wave parameters, was not included in the HAC algorithm. In-
cluding more parameters comes with a loss of clustering quality. As a result, if the input values of
Hm0, Tp, θ1 and θ2 are similar, they are assigned to the same cluster, regardless of their geographical
locations. However, this does not necessarily mean that these regions share the same similar extreme
wave characteristics. It is only a result of the limited information presented to the HAC algorithm.
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Figure 5.5: Example of a clusters with grid-points in different geographical locations. The map shows the bathymetry of the
North Sea and grid-points belonging to Cluster 43. Notice how the local water depth differs for each sub-cluster.

The storm climate in the North Sea depends on the location of the low pressure area of the extra tropi-
cal cyclones (See chapter 2.1) This means that extreme wave events in different locations are typically
the result of different storms. In this research, the time of occurrence of the extreme waves in different
locations is not considered. As a result, there is no evidence that extreme waves in different regions
of the North Sea are resulting from the same storm events. Furthermore, there are other parameters
that were not included in the HAC analysis that are very important for extreme wave development. For
example, local water depth influences wave development because larger depths can accommodate
higher waves. Regions with larger depths have the potential to be affected by more extreme waves
than shallower regions. The HAC algorithm considered the 99.5 percentile value of Hm0 to represent
Hm0. This means that the HAC algorithm has no knowledge about the most extreme waves at the
grid-point.

In this research, clusters are split based on the geo-locations of the intra-cluster grid-points. A subse-
quent HAC analysis is employed with the coordinates of the grid-points within the established clusters
as input values. The values for the geo-locations are normalized through z-score standardization to ac-
count for the differences in magnitude between latitude and longitude. The selected linkagemechanism
is Average so that the considered dissimilarities is based on the centers of the clustered objects. The
HAC algorithm then determines whether the different “sub-clusters” are too distant to be considered
the same cluster. An example is presented in Figure 5.5. The intra-cluster grid-points have different
geographical locations. The local water depth at each of these sub-clusters differs significantly, vary-
ing between approximately 20 meters and 500 meters depending on the location. The HAC analysis
determined to split this cluster into four sub-clusters (see Figure 5.5).

5.1.2.3. Merging Clusters with Similar Extreme Wave characteristics
The final step is to merge smaller clusters with larger clusters if there is enough statistical evidence to do
so. Especially in coastal regions, numerous clusters can be identified that consist of very few grid-points
(see Figure 5.3). This potentially causes ambiguity to as to which cluster to select for extreme wave
analysis. To complicate matters further, these smaller nearshore clusters typically have extreme wave
statistics that are comparable to bigger, surrounding clusters. It is therefore decided to study the coastal
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Figure 5.6: Example of two clusters that can be merged based on the same extreme wave statistics. The figure shows the
locations of the considered cluster (top left), the dominant wave directions (top right), the return level plots for AM Hm0 (bottom

left) and the scatter plots for the peak period (bottom right).

regions to determine which clusters can be merged. The HAC algorithm identified clusters based on
representative values forHm0, TP , θ1 and θ2. As a result, the extreme statistics of these parameters are
used to determine whether clusters can be merged. A further requirement is that the clusters must have
equal water depths. The latter requirement is especially important near the Norwegian trench, where
the water depth nearshore rapidly increases to depths exceeding 500 meters. For each of the studied
set of clusters, the Annual Maxima (AM) Hm0 are computed at each grid-point with the corresponding
values for Tp and θ. Using these observations, the following plots are produced:

• The AM Hm0 observations are used to infer the distribution parameters of the Generalized Ex-
treme Value (GEV) distribution using Maximum Likelihood Estimation (MLE) at each of the intra-
cluster grid-points. The GEV parameters are subsequently used to produce return level plots for
the extreme significant wave heights at the grid-points.

• The AM Hm0 and corresponding θ observations are plotted on wave roses to compare the domi-
nant wave directions between the considered clusters.

• The values for AM Hm0 and corresponding Tp values are plotted on scatterplots to compare the
Tp corresponding to extreme wave events in the considered clusters.

If the extreme waves in both clusters share similar statistics for Hm0, TP and θ, both clusters are
merged. An illustration is given in Figures 5.6. Here, illustrations are given for two clusters near the
Scottish coast. The clusters of interest share very similar extreme wave statistics. Therefore, it was
decided to merge these clusters. This process is repeated until no other neighbouring clusters can be
found that share similar extreme wave statistics. It should be noted that this step is very subjective and
requires a critical assessment by the modeller. No diagnostics checks where performed to validate the
resulting clustering output.

5.1.3. Final Clustering Output
The final clustering output is presented in Figure 5.7. After the process of splitting and merging clus-
ters has been completed, the North Sea domain is partitioned in 63 different clusters. This means that
the value for K is higher than Kmax that was imposed prior to running the HAC algorithm. This can
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Figure 5.7: Final cluster map that is used in the remainder of this research.

be explained by the fact that the HAC-algorithm detects partitions grid-points in different geographical
locations into clusters. These clusters were subsequently split in Section 5.1.2. It could be suggested
to increase Kmax prior to running the algorithm. However, because the grid-point coordinates were not
included as input, the HAC algorithm still only detects cluster boundaries based on the input values for
Hm0,P99.5, TP , θ1 and θ2. Increasing Kmax will result in cluster boundaries based on θ1 and θ2, which
is not necessarily required. This is explained in more detail in the Discussion.

Apart from the final cluster map, it is also interesting to study the nature of the cluster boundaries. In the
HAC analysis, the clusters were defined based on representative values for Hm0, Tp, θ1 and θ2. This
means that each cluster boundary must represent a boundary between different values for Hm0, Tp, θ1
and/or θ2. Figure 5.8 shows the final cluster map with the contours for the input values for Hm0,99.5,
Tp, θ1 and θ2. Figure 5.8 can be used to determine whether the cluster boundaries between different
clusters are based on Hm0,99.5, Tp, θ1 or θ2. What can be seen in Figure 5.8 is that every cluster
boundary represents at least one division based on the input values.
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Figure 5.8: Final cluster map with the cluster boundaries based on Hm0 (top left), Tp (top right), θ1 (bottom left) and θ2
(bottom right).
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Figure 5.9: Results of the Mann-Kendall test for extreme Hm0 as determined in Section 4.2.2 and clustering output developed
in Section 5.1.

5.2. Intra-Cluster Extreme Value Analysis
In this Section, extreme value analysis (EVA) at the cluster level will be evaluated in relation to EVA at
grid-point level to study the applicability of a clustering approach to evaluate the extreme wave statis-
tics in the North Sea. The extreme value models will be inferred by means of fitting the Generalized
Extreme Value (GEV) distribution using Bayesian Inference. Moreover, a non-stationary component
is added to the extreme value models to account for the non-stationarity in the extreme wave climate.
Computing representative extreme value models at cluster level requires a critical assessment of the
extreme value properties at the intra-cluster grid-points. Therefore, the non-stationarity of the extreme
significant wave height (Hm0) and extreme wind speeds (U10) in studied in more detail within the estab-
lished clusters from Section 5.1. The temporal trend analysis at cluster level is presented in Section
5.2.1.

Five techniques will be evaluated to model the extreme Hm0 at cluster level. The extreme Hm0 ob-
servations will be detrended and representative time-series are derived before the parameters of the
Generalized Extreme Values (GEV) are inferred using Bayesian Inference. After the GEV-models have
been derived, a non-stationary component is added to the GEV-models to account for potential non-
stationarity extreme Hm0. The results of the representative extreme value models are presented in
Section 5.2.2.
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Figure 5.9 shows the established clustering output from 5.1 and the results for the temporal trend
analysis of Hm0 for the North Sea as was performed in Section 4.2.2. Three different clusters will be
evaluated in this section. Each cluster has unique characteristics in terms of its location in the North
Sea domain and the degree of non-stationarity it contains. The following clusters are included:

• Cluster 12 (Danish Coast) which shows an upward trend for the extreme wave climate between
1950 and 2020 (see Figure 5.9);

• Cluster 20 (Scottish coast): Here no temporal trend was detected for extreme Hm0 in both con-
sidered temporal horizons in Figure 5.9;

• Cluster 59 (Central North Sea), which is the biggest cluster. Furthermore, Figure 5.9 shows that
this cluster has opposite trends for extreme Hm0 between 1950 and 2020.

5.2.1. Intra-Cluster Temporal Trend Analysis
Before analyzing the representative extreme value models forHm0 at the cluster level, it is important to
have an understanding about the intra-cluster non-stationarity ofHm0. For studying the non-stationarity
ofHm0, extreme observations are selected using Annual Maxima (AM) and Peak over Threshold (POT).
The presence of a statistically significant trends is detected using the Mann-Kendall (MK) test and the
linear slope of the trends is estimated using the Theil-Sen (TS) test.

Information about the dominant wave directions (θ1 and θ2) can be applied to improve extreme value
selection to form independent and homogeneous subsets of extreme Hm0 observations in the clusters.
Hereby meeting the requirements for POT (see Section 3.1). Information about θ1 is used to filter the
Hm0 time-series so that only waves travelling in similar directions are maintained.

New values for the threshold (u) and declustering time lag (δ) are selected for the filtered time-series
using the diagnostic tests for Mean Residual Life (MRL), Extremal Index (EI), Dispersion Index (DI)
and the stability of the parameters of the Generalized Pareto (GP) distribution. It is assumed that the
found values for u and δ at the centroid of the cluster are representative for the entire cluster. A detailed
description of the selection of u and δ for this analysis is presented in Appendix E. The boundaries for
the dominant wave directions and the newly obtained values for u and δ are given in Table 5.4. The
directionally filteredHm0 observations are also used for AM selection of extremeHm0. The intra-cluster
temporal trends for the extreme wind climate were also studied. For the extreme value selection of U10,
only AM was applied. The time-series for U10 was filtered to construct a time-series containing only
U10 observations with a direction matching the range of dominant wave directions. The sections below
present the results of the temporal trend analysis for each of the three clusters of interest.

5.2.1.1. Cluster 12: Danish Coast
First, the results for the temporal trend analysis for Annual Maxima (AM) Hm0 are studied. It can be
observed that there are no differences in the detected temporal trends when accounting for the intra-
cluster dominant wave directions compared to the findings in Section 4.2.2. This can be explained by
the fact that cluster 12 is characterized by only one dominant wave direction. This means that the se-
lected AM Hm0 observations in the general trend analysis (Section 5.9) and the intra-cluster temporal

Table 5.4: Selected Boundaries for the dominant wave directions (θ), threshold (u) and declustering time lag (δ) for the
selected clusters subjected to intra-cluster extreme value analysis. The subscripts LB and UB correspond to the lower and

upper bound of the applied dominant wave direction respectively.

Location Cluster θLB θLB u δ

Dutch Coast 8 (θ1) 270 360 P99.0Hm0 2
8 (θ2) 180 270 P99.5Hm0 2

Danish Coast 12 210 330 P99.5Hm0 5
Scottisch Coast 20 60 180 P99.5Hm0 2
Central North Sea 59 260 360 P99.5Hm0 5
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Figure 5.10: Intra-cluster temporal trend analysis for AM U10. Left and right show the results of the short and long term
analysis respectively. Black quivers represent the dominant wave direction in each cluster.

trend analysis relate to the same wave directions. Hence, similar temporal trends are detected. More
interesting are the results of the POT analysis. In Section 4.2.2, both the long- and the short-term analy-
ses showed no temporal trends in the region of cluster 12 (see Figure 5.9). However, when accounting
for the intra-cluster dominant wave direction, small areas with an upward trend for extreme Hm0 can
be observed for the long-term analysis. The magnitude of the trends varies between 1 and 2 cm/year.
The observed non-stationarity is accompanied by an increase in Frequency (Nexc). This suggests that
accounting for dominant wave directions influences the detection of statistically significant trends.

Shifting attention to the temporal trend analysis for the extreme wind speeds (U10). When comparing
extreme U10 andHm0, it can be observed that comparable temporal trends are detected. This includes
no statistically significant trends between 1990 and 2020 and an upward trend for extreme U10 between
1950 and 2020. This means that the upward trend for extreme Hm0 between 1950 and 2020 in cluster
12 can at least partially be explained by an increase in the extreme wind climate.

5.2.1.2. Cluster 20: Scottish Coast
In Section 4.2.2, Cluster 20 showed no statistically significant temporal trends in extreme Hm0 for both
the short and long term horizon (see also Figure 5.9). When accounting for θ1, the short term trends
for extreme Hm0 selected using AM show few grid-points where a downward trend in extreme Hm0

can be observed. For the long term, also a few grid-points can be observed where a downward trend
was detected. This is consistent with our findings in Section 4.2.2, where downward trends for extreme
Hm0 were observed along the British coast for both temporal horizons. These findings suggest that
when a grid-point is characterized by multiple dominant wave directions, accounting for the dominant
wave directions helps to detect statistically significant temporal trends in extreme Hm0. Despite the
fact that few grid-points show statistically significant trends, the slope of the trend in all grid-points is
below 5mm/year. It therefore possible to state that cluster 20 is not characterized by steeps trends in
extreme Hm0.

Looking at the temporal trend analysis of extreme U10, no statistically significant trends were detected
for the short term horizon. For the long term horizon, few grid-points exhibit an upward temporal trend,
which is surprising given the downward trend for extreme Hm0. It appears that the small upward trend
in extreme U10 does not transfer into an upward temporal trend for extreme Hm0, meaning that other
processes are responsible for the downward trend in extreme Hm0.

5.2.1.3. Cluster 59: Central North Sea
The general temporal trend analysis (Section 4.2.2) showed a strong downward trend for Hm0 in the
Western regions of cluster 59 for the short term analysis (see Figure 5.9). For the long term analysis,
an upward trend for extreme Hm0 was observed in the East, and a downward trend was observed at
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Figure 5.11: Results of the intra-cluster temporal trend analysis. Top and bottom figures show the results for the long and short
term analysis respectively. Top-left figures show temporal trends in magnitude of AM Hm0. Top-right figures show trends in

magnitude of POT Hm0 extremes. Bottom-left figures show trends in the threshold exceedance frequency of Hm0 (Nexc) and
bottom-right shows temporal trends for average duration of threshold exceedance (Tdur). Black quivers represent the

dominant wave direction selected for the cluster.
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the Western border of cluster 59. Accounting for the dominant wave directions enhances the presence
of these trends. For the short term analysis, a downward trend (magnitude between 1 and 2 cm/year)
is observed in cluster 59. For the long term, it is observed that the larger region in the East of cluster
59 is affected by an upward trend in extreme Hm0 compared to the general trend analysis. Meanwhile,
the Western part of cluster 59 is characterized by a larger area exhibiting a decreasing trend in extreme
Hm0. The findings for the temporal trends in extreme Hm0 are further supported by similar trends in
extreme U10. The short term horizon shows a predominantly downward temporal trend throughout the
cluster (approximately 0.1m/s/year). The long term analysis shows a predominantly upward trend for
U10 in the East, and a downward trend in the West. The magnitudes of these trends are approximately
also 0.1m/s/year.

Figure 5.12: Results for the intra-cluster temporal trend analysis for cluster 8. Top and bottom figures show the short and long
temporal horizons, respectively. Left and right figures represent the primary (θ1) and secondary (θ2) dominant wave direction,

respectively. Black quivers represent the dominant wave directions.

5.2.1.4. Effects of Multiple Dominant Wave Directions
In Section 5.2.1.2, it was noticed that accounting for the dominant wave direction (θ1) potentially results
in the detection of statistically significant temporal trends at grid-points where initially no temporal trend
was detected in Section 4.2.2. To study this phenomenon in more detail, it was decided to study another
cluster where initially no trends are detected. For the design and risk assessment of hydraulic infras-
tructure along the Dutch coast, typically two dominant wave directions must be considered, namely
waves from the Northwest (θ1 in Figure 4.8) and from the Southwest (θ2). To this end, cluster 8 was
selected. This section provides a short case-study studying the different effects of θ1 and θ2 on the
temporal trend analysis. Table 5.4) presents the relevant boundaries for θ1 and θ2 as well as the corre-
sponding threshold (u) and declustering time-lag (δ). Figure 5.12 presents the results of the temporal
trend analysis of cluster 8.

Figure 5.12 shows that accounting for the dominant wave directions has an important effect on the
detection of statistically significant temporal trends. More importantly, it can be observed that differ-
ent temporal trends can be present depending on the considered dominant wave directions. For the
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Figure 5.13: Histograms showing the TS estimators b and b0 fitted to the AM Hm0 observations used for detrending.

short temporal horizon, it can be seen that a downward trend exist for the AM Hm0 coming from the
Northwest. The magnitude of this trend is approximately 1 cm/year. These findings are consistent
with our findings for the short term analysis in Section 4.2.2. However, the AM Hm0 coming the from
Southwest show no statistically significant trend. Shifting our attention to the long term analysis, it can
be seen that an upward trend is present for waves coming from the Northwest, but a downward trend is
observed for waves coming from the Southwest. For both wave directions, the magnitude of the trends
is approximately 1 cm/year.

This section shows that different temporal trends could exist for different dominant wave directions in
the same cluster. The presence of temporal trends in extreme Hm0 affects the computation of non-
stationary extreme value models. Although the specific effects of the two dominant wave direction
are not further investigated in this research, opposing trends are important to consider when designing
hydraulic infrastructure as they potentially result in a shift in normative wave direction, and subsequently
design conditions. The potential impacts of different (and opposing) temporal trends for different wind
directions will be further explored in the Discussion.

5.2.2. Extreme Value Models at Cluster Level
This section evaluates the performance of the derived Extreme Value Models at Cluster Level. Prior to
fitting the models, AM Hm0 observations are detrended to them homogeneous. Five methods to con-
struct representative time-series are evaluated for the three clusters of interest. More information about
the representative time-series can be found in Section 3.5.2. As mentioned in Section 3.5.3, Bayesian
Inference results in posterior distributions for the GEV distribution describing detrended significant wave
height:

H∗
m0 ∼ GEV (µ∗, σ∗, ξ∗) (5.1)

The temporal trend information (b and b0) is added to µ∗ to account for potential non-stationarity, result-
ing in the following extreme value distribution:

Hm0 ∼ GEV (µ∗ + (b · t+ b0) , σ
∗, ξ∗) (5.2)

First, the performance of the GEV-models is assessed for Ψ∗
GEV (H

∗
m0) to study which of the five repre-

sentative time-series results in an extreme value model that best describes Hm0 at cluster level. After
that, the performance of the ΨGEV (Hm0) models is evaluated in light of the assumed temporal trends.

5.2.2.1. Detrending Annual Maxima Significant Wave Height
Before evaluating the extreme value models, a close inspection of the intra-cluster values of the TS
estimators b and b0 is presented. The TS estimators b and b0 used to detrend the data can be found in
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Figure 5.14: Normal priors for the location (µ∗), scale (σ∗) and shape (ξ∗) parameters for the considered clusters.

Figure 5.13. The values for b0 have a spread in the order of a meter for all clusters. This is a result of
pre-preprocessing of the HAC input before clustering. The parameters representingHm0 were rounded
down to the nearest integer. This means that the range for extreme waves is still relatively large. For
b, it can be verified that Cluster 12 is characterized by an upward trend only, with values for b between
1 and 2 cm/yr. Despite the fact that for cluster 20, the MK-test did not detect significant monotonic
trends (see Section 5.2.1), some downward trends can be seen in Figure 5.13. However, the majority
of these trends are smaller than 5 mm/yr. Cluster 59 is characterized by a opposite trends varying
between −1 and 1 cm/yr).

5.2.2.2. Prior Distributions
The GEV parameters of the representative models are determined by means of Bayesian Inference (BI).
The normal priors (p(θ∗) are constructed using the intra-cluster information about the GEV parameters
(µ∗

gp, σ∗
gp and ξ∗gp) at the grid-point level. See Section 3.5.3.1 for more information. Figure 5.14 shows

the informative priors for the considered clusters. It can be observed that all values for µ∗
gp are negative

as a result of the detrending process. Furthermore, it can be noticed that nearly all values for ξ∗gp are
negative indicating that most GEV distributions at the grid-point level have an upper bound. However,
few grid-points in cluster 20 show positive values for ξ∗, indicating that for these grid-points, the GEV
distributions do not have an upper bound. Potentially this is the result of the deeper water depth pre-
vailing in the region of this cluster. Deeper waters allow higher waves to exist, thereby removing the
upper bound from the GEV distributions.

5.2.2.3. Posterior Distributions
The posterior distributions for the 5 representative extreme value models in clusters 12, 20 and 59 can
be seen in Figure 5.15. The median of the posteriors is selected to represent the best fit, and the 5th
and 95th percentile values are selected to construct the 90% confidence interval.

Figure 5.15 shows that between the 5 representative extreme valuemodels, parallel maximum aggrega-
tion yields the highest values for µ∗. This is a direct result of the fact that parallel maximum aggregation
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Figure 5.15: Box plots showing the posterior distributions for the five representative Ψ∗
GEV (H∗

m0) models in the different
clusters. The center of the box indicates the best fit value (P50) for µ∗, σ∗ and ξ∗. The top and bottom whiskers indicate the

width of the 90% confidence interval (i.e P5 and P95) for µ∗, σ∗ and ξ∗.

selects the highest intra-cluster H∗
m0 for every year to construct the representative time-series. Com-

paring the three clusters, it can be seen that the values for the values µ∗ are all in the same order of
magnitude, despite the wave heights varying between the different clusters. This can be attributed to
the fact that prior to Bayesian Inference, the AMHm0 observations have been detrended. The “amount
of detrending” depends on b0. Higher values for AM Hm0 correspond to higher values for b0. This can
also be seen in Figure 5.13. Clusters 12 and 59 have higher values for extreme Hm0 than cluster 20,
and therefore also have higher values for b0. After detrending, all values for H∗

m0 are in the same order
of magnitude, meaning that the values of µ∗ after Bayesian Inference are more likely to show the same
order of magnitude between the different clusters.

Looking at ξ∗, it can be seen that nearly all clusters and representative time-series show values for ξ∗
below zero, indicating that the GEV models are unbounded. Only parallel maximum and the selection
of the grid-point with the highest return level for cluster 20 show that the 95th percentiles of ξ∗ exceed
zero, meaning that the upper confidence bounds of these models are unbounded. Furthermore, the
values for ξ∗ in cluster 20 are higher compared to clusters 12 and 59. Cluster 20 is located Northeast
of the Scottish coast, where higher water depths prevail compared to clusters 12 and 59 (see Figure
4.2), Possibly, extreme waves in cluster 20 are less affected by physical depth limitations, resulting in
relatively high values for ξ∗.

Furthermore, it can be noticed that the confidence interval of the posterior distributions for series ag-
gregations is much narrower than for the other representative time series. This is caused by the larger
sample size and the fact that the variability of samples is relatively low. Detrending the AM Hm0 ob-
servations reduces the variability of the H∗

m0 values, because the value for b0 is higher for grid-points
exhibiting higher AMHm0 values. The reduced variability and the relatively large sample size (Ngp·Thor)
cause the confidence interval to become narrow. Naturally, the width of the confidence interval also
depends on the cluster size. Figure 5.15 also shows that the confidence interval for series aggregation
of cluster 59 is smaller than for clusters 12 and 20.
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Figure 5.16: QQ-plots comparing Ψ∗
GEV (H∗

m0) models with the representative H∗
m0 time-series used to construct the models

within the considered clusters.

5.2.2.4. Model Checking Against Representative Time-Series
First, we must check the performance of the obtained GEV-distributions (Ψ∗

GEV (H
∗
m0)). To this end,

QQ-plots are used to assess Ψ∗
GEV (H

∗
m0) against the representative time-series of H∗

m0 (See Figure
5.16. Apart from the QQ-plots, the bias and root mean square error (RMSE) are calculated to assess
the quality of the GEV distributions.

From Figure 5.16, it can be seen that for series aggregation, the Ψ∗
GEV (H

∗
m0)models give a good fit for
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all clusters together with the lowest values for bias and RMSE compared to the other representative
time-series. This can be attributed to the high number ofH∗

m0 observations and low variability between
H∗

m0 observations used to fit µ∗, σ∗ and ξ∗. Only cluster 20 (Figure 5.16.B) gives slightly higher values
for bias and RMSE compared to clusters 12 and 59, which can be attributed to the slight deviation of
the observations from Ψ∗

GEV (H
∗
m0) for the highest quantiles.

Looking at parallel maximum aggregation, it can be seen that Ψ∗
GEV (H

∗
m0) gives poor fits when com-

pared to the representative time-series for H∗
m0. Ψ∗

GEV (H
∗
m0) underestimates the values for H∗

m0 in all
three considered clusters. It seems that selecting the maximum H∗

m0 observation for each year results
in a time-series of H∗

m0 observations that cannot be adequately fitted to a GEV-model. Potentially,
selecting the maximum value at every time step results in a subset consisting of outliers, thereby re-
sulting in an unrealistic set of observations. Selecting the median values ensures that all aggregated
observations “fall within the majority of the data,” thereby generating a representative time-series for
the intra-cluster H∗

m0 observations. When studying the values for bias and RMSE for Ψ∗
GEV (H

∗
m0) for

parallel median aggregation, it can already be seen that the fit is already much better than for parallel
maximum aggregation.

Shifting attention to the clustering centroid, it can be observed that all GEV models have low values for
the bias (< 10 cm) and RMSE. The Ψ∗

GEV (H
∗
m0) models for cluster 59 (Figure 5.16.L) has a relatively

high value for RMSE compared to the other clusters. This is caused by the deviation of the highestH∗
m0

observations from the Ψ∗
GEV (H

∗
m0) identity line. Here, Ψ∗

GEV (H
∗
m0) underestimates the magnitude of

the most extreme events, which were found correspond to the 1953 and 1990 extreme Hm0 events.
Finally looking at the models representing the grid-points that yield the highest return levels before
detrending, Ψ∗

GEV (H
∗
m0) gives a good fit with low values for bias (< 10 cm) and low values for RMSE

for the three clusters. There are no big deviations of H∗
m0 from the Ψ∗

GEV (H
∗
m0) identity line to be

considered for all clusters.

5.2.2.5. Model Checking Against Intra-Cluster Grid-Points
Apart from verifying Ψ∗

GEV (H
∗
m0) by comparing the models with the representative time-series for H∗

m0,
the performance of Ψ∗

GEV (H
∗
m0) must be evaluated by comparing them against all intra-cluster H∗

m0

observations. This is done to study how well Ψ∗
GEV (H

∗
m0) represents the H∗

m0 observations at the grid-
point level. Figure 5.17 shows the QQ-plots for Ψ∗

GEV (H
∗
m0) and all intra-cluster H∗

m0 observations.

First observations of Figure 5.17 show that the scatters representing H∗
m0 observations at grid-point

level are tightly packed together. This tight packing is caused by detrending the AM Hm0 observations.
Figure 5.13 shows that the values for b0 have a range in the order of 1m. Detrending causes the intra-
cluster variability of H∗

m0 to be reduced because detrending depends on the value of b0 (see Equation
3.50). Furthermore, it can be observed thatΨ∗

GEV (H
∗
m0) for Cluster 59 generally show higher values for

the RMSE. This can be explained by the fact that cluster 59 contains more grid-points (156) compared
to clusters 12 and 20 (50 and 36 respectively), causing the variability of intra-cluster H∗

m0 to be higher.

The GEV models corresponding to series aggregation results in the lowest values for bias and RMSE
when compared to the other aggregation methods. This can be explained by the fact that series ag-
gregation considers all H∗

m0 observations in the cluster, thereby maximizing the available information
about H∗

m0 in the cluster.

Parallel maximum aggregation gives the highest overestimation as indicated by the bias (in the order
of 20 cm) and RMSE values given in Figure 5.17. This is caused by the fact that parallel maximum
aggregation selects the maximum values forH∗

m0 for every year, thereby constructing a set of the most
extreme H∗

m0 observations in the cluster. Moreover, this results in a set of H∗
m0 values that poten-

tially contains outliers for the cluster observations when comparing the individual grid-points, further
enhancing the overestimation of the extreme wave data. Parallel median aggregation gives a slight
underestimation based on the bias when comparing the three clusters. The bias for parallel median
aggregation is already less than for parallel maximum aggregation. This is explained by the fact that
parallel median aggregation selects the median H∗

m0 value for every year, thereby always selecting a
value that falls ”within the majority” of the H∗

m0 data.
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Figure 5.17: QQ-plots comparing Ψ∗
GEV (H∗

m0) models against all intra-cluster H∗
m0 observations for the different

representative time-series and considered clusters.

The QQ-plots for Ψ∗
GEV (H

∗
m0) corresponding to the H∗

m0 observations at the clustering centroid gives
very low values for bias (< 0.05 m). Finally, looking at Ψ∗

GEV (H
∗
m0) for the grid-point that gives the

highest return levelsHm0 before detrending, does not give a significant overestimation for the detrended
data based on the value for bias. This can be explained by the detrending process, which reduces the
intra-cluster variability for H∗

m0 based on the relative magnitude for b0.

5.2.2.6. Performance for Extreme Return Levels
Not only is the performance ofΨ∗

GEV (H
∗
m0) evaluated by comparing them withH∗

m0 observations. Also,
the extreme return levels of H∗

m0 exceeding the available H∗
m0 observations are studied. Return level
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plots are constructed that compare the return levels of Ψ∗
GEV (H

∗
m0) against the return level plots of the

GEV distributions at grid-point level. The GEV distributions at grid-point level have been computed by
fitting the GEV-parameters to the H∗

m0 observations using Maximum Likelihood Estimation (MLE). The
return level plots are presented in Figure 5.18

Interestingly, Figure 5.18 shows that for cluster 20, not only the upper confidence bounds ofΨ∗
GEV (H

∗
m0)

are unbounded, but also the GEV distributions at several intra-cluster grid-points. This is verified by
the fact that for several grid-points, the values for ξgp exceed zero (see Figure 5.14). As explained,
cluster 20 is located of the Northeast Scottish coast where higher water depths prevail than in clusters
12 and 59 (see Figure 4.2). The fact that several grid-points show unbounded GEV distributions further
supports the claim that the AM Hm0 events in cluster 20 are not always depth limited, meaning that
some grid-points do not show an upper bound for the GEV-model.

Figure 5.18, shows that for series aggregation, the return level curves ofΨ∗
GEV (H

∗
m0) for high return pe-

riods are roughly in the middle compared to the individual grid-points for all three clusters. Furthermore,
it can be observed that the 90% confidence bounds ofΨ∗

GEV (H
∗
m0) for series-aggregation are narrower

than for other representative time-series. This is the result of the high number of observations and the
relatively small variety between the intra-clusterH∗

m0 values used to computeΨ∗
GEV (H

∗
m0). This narrow

confidence interval means that the GEV model for series aggregation fails to capture the most extreme
intra-cluster return values for H∗

m0. This may potentially be problematic when design values for Hm0

in design and risk assessment of hydraulic infrastructure are based on the confidence interval yielded
by the representative GEV-models. This is especially troublesome when hydraulic infrastructure is lo-
cated in regions where return values for Hm0 is more extreme than what the confidence interval of
ΨGEV (Hm0) projects.

Figures 5.18.D, E and F shows the Ψ∗
GEV (H

∗
m0) models derived using parallel maximum time-series.

It can be seen that for return periods up to approximately 500 years, Ψ∗
GEV (H

∗
m0) yields the highest

return values for cluster 12 and 59. For cluster 20 however, Ψ∗
GEV (H

∗
m0) does not yield the highest

return levels for H∗
m0 despite the fact that parallel maximum aggregation was applied. Some individual

grid-points yield higher return levels due to the positive values for ξgp, resulting in unbound GEVmodels.
Furthermore, it can be observed that the GEV model for parallel aggregation has broader CI bounds
compared to series aggregation. Figure 5.15 shows that for parallel maximum aggregation in cluster
20, ξ95 exceeds zero, meaning that the upper confidence bound of Ψ∗

GEV (H
∗
m0) even captures the re-

turn level curves for the grid-points yielding unbound GEV distributions. This means that Ψ∗
GEV (H

∗
m0)

in cluster 20 still provides information about the most extreme return values of H∗
m0, preventing under-

estimation. For clusters 12 and 59, the 90% confidence bound lies well above the RL-curves of the
individual grid-points. Ψ∗

GEV (H
∗
m0) models. This potentially results in overestimation of the design val-

ues for Hm0, resulting in overly conservative designs. As a result, the costs of constructing hydraulic
infrastructure may be too high, resulting in projects that are not economically feasible. The implications
of this overly conservative designs are further elaborated in Section 5.2.3.

TheΨ∗
GEV (H

∗
m0)models for parallel median aggregation show relatively low return values compared to

the individual grid-points. Moreover, the upper bound of the 90% confidence interval does not capture
the most extreme return levels forH∗

m0 at grid point level. This despite Ψ∗
GEV (H

∗
m0) for parallel median

aggregation having broader confidence interval compared to series aggregation. During the design or
risk assessment of hydraulic infrastructure in some areas within the clusters, the extreme Hm0 condi-
tions may be underestimated leading to unsafe designs. The return level plots for Ψ∗

GEV (H
∗
m0) derived

using the clustering centroid show that the best-fit estimate of Ψ∗
GEV (H

∗
m0) follows a middle trajectory

compared to the individual intra-cluster grid-points. Also, the upper confidence bounds capture the
most extreme return levels of H∗

m0 within the cluster, meaning that the GEV-model includes informa-
tion about the most extreme H∗

m0 within the cluster. Some care must be taken in cluster 20, as the
RL-plot for one grid point exceeds the upper confidence bound of Ψ∗

GEV (H
∗
m0).

Finally, the return level curves for Ψ∗
GEV (H

∗
m0) corresponding to the grid-point with the highest return

level (before detrending) are analyzed. The RL-values for Ψ∗
GEV (H

∗
m0) are lower than for several intra-

cluster grid-points. As mentioned in Section 5.2.2.5, this can be attributed to the detrending process,
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Figure 5.18: Return Level Plots comparing the return level plots of Ψ∗
GEV (H∗

m0) at cluster level to the GEV distributions at
grid-point level.

where the intra-cluster variability between AM Hm0 observations is reduced. Nevertheless, the upper
confidence bound of Ψ∗

GEV (H
∗
m0) captures the most extreme return levels for the intra-cluster grid-

points very well. This means that Ψ∗
GEV (H

∗
m0) provides information about the most extreme H[m0∗

return levels that can be expected in the cluster.
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Figure 5.19: Cumulative Density Functions (CDF) showing the Detrended GEV models (ΨGEV (H∗
m0)

∗) and the models with
the reinstated temporal trends (ΨGEV (Hm0, t)) for different years during the observation period.

5.2.2.7. Reinstating the trend in the GEV-models
After the Ψ∗

GEV (H
∗
m0) models have been computed for H∗

m0, the temporal trend information of the
extreme wave climate is reinstated into the extreme value distributions, following equation 3.55, yielding
ΨGEV (Hm0 | t). This section studies the effect of accounting for the non-stationarity of AM Hm0 in
the representative ΨGEV (Hm0 | t) models by evaluating their performance in the different clusters.
Accounting for the temporal trend means that ΨGEV (Hm0 | t) yields the following extreme value model:

ΨGEV (Hm0 | t) ∼ GEV (µ∗ + (b · t+ b0) , σ
∗, ξ∗) (5.3)

Equation 5.3 shows that the cluster representative extreme value model no longer is a function of
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Hm0 only, but also a function of time (t in years). The main assumption behind this model is that the
non-stationarity of Hm0 between 1950 and 2020 can be described by a linear trend. The cumulative
distribution functions (CDFs) of ΨGEV (Hm0 | t) relevant to any year between 1950 and 2020 can be
derived by substituting the corresponding value for t into Equation 5.3. For this, the selected value t
must be between 0 (yielding the CDF corresponding to 1950) and 70 (yielding the CDF corresponding
to 2020). Figure 5.19 shows the CDF plots for ΨGEV (Hm0 | t) per cluster. The green, blue and red
lines in Figure 5.19 represent the CDFs corresponding to 1950, 1990 and 2020 respectively. The shift
in CDFs indicates the non-stationary imposed into ΨGEV (Hm0 | t) by adding b and b0 to the location
parameter (µ∗) in Equation 5.3.

Figure 5.19 shows that the temporal shift of the CDFs depends on the presence of a temporal trend
in the cluster. Section 5.2.2.1 showed that all grid-points in cluster 12 have a significant upward trend
for the extreme wave climate. This subsequently means that over time, the CDFs of ΨGEV (Hm0 | t)
for cluster 12 shift towards the right, representing an increase in extreme Hm0 over time. In cluster 20,
almost no significant trends were detected by the MK-test (see Fiugre 5.11. However, Section 5.2.2.1
showed that the non-stationarity in cluster 20 can be characterized by very small negative values for b.
As a result, the CDFs of ΨGEV (Hm0 | t) for cluster 20 in Figure 5.19, show either almost no temporal
shift or a small shift towards the left, indicating a decrease of extreme Hm0 over time.

Shifting attention to Cluster 59, the CDFs of ΨGEV (Hm0 | t) in Figure 5.19 show different horizontal
shifts over time. In Section 5.2.1, it was discovered that cluster 59 is characterized by a significant
upward trend for AM Hm0 in the Eastern parts and a downward trend in the Western parts of the clus-
ter. The presence of heterogeneous non-stationarity affects ΨGEV (Hm0 | t) when accounting for the
non-stationarity. For example, the CDFs of ΨGEV (Hm0 | t) for series aggregation, parallel median
aggregation and the grid-point yielding the highest return level show almost no shift over time (see Fig-
ure 5.19). However, the CDF of ΨGEV (Hm0 | t) for parallel maximum aggregation (where the highest
values for b and b0 are substituted into ΨGEV (Hm0 | t)) show a shift towards the right over time, indi-
cating an upward trend in extreme Hm0. Contrarily, the CDF of ΨGEV (Hm0 | t) corresponding to the
clustering centroid indicated a downward trend in extreme Hm0. After investigation, it was found that
the grid-point yielding the clustering centroid can be found in the Western parts of cluster 59, where
negative values for b can be observed.

The selection of the appropriate values of b and b0 to be substituted into ΨGEV (Hm0 | t) naturally has
implications on the return level curves of ΨGEV (Hm0 | t). Especially with respect to the return level
plots at grid-point level. Figure 5.20 shows the return level plots of ΨGEV (Hm0 | t) corresponding to
2020 (t = 70). The grey lines show return level plots corresponding to GEVmodels derived at grid-point
level. The GEV models derived at grid-point level in accordance with 3.55. The substituted values for
b and b0 are the values observed at the grid-points.

For ΨGEV (Hm0 | t) corresponding to series aggregation, it can be seen that similar results are ob-
tained as in Figure 5.18. Non-stationarity was accounted for by substituting the median values for b
and b0 found in the cluster into ΨGEV (Hm0 | t). As a result, ΨGEV (Hm0 | t) shows median return level
curves compared to the intra cluster grid-points. The Confidence interval for ΨGEV (Hm0 | t) remains
too narrow, thereby causing ΨGEV (Hm0 | t) failing to capture the most extreme return levels for Hm0

characteristic to the cluster. Similar results can be observed for parallel median aggregation. Despite
the wider confidence bounds for ΨGEV (Hm0 | t), they do not capture the most extreme return level
plots for Hm0 for all individual grid-points.

Naturally, the ΨGEV (Hm0 | t) derived for parallel maximum aggregation yields the highest return levels
forHm0. This can be explained by the fact that the maximum values for b and b0 observed in the cluster
are substituted into ΨGEV (Hm0 | t). As a result, ΨGEV (Hm0 | t) for parallel maximum aggregation
yields the highest return level curves compared to the return level curves at grid-point level, leading
to potential overestimation of the extreme Hm0 for in the respective clusters (see Figure 5.20). This
overestimation is further reinforced by the fact that the upper confidence bounds of ΨGEV (Hm0 | t) far
exceed the return level curves at grid point level.



5.2. Intra-Cluster Extreme Value Analysis 81

Figure 5.20: Return Level plots for the ΨGEV (Hm0 | t) models in the year 2020 (t = 70) compared against the return level
plots at grid point level for the different representative time-series and considered clusters.

For ΨGEV (Hm0 | t) derived by grid-point selecting (methods 4 and 5), it can be observed that the
presence and direction of a temporal trend affects the performance of ΨGEV (Hm0 | t). Two notable
examples can be found in Figure 5.20.L and 5.20.N. The clustering centroid for cluster 59 is located
in a region exhibiting negative values for b. When evaluating ΨGEV (Hm0 | t) in Figure 5.20.L, it can
be observed that the negative value for b causes the ΨGEV (Hm0 | t) to yield low return levels for Hm0

compared to the return level curves at grid-point level. Figure 5.20.N shows that, despite the MK-test
not detecting significant trends in cluster 20, the CDFs actually show a shift towards the left (Figure
5.19.N), indicating a small decrease in extremeHm0. This has the effect that, especially for lower return
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periods (< 100 years), ΨGEV (Hm0 | t) underestimates extreme Hm0 return levels (see Figure 5.20.N).

5.2.3. Conclusions Regarding Model Performance
The goal of this section is to evaluate the intra-cluster statistical properties of extreme Hm0 and study
how an extreme value model describing extremeHm0 statistics at cluster-level can be derived. A linear
temporal component (b · t + b0) is added to the location parameter (µ∗) to account for potential non-
stationarity of Hm0. Five methods to derive representative extreme value models are evaluated. The
extreme value model at cluster level (ΨGEV (Hm0 | t)) must be able to give a representative picture of
the extreme Hm0 statistics within the cluster. For this, the representative non-stationary extreme value
model must satisfy the following requirements:

• The 90% confidence interval must capture the most extreme Hm0 return levels at grid point level.
Practitioners that apply ΨGEV (Hm0 | t) for hydraulic infrastructure design will most likely choose
a design value for Hm0 based on the CI of ΨGEV (Hm0 | t). Capturing the most extreme Hm0

conditions prevents underestimation of the design conditions;
• The ΨGEV (Hm0 | t) must not severely overestimate the extreme Hm0 conditions. Choosing a
design value forHm0 based on the CIΨGEV (Hm0 | t) that severely overestimates the intra-cluster
wave conditions can result in overly conservative designs that potentially are not economically
feasible.

Based on the results presented in Section 5.2.2, the following conclusions about the five methods to
derive ΨGEV (Hm0 | t) can be made:

1. Series aggregation (method 1): the confidence bounds are too narrow and therefore the repre-
sentative model fails to capture the most extreme Hm0 return levels in the cluster, potentially
leading to severe underestimation of extreme Hm0 whilst designing infrastructure;

2. Parallel Maximum aggregation (method 2): The QQ-plots yields poor results when assessing the
performance of Ψ∗

GEV (H
∗
m0) against the aggregated H∗

m0 observations. Moreover, the represen-
tative model results in severe overestimation of the extreme Hm0 return levels. The overestima-
tion is further reinforced by selecting the maximum values for b and b0 to be substituted into the
models;

3. Parallel median (method 3): Despite the wider confidence bounds compared to method 1, the
90% confidence bounds fail to capture the most extreme return levels for extreme Hm0 for the
considered clusters. This potentially lead to underestimation of extreme Hm0 design values;

4. Clustering centroid (method 4): For the clusters where either a monotonic upward trend or no
significant trend was detected (i.e. clusters 12 and 20), the representative model shows promis-
ing performance. The derived representative models fit the extreme H∗

m0 observations well and
the confidence bounds of the RL-plots capture the most extreme return levels for Hm0 without re-
sulting in severe overestimation. However, for cluster 59 where mixed non-stationarity is present,
the performance of the representative model is compromised;

5. Maximum return levels (method 5): As a result of detrending the AM Hm0 observations before
Bayesian Inference (BI), the representative models do not necessarily yield the highest return
levels anymore. This makes the performance of the representative model dependent on the
magnitude of b and b0 at the grid-point in question.

From the above considerations, it is concluded that using the extreme Hm0 at the clustering grid-point
to constructΨGEV (Hm0 | t) yields the most promising results. However, there are some considerations
to be taken into account. The presence of mixed non-stationarity in clusters results in ambiguity. The
temporal trend information (b and b0) is substituted into the location parameter to account for potential
non-stationarity ofHm0. Different values for bmean that extremeHm0 statistics exhibits different charac-
teristics over time. As a result, ΨGEV (Hm0 | t) fails to give a representative picture of the extremeHm0

statistics in clusters with mixed non-stationarity. Given the current clustering approach and the resulting
clustering output, it is advised to not apply non-stationary GEV models in clusters that are character-
ized by mixed non-stationarity. Conventional GEV models at grid-point level are advised instead. This
raises questions regarding the current clustering approach and whether the clustering analysis should
account for non-stationarity of extreme Hm0. The implications of excluding non-stationarity from the
clustering analysis and whether it should be accounted for, is further evaluated in the Discussion.
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5.3. Summary
This chapter presents the findings of a Hierarchical Agglomerative Clustering (HAC) analysis of the
North Sea domain where grid-points are clustered based on comparable extreme wave characteristics.
Furthermore, extreme value analysis at cluster level is performed including intra-cluster temporal trend
analysis and the derivation of representative extreme value models describing the significant wave
height (Hm0) on a cluster level.

The HAC input values include the 99.5th percentile of Hm0 (denoted by Hm0,P99.5), the corresponding
peak period (TP ) and the most frequent extreme wave directions (θ1 and potentially θ2). More informa-
tion about the derivation of the HAC input is presented in Section 4.4.2. The HAC analysis is performed
for two different parameter combinations. Both parameter combinations include θ1 and θ2. Combina-
tion 1 only includes Hm0,P99.5, while combination 2 also includes TP . Five weight configurations are
evaluated for each parameter combination. For each weight configuration, the linkage mechanisms are
assessed based on the cophenetic correlation (C). The number of clusters (K) that yields the clustering
solution for each configuration is selected based on the Silhouette Coefficient (SC) Calinski-Harabasz
(CH), Davies-Bouldin ratio (DB) and a careful analysis of how well the clustering output represents the
boundaries between the input values. The best clustering solution is provided using Hm0,P99.5, TP , θ1
and θ2 as input parameters with equal weights and Ward linkage. The value for K is equal to 50.

A critical assessment of the initial clustering output is required. This includes splitting clusters that con-
tain grid-points in different geo-graphical locations. The HAC algorithm determines cluster boundaries
based on the input values for Hm0, TP , θ1 and θ2. However, this does not necessarily mean that grid-
points in different geographical locations show exactly similar extreme wave characteristics if they are
assigned to the same cluster. Also, neighboring clusters are merged when there is sufficient statistical
evidence to claim that the clusters share similar extreme wave characteristics. In the end, the North
Sea is partitioned into 63 clusters.

The extreme value analysis at cluster level and subsequent temporal trend analysis showed that ac-
counting for the dominant wave direction is important when studying the presence of statistically sig-
nificant temporal trends. Especially in cluster 59, the number of grid-points exhibiting statistically sig-
nificant trends increased compared to the general trend analysis in Section 4.2.2. Furthermore, a
case-study indicated that even different temporal trends (both in sign and magnitude) may be present
within the same cluster depending on the considered dominant wave directions. These are important
considerations to account for in the design and risk assessment of hydraulic infrastructure.

For three clusters, representative extreme value models are derived that describe Hm0 at cluster level.
Five different techniques to construct representative time-series of detrended AMHm0 observations (de-
noted by H∗

m0) are evaluated to assess their ability to describe extreme Hm0 at cluster level. Bayesian
Inference is employed to derive the GEV parameters describing H∗

m0. This yields the following GEV
model:

Ψ∗
GEV (H

∗
m0) ∼ GEV (µ∗, σ∗, ξ∗) (5.4)

Potential non-stationarity is accounted for by adding the TS parameters (b and b0) to µ∗ so that the
location parameter becomes a function of time. The extreme value model describing extreme Hm0 at
cluster level yields:

ΨGEV (Hm0 | t) ∼ GEV (µ∗ + (b · t+ b0) , σ
∗, ξ∗) (5.5)

Comparing the 5 methods to extreme value models at cluster level, it is concluded that using Hm0 data
from the clustering centroid gives the most promising. The confidence bounds capture the most ex-
treme Hm0 return levels for the cluster while also not severely overestimating the intra-cluster extreme
Hm0 conditions. However, there are some considerations to be taken into account. Clusters exhibiting
different and/or opposing trends are not suitable for deriving representative extreme value models. This
raises questions regarding the applied clustering approach and whether the clustering analysis should
account for non-stationarity for extreme Hm0.





6
Application in Light of Climate Change

This research aims to apply clustering analysis and subsequent extreme value analysis at the cluster
level in an attempt to update methodology in which extreme wave conditions are derived in the risk
assessment of hydraulic infrastructure. This section studies whether this approach forms a practical
alternative to conventional stationary analysis at grid-point level. Section 6.1 presents a practical exam-
ple where the extreme value models at cluster level are employed to derive typical Hm0 return values
for hydraulic infrastructure. Section 6.2 places the applicability of Non-Stationary Extreme Value Anal-
ysis (NEVA) for risk assessment of Hydraulic Infrastructure in broader perspective in light of climate
change.

6.1. Extreme Value Models at Cluster Level in Practice
To illustrate the performance of the extreme value models at cluster level for the clustering centroid, an
example is presented where we study the temporal evolution of extreme return levels of the significant
wave height (Hm0) in clusters 12 and 20. Cluster 59 was not considered because the extreme value
model does not perform well as a result of heterogeneous temporal trends that characterize cluster 59.
The analysis focuses on typical Hm0 return periods for hydraulic infrastructure. This includes a return
period of 50-years representative for offshore structures, such as wind turbines and boring platforms
(Jiang et al., 2017), and 1000-year return periods for coastal infrastructure, such as flood defenses
(Vergouwe, 2014). This example considers a hypothetical lifespan of 30 years, spanning between
2020 and 2050. This means that the Hm0 design values in the years 2020 and 2050 will be evaluated.

6.1.1. Effective Return Level Plots
This section explains the derivation of the effective return level (ERL) plots used to analyze the tempo-
ral behavior of the Hm0 return levels in this chapter (Katz et al., 2002). Figure 6.1 depicts the temporal
evolution of the 50 and 1000-year return levels of H0m0 in clusters 12 and 20 for four distinct example
models between 1950 and 2070. The solid lines represent the effective return levels corresponding
to the medians of the posterior distributions. The dashed lines indicate the 90% confidence interval
constructed using the 5th and 95th percentiles of the posterior distributions. The vertical dashed line
indicates the end of the observation period from which the extreme Hm0 observations were selected to
infer the extreme value models. Table 6.1 shows theHm0 return levels for the return periods of interest
including the boundaries of the confidence intervals.

The GEV parameters for the representative models are inferred using Bayesian Inference so that the
GEV parameters read θ = µ∗, σ∗, ξ∗. Subsequently, the temporal trend information (b and b0) is applied
to account for non-stationarity making the location parameter a linear function of time: µ = µ∗+b0+b · t.
The non-stationary model is depicted by the red line in Figure 6.1. Secondly, there is the updated sta-
tionary model (UST), adopted from Luke et al. (2017). Here the non-stationary GEV parameters at
the end of the observation period are used to project Hm0 return levels for the entire life time of the
structure under the assumption that Hm0 can be described by a stationary process after the observa-
tion period has ended. The GEV parameters of the AST model can be found by substituting t = 70 in

85



86 Chapter 6. Application in Light of Climate Change

Equation 3.55. Third is the so-called approximated stationary model. Here, the non-stationary model
parameters corresponding to the middle of the observation period are used to approximate Hm0 return
levels over the entire temporal horizon under the assumption of stationary conditions. For this model,
the year 1985 is considered, meaning that the value for t is equal to 35 in equation 3.55.

To assess the applicability of non-stationary models at cluster level, they are compared to a stationary
GEV model at cluster level. The method to derive the stationary model is similar to how the non-
stationary models at cluster level are derived and is adopted from Antonini et al. (2019). The Annual
Maxima (AM) Hm0 observations from the clustering centroid are used to infer the GEV parameters
using Bayesian Inference. Furthermore, normal informative priors are constructed using the informa-
tion about the GEV parameters at grid-point level. The only difference between the non-stationary
model derived in Section 3.5 and this stationary model is that for the stationary model, the AM Hm0

observations are not detrended prior to Bayesian Inference.

6.1.2. Quantitative evaluation
First looking at the results for the 50-year return period in clusters 12 and 20, it can be observed that
for all 4 extreme value models, the Hm0 return levels are higher for cluster 12 than they are for cluster
20. This can be explained by the dominant wave direction of the clusters, which means that cluster
12 has longer fetches for wave growth than cluster 20. The differences in return levels between the
non-stationary and stationary models are evident in Cluster 12. The differences are the result of non-
stationarity inHm0 that was discovered in cluster 12. The best fit line of the non-stationary model results
in Hm0 return levels that are approximately 0.7 m higher than for the stationary model in 2020 (10.31
and 9.65 meters respectively). This difference increases to 1.2 meter in 2050 (10.85 and 9.65 meters
for the non-stationary and stationary model, respectively). These are significant differences that must
be accounted for in the design and risk assessment of offshore structures. Not accounting for this non-
stationary can thus result in significant underestimations of the design conditions, potentially resulting
in unsafe structures.

Looking at the confidence bounds of the non-stationary and stationary model, it can be seen that
the non-stationary model’s lower confidence bound exceeds the stationary model’s upper confidence

Table 6.1: Design values for Hm0 derived from the effective return level plots for 50 and 1000-year return periods (see Figure
6.1)

Cluster 12 - 50 yr Cluster 12 - 1000 yr

P05 P50 P95 P05 P50 P95

Conventional 9.33 9.65 10.15 10.05 10.62 11.71
Non-stationary (2020) 9.98 10.31 10.76 10.88 11.45 12.4
Non-stationary (2050) 10.53 10.85 11.3 11.42 11.99 12.94
Updated Stationary 9.98 10.31 10.76 10.88 11.45 12.4
Approx. Stationary 9.34 9.66 10.11 10.23 10.8 11.75

Cluster 20 - 50 yr Cluster 20 - 1000 yr

P05 P50 P95 P05 P50 P95

Conventional 8.69 9.14 9.79 9.61 10.62 12.45
Non-stationary (2020) 8.62 9.01 9.58 9.39 10.13 11.36
Non-stationary (2050) 8.54 8.95 9.49 9.31 10.05 11.28
Updated Stationary 8.62 9.01 9.58 9.39 10.13 11.36
Approx. Stationary 8.71 9.11 9.67 9.49 10.23 11.46
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Figure 6.1: Effective return level plots for 50 and 1000-year return levels in Clusters 12 and 20. Solid lines represent the
effective return levels corresponding to the medians of the posterior distributions. Dashed lines and shaded area represent the

90% confidence interval constructed using the 5th and 95th percentiles of the posterior distributions.
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bound. This indicates that Hm0 return levels potentially differ significantly between the stationary and
non-stationary models in the presence of significant temporal trends.

Cluster 20 was not characterized by statistically significant temporal trends. Despite that, minor differ-
ences in the effective return levels between non-stationary and conventional stationary models can be
observed in 2020 (9.01 and 9.14 meters) and 2050 (8.95 and 9.01 meters) respectively. Because the
values for b in cluster 20 are slightly negative (see Figure 6.1), the ERL-plots for the non-stationary
yield slightly lower values than for the stationary model. In this scenario, the non-stationary model to
infer design values provides no real benefits compared to stationary modelling and potentially even
leads to unsafe designs. Moreover, the confidence bounds of both models share significant overlap, in-
dicating that design values forHm0 used to design hydraulic infrastructure are not so different between
stationary and non-stationary models in clusters where no temporal trends are present.

Looking at the plots showing the 1000-year return levels in clusters 12 and 20, theHm0 ERL are higher
than for 50-year return periods. For cluster 12, selecting a stationary model yields best estimate effec-
tive return levels in the order of 10.62 meters, whilst the non-stationary model yields 11.45 meters in
2020 and 11.99 meters in 2050. For cluster 20, the Hm0 RL for the stationary models are 10.62 meters
and for the non-stationary model are 10.13 meters in 2020, and 10.05 meters in 2050. Furthermore, the
confidence interval (CI) for the 1000-year return levels are wider than for 50-year return levels. For the
50-year return levels, the width of the CI in both clusters is in the order of 0.8-0.9 meters. For 1000-year
return levels, the CIs vary between 1.6 and 2.8 meters for the different clusters and considered mod-
els. This broader CI is caused by the fact that limited data is available to provide accurate projections
surrounding return periods that exceed the length of the observation period. The broader CI result in
more uncertainty regarding the choice of design values for Hm0 when designing infrastructure.

The broader CIs for the 1000-year return levels in cluster 12 mean that for a large part of the period
between 2020 and 2050, the CIs of the non-stationary and stationary model overlap. This raises ques-
tions regarding the benefit of non-stationary models over stationary models. However, towards the
end of the lifetime in 2050, the CI of the non-stationary model almost completely exceeds the confi-
dence interval of the stationary model, resulting in significantly different design conditions between the
two models. This supports the statement that, in the case of a statistically significant temporal trend,
non-stationary models may be preferable to stationary models for determining extreme wave design
conditions.

For cluster 20, the CI of the stationary model is particularly wide, with the upper confidence bound
far exceeding the best-fit line. This is caused by the fact that ξ of the upper confidence bound of
the stationary model is equal to 0.09. This means that the upper confidence bound is unbounded.
Furthermore, the confidence bounds for both the stationary model and the non-stationary model show
overlap for the entire lifetime of the structure. This further supports the statement that non-stationary
modelling provides no benefit over conventional stationary modelling in clusters where no statistically
significant trend is present.

6.1.3. Approximated stationarity
In this research, non-stationary models are obtained by adding b and b0 to µ∗. This makes the extreme
value model describing Hm0 at cluster level time-dependent. An attempt is made to approximate sta-
tionary conditions by considering the GEV parameters corresponding to the median of the observation
period (i.e. 1985, t = 35). Figure 6.1 and Table 6.1 show that for the 50-year return periods, the Hm0

effective return levels for the stationary model and the approximated stationary (AST) model are very
close, with differences in Hm0 in the order of 0.01 meter. For the 1000-year effective return levels, the
differences between the twomodels are bigger, with the ASTmodel underestimatingHm0 by 0.4 meters
for cluster 20. Using the AST model in this case may lead to unsafe designs of hydraulic infrastructure.
Conclusions about the applied methodology to approximate stationary conditions is debatable due to
the limited number of clusters that were tested.
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Figure 6.2: Illustration showing the uncertainty surrounding the applicability of non-stationary extreme value models at cluster
level to derive design values of Hm0 in light of climate change.

6.2. NEVA in light of climate change
In chapter 5, representative non-stationary extreme value models describing Hm0 on the cluster level
were derived. These models show promising performance when the clusters are characterized by a
uni-directional temporal trend. This Section explores the applicability of non-stationary models in light
of a changing climate. Section 6.2.1 describes the considerations surrounding the application of non-
stationary models in light of climate change. Section 6.2.3 presents a flowchart for decision making
surrounding non-stationary models at cluster level in the design and risk assessment of hydraulic infras-
tructure. Finally, Section 6.2.4 describes the potential benefit of using an alternative method to derive
Hm0 design conditions in the form of updated stationary models.

6.2.1. Considerations
In Section 5.2, it was explained that heterogeneous intra-cluster temporal trends (either in slope or
direction) result in ambiguity surrounding the use of non-stationary extreme value models at cluster
level. The temporal trend information (b and b0) is applied to account for non-stationarity, thereby
adding a non-stationary component to the GEV distributions. However, with heterogeneous values
for b, the representative models potentially fails to capture the most extreme return levels at the grid-
point level. It is advised not to apply non-stationary GEV models in clusters that are characterized by
heterogeneous temporal trends. Conventional stationary GEV models at grid-point level are advised
instead. See Section 5.2.3 for more information. However, even when a cluster is fully characterized
by a uni-directional trend, the use of non-stationary models at cluster level in light of a changing climate
remains debatable. Uncertainty surrounding climate change as well as potential physical limitations
increase the uncertainty surrounding the applicability of non-stationary models in the design and risk
assessment of hydraulic infrastructure.

6.2.1.1. Uncertainty Surrounding Temporal Trends
Accounting for upward trends in extremeHm0 is potentially very important in the design and risk assess-
ment of hydraulic infrastructure. The strength requirements for the structure of interest will increase
over time. Not accounting for an increase in extreme Hm0 potentially leads to unsafe design. Section
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6.1 shows that using the non-stationary representative models to derive design values accounting for
upward trends leads to considerably higher Hm0 design values than using stationary modelling.

Furthermore, Section 5.2.1 also showed that there are several locations in the North Sea that are char-
acterized by a downward trend for extreme Hm0. The question is whether to account for downward
trends when deriving design conditions for Hm0. Negative values for b result in GEV models that yield
decreasing Hm0 return levels over time. Accounting for a decreasing intensity of Hm0 may potentially
be beneficial in terms of cost-saving because the strength requirements of hydraulic structures will de-
crease over time. However, caution is required when using non-stationary extreme value models in
regions with downward trends for Hm0.

The applicability of non-stationary extreme value modelling over conventional stationary modelling in
light of climate change is debatable. Matalas (1997) explains that observed trends in the data might
only be a small horizon of larger oscillations. As is discovered in Section 4.2.2, the detected tempo-
ral trends depend on the considered temporal horizon. The period between 1990 and 2020 primar-
ily showed downward trends for Hm0 in the research domain, whilst long term analyses (1950-2020)
showed a combination of upward trends in the East and downward trends in the West of the North
Sea. This potentially means that extreme Hm0 in the North Sea shows oscillatory behavior instead of
a monotonic trend. It is therefore possible that the detected decrease is followed by an increase in
Hm0 intensity. If this oscillatory signal is not properly accounted for, accounting for a downward trend
may lead to severe underestimations ofHm0 design conditions, leading to unsafe designs. Accounting
for the downward trend in design practices may be possible if the physical driver behind Hm0 is prop-
erly understood. This includes the non-stationary behavior of the extreme wind climate in the North
Sea. If the underlying process causing the non-stationarity of Hm0 is not well-understood, no clear
projections can be made regarding the future non-stationarity ofHm0. In short, applying non-stationary
extreme value models in regions characterized by a downward trend may potentially be beneficial if the
physical process behind the downward trend is well-understood and it is expected that the decrease
in extreme Hm0 continues in the future. If the physical process in not well-understood or when a sub-
sequent increase in Hm0 is expected, accounting for downward trends in the extreme value model of
the extreme wave climate is not advised, and conventional, stationary GEVmodels are advised instead.

Even when the cluster is characterized by an upward trend only, the success of the GEV models on the
cluster-level in not guaranteed. Similar to what is explained above, detected upward trends may also
be part of a larger cycle. Figure 6.2 shows potential effects of varying non-stationarity and that how
decreasing temporal trendsmay follow increasing trends beyond the observation period. Accounting for
upward trends of Hm0 in the design and risk assessment of hydraulic infrastructure can therefore lead
to over-estimations of the design conditions of Hm0 if the non-stationarity behind the physical process
driving the wave climate is not understood properly. Overestimations ofHm0 have the consequence that
the design and risk assessment of hydraulic infrastructure is potentially overly conservative, resulting
in high costs. In worst case scenarios, it potentially means that engineering projects are no longer
economically feasible. It is therefore advisable to, even if the region in the North Sea is characterized by
an increase in Hm0 intensity, to closely study the underlying causes of the non-stationarity for example
by studying future projections, before making conclusion whether to use non-stationary extreme value
models or not.

6.2.2. Future Projections of Wave Climate
Another limitation that hinders decision making surrounding design strategies is that this research
does not consider future projections. Future projections provides a better understanding of the non-
stationarity of the extreme wave climate. Thereby enabling better decision making surrounding the
application of non-stationarity extreme value models in the design and risk assessment of hydraulic
infrastructure. The implications of missing future projections on the applicability of non-stationary ex-
treme value models to derive extreme wave conditions are further explained in the Discussion.

6.2.2.1. Physical Limitations
Another factor to account for when determining design conditions for Hm0 is potential depth limitation.
Even if the intensity of the extreme wind speeds increases in the future, the rather limited depth in
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various regions of the North Sea may cause Hm0 to reach a physical limit. Figure 6.2 shows that depth
limitations cause design values for Hm0 to become constant in time. Especially in the design and
risk assessment of coastal infrastructure, the limited water depth mean that potentially Hm0 reaches a
physical limit well before the extreme waves reach the coastal structure. Not accounting for physical
limitations in coastal waters could potentially result in overestimation of the Hm0 design conditions. In
offshore locations, higher water depths mean that Hm0 can obtain higher values as a result of poten-
tial higher extreme winds in the future. In that case, accounting for physical limitations when deriving
design values for Hm0 is not as relevant as in shallower water depths.

6.2.3. Model Selection Flowchart
The choice for potential cluster specific N-GEV models can be summarized in the flowchart listed in
Figure 6.3. In short, it is suggested to first perform a temporal trend analysis in the cluster following
the approach mentioned in section 5.2.1. This gives an understanding of the presence of significant
trends and corresponding magnitude and direction (b and b0). If the cluster is characterized by multiple
trends varying in direction and/or magnitude, it is advisable to use traditional extreme value models.
Furthermore, if the trend can be characterized by downward trends and the underlying cause of the
downward trend and no future projections can be made regarding the design variable Hm0, traditional
extreme value models are preferred. Only when all intra-cluster grid points are characterized by similar
trends in both direction and magnitude, cluster representative extreme value models might be preferred
over conventional GEV-models. Even then, the applicability of non-stationary extreme value models is
debatable. The non-stationarity of the design variable must be properly understood. In case future pro-
jections of the design variable are not available, it may be advisable to use updated stationary models
describing Hm0 on the cluster level instead.

The extreme value model on the cluster level must be able to give a representative description of the
extreme wave climate within the cluster. For this, the representative (non-stationary) extreme value
model must satisfy the following requirements:

• Confidence interval must capture the most extreme Hm0 conditions within the cluster. It is ex-
pected that practitioners using extreme value models on a cluster level for the design and risk as-
sessment of hydraulic infrastructure will base their choice for a design variable on the confidence
interval of the representative extreme value model. Capturing most extreme Hm0 conditions pre-
vents underestimation of the design conditions;

• The representative extreme value model as must not severely overestimate the extreme Hm0

conditions. Choosing a design value for Hm0 based on a confidence interval that severely over-
estimates the intra-cluster wave climate potentially yields overly conservative designs that are not
economically feasible.

6.2.4. Updated Stationary Models
In short, whether or not to use non-stationary models in light of climate change is very case dependent
and a thorough understanding of the non-stationary of the design parameter as well as the underlying
causes of the non-stationarity is required. With a lack of future projections, updated stationary models
potentially provide a useful alternative (Luke et al., 2017). In updated stationary (UST) models, the
non-stationary GEV parameters at the end of the observation period are used to project Hm0 return
levels under the assumption that Hm0 can be described by a stationary process in the future. This is
elaborated further in Section 3.5.4.1.

Luke et al. (2017) explored USTmodels whilst studying the applicability of non-stationary extreme value
analysis (NEVA) for deriving extreme river discharges (See Section 2.2 for more information). Luke et al.
(2017) recommended using UST models for the risk assessments in watersheds that have undergone
physical changes (e.g. urbanization). Besides complex bottom dynamics, there are very few physical
changes that affect the extreme wave climate in the North Sea. Nevertheless, UST models potentially
provide a useful alternative in case the future temporal evolution of the design variable in light of climate
change is uncertain.
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Figure 6.3: Flowchart showing whether applying a cluster characteristic (non-stationary) extreme value model is a feasible
solution or not

UST models account for the detected non-stationarity in the sense that it applies the GEV parameters
at the end of the observation period to project Hm0 return levels for the future. However, because UST
models do not extrapolate beyond the identified non-stationarity detected during the observation period,
future over- and/or underestimations are unlikely if the detected non-stationarity does not continue.
Figure 6.1 and Table 6.1 show the 50- and 1000-year return levels of Hm0 in cluster 12 and 20 for
the UST approach. It can be seen that for cluster 12, the UST models provides more conservative
estimates than the stationary model. However, given the fact that a continued increase for Hm0 return
levels is uncertain, severe over-estimations are also prevented. When using UST models, it is advised
to regularly check and update the model to see if Hm0 return levels show significant changes in the
future and update the design and risk assessment of the structure in question.



7
Discussion and Recommendations

The goal of this research can be summed up by the following points: (1) Study the temporal variations
in extreme significant wave height in the North Sea domain, (2) Investigate how hierarchical clustering
analysis can be employed to identify regions that exhibit similar extreme wave characteristics, (3) How
the obtained clusters and temporal variability can be employed to derive extreme value models de-
scribing the extreme Hm0 at cluster level and (4) assess the applicability of the derived non-stationary
models at cluster level to derive design values for design and risk assessment of hydraulic infrastructure.
In the discussion, we will evaluate the choices, assumptions and limitations related to this research and
their effects on the results. Furthermore, suggestions how this research can be improved in the future
will be provided.

7.1. Relevance to Engineering
This section reflects on the relevance of this research with respect to engineering purposes. This
compares the obtained results with the motivation of this research. Mainly regarding the performed
clustering analysis and extreme value analysis light of design and risk assessment of hydraulic infras-
tructure. Clustering analysis and subsequent extreme value analysis of the wave climate at cluster
level provides several advantages. First of all, clustering analysis can help to reduce the data volume
needed to study the extreme wave climate in larger domains, such as the North Sea. In this research
we have established a cluster map consisting of 63 clusters, meaning that only 63 time-series represen-
tative of the extreme wave characteristics on the cluster level are required instead of the∼ 1200 original
grid points to understand the extreme wave climate throughout the North Sea basin. This corresponds
to a data volume reduction of 95% compared to an analysis were all grid points are studied individually.

Secondly, clustering analysis provides useful information regarding regions with similar extreme wave
regimes throughout the North Sea domain. This can provide useful information regarding hydraulic
boundary conditions in early design stages when more accurate data is not readily available. Further-
more, knowledge about extreme wave characteristics is useful when performing analyses on a large
spatial scale. Information about wave conditions can potentially help to improve numerical wave mod-
els thereby providing more accurate results (Goharnejad et al., 2022). Improved numerical models
may contribute to a better understanding of the North Sea’s complex bottom dynamics. This in turn is
relevant for the stability of bottom foundations of offshore structures including offshore wind turbines
and boring platforms.

Non-stationary components were added to the extreme value models at cluster level to account for
temporal changes in Hm0 intensity. If the observed rising trend in extreme Hm0 for cluster 12 contin-
ues, differences in design values for extremeHm0 produced by extreme value modeling at cluster level
and stationary modeling could be in the order of 1 meter by 2050. The design values for Hm0 are not
particularly different in cluster 20, where no statistically significant trend for Hm0 was identified. One of
the questions this report tries to answer is whether NEVA can be applied for the design and risk assess-
ment of hydraulic infrastructure in light of climate change? Despite the limitations surrounding the use
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of non-stationary extreme value analysis (NEVA) models, it is expected that engineers are more likely
to apply NEVA when an upward trend for extreme Hm0 is detected. NEVA will likely not be applied
when no temporal trend or a downward trend in extreme Hm0 is present. In both cases, risk aversion
towards extremeHm0 conditions is the decisive factor. In case of upward trends, a potential increase in
extreme Hm0 design conditions must be accounted for. In the case of negative trends, the uncertainty
surrounding temporal trends means it’s unclear if the downward trend for extreme Hm0 will continue.

Admittedly, the derived extreme value models at cluster level are likely not applicable in advanced
stages of the design of infrastructure. Detailed information about the hydraulic boundary conditions
at the location of interest is essential for the selection of design strategies. Furthermore, the hydraulic
boundary conditions influence the economic and societal factors that must be considered. However, the
obtained clusters and corresponding extreme value information can help to construct more accurate
extreme value models at the site of interest. The intra-cluster extreme value information at the grid
points can be used to construct informative priors that are subsequently used to infer the extreme
value distribution describing design conditions at the location of interest.

7.2. Hierarchical Clustering Analysis
The first step in this research involved the hierarchical clustering of the research domain. The resulting
clusters share similar extremewave characteristics including significant wave height (Hm0), peak period
(Tp) and dominant directions (θ1 and θ2). The goal of the clustering output is to improve extreme value
modelling. However, the applied hierarchical clustering (HAC) analysis in this research raises concerns
because of the generated output. A critical assessment of the HAC analysis is required to judge its
applicability. This includes the wave parameters selected for clustering and the use of Hierarchical
Agglomerative Clustering algorithms.

7.2.1. Clustering Parameters
For the hierarchical clustering (HAC) analysis in this research, the following wave parameters were
used: significant wave height (Hm0, peak period (Tp) and dominant directions (θ1 and θ2). These
wave parameters were selected because they are typically used in the design and risk assessment of
hydraulic infrastructure. Furthermore, promising results were obtained by Goharnejad et al. (2022) who
used the same wave parameters in their clustering analysis of the North Atlantic Ocean. This section
evaluates the practicability of the selected parameters in the perspective of this research and suggests
other potential wave parameters to be used as input in the HAC algorithm.

Evaluation of used parameters
Information about the dominant wave directions helps to identify homogeneous and independent sub-
sets of data, thereby meeting the requirements for extreme value analysis (Van Den Bos & Verhagen,
2018). Also, multiple dominant wave directions can be identified in several regions of the North Sea,
which is important for the design and risk assessment of hydraulic infrastructure. Based on this, the
dominant wave direction is a critical parameter that must always be included in the HAC analysis.

The significant wave height (Hm0) is included in numerous failure modes of hydraulic infrastructure.
Therefore, it is critical to include information about Hm0 in the clustering analysis. In this research,
the extreme wave threshold (99.5th percentile of Hm0) was used to represent Hm0 at each grid point.
However, using Hm0,P99.5 causes the HAC algorithm to miss information about the most extreme val-
ues of Hm0 above the threshold. Moreover, as was discovered in Chapter 4, the North Sea basin is
characterized by various temporal trends forHm0. These trends were not accounted for whilst deriving
Hm0,P99.5. As a result, multiple clusters are characterized by different or even opposite trends for the
Hm0, most notably in cluster 59 (see Section 5.2.1). These varying intra-cluster trends form a problem
when deriving representative extreme value models on the cluster level (see Section 5.2).

The peak wave period (TP ) provides information about the maximum wave energy corresponding to
the extreme events. However, TP was not subjected to further analysis (i.e. temporal trend analysis
and non-stationary extreme value analysis, see Section 1.2), raising questions about the inclusion of
TP in this HAC analysis in light of this research. However, only including Hm0 is not sufficient to have
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a complete understanding of the extreme wave climate, and information about TP is required for the
design and risk assessment of hydraulic infrastructure (De Leo et al., 2021). Typically, design values
for TP are calculated by means of regression between Hm0 and TP (Antonini et al., 2019) or using
bivariate models using Hm0 and Tp De Leo et al. (2021). Having comprehensive knowledge about TP

in the clusters increases accuracy whilst deriving the design values for TP on a cluster level. In future
work, it would be interesting to study the temporal behavior of TP as well as the inclusion of TP in
extreme value models on the cluster level.

Exclusion of Geo-Location Parameters
One of the main problems with the clustering output is that different regions are assigned to the same
cluster, even when there is no evidence that the extreme wave characteristics are indeed completely
similar or that these locations are impacted by the same storms. This is because in HAC analysis, the
generated output is dependent of the input values. Furthermore each wave parameter is represented
by a single value. This means that if the input values of Hm0, Tp, θ1 and θ2 are similar in different
locations, they are still assigned to the same cluster. Goharnejad et al. (2022) countered this problem
by applying the geo-locations of the grid points as input under the assumption that extreme wave
events in different geographical locations are the result of different storms. Similar approaches were
attempted in this research. However, it was found that even after standardizing, longitude and latitude
were too sensitive for the weights assigned to them. Finding the exact weights that yield the optimal
clustering solution lies outside the scope of this research. Therefore, clusters with grid points in different
geographical locations were split afterwards. Accounting for the geographical locations is a good way
to divide clusters based on the storms the extreme waves originate from. However, the use of geo-
locations in HAC analysis should be carefully considered.

Suggestions for Other Parameters
To recap, the significant wave height, peak period and dominant wave directions were selected as clus-
tering parameters because of their use in the design and risk assessment of hydraulic infrastructure.
However, other parameters representing extreme wave characteristics could be suggested for HAC
analysis. One of the main observed shortcomings is that Hm0,P99.5 does not capture the complete
range of extreme Hm0 values in a region. Potentially, the extreme value distribution parameters can
be used in clustering. The location parameter (µ) of the GEV distribution provides information about
the relative magnitude of extreme waves between grid points. The scale (σ) and shape (ξ) parameters
can provide additional information about the range of extreme Hm0 at the grid point. Furthermore, ξ
provides information about the tail behavior of the extreme value distributions. From Figure 4.9, it can
be seen that the GEV distributions are characterized by an upper bound (ξGEV < 0) in the majority
of the North Sea domain. Exceptions, where ξGEV > 0, can only be found in the Channel and to the
south of the English coast. As for the GP distribution, all values for ξGP are below zero, meaning that
there is an upper bound for the GP distribution in all areas of the North Sea basin.

One of the main shortcomings of the performed HAC analysis is that non-stationarity of extremeHm0 is
not accounted for. This causes clusters to have different temporal trends forHm0, resulting in a loss of
performance of extreme value modelling at cluster level. As a result, using the representative models to
derive reliable design values for Hm0 is difficult. In future works, it is recommended to account for non-
stationarity in clustering by applying temporal trend information. Hereby finding clusters with similar
trends. Potential parameters describing non-stationarity can be obtained through the Mann-Kendall
test or Theil-Sen (b) information. Early findings in this study revealed that binary data is difficult to
cluster, making clustering based on the MK test result problematic. However, the P-value (pMK ) could
be suggested instead. De Leo et al. (2020) showed that there is a strong anti-correlation between pMK

and b. However, this still leads to the challenges of choosing an appropriate step size between different
p-values (See Section 7.2.2).

7.2.2. Choice of Clustering Method
This thesis applied Hierarchical Agglomerative Clustering (HAC) as the elected clustering method. This
was mainly because HAC is straightforward and the dendrogram is an insightful tool to understand the
cluster boundaries. However, whether HAC is the optimal clustering strategy in light of this research is
debatable.
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Limited Information
In HAC analysis, all grid points are characterized by a set of wave parameters that must be represented
by a single, characteristic value. This limits the amount of information about the parameter that is
presented to the HAC algorithm. Moreover, the number of parameters included in HAC analysis cannot
be too large as it will lead to reduction of the clustering quality, further limiting the information that
can be presented to the HAC algorithm. The limitation of information causes grid points in different
geographical locations to be assigned to the same cluster, even when there is enough reason to believe
they do not belong to the same cluster. This is because in HAC analysis, the generated output is always
a representation of the input variables. If the input values of Hm0, Tp, θ1 and θ2 are similar in different
locations, they are assigned to the same cluster. This requires additional assessment of the clustering
output including splitting and merging of clusters based on the statistical properties of the input wave
parameters at the grid points to arrive at the best clustering solution.

Small Dissimilarities between Grid Points
Another limitation that HAC clustering poses is that the HAC algorithm calculates the pairwise dissimi-
larities between grid points in order to determine cluster formation. However, Hm0,P99.5 and Tp, show
little spatial variation between neighboring grid points, which results in the chaining effect (see Section
3.3.1.2 for more information). To overcome the chaining effect, the values for Hm0 and Tp are rounded
before clustering, thereby increasing the dissimilarities. However, rounding the values presents addi-
tional challenges because the right rounding value must be chosen, which is very subjective. In this
research, we decided to round the values for Hm0 and Tp down to the nearest integer. This causes the
intra-cluster range for Hm0 and Tp to be in the order of 1 meter and 1 second respectively, resulting
in large uncertainties. This large uncertainty poses problem whilst deriving extreme value models at
cluster level because the representative extreme value model for Hm0 potentially fails to capture infor-
mation about the most extreme intra-cluster return levels for Hm0.

A straightforward solution to overcome this problem is to round the values to smaller step sizes, thereby
limiting the intra-cluster variation. This can be especially beneficial to identify more clusters in coastal
regions, where extreme Hm0 will reduce rapidly due to bottom effects. However, because there is
always a trade-off between the number of clusters and the boundaries that you want the clusters to
represent, decreasing the step-size will require an increased number of clusters. Otherwise not all
boundaries forHm0 and/or TP can adequately be represented. Potentially, one can remove Tp form the
HAC-input whilst decreasing the rounding steps of Hm0, therefore keeping the total number of clusters
the same, but that comes at the loss of information about Tp, increasing the uncertainty surrounding Tp

if one were to potentially derive extreme design values for Tp on the cluster level.

Number of clusters
Another problem with the HAC analysis is the large number of clusters (K) required to adequately rep-
resent the boundaries between the input values of the wave parameters. If K is too high, the clustering
analysis does not meet one of the goals of clustering analysis, which is the reduction of data volume
required to study the extreme wave climate in the North Sea domain. A maximum possible number
of clusters (Kmax = 50) was imposed to limit the number of clusters evaluated by the HAC-algorithm.
To identify K that yields the best clustering results, the diagnostic tests Silhouette Coefficient (SC),
Calinski-Harabasz score (CH) and the Davies-Bouldin ratio (DB) were evaluated. A closer inspec-
tion of Figure 5.3 shows that according to SC, CH and DB, the ideal number of clusters is equal to
Kmax = 50. Potentially, a higher value for Kmax is required to find the optimal number of clusters.
Choosing K = 50 resulted in numerous grid points being assigned to the same cluster, despite the fact
that the HAC input values for these grid-points are different. Figure 5.4 shows that several clusters
near the Dutch Coast and English Channel exist where the HAC algorithm did not adequately find the
boundaries between input values for Hm0,99.5 and TP . This is a reason to suggest that the value for
Kmax should be increased. Furthermore, after the clustering output was further developed, the North
Sea was separated into 63 clusters, exceeding Kmax = 50. This is further reason to suggest that the
considered value for Kmax is too low.

Figure 7.1 illustrates the effects of increasing K on the clustering output. The same HAC input values
are used, i.e. Hm0,99.5, TP , θ1 and θ2 and Ward linkage is used as a linkage mechanism. The value for
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Figure 7.1: Effects of increasing K on clustering results. Left shows plots for SC, CH and DB for increased values of K.
Yellow circle indicates selected value of ∥ to generate clustering output. Cyan indicates optimal number of clusters as indicated

by SC, CH and DB. Right shows clustering output for increased value of K.

Kmax is increased to 200. Figure 7.1 shows that Kmax must be increased to determine K that yields
the optimal clustering output. For SC and DB, the ideal values for K are 91 and 115 respectively. The
optimal number of clusters according to CH remains equal to Kmax. This can be attributed to the sim-
ilar nature of Ward linkage and CH. Ward linkage aims to derive clusters clusters with the minimum
Within Cluster Sum of Squares (WCSS, see Section 3.3.3.4). Similarly, CH assesses the quality of the
clustering output by evaluating the intra-cluster and inter-cluster variances (see Section 3.3.4), thereby
always resulting in a preference in higher values for K for Ward linkage.

For simplicity reasons, the clustering output in Figure 7.1 is based on SC only, meaning that K is equal
to 91. A careful analysis of Figure 7.1 shows that raising K primarily results in more cluster boundaries
in coastal regions, e.g. near the British coast and Norwegian Coast. However, the new cluster bound-
aries are primarily based on the input values for θ1 and θ2 because of the small dissimilarities that exist
between the values. Further increasing K does not help to identify clusters based on geographical lo-
cations because they are not included as input parameters. Also, cluster boundaries based onHm0,99.5

Tp are not identified because of the coarse pre-processing of these values and no more “categories”
can be identified. Applying K = 115 (optimal K according to DB), cluster boundaries based on θ1 are
θ2 is further enhanced. In engineering practice, the dominant wave direction are typically defined as a
range when performing extreme value analysis. Therefore, clusters containing very precise information
about the dominant wave directions are not required. Based on this, it was decided that Kmax = 50 is
appropriate for this research.

ERA5 Resolution
It could be argued that the spatial resolution of the ERA5 Reanalysis dataset too coarse for the HAC
algorithm to be properly functional. The spatial resolution is 0.25 degrees (approximately 30 km) in
longitude and latitude resulting in grid points that must represent a surface area of 900 km2. Over a
surface area that big, waves can undergo substantial development meaning that extreme waves will
show different characteristics between neighboring grid cells. As a result, the obtained clusters have
relatively small number of grid points, especially in coastal areas. The applicability of clustering analysis
increases for datasets with higher spatial resolutions because of the relative reduction in data volume
(i.e. one time-series per cluster) increases compared to small resolution datasets.
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Suggestions for Other Clustering Strategies
In short, whether HAC is the optimal clustering method for storm wave climate is debatable. The limited
information that can be presented to the HAC algorithm and small spatial dissimilarities form challenges
in the clustering analysis. Furthermore, the optimal number of clusters yielded by the algorithm exceeds
the number that is deemed reasonable given the objective within this research. Given the benefits that
a clustering analysis provides, ideally, a different clustering method is studied to determine whether
better results can be obtained. The selected clustering approach must enable more information about
the extreme wave characteristics to be included. A potential solution can be found in Goharnejad et al.
(2022) who applied self-organizing maps (SOM) to identify clusters with similar extreme wave climates
in the Northwest Atlantic ocean. In Goharnejad et al. (2022), the same wave parameters (Hm0, Tp and
θ) are used as input, but the full time-series are considered at each grid point. The wave parameters
are separated into a set of bins, and the percentage of occurrence of each value within each bin is sub-
sequently computed at each grid point. Geo-locations serve as additional input to ensure that extreme
wave climates in different locations are not clustered together. The SOM algorithm subsequently uses
the probabilities of occurrence to identify clusters that have similar percentages in terms of Hm0, Tp

and θ.

Another potential clustering solution is presented in Sartini et al. (2018). They performed a clustering
analysis using regional frequency analysis (RFA) to identify regions that share similar storm footprints.
Both the magnitude of the extreme wave events as well as the time of occurrence are used to calculate
the probability that different grid-points are affected the same extreme wave events. This probability
serves as dissimilarity information while clustering regions that are often impacted by the same storms.
This clustering method accounts for the spatial difference between the occurrence of extreme wave
events, however does not define cluster boundaries based on different magnitudes of extreme Hm0

and TP , resulting in high intra-cluster variances.

Whether a successful clustering analysis can be performed in light of the goals of this research (i.e.
non-stationary extreme value analysis at cluster level) must be investigated further in the future. For
the clustering output to be deemed applicable, the clustering approach must satisfy the following re-
quirements:

• The clustering output must be determined based on complete time-series for Hm0, TP and θ;
• The clustering analysis must be able to differentiate between extreme wave events originating
from different storm events. Either by accounting for the time of occurrence of extreme wave
events or by including geo-locations of the grid-points in the clustering analysis;

• The resulting clusters must account for non-stationarity in extreme wave climate.

7.3. Accounting for Non-Stationarity in HAC Analysis
This section presents a short exploration of an updated clustering strategy to account for non-stationarity
of the significant wave height (Hm0). Accounting for non-stationarity is expected improve the perfor-
mance of non-stationary extreme value modelling at cluster level. The first method involves detrending
of extremeHm0 data prior to clustering. The secondmethod involves adding temporal trend information
as an additional input parameter.

7.3.1. Detrending Before clustering
Detrending causes all Hm0 observations to be centered around zero. Therefore, using the extreme
wave threshold to represent Hm0 is no longer applicable. Detrending prior to clustering requires an-
other representation of Hm0. Representative values for Hm0 are determined based on detrending
Annual Maxima (AM) Hm0 observations in a similar manners as is done whilst performing extreme
value analysis at cluster level (see Section 7.2). The maximum observation after detrending (H∗

m0) is
selected to represent Hm0 at the grid points. Figure 7.2 shows the updated clustering output. Fur-
thermore, other input values are unchanged, the selected linkage mechanism is Ward and the value
for K is 50. Figure 7.2 shows that the cluster boundaries become poorly defined in several regions
throughout the research domain. Grid points are assigned to different clusters on an alternating basis.
This increases the ambiguity regarding the choice of a cluster for extreme value analysis and required
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Figure 7.2: Illustration showing the effects of detrending Hm0 prior to clustering. Left figures show the results of SC, CH and
DB. Right shows the resulting clustering map for K = 50. All other input variables are unchanged.

additional assessment of the clustering output to see if the clusters can be merged. Furthermore, the
region corresponding to cluster 59 is still assigned to the same cluster. This indicates that the problem
surrounding heterogeneous non-stationarity in clusters remains unsolved.

The clustering output in Figure 7.2 is a direct result of usingH∗
m0 as input. The values of the time-series

for H∗
m0 are all centered around zero as a result of detrending. This means that the clustering output

is based on the range in extreme Hm0 instead of the relative magnitude of Hm0 between different grid
points. Preferably, detrending of Hm0 is performed in such a way that the relative magnitude for Hm0

between grid points remains, so that the clustering analysis provides information about the magnitude
of extreme Hm0 in different regions of the research domain.

7.3.2. Trend Information as Input Parameter
Instead of detrending Hm0, it is potentially more useful is to add temporal trend information as an
additional input parameter. This can for example be done by adding the Theil Sen estimator (b), which
describes the temporal slope of Hm0 observations. Figure 7.3 shows the clustering results when b is
added as an additional input parameter. All other input parameters are unchanged. Ward is selected as
linkage mechanism and the value for K is equal to 50. Figure 7.3 shows that the region corresponding
to cluster 59 is now split up in two parts. The region in the West, where the downward trend was
observed, is now split from the rest of the cluster. However, this means that Eastern part of this region
includes a part with an upward trend and no trend respectively. Furthermore, adding b as clustering
input brings additional difficulties:

• More input parameters requires an increase of Kmax so that the clustering algorithm can ade-
quately identify cluster boundaries based on the input values.

• The values of b exhibit small dissimilarities between spatially neighbouring grid-points. This po-
tentially results in the chaining problem. Subjective pre-processing is required to prevent chaining
of grid points.

• The value of b depends on the length of the observation period, thereby bringing additional ambi-
guity to the clustering analysis.
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Figure 7.3: Illustration showing the effects including b as HAC input parameter on the clustering output. Left figures show the
results of SC, CH and DB. Right shows the resulting clustering map for K = 50. All other input variables are unchanged.

Based on the findings in this section, adding b as input parameter shows more promise than detrending
Hm0 data prior to clustering. However, a decision regarding the optimal strategy to account for non-
stationarity in extreme wave parameters whilst performing clustering analysis cannot be made and
additional research is required.

7.4. Temporal Trend Analysis
In Chapter 4, the temporal trends of the extreme wave climate were performed to study whether sig-
nificant trends exists in the extreme wave climate in the North Sea domain. Not only does this give
important information regarding potential effects of climate change but also where non-stationarity po-
tentially can be applied in the extreme value models of the extreme wave climate. Since the extreme
waves in the North Sea can be characterized by wind waves, temporal trend analysis of the extreme
wind speeds has been performed to study whether they can explain the observed trends in extreme
Hm0. This section covers the limitations and assumptions made for the temporal trend analysis and
the implications they have on the results. Also, suggestions will be provided on how the temporal trend
analysis can be improved in further research.

7.4.1. Limitations and Suggested Improvements
Fixed Thresholds in POT Analysis
The temporal trend analysis for extreme Hm0 events selected using POT analysis is further influenced
by the application of the threshold (u). This research considers fixed values for u. The Mann Kendall
(MK) and Theil-Sen (TS) tests applied to study the non-stationarity only consider the magnitude of ex-
tremeHm0 exceeding u. This means that extremeHm0 events included in the non-stationarity analysis
have a minimum value for Hm0 equal to u, making it more difficult to detect and quantify a statistically
significant trend, especially for longer time scales. The presence of long term trends in extreme Hm0 is
potentially obscured ifHm0 events no longer exceed the threshold. This is illustrated in Figure 7.4. This
illustration shows a cyclical signal in the data. However, the MK and TS tests are only performed over
the data selected during the POT analysis, meaning that no statistically significant trend is selected in
the data.
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Figure 7.4: Illustration showing the limitations posed by Peak over Threshold for temporal trend analysis. Filled circles indicate
extreme events considered in the Analysis, empty circles represent ”extreme events” not considered in the trend analysis

Full directional spectrum
A last limitation of the temporal trend analysis as performed in this research, is that the full directional
wave spectrum was considered for the temporal trend analysis in the complete North Sea basin. This
means that the selected extreme events do not necessarily have a homogeneous origin, especially
at grid points that are characterized by multiple dominant wave directions. A short study for cluster 8
(Dutch coast) showed that accounting for the dominant wave direction results in the detection of tem-
poral trends in regions were no trends were detected when considering the full directional spectrum.
Furthermore, opposing trends were observed in cluster 8 for the different dominant wave directions.
This shows that accounting for the dominant wave directions is essential to get a comprehensive un-
derstanding of the temporal trends in extreme wave climate at the cluster level.

The assumptions and limitations described above have the following effects on the temporal trend
analysis. The regions where significant temporal trends were detected using POT selection are smaller
than regions detected using AM selection, and also the magnitude of the trend (b) smaller than for the
trends detected using annual maxima. Apart from the magnitude of Hm0, also the annual number
of threshold exceedances (Nexc) and exceedance duration (Tdur) were analyzed in the temporal trend
analysis. The observed trends forNexc especially show results that are in accordance with the detected
trends for AM Hm0, meaning that Nexc is a good indicator to analyze trends in the intensity of the
extreme wave climate, even when the tests for Hm0 intensity show very small regions with a trend.

Suggested improvements
Improvements can be made regarding the temporal trend analysis improving the quality of this research
as a whole. The temporal trend analysis using POT analysis can potentially be improved by applying a
time-varying threshold so that values forHm0 are included in the temporal trend analysis that previously
were below the considered threshold. Another method to improve the temporal trend analysis for POT is
by considering the threshold value instead of the magnitude of the exceedances. If significant temporal
trends exists for extreme Hm0, similar trends can also be observed for the threshold value. Taking the
threshold value also means only one value per year needs to be considered, partially removing the
problem surrounding the seasonality (De Leo et al., 2020).

7.4.2. Effects of Selected Temporal Horizon
One of the major discoveries in chapter 4 is that the direction and magnitude of the detected trends vary
based on the considered temporal horizon. In this research, two temporal horizons are analyzed, i.e.
a short term horizon (1990-2020) and a long term horizon (1950-2020). The fact that observed trends
vary is reason to believe that the non-stationarity of extreme Hm0 in the North Sea is not monotonic
but can be described by oscillatory cycles. It is therefore very difficult to make future projections about
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the temporal development of extreme Hm0 to account for in design and risk assessment of hydraulic
infrastructure. To make better projection about the long-term behavior of the extreme wave climate, a
better understanding of the non-stationarity of the forcing mechanisms of wave generation (i.e. wind
storms) is required.

It was also discovered that the temporal trends in the extreme wind speeds show similar spatial and
temporal distributions as the trends for extreme Hm0. The cyclic behavior of the extreme Hm0 events
can potentially be explained by a cyclic behavior in the physical drivers of the storm climate. The
storm climate in Northwestern Europe is largely influenced by the North Atlantic Oscillation (NAO) and
Arctic Oscillation (AO) (see Chapter 2.1). A large scale study into the effects NAO and AO on wave
generation is not performed in this research. However, Freitas et al. (2022) show that there are large
correlations between the AO index and extreme wind and wave climate in the North Atlantic Ocean
near North Western Europe, especially in winter months. Freitas et al. (2022) state that this correlation
remains until the end of the 21st century and that AO+ events are becoming less frequent, but increase
in magnitude. This is reason to believe that the peak magnitudes of extreme wave events will increase
towards the end of the century. A more detailed study of the influence of the NAO and AO indices in the
North Sea domain specifically, potentially provides a better understanding about the non-stationarity of
the wave climate and help make better decisions regarding the modelling of extreme wave events in
the future.

One of the identified limitations that surrounding the applicability of NEVA in engineering practice is
that this research does not consider future projections of extreme wave conditions. Future projections
provide crucial information surrounding the future non-stationarity of the extreme wave climate. Stud-
ies such as Bonaduce et al. (2019) and Grabemann et al. (2015) combined general circulation models
(GCMs) and wave forcing models (Wave Watch III, WW-III) to project the future wave climate in the
North Sea and Baltic Sea for several emission scenarios (RCPs). Grabemann et al. (2015) discovered
that towards the end of the 21st century, a downward trend in extreme Hm0 in Western regions of the
North Sea and an upward trend in the Eastern regions can be projected. This matches observations
for the long-term temporal trend analysis in this report. However, Bonaduce et al. (2019) only projected
a downward trend towards the end of the 21st century for RCP 8.5 scenarios. These findings further
reinforce the uncertainty surrounding the future projections of the extreme wave climate making de-
cisions about extreme wave modelling difficult. A comprehensive study of the extreme wave climate
including future projection is therefore required to improve decision making regarding the applicability
non-stationary models for the design and risk assessment of hydraulic infrastructure.

7.5. Extreme Value Analysis
In Section 5.2, we evaluated how representative extreme value models can be derived that describe
extreme Hm0 values at cluster level. Five different techniques to obtain representative time-series for
extreme Hm0 were considered that were tested on three different clusters. To account for temporal
variations of extreme Hm0, a non-stationary component was added to the location parameter of the
extreme value model that considers the intra-cluster trend information in extreme Hm0. This section re-
flects on the assumptions and limitations and their effect on the extreme value modelling at cluster level.
Furthermore, the benefits of applying Bayesian Inference (BI) in light of this research over Maximum
Likelihood Estimation (MLE) are discussed.

Differences with Conventional Extreme Value Models
The first discussion point is the considered method of including non-stationarity in the GEV-model,
which differs from conventional modelling. In this research, the intra-cluster extreme Hm0 data is de-
trended before the GEV parameters (θ) are inferred using Bayesian Inference (θ = {µ∗, σ∗, ξ∗}). Sub-
sequently, non-stationarity is included in the GEV model by adding the TS parameters (b and b0) to µ∗.
The location parameter of the extreme value model becomes time-dependent and the GEV distribu-
tiono parameters subsequently read: θ = {µ∗ + b · t+ b0, σ

∗, ξ∗}).

This practice was elected because this research considers the extreme Hm0 values at cluster level.
The intra-cluster range of extreme Hm0 is quite large as a result of pre-processing of the input parame-
ters in the Hierarchical Clustering analysis (see Section 7.2.2). Three methods to derive representative
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time-series involved aggregation techniques to see how grid-point information can be pooled to obtain
representative time-series for extreme Hm0 at cluster level. For these aggregation methods to work
properly, the Hm0 data at the different grid points must be made homogeneous, which is achieved by
detrending the extreme Hm0 data.

Conventional practice would account for non-stationarity by inferring the two parameters representing
the location parameter (µ1 and µ0) directly using BI such that the GEV parameters are described by
θ = {µ1 · t+ µ0, σ, ξ}. As can be seen, the major difference between the method presented in this
research and the conventional method lies in the fact that different location (µ) parameters will be
inferred. µ is particularly of interest as it determines where the GEV distribution is located with respect
to Hm0. Different definitions of µ may therefore lead to different extreme Hm0 return levels. Studying
the differences between the values for µ is left outside the scope of this research.

Bayesian Inference and Maximum Likelihood Estimation
This research inferred the parameters of the non-stationary GEV distribution using Bayesian Inference
(BI). Apart from BI, Maximum Likelihood Estimation (MLE) is often employed to infer distribution param-
eters. BI brings advantages over MLE in light of this research. First of all, MLE only employs observed
data to infer distribution parameters. Using MLE in this research means that the GEV parameters (µ∗,
σ∗ and ξ∗) would be inferred based on the representative time-series for H∗

m0 only. The use of priors
(P (theta) in BI enables for the construction of informative priors using extreme value information from
grid points with similar extreme wave characteristics. This provides more accurate models describing
extreme Hm0 conditions (Antonini et al., 2019; Rickets, 2021).

Another advantage of BI over MLE lies in its ability to quantify uncertainty. In the Frequentist approach
of MLE, the GEV parameters are assigned a fixed value. Moreover, no probabilities can be assigned
to describe the uncertainty of the GEV parameters (Bickel & Lehmann, 2012). This is described in
more detail in Section 3.4.2.1. Although methods exist to describe the uncertainty for MLE models,
such as Fisher’s approach (Ly et al., 2017), uncertainty quantification of the GEV parameters using BI
in more straightforward. By examining the posterior distributions of the GEV parameters confidence
intervals can directly be constructed (Cheng et al., 2014). This becomes especially useful when the
number of model parameters becomes large. For example, when non-stationary location parameters
are inferred directly, or when scale and location parameters are also assumed to be non-stationary.
Bayesian Inference computes the posterior distribution for all considered model parameters. Subse-
quently, uncertainty bounds of estimated return levels can be obtained by taking the uncertainty in all
model parameters into account.

Accounting for Non-Stationarity
The major consideration in the computation of the representative GEV models is how to account for
potential non-stationarity. In this research, we applied the intra-cluster trend information about b and b0.
This becomes challenging when the intra-cluster values for b and b0 vary in magnitude and direction.
This is the direct result of not accounting for non-stationarity during the Hierarchical Clustering analysis.
The Hm0 data from the clustering centroid showed promising results for its ability to infer representa-
tive extreme value models for clusters 12 and 20, where similar intra-cluster values for b and b0 can be
observed. However, the same approach failed to capture the most extreme return levels for cluster 59.
(see Figure 5.20). In the temporal trend analysis, opposing trends in extreme Hm0 can be observed
between 1950 and 2020. As a result, the grid point that yielded the clustering centroid was located in a
zone with negative values for b, while the majority of the grid points showed either no trends or positive
values for b.

Another assumptions made in this part of the research is that the non-stationarity in the GEV model
can be described by a linear trend in time. The temporal trend analysis (Section 4.2.2) showed that the
direction and magnitude of the temporal trends differ depending on the considered temporal horizon.
This implies that temporal trends in extreme wave climate are most likely not linear, but show long term
oscillations. The oscillations in extreme Hm0 make the applicability of non-stationary extreme value
models for the design and risk assessment of hydraulic infrastructure debatable. Without a thorough
understanding of the non-stationarity of the extreme wave climate, including the physical drivers behind
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wave generations, the success of using non-stationary models to infer design values for Hm0 cannot
be guaranteed.

Approximated Stationary Distributions
The inferred non-stationary models have a location parameter that includes a temporal covariate (µ =
µ∗ + b0 + b · t). A methodology for approximating extreme value distributions under the assumption of
stationarity is explored. In approximated stationary modelling (AST), the GEV parameters correspond-
ing to the median of the observation period (i.e. 1985, t = 35) are used to approximate Hm0 return
levels under stationary conditions.

The key assumption behind AST modeling is that under stationary conditions, the median value of the
linear trend in effective return levels over the observation period can be employed to derive design
values. A short evaluation of the performance of AST modelling is presented in Section 6.1.3. It was
concluded that AST modelling provided similar results as stationary modelling for the 50-year return pe-
riod. However, for the 1000-year return period, the difference between theHm0 design values between
the two models was in the order of 0.5m. This is a significant difference forHm0 that must be accounted
for in design and risk assessment of hydraulic infrastructure. This means that the applicability of AST
modelling is debatable. Further potential limitations affecting the applicability of AST modelling include:

• Outliers in the set of extreme observations influence the derivation of the GEV parameters. This
turn influencing the effective return levels. A critical assessment of the derived GEV parameters
for stationary modelling and AST modelling is not performed in this research;

• Furthermore, the effective return values derived using AST modelling depend on b and b0. The
values for b and b0 in turn, depend on the considered temporal horizon of the observation period.
AST modelling therefore still depends on a non-stationary component.

The fact that these limitations are not properly understood, combined with limited testing with mixed re-
sults, makes ant conclusions regarding the applicability of AST modelling impossible. A critical analysis
of AST modelling is required to study its applicability. In the meantime, it is advised to use conventional
stationary models if design values under stationary conditions are desired.

Improving Clustering Analysis
What becomes apparent is that the limitations and choices related to the clustering analysis affect
the applicability of extreme value models to describe Hm0 at cluster level. The fact that clusters with
heterogeneous temporal trends are obtained, makes deriving applicable models particularly complex.
This further supports the suggestion that an improved clustering analysis is required to obtain more
meaningful results regarding the applicability of non-stationary models at cluster level. Preferably, the
improved clustering analysis analysis is able to include more detailed information about the extreme
wave characteristics (see section 7.2.2) as well as account for non-stationarity of the extreme wave
climate. This reduces the ambiguity surrounding the selection of the appropriate values for b and b0 to
be included in the non-stationary models.

Limited Number of Clusters
Extreme valuemodels derived using extremeHm0 observations from the clustering centroid showed the
most promising results for describing extremeHm0 at cluster level, in both stationary and non-stationary
cases. However, only three clusters were analyzed to study the applicability of this methodology. More-
over, cluster 59 already showed problems as a result of the complex non-stationarity at the grid points.
This severely limits any conclusions regarding the success of this methodology. An improved cluster-
ing analysis and testing this method on multiple clusters is required to verify whether the extreme Hm0

data from the clustering centroid is indeed the best method to derive non-stationary models describing
the extreme wave climate on a cluster level.

7.6. Further Research Limitations
Apart from the limitations discussed above, other limitations need to be discussed. This includes the
exclusion of other wave parameters, such as the peak period and the dominant wave direction. Fur-
thermore, the role of water level on the extreme wave climate must be addressed.
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7.6.1. Wave Periods and Dominant Wave Direction
This research only considers the significant wave height (Hm0) to study non-stationarity in the extreme
wave climate and to assess the applicability of non-stationary extreme value models at cluster level.
Other wave parameters used in the design and risk assessment of hydraulic infrastructure, including
mean wave period (T−m1,0) the peak wave period (TP ) and dominant wave direction (θ) are not con-
sidered in this research. Both TP and θ play an important role in the design and risk assessment of
hydraulic infrastructure. TP describes the waves that contain the most energy in the wave field. θ is
especially important for coastal infrastructure as it determines the incoming wave angle that hydraulic
infrastructure is subjected to. Temporal changes for T−m1,0, TP and θ mean that the hydraulic bound-
ary conditions change over time. This means that it is crucial to have an understanding about the
non-stationary of T−m1,0, TP and θ. Further research should therefore also focus on deriving models
for T−m1,0, TP and θ at cluster level and account for non-stationarity of these parameters.

7.6.2. Water Level and Water Depth
A final remark is made about the role of water level in the extreme wave climate. The local water level is
important in the context of extreme waves because deeper water can accommodate higher waves. This
is especially important for the design and risk assessment of coastal infrastructure. Higher water levels
and subsequent higher water depths reduce the effect of depth induced breaking. Depth induced break-
ing plays an important role in wave attenuation in coastal areas. Increased water levels allow higher
waves to approach coastal structures, compromising their safety. In the North Sea domain, especially
along the English, Dutch, German and Danish coast, a potential increase in extreme water level will
be troublesome due to the relatively shallow water water depths that prevail in this area (see Figure 4.2).

As a result of climate change, sea level rise is expected to reach 1 meter before the end of the 21st
century (KNMI, 2021). The role of sea level rise on extreme water levels and subsequently extreme
wave climate therefore cannot be ignored. Furthermore, additional water level components including
wave and wind set up play a more significant role in shallow water, further increasing water depths in
nearshore areas (Jonkman et al., 2018). As a consequence, coastal infrastructure will be subjected to
even more extreme wave events. It is therefore strongly recommended to perform research into the
non-stationarity of extreme water levels and its effects on the extreme wave climate.
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Conclusion

This chapter combines the key results from the research and the Discussion to arrive at final answers
for the research questions. In order to answer the main research question, four sub-research questions
were defined. The sub-research questions will be answered before their answers are used to answer
to the main research question.

Sub-research question 1: What are the observed changes over time of the extreme Hm0

events in the North Sea basin and what are the underlying causes?

In Chapter 4, the non-stationarity of the North Sea extreme wave climate was studied using a tempo-
ral trend analysis. Extreme Hm0 events were selected Annual Maxima (AM) and Peak over Threshold
(POT). Mann-Kendall (MK) tests were employed to detect the presence of statistically significant trends.
The Theil-Sen (test) calculated the magnitude of statistically significant trends. Furthermore, two differ-
ent temporal horizons are studied.

For the short temporal horizon (1990-2020), several regions in the North Sea basin were identified
that strictly showed downward trends for extremeHm0. The magnitude of these trends varied between
1−2cm/yr for POT extremes and exceeded 3cm/yr for AM extremes. Furthermore, the MK test for the
exceedance frequency (Nexc) showed downward trends in regions in accordance with detected trends
for AM Hm0 extremes. These findings are reason to believe that the temporal horizon between 1990
and 2020 is dominated by decreasing intensity of extreme Hm0. The average threshold exceedance
duration (Tdur) showed nearly no trends for the short temporal horizon. For the long temporal horizon
(1950-2020), two different temporal trends were identified. The western North Sea is characterized
by downward trends for extreme Hm0, whereas the eastern and northern region as well as a region
South of britain are characterized by upward trends. The slope of the downward trends was in the
order of ≤ 1 cm/year for extreme Hm0 values selected using both AM and POT. The slope of the up-
ward trends showed values between 1 − 2 cm/year for AM Hm0 and ≤ 1 cm/year for POT Hm0. The
non-stationarity of Nexc showed similar spatial patterns as AM Hm0. These results verify that extreme
Hm0 events between 1950 and 2020 have become more intense in the Eastern parts of the North Sea
whilst becoming less intense in Western regions.

Temporal trend analysis of extreme wind speeds (U10) showed similar results as were found for extreme
Hm0, i.e. downward trends for the short temporal horizon and a combination of upward trends (East)
and downward trends (West) for the long temporal horizons. The spatial distribution of the temporal
trends for U10 is very similar to the spatial distribution of temporal trends in extreme Hm0 for both tem-
poral horizons. The North Sea extreme wave climate is characterized by locally generated wind waves.
Therefore, there is reason to believe that the temporal evolution of extreme Hm0 can at least partially
be explained, by similar temporal evolution of extreme U10.
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Further analysis at cluster level showed that accounting for dominant wave directions (θ) matters for
trend detection. Within clusters 12, 20 and 59, more grid-points showed temporal trends when account-
ing for θ. Cluster 8 even showed that opposing trends may be detected for different θ. Accounting for
θ is therefore important when accounting for non-stationarity in extreme Hm0 during the design of hy-
draulic infrastructure.

Sub-research question 2: How can Hierarchical Agglomerative Clustering (HAC) be em-
ployed to identify regions in the North Sea that exhibit similar extreme wave characteristics?

During the Hiearchical Clustering (HAC) analysis, two wave parameter combinations were tested. Ini-
tially, it was found that a combination of the 99.5 percentile of the significant wave height (Hm0,P99.5),
the corresponding peak period (Tp) and the dominant wave directions (θ1 and θ2) yielded the best clus-
tering results. Equal weight was assigned to all input values, and the number of identified clusters is
equal to K = 50. The clustering output depends on the input values. Grid-points in different locations
were assigned to the same cluster, despite there being no statistical evidence that the grid points in
question share similar extreme wave characteristics, or that extreme wave events at these grid-points
are the result of the same storm. Moreover, several grid-points in coastal regions were assigned to
different clusters despite their being statistical evidence of the considered wave parameters to assign
them to the same cluster. This required further development of the clustering output. In the end, 63
different clusters were identified, each with their own characteristic values for Hm0,P99.5, Tp, θ1 and θ2.

Clustering analysis shows potential for identifying regions with similar extreme wave characteristics.
However, the combination of HAC analysis and the selected input parameters is not considered to
be the optimal technique for this research. Limited information can be presented to the HAC algo-
rithm, causing grid-points with different extreme wave characteristics to be clustered, because they
share similar input values. Furthermore, small spatial dissimilarity between neighboring grid points for
Hm0 and Tp requires subjective pre-processing including a subjective selection of appropriate round-
ing values to prevent chaining of grid-points. As a results, clusters have large ranges for extreme
Hm0 and Tp. Finally, not accounting for non-stationarity of extreme Hm0 means that the obtained clus-
ters show heterogeneous non-stationarity for Hm0. This is troublesome when deriving representative
(non-stationary) extreme value models describing extreme Hm0 at cluster level.

Sub-research question 3: How can the derived clustering output and temporal variability
be applied to derive representative non-stationary statistical models that describe extreme
Hm0 at cluster level?

Representative extreme value models are derived by detrending intra-cluster AM Hm0 data (H∗
m0) be-

fore fitting the Generalized Extreme Value (GEV) parameters (µ∗, σ∗ and ξ∗) using Bayesian Inference
(BI). Potential non-stationarity is accounted for by adding the intra-cluster trend information (b and b0)
to µ∗, so that the GEV parameter read θ = {µ∗ + (b · t+ b0) , σ

∗, ξ∗}. Five techniques to obtain rep-
resentative time-series for Hm0 were evaluated in clusters 12, 20 and 59. The extreme value models
obtained using the AM Hm0 observations from the clustering centroid showed the most promising per-
formance for describing extremeHm0 at the cluster level. The confidence bounds of the extreme value
model capture the most extreme Hm0 return levels of the intra-cluster grid points when accounting for
non-stationarity without severe overestimation of the extreme wave conditions.

Accounting for non-stationarity relies on the selection of appropriate values for b and b0. Problems
arise in cluster 59, which exhibits heterogeneous temporal trends. The extreme value model fails to
accurately represent intra-cluster extremeHm0 statistics because there is a difference between the non-
stationarity included in the extreme value model at cluster level and the non-stationarity at the individual
grid-points. Only when all intra-cluster grid points are characterized by similar trends, the extreme value
models at cluster level might be preferred over conventional modelling. It should be emphasized that
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the number of clusters studied was insufficient to draw definitive conclusions about the applicability
of representative models at cluster level. It is strongly advised to improve the clustering analysis to
arrive at more conclusive answers. The clustering output must account for potential non-stationarity of
extreme Hm0 and the number of tested clusters must be increased.

Sub-research question 4: Do representative extreme value models at cluster level form a
useful alternative compared to stationary modelling at grid point-level in the design and risk
assessment of hydraulic infrastructure in light of a changing climate?

A practical example is presented to assess the application of non-stationary models at cluster level
in light of climate change. The temporal evolution of effective extreme Hm0 return levels is analyzed
for typical return periods for hydraulic infrastructure. It was found that non-stationary models may be
preferred over conventional stationary modelling in clusters fully characterized by an upward trend for
extreme Hm0. Using non-stationary modelling could be essential when accounting for increasing ex-
treme Hm0 conditions to which hydraulic infrastructure may be subjected due to climate change. In
clusters where no temporal trend for extreme Hm0 is present or in clusters characterized by heteroge-
neous temporal trends, non-stationary modelling did not provide benefits over stationary modelling.

Even when a cluster is characterized by an upward trend for extreme Hm0, the application of non-
stationary models is not straightforward. The observed temporal trends for extreme Hm0 depend on
the considered temporal horizon. It is believed that the non-stationarity is better described by a cyclic
rather than a monotonic trend. Without understanding the underlying cause of the non-stationarity and
without future projections of the variability of extreme Hm0, it is not possible to place the observed
temporal trends in a broader perspective regarding climate change. This limits the applicability of
non-stationary extreme value models at cluster level for the design and risk assessment of hydraulic
infrastructure in light of climate change.

How can clustering analysis and non-stationary extreme value models at cluster level be
used to characterize the statistics of extreme Hm0 events in the North Sea and when do
non-stationary extreme value models form a practical alternative compared to traditional
stationary models for the design and risk assessment of hydraulic infrastructure?

The potential for a designmethodology involving a clustering analysis and non-stationary extreme value
analysis is presented in this research. However, the hierarchical clustering (HAC) used in this study
does not produce the required output for this methodology to be implemented successfully. Promising
results are obtained for using extreme Hm0 data of the clustering centroid to compute non-stationary
extreme value models for Hm0 at cluster level. Despite its potential to represent extreme wave char-
acteristics at cluster level, caution is required when applying this methodology in the design and risk
assessment of hydraulic infrastructure. Not accounting for non-stationarity during clustering reduces
the performance of non-stationary extreme value models at cluster level. The non-stationary extreme
value models at cluster level only form a potential alternative to conventional models when all intra-
cluster grid-points exhibit similar temporal non-stationarity. Moreover, the intra-cluster grid points must
be characterized by increasing extreme wave conditions over time. Whether this methodology can be
applied to successfully project future extreme Hm0 events in light of a changing climate is debatable.
The non-stationarity of the extreme wave climate and the underlying cause of this non-stationarity are
not properly understood. Without a better understanding of the non-stationarity and without future pro-
jections of the variability of extreme Hm0, the applicability of clustering and subsequent non-stationary
extreme value modelling at cluster level in light of climate change is limited.
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A
Principles of Ocean Waves

Extreme sea states refer to wind-generated gravity waves (hereafter wind waves) on the water surface.
Wind waves result from the wind blowing over the water surface, where friction between the wind and
water in combination with the uneven distribution of the wind field results in ripples (Holthuijsen, 2007).
Continuous wind over a long fetch causes wave-induced wind-pressure variations. The effect of this is
that the wind-pressure is maximum on the windward side of the wave and a minimum on the leeward
side of the wave. This causes the wave to be ”pushed down” on the windward side, and is ”pulled”
upward on the leeward side. This coupling between wind pressure and wave motion transfers energy
into the waves and the initially small ripples grow into waves (Holthuijsen, 2007).

Ocean waves are typically subdivided in wind generated waves and swell waves. Swell waves (often
referred to as surface gravity waves) propagate along the water surface under the predominating influ-
ence of gravity. Swell waves have their origin as wind waves in distant wind fields. But due to having
a longer wave period and subsequently a longer wave length than other waves generated in the wind
field, swell waves have higher traveling velocity resulting in wave dispersion (Holthuijsen, 2007). As a
consequence, these swell waves travel faster, which results in wave field consisting of waves with long
periods and low steepness.

To complicate matters further, a sea state typically consists of a combination of wind wave and swell
systems, sometimes coming from different directions and with different spectral shapes (Van Der Kooij,
2020). In the North Sea, waves generated by a local wind field prevail (Weisse et al., 2012), but these
waves may be superimposed by swell waves. It is therefore critical to analyse the wave climate and
determine the wave classes present in the system. A typical solution is to study the wave spectra
(see section A), where wind waves occur for lower frequencies than swell waves (Holthuijsen, 2007).
Another approach is by plotting H/T diagram to study the relationship between the significant wave
height and the peak wave period. The steepness of the waves s can be calculated by s = H/Lp where
Lp is the wavelength that can be calculated using the peak wave period (Van Den Bos & Verhagen,
2018). Wave steepness values rarely exceed s = 0.05. These high values for wave steepness are often
related to locally generated wind waves. Low values for wave steepness (values for s approaching 0.01)
are related to swell waves from remote wave fields. Values lower than 0.01 are not often reported (Van
Den Bos & Verhagen, 2018).

Spectral Wave Analysis
In practice, the behavior of waves is often described using the two-dimensional (2D) energy wave
spectrum E(f, θ) (Holthuijsen, 2007). Typically, the wave energy spectrum is expressed as the product
of its one-dimensional energy spectrum, S (f), and a Directional Spreading FunctionD (f, θ) as follows
(Holthuijsen, 2007):

E (f, θ) = S (f) ·D (f, θ) = E(f, θ) = lim
∆f→0

lim
∆θ→0

1

∆f∆θ
E

{
1

2
a2
}

(A.1)
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Figure A.1: Principles behind wave generation. Left figures shows Philips mechanism where disturbances in the wind field
cause ripples in the water surface. Right figure shows Miles mechanisms for the further generation of waves (adopted from

Holthuijsen (2007).

The wave energy spectrum can now be defined as the energy for waves traveling in a particular direc-
tional bandwidth as follows:

S(f) =

∫
E(f, θ)dθ (A.2)

The shape of the resulting energy curve has been subjective research in coastal and oceanic engi-
neering. The shape of the spectrum is the result of the forcing mechanism causing wave generation.
The most common spectral shape in engineering practice in the North Sea is the JONSWAP shape
((Holthuijsen, 2007). JONSWAP has been established after careful analysis of observed wave condi-
tions in the North Sea. However, even in the North Sea, JONSWAP is not even the most prevailing
spectral shape in all regions of the North Sea domain (Karmpadakis et al., 2020). Integrating the en-
ergy density function (Equation A.2) over the whole interval of f leads by definition to the total energy
contained in the wave field of the considered wave propagation direction.

Etot =

∫ ∞

0

S (f) df (A.3)

The information obtained by the energy spectrum can be used to derive characteristic wave parameters
corresponding to the sea state. The properties of the wave parameters are provided by their spectral
moment. To this end, Equation A.3 can be generalized into the following equation:

mn =

∫∫
fnE(f, θ)dfdθ (A.4)

Wave Height and Period
Using the spectral moments obtained using Equation A.4, we can now determine the relevant wave
parameters for this research. The significant wave height as derived from the wave energy spectrum
is defined as follows:

Hm0 = 4 ·
√
m0 (A.5)

Here, m0 is the zeroth spectral moment. This definition must not be confused with other definitions for
the significant wave height, such as the mean of the highest one-third of the wave height (Hs). In deep
waters, both Hm0 and Hs should yield the same results, but in intermediate and shallow water depth,
the resulting values for significant wave height could be very different (Van Den Bos & Verhagen, 2018).
Apart from the significant wave height, the wave periods form an important parameter in the design and
risk assessment of civil infrastructure. The mean wave period employed in this research is the energy
mean wave period and is defined as follows:

Tm−1,0 =
m0

m1
(A.6)
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Figure A.2: Overview of spectral wave analysis and the required transformations to arrive at the wave energy spectrum and
the directional spectrum. Left figure shows the two dimensional wave spectrum. The top figure on the right presents the wave

energy spectrum and the bottom right figures shows the directional spectrum. Figures adopted from Holthuijsen (2007).

Research has shown that the mean wave energy period is a more robust value to describe the long-
term stability of breakwaters and flood defense structures (Van Den Bos & Verhagen, 2018), and is
therefore often used in design formulas for breakwaters, dikes and dunes. The peak wave period is
the period of the wave that contains the most energy (Antonini et al., 2019) and is therefore defined by
the peak of the wave spectrum S(f). In mathematical terms, the peak period is expressed as:

TP =
1

fp
(A.7)

Wave Direction
Apart from the wave height and period, the wave direction must be considered. Especially coastal
engineering structures, the wave direction is important as it determines the angle of incoming waves.
The directional spectrum of waves is generally described by the following equation:

D (θ) =
E (f, θ)

S(f)
(A.8)

In general terms, this expression can be described as the ratio of the total energy and the energy in a
particular direction. The directional spectrum can be visualized by a spectral shape that gives the wave
energy in a particular direction theta (see Figure A.2). The mean wave direction is the mean over all
frequencies and directions of the two-dimensional wave spectrum (Holthuijsen, 2007). Apart from the
mean wave direction, the directional spreading is an important parameter, as it describes the uniformity
of the wave field. However, the directional spreading of the waves is not considered.

Nearshore Waves
Apart from the wind speed, duration and fetch, the local water depth is important for the development
and evolution of waves. For the analysis of the extreme wave climate in the design and risk assessment
of hydraulic infrastructure, the offshore wave climate is preferred. Offshore, deep water conditions
typically prevail andwave fields develop and evolve without bottom interaction, thereby avoiding shallow
water and local bathymetry effects. Wave data in nearshore locations are considered to be less reliable.
The bathymetry can have significant effects on the wave climate, which can result in shoaling, refraction
and in very shallow conditions even wave breaking. Moreover, the presence of coastal structures
potentially influences the nearshore wave climate as coastal structure result in reflecting waves. Apart
from the local bathymetry affecting the wave climate, waves in turn can also have an effect on the
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local bathymetry. This causes the wave climate to be inconsistent over time. For these reasons, only
offshore wave information is used in the design and risk assessment of hydraulic structures, and this
research only considers waves that are at least in intermediate water depth.



B
Example of Hierarchical clustering

To illustrate how agglomerative hierarchical clustering works, this chapter provides a simple example.
Consider a dataset consisting of two different variables (X and Y ) at 6 locations. We are interested in
clustering the locations based on the observations for X and Y . We know the values for X and Y at
each of the six locations. We can then plot the values for X and Y on a scatter plot (see figure B.1).

Figure B.1: Example data used in this chapter to present Hierarchical clustering.

The first step is to standardize the input values. Without normalization, greater importance is given to
parameters with greater magnitude. Standardization of the input values can be achieved by means of
z-score standardization:

X∗
i =

Xi − µX

σX
(B.1)

Because the input values are standardized, it is possible to assign weights to the different parameters.
Weight may be assigned to emphasize particular parameters in the clustering that are thought more
significant or to add some additional steering to obtain the desired clustering output. In this example,
equal weight for both parameters is considered.

The next step is to calculate the pairwise dissimilarity between the grid points. For a dataset containing
N grid points, there existN ∗(N−1)/2 pairs for which the dissimilarity can be calculated. The Euclidean
distance between two grid points (i and j) can be calculated as follows:
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Figure B.2: Z-score standardization (see Equation 3.8) of example dataset.

d (i, j) = ∥i− j∥2 =

√√√√ M∑
k=1

(ik − jk)
2 (B.2)

Once the dissimilarity between all grid points in the dataset has been computed, it must be determined
how grid points should be grouped into clusters. This can be done according several linkage mecha-
nisms. The linkage function links pairs of objects that are closest together into binary clusters (clusters
made up of two objects). Subsequently, the linkage function links the newly formed clusters to cre-
ate bigger clusters until all grid points are linked together in a hierarchical tree. In this thesis, Single,
Complete, Average and Ward linkage mechanisms are considered. A detailed overview of the different
linkage mechanisms is presented in Section 3.3.3.

The hierarchical linkage is best understood when viewed graphically using dendrograms. In a den-
drogram, the horizontal axis represents the objects included in HAC. The links between objects are
represented by upside-down U-shaped lines. The height of the U-shapes represents the dissimilarity
between the objects (grid points or clusters) as calculated by the selected linkage mechanism (T ). This
is also referred to as the cophenetic dissimilarity (Sokal & Rohlf, 1962). The resulting dendrograms for
the four linkage mechanisms considered in this research have been plotted in Figure B.4.

Figure B.3: Established clusters for our example data showing the hierarchy of linkage. Left figure shows the identified
clusters for Complete, Single and Average Linkage. Right figure shows identified clusters for Ward linkage.

It must be verified that the cophenetic dissimilarities in the dendrogram accurately reflect the dissim-
ilarities in the original dataset. One measure to study the performance of the linkage process is to
compare the cophenetic dissimilarities (T ) between grid points with the original pairwise dissimilarities
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Figure B.4: Examples of the established dendrograms for the example dataset.

(d), using the cophenetic correlation coefficient (C, see Equation 3.16). The cophenetic correlation can
be calculated using the following equation:

C =

∑
i<j

(
d(i, j)− d

) (
T (i, j)− T

)√∑
i<j

(
d(i, j)− d

)2 ∑
i<j

(
T (i, j)− T

)2 (B.3)

In equation 3.16, di,j is the pairwise Euclidean distance between grid points, and d is the mean Eu-
clidean distance for all Euclidean distances. Let T (i, j) be the cophenetic dissimilarity between objects
i and j and T be the average cophenetic distance of all cophenetic correlations. The closer the value
of the cophenetic correlation coefficient (C) is to 1, the more accurately the clustering solution reflects
your data. The cophenetic correlation can be used to select the linkage mechanism that yields the best
representation of the original dataset. This linkage mechanism will be selected for further analysis. For
the presented example, this is Complete linkage.

The final step in HAC is to select the appropriate cut-off points that determines the number of clusters (K)
that adequately describes the extreme wave climate in the North Sea. In this research, three internal
evaluation metrics are used to find the optimal value for K. This includes the Silhouette Coefficient
(SC), the Calinski-Harabasz (CH) score and the Davies-Bouldin (DB) ratio. A complete description of
the three internal evaluation metrics can be found in section 3.3.4, and is not presented here. For the
three internal evaluation metrics, the following rules apply:

• The optimal number of clusters as indicated by the Silhouette Coefficient (SC) is the value for K
that yields the highest value for SC;

• The optimal number of clusters as indicated by the Calinski-Harabasz (CH) score is the value for
K that yields the highest value for CH;

• The optimal number of clusters as indicated by the Davies-Bouldin (DB) ratio is the value for K
that yields the lowest value for DB;

Based on the scores for SC, CH andDB, the ideal number of clusters to partition our example dataset
must be determined. For CH and DB, this is relatively straightforward, and the optimal score for both
metrics yields K = 5 clusters. For SC, it can be observed that the ideal number of clusters would be
K = 4. However, it can also be observed that K = 4 and K = 5, yield an approximately equal score for
SC. Therefore, it is decided to partition our example dataset into 5 clusters. The final cluster solution
can be observed in Figure B.6.
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Figure B.5: Plots for Silhouette coefficient (SC), Calinski-Harabasz score (CH) and Davies-Bouldin ratio (DB) for our
example data.

Figure B.6: Final Cluster solution of our example dataset. The selected linkage mechanism is Average linkage based on C.
The scores for SC, CH and DB indicate the K = 5 is the optimal number of clusters.



C
Supplementary Material Markov Chain

Monte Carlo
ProNEVA applies a hybrid-evolution Markov Chain Monte Carlo (MCMC) approach to calculate the
posterior distribution parameters (Ragno et al., 2019). MCMC algorithms are used to draw random
samples from high dimensional, complex distributions (Sadegh et al., 2017). The goal of MCMC is to
reach an equilibrium state that represents the target distribution (i.e. the posterior). MCMC converges
closer to the true distribution as more samples are included in the MCMC. Three important components
make up the MCMC algorithm (see also figure C.1):

1. Monte Carlo: a Method to generate random sample from a distribution. More samples are ex-
pected in an area with higher probability of occurrence, and less samples are expected in areas
with a lower probability of occurrence;

2. Markov Chains: Sequence (Chain) of samples where each sample (i) is only dependent on the
previous sample (i − 1) in the sequence. This results in a “random walk” through the parameter
space;

3. Metropolis Hastings: Acceptance algorithm to determine whether the next sample in sequence
(θi) are to be rejected or not.

A general outline of the MCMC process is presented in Figure C.1. The MCMC process starts by draw-
ing an initial random sample for θ, i.e. θ0. For θ0, the prior and likelihood probabilities can be calculated,
and subsequently, the posterior probability. The next step is to randomly draw the next sample, i.e. θ1.
It is important that θ1 lies in the vicinity of θ0. Also, for θ1, the prior and likelihood probabilities and sub-
sequently, the posterior probability are calculated. Now, it must be tested whether to accept or reject
θ1. We only want to accept θ1 if it is better than θ0. If θ1 is accepted, it gets added to the posterior distri-
bution, otherwise, θ0 is added to the posterior distribution again. The final value (θ0 or θ1) is then used
to find a new proposal (i.e. θ2) in the next iteration. The steps above are repeated for all N iterations
of the MCMC.

The Metropolis Hastings ratio is applied to decide whether to accept or reject the value for θi. Consider-
ing the posterior probabilities θi and θi−1 in which θi−1 stands for the previous iteration, the acceptance
ratio is defined as follows:

AR =
P (θi | Yobs)

P (θi−1 | Yobs)
=

P (Yobs | θi)
P (Yobs | θi−1)

P (θi)

P (θi−1)
(C.1)

or each iteration of the MCMC, the acceptance ratio is tested according to:

ρ = min (1, AR) (C.2)

If ρ = 1 (i.e. the acceptance ratio is larger than 1), the proposed θi has a higher posterior probability
than θi−1, and θi is accepted. If ρ < 1, θi is not automatically rejected. Instead, a random value r is
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drawn from a uniform distribution (r ∼ U(0, 1)). If r ≤ ρ, θi is accepted, otherwise it is discarded. The
final value for theta (θi or θi−1) is used to find a new proposal for θ in the next iteration.

MCMCs are initialized randomly and must converge towards the correct value. This often requires
many samples. When plotting our results and posterior distribution, it is not effective to include these
early samples before the model has converged. A so-called Burn-In period is implemented that ex-
cludes the early samples for theta in the final results.

ProNeva applies a hybrid-evolution MCMC (HE-MCMC) that was proposed by Sadegh et al. (2017).
Although a detailed mathematical explanation of HE-MCMC lies outside the scope of this research, the
most important concepts are quickly explained below. For more detailed explanation of HE-MCMC
algorithm, the reader is referred to Ragno et al. (2019) and Sadegh et al. (2017):

• Intelligent starting point: Rather than starting with one initial sample for theta, HE-MCMC draws
samples for the entire prior space, that are randomly distributed over the chains. Within each
chain, the sample with the highest p (Yobs | θ) is elected as a starting point. This means that each
chain has a starting point with the highest chance of success and increases the convergence rate
of the MCMC process.

• Multiple Chains and Differential Evolution: Multiple chains are run in parallel in order to improve
the accuracy of the proposals. The chains learn from each other rather than running all the chains
independently. Differential evolution solves an important problem that random sampling in MCMC
poses, namely the scale problem. The moving distance between successive proposals can be
controlled so that the HE-MCMC searches the parameter domain more efficiently.

• Snooker update: An Adaptive Direction Sampling technique (ADS). The prior samples are utilized
to define the sampling direction for the subsequent iterations, with the sampling direction tending
to go over areas of higher density. This enhances the likelihood of discovering more successful
proposals, resulting in faster convergence and a more accurate posterior distribution.

• AdaptiveMetropolis (AM): The general idea is to generate proposal samples with already obtained
knowledge about the target distribution.

• Gelman Rubin: A diagnostic test to assess the convergence of the chains. The Gelman-Rubin
statistic analyzes the difference between the multiple Markov chains. The convergence is as-
sessed by comparing the estimated inter-chains and intra-chain variances for each modelled
theta. Large differences between these variances indicate non-convergence.
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Figure C.1: Schematic overview of Bayesian Inference and Markov Chain Monte Carlo to update beliefs on the parameter
distribution when new evidence is presented.





D
Supplementary Material North Sea

Wave Climate
The ERA5 reanalysis dataset used in this research is the fifth generation of reanalysis datasets pro-
duced by the ECMWF and contains a highly detailed record of the global atmosphere, land surface and
ocean waves spanning between 1950 and the near present (Hersbach et al., 2020). The ERA5 perfor-
mance is evaluated and validated against in-situ observation data (provided by KNMI, Rijkswaterstaat)
using several goodness-of-fit tests. This appendix describes the evaluation and validation of the Hm0

time-series from the ERA5 Reanalysis used in this research.

Quality Control and Performance of ERA5 Datasets
For the validation and performance test of the ERA5 reanalysis data, a total of three goodness-of-fit
metrics is applied. The linear correlation coefficient R is employed to measure the linear correlation
between the reanalysis data and observations. It is the ratio between the covariance of the reanalysis
data and the observation data and the product of their standard deviations and can be expressed using
the following equation:

R =

∑N
i=1

[(
Ci − C̄

) (
Oi − Ō

)]√∑N
i=1

(
Ci − C̄

)2 ∑N
i=1

(
Oi − Ō

)2 (D.1)

Mean Bias Error (MBE, here referred to as bias) is the discrepancy between the reanalysis data and the
observation data. Bias is used to estimate the average bias in the model and to find whether the ERA5
reanalysis data tends to over- or underestimate the data compared to the observations. A positive
value for bias means that the reanalysis data tends to overestimate the data and vice versa. Bias can
be calculated using:

Bias =
1

N

N∑
i=1

(Ci −Oi) (D.2)

Finally, the Root Mean Square Error (RMSE) is employed to reflect the standard deviation of the re-
analysis data and can be calculated using the following equation:

RMSE =

√√√√ 1

N

N∑
i=1

(Ci −Oi)
2 (D.3)

In this set of equation,N denotes the total number of data points included in the analysis, Ci denotes the
ERA5 reanalysis value, C̄ is the mean value of ERA5 Reanalysis, Oi denotes the in-situ observation
value and Ō represents the mean value of all in-situ observations. The value for R lies between -1
(negative correlation) and 1 (positive correlation). Good performance of the dataset is indicated by a R
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Figure D.1: Bathymetric map of North-West Europe showing the research area. The red box indicates the research area. The
black squares denote the in-situ observation stations, red circles are the location where the interpolated data is extracted from
and the blue circles give the original locations. Note that using interpolation, it is possible to get information about the offshore

ocean data closer to the in-situ observation locations.

value close to 1. For the bias and RMSE holds that good performance is indicated by values that are
close to 0.

Hydraulic Loading Parameters
The oceanic reanalysis data in ERA5 has a spatial resolution of 0.5 degrees in longitude and latitude
and a temporal resolution of hourly data (Hersbach et al., 2020). A higher resolution can be obtained
by means of interpolation (wang2020). In this study, the oceanic reanalysis data used for the study of
spatio-temporal trend and extreme value analysis are linearly interpolated to obtain a spatial resolution
of 0.25 degrees. This resolutio matches the spatial resolution of the atmospheric reanalysis. Both the
interpolated data and the original dataset (i.e. spatial resolution of 0.5 degrees) are evaluated here to
ensure that the interpolated data gives better results.

In-situ observations for water level and significant wave height is obtained from 5measurement stations
located at offshore boring platforms in the North Sea. The location of these boring platforms can be
found in Figure D.1.

Significant Wave Height
The performance of the offshore wave data has been evaluated bymeans of testing the significant wave
height (SWH). Other parameters related to wave boundary conditions, such as mean and peak wave
period and wave direction have not been evaluated. It is assumed that their performance matches that
of the significant wave height. The results for the goodness-of-fit tests for the SWH have been collected
in Tables D.1 and D.2 (both the original and the interpolated ERA5 data). Scatter plots visualizing the
performance of the ERA5 SWH can be seen in Figures D.2 and D.3. The colour of the scatter points
indicates the density of the data point, with red indicating a high concentration of points.



129

Regarding the performance of the ERA5 SWH data, the following conclusions can be drawn:

• The scatterplots (Figures D.1 and D.2) show that ERA5 reanalysis data has good agreement
with the in-situ observations, with the highest density of the scatter points on or very close to the
identity line. For higher SWH values, the dispersion is a bit larger, but still within a reasonable
limit (RMSE percentage is within 10% for higher observations).

• The bias shows very good agreement with the in-situ observations, with station J6, K13 and
Europlatform showing a bias that is within 5 centimeters A12 and D15 tend to overestimate the
SWH, but are still within reasonable values (order of 20 centimeters).

• Comparing the results for the original and interpolated datasets shows that it is beneficial to inter-
polate the data, as values for R, bias and RMSE for nearly all 5 station show better results. Only
the bias at station J6 does not give better results. However, with a bias of −0.037m, the bias is
still very much within acceptable limits.

Based on this considerations, it can be concluded that the (interpolated) ERA5 reanalysis data is suit-
able for the analysis of the offshore wave climate.

Table D.1: Statistics for in-situ SWH observations buoys for the original ERA5 data in the research domain. Contains location
in longitude and latitude (values in brackets give the location of the original ERA5 datapoint), number of observations used for

the validation of the interpolated ERA5 dataset (N), correlation coefficient (R), bias and root mean square error (RMSE).

Station Latitude Longitude Duration N R bias (m) RMSE (m)

A12 55.30 3.80 2009 -2018 84790 0.982 0.137 0.235(55.5) (4.00)

D15 54.31 2.93 2009 - 2017 67128 0.967 0.184 0.295(54.50) (3.00)

J6 53.82 2.94 2009 - 2018 82136 0.970 0.010 0.215(54.00) (3.00)

K13 Alpha 53.22 3.22 1990 - 2018 249814 0.966 -0.019 0.226(53.00) (3.00)

Eurplatform 51.98 3.26 1990 - 2018 250688 0.969 -0.046 0.192(52.00) (3.50)

Table D.2: Statistics for in-situ SWH observations buoys for the interpolated SWH data in the research domain. Contains
location in longitude and latitude (values in brackets give the location of the interpolated ERA5 datapoint), number of

observations used for the validation of the interpolated ERA5 dataset (N), correlation coefficient (R), bias and root mean square
error (RMSE).

Station Latitude Longitude Duration N R bias (m) RMSE (m)

A12 55.30 3.80 2009 -2018 84790 0.979 0.102 0.222(55.25) (3.75)

D15 54.31 2.93 2009 - 2017 67128 0.967 0.158 0.277(54.25) (3.00)

J6 53.82 2.94 2009 - 2018 82136 0.971 -0.037 0.212(53.75) (3.00)

K13 Alpha 53.22 3.22 1990 - 2018 249814 0.970 0.023 0.214(53.25) (3.25)

Eurplatform 51.98 3.26 1990 - 2018 250688 0.968 -0.012 0.193(52.00) (3.25)
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Wind speed
The primary driver for waves to develop is wind (see Appendix A. Also, wind has a significant influence
on the water level, in the form of storm surge and wind set up. The wind models used in this research
are obtained through the ERA5 Reanalysis datasets. This dataset consists of wind speed data between
1950 and 2020, giving the same temporal horizon as the wave datasets. The wind data is available in
two vectors, namely u10, which is the wind speed in x direction (i.e. East is positive), and v10, which
is the wind speed in the y direction (i.e. North is positive). However, for the analysis of the wind, the
absolute magnitude (

−→
U10) and the wind direction with respect to true North (ϕ) are preferred. Using, the

following equations, these can easily be obtained.

|
−→
U10| =

√
u2
10 + v210 (D.4)

ϕ = mod

(
180 +

180

π
atan2(v, u), 360

)
(D.5)

A goodness of fit analysis was not performed for the wind datasets. The reasoning for this is that there
were no offshore based observation measuring stations available. Rijkswaterstaat only provides long
time scale measurements for hydrodynamic parameters such as waves and water level. The KNMI
only provides extensive land based wind observation data. For land based observations, care should
be taken when comparing wind parameter datasets with observations, because wind observations vary
on small spatial and temporal scales and are affected by the local terrain (Hersbach et al., 2020). This
means the error between the ERA5 reanalysis data and the land based observations is potentially quite
significant. Considering that, in this study, we are not necessarily interested in the wind climate over
land, but rather in the long term trends of the wind climate as a possible driver of a changing storm
climate (water level and wave height) in the North Sea. Therefore an extensive goodness-of-fit study
for the wind climate was deemed excessive for the goal of this study, and was not performed.
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Figure D.2: Scatter plots showing the relation between the ERA5 Hm0 and the observation Hm0 for the original data.



132 Appendix D. Supplementary Material North Sea Wave Climate

Figure D.3: Scatter plots showing the relation between the ERA5 Hm0 and the observation Hm0 for the interpolated data.
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Wave Steepness Plots
In order to determine whether the extreme wave climate in the North Sea is dominated by wind or
swell waves, steepness plots of the wave climate are made for 7 location in the North Sea domain (see
Figure D.4) The steepness plots can be found in Figure D.5. From the steepness plots, it can be seen
that the extreme waves (given in orange) all have a steepness between s = 0.03 and s = 0.05, which
typically correspond to fresh wind waves. Based on this, it is decided that the extreme wave climate in
the North Sea is dominated by wind waves rather than Swell waves.

Figure D.4: Locations in the North Sea for which steepness plots have been derived.
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Figure D.5: Wave steepness plots for the 7 locations in the research domain



E
Supplementary Material: Peak over

Threshold
The correct execution of a Peak over Threshold procedure requires the careful selection of an appro-
priate threshold (u) and declustering time lag (δ). The values for u and δ must be chosen such that
the peaks exceeding u form a set of homogeneous and independent extreme events. In this research,
Peak over Threshold is applied to define a storm threshold for the HAC-analysis in Chapter 5 and for
the temporal trend analysis of the extreme wave climate in Chapter 4.

This Appendix first explains the diagnostic tests used to derive the appropriate values for u and δ. After
that, we explain how u and δ were determined for the HAC analysis in Chapter 5 is explained and finally,
the appropriate values for the intra-cluster spatio-temporal trend analysis of the extreme wave climate
is explained.

E.1. Diagnostic Tests for Threshold Selection
The selection of the appropriate thresholds (u) and declustering times (δ) in this research is performed
using the diagnostic tests of mean residual life, dispersion index and extremal index. Also, the the
stability of the GP distribution parameters (Antonini et al., 2019; Coles, 2001; Davison & Smith, 1990)
is studied. The sections below explain the diagnostic tests in more detail.

E.1.1. Mean Residual Life
A first attempt to find a suitable threshold level is by means of a mean residual life plot. In mean residual
life plots, the mean observed excess over threshold u is plotted against u. For the GP distribution to
be considered valid, the mean residual life plot should follow a straight line (Coles, 2001; Davison &
Smith, 1990).

E.1.2. Extremal Index
The POT procedure and GP distribution are based on the assumption that the extremes above the
threshold are independent. The extremal index (EI) can be used to validate whether the considered
threshold and declustering time lag (δ) results in a set of independently distributed extremes (Ferro
& Segers, 2003). The extremal index (EI), as proposed by Ferro and Segers (2003) evaluates the
distribution of exceedance times of the sampled extremes and provides a measure of independence.
The extremal index is defined as:

EI =
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In Equation E.1, Ti is the inter exceedance time defined as Ti = Si–Si−1. The extremal index is defined
such that ifEI = 1, the observations can be considered independent, and some degree of dependence
is present for values EI < 1. Typically, observations are deemed sufficiently independent to be fit for
extreme value analysis if EI > 0.85 (Davison & Smith, 1990).

E.1.3. Dispersion Index
Finally, the dispersion index (DI) can be used to verify the assumption that the selected extreme ob-
servations for threshold u and declustering time lag δ follow a Poisson process (Antonini et al., 2019;
Timmermans, 2021). Let X be a random variable the follows a Poisson distribution with distribution
parameter λ > 0. The probability function of X can be expressed as follows:

P(X = k) = e−λλ
k

k!
, k ∈ N (E.2)

Where k is the number of occurrences (storm events). One of the key properties of the Poisson process
is that the distribution parameter lambda is equal to the expected value E(x) and also the variance
V ar(X) (Dekking et al., 2005). The dispersion index was proposed by Cunnane (1979) and can be
defined as the ratio between the variance and expectation of the number of peaks:

DI =
σ2

µ
, for µ ̸= 0 (E.3)

Therefore, the selected extreme values can be considered Poisson distributed if the Dispersion index
is equal to 1. An acceptable peak separation should give a dispersion index close to 1 (Antonini et al.,
2019; Cunnane, 1979). Often, the dispersion index comes with confidence bounds. These confidence
bounds indicate the domain for which the Chi-squared test with null-hypothesis H0 : DI = 1 cannot be
rejected (Timmermans, 2021).

E.1.4. Stability of GPD Parameters
A complementary technique to the three diagnostic plots mentioned above is to fit the GP distribution
to a range to a range of potential thresholds, and check the stability of the shape and scale parameters
(Coles, 2001). The argument is as follows: according to extreme value theory, if the GP distribution is
an appropriate model to for the observations above a certain threshold u0, then for a higher threshold
u, a GP distribution should also apply. Both GP distributions have identical shape parameters (Coles,
2001). However, the scale parameter requires reparameterization for a correct stability analysis (Coles,
2001). If σu is the scale parameter for some threshold u > u0, it follows from extreme value theory that:

σu = σu0
+ ξ (u− u0) (E.4)

Then, reparameterization of σu can be done as follows:

σ∗ = σu − ξu (E.5)

Consequently, estimates of the σ∗ and ξ should be constant for any value of u > u0, if u0 is a valid
threshold of the observations to follow the GP distribution (Coles, 2001). See also figure E.2 for an
example of stable regions of the shape and scale parameters of the GPD distributions.

E.2. Threshold Selection for HAC-Analysis
For the Hierarchical Agglomerative Clustering (HAC) analysis, the definition of a storm climate was
required. Waves exceeding a particular threshold u would be considered storm waves. To make the
HAC-analysis straightforward, we decided that the selected values for u and δ should be appropriate
throughout the research domain. Potentially useful threshold values for the analysis of the extreme sig-
nificant wave height have been studied in Arns et al. (2013), Méndez et al. (2006), Sartini et al. (2015),
and Viselli et al. (2015). The definitions of the thresholds are listed in Table E.1. It was decided to anal-
yse these thresholds in this procedure as well, with one additional threshold value namely the 99.8th
percentile for Hm0 (See Table E.1). As for the possible values for δ, it was decided to study different
declustering time lags spanning 14 days (in accordance with Antonini et al. (2019)) at an interval of 6
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Figure E.1: Analyzed grid points for the selection of the threshold u and declustering time lag δ for the HAC-Analysis in
Section 5.1.

hours, resulting in 84 potential values for δ.

The plots for Mean Residual Life, Dispersion Index, Extremal index and the stability of the GP distribu-
tion parameters have been constructed for 7 different locations throughout the research domain (See
figure E.1). These 7 locations have been selected based on the expectation that the extreme waves in
these locations potentially show different characteristics, and therefore different appropriate values for
u and δ prevail in these areas. The goal is to find a value for u and δ that is appropriate for all 7 grid
points. Then, the assumption is made that if the values u and δ are appropriate for these 7 locations,
they are appropriate for all grid points in the research domain.

Looking carefully at figures E.2 - E.8, it can be seen that threshold 5 (p99.5 ¯Hm0) is theminimum threshold

Table E.1: Tested threshold values for the POT analysis. Hm0 and σHm0 are the mean and standard deviation of the
significant wave height (from all directions). piHm0 is the ith percentile of the significant wave height (from all directions).

Threshold Expression Source

th1 Hm0 + 1.4 · σHm0 Viselli et al. (2015)

th2 Hm0 + 1.9 · σHm0 Viselli et al. (2015)
th3 p97.5Hm0 Viselli et al. (2015)

th4 Hm0 + 3.0 · σHm0 Arns et al. (2013)
th5 p99.0Hm0 Arns et al. (2013)
th6 p99.5Hm0 Sartini et al. (2015)
th7 p99.7Hm0 Sartini et al. (2015)
th8 p99.7Hm0 NA
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that is appropriate to give a Poisson process at each of the 7 considered grid points. Selecting the
lowest possible threshold is important to increase the number of extreme observations in the analysis.
Further analysis of the Mean Residual Life, Dispersion Index and the GP distribution parameters shows
that threshold 5 respects all of the requirements to be a suitable threshold. Therefore, threshold 5 is
the selected threshold for the HAC analysis. Looking at the extremal index curve for threshold 5, it
becomes apparent that a high value for δ is required to satisfy the requirement for independent extreme
observations. In the end, it was found that the most suitable value for δ is 8 days, or 192 hours.

Grid Point 1

Figure E.2: Diagnostic plots for grid point 1 in Figure E.1. Top Left: Mean Residual Life plot, top right: Dispersion Index,
bottom left: Extremal Index and finally bottom right: the GP distribution parameters.
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Grid Point 2

Figure E.3: Diagnostic plots for grid point 2 in Figure E.1. Top Left: Mean Residual Life plot, top right: Dispersion Index,
bottom left: Extremal Index and finally bottom right: the GP distribution parameters.

Grid Point 3

Figure E.4: Diagnostic plots for grid point 3 in Figure E.1. Top Left: Mean Residual Life plot, top right: Dispersion Index,
bottom left: Extremal Index and finally bottom right: the GP distribution parameters.
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Grid Point 4

Figure E.5: Diagnostic plots for grid point 4 in Figure E.1. Top Left: Mean Residual Life plot, top right: Dispersion Index,
bottom left: Extremal Index and finally bottom right: the GP distribution parameters.

Grid Point 5

Figure E.6: Diagnostic plots for grid point 5 in Figure E.1. Top Left: Mean Residual Life plot, top right: Dispersion Index,
bottom left: Extremal Index and finally bottom right: the GP distribution parameters.
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Grid Point 6

Figure E.7: Diagnostic plots for grid point 6 in Figure E.1. Top Left: Mean Residual Life plot, top right: Dispersion Index,
bottom left: Extremal Index and finally bottom right: the GP distribution parameters.

Grid Point 7

Figure E.8: Diagnostic plots for grid point 7 in Figure E.1. Top Left: Mean Residual Life plot, top right: Dispersion Index,
bottom left: Extremal Index and finally bottom right: the GP distribution parameters.
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Figure E.9: Clusters subjected to intra-cluster spatio-temporal trend analysis. The grid points given in red are the centroids of
the clusters of which the time-series was used to determine the appropriate values for U and δ

E.3. Threshold Selection for Intra-Cluster Trend Analysis
For the intra-cluster spatio-temporal trend analysis of the extreme wave and wind climate in the North
Sea in Chapter 4, the appropriate threshold (u) and declustering time lag (δ) are selected for each
of the analyzed clusters. To do so, the knowledge of the dominant wave directions derived in the
clustering analysis (Chapter 5) is applied to find the dominant wave directions in each of the clusters.
The time-series for the cluster centroids where filtered based on the dominant wave directions (see
Figure E.9. Subsequently, the appropriate values for u and δ were determined based on Peak over
Threshold procedures. The clusters subjected to analysis are visualized in Figure E.9. The determined
boundaries for the dominant wave directions (θLB and θUB) and the values for u and δ can be found in
Table E.2. Some remarks about the threshold selection for the different clusters include:

• For cluster 12 (Danish coast), th6 is selected despite not meeting the requirement of a Poisson
process according to the Dispersion Index. However, th8 does not meet the requirements for the
MRL, DI and the stability of the GP parameters. Thresholds th6 and th7 lie the closest to the
Poisson ratio. In the end, threshold th6 is selected since it meets all other requirements;

Table E.2: Selected Boundaries for the dominant wave directions, threshold and declustering time lag for the selected clusters
subjected to intra-cluster spatio-temporal trend analysis in Chapter 4. The subscripts 1 and 2 for Cluster 8 indicate the primary

and secondary dominant wave direction respectively.

Location Cluster θLB (deg N) θLB (deg N) u δ (days)

Dutch Coast 8-1 270 360 th5 2
8-2 180 270 th6 2

Danish Coast 12 210 330 th6 5
Scottisch Coast 20 60 180 th6 2
Central North Sea 59 260 360 th6 5
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• For cluster 59 (Central North Sea), it can be seen that the selected values for u (th6 and δ (5 days)
do not meet the requirements of the Shape parameter of the GP distribution. However, since this
is the only combination that meets the requirements for MRL, DI and EI, it is decided that this
was a necessary compromise in order to be able to perform the spatio-temporal analysis in this
cluster.

Cluster 8

Figure E.10: Diagnostic plots for cluster 8 (primary dominant wave direction) in Figure E.9. Top Left: Mean Residual Life plot,
top right: Dispersion Index, bottom left: Extremal Index and finally bottom right: the GP distribution parameters.

Figure E.11: Diagnostic plots for cluster 8 (secondary dominant wave direction) in Figure E.9. Top Left: Mean Residual Life
plot, top right: Dispersion Index, bottom left: Extremal Index and finally bottom right: the GP distribution parameters.
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Cluster 12

Figure E.12: Diagnostic plots for cluster 12 (primary dominant wave direction) in Figure E.9. Top Left: Mean Residual Life plot,
top right: Dispersion Index, bottom left: Extremal Index and finally bottom right: the GP distribution parameters.

Cluster 20

Figure E.13: Diagnostic plots for cluster 20 (primary dominant wave direction) in Figure E.9. Top Left: Mean Residual Life plot,
top right: Dispersion Index, bottom left: Extremal Index and finally bottom right: the GP distribution parameters.
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Cluster 59

Figure E.14: Diagnostic plots for cluster 59 (primary dominant wave direction) in Figure E.9. Top Left: Mean Residual Life plot,
top right: Dispersion Index, bottom left: Extremal Index and finally bottom right: the GP distribution parameters.
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Supplementary Material Clustering

This appendix provides supplementary information corresponding to the clustering analysis of the North
Sea (as performed in chapter 5. Comments about the clustering results for the different configurations
are given, and for each configuration, the best clustering solution is determined. For the analysis of the
different clustering results, the following criteria are evaluated:

• When comparing the results for different linkage mechanisms for the same parameter combina-
tion and weight configuration, how do the scores for the quality of the dendrogram (cophenetic
correlation C) and the scores for the optimal clustering solution - Silhouette Coefficient (SC),
Calinski Harabasz criterion (CH) and the Davies-Bouldin value (DB) - compare.

• For the cluster evaluation criteria (SC, CH and DB), how much agreement is there regarding
the ideal number of clusters (KSC , KCH and KDB) for each respective evaluation metric. When
there is a lot of agreement, there is a clear optimal clustering solution. Also the stability of SC,
CH and DB for varying values for K is assessed. Higher stability gives more room to find the
optimal clustering solution

• How much emphasis is placed on one parameter compared to the other parameters included in
the analysis. Weight can be assigned to the parameters to place more emphasis on different
parameters in the clustering which are deemed more important. However, too much weight can
cause the clustering algorithm to miss some essential details, which may become problematic in
further stages of this report.

F.1. Combination 1: Significant Wave Height
The first combination of wave parameters includes the primary dominant wave direction (θ1), secondary
dominant wave directions (θ2), the number of dominant wave directions at the grid point (Nθ) and the
99.5 percentile level for significant wave height (Hm0,P99.5).

Configuration 1.1
For configuration 1.1, most weight was assigned to Hm0,P99.5. Analyzing the clustering results (see
Figure F.1), the following comments can be made:

• When comparing the scores for C, SC, CH and DB for average and ward linkage, it can be
observed that Average linkage produces the better dendrogram followed by Ward linkage. When
comparing the SC, CH and DB, it can be seen that Ward and Average linkage have similar
scores for SC and DB. However, the score for CH for Ward linkage is much higher than for
Average linkage.

• For both linkage mechanisms (Ward and Average), there is some disagreement regarding the
ideal number of clusters as determined by the internal evaluation metrics. Therefore, finding
an optimal clustering solution difficult. However, the values for SC and DB are quite stable for
varying (high) values of K, meaning that a compromise can be found without losing too much
”cluster quality.”

147
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Figure F.1: Clustering results for configuration 1.1 using average (top) and Ward (bottom) linkage mechanisms.

• Average linkage places a lot of emphasis on cluster divisions based on Hm0,P99.5. This can be
especially noticed when studying the area between the central North Sea and the German Bight
of the German Blight. One would expect a division based on the primary dominant wave direction
(see Figure 4.8).

• For Ward linkage, although there is more division on wave direction (see cluster division based on
primary dominant wave direction in the German blight, there are still some areas with no cluster
divisions where one would expect different wave directions to prevail. Also, there is a explainable
cluster division in the central North Sea.

Due to the superior values ofCH for Ward linkage over Average linkage, and the better cluster divisions
based on θ1, θ2 and Nθ, it is decided that the best clustering solution for this configuration is by using
Ward Linkage. Due to the sharp rise in the CH plot (see Figure F.1), it is decided the ideal vor K is 50.

Configuration 1.2
Compared to configuration 1.1, more weight was moved fromHm0,P99.5 to the parameters for dominant
wave direction. Analyzing the clustering results (see Figure F.2), the following comments can be made:

• When comparing the scores for C, SC, CH and DB for average and ward linkage, it can be
observed that Average linkage produces the better dendrogram. The quality of the dendrogram
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Figure F.2: Clustering results for configuration 1.2 using average (top) and Ward (bottom) linkage mechanisms.

for Ward linkage is even reduced when comparing it with configuration 1. When comparing the
SC, CH and DB, it can be seen that Ward and Average linkage have similar scores for SC and
DB. However, the score for CH for Ward linkage is much higher than for Average linkage (more
than twice as high).

• For Average linkage, all scores for SC, CH and DB agree that the optimal number of clusters K
is 50. For Ward linkage, SC does not agree with CH and DB for the ideal number of clusters,
therefore making an optimal clustering solution difficult.

• Average linkage places a lot of emphasis on the wave height when clustering. This can be espe-
cially noticed when studying the area of the German Bight. One would expect a division based
on the primary dominant wave direction (see Figure 4.8).

• For Ward linkage, although there is more division on wave direction (see cluster division based on
primary dominant wave direction in the German blight, there are still some areas with no cluster
divisions where one would expect different wave directions to prevail. Also, there is an inexplain-
able cluster division in the central North Sea which cannot be attributed to either Hm0,P99.5 or the
wave direction parameters.

Although there is a clear agreement in the ideal number of clusters for Average linkage, we still decided
that Ward linkage is the better option for this configuration. This is decided based on the better subdi-
vision for the wave direction parameters and the higher CH score for Ward linkage than for Average
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Figure F.3: Clustering results for wave parameter combination 1, weight configuration 3 and average (top) and Ward (bottom)
linkage mechanisms.

linkage. However, it must be noted that neither clustering solution performs extremely well for this
configuration

Configuration 1.3
Compared to configuration 1.3, equal weight was assigned to all parameters. Analyzing the clustering
results (see Figure F.2), the following comments can be made:

• It can be observed that Average linkage produces the better dendrogram based on the C−score,
again followed by Ward linkage. When comparing the SC, CH andDB, it can be seen that Ward
and Average linkage have similar scores for DB. However, the score for SC and CH for Ward
linkage are (much) higher than for Average linkage (CH is more than 3 times as high).

• For Ward linkage, all scores for KSC , KCH and KDB agree that the optimal value for K is 50. For
Average linkage, SC does not agree with CH and DB for the ideal number of clusters. However,
values for SC are stable for varying values of K, making it possible to find a good clustering
solution for this configuration.

• Despite the equal weights assigned to all parameters, average linkage still results in a lot of cluster
division based onHm0,P99.5. Once again, the area of the German Bight seems problematic. One
would expect a division based on θ1 there.
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Figure F.4: Clustering results for wave parameter combination 1, weight configuration 4 and average (top) and Ward (bottom)
linkage mechanisms.

• For Ward linkage, there are clear cluster divisions seen in the German Bight as well as near the
coast of Norway. Also, there still is an in-explainable cluster division in the central North Sea
which cannot be attributed to either Hm0,P99.5 or the wave direction parameters.

In the end, due to the superior scores for SC CH andDB, the clear agreement on the ideal value for K
and the clear cluster divisions based on wave direction parameters and Hm0,P99.5, the ideal clustering
solution for this configuration is Ward linkage with K = 50.

Configuration 1.4
In configuration 1.4, more weight is assigned to the wave direction parameters compared to Hm0,P99.5.
Analyzing the clustering results (see Figure F.4), the following comments can be made:

• When comparing linkage mechanisms, it can be observed that Average linkage produces the
better dendrogram based on the C−score. Also when comparing the results for SC CH andDB,
it can be seen that Average and Ward clustering have similar results. The CH score for Ward
clustering is still better than for Average clustering.

• For Average linkage, all scores for SC, CH and DB agree that the optimal number of clusters
K is 50. For Ward linkage, there is some disagreement on the ideal number of clusters, making
clustering potentially more difficult.
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Figure F.5: Clustering results for wave parameter combination 1, weight configuration 5 and average (top) and Ward (bottom)
linkage mechanisms.

• Despite the higher weights for wave direction parameters, Average linkage does not seem to
place too much emphasis on the wave direction parameters. Cluster divisions are well defined
by both differences in wave height and dominant wave direction.

• Ward linkage seems to place more emphasis on the wave direction. This can be noticed in
the Skagerrak and to the South of the English coast. Here subdivisions are made on the wave
directions where not necessarily a division would be expected.

Although, Ward linkage shows better performance for SC, CH and DB, Average linkage gives bet-
ter clustering results for this configuration. This is mainly based on the established cluster divisions
(see Figure F.4), the C score for Average linkage and the fact that the evaluation criteria have a clear
agreement on the ideal number of clusters. The ideal value for K is 50.

Configuration 1.5
In configuration 1.5, most weight is assigned to the wave direction parameters compared to Hm0,P99.5.
Analyzing the clustering results (see Figure F.5), the following observations can be made:

• When comparing the linkage mechanisms, it can be observed that Average linkage produces the
better dendrogram based on C followed by Ward linkage. Looking at SC, CH and DB, Ward
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linkage performs much better for both SC and CH, whereas Average linkage gives better results
for DB.

• For both Average and Ward linkage, there is much disagreement between the ideal number of
clusters, making it difficult to find an ideal number of clusters. Especially for Average linkage,
it can be observed that KSC , KCH and KDB show a very wide range in their respective ideal
number of clusters.

• For Average linkage, it can be observed that there is a lot of emphasis placed on the division
based on the dominant wave directions rather than the wave height. Especially towards the
south of the English coast, and near the coast of Norway, one might expect a subdivision based
on Hm0,P99.5, which cannot be observed in Figure F.5.

• The clustering map for Ward linkage is very comparable to the clustering map for ward linkage
in configuration 3. Some good distinctions based on both the dominant wave directions and
significant wave height can be observed. Still, there is the in-explainable cluster division in the
central North Sea.

Based on the findings for this clustering configuration, it can be stated that Ward linkage is the better ap-
proach for this configuration, due to its superior clustering output, better performance for the evaluation
metrics and the better agreement between the ideal number of clusters.
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Figure F.6: Clustering results for wave parameter combination 2, weight configuration 1 and average (top) and Ward (bottom)
linkage mechanisms.

F.2. Combination 2: Significant Wave Height and Peak Period
The third parameter combination includes the dominant direction parameters (θ1, θ2, Nθ) as well as the
significant wave height (Hm0,P99.5) and peak period (TP ) for waves exceeding the 99.5 percentile level
for significant wave height.

Configuration 2.1
In configuration 2.1, most weight was assigned to Hm0,P99.5 and TP . See Figure F.6 for the clustering
results. Whilst analyzing configuration 2.1, the following observations were made:

• Comparing the values for C between the different linkage mechanisms shows that Average gives
the best performing dendrograms followed by Complete linkage. However, Ward outperforms
Complete linkage regarding SC, CH and DB, thus it was decided to analyze Ward instead. Re-
garding the internal evaluation criteria, Ward performs much better for SC and CH, with CH
being twice as high for Ward linkage. DB shows better results for Average linkage.

• For both Average and Ward linkage, there is much disagreement regarding the ideal number of
clusters. This makes it difficult to find an ideal number of clusters for this configuration. Espe-
cially for Average linkage, it can be observed that KSC , KCH and KDB show a very wide range.
Especially CH shows a lot of instability for varying values of K.
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Figure F.7: Clustering results for wave parameter combination 2, weight configuration 2 and average (top) and Ward (bottom)
linkage mechanisms.

• In Figure F.6, it can be seen that Average linkage places emphasis on TP and Hm0,P99.5. This is
not surprising given the assigned weight distribution. However, for an optimal clustering solution,
one would prefer more cluster divisions based on the wave direction parameters.

• For Ward linkage, it can be seen that already more cluster divisions based on wave directions
can be identified. This is comparable with results found for configurations 1.1.

Based on the findings for this clustering configuration, it is decided that Ward linkage with K = 50 is
the best clustering solution. This is mainly due to the superior scores for CH and SC and the better
cluster divisions found in the clustering maps. Although it must be said that neither linkage mechanism
scores particularly well for this weight configuration.

Configuration 2.2
In configuration 2.2, weight was shifted from HM0,P99.5 and TP to the wave direction parameters. See
Figure F.7 for the clustering results. Whilst analyzing configuration 2.2, the following observations are
made:

• Comparing the values for C shows that Average and Complete linkage give the best performing
dendrograms. Once more, Ward outperforms Complete linkage regarding SC, CH and DB,
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thus it was decided to further investigate Ward instead. Comparing the internal evaluation criteria
shows that Ward performs much better for SC and CH. average linkage shows better values for
DB.

• The values for KSC , KCH and KDB show that there still is not that much agreement regarding
the ideal number of clusters for this configuration. The values for KSC , KCH and KDB for Ward
linkage show preference for 50 clusters. For Average linkage there is still a lot of disagreement
regarding the ideal number of clusters.

• Even though more weight is added to the wave direction parameters, it can be seen that Average
linkage places emphasis on cluster divisions based on TP and Hm0,P99.5 (see Figure F.6). This
is not surprising given the weight distribution. However, for an optimal clustering solution, one
would prefer more cluster divisions based on the wave direction parameters as well.

• For Ward linkage, it can be seen that already more cluster divisions based on wave directions
can be identified.

Based on the findings for this clustering configuration, it is decided that Ward linkage with K = 50 is
clearly the best clustering solution. This is mainly due to the superior scores for the internal evaluation
metrics SC, CH, the better agreement for the ideal number of clusters and the better cluster divisions
found in the clustering maps.

Configuration 2.3
In configuration 2.3, all parameters have been assigned equal weight. See Figure F.7 for the clustering
results. Whilst analyzing the results for configuration 2.3, the following observations were made:

• Based on the values for C, it is clear that Average and Ward linkage give the best performing
dendrograms. Further analysis of the internal evaluation metrics, pointed out that average and
ward linkages also performed best for SC, CH and DB. Comparing Average and Ward linkage
shows that Ward linkage has better values for SC and CH. Average linkage and Ward linkage
show similar values for DB.

• When comparing the values for KSC , KCH and KDB , it appears that there is better agreement
over the ideal number of clusters for Average linkage. Also, CH is not stable for higher numbers
of clusters. Ward linkage on the other hand shows much better results in that KSC , KCH and
KDB are much closer together. Also, SC and DB are more stable for higher number of clusters
making it easier to find an optimal clustering solution.

• Even though equal weight is distributed among all parameters, it can be seen that Average linkage
put emphasis on divisions based on TP and Hm0,P99.5 (see Figure F.6). However, For a useful
clustering division, one would prefer more cluster divisions based on the wave direction parame-
ters as well. Once again the cluster divisions West of the Danish coast seems to be problematic
for average clustering.

• For Ward linkage, it can be seen that already more cluster divisions based on wave directions
can be identified.

Based on the findings for this clustering configuration, it is decided that Ward linkage with K = 50 is
the best clustering solution. This is mainly due to the superior scores for CH and SC and the better
cluster divisions found in the clustering maps. combined with the fact, because the values KSC , KCH

and KDB lie closer together for Ward linkage than for Average linkage, we can be certain that this is
the best clustering solution for this configuration.

Configuration 2.4
In configuration 2.4, more weight has been assigned to thewave direction parameters than onHM0,P99.5

and TP . The clustering results can be found in Figure F.9. About the clustering results for this configu-
ration, the following comments can be made:

• The values for C show tat Average and Ward linkage produce the best dendrograms. Comparing
Average andWard linkage shows that Ward linkage shows better values for SC andCH. Average
linkage shows better values for DB.
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Figure F.8: Clustering results for wave parameter combination 2, weight configuration 3 and average (top) and Ward (bottom)
linkage mechanisms.

• When comparing the values for KSC , KCH and KDB , It became apparent that there is a lot of
disagreement on the ideal number of clusters, especially for Average linkage. Also both CH and
DB are not stable for higher numbers of clusters. Ward linkage shows more agreement regarding
the number of clusters. Especially KSC is much lower than KCH and KDB . However, both DB
and SC are more stable for higher number of clusters. For K = 50, the value for SC is almost the
same as for KSC .

• Average linkage shows to place high emphasis on cluster divisions based on the dominant wave
directions. This is comparable with what was found for configuration 1.4. This can be noticed
for points of the coast of Norway and to the South of Norway (see Figure F.9). Here one would
expect cluster divisions based on Hm0,P99.5. For a useful clustering division, one would prefer
more cluster divisions based on HM0,P99.5 and TP as well.

• Ward linkage shows better cluster divisions based on dominant wave directions and HM0,P99.5

and TP . However, still some emphasis seems to be placed on the dominant wave directions. This
is especially apparent south of Norway, at the entrance of the Skagerrak. Here cluster divisions
are made based on dominant wave directions, while based on Figure 4.8, this does not seem
necessary.

Based on the findings for this clustering configuration, it is decided that Ward linkage with K = 50 is
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Figure F.9: Clustering results for wave parameter combination 2, weight configuration 4 and average (top) and Ward (bottom)
linkage mechanisms.

the best clustering solution. This is mainly due to the superior scores for CH and SC and the better
cluster divisions found in the clustering maps. combined with the fact, because the values KSC , KCH

and KDB lie closer together for Ward linkage than for Average linkage, we can be certain that this is
the best clustering solution for this configuration.

Configuration 2.5
In configuration 2.5, most weight was assigned to the dominant wave directions. See Figure F.10 for
the clustering results. Whilst analyzing the clustering results, the following observations were made:

• Comparing the values for C between the different linkage mechanisms shows that Average and
Ward linkage give the best dendrograms. Average and ward linkages also gave the best scores
for SC, CH and DB. Comparing Average and Ward linkage shows comparable results for SC.
Ward scores better for CH and Average linkage shows better values for DB.

• For both Average and Ward linkage, there is much disagreement regarding the ideal number of
clusters. This makes finding an ideal number of clusters difficult. Especially for Average linkage,
KSC , KCH and KDB show a very wide range in their respective ideal number of clusters. Also,
CH and DB are unstable for higher values of K. Ward linkage also shows disagreement for the
ideal number of clusters. Especially KSC is much lower than KCH and KDB . However, both DB
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Figure F.10: Clustering results for wave parameter combination 2, weight configuration 5 and average (top) and Ward (bottom)
linkage mechanisms.

and SC are more stable for higher values of K.
• Average linkage places a lot of emphasis on cluster divisions based on dominant wave directions.
This becomes especially apparent in the Eastern parts of the North Sea, where only divisions
based on the dominant wave directions can be observed. While one would clearly expect a
division based on Hm0,P99.5 and TP as well.

• Ward linkage shows better cluster divisions based on dominant wave directions and HM0,P99.5

and TP . However, still some emphasis seems to be placed on the dominant wave directions. This
is especially apparent south of Norway, at the entrance of the Skagerrak. This is comparable with
the clustering results found for configuration 2.4.

Based on the findings for this clustering configuration, it is decided that Ward linkage with K = 50 is
the best clustering solution. This is mainly due to the superior scores for CH and SC and the better
cluster divisions found in the clustering maps. Although it must be said that neither linkage mechanism
scores particularly well for this weight configuration.
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