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SUMMARY

Flood risk analysis is necessary to make smart, informed decisions about which risk re-
duction measures deserve priority. When levee systems play a key role in flood protec-
tion, these decisions often translate to which levee improvements should be carried out
first. In flood risk analysis, the probability that a levee system fails is a critical compo-
nent, but one that is wrought with uncertainty. Much research has focused on how to
calculate the probability of system failure. However, for levees, what is typically seen in
practice is a simplification of the system to make calculating the system failure proba-
bility easier.

In the Netherlands, over 30 years of research has led to a rigorous methodology for
calculating the probability of levee system failure, which has been encoded into the
software Hydra-Ring. Two key algorithms calculate (1) the segment failure probability
and (2) the system failure probability. The first is referred to in this dissertation as the
modified outcrossing (MO) method, and takes into account the spatial autocorrelations
within a levee segment. The latter, referred to as the Equivalent Planes (EP) method, ac-
counts for the correlation between levee segments. The methods are both approximate,
and very efficient, but a thorough description of them, as well as a verification, was lack-
ing in the literature. Furthermore, there has been a surge of interest recently in using
survival observations - the survival of a levee during an observed (high) water level - to
update levee reliability estimates. However, use of the MO and EP algorithms in combi-
nation with updating has not been explored. The implementation and accuracy of these
algorithms in combination with a survival observation are topics of current relevance.

This dissertation explores the development and use of a Bayesian network (BN) for
levee system reliability, to augment and verify the methods already in use in the Nether-
lands. BNs are a type of probabilistic graphical model, in which correlations between
variables can be seen in the structure of network. The BN selected for use in this disser-
tation works with Monte-Carlo (MC) sampling, and correlates variables in the network
using the Gaussian copula. In this sense, it can be considered a more explicit, less ap-
proximating method than the algorithms in Hydra-Ring. The BN was used to test the
MO algorithm, and MC directional sampling and exact solutions were used to test the
EP algorithm. While both methods produce some error relative to more exact MC meth-
ods, the error is not substantial, even after incorporating a survival observation. The BN
was applied to two case studies in the Netherlands, to calculate system failure probabili-
ties due to the piping failure mechanism. In these cases survival observations were used
to improve the system reliability estimate. These applications show that not all survival
observations have equal impact on the levee system reliability estimate. It was investi-
gated under which conditions survival observations are useful. A BN was also developed
specifically for the estimation of the model uncertainty in a geotechnical failure model.
This uncertainty can dominate the failure probability estimate, and it is therefore impor-
tant to estimate it as sharply as possible. The research in this dissertation shows that us-
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ing a BN, high quality hindcasts (geotechnical model output for historic input data) can
be used together with observed failure (or survival) to substantially improve the model
uncertainty estimate, even with limited data.

The BN developed in this dissertation serves as a useful augmentation to the levee
system reliability methods currently in use. Its computation time is not prohibitively
slow, but it can be hundreds of times slower than the approximate algorithms within
Hydra-Ring. Therefore, it should not be seen as a replacement for Hydra-Ring, but rather
a yardstick which can be used to verify Hydra-Ring algorithms when results are question-
able, or when survival observations are expected to be useful.
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1
INTRODUCTION

1.1. FLOOD RISK AND LEVEE SYSTEM RELIABILITY
Floods are the most common natural disaster worldwide. According to the 2015 World
Disasters report, floods represent 45% of all natural disasters over the period 2005-2014.
They are dangerous, potentially lethal, and extremely costly, not to mention the psycho-
logical damage they inflict on victims. Each year (on average) during the period 2005-
2014, 5,900 people died due to floods, 87 million people were affected, and 34 billion
U.S. dollars of damage was incurred.

Levee systems are a common preventative strategy to reduce flood risk. Often, sev-
eral sections of a levee system may be in need of improvement, but limited financial
resources make it impossible to improve them all. In the past two decades there has
been a strong move towards risk-based approaches of flood management, in which both
the probability of flooding and the consequences are accounted for. Risk analyses allow
decision-makers to best determine where to allocate funds. For example, a weak levee
that is protecting agricultural land will probably have less risk associated with it than a
levee in moderate condition that protects residential communities or a business district.
Knowing the risk associated with the reaches in a levee system allows flood managers to
prioritize improvement measures. However, risk estimates are usually subject to large
uncertainty ([1], [2], [3]), which makes it difficult to come to policy decisions or decide
on improvement measures ([4]). One of these sources of uncertainty is the reliability of
levee systems, which is the focus of this dissertation. A poor estimate of the reliability of
a levee system leads to a poor estimation of the flooding probability, and in turn, a poor
estimate of risk.

The reliability of a levee is the probability that it will maintain its flood protection
function; it is the probability that the levee will not fail. It is related to the failure prob-
ability (P f ) of the levee in that it equals 1−P f . A levee system is a long spatial extent of
levees, usually comprising a number of statistically homogeneous segments. When cal-
culating the risk of a certain protected area, the probability of failure of the entire system
of levees protecting that area must be calculated. Figure 1.1 presents an illustrative fault

1
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2 1. INTRODUCTION

Levee System Fail

Segment 1 Fail Segment 2 Fail Segment n Fail

Mech 1

Sub 1 Sub 2

Mech 2 Mech 3 Mech 1 Mech 2 Mech 3 Mech 1 Mech 2 Mech 3

Sub 1 Sub 2 Sub 1 Sub 2

…

Figure 1.1: Example of a fault tree, showing the components of levee system reliability, and the ‘and’ (orange)
and ‘or’ (blue) gates. In this illustration, the system fails if any of the segments fail. Each levee segment can
fail if any of three mechanisms occurs (Mech 1, Mech 2 and Mech 3). The second mechanism is a system of
two sub-mechanisms (Sub 1 and Sub 2) connected by an ‘and’ gate, which means both must occur in order for
Mech 2 to occur.

tree diagram, which shows the connection between components of the system and the
system failure probability. In the illustration, system failure is connected to the segment
failures via an OR gate. This means that if any of the segments fails, the system will fail.
Similarly, each segment failure is connected to three failure mechanisms, also by an OR
gate, meaning that if any of the mechanisms occurs, the segment will fail. One of the fail-
ure mechanisms in the illustration is further connected to two sub-mechanisms via an
AND gate. This means that both sub-mechanisms must occur for the failure mechanism
to occur. Section 1.2 describes methods to calculate the probability of such systems.
Some basic concepts in reliability analysis that are relevant to this thesis are provided in
Appendix B.

1.2. METHODS TO CALCULATE LEVEE SYSTEM RELIABILITY
System reliability is notoriously complex to compute, due to the interdependence of
system components. In levee system reliability, the interdependency arises from the
shared soil and load variables (for dependence between failure modes), and their spatial
correlation (for dependence between segments). The system failure probability is only
straight-forward to calculate in the trivial cases in which all of the components are either
fully correlated or entirely independent - which is almost never the case in levee systems.
Appendix A provides background about why calculation of the system failure probability
becomes more challenging when components are correlated.

In the last two decades, a number of methods have been developed to calculate sys-
tem reliability when the system components are correlated. A detailed overview of these
methods is given in Chapter 4. However, such methods are rarely used in levee reliabil-
ity. Rather, what is often done in practice is some simplification of the system into the
trivial cases of fully dependent or completely independent components. For example, in
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3

an extensive methodology to compute flood risk at a national scale in the UK ([5]), three
assumptions were made to avoid the complexity of spatial variability: (1) the loads are
fully correlated over all levee sections, (2) the resistance is independent between levee
sections, and (3) the resistance is fully correlated within a levee section. The first two as-
sumptions are reasonable, but the third is dubious, and can lead to underestimating the
failure probability. An aspect of levee system reliability that many practitioners grapple
with is the length effect, which looks at how the failure probability of a segment increases
relative to a cross-section. The larger failure probability at the segment level is the effect
of spatial variability within a statistically-homogeneous segment of levee, and the likeli-
hood of finding a ‘weak spot’. This is described in detail in Chapter 3. When the length
effect is accounted for (which in many cases, such as in the UK study cited above, it is
not), analysts tend to simplify the problem, again to avoid the issue of correlated com-
ponents. Examples of this are given in the introduction of Chapter 3 .

The most rigorous methodology for computing levee system reliability was devel-
oped as part of a national flood risk assessment in the Netherlands, described in [6]. The
Netherlands has a long history in probabilistic design and assessment of flood defense
systems, starting in the 1980s ([7]). A history of probabilistic flood defense reliability
modeling in the Netherlands, which really has its roots in the catastrophic flood of 1953,
is provided in Appendix C. In the late 1990s, the techniques that had been developed
were encoded in a software package known as PC-Ring, which calculates the reliability
of large flood defense systems (which may include levees, dunes, and hydraulic struc-
tures), subjected to various loads (lakes, sea, and rivers); it also considers multiple fail-
ure mechanisms. Starting in 2010, the methods in PC-Ring were recoded in the reliability
software Hydra-Ring, which has a more flexible format and includes additional function-
ality. Overviews of PC-Ring can be found in [8] and [9]. More details about how temporal
and spatial variability are accounted for in the model can be found in [10]. For a very
thorough description of the methods and algorithms within Hydra-Ring, the reader is
referred to the Hydra-Ring technical document ([11]). Because some of the algorithms
in the model have a central role in this dissertation, a brief overview of the model is pro-
vided in the following section.

FLOOD DEFENSE RELIABILITY MODEL PC-RING/HYDRA-RING
The PC-Ring/Hydra-Ring model calculates failure probabilities for levee systems in a
piece-wise fashion. It first computes component failure probabilities, and then engages
a number of combining or upscaling algorithms which combine the component failure
probabilities to arrive at the system failure probability. The model accounts for a lot of
complexity, including:

• Loads that vary at different temporal scales (e.g. water level at sea vs. discharge in
a river)

• Influence of storm surge barriers

• Statistics that vary per wind direction (e.g. wave heights at sea)

• Spatial variability within and between statistically homogeneous levee reaches
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An initial component in the PC-Ring/Hydra-Ring model is defined as a single cross-
section within a levee segment, a single wind direction, a small time scale (the time
scale of the fastest fluctuating load variable), a single failure mechanism, and a single
state of any closure barriers. These components are then iteratively combined. The
order in which they are combined depends on the way that the temporal variability of
the load is modeled. For a ‘block model’, also referred to as an FBC model for Ferry
Borges-Castanheta ([12]), the sequential steps in the algorithm are listed below, and fol-
low loosely from the Hydra-Ring Technical Reference Manual (with some extraneous de-
tail removed). The steps which are relevant in this dissertation (see boxed text in list
below) are the upscaling of the probability from cross section to levee segment (step 3),
and the combining of the failure probabilities of the failure mechanisms and segments
(step 6). The former is calculating the length effect; the algorithm is referred to in this
dissertation as the Modified Outcrossing method. The latter is the algorithm to combine
correlated components, referred to as the Equivalent Planes method. Very little about
both of these algorithms has been published or verified, which is one of the focal points
in this dissertation.

1. Determine the failure probability of the smallest component: a single cross sec-
tion, a single failure mechanism, a single wind direction, one closure situation and
a small time increment.

2. Combine failure probabilities of the closure situations.

3. Upscale the failure probability of a cross section to a levee segment

4. Combine the failure probabilities over the wind directions.

5. Upscale the failure probabilities temporally to a year.

6. Combine failure probabilities of all failure mechanisms and segments.

There are a number of references which describe the PC-Ring model. In 2003, Lass-
ing, Vrouwenvelder, and Waarts published a paper in which the general overview of the
model is provided, but where the focus is primarily on the failure mechanisms that are
included in PC-Ring ([9]). A year later, Steenbergen, Lassing, Vrouwenvelder, and Waarts
published a complimentary paper in which the focus was on the probabilistic methods
in PC-Ring ([8]). Both papers include an example application. Vrouwenvelder published
a paper in 2006 in which some of the concepts in the previous papers are reiterated,
but where there is more focus on how PC-Ring handles spatial and temporal variability.
In 2015, Jongejan and Maaskant published a paper about risk analysis in the Nether-
lands ([6]); in it, the writers clarify how PC-Ring fits into the bigger picture of calculating
risk. These papers help give glimpses into the model, its complexity, its applicability, and
some of the algorithms. However, details tend to be lacking, and a definitive resource on
PC-Ring was only made available in a series of Dutch reports. Hydra-Ring, by contrast,
has been carefully documented in an English-language technical reference manual. It
is a thorough resource for all the programming specifics, the probabilistic algorithms,
hydraulic models, and failure models contained within Hydra-Ring. For details on any
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of the aspects of Hydra-Ring not found in this dissertation, the reader is referred to this
technical reference manual ([11]).

1.3. PROBLEM STATEMENT AND RESEARCH OBJECTIVES
Flooding is the most relevant natural hazard threat in the Netherlands. The large frac-
tion of the country that is flood prone, coupled with the economic activity that occurs in
those flood-prone regions, makes the consequences of flooding severe. The state of the
flood defenses is quite literally a matter of national security. To this end, the government
has mandated that all primary flood defenses be assessed on a recurring basis to ensure
they meet strict protection standards. The research and development of tools to support
the assessments receive millions in government spending, and the tools are in a contin-
uous state of revision and improvement. The reliability model Hydra-Ring, described in
Section 1.2, is at the heart of the new set of tools for the national flood defense assess-
ments in the Netherlands. However, some of the innovative algorithms in the model,
which make it so efficient, have never been tested for accuracy.

The overarching problem that is addressed in this PhD is the lack of confidence that
can arise in computed failure probability estimates of levee systems. Generally, this hap-
pens when the intuition or experience of those familiar with the system is at odds with
the calculated failure probability. Intuition about the strength of a levee is fed by obser-
vations of either good or poor performance under higher-than-average loads. Because
safety standards in the Netherlands are expressed as very low acceptable failure proba-
bilities (e.g. annual probability of 10−4), observations in the duration of record (usually
no more than 150 years) are insufficient to prove that the levee satisfies this standard.
However, they are sufficient to build intuition. For example, when the failure probability
estimate is high, but there has been no evidence of weakness of the levee, managers and
others may become skeptical of the estimate. Similarly, if sand boils, cracks, or other
signs of weakness have been observed, a very low estimated failure probability would be
suspect. Poor estimates of the failure probability can be caused by a number of sources.
Uncertainty in the soil parameters can lead to poor (or overly wide) prior distributions.
The output of the geotechnical failure models which use these parameters are subject to
uncertainty that is difficult to quantify. When failure probability estimates are produced
which contradict observations, there is also a sense of concern about the unverified al-
gorithms in Hydra-Ring.

The research in this dissertation focuses on the development of a Bayesian network
(BN) for levee system reliability that can use evidence to improve reliability estimates
and reduce uncertainty in the soil parameters, at the system scale. It also focuses on
the verification of two of the key algorithms in Hydra-Ring, one of which combines cor-
related components in a system, and the other which accounts for the length effect.
The BN developed in this research plays a key role in the verification of this latter al-
gorithm. Another issue addressed in the dissertation is the uncertainty in geotechnical
failure models, which are used to determine if, for a given failure mode like piping or
macrostability, a levee can resist a particular load. These models are an integral part
of the reliability analysis. In the national flood defense assessments carried out in the
Netherlands, the model error is currently based on expert opinion; observations are not
explicitly taken into account. The research in this dissertation considers the use of a
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BN, together with geotechnical model hindcasts and levee performance observations,
to quantitatively estimate the uncertainty in failure model output.

To summarize, the questions the research presented in this dissertation strives to
answer are enumerated below. The chapter(s) in which the question is addressed is pro-
vided in brackets.

1. Is it possible to develop a BN that can handle the requirements of levee system
reliability? [Chapter 2]

2. How can the BN be applied to update the failure probability of a levee system,
given survival observations? [Chapters 2 and 5]

3. How does the efficiency of the BN compare with the efficiency of the algorithms in
Hydra-Ring? [Chapters 3 and 5]

4. How accurate is the Hydra-Ring algorithm which combines correlated compo-
nents? [Chapters 4 and 5]

5. How accurate is the Hydra-Ring algorithm that accounts for the length effect?
[Chapters 3 and 5]

6. Are Hydra-Ring algorithms able to be used to perform inference, and are the re-
sults accurate? [Chapters 3 and 5]

7. Can a BN be used, together with geotechnical failure model hindcasts and levee
performance observations, to estimate the error in a failure model? [Chapter 6]

1.4. RESEARCH APPROACH
The first part of the PhD research is the development of a general methodology to apply
a BN to levee system reliability. BNs are becoming increasingly popular for modeling
uncertain systems with high complexity, but have not yet been applied to the problem of
levee system reliability. They are a form of graphical model, which means the variables in
the system and the dependence between them is given visually. This helps simplify the
joint distribution, because the dependence is encoded in the graphical structure, and the
variables are then specified by marginal or conditional probability distributions. A well-
known feature of BNs is their ability to perform inference, which means that information
about any part of the system can be used to improve our understanding of the rest of the
system. Such a capability is highly relevant in levee reliability modeling, where we are
burdened by a great deal of uncertainty, but often observe the performance of the levee
(e.g. for a given load, we see that the levee performed well (no damage), or poorly (cracks,
sand boils, etc)). A BN allows us to use this information to reduce our uncertainty in
system variables (like soil cohesion, friction, porosity, etc), and ultimately to improve
the reliability estimate.

Following development of the BN methodology, the BN is used to verify the length
effect algorithm in Hydra-Ring (referred to in the dissertation as the modified outcross-
ing method) via numerical examples. The algorithm which combines correlated compo-
nents - referred to herein as the Equivalent planes method - is verified via a wide range of
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numerical (synthetic) examples, using exact solutions or Monte-Carlo directional sam-
pling as a reference calculation. The use of the BN in this context is also explored and
compared with the Hydra-Ring algorithm. The BN methodology is further applied to
two case studies in the Netherlands to calculate and update the system failure probabil-
ity due to the piping mechanism. In the case studies, survival observations (i.e. observed
water level and no evidence of failure) are used to improve the system reliability estimate
as well as develop the posterior joint distribution of the soil parameters. In one of the
cases, the Hydra-Ring algorithms are applied in addition to the BN, to test the accuracy
of the system failure probability calculated with the Hydra-Ring algorithms in a real ap-
plication, both prior to and following incorporation of a survival observation. The last
issue addressed in the thesis is the challenge of estimating the uncertainty distribution of
failure model output (e.g. the stability factor estimated by a slope stability model). A BN
is developed specifically for this case, and hindcasted model results are used together
with failure and survival observations to estimate posterior uncertainty distributions.
The method is applied to synthetic data to explore the goodness of the methodology
under different conditions, and is also applied to a case study using macrostability hind-
casts and observed performance of levees in the Netherlands.

MC-BASED BAYESIAN NETWORK

Modeling the reliability of a levee system with a BN is an alternative method to the meth-
ods in Hydra-Ring. Part of the research explores the use of both methods to address the
same problem, in part to verify the Hydra-Ring methods (which contain more approx-
imations), and in part to compare efficiency of the methods. As will be described in
Chapter 2, the BN used in this dissertation works with Monte Carlo (MC) sampling, and
applies the correlation structure defined in the network using the Gaussian copula. For
the type of applications in this dissertation, the method could be considered a copula-
based MC approach. However, there are a number of advantages to the BN framework,
which are addressed in Chapter 2, Section 2.4. Still, the comparison between the meth-
ods in Hydra-Ring and the BN method can be considered a comparison between an ap-
proximative method on the one hand, and an explicitly-modeled MC method on the
other.

1.5. STRUCTURE OF THE DISSERTATION
This dissertation is structured as follows.

Chapter 2 presents the BN methodology developed as part of the current research
for calculating and updating the reliability of levee systems. In this chapter, background
about BNs is presented, their use in reliability estimation, and details about the specific
type of BN that is used in this dissertation.

Chapter 3 focuses on the spatial aspects of levee system reliability, and uses the de-
veloped BN to test the goodness of a key algorithm in the levee system reliability models
PC-Ring and Hydra-Ring: the modified-outcrossing method which computes the length
effect. The accuracy is investigated for both prior and posterior estimates of the relia-
bility, the latter resulting from survival observations; that is, a high load which a levee
survives.
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Chapter 4 investigates the accuracy of another key component in the PC-Ring and
Hydra-Ring models: the Equivalent Planes method, which is used to calculate the system
reliability of correlated components. In this chapter, exact solutions and MC approaches
are used to test the goodness of the algorithm. The alternative use of the BN is also
explored.

Chapter 5 presents two applications of the BN, to a regional and primary Dutch levee
system. The applications focus on the piping failure mechanism, with survival obser-
vations. In each case, specifics of the application highlight implementation issues and
solutions for practical use. In the case with primary levees, results are compared with
those derived using the algorithms in Hydra-Ring and PC-Ring.

Chapter 6 develops a BN methodology that is specific for estimating the uncertainty
in geotechnical failure models, based on observations. The uncertainty in these models
can often overwhelm a reliability analysis, essentially dominating the influence on the
failure probability. Historically, the uncertainty in the model output has been estimated
based on the outcome of expert meetings. This chapter presents a quantitative method
to assess and reduce the uncertainty based on observations.

Chapter 7 provides summarizing and concluding remarks, as well as suggestions for
further research.



2
GENERAL METHODOLOGY:

BAYESIAN NETWORKS IN LEVEE

SYSTEM RELIABILITY MODELING1

2.1. INTRODUCTION TO BAYESIAN NETWORKS
Bayesian networks are an intuitive way to model multivariate probability distributions.
They are a form of graphical model called directed acyclic graphs (DAGs), and consist of
nodes, which represent random variables, and arrows, which indicate dependence be-
tween variables. The idea of a Bayesian network is to simplify a multivariate integral by
coding the dependence via the graphical structure, and letting each variable be repre-
sented by a (conditional) probability distribution. For the example depicted in Figure
2.1, the Bayesian network consists of three random variables: X1, X2, and X3. In this
case, X3 depends on X1 and X2; X1 and X2 are referred to as the parents of X3 (denoted
pa(X3)), and X3 is referred to as the child of X1 and X2. Because X1 and X2 have no
parents, they are called root nodes. The Bayesian network simplifies the joint distribu-
tion representation by making use of the independence information in the graph (see
Equation 2.1)

P (X1, X2, X3) = P (X1) ·P (X2) ·P (X3|X1, X2) (2.1)

More generally, the joint density of any n variables is:

f1...n (x1, ..., xn) =
n∏

i=1
fi |pa(i )

(
xi |pa (xi )

)
(2.2)

where f1...n is the joint density over the variables x1 to xn , and fi |pa(i ) is the condi-
tional probability of xi given its parents.

1Parts of this chapter have been published as: Roscoe, K., and Hanea, A. (2015, July). Bayesian networks in
levee reliability. In ICASP12: 12th International Conference on Applications of Statistics and Probability in
Civil Engineering, Vancouver, Canada, 12-15 July 2015.

9
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3

Figure 2.1: Three-variable Bayesian Network; X1 and X2 are the parent nodes and X3 is the child node

What makes Bayesian networks particularly attractive is that they can be used to
perform inference, which means if a variable anywhere in the network is observed, we
can compute updated probability distributions of all the other variables in the network
([13]). This is very useful when observations are available and there is a lot of uncertainty
in the variables in the network. Further, the intuitive graphical structure of a BN makes
it easy for interested parties without a background in probability theory to understand
the model, while maintaining a rigorous mathematical basis ([14]). Another advantage
of the graphical structure, is that the dependence or independence of variables in the
network can be read from the structure of the network, using a concept known as D-
separation. This is important because once one or more variables in the network are ob-
served, previously independent variables can become dependent, or vice versa. When
using posterior distributions obtained from inference, it is important to take posterior
dependence into account. The concept of D-separation is described in more detail in
Appendix D.

Efficient exact and approximate algorithms are available for computing inference
in Bayesian networks ([15], [16], [17]) but many rely on the nodes being represented
by discrete (conditional) probability tables. For many applications this is not a limita-
tion (consider genetics where variables like chromosomes and blood type have discrete
states). However, when variables have a continuous distribution (as they typically do in
engineering reliability applications), they must be discretized to make use of traditional
inference algorithms. Research has focused on clever methods to perform discretization
([18], [19], [20]), but ideally it would be avoided altogether. This is because in reliability
analysis, the tails of the distribution are so important - the low-probability high-impact
values. To properly approximate the tails via discretization causes the number of dis-
cretization bins to become too large, and the computational effort too burdensome, to
be feasible ([21]). An alternative to discretization is the Mixture of Truncated Exponen-
tials ([22], [23], [24], [25]), which breaks any continuous distribution up into truncated
exponential distributions. This method shows promise at being able to capture the joint
probability distribution accurately ([21]), but it requires a lot of obscure parameters that,
in the absence of data, make eliciting expert judgment infeasible ([26]). Another issue
with discrete networks is the specification of conditional probability tables. The size of
these tables grows with the number of parent nodes and the number of states the parent
nodes can take on. Often, the conditional probability tables can become so large that ac-
curately learning the conditional probabilities from data becomes impossible. Further-
more, in reliability analyses, data is often scarce, as failures do not often occur, and elicit-
ing experts becomes fruitless when the conditional probability tables are large ([26]). In
2008 the non-parametric Bayesian network was developed ([27]), which allows variables
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to be represented by arbitrary continuous or discrete marginal distributions, and corre-
lations to be specified by (conditional) correlation coefficients, rather than conditional
probability tables. The research in this dissertation uses this non-parametric BN, which
is described in more detail in Section 2.2.

2.2. NON-PARAMETRIC BAYESIAN NETWORK

The choice to use the non-parameteric BN ([27], [26]) in this dissertation was based
on the needs of levee reliability calculations. We often have marginal distributions of
the random load and resistance variables that play a role in failure (e.g. soil properties
or river water levels), and we often have some basis for estimating correlation coeffi-
cients between variables. In particular, these are usually spatial autocorrelations, as soil
parameters are generally random processes. As will be explained in this section, the non-
parametric BN is very well suited to this type of data availability, whereas traditional, or
discrete, BNs would be overburdened by the number of parameters needed to specify
the joint distribution. The following frame gives an example of how even a simple net-
work of only 20 spatially autocorrelated nodes can overburden a discrete network.

Consider an example of a soil parameter that is important to the piping failure mechanism,
k, which is the permeability of the sand layer under a levee. Suppose we have estimated
the marginal probability density using measurements, and a parameter dx , the correlation
length, which describes the strength of the spatial autocorrelation. Let us consider the au-
tocorrelation function in Eq. 2.3, which describes the correlation of a variable with itself at
another location in space. It depends on the longitudinal distance between two points (∆x),
and the parameter dx .

ρ (∆x) = exp

((
−∆x

dx

)2)
(2.3)

Now suppose that we are representing a levee by 20 cross sections, each separated by some
distance∆x. The network for the spatial distribution of k is captured in Figure 2.2. According
to Eq. 2.3, each node will be correlated with every other node in the network.

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k 11k 12k 13k 14k 15k 16k 17k 18k 19k 20k

Figure 2.2: BN for the multivariate spatial distribution of k, with 20 cross sections representing a levee
segment.

In the network illustrated in Figure 2.2, the root node is k1, which in a traditional network
would be represented by a marginal probability table. The node furthest to the right, k20, has
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19 parents (k1, ...,k19). Even if the marginal distribution of k was discretized very coarsely,
with only five bins, the conditional probability table for k20 would have 520 = 100 trillion en-
tries. Such a table is infeasible to parameterize, not to mention inaccurate due to the coarse
discretization of the marginal distributions.

The non-parametric BN ([28], [29],[30]) was developed to address some of the short-
comings in traditional networks. The name ‘non-parametric’ is meant to emphasize the
fact that no parametric form of the joint distribution is necessary. A good comparison
with other hybrid networks, as well as recent applications using the non-parametric hy-
brid BN, are provided in [26]. Specific attributes that are useful for levee reliability are
that the non-parametric BN describes nodes in the network with marginal (continuous
or discrete) distributions, specifies arcs in the BN with correlation coefficients, and cal-
culates the dependence structure among the variables using copulas.

Copulas were first introduced by Sklar ([31], ([32])) as a convenient way to build mul-
tivariate probability distributions, because they separate the dependence structure from
the marginal distributions. The word “Copula" means “link" in Latin, and copulas lit-
erally link the marginal distributions together to form the joint distribution. Consider a
random vector X = (X1, ..., Xn), with marginal distribution functions F1, ...,Fn , and a joint
distribution function F1,...,n . A copula C is a joint distribution function that operates on
uniform random variables, and satisfies Eq. 2.4.

F1,...,n (X1, . . . , Xn) =C (F1 (X1) , . . . ,Fn (Xn)) (2.4)

There are many popular copulas, which differ most notably in how they describe tail
correlation (see [33] and [34]). The choice of copula is usually determined by observing
the tail dependence in data. The non-parametric BN can theoretically take any copula
to represent the dependence structure, but using the Gaussian copula makes perform-
ing inference more efficient. This is because the Gaussian copula inherits most of the
properties of the Gaussian distribution, which in turn allows for analytical derivations
of any conditional distributions. In the reliability modeling described in this chapter,
the Gaussian copula is used to describe the spatial autocorrelation of the resistance vari-
ables. While not proven with data, this description of the correlation is expected to be
reasonable, because it does not impose any extra correlation in the extremes (tails) of
the distribution, which is appropriate for spatial autocorrelation (i.e. the distance de-
termines the strength of the correlation, not the extremity of the value of the resistance
variable).

In reliability analysis, it is common to use the Nataf or Rosenblatt transformation
to describe and sample correlated variables. Recent publications have shown that the
classic version of Nataf and the Rosenblatt transformations are equivalent to using the
Gaussian copula (see [33] and [35]), which is used this dissertation.

One constraint in using the Gaussian copula is that the correlation matrix be pos-
itive definite. In the example in Figure 2.2, this would be guaranteed because the au-
tocorrelation function in Eq. 2.3, which is used to calculate the correlations between
nodes, is a valid positive definite correlation function. When correlations are based on
expert opinion, it is recommended to elicit conditional rank correlations, which for the
Gaussian copula can be transformed into Pearson product-moment correlations, using
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recursive formulas described in [36]. The reason for this is that experts may choose any
conditional rank correlation between -1 and 1, and the transformation algorithms will
always guarantee positive-definiteness. In [29], Hanea showed that conditional copulae,
together with the one-dimensional marginal distributions and the conditional indepen-
dence statements implied by the graph uniquely determine the joint distribution.

2.3. METHODOLOGY

This section describes the methodology to construct, sample, and perform inference
in a BN for levee reliability. This method is presented for the case that failure of the
levee is described by a formula (such as the piping failure mechanism). BNs can be ex-
cellent tools in cases where the failure mechanism is not analytically formulated. How-
ever, it would require some preprocessing, and falls outside the scope of this disserta-
tion. Specifically, the geotechnical model describing failure would need to be used to
extract the dependence between the input random variables and the output variables
(e.g. the limit state function). The latter would then be incorporated within the BN as
a non-functional random variable, with arcs and correlations representing the depen-
dence extracted via the geotechnical model (see [37] for an example from a different
field). Thereafter, the method as presented in this chapter could be applied.

It is useful to clarify some terminology about spatial scales. A levee system refers to
a large stretch of levees (typically tens of kilometers or more), within which are numer-
ous levee segments (typically in the order of 1 kilometer) that are considered statistically
homogeneous. This means that while the random variables (e.g. soil permeability) fluc-
tuate within the segment, the parameters of their probability distribution are constant
over the segment. The smallest spatial scale considered is a levee cross section. This
is a slice of the levee over which the values of the random variables are assumed to be
constant. Figure 2.3 illustrates a levee segment and a cross section.

S
eg

m
en

t

Cross Section

Figure 2.3: Illustration of a levee segment and a cross section.

2.3.1. RELIABILITY OF A LEVEE CROSS SECTION
The method begins by considering the reliability of a cross section. The BN is built on
the analytical representation of failure, which is often postulated as a limit state function.
Such a function, typically denoted by the letter Z , is positive when the levee is reliable
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and negative when the levee fails. A failure node is included in the network, F ai l , which
is 0 when Z ≥ 0 and 1 when Z < 0. As an example, assume that the limit state function
depends on two resistance variables: R1 and R2, and a load variable S. Figure 2.4 shows
what the Bayesian network for the failure probability of the cross section might look like.
The resistance and load variables are shown as clear circular nodes, representing input
random variables, and Z and F ai l are shown as a circular nodes with black edges, rep-
resenting functional nodes (i.e. their relationship with their parent nodes is specified by
an equation rather than a copula). Note that in this example, the random variables are
independent of each other (no arcs between them), but this does not have to be the case.

1R 2R

Z S

Fail

Figure 2.4: Example of a Bayesian network for cross sectional levee failure probability

The probability of failure for the single cross section is described by the integral in
Eq. 2.5, which is estimated using the BN. The input variables in the BN are sampled tak-
ing into account any defined correlations between variables (see section 2.2 for details).
The functional nodes are then calculated using the samples of the input variables. The
failure probability estimate P̂ f is estimated according to Equation 2.6, where N is the

number of MC samples, and fail j is the value of the failure node Fail (1 or 0) for the j th

sample. In the remainder of the dissertation, I drop the notation P̂ f in favor of P f , with
the understanding that these are estimates.

P f =
∫

Z (R1,R2,S)<0

fR1,R2,S (R1,R2,S)dR1dR2dS (2.5)

P̂ f =
1

N

N∑
j=1

f ai l j (2.6)

For a cross section in which the parent nodes (R1, R2, and S in our example) are un-
correlated, the BN for the cross section is fairly trivial. However, I consider it illustrative
because it serves as a building block for the segment BN.

2.3.2. RELIABILITY OF A LEVEE SEGMENT
Levee segments can be long, typically a few kilometers. The failure probability of a
cross section is almost always a poor representation of the failure probability of the en-
tire segment. Specifically, unless the variables contributing to failure are fully spatially-
correlated throughout the segment, the cross section failure probability will be an un-
derestimate. So instead of representing the failure probability by a single cross section,
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it is represented by multiple cross sections, and take care to account for the spatial auto-
correlation of the variables between cross sections. Continuing with the example of two
resistance variables, R1 and R2, and a load variable S, the segment failure probability is
represented by the integral in Eq. 2.7. While similar to the cross-sectional integral, the
variables R1 and R2 in Eq. 2.5 are now the vectors R1 and R2, of length n, where n is the
number of cross sections in the segment. For example, R1 =

[
R1

1 ,R2
1 , . . . ,Rn

1

]
. The integral

is therefore of dimension 2·n+1, assuming that the load is constant over the segment. In
general, the dimension will be nR ·n +1, where nR is the number of resistance variables
in a cross section.

P f ,seg =
∫

Z<0

fR1,R2,S (R1,R2,S) dR1dRs dS (2.7)

Figure 2.5 shows what the BN would look like for a levee segment represented by
three cross sections (for the case where the cross-sectional BN is described in Figure
2.4). In the figure, superscripts indicate the cross section. So for example, R2

1 indicates
variable R1 in the second cross section. F ai l 1, F ai l 2, and F ai l 3 represent the failure
nodes for the first, second, and third cross sections, respectively. These cross-sectional
failure nodes are then connected to a failure node for the entire segment, F ai l Seg , a
binary node (1 for failure and 0 for non-failure), described in Eq. 2.8.

1
1R
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3
1R

2
2R

3
2R

1Z 2Z 3Z

2Fail
1Fail 3Fail

SegFail

Figure 2.5: BN for a levee segment, in this example represented by three cross sections, each with autocorre-
lated resistance variables R1 and R2, and one common load variable S

F ai l Seg =
{

0, if ∀i F ai l i = 0
1, if ∃i s.t. F ai l i = 1

(2.8)
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The number of cross sections needed to adequately estimate the failure probability
of the segment will depend on the autocorrelation of the resistance variables, the length
of the segment, and the magnitude of the prior failure probability. The number of cross
sections representing the segment is iteratively increased, each time computing the fail-
ure probability of the segment, until additional cross sections no longer change the esti-
mate. The method requires a defined stop criterion, such that when the criterion is met,
the number of cross sections is considered sufficient to represent the spatial variability of
the segment. In this dissertation, I defined a stop criterion such that the segment failure
probability estimates from the previous ni ter iterations all lie within the 95% confidence
interval of the current estimate. The number of previous iterations to include, ni ter , can
be based on visual judgment. The specifics are discussed in more detail in Chapter 3.

Arcs between resistance variables are specified with Pearson product moment corre-
lations, which can be estimated using data and one of a number of valid autocorrelation
functions ([38]). The one used in this research is commonly used for resistance variables
in the Netherlands ([8], [10],[6]), and depends on the distance between variables ∆x and
the parameter dx (see Eq. 2.9).

ρ (∆x) = exp

(
−∆x2

d 2
x

)
(2.9)

Once the marginal distributions of the input random variables have been specified,
as well as the equations of the functional variables and the correlation matrixℜ= {

ρ j k
}=

ρ
(
∆x j k

)
(see Eq. 2.9), where ∆x j k is the distance between R j

i and Rk
i , the joint distribu-

tion over the random input variables can be sampled (described in Section 2.3.4). Note
that the correlation function is continuous, but the correlation matrix is discrete because
the spatially continuous resistance variables have been chopped up into spatially dis-
crete cross sections. The samples are propagated through the equations for the func-
tional variables in the network, to derive the sample of F ai l Seg . The failure probability
of the system is calculated using the standard MC estimator, which in this case is the
mean over the samples of F ai l Seg .

2.3.3. RELIABILITY OF A LEVEE SYSTEM

Once the number of cross sections that will represent each of the levee segments in our
system is determined, the BN of the entire levee system can be built. This essentially
consists of connecting the BNs of the segments. Figs. 2.6 and 2.7 show two possible con-
figurations for a system of two segments, each of which are represented by three cross
sections. These figures again consider the example of two resistance variables (R1 and
R2) and one load variable S in each cross section. Note that in real applications, the
number of cross sections may be quite large, but it is kept limited here for easy visualiza-
tion. When building the system network, it is important to identify which variables are
correlated between levee segments. In general, levee segments are typically delineated
by considering the length over which variables are statistically homogeneous. This often
comes down to notable physical attributes, for example a change in stratigraphy. In such
cases, it is reasonable to consider resistance variables between segments to be indepen-
dent. On the other hand, load variables, like the water level in a river, are typically highly
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correlated between neighboring segments. They may be constant over the system (Fig.
2.6), or they may be spatially variable, but highly correlated (Fig 2.7).
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Figure 2.6: Bayesian network for a levee system, in this example represented by two levee segments, each
containing three cross sections. The variable S is constant over the length of the system.

2.3.4. SAMPLING

If the resistance variables are autocorrelated, but there is no correlation between the dif-
ferent resistance variables, the spatial distribution of each resistance variable is sampled
as follows. For a segment with n cross sections, [U1, ...Un] is sampled from the multivari-
ate standard Normal distribution Φℜ (0,ℜ), where 0 is an n ×1 vector of means equal to
zero, and ℜ is the n ×n linear correlation matrix, which in the case of the (multivariate)
standard Normal distribution is equal to the covariance matrix. To translate these back
to the resistance variable of interest, let us consider the example of variable R1. The vari-
ables [R1

1 , ...,Rn
1 ] are derived using their inverse marginal distributions: R i

1 = F−1
R1 (Φ (Ui )),

i = 1, ...,n, whereΦ is the standard Normal distribution function.
If there is correlation between variables within a cross section, then this needs to

be accounted for in such a way that the entire correlation matrix of the system remains
positive definite. There are potentially numerous ways to accomplish this; Appendix G
presents a solution derived as part of this dissertation.

2.3.5. INFERENCE USING OBSERVATIONS

Inference is performed differently depending on the type of variable that is observed: an
input variable or a functional one. An input variable is described by a marginal probabil-
ity distribution, whereas a functional variable is described by an equation which oper-
ates on the input variables. In the sections below I describe how inference is performed



2

18
2. GENERAL METHODOLOGY: BAYESIAN NETWORKS IN LEVEE SYSTEM RELIABILITY

MODELING

11
1R

12
1R

12
2R

13
2R

13
1R

11
2R

11Z 12Z 13Z

1S

11Fail 12Fail 13Fail

1SegFail

21
1R

22
1R

22
2R

23
2R

23
1R

21
2R

21Z 22Z 23Z

2S

2SegFail

21Fail 22Fail 23Fail

SysFail

Figure 2.7: Bayesian network for a levee system, in this example represented by two levee segments, each
containing three cross sections. The variable S is constant within a segment, and autocorrelated between
segments.

for three cases: (1) an observed input variable, (2) an observed functional variable, and
(3) a coupled observation of an input and a functional variable (e.g. observed water level
and levee survival).

OBSERVED INPUT VARIABLE

When one or more input variables are observed, the conditional joint Gaussian copula
(conditional on the observed variable(s)) can be analytically computed. This is straight-
forward and formulas are available ([27], section 2.4). For ease of reference, the ana-
lytical conditioning formulas are provided in the following paragraphs. The ability to
analytically condition the joint distribution is the power and benefit of using the Gaus-
sian copula (note that it is also a feature of the multivariate Normal distribution in gen-
eral). Once the conditional joint copula has been calculated, the marginal distributions
of each of the unobserved variables can be used to translate the standard variables back
into their original space.

The following discussion provides the formulas necessary to carry our analytical con-
ditioning for the Gaussian copula. Suppose we have a vector of random variables X . This
vector is first partitioned into two vectors Xa and Xb : X = [Xa Xb]T, where Xa contains
the unobserved variables, and Xb contains the observed (conditioning) variables. The

means are then partitioned, µ= [
µa µb

]T as well as the covariance matrix, which in the
case of standard normal variables is equal to the correlation matrix:
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ℜ=
[ ℜaa ℜab

ℜba ℜbb

]
(2.10)

The conditional joint distribution of Xa given the observed values of Xb (denoted
X Obs

b ) is then normally distributed with mean µ̄ and covariance matrix ℜ̄, which are
computed according to ([39]):

µ̄=µa +ℜabℜ−1
bb

(
X Obs

b −µb

)
(2.11)

ℜ̄ =ℜaa −ℜabℜ−1
bbℜba (2.12)

In the BN methodology, the (conditional) joint is constructed using standard nor-
mal variables U instead of the real-world variables X . The real observations (X Obs

b ) are

translated to the associated standard normal ‘observations’ (U Obs
b ) via:

uObs
b,i =Φ−1

(
FXb,i

(
xObs

b,i

))
(2.13)

Once the conditional joint is derived and sampled, the samples of the unobserved vari-
ables are transformed via the marginal distributions of each variable according to Eq.
2.14.

Xa,i = F−1
Xa,i

(
Φ

(
Ua,i

))
(2.14)

In the case that there is a constant observed load over the segment, and resistance
variables that are not dependent on the load (this is generally always the case), the pro-
cess simplifies because the load can simply be treated as a constant, and the resistance
variables can be sampled as they would have without a load observation.

OBSERVED FUNCTIONAL VARIABLE

When a functional variable is observed, the network is first sampled, including the func-
tional variables. This generates an empirical joint distribution over the random and
functional variables. The observation can then be imposed as a constraint on the sam-
ples. For example, suppose the limit state function is observed to be greater than zero
(indicating no failure). The joint samples of all our random variables for which Z > 0
would then be retained; these samples would serve as an empirical conditional joint
distribution. This is also known as rejection sampling, because all samples for which
our condition (Z > 0) is not met are rejected. When the variance of the posterior failure
probability estimate is too high using rejection sampling, other methods are available,
such as importance resampling ([40]), or Markov-chain Monte Carlo ([41]), but those are
not considered in this dissertation.

COUPLED OBSERVATION OF INPUT AND FUNCTIONAL VARIABLES

Coupled observations of input and functional variables are often of interest. Most no-
tably in levee system reliability, there is interest in survival observations: water level ob-
servations and survival of the levee. These coupled observations make it possible to
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update the failure probability estimate, as well as obtain useful information about the
remaining uncertain variables in the network.

In the case of coupled input and functional variables, the first step is to (analytically)
specify the conditional joint distribution, given the observed value of the input variable.
The next step is to sample the conditional joint network, and retain only those samples
that meet the observed value(s) of the functional variable (e.g. Z > 0 for survival). These
retained samples form the updated empirical posterior joint distribution over the resis-
tance variables.

REDUCIBLE VS. IRREDUCIBLE UNCERTAINTY

The primary purpose of a BN is to reduce uncertainty in a probabilistic model by using
observations. However, not all uncertainty can be reduced. Uncertainty in resistance
(soil) variables is largely due to shortage of knowledge, and is referred to as epistemic
uncertainty. This type of uncertainty is considered fully reducible; that means that given
infinite resources, it would be possible to know the value of the soil variables exactly.
By contrast, load variables vary in time. Even with infinite measurement capabilities,
one cannot know exactly what the water level in a river will be next month. That type
of uncertainty, which is referred to as aleatory uncertainty, is irreducible. The BN that
is developed and applied in this dissertation focuses on reducing the uncertainty in the
resistance variables, with the assumption that the uncertainty in their distribution is en-
tirely reducible. This is a reasonable assumption for soil variables, because the epistemic
component of their uncertainty generally dominates the total uncertainty. Thus, the im-
pact of neglecting aleatory uncertainty in resistance variables is probably small, but it
should be noted that it is not a conservative simplification. That means that neglecting
aleatory uncertainty in resistance variables results in a lower posterior failure probability
than when it is accounted for. For the load variables, the uncertainty is generally consid-
ered aleatory and thus irreducible. However, the temporal variability is specified with a
probability distribution, the parameters of which are typically fitted using limited data.
In this sense, load variables also contain epistemic uncertainty (parameter uncertainty),
which can be reduced as additional load measurements become available. The BN used
in this dissertation does not explicitly model this uncertainty, but could be expanded to
do so.

POSTERIOR DEPENDENCE

Observing the value of a variable in the network can introduce dependence between
previously independent variables, which follows directly from the graphical structure
according to the concept of D-separation, described in Appendix D. As can be seen from
Figure 2.4, R1 and R2 are marginally D-separated. That is, R1 and R2 are independent,
R1 ⊥ R2, when no other nodes in the network are observed. Once Z is observed, however,
they are D-connected, which means they are conditionally dependent, R1 6⊥ R2 | Z . This
dependence is not always easily captured with a correlation coefficient. For example,
consider a case where the limit state function is Z = R1 +R2 −S. Suppose the load S is
observed, s = sobs , and the levee survived (i.e. Z > 0). This means that R1 +R2 > sobs .
Once a value of R1 is sampled, R2 is constrained such that R2 < sobs −R1. Figure 2.8
illustrates the constrained posterior dependence between R1 and R2 for the example that
Sobs = 12. For future analysis with the posterior distribution of the resistance variables,
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care must be taken not to violate the constrained posterior dependence between them.
The simplest way to impose this relationship is to retain the joint resistance variables
samples for which Z > 0. For example, in Figure 2.8, the posterior samples (shown as
black dots) would be retained for future analysis.
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Figure 2.8: Posterior constraints on R1 and R2, imposed by the observation that Z > 0 for an observed value of
S, Sobs = 12

UPDATED FAILURE PROBABILITY

The posterior segment failure probability P post
f ,seg can be described by Eq. 2.15. It is the

probability that the spatial (multivariate) distribution Z is less than zero, given that at
the time of the load observation (tobs ), Z was greater than zero (survival observed at time
tobs ).

P post
f ,seg = P (Z < 0|Z (tobs ) > 0) (2.15)

Our posterior distribution of the resistance variables includes the condition Z (tobs ) >
0, because only joint samples for which this is the case were retained. It is therefore
only necessary to calculate the probability that Z < 0 using our joint posterior resistance
samples. The load is sampled Np times (where Np is the number of posterior resistance
samples), and calculate Z for each sample. The load varies temporally; therefore observ-
ing it at time tobs gives no information about the load at any other time (outside of the
temporally correlated window around tobs ). This is the reason it must be resampled to
calculate the posterior failure probability. The posterior failure probability is then calcu-
lated according to Eq. 2.162.

P post
f ,seg = 1

NP

NP∑
i=1

I (Z < 0) (2.16)

2The Z in Eq. 2.16 is computed with the joint posterior resistance samples
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The posterior failure probability is calculated using the samples retained after per-
forming inference. If the number of samples is insufficient to keep the variance in the
failure probability estimate low (this generally happens when the posterior failure prob-
ability is small), Importance Sampling is used, which is a method to reduce the variance
in a MC estimate, to sample the load.

Importance Sampling replaces the real load distribution fS (S) with a biased one gS (S)
that leads to a higher number of failures. The Monte Carlo output is weighted to correct
for the use of the biased distribution gS (S) so that the failure probability estimate re-
mains unbiased; see Eq. 2.17 for the importance sampling estimator, wherein N is the
number of samples, and I(·) is the indicator function.

P f ,seg = 1

N

N∑
i=1

I
(
F ai l Seg = 1

) fS (si )

gS (si )
(2.17)

The choice of the biased distribution gS (S) will depend on the problem at hand. In
general, for updating with survival observations, a reasonable choice is to translate the
distribution fS (S) so that the mean is centered on the observed (high) load Sobs .

2.4. DIFFERENCE BETWEEN THE BN AND MONTE CARLO
The BN methodology described in the previous section is essentially a large MC exer-
cise, in which the Gaussian copula is used to correlate many of the samples. This begs
the question: what exactly constitutes a BN? Any BN consists of a number of computa-
tion steps, written in programming code, that could be carried out without the graphical
representation of the network. In my opinion, the network is essential in that it allows
the analyst to clarify the connections between variables in the joint distribution. While
not strictly necessary, it would be a handicap to proceed without that representation.
The BN not only clarifies the connections (correlations) within the joint distribution to
the probabilistic analyst, but also to anybody that analyst must communicate with. Er-
rors in probabilistic set up can be caught by experts without a probabilistic background.
For example, a geotechnical expert may disagree about a variable being considered con-
stant over a segment; they may argue that while it varies slowly, it will vary somewhat
over the length of a segment. The expert has the opportunity to input his knowledge,
because the network representation makes it obvious if a variable is constant over a seg-
ment. I would argue that without such a network, the geotechnical expert (without a
probabilistic background) would never have understood the problem clearly enough to
realize this mistake was being made. This is one example, but other errors are also pos-
sible: uncorrelated variables that should be correlated, or variables that are not present
in the representation that should be there (e.g. model uncertainty). Another advan-
tage of the network representation is that the dependence/independence among vari-
ables can be read from the structure of the graph, both before and after one or more of
the variables in the network have been observed. Posterior dependence relationships
will differ from the prior; that is, variables which were independent prior to observa-
tions may become correlated once those observations are included, and vice versa. The
concept of D-separation, which is explained in detail in Appendix D, allows one to read
these prior and posterior independence/dependence relationships from the graphical
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structure. Understanding such relationships without a network, particularly after the
inclusion of observations, will become cumbersome and prone to error, especially for
large networks. For these three reasons, that the network (1) clarifies the problem to the
analyst, (2) allows non-experts in probability theory to contribute to or verify the struc-
ture of the network, and (3) allows the analyst to clearly determine prior and posterior
independence/dependence among variables in the network, I find the network repre-
sentation essential, and highly valuable. In the remainder of the dissertation, I refer to
the methodology as the BN methodology.

2.5. CONCLUSIONS
In this chapter, I have provided background about different types of BNs, specifics about
the non-parametric BN used in this dissertation, and a detailed methodology for de-
scribing a spatially extensive levee system using the BN. I described how the network is
built for a cross section, for a statistically homogeneous segment, and for a system. I
described how the network is sampled, accounting for correlations between variables,
to derive samples of the multivariate (spatial) distribution over all the variables in the
network, and how the cross-sectional, segment, and system failure probability are cal-
culated. I described how inference is performed in the network based on different types
of observations, the potential need for importance sampling in the estimation of the
posterior failure probability, and the posterior dependence of the resistance variables.
Chapters 3 and 5 show numerical examples and a real-world application, respectively, of
the methodology presented in this chapter.





3
THE LENGTH EFFECT AND

BAYESIAN UPDATING:
VERIFICATION OF THE MODIFIED

OUTCROSSING METHOD1

3.1. INTRODUCTION
The length effect was first brought to light by Leonardo de Vinci, who said “Among cords
of equal thickness the longest is the least strong" ([42]). In the context of levees, where
the resistance is spatially variable, the length effect refers to the fact that as the length
increases, there is a larger distance over which to encounter a weak spot in the levee,
and thus a higher probability of failure.

Different approaches of accounting for the length effect in levees can be found in the
literature. Vanmarcke proposed a method involving first crossings ([43], [44]). A cross-
ing refers to the resistance being surpassing by the load, or equivalently the difference
between them (also referred to as the limit state function) crossing zero and becoming
negative. The method calculates the probability of such a crossing along a given length.
More pragmatic methods are also found in the literature. Bowles et al. ([45]) took the
length effect into account in a risk analysis of the Herbert Hoover Dike in Florida. In that
case, they broke up the levee into segments of about 500 m, and treated them as compo-
nents in a series system. For all failure mechanisms besides ‘piping through the founda-
tion’, they assumed the segments were independent. For piping through the foundation,
they judged that there was ‘some correlation’ between sections, and accounted for this
by taking the average of the failure probability assuming (1) full correlation and (2) com-

1Parts of this chapter have been submitted for publication as: Roscoe, K., Hanea, A., and Vrouwenvelder, T.
(2016). Levee system reliability modeling: The length effect and Bayesian updating. Submitted to Structural
Safety, 2016.
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plete independence. This approach does not clarify for which correlation such an aver-
age is valid, or how likely that correlation is to be the correct one. The risk methodology
manual developed by the U.S. Bureau of reclamation ([46]) contains guidance for the
length effect, proposed by the U.S. Army Corps of Engineers. They break up segments
into ‘characteristic lengths’ which can be considered statistically independent. They do
not specify how to estimate the characteristic length other than stating that it can be
based on statistical analysis of spatial correlations, or via expert judgment.

In the Netherlands, a modified version of the outcrossing method is used to calcu-
late the length effect, which is referred to in this dissertation as the modified outcrossing
(MO) method. It is programmed into the flood defense reliability model ([8], [10]) that
is used in national flood risk studies ([47], [6]) and to support the assessment of flood
defenses. Reliability calculations are often concerned with limit state functions, which
are defined to be negative when geotechnical failure occurs, and positive otherwise. The
MO method approximates the limit state function as a one-dimensional Gaussian ran-
dom field. It is similar to the outcrossing method of Vanmarcke ([43], [44]), but is modi-
fied to handle the non-ergodicity of the limit state function. Limited information about
the MO method can be found in [8], [10], and [48]; a detailed description is provided in
Appendix E. Parallel research is looking into theoretical details of the MO method and
its effect on design codes for flood defense systems ([49]). One of the issues addressed
in this paper is that although the MO method is an integral part of national flood risk
analysis in the Netherlands, its accuracy has not been tested. It approximates the limit
state function as a Gaussian random field, but this is generally not the case because it is
an (often non-linear) combination of resistance and load variables that are traditionally
not Normally distributed).

In this chapter, the BN methodology proposed in Chapter 2 is applied to compute
the length effect in synthetic examples. The BN is used to update the joint distribution,
and the reliability estimate, using survival observations. These are coupled observations
of a (high) water level and survival of the levee, which are available in abundance. Recent
research has looked at updating reliability estimates at a cross-section scale ([50]). This
is expanded upon in the current research by using the BN to update the reliability of a
(long) levee segment.

This chapter has two main objectives: the first is to use the proposed BN methodol-
ogy to compute the length effect in levee reliability, and the second is to use the BN to
address the accuracy/validity of the MO method, both with and without reliability up-
dating using survival observations. The computational efficiency of the two methods is
also compared.

This chapter is laid out as follows. Section 3.2 provides an introduction to the MO
method. Section 3.3 presents a numerical example via which I compare the prior and
posterior segment failure probability estimates of the BN and MO methods. Section 3.4
discusses the computational costs of both methods, and Section 3.5 presents general
conclusions. Two appendices are devoted to the MO method: Appendix E provides a de-
tailed description of the MO method. Appendix F describes how updating is performed
with the MO method.
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3.2. MODIFIED OUTCROSSING METHOD
This section provides a general introduction to the modified outcrossing (MO) method.
A detailed description of the method is provided in Appendix E. The MO method begins
with the failure probability of a cross section, P f ,C S , and estimates the segment survival
probability Ps,seg according to Eq. 3.1, where L is the length of the levee, β is the relia-
bility index (β=Φ−1

(
P f ,C S

)
), and v+(β) is the rate that the limit state crosses zero (from

positive to negative), given the reliability index β.

Ps,seg = (
1−P f ,C S

)
exp

(−L · v+(β)
)

(3.1)

In order to analytically calculate v+(β), the limit state is approximated as a one-
dimensional Gaussian random field, such that Z =β−U , where U is a standard normally
distributed variable. Details are omitted from this section, but are provided in Appendix
E. Rather, Figure 3.1 is provided to give an intuitive understanding of the crossing rate.
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Figure 3.1: Spatial variability of the limit state function Z for a strongly autocorrelated Z function (top) and a
weakly autocorrelated Z function (bottom)

Figure 3.1 illustrates the limit state function Z as a random field in one dimension
(longitudinally). The probability of having a realization for which Z < 0 increases as the
length of the segment increases. The increase is dependent on both the length of the
levee (L), and how frequently Z crosses 0 (the crossing rate). This latter quantity is de-
pendent on the spatial autocorrelation of Z . For example, as seen in Figure 3.1, a strongly
autocorrelated Z function will change slowly in space, while a weakly autocorrelated Z
function will show much more rapid change (allowing more opportunities for Z to cross
0).

The crossing rate is calculated analytically based on theory for Gaussian ergodic ran-
dom fields (see [44]). However, the limit state function is not ergodic, due to the nearly
fully-correlated nature of the load over a levee segment2. This is taken into account by

2Other variables which are fully correlated over the length of the levee segment (such as model uncertainty)
also contribute to the non-ergodicity of the limit state function.
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calculating the segment failure probability conditional on the non-ergodic part of the
limit state function, and then using the theorem of total probability to obtain the full
segment failure probability.

3.3. LENGTH EFFECT, NUMERICAL EXAMPLE
This section illustrates and compares the BN and the MO methods via a numerical ex-
ample. Both prior and posterior failure probability estimates are explored (the latter
following from a specified coupled observation of load and levee survival) for levee seg-
ment lengths of 500 m, 1000 m, 2000 m, 4000 m, and 6000 m. This section is organized
as follows: Section 3.3.1 provides details of the example, Section 3.3.2 describes the cri-
terion used to determine the number of cross sections in the BN, and Sections 3.3.3 and
3.3.4 provide results and discussion about the prior and posterior failure probability es-
timates.

3.3.1. DETAILS OF THE EXAMPLE

In this example, the cross-sectional limit state function depends on two resistance vari-
ables, R1 and R2, and a load variable S, with the functional form described by Eq. 3.2. The
BNs for a cross section and a segment represented by three cross sections are illustrated
in Figures 3.2 and 3.3. Lognormal distributions were assigned to the resistance variables,
R1 and R2, and a Gumbel distribution to the load variable S. These choices were made
to mimic realistic cases, in which resistance variables are commonly described by log-
normal distributions, and load variables by extreme value distributions (of which the
Gumbel is one). The parameters of the resistance variables are provided in Table 3.1 and
the parameters of the load variable in Table 3.2.

Z = R1 +R2 −S (3.2)

1R 2R

Z S

Fail

Figure 3.2: Example of a Bayesian network for cross sectional levee failure probability

In this example, I consider survival of the levee for an observed load of sobs = 4.38,
which corresponds to the 99% quantile of S (i.e. P (S < sobs ) = 0.99). This seemed a good
choice because it is high enough to have an impact on the posterior failure probability,
but still low enough to have been realistically observed in measurement records.
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Figure 3.3: BN for a levee segment, in this example represented by three cross sections, each with autocorre-
lated resistance variables R1 and R2, and one common load variable S

Table 3.1: Lognormal distribution parameters µ and σ, distribution mean and standard deviation (SD), and
correlation length dx for resistance variables R1 and R2

Variable Distribution µ σ mean SD dx [m]
R1 Lognormal 0.842 0.385 2.50 1 200
R2 Lognormal 1.420 0.232 4.25 1 200

3.3.2. NUMBER OF CROSS SECTIONS IN THE BN
The criterion defined for determining the number of cross sections to sufficiently repre-
sent the spatial variability of the segment is based on the width of the 95% confidence
interval3 around the prior segment failure probability estimate, P f ,seg . The number of
cross sections representing the segment were iteratively increased. To speed up the con-
vergence two steps are taken in the iterative process, so that n = 1,3,5, and so on, com-
puting the segment failure probability estimate each time. The iterative procedure is
stopped when eight sequential iterations (e.g. n = 15, n = 17, ... , n = 29) all have esti-

3This confidence interval captures the uncertainty due to the variance in Monte Carlo sampling.

Table 3.2: Gumbel parameters µ (location parameter) and β (scale parameter), and correlation length dx for
variable S

Variable Distribution µ β dx

S Gumbel 3 0.3 ∞
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mates which lie within the 95% confidence interval of the last estimate. At this point, the
asymptote is considered to have been reached, so that remaining differences between
iterations are due only to sampling variance. The number of iterations for which the es-
timates must lie within the confidence interval - in our case eight - is somewhat arbitrary,
and will require visual inspection of the results to confirm it is a good one.

The confidence interval around the failure probability estimate is computed accord-
ing to Eq. 3.3, and depends on the relative error ε of the segment failure probability
estimate.

C I = [(P f ,seg −ε ·P f ,seg ), (P f ,seg +ε ·P f ,seg )] (3.3)

The formula for the relative error (see reference [51]) is provided in Eq. 3.4; it depends
on the segment failure probability estimate, the number of samples, N , and the value k,
which is a quantile of the standard Normal distribution.

ε=
√√√√k2

N

(
1−P f ,seg

)
P f ,seg

(3.4)

So, for example, since I am interested in 95% confidence intervals, I choose the quan-
tile k such thatΦ (k)−Φ (−k) = 0.95, which is k = 1.96.

3.3.3. PRIOR SEGMENT FAILURE PROBABILITIES
The segment failure probability was computed with the BN and the MO method prior
to incorporating any survival observations. Figure 3.4 shows (for the 1000 m levee seg-
ment) how the BN estimate of the segment failure probability increases with the number
of cross sections that represent the segment, and the asymptotic behavior of the esti-
mate once the number of cross sections meets the criterion discussed in Section 3.3.2.
The confidence intervals around the BN estimate (shown in Figure 3.4) were calculated
according to Eqs. 3.3 and 3.4. The MO estimate is also shown in Figure 3.4 for compar-
ison; it is shown as a horizontal line because it is not a function of the number of cross
sections in the BN.

The BN for the 1000 m segment was represented by 41 cross sections. The failure
probability estimate is 0.0097 with confidence interval [0.0095, 0.0099]. The MO esti-
mate is 0.0096. The results for the other segment lengths can be summarized by Figure
3.5. The BN and MO estimates are in near-perfect agreement, regardless of the length of
the segment. The strong agreement between estimates is a good verification of the MO
method.

3.3.4. POSTERIOR SEGMENT FAILURE PROBABILITIES
One of the research questions in this dissertation is how well the MO method approxima-
tion holds when a survival observation is taken into account. Recall that details of the
implementation of the MO method in combination with updating are provided in Ap-
pendix F. The estimates for the failure probability of the 1000 m segment are presented
in Figure 3.6. The agreement between the MO and BN methods remains very good. The
BN estimates that P f ,seg = 1.59 ·10−3 and the MO method estimates P f ,seg = 1.63 ·10−3.
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Figure 3.4: Comparison of the BN and MO prior segment failure probability estimates, for Z = R1+R2−S, with
R1 and R2 lognormally distributed, and S Gumbel-distributed.
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Figure 3.5: Comparison of BN and MO prior segment failure probability estimates (shown together with the
1:1 line, which represents perfect agreement).

Figure 3.7 summarizes the posterior results for levee lengths of 500, 1000, 2000, 4000,
and 6000 meters. The differences between the MO and BN posterior segment failure
probability estimates remain small, though they increase slightly as the length increases.
For a 6000 m segment, the MO method estimates P f ,seg = 5.1·10−3 and the BN estimates
P f ,seg = 4.6 ·10−3, which is a difference of about 10%. This is fairly minor, and in terms
of reliability index β (where recall β=Φ−1

(
1−P f ,seg

)
), the difference is only 1%.
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Figure 3.6: Comparison of posterior segment failure probability estimates computed with the BN and MO
methods; 95% confidence intervals on the BN estimate are also indicated.

3.4. DISCUSSION

This section discusses the efficiency of the BN and MO methods in terms of computation
time4. Table 3.3 presents the computation times for the numerical example presented in
Section 3.3, for segments lengths of 500, 1000, 2000, 4000, and 6000 m. The calculation
time of the MO method does not depend on the length of the segment, and therefore
remains relatively constant (fluctuating between 0.5 and 0.7 minutes). The MO method
as applied in this chapter included a FORM and a MC analysis at the cross-sectional
level. The MC was run to obtain the (more accurate than FORM) reliability index, so that
differences between the MO and BN methods were due to the approximations in the
MO method, and not to differences in the cross-sectional reliability due to inaccuracies
due to the use of FORM. FORM was run to obtain the influence coefficients. Of the 0.5-
0.7 minutes that the MO method required, all but a few seconds were spent on the MC
calculation of the cross sectional reliability index. The BN requires more time as the
number of cross sections needed to represent the segment increases. The MO method is
clearly much more efficient, ranging from 6 times faster for shorter segments to 55 times
faster for longer segments.

The computation time for the BN is substantially longer than for the MO method,
because of the iterative procedure required to determine the number of cross sections
(column BN in Table 3.3 includes this iterative procedure). Once the number of cross
sections has been determined, the BN is relatively fast (column BN* in Table 3.3), on par
with the MO method. Further research can look into more efficient methods to deter-
mine the number of cross sections.

4Computation times are based on a 2.8 GHz computer with 8GB RAM
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Figure 3.7: Comparison of BN and MO posterior segment failure probability estimates (shown together with
the 1:1 line, which represents perfect agreement).

Table 3.3: BN and MO computation times (in minutes) for the example described in Section 3.3, for differ-
ent segment lengths; BN = BN with iterative procedure to find the number of cross sections (#CS); BN* = BN
without iterative procedure.

Comp. time (mins)
Length #CS BN BN* MO

500 43 3.6 0.5 0.6
1000 41 3.9 0.4 0.7
2000 79 16.9 1.3 0.6
4000 81 15 1.0 0.5
6000 111 38.5 2.0 0.7

3.5. CONCLUSIONS
In this chapter, the BN methodology proposed in Chapter 2 was used to calculate the
length effect in a levee segment. This is done by sampling the joint spatial distribution of
the limit state function, represented by a BN, without having to approximate a paramet-
ric form of the spatial distribution. Using Monte Carlo rejection sampling for inference,
the method can update failure probabilities of (long) levees using survival observations
(i.e. high water levels and no levee failure). Results were compared with the modified
outcrossing (MO) method, currently in use in reliability modeling of flood defenses in
the Netherlands, via a numerical example, for verification purposes. The primary differ-
ence between the two methods is that the BN method samples from the joint spatial dis-
tribution, whereas the MO method uses an approximative parametric form of the spatial
distribution of the limit state, and solves the problem analytically.

The prior and posterior segment failure probabilities calculated by the two methods
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are in strong agreement. Slight discrepancies were found for posterior segment failure
probabilities for long segments (4000 and 6000 meters), but these differences were less
than 10%, and in terms of reliability index, less than 1%. These results provide a strong
verification of the MO method for prior analysis, which is used in the levee reliability
model that supports Dutch national flood risk assessments. They also provide an im-
portant verification of the MO method for posterior analysis, which has a lot of potential.
The speed of the MO method makes it possible to efficiently update failure probabilities
of numerous levee segments with abundant survival observations.

Given the strong agreement between BN and MO results, and the relative efficiency
of the MO method, I advocate use of the latter in practice. However, the examples con-
sidered in this paper do not represent an exhaustive set of cases. For failure probability
updating with survival observations, I advocate comparing the BN and MO output for
each new type of application (e.g. new limit state function, new set of variable distribu-
tion types or correlation parameters). Once the results are verified, the MO method can
be used with confidence for all examples of the same type.

Finally, I strongly recommend the use of either the BN or MO method to account
for the length effect in reliability analysis over some of the more simplified approaches
found in the literature.



4
CORRELATED COMPONENTS IN

LEVEE RELIABILITY MODELING:
VERIFICATION OF THE EQUIVALENT

PLANES METHOD1

4.1. INTRODUCTION
System reliability analysis investigates the probability that a system will maintain its
functionality; that is, the probability that the system will not fail. Computing the failure
probability of complex systems, where the components within the system are correlated,
usually requires multi-fold integrals, which are generally impossible to evaluate analyt-
ically. Consider a vector of random variables, X = [X1, ..., Xn] , containing both load and
strength variables. The failure of the system is represented by the n-fold integral:

P f =
∫
Ω(X)

fX (x)dx (4.1)

where fX (X ) is the multivariate density function of X , andΩ (X) is the failure space, con-
sisting of all realizations of X that lead to failure of the system. The configuration of the
failure space depends on how the components in the system are connected: in series,
in parallel, or in some hybrid combination. When connected in series, which is typi-
cal in levee systems, Ω (X) = ⋃

i
Zi (X) < 0, where Zi (X) is the limit state function of the

i th component, and where failure of each component is defined by Zi (X) < 0. Monte
Carlo methods to estimate the integral in 4.1 are typically prohibitively slow, especially

1Parts of this chapter have been published as: Roscoe, K., Diermanse, F., and Vrouwenvelder, T. (2016). System
reliability with correlated components: Accuracy of the Equivalent Planes method. Structural Safety, 57, pp.
53-64.
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in cases where evaluating the limit state functions requires calls to finite element models.
A number of methods have emerged in the past decade to address the need for efficient
methods to compute system reliability. Sues and Cesare ([52]) proposed a method (Most
Probable Point System Simulation, or MPPSS) in which the reliability of the system com-
ponents is first computed via a method that returns a closed form of the limit state func-
tion (e.g. first- or second-order reliability methods). The limit state functions, together
with the Boolean expressions defining failure, are then sampled in a Monte Carlo frame-
work. The authors claim that the size of the system is trivial because of the closed form
of the limit state functions, but for highly reliable components and/or large systems,
it can require billions of samples to acquire the desired accuracy, making this method
potentially prohibitively time-consuming. Naess et al. ([53]) proposed a Monte-Carlo-
based method in which some tail properties of the distributions are used to substantially
improve efficiency. In a follow-up paper ([54]), they tested the method on a large sys-
tem with thousands of components and found an uncertainty band in which the upper
bound is approximately five times the failure probability of the lower bound, for 200,000
samples and a computation time of about 30 minutes to an hour. The method has not
yet been tested on systems in which the limit state function requires calls to an inten-
sive external model (e.g. a finite element model), but will most likely be prohibitively
slow given the number of samples required. Kang and Song ([55]) proposed an efficient
method (sequential compounding method, or SCM) in which the reliability of the com-
ponents is first computed, and the components are subsequently combined into equiv-
alent components, two at a time, until the full system reliability is obtained. They tested
their method on various system configurations, and found very good accuracy for all the
configurations considered in the paper. Chun et al. ([56]) presented a complimentary
method to SCM, which computes the sensitivity of the system failure probability to the
reliability indices of the components. The method does not consider the sensitivity of
the system failure probability to the random variables that influence the component re-
liability indices. In the Netherlands, the reliability of flood defense systems has been a
key research area for decades. Based on a series of papers from the 1980s ([57], [58],
[59], [60]), an efficient method for combining the failure probabilities of correlated com-
ponents – referred to here as the Equivalent Planes method – was developed for series
systems and implemented in reliability software for the Dutch flood defense system ([8],
[10]). The method was designed for series systems (as flood defense systems are primar-
ily connected in series); two components connected in parallel within a system that is
primarily connected in series poses no problem, but the method is not intended for sys-
tems of numerous components all connected in parallel. Similar to the MPPSS method
of Sues and Casare ([52]), the Equivalent Planes method first computes the failure prob-
ability of the components, and then replaces their limit state functions with closed-form
expressions for subsequent combining. While the MPPSS method allows generic math-
ematical formulation, the Equivalent Planes method is restricted to linearized forms of
the limit state function (hyperplanes). In contrast to the MPPSS method, the Equiva-
lent Planes method does not rely on Monte Carlo methods. Similar to the Sequential
Compounding method from Kang and Song ([55]), the Equivalent Planes method com-
bines components sequentially; they differ most notably in the method to derive the
correlation between a combined component and the remaining system components.
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To accomplish this, the Equivalent Planes method requires information about the au-
tocorrelation of the underlying random variables contributing to failure; the Sequential
Compounding method only requires the correlation between components. The Equiva-
lent Planes method was developed to simultaneously meet two requirements for Dutch
flood defense reliability modeling: fast computation for large highly-reliable systems,
and the ability to compute influence coefficients of both the random variables and the
components. These influence coefficients are critical in Dutch flood defense reliability
modeling on two fronts: (1) in deltas, where the flood defense system is subjected to
loads fluctuating at different time scales, the influence coefficients are needed to scale
the failure probability from the time scale of the highest-fluctuating load to the time
scale of interest ([10]), and (2) they give flood defense managers a clear overview which
variables, levee segments, or failure mechanisms are contributing the most to the failure
probability and require the most attention. In the Netherlands, the results of the method
– the failure probability of a system of flood defenses – have been used in national flood
risk analysis, on which major decisions about the safety standards of the defenses have
been based ([61], [47], [62]). However, the accuracy of the Equivalent Planes method for
large systems has never been well investigated. Additionally, although the method is in
long-standing use, it remains absent from the literature. This chapter serves thus two
purposes. The first is to document the method in the literature, and the second is to
set up a suite of academic system configurations which can be used to investigate the
accuracy of the method.

The chapter is laid out as follows. The Equivalent Planes method is described in Sec-
tion 4.2; the source of error in the Equivalent Planes method is discussed in Section 4.3;
in Section 4.4 various system configurations are presented to explore error propagation
and show the performance of the Equivalent Planes method; tolerable error is discussed
in Section 4.5; the application of the BN to some of the system configurations is dis-
cussed in Section 4.6, and discussion and conclusions are presented in Section 4.7.

4.2. EQUIVALENT PLANES METHOD
The Equivalent Planes method computes the failure probability (P f ) of a system of two
correlated components, and - by applying it iteratively - the failure probability of a sys-
tem of any number of components. The i th component is described by a limit state
function, Zi ; failure occurs whenever Zi < 0. The method starts with two components,
connected in parallel (Equation 4.2) or in series (Equation 4.3). Often these components
are correlated; that is, failure of one component will influence the failure probability of
the second component.

P f = P (Z1 < 0∩Z2 < 0) = P (Z1 < 0) ·P (Z2 < 0|Z1 < 0) (4.2)

P f = P (Z1 < 0∪Z2 < 0) = P (Z1 < 0)+P (Z2 < 0)−P (Z1 < 0∩Z2 < 0) (4.3)

The strategy of the Equivalent Planes method is to replace the conditional probability

P (Z2 < 0|Z1 < 0) with an equivalent marginal distribution P
(

Z
′
2 < 0

)
which incorporates

the condition Z1 < 0 by having a non-zero density only in the failure space of component
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1. I will describe how the equivalent marginal distribution is computed, but will first
highlight the required information for getting started.

4.2.1. GETTING STARTED
To apply the Equivalent Planes method, the failure probability of each of the individ-
ual components must be known, as well as the correlation between component failures.
The latter is driven by common variables. For example, consider a levee section along
a river with two failure modes – overtopping and internal erosion; the water level in the
river will influence the failure probability of both components, creating correlation be-
tween them. To compute the correlation between components, information about the
variables that cause the correlation is needed: (i) their autocorrelation – the correlation
between a variable in component 1 and the same variable in component 2 – and (ii) in-
fluence coefficients, which describe how strongly each variable contributes to failure.

The autocorrelation of the variables can be equal to one in some cases (e.g. variables
– like water level – which contribute to different failure modes at the same location will
be the same for each failure mode). In other cases (consider soil permeability in two
neighboring levee sections), the autocorrelations can be obtained from measurements
or from expert opinion, or a combination. To obtain the influence coefficients of the
variables, the component failure probabilities are computed using first order reliabil-
ity method (FORM) (for a description of the FORM method, see [63]). FORM approxi-
mates the limit state function as a hyperplane at the design point, with the linearized
form shown in Equation 4.4; for component i , the coefficients αi = [αi 1, ...,αi n] are the
influence coefficients corresponding to a vector of standard normal random variables
U = [Ui 1, ...,Ui n]; the magnitude of each coefficient indicates the relative influence of
each variable on component failure. The random variables are standard normally dis-
tributed (they are transformed from their actual marginal distributions via FORM), and

the influence coefficients are normalized such that
n∑

k=1
α2

i k = 1.

Zi =βi −αi 1Ui 1 −αi 2Ui 2 − ...−αi nUi n (4.4)

The component reliability index, βi , is related to the component failure probability P f ,i :
βi =Φ−1

(
1−P f ,i

)
, whereΦ−1 (·) is the inverse standard normal distribution function.

Once the autocorrelations of the variables and the influence coefficients for each
component are known, the correlation between components can be calculated accord-
ing to Equation 4.5.

ρ
(
Zi , Z j

)= n∑
k=1

αi k ·α j k ·ρi j k (4.5)

where ρi j k is the autocorrelation between Ui k and U j k . In the remainder of the pa-
per, the symbol ρ, without subscripts, is used to denote the correlation between compo-
nents; the symbol ρac is used to denote the autocorrelation of the variables.

4.2.2. FAILURE PROBABILITY OF A TWO-COMPONENT SYSTEM
The method starts by expressing the limit state function of each component (Zi ) in terms
of a single standard normally distributed variable, Ui (Equations 4.6 and 4.7). Note that
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this formulation is equivalent to Equation 4.4. The individual random variables and their
influence coefficients were needed for computing the correlation between Zi and Z j ;
once this correlation is known, it is more efficient to use the form given in Equations 4.6
and 4.7.

Z1 =β1 −U1 (4.6)

Z2 =β2 −U2 (4.7)

Because the reliability indices in Eqs. 4.6 and 4.7 are constants, the correlation between
Z1 and Z2 will be the same as the correlation between the variables U1 and U2. Vari-
able U2 can therefore be written as a function of U1 and an independent standard nor-
mally distributed variable U∗

2 (Eq. 4.8). This expression can be substituted in the limit
state function for the second component (Equation 4.9), ensuring that the correlation
between the two components is preserved and that U2 is still standard normally dis-
tributed.

U2 = ρ ·U1 +
√

1−ρ2 ·U∗
2 (4.8)

Z2 =β2 −
(
ρ ·U1 +

√
1−ρ2 ·U∗

2

)
(4.9)

Because of the simplified form of the Z functions, the condition Z1 < 0 is equivalent
to U1 >β1 (see equation 4.6). Therefore, to condition on Z1 < 0, the variable U1 in Equa-
tion 4.9 can simply be replaced with a new variable U

′
1, which captures the tail of the U1

density function above β1. The density function of U
′
1, and how it relates to the density

function of U1 is illustrated in Figure 4.1.

Figure 4.1: Density function of U1 and U
′
1.



4

40
4. CORRELATED COMPONENTS IN LEVEE RELIABILITY MODELING: VERIFICATION OF THE

EQUIVALENT PLANES METHOD

The expression for Z
′
2 is thus:

Z
′
2 =β2 −

(
ρ ·U ′

1 +
√

1−ρ2 ·U∗
2

)
(4.10)

Note that with Equation 4.10, the problem has been reduced from an n-dimensional
problem (where n is the number of variables) to a two-dimensional problem, which is
why the Equivalent Planes method is so efficient. Computing the marginal distribution

P
(

Z
′
2 < 0

)
can be done with any probabilistic technique; numerical integration is recom-

mended because Z
′
2 is only a function of two variables, so even with very small intervals,

numerical integration is efficient and very accurate.
Once the conditional distribution P (Z2 < 0|Z1 < 0) has been replaced with the equiv-

alent marginal distribution P
(

Z
′
2 < 0

)
, computing the two-component system failure

probability is straightforward; see Equations 4.11 and 4.12 for the parallel and series sys-
tems, respectively.

P f = P (Z1 < 0) ·P
(

Z
′
2 < 0

)
(4.11)

P f = P (Z1 < 0)+P (Z2 < 0)−P (Z1 < 0) ·P
(

Z
′
2 < 0

)
(4.12)

With the application of Equation 4.11 or 4.12 the failure probability of system of two
components can be derived. The next step is to iterate over this procedure to arrive at
the multi-component system reliability.

4.2.3. FAILURE PROBABILITY OF A MULTI-COMPONENT SYSTEM
The Equivalent Planes method is iterative, so that once two components have been com-
bined, the two-component system can be considered a new component to combine with
a third component, and so on, until all components have been combined. Computing
the correlation between the two-component system and a third component presents a
challenge. To compute it via Equation 4.5 the influence coefficients for the two-component
system are needed; that is, the two-component system needs to be represented by a lin-
earized limit state function (i.e. a hyperplane). Consider Equation 4.4; at the limit state,
when Zi = 0, the influence coefficient αi k represents the partial derivative of the relia-
bility index βi with respect to variable Ui k . This can be used to estimate the influence
coefficients of the two-component system. In the case where all variables have autocor-
relation equal to 1, the influence coefficients can be obtained by numerically estimating
∂βi j

/
∂Uk (where βi j is the reliability index for the system composed of the two com-

ponents i and j ) for each variable Uk . Note that when the autocorrelation is equal to
1, Ui k = U j k = Uk . When the autocorrelations are not equal to 1, the concept is sim-
ilar, but the method to compute the influence coefficients is a bit more complex, be-
cause the variable uk is not exactly the same in component i as it is in component j (i.e.
Ui k 6=U j k ). Because Ui k and U j k are correlated, one can be written as the function of the
other, where the function consists of a correlated (Uk,c ) and uncorrelated part (Uk,uc ).
The partial derivatives of the system reliability relative to Uk,c and Uk,uc are calculated
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separately and then combined as shown in Equation 4.13, where αe
k is the influence co-

efficient of the k th variable in the equivalent hyperplane for the two-component system.

αe
k =

√√√√(
∂βi j

∂Uk,c

)2

+
(
∂βi j

∂Uk,uc

)2

(4.13)

Once the influence coefficients for the combined two-component system have been
computed, the correlation between it and a third component can be calculated, and
these can be combined these into a three-component system, and so on until all of the
components in our system have been combined. Note that method name – Equivalent
Planes – comes from expressing a two-component system as an equivalent hyperplane
(of the form in Equation 4.4).

4.2.4. PRACTICAL INFORMATION
The methodology described in the preceding sections was programmed in Matlab and
has been made freely available via Open Earth Tools (https://publicwiki.deltares.
nl/display/OET/OpenEarth), which is a repository for free and open source code to
handle a variety of problems related to delta and coastal areas ([64]). Open Earth Tools
also includes a library of probabilistic tools which are generic and applicable to many
problems; the Equivalent Planes algorithm is a part of this library.

4.3. ERROR SOURCE
The Equivalent Planes method is very efficient, but it comes at a price: it is an approx-
imation. This section describes how the approximation introduces error into the sys-
tem reliability estimate. The focus is on the error incurred using the Equivalent Planes
method for combining components with linearized limit state functions. It is impor-
tant to note that there may also be error introduced in the linearization step; the mag-
nitude of that error is dependent on the behavior of the limit state function, and is not
the focus of this chapter. For two components with linearized limit state functions in the
form of Equation 4.4, the Equivalent Planes method is exact; error is introduced when a
third component is combined with the equivalent two-component system. Figure 4.22

illustrates the process by which error is introduced. The method begins with a two-
component series system (see Figure 4.2 (a)), with the failure space defined by the area
where Z1 < 0∪Z2 < 0, and the original two-component failure probability Z1 < 0∪Z2 < 0.
After application of the Equivalent Planes method (see Figure 4.2 (b)), an equivalent limit
state function Ze is obtained, and an equivalent failure space defined by Ze < 0. This step
is exact which means:

P (Ze < 0) = P (Z1 < 0∪Z2 < 0) = P f (4.14)

Figure 4.2 (b) shows the trade that was made in failure space; the area A1 was released
in trade for the area A2 (see also Table 4.1). This step is exact, so P (A1) = P (A2); thus, this
can be considered a fair trade. With the introduction of a third component (Figure 4.2

2Note that for legibility, Zi is denoted Z i for i = 1,2,3,e and Ai is denoted Ai for i = 1,2,3,4, Z 3 in Figures 4.2
and 4.3

https://publicwiki.deltares.nl/display/OET/OpenEarth
https://publicwiki.deltares.nl/display/OET/OpenEarth
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(c)), the failure space is defined by Ze < 0∪Z3 < 0. Figure 4.2 (c) shows that the fair trade
illustrated in Figure 4.2 (b) is now violated. The area A3, which represents the portion
of A1 that falls in the failure space of Z3, represents the error in Figure 4.2. This can be
explained most clearly as follows.

Consider the failure probability of the original two component system, P f . If the
third component is added to the original two-component system (Figure 4.2 (a)), that
will add the area AZ 3 (shown in Figure 4.2 (c)) to the failure domain. Thus, the system
probability becomes:

P (Z1 < 0∪Z2 < 0∪Z3 < 0) = P f +P (AZ 3) (4.15)

If the third component is added to the equivalent two-component system (Figure 4.2
(b)), that will add the area AZ 3 and A3, and the system probability would be estimated
as:

P (Ze < 0∪Z3 < 0) = P f +P (AZ 3)+P (A3) (4.16)

The error that the Equivalent Planes method makes is thus equal to the difference
between Eqs. 4.15 and 4.16, which is P (A3).

Similarly, it can also occur that Z3 includes some of the gained area (A2) in its failure
space – this area is described as A4. This situation is illustrated in Figure 4.3. The net
error in this case is the probability of A3 reduced by the probability of A4.

Table 4.1: Description of the areas in Figures 4.2 and 4.3

Area Description Z1, Z2 Ze Z3

A1 Failure space released Z1 < 0∪Z2 < 0 Ze > 0 −−+
A2 Failure space gained Z1 > 0∩Z2 > 0 Ze < 0 −−+
A3 Failure space overestimate Z1 < 0∪Z2 < 0 Ze > 0 Z3 < 0
A4 Failure space underestimate Z1 > 0∩Z2 > 0 Ze < 0 Z3 < 0
AZ 3 Correct contribution to failure space by Z1 > 0∩Z2 > 0 –* Z3 < 0
+ These steps are prior to the inclusion of the third component

* not relevant

4.4. ERROR UNDER VARIOUS SYSTEM CONFIGURATIONS
This section investigates the accuracy of the Equivalent Planes-computed system fail-
ure probability estimate for various series system configurations. For this, a reference
calculation is needed; that is, an estimate of the system failure probability that can be
considered exact, with which to compare the Equivalent Planes estimate.

4.4.1. REFERENCE CALCULATION

For systems whose components have equal reliability indices and are equi-correlated,
the exact failure probability of the series system can be calculated using the formula:
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Figure 4.2: Introduction of error in the Equivalent Planes method (overestimate). In each subplot, the blue
shaded space represents the failure space. The plots show (a) the original failure space of two components
with limit state functions Z1 and Z2; (b) situation after application of the Equivalent Planes method – the
equivalent limit state function Ze and the equivalent failure space are shown; A1 is the released area, and A2 is
the area that was gained in trade; (c) situation after the inclusion of a third limit state function Z3 – the shaded
area is the failure space of Ze and Z3; A3 is the area that was released in (b) in trade for A2, but is recaptured by
Z3, violating the fair trade.

P =
∞∫

−∞

{
1−

[
1−Φ

(
−βc −u

p
ρ√

1−ρ

)]m}
ϕ (u)du (4.17)

whereβc is the reliability index of the components, ρ is the correlation between com-
ponents, U is a standard normally distributed variable, ϕ (·) is the standard normal den-
sity function, andΦ (·) is the standard normal distribution function.

To compute the ‘exact’ system failure probability for systems where the components
were not equi-correlated, I used a method similar to Sues & Cesare ([52]), only using
Monte Carlo Directional Sampling (MCDS) ([65], [66], [67]) instead of crude Monte Carlo.
A dynamic sample size criterion was implemented to ensure a high accuracy (described
in the following paragraphs). MCDS was considered a good choice because it is relatively
efficient compared with crude Monte Carlo, particularly for the case of linearized limit
state functions.

In the following sections a brief explanation of directional sampling is provided (in-
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Figure 4.3: Introduction of error in the Equivalent Planes method (over- or underestimate). In each subplot,
the blue shaded space represents the failure space. The subplots show (a) the original failure space of two com-
ponents; (b) situation after application of the Equivalent Planes method – the equivalent limit state function
Ze and the equivalent failure space are shown; A1 is the released area, A2 is the gained area; (c) situation after
the inclusion of a third limit state function Z3 – the shaded area is the failure space of Ze and Z3; A3 is the area
released in (b) in trade for A2, but is recaptured by Z3, the area A4 was gained in (b) but is already part of the
system failure due to Z3. A3 and A4 represent a violation of the fair trade in (b).

cluding an efficient approach valid for the case of linearized limit state functions), as well
as the implementation of the dynamic sample size criterion.

MONTE CARLO DIRECTIONAL SAMPLING

Directional sampling works by sampling directions in the failure space (Equation 4.18),
computing the conditional failure probability given the direction (Equation 4.19), and
estimating the failure probability as the mean of the conditional probabilities over all
N sampled directions (Equation 4.20). Each direction is defined by a unit vector θ in
the standardized normal space; see Equation 4.18. This unit vector is obtained by first
sampling all of the n standard normally distributed variables. The vector from the origin
to the sampled point in the n-dimensional variable space gives the vector u in Equation
4.18. The directional unit vector θ is obtained by normalizing the vector u.

θ = u

‖u‖ = (ū1, ū2, ..., ūn) (4.18)
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P f ,θ = max{Pi ;Pi = P (Zi < 0|θ) , i = 1...m;} (4.19)

where m is the number of components in the system.

P̂ f =
1

N

N∑
j=1

P f ,θ
(

j
)

(4.20)

Each direction is defined by a unit vector θ in the standardized normal space; see
Equation 4.18. This unit vector is obtained by first sampling all of the n standard nor-
mally distributed variables. The vector from the origin to the sampled point in the n-
dimensional variable space gives us the vector u in Equation 4.18. Normalizing this vec-
tor gives us the directional unit vector θ.

In general, Equation 4.19 can be cumbersome to compute because it requires search-
ing in an n-dimensional space for the limit state nearest to the origin (in the given direc-
tion). However, the linearity of the limit state functions can be exploited in our case to
simplify this process. Letλ be the distance from the origin to the nearest limit state func-
tion; then the vector giving the direction and the distance to failure isλθ = (λū1,λū2, ...,λūn).
Because the limit state functions are linear, which means Z = β−α1u1 − ...−αnun , the
failure vector (λū1,λū2, ...,λūn) can be plugged in, and λ can be solved for by setting
Z = 0.

β=α1 (λū1)+ ...+αn (λūn) =λ
n∑

i=1
αi ūi ⇒λ= β

n∑
i=1

αi ūi

(4.21)

I compute λ using Equation 4.21 for each limit state function in our system and take
the minimum as our distance to failure. The Chi Squared distribution can then be used
to compute the conditional probability given the direction and the squared distance to
failure ([67]).

SAMPLE SIZE CRITERION

Our criterion for when the sample size was large enough was a 95% confidence that the
difference between the MCDS system reliability estimate (β̂) and the true value (β) is less
than a defined value C :

P
(∣∣β̂−β∣∣<C

)= 95% (4.22)

The important consideration when choosing a value for C in Eq. 4.22 is that it should
be small relative to the errors in the Equivalent Planes method, or relative to errors that
would be considered important. I chose a value C = 0.01, which seemed a good compro-
mise between efficiency (not requiring too many samples) and having an error that was
small relative to anything that would be of concern in practice.

The implementation of the stop criterion is described by the flow chart in Figure 4.4.
The standard deviation of the failure probability estimate P̂ f is computed as follows:

σ̂P f =
√√√√ 1

N · (N −1)
·

N∑
i=1

(
P f ,θ (i )− P̂ f

)2
(4.23)
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Sample direction 

Compute conditional failure probability ( ) (Eq. 4.19)

Compute the failure probability estimate ( ) (Eq. 4.20)  

Compute the standard deviation of (Eq. 4.23)

Compute 95% confidence interval on :  (Eq. 4.24)

Compute the difference 

End

Start directional sampling

No

Yes

Figure 4.4: Flow chart describing the stop criterion for directional sampling.

The 95% confidence interval on the reliability estimate β̂ is described by the lower
and upper bounds on the interval (β− and β+, respectively):

β− =−Φ−1
(
P̂ f +2σ̂P f

)
; β+ =−Φ−1

(
P̂ f −2σ̂P f

)
(4.24)

whereΦ−1 is the inverse standard normal distribution function.

4.4.2. SYSTEM CONFIGURATIONS
I wanted to test various system configurations to explore under which conditions the
accuracy of the Equivalent Planes may become a problem. A system configuration was
defined based on the following parameters:

(i) n - number of variables

(ii) m - number of components
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(iii) ρ - correlation between components

(iv) βc - component reliability index

(v) ρac - auto-correlation of the variables

To test the influence of these parameters a number of system configurations were
considered, which are described in the following sections. For each system configuration
I computed the ‘exact’ failure probability (P f ) using either Eq. (4.17) for equi-correlated
components, or MC directional sampling otherwise. The exact system failure probabil-
ity was then compared with the Equivalent Planes-estimated system failure probability
(P̂ f ).

The chosen system configurations were based on a number of considerations. First,
I wanted to test extreme system configurations, in an effort to compute bounds on the
error in the Equivalent Planes method. To this end, for all the systems considered, the
component reliability indices were set to be equal across all the components. This is
because if the components of a system have different reliabilities, the smallest compo-
nent reliability would dominate the system reliability, and would make the errors caused
by combining the more reliable components negligible. Second, only series systems are
considered, because the Equivalent Planes method was specifically designed with levee
systems in mind, which are predominantly series systems. Inclusion of two components
connected in parallel within a predominantly series system should not impact the error.
However, the method was not designed to compute large parallel systems, and hence
such systems were not considered. Third, the most extensively considered cases were
with equi-correlated components, because the exact solution can be computed analyt-
ically (see Eq. 4.17). This allowed for the investigation of large systems with high reli-
ability indices which would have been too computationally intensive to compute with
the MCDS method. Cases where the components were not equally correlated were also
investigated, but not as extensively.

CASE I: EQUAL CORRELATION BETWEEN COMPONENTS

Case I investigates series systems with equally reliable components, and equal corre-
lation between all components. The correlation between components was enforced as
follows. Assume m limit state functions, each of which is a function of n variables. For a
desired correlation between components (ρ), the influence coefficients of the variables
were set equal for all m limit state functions (α1i =α2i = ... =αmi ; i = 1...n), and set the
autocorrelation of all of the random variables equal to ρ. Eq. 4.5 then reduces to:

ρ
(
Zi , Z j

)= n∑
k=1

αi k ·α j k ·ρi j k = ρ
n∑

k=1
α2

k = ρ (4.25)

The number of components (m) was also varied, and the reliability index of the com-
ponents (βc ). The number of variables was fixed to three (n = 3). Note that because the
variables are only partially autocorrelated, the dimensionality of the problem is much
higher than 3; in fact the dimensionality will be equal to the product of n and m (the
number of variables and the number of components). Table 4.2 summarizes the system
configurations that were considered for the case of equal correlations.
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Table 4.2: Parameters defining the system configurations for the Case I

Variable Value(s)
Number of variables (n) 3
Number of components (m) 3-250
Component reliability (βc ) 3, 4, 5, 6
Autocorrelation (ρac ) ρ

Correlation between components (ρ) 0.1-0.9 (in increments of 0.1), 0.95, 0.99

The exact system reliability was calculated using Eq. 4.17, but I also ran the MCDS
for several of the cases, to assess the computation time involved. In typical cases, Eq.
4.17 cannot be used, and it is then useful to compare the computation time of the MC
procedure with the EP method. The computation times are presented in Section 4.7. The
results are presented in Figs 4.5-4.8, one figure for each of the correlations 0.2, 0.5, 0.7,
and 0.9. It is clear that the Equivalent Planes method performs best for components with
high reliability indices, and where the correlation between components is not too high.
Figure 4.9 highlights the relationship between the error in the Equivalent Planes method
and the correlation between the components; the error is given as a factor difference
in the failure probability, which is the ratio of the Equivalent Planes-computed failure
probability to the exact failure probability. Table 4.3 shows the factor difference in the
failure probability for systems with 250 components. It shows that in the worst case the
system failure probability estimated with Equivalent Planes is 2.5 times the exact system
failure probability. In the best cases, they are equal. Table 4.4 shows the error in the
Equivalent Planes estimate of the reliability indices. The conclusions are the same as for
Table 4.3, but viewing the error in terms of reliability index will be useful in the example
of how to assess acceptable error in Section 4.5.

Table 4.3: Factor difference in the system failure probabilities (ratio of Equivalent Planes-computed to exact)
for the configurations in Case I, for a system with 250 components

ρ = 0.2 ρ = 0.5 ρ = 0.7 ρ = 0.9
βc = 3 1.3 1.8 2.2 2.2
βc = 4 1 1.4 2 2.4
βc = 5 1 1.1 1.6 2.5
βc = 6 1 1 1.3 2.4

Table 4.4: Error in the Equivalent Planes reliability indexes for the configurations in Case I (difference between
Equivalent-planes computed and exact), for a system with 250 components

ρ = 0.2 ρ = 0.5 ρ = 0.7 ρ = 0.9
βc = 3 -0.18 -0.36 -0.40 -0.33
βc = 4 -0.02 -0.13 -0.22 -0.26
βc = 5 0.00 -0.03 -0.11 -0.20
βc = 6 0.00 -0.01 -0.05 -0.16
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Figure 4.5: Performance of the Equivalent Planes (EP) method for series systems with 3-250 components, all
equi-correlated with correlation coefficient 0.2.
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Figure 4.6: Performance of the Equivalent Planes (EP) method for series systems with 3-250 components, all
equi-correlated with correlation coefficient 0.5.
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Figure 4.7: Performance of the Equivalent Planes (EP) method for series systems with 3-250 components, all
equi-correlated with correlation coefficient 0.7.
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Figure 4.8: Performance of the Equivalent Planes (EP) method for series systems with 3-250 components, all
equi-correlated with correlation coefficient 0.9.
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Figure 4.9: Factor difference in system failure probabilities (ratio of Equivalent Planes-computed to exact) for
series systems with 250 components, for correlation between components ranging from 0.1 to 0.99.

CASE II: UNEQUAL CORRELATION BETWEEN COMPONENTS

Case II investigates a series system of components with equal reliability indices but un-
equal correlation coefficients. The correlation between component i and component j
in an m-component system was computed according to Eq. 4.26, as in [55]; this formu-
lation ensures the correlation matrix is positive definite.

ρi j = 1−
∣∣i − j

∣∣
m −1

, i , j = 1, . . . ,m (4.26)

Enforcing the correlation structure given by Eq. 4.26 requires choosing the right mix-
ture of influence coefficients and autocorrelations for the random variables in the limit
state functions, given the constraint in Eq. 4.5. The number of variables in each limit
state function was set equal to m (the number of components), and set the autocorre-
lation of each variable equal to 1. This reduces the relationship between the influence
coefficients and the correlation matrix (see Eq. 4.5) to:

ρ =αTα (4.27)

The advantage of having the correlation matrix in the form of Eq. 4.27 is that the in-
fluence coefficients for any positive-definite correlation matrix can be derived as the
Cholesky decomposition of ρ, which is a standard function in packages such as Matlab.

The ‘exact’ system reliability was computed using Monte Carlo directional sampling.
I considered 5-, 10-, and 50-component systems, and component reliability indices of
3, 4, and 5. I did not consider systems larger than 50 components, because of the com-
putational cost of the Monte Carlo simulations. For example, for 50 components and a
component reliability index of 5, 1.3·108 samples were needed for the MCDS to converge
(see sample size criterion in section 4.4.1). The details of this case are given in Table 4.5.
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The results are shown in Figure 10. There is very good agreement between the Equiv-
alent Planes-computed system failure probability and the MC-computed system failure
probability.

Table 4.5: Parameters defining the system configurations for the Case II

Variable Value(s)
Number of variables (n) n = m
Number of components (m) 5,10,50
Component reliability (βc ) 3, 4, 5
Autocorrelation (ρac ) 1
Correlation between components (ρ) See Eq. 4.26
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Figure 4.10: Performance of the Equivalent Planes (EP) method for series systems with 5, 10 and 50 compo-
nents, correlated according to the correlation structure defined in Eq. 4.26.

CASE III: LIMIT STATES WHICH SPAN ALL DIRECTIONS

This case investigates an extreme situation in which the directions of the linearized limit
state functions of the components span a three-dimensional space. For many compo-
nents – all with equal component reliability indices – this begins to enclose a spherical
safe region. This is a very unrealistic situation, but is useful for testing how the method
performs under such extremes.

To specify the limit state functions, the influence coefficients for each of the three
variables needed to be calculated, for every limit state function direction. This was done
by generating directional normal vectors (perpendicular to the limit state hyperplane)
by using a three-dimensional integer-based grid. A maximum integer was chosen, xmax ,
and a grid was constructed with points placed at all integers from −xmax to xmax . The di-
rectional vectors were generated by connecting these points to the origin. The influence
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coefficients can be derived directly from the directional vectors, once they have been
normalized (recall the influence coefficients describe a normalized directional vector).
Duplicates can arise when the line between the origin and multiple grid points share the
same angle (e.g. consider a two-dimensional grid with the points [1, 1] and [2, 2]). The
number of limit state functions (i.e. the number of components m) is then a function of
the total number of integers (which is equal to 2xmax +1), the number of dimensions n,
and the number of duplicates d :

m = (2xmax +1)n −d (4.28)

An example of a set of directional normal vectors is illustrated for three dimensions
in Figure 4.11.
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Figure 4.11: Directional normal vectors defining the limit state functions which densely span a 3-dimensional
space.

Because the number of components grows exponentially with the number of vari-
ables, this case was restricted to three dimensions. An autocorrelation equal to 1 was
chosen for all of the variables to limit the dimensionality of the case, in order to make
the reference (MC) computations more efficient. The correlations between components
(which are variable in this case) were not explicitly chosen, but rather were calculated
according to Equation 4.5, based on the influence coefficients. Table 4.6 summarizes the
system configurations that were considered.

The results of Case III are presented visually in Figure 4.12. Table 7 shows the factor
difference in the system failure probability, and Table 4.8 shows the error in the system
reliability index. The worst case tested – 598 components and component reliability in-
dices of 3 – results in an Equivalent Planes system failure probability estimate that is 2.8
times the exact (Monte-Carlo computed) system failure probability. In the best case – 26
components and component reliability indices of 6 – the errors in the Equivalent Planes
method are negligible.
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Table 4.6: Parameters defining the system configurations for the case spanning an n-dimensional space

Variable Value(s)
Number of variables (n) 3
Max integer (xmax ) 1,2,3,4
Component reliability (βc ) 3, 4, 5, 6
Autocorrelation (ρac ) 1

Table 4.7: Factor difference in the system failure probabilities (ratio of Equivalent Planes-computed to exact),
for the configurations in Case III

m = 26 m = 98 m = 310 m = 598
βc = 3 1.3 1.9 2.5 2.8
βc = 4 1.2 1.7 2.2 2.6
βc = 5 1.1 1.5 2.0 2.4
βc = 6 1.0 1.4 1.9 2.2

Table 4.8: Error in the Equivalent Planes system reliability indexes (difference between Equivalent Planes-
computed and exact), for the configurations in Case III

m = 26 m = 98 m = 310 m = 598
βc = 3 -0.12 -0.30 -0.43 -0.49
βc = 4 -0.05 -0.16 -0.25 -0.30
βc = 5 -0.02 -0.09 -0.17 -0.21
βc = 6 -0.01 -0.06 -0.11 -0.15
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Figure 4.12: Performance of the Equivalent Planes (EP) method for series systems with components whose
linearized limit state functions span a 3-dimensional space, with unequal correlation coefficients between
components, for 26, 98, 310, and 598 components.

CASE IV: UNCORRELATED COMPONENTS

This case investigates the extreme situation where all components are uncorrelated. This
situation is easy to compute analytically (Eq. 4.2 reduces to the product of the compo-
nent probabilities). It is relevant to test how the method performs under this extreme,
since some cases might be nearly uncorrelated in practice. The analytical solution was
used for comparison of the results. To set up the uncorrelated case, the number of (inde-
pendent) random variables was set equal to the number of components (n = m), where
each component depends on only one of the variables, which will have an influence
coefficient of 1 (see Eq. 4.4). Each limit state function is written in terms of all of the
variables, but all but one of the influence coefficients will be zero. The number of com-
ponents was chosen, which then determines the number of variables. The value of the
autocorrelation is irrelevant, because each variable appears in only one limit state func-
tion. Table 4.9 summarizes the system configurations that were considered for the case
of uncorrelated components.

Table 4.9: Parameters defining the system configurations for the case of uncorrelated components

Variable Value(s)
Number of variables (n) m
Number of components (m) 3−250
Component reliability (βc ) 3, 4, 5, 6
Autocorrelation (ρac ) Irrelevant (each variable appears in only one component)
Correlation between components (ρ) 0
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Figure 4.13: Performance of the Equivalent Planes (EP) method for series systems with 3-250 uncorrelated
components

4.5. ACCEPTABLE ERROR
This section focuses on translating the error in the Equivalent Planes method to real,
tangible terms (e.g. costs), so that acceptable error can be determined. This translation
is application-dependent, but I provide an example here for the case of levee systems,
principally for illustration purposes. Each specific application will need its own case-
specific analysis, but the approach should be similar.

EXAMPLE: LEVEE SYSTEMS
I considered the application to levee systems and provide a simple example of how errors
in system reliability can be translated to impacts on levee design, and further to costs.
The idea of this section is not to provide full rigor in determining the impact on levee
design and costs, but to obtain an order-of-magnitude estimate that can help us decide
if the error in our estimate is tolerable.

The analysis was done for the failure mechanism overflow, which essentially consid-
ers whether the crest height of the levee is high enough to hold back extreme water levels.
The limit state function for overflow is the difference between the levee height (H) and
the water level at the levee (W ).

Z = H −W (4.29)

I assigned a Type I generalized extreme value distribution to the water level, with
a scale parameter of 0.28 and a location parameter of 2.6, which corresponds to 1/100,
1/1000, and 1/10000 year water levels of 3.9, 4.5, and 5.2 meters, respectively. The system
reliability index, β, informs us of the failure probability, or equivalently (in this case) the
probability that the water level is higher than the levee height.
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P f =Φ
(−β)= P (H −W < 0) = P (W > H) (4.30)

Because the distribution of the water level FW is known, the design height – that is,
the levee height that corresponds to the reliability index β - can be calculated:

H = F−1
W

(
1−Φ(−β))

(4.31)

Equation 4.31 can be used to translate errors in the system reliability to errors in the
design levee height. I considered system reliability indicesβ= {3,4,5,6}, and errors in the
system reliability ε= {0.01,0.05,0.1,0.2,0.5}, and computed the difference in design levee
height between the erroneous and true system reliabilities; the results are presented in
Table 4.10.

Table 4.10: Difference in design levee height (in meters) due to errors in the system reliability estimate, for
different system reliability indexes (β) and different error magnitudes (ε)

ε= 0.01 ε= 0.05 ε= 0.1 ε= 0.2 ε= 0.5
βc = 3 0.01 0.05 0.09 0.19 0.48
βc = 4 0.01 0.06 0.12 0.24 0.61
βc = 5 0.01 0.07 0.14 0.29 0.75
βc = 6 0.02 0.09 0.17 0.34 0.885

To translate the design height differences into costs, I used cost curves derived as
part of a national cost-benefit analysis of flood protection measures in the Netherlands
([62],[68], [69]). I considered the extreme cases of a very rural levee and a very urban
levee. A very rural levee is one in which the area surrounding the levee is undeveloped,
and thus allows for easy expansion of the levee base when the levee is heightened; this
ensures that the slope of the levee does not become too steep. Such an expansion will
be impossible for a very urban levee because the surrounding area is already fully devel-
oped. In such cases, retaining walls are often required to compensate for the steep slope
resulting from the levee heightening. Furthermore, in the urban case, a road and a bike
lane are also typically present on the levee. For both the rural and urban case there is a
base cost – that is, a portion of the cost that is height-independent. In the rural case, this
is the cost of removing and replacing the levee revetment; in the urban case, it is the cost
of the retaining wall and the road and bike lane. Figure 4.14 shows example cost curves
for rural and urban levees. The costs are expressed per km of levee, and as a function of
the required levee height increase.

To use the cost curve (Figure 4.14) to translate the error in design height to costs, one
must consider the specific case at hand. For example, consider a situation where the
current levee must be raised by 1 m to satisfy a required reliability; however, the error
in the reliability estimate leads to the belief that it must be raised by 1.5 m. From the
curve, the difference in costs between 1 m and 1.5 m can be estimated: approximately 2
million Euros per km of levee for the rural case, or about 4 million Euros per km for the
urban case. Whether this error is tolerable depends on a number of factors that are case-
specific. Note that the converse situation – that the error would be an underestimate of
the levee design height – would result in a less expensive improvement measure, but a
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Figure 4.14: Cost curve for levee heightening, for a rural and urban levee, based on data for Dutch levees.

higher risk. The costs associated with the increased risk are more complex to assess than
the costs of an improvement measure.

4.6. COMPARISON WITH BAYESIAN NETWORK
In this section I compare how the Equivalent Planes method compares with the BN for
each of the cases considered in Section 4.4. For each case we illustrate the BN for the sys-
tem failure probability, using an example of four components to keep the visualization
clear. Each component is represented by its limit state function Z ; correlations are rep-
resented by arcs between components, and each component feeds into a failure node,
F ai l , which is equal to 1 when Zi < 0 for any component i . The system failure probabil-
ity is then equal to P (F ai l = 0).

For the case of equal correlations, the BN is illustrated in Figure 4.15. The arcs con-
necting each of the components is specified with a correlation coefficient ρ, which is the
same between each pair of components.

1Z 3Z 4Z2Z

r

r r

r r r

Figure 4.15: BN for the case of equal correlation between components, for an example of four components.

For the two cases of unequal correlations (Case II: Unequal correlation between com-
ponents, and Case III: Limit states which span all directions), the BN is illustrated by Fig-
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ure 4.16. The arcs between components are specified by correlation coefficients, which
are calculated according to Equation 4.26 for Case II, and by Equation 4.5 for Case III.

1Z 3Z 4Z2Z

Fail

r12 r23 r34

r24r13

r14

Figure 4.16: BN for the case of unequal correlation between components, for an example of four components.

For the case of uncorrelated components, the BN is illustrated in Figure 4.17, where
there is no connection between component limit state functions.

1Z 3Z 4Z2Z

Fail

Figure 4.17: BN for the case of uncorrelated components, for an example of four components.

The BN can be sampled, and the system failure probability P f ,ss estimated accord-
ing to Eq. 4.32, but this evaluation would be as computationally intensive as what Sues
and Cesare proposed ([52]). In the reliability framework developed in Chapter 2, the un-
derlying random variables are explicitly included, which means efficient methods like
MC Importance sampling can be applied to the load. The networks illustrated in Figs.
4.15-4.17 are not conducive to importance sampling because it would require replac-
ing the distributions of all of the variables (Zi ) with biased distributions. Generally, the
more corrections that need to be applied, the poorer the performance of importance
sampling.

The system failure probability for the systems illustrated in Figs. 4.15-4.17 can also
be calculated without sampling. The probability of failure of the system can also be ex-
pressed according to Eq. 4.33, which can be solved by evaluating the multivariate normal
distribution.

P f ,ss = P (F ai l = 1) = 1

N

N∑
j=1

F ai l j (4.32)
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P f ,ss = P

(
m⋃

i=1
Zi < 0

)
(4.33)

The steps involved are adapted from Hohenbichler & Rackwitz ([58]), and provided
in Eq. 4.34. The final step shows that once the linearization of Z has occurred (i.e.
Z = α1U1 +α2U2 + ...), the series system failure probability can be calculated as P f ,ss =
1−Φm

(
β;ℜX

)
, whereΦ is the m-dimensional multivariate normal distribution, and ℜX

is the correlation matrix of X, which is equivalent to ℜZ as they differ only by a con-
stant. At the time Hohenbichler & Rackwitz wrote their paper, and even at the time that
the Equivalent Planes method was being developed, evaluating a large multivariate nor-
mal distribution took too much computing power to be feasible. However, more recent
methods by Genz and Bretz ([70], [71]) have been adopted in statistical packages, such
as Matlab (which was used in this research).

P f ,ss = P

(
m⋃

i=1
Zi < 0

)

= P

(
m⋃

i=1
αi U+βi < 0

)

= P

(
m⋃

i=1
Xi <−βi

)

= 1−P

(
m⋂

i=1
Xi >−βi

)

= 1−P

(
m⋂

i=1
Xi <βi

)
= 1−Φm

(
β;ℜX

)

(4.34)

I evaluated Eq. 4.34 using the multivariate normal distribution function in Mat-
lab, which relies on the quasi-MC method described in [70], for the case of equicorre-
lated components (Case I). The results are shown in Figs 4.18-4.20 below. The quasi-MC
method in Matlab for evaluating the multivariate normal performs well for reliability in-
dices of 3 and 4, for all component correlations. For an index of 5, the method performs
well until the correlation gets high (> 0.7), and for a reliabiity index of 6, the method only
performs accurately when the components are barely correlated (ρ = 0.2). The poor per-
formance appears to be due to an inability of the quasi-MC method to accurately cal-
culate the error in the probability estimate in some cases. For example, for βc = 6 and
ρ = 0.9, and m = 250, the true system failure probability is about 5·10−8, while the quasi-
MC method returns an estimate of about 1 · 10−9. However, the method estimates an
error of about 10−12, which is clearly incorrect. Details about the quasi-MC algorithm to
estimate both system probabilities and error fall outside the scope of this dissertation.
Based on the results of our application of it to Case I, I conclude that directly evaluating
the multivariate normal distribution is still too unstable for practical application. I do
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recommend keeping up with the literature, as new algorithms to evaluate multivariate
normal distributions continue to be developed.
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Figure 4.18: System failure probabilities using the multivariate normal function in Matlab, for a series system
of equicorrelated components, with ρ = 0.2.
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Figure 4.19: System failure probabilities using the multivariate normal function in Matlab, for a series system
of equicorrelated components, with ρ = 0.5.
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Figure 4.20: System failure probabilities using the multivariate normal function in Matlab, for a series system
of equicorrelated components, with ρ = 0.7.
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Figure 4.21: System failure probabilities using the multivariate normal function in Matlab, for a series system
of equicorrelated components, with ρ = 0.9.

4.7. DISCUSSION AND CONCLUSIONS

The Equivalent Planes method has been used in Dutch system reliability modeling of
flood defenses for decades. The reliability model is at the heart of national flood risk
analysis, the results of which are used to drive major flood prevention policies in the
Netherlands. The critical role of the model motivated this research to determine the
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accuracy of the Equivalent Planes method, and under which situations unacceptable
error may be encountered.

A Monte Carlo directional sampling method was used to compute ‘exact’ reliabil-
ity estimates with which to compare the Equivalent Planes results. Table 4.11 shows the
computation times3 (in minutes) required for Monte Carlo directional sampling (with an
imposed accuracy of 0.01 on the estimate of the system reliability index), for some of the
system configurations that were tested as part of Case I (see section 4.4.2), for an inter-
component correlation of 0.9. The Equivalent Planes method computed each of these
configurations in less than 1 second. Consider a system with 250 components and com-
ponent reliability indices of 5; in this case, the Monte Carlo directional sampling method
required 1079 minutes – over 17 hours – compared with 0.95 seconds required by the
Equivalent Planes method. In reality, systems are likely to have a large number of com-
ponents, and component reliability indices that are greater than 5; thus, the reduction
in computation time for real systems will be substantial. The accuracy of the EP method
for the same configurations are shown in Table 4.12, given as a ratio of EP-calculated to
exact failure probability. Tables 4.11 and 4.12 together indicate the trade-off between ac-
curacy and computation time. Recall that for these configurations are for equi-reliable
components; in real systems, where one or a few components have a lower reliability,
the errors are expected to be less.

Table 4.11: Computation time (in minutes) for Monte Carlo directional sampling to compute the system reli-
ability, for series systems of m = 3, 10, 50, 100, and 250 components with equal component reliability indexes
(βc ) and equally correlated with a correlation coefficient of 0.9. In comparison, the EP method requires ap-
proximately 1 second for all cases shown in the table.

m = 3 m = 10 m = 50 m = 100 m = 250
βc = 3 <1 <1 1 1 3
βc = 4 <1 1 7 13 32
βc = 5 <1 8 188 424 1079

Table 4.12: Accuracy of the EP method, presented as the ratio of the EP-computed to exact system failure
probability, for series systems of m = 3, 10, 50, 100, and 250 components with equal component reliability
indexes (βc ) and equally correlated with a correlation coefficient of 0.9. The accuracy in this table can be
compared with the computation times presented in Table 4.11.

m = 3 m = 10 m = 50 m = 100 m = 250
βc = 3 1.0 1.2 1.6 1.8 2.2
βc = 4 1.0 1.2 1.6 1.9 2.4
βc = 5 1.0 1.2 1.6 1.9 2.5

The error in the Equivalent Planes method for different system configurations was
computed. When the components are not too correlated (e.g. a correlation coefficient
up to about 0.5), the error in the method is generally negligible, particularly when the
components have high reliability indices. Inaccuracies become apparent for large sys-
tems with highly correlated components, and for components with lower reliability in-

3Computation times are based on a 2.8 GHz computer with 8 GB RAM
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dices. In all cases, the Equivalent Planes system failure probability estimates were within
a factor of three times the correct system failure probability. Recall that these results are
for extreme system configurations in which the components all have equal reliability in-
dices. In reality, a few components will likely dominate the failure probability, and the
error will be much lower. Furthermore, even three times the correct failure probability
can be quite negligible for systems with very small failure probabilities. For example,
consider a system of 250 equi-correlated components, with component reliability in-
dices of 6, correlated with a coefficient of 0.9; the true failure probability is 4.81E-8 and
the estimate is 1.14E-7, for a factor difference of 2.4 (see Table 4.3). In many applica-
tions, where the probability needs to be below a certain safety standard, this difference
will not be important. Furthermore, other uncertainties in the reliability analysis – for ex-
ample, due to the parameterization of the random variables contributing to failure – will
likely overshadow this small error, making it essentially negligible. Tolerable error was
discussed, and an example was provided for a levee system with loads similar to those
found in the river regions of the Netherlands. It is important that researchers investi-
gate tolerable error for their specific case to determine if the Equivalent Planes method
will be sufficiently accurate. When it is, it is a very attractive method, particularly when
considering the gain in computational time over more exact methods.



5
BAYESIAN UPDATING OF PIPING

FAILURE PROBABILITIES

Probability then, refers to and implies belief, more or less, and belief is but another name
for imperfect knowledge, or it may be, expresses the mind in a state of imperfect

knowledge.

A. DeMorgan

5.1. INTRODUCTION
Estimates of levee system reliability can conflict with experience and intuition. For ex-
ample, a very high failure probability may be computed while no evidence of failure has
been observed, or a very low failure probability when signs of failure have been detected.
This conflict results in skepticism about the computed failure probabilities and an (un-
derstandable) unwillingness to make important management decisions based upon them.
However, although intuition is an important guide, it can also be misleading. Not all ob-
servations are informative, and it is important to have a quantitative tool to estimate the
change in failure probability that results from a survival observation. BNs are useful in
these circumstances because they allow us to use observations to improve our reliability
estimates quantitatively.

In this chapter the BN methodology described in Chapter 2 is applied to two systems
of levees in the Netherlands, a regional system and a primary one. In the Netherlands, re-
gional levee systems offer protection from smaller (often regulated) waterways, such as
canals. Primary levee systems protect against large bodies of water, like rivers, lakes, and
the sea. Safety standards in the Netherlands are expressed in terms of a failure probabil-
ity that must not be exceeded. For the regional levees, this failure probability is around
1/100. The primary levees have much more stringent standards, because their breach
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would lead to catastrophic consequences. The failure probabilities of these levees must
be lower than 1/1250 in the river regions to 1/10000 along the coast. Both case studies
consider failure probabilities of the levee system due to the mechanism piping, in which
pressure differences between the waterside and land side of the levee can cause a pipe to
form under the levee. In both cases, survival observations are used to update the system
failure probability.

One of the aims of this dissertation is to verify key algorithms in Hydra-Ring, and
compare its efficiency to that of the BN methodology. To this end, the Hydra-Ring al-
gorithms are also applied to the primary levee system, to calculate both segment and
system failure probabilities which can be compared to the BN estimates. For the Hydra-
Ring approach, the modified outcrossing (MO) algorithm is used to calculate the seg-
ment failure probability (by accounting for the length effect; see Chapter 3), and the
Equivalent planes (EP) method is used to calculate the system failure probability by com-
bining the correlated segment failure probabilities (see Chapter 4 for details about the EP
method). Differences in both segment and system failure probabilities, as well as com-
putation times, are investigated and discussed.

A key question in reliability updating is: When are observations useful? Not all ob-
servations will have equal impact on the failure probability, and it is important to know
in advance what factors will influence the impact, and if the case at hand is a good can-
didate for updating. Implementation of either method - the BN or the Hydra-Ring algo-
rithms - takes time and care, and one would prefer to dedicate such time only in cases
when the reduction in failure probability is non-negligible. This chapter therefore ad-
dresses the question: under which conditions are survival observations useful?

The structure of the chapter is as follows. The piping failure mechanism is described
in Section 5.2. The BN for failure of a levee system due to the piping failure mechanism
is described and presented visually in Section 5.3. Section 5.4 presents the application of
the BN to the regional levee system, and Section 5.5 presents the application of the BN
and the MO and EP algorithms to the primary levee system. Section 5.7 discusses which
survival observations are useful in general, and summarizing conclusions are provided
in Section 5.8.

5.2. PIPING FAILURE MECHANISM
In the two case studies presented in this chapter, I consider failure probabilities due to
the piping failure mechanism. Figure 5.1 provides an illustration that supports the fol-
lowing description. When the pressure difference between the outside water level (h
in Figure 5.1) and the landside water level (hl s ) is great enough, it can increase the soil
pore water pressure in the aquifer (sand layer) to the point that it causes the clay layer
to uplift (i.e. rupture) on the landside of the levee. Once this occurs, if the pressure dif-
ference is great enough, sand can begin to transport from the aquifer onto the landside
of the levee. What follows is an eroded pipe within the aquifer, allowing water from the
landside of the levee to start filling in the pipe, as sand continues to erode. If the pipe
reaches the waterside, the levee will essentially be resting on a film of water, which is a
very unstable situation, and is likely to lead to collapse of the levee.

The piping mechanism considered in this application is described by two limit state
functions, one describing uplift of the clay layer (uplift) and the other describing the
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Figure 5.1: Progression of the piping mechanism, beginning with uplift (top) until the pipe is complete (bot-
tom)

initiation of the pipe formation (piping). Failure is considered to occur if both the uplift
and piping limit state function are negative (parallel system).

UPLIFT

The limit state function for uplift (Zu) is given in Equation 5.1. This formula is widely
used in the Netherlands and was recommended by the Technical Advisory Committee on
Flood Defenses ([72]). It compares the actual water level difference, h−hl s , with a critical
water level difference, hc . The variable mu is a model factor, accounting for uncertainty
in the formula for hc (see Equation 5.2). The factor mh is known as a damping factor,
and accounts for potential loss of pressure between the water levels on the water-side
and land-side of the levee.

Zu = muhc −mh (h −hl s ) (5.1)

The critical water level difference, hc , depends on the thickness of the impervious
(clay) layer (D), the volumetric weight of wet clay (γwc ), and the volumetric weight of
water (γw ).

hc = γwc −γw

γw
·D (5.2)

PIPING

The limit state function for piping, Zp , was developed ([73]) and recently improved ([74])
by Sellmeijer. The limit state function, and supporting equations, are provided in Eqs.
5.3 through 5.6. All variables are defined in Table 5.1.
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Zp = ms hp − (h −0.3D −hl s ) (5.3)

The critical head difference hp is given in Equation 5.4). The two coefficients, α and
c, are provided in Equation 5.5 and 5.6, respectively. For some physical intuition: α re-
flects the finite thickness of the sand layer and c has to do with erosion characteristics of
the sand.

hp =α · c ·L

(
γk −γw

γw

)
· tan(θ) (5.4)

α= 0.91

(
D0

L

) 0.28((
D0
L

)2.8
−1

)+0.04

(5.5)

c = η ·d70m ·
( g

v ·k ·L

) 1
3 ·

(
d70

d70m

)0.4

(5.6)

Table 5.1: Description and distribution types of the variables used in the piping analysis; logn = lognormal,
norm = normal, det = deterministic

Variable Description Distribution Constant over segment
D0 Thickness of aquifer logn no
D Thickness of blanket layer logn no
L Distance, waterside levee toe to landside water logn no
θ Bedding angle of sand norm no

d70 70th-percentile of sand grain diameter logn no
η Drag coefficient logn yes

γwc Volumetric weight of blanket layer logn no
γk Volumentric weight of sand logn no
mu Error in critical pressure difference, for uplift logn yes
mh Damping factor logn yes
ms Error in piping model (Sellmeijer) logn yes
k Permeability of aquifer logn no

hl s Water level on landside of levee norm yes
d70m Reference value for d70 det –

g Gravitational constant det –
γw Volumetric weight of water det –
ν Viscosity of water det –

5.2.1. SURVIVAL OBSERVATIONS FOR THE PIPING MECHANISM
This section describes explicitly what is meant here by a survival observation, as it relates
to the piping failure mechanism. Uplift refers to the rupture of the blanket layer due to
upward pressure in the aquifer. This phenomenon is easy to confirm; if a rupture is seen,
or substantial seepage is observed, it can be concluded that uplift has occurred and that
the limit state Zu (see Eq. 5.1) must be negative. Or conversely, when no rupture or seep-
age is observed, Zu must be positive. When no pipe has reached completion (i.e. become
observable), and the levee shows no signs of weakness, it is assumed in this chapter that
the limit state function for piping Zp (see Eq. 5.3) is positive. Therein lie two somewhat
unconservative assumptions. The first is that the duration of the observed high load was
sufficient for a pipe to reach completion. If it was not, then the same load may result
in failure for a longer duration, but this is not accounted for in the methodology. The
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second is that (unseen) damage from a previous load does not contribute to the rate of
progression of a pipe during future high loads. In reality, prior (partial) internal erosion
will result in the completion of a pipe forming at a lower load than if that prior erosion
had not taken place. For the purpose of illustrating the application and abilities of a BN,
assuming Zp > 0 for the observation of ‘no failure’ is useful. However, for practical appli-
cation, it should be discussed if a more conservative approach, such as that taken in [50],
is more appropriate. In that case, Zp was not assumed positive when survival was ob-
served. Rather, only the uplift limit state was assumed known under survival conditions.
The impact of updating is in that case much less, but is more conservative.

5.3. BN FOR PIPING
The structure of the BN for piping is dictated by the formulaic representation of piping,
as described in Equations 5.3 through 5.6. The variables that play a role in the piping
mechanism, which are described in Table 5.1, are the input random variable nodes in the
BN. Table 5.1 also indicates whether a variable is constant over the length of the segment.
If so, it will be represented by one node per segment in the system. The variables that
are not constant are spatially variable and will be represented by n nodes, where n is
the number of cross sections representing the segment. Figure 5.2 shows the BN for
a single cross section. No spatial variability occurs within a single cross section, but I
have illustrated which variables will be subject to spatial variability when the number
of cross sections increases. These are the variables at the top of the network, with the
superscript 1 to indicate they are the variables in the first cross section. The limit state
functions for piping and uplift, Zp and Zu , are connected to a failure node Fail, which is
1 when Zp < 0∩Zu < 0, and 0 otherwise.
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Figure 5.2: BN for a single cross section, for the failure mechanism piping. Clear circular nodes represent input
random variables, and nodes with black edges represent functional variables (see Eqs. 5.3 through 5.6).

The BN for an example segment represented by three cross sections is illustrated in
Figure 5.3. The spatially-variable random variables are connected via arcs to the same
variables in the other cross sections. For example D1 is connected to D2 and D3. The
variables which are constant over the segment are again displayed at the bottom of the
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Figure 5.3: BN for a segment represented by three cross sections, for the failure mechanism piping. Clear
circular nodes represent input random variables, and nodes with black edges represent functional variables
(see Eqs. 5.3 through 5.6).

network, and are only represented one time per segment.

Arcs in the network that lead into functional nodes are described by the formulas
in Eqs. 5.3 through 5.6. Arcs between input random variables (such as D1 and D2) are
specified by a product moment correlation coefficient. These are calculated using the
positive definite correlation function given in Eq. 5.7, where∆xi j is the distance between
a variable in the i th and j th cross section, and dx is a parameter that dictates how quickly
the spatial correlation decreases to zero. The values for dx are provided in each of the
case studies.

ρi j = exp

(
∆xi j

dx

)2

(5.7)

The failure nodes for each cross section are connected to the failure node for the
segment, Failseg , which is 1 whenever Faili = 1, for any i = 1, ...,n. The system represen-
tation is similar to that of the segments, with a couple of caveats. First, I make an as-
sumption that spatial correlation of the soil variables between segments is zero (i.e. the
variables D i in segment 1 are not connected to the D i in segment 2, for any i ). This is a
reasonable assumption because segments are typically delineated due to clear changes
in soil type/stratification. Second, of the variables that are constant over the segment,
a few of these may also be constant over the system. In our case studies, the canal or
river water level is assumed constant over the length of the system, as well as the model
uncertainty parameters mu and ms and White’s constant η. These system constant vari-
ables are represented by a single node for the whole system, whereas mh and hl s , which
are constant over the segment but not over the system, are represented nseg times, where
nseg is the number of segments in the system.
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5.4. REGIONAL LEVEES
A map of the levee system protecting Heerhugowaard, including the levee segment num-
bers, is presented in Figure 5.4. It is split into 18 levee segments. The levee system con-
sidered in this application is composed of just three of these segments (9, 11, and 12).
The reason for this is that only the southern and western levee segments (segment 5
through 12 in Figure 5.4) cause significant damage if they fail, and of these segments, 9,
11, and 12 were the real ‘weak links’ in the sense that they had substantially higher com-
puted failure probabilities than the others. The water board responsible for the levees is
highly skeptical about these failure probabilities, because they have never observed any
evidence of piping. This made it an ideal case to apply a Bayesian network and make use
of its capabilities to incorporate a survival observation.
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Figure 5.4: Location of the levee system around Heerhugowaard, with 18 segments

5.4.1. DATA
This section describes the prior probability distributions of the variables in the Bayesian
network. Table 5.2 shows the distribution parameters for all of the variables relevant for
the piping limit state functions (with the exception of the canal water level).

The water level in the canal is regulated; when needed, water is pumped into the
canal from the lower-lying protected area, as long as the water level in the canal does



5

72 5. BAYESIAN UPDATING OF PIPING FAILURE PROBABILITIES

not exceed the maximum tolerated level. In this canal, that level is exactly equal to the
Dutch datum, known as Amsterdam Ordinance Datum (AOD).

A two-parameter generalized Pareto distribution (GPD) was fitted to independent
water level peaks above a selected threshold. The threshold was chosen according to the
method described in [75]. The parameters of the GPD are the shape (σ) and scale (ξ)
parameters; the distribution function is presented in Eq. 5.8. After fitting the GPD to
the data, the distribution was then modified so that any water level above the maximum
tolerated level had an exceedance probability of zero. In this way, the regulated aspect of
the canal is taken into account. It is possible that human error may lead to a water level
above the maximum tolerated level, but that was not considered in this case study. Fig-
ure 5.5 shows the exceedance probability curve for the water level, and Table 5.3 shows
parameters of the GPD.

F (x) =


1−

(
1−ξ x

σ

)1/ξ
, ξ 6= 0

1−exp
(
− x

σ

)
, ξ= 0

(5.8)

Table 5.2: Input values for the three segments (S9, S11, and S12). Shown are the mean M of the distributions,
the standard deviation SD , and the correlation length dx (in meters). Note that for dx , ∞ means the variable
is fully correlated over the segment.

Variable Units M (S9) M(S11) M (S12) SD dx
D0 [m] 15 0.1M 200
D [m] 0.3 0.01 0.01 0.1M 200
L [m] 37.5 17.75 39 0.1M 3000
θ [deg] 37 3 600
d70 [m] 3.15E-04 2.62E-04 3.15E-04 0.15M 180
η [-] 0.25 0.05M ∞
γwc [kN/m3] 16 0.05M 300
γk [kN/m3] 18 0.05M 300
mu [-] 1 0.1M ∞
ms [-] 1 0.1M ∞
mh [-] 1 0.08M ∞
k [m/s] 1.74E-04 9.26E-05 1.74E-04 M 600
hl s [m+AOD] -3.6 -3.6 -2.85 0.1M ∞
d70m [m] 2.08E-04 – –
g [m/s2] 9.81 – –
γw [kN/m3] 10 – –
ν [m2/s] 1.00E-05 – –

Table 5.3: Shape and scale parameters of the Generalized Pareto distribution (GPD) of canal water levels, the
threshold above which canal water level peaks were selected, and the number of peaks used to fit the GPD
parameters.

Shape Scale Threshold # Peaks
0.0651 0.0318 -0.3984 100

5.4.2. PRIOR ANALYSIS WITH THE BN: REGIONAL CASE
For each segment in the system, the number of cross sections in the segment BN was
iteratively increased until the failure probability of the segment reached an asymptote.
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Figure 5.5: Water level exceedance probabilities for the water level in the Schermer Canal

The stop criterion was defined such that the iterative procedure stops when the seg-
ment failure probability of the previous 10 iterations all lie within the 95% confidence
interval of the current iteration. Figs. 5.6 - 5.7 show the prior failure probability of the
three segments under consideration, as a function of the number of cross sections rep-
resenting the segment. The 95% confidence intervals around the final estimate is also
shown. Table 5.4 summarizes the results, providing the cross section failure probability,
the selected number of cross sections to represent the segment, and the segment failure
probability for each of the three segments.

Table 5.4: Prior cross sectional failure probability (P f ,C S ), prior segment failure probability (P f ,Seg ), number
of cross sections (# CS), and the length of the segment (Lseg )

Segment P f ,C S P f ,Seg # CS Lseg (m)

9 0.32 0.59 47 1000
11 0.85 0.99 47 2000
12 0.12 0.57 75 4000

After determining the number of cross sections that will represent each of the seg-
ments, the levee system network can be built. To do this, variables which are fully cor-
related over the system need to be identified. Table 5.2 provided the correlation lengths
(dx ) for each of the variables; those with a value of infinity (∞) are fully correlated over
the entire segment. However, only a few of these are also fully correlated over our entire
system. These were the water level in the canal (h), the model error in the uplift and
piping models (mu and ms , respectively), and the drag coefficient (η). All other variables
were taken to be uncorrelated between segments.

The BN estimated a system failure probability of 0.998, which is unsurprising, given
the failure probability of 0.99 of Segment 11 (see Table 5.4). This probability is highly
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Figure 5.6: Prior segment failure probability as a function of number of cross sections representing the seg-
ment, shown here for levee segment 9
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Figure 5.7: Prior segment failure probability as a function of number of cross sections representing the seg-
ment, shown here for levee segment 11

suspect, given that no evidence of piping has been observed in tens of years. This made
it a good candidate for updating using a survival observation.

5.4.3. INCORPORATING A SURVIVAL OBSERVATION: REGIONAL CASE

The highest water level on record for this stretch of levee is -0.1460 AOD, which corre-
sponds to a return period of about 40 years, and was observed in January 2003. The
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Figure 5.8: Prior segment failure probability as a function of number of cross sections representing the seg-
ment, shown here for levee segment 12

levee survived with no evidence of weakness. The coupled survival observation is there-
fore h =−0.146 and Zp,i > 0∩ Zu,i > 0, i = 1, ...,n, for all n cross sections in the segment
(or system when doing a posterior analysis at the system level). The posterior segment
failure probabilities were calculated for each of the segments separately, and for the sys-
tem as a whole.

As described in Chapter 2, inference is performed using rejection sampling. Specifi-
cally, h is set to a deterministic value hobs . The network is then sampled, and only those
samples for which Zp,i > 0∩ Zu,i > 0, for i = 1, ...,n. The retained samples form the pos-
terior joint distribution, which are used to calculate the updated failure probability. De-
tails about how this is done are provided in Chapter 2 (see Section 2.3.5). The posterior
segment failure probabilities are presented in Figs. 5.9-5.11. Note that for segment 11
the 95% confidence interval is extremely wide. This is because the number of posterior
samples is very low. Recall that this segment had a prior failure probability of 0.99 (see
Table 5.4). This means that with rejection sampling, only 1% of the samples are retained
for posterior analysis. I started with 1E6 samples, so the posterior failure probability is
computed with only about 1E3 samples.

The BN for the system returned a prior failure probability of 0.998. After incorporat-
ing the survival observation, the system failure probability estimate is 0.0045. This is a
reduction of over two orders of magnitude.

The posterior analysis introduces dependence between previously independent soil
variables. Therefore, if the updated distributions are used in other analyses (e.g. another
failure mechanism that depends on some of the same variables), this posterior depen-
dence must be taken into account. The posterior marginal distributions of the variables
that were most affected by the survival observation are presented in Figure 5.12 for Seg-
ment 11. The other segments showed similar results, although this segment had the



5

76 5. BAYESIAN UPDATING OF PIPING FAILURE PROBABILITIES

5 10 15 20 25 30 35 40 45
5

6

7

8

9

10

11

12
x 10

−4

Number of cross sections representing segment 9

P
o
s
te

ri
o
r 

s
e
g
m

e
n
t 

fa
ilu

re
 p

ro
b
a
b

ili
ty

, 
s
e

g
m

e
n
t9

 

 

BN

BN 95% CI

Figure 5.9: Posterior failure probability for segment 9
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Figure 5.10: Posterior failure probability for segment 11

most impact as its prior failure probability was so high.

5.4.4. DISCUSSION

Discussions with the water board following the completion of this research illuminated
an interesting aspect missing from the Bayesian network representation of the system.
The piping mechanism depicted in Figure 5.1 assumes that a sand layer underlies the



5.4. REGIONAL LEVEES

5

77

10 20 30 40 50 60 70
2

4

6

8

10

12

14

16
x 10

−4

Number of cross sections representing segment 12

P
o
s
te

ri
o
r 

s
e
g

m
e
n
t 
fa

ilu
re

 p
ro

b
a
b

ili
ty

, 
s
e

g
m

e
n

t1
2

 

 

BN

BN 95% CI

Figure 5.11: Posterior failure probability for segment 12
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Figure 5.12: Updated distributions of a selection of soil variables

canal. In practice, there may be a clay layer between the canal and the aquifer, essen-
tially making the soil water pressure in the aquifer immune to the water level in the
canal, and rendering the piping mechanism impossible. Field measurements for the
Heerhugowaard system have concluded that this clay layer exists at a number of loca-
tions. This can be accounted for by including a node that represents the existence (or
nonexistence) of such a clay layer. The node would act like a switch; when the layer
exists, the failure probability of the segment will be zero, regardless of the value of the
limit state functions for piping. When the layer does not exist, the limit state functions
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will determine whether failure occurs. Inclusion of the node was preliminarily explored
and results show that it has a dominant influence, with very high posterior probabilities
of existence. It also has the effect of reducing the posterior failure probability relative
to the case when the clay layer is not accounted for. Therefore, inclusion of this node
should be done in close conversation with those responsible for the safety of the region.
One of the issues that specifically needs to be addressed is whether it is acceptable to
depend on the mucky clay layer, which is not a managed part of the defense system, to
ensure the safety of the inhabitants.

5.5. PRIMARY LEVEES
The primary system considered contains three levee segments, 13a, 13b, and 14, along
the IJssel River in the Netherlands. The system protects agricultural land, as well as the
part of the picturesque city of Zutphen that lies to the west of the IJssel River. Figure
5.13 presents the location of the system. The failure probability of the middle segment -
segment 13b - was estimated to be too high in a national flood risk analysis study ([47]).
Those familiar with the system were skeptical about this high failure probability, which
is why it was selected for a case study. The surrounding segments, 13 and 14, had lower
failure probabilities, but were included in this study to illustrate the application to a sys-
tem.

5.5.1. DATA
The soil data used for the three segments was the same data used for the national flood
risk analysis, carried out with the reliability model PC-Ring. The data is provided in Table
5.5. The mean and standard deviation of each of the variables is given, as well as the
correlation length dx , which dictates how quickly the spatial autocorrelation decreases.
The distribution types were provided earlier in this chapter in Table 5.1.

Table 5.5: Input values for the three segments of the primary levee system (13a, 13b, and 14). Shown are the
mean M of the distributions, the standard deviation SD , and the correlation length (in meters) dx . Note that
for dx , ∞ means the variable is fully correlated over the segment.

Variables Units M (13a) M(13b) M (14) SD(13a) SD(13b) SD(14) dx
D0 [m] 9.4 10.2 8.7 0.3M 200
D [m] 1.6 0 1.8 0.2M – 0.08M 200
L [m] 44.4 52.0 37.6 0.03M – 0.09M 3000
θ [deg] 43 3 600
d70 [m] 4.0E-04 0.27M 180
η [-] 0.3 0.1M ∞
γwc [kN/m3] 19.3 19.47 19.16 0.1M 300
γk [kN/m3] 27 0.01M 300
mu [-] 1 0.1M ∞
ms [-] 1 0.0.08M ∞
mh [-] 0.8 0.1M ∞
k [m/s] 5.8E-04 5.4E-04 5.84E-04 1.3M 600
hl s [m+AOD] 7.0 6.2 6.5 0.1M ∞
d70m [m] 2.08E-04 – –
g [m/s2] 9.81 – –
γw [kN/m3] 10 – –
ν [m2/s] 1.00E-05 – –

The water level distribution was fitted using three quantiles that had been calculated
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Figure 5.13: Location of the primary levee system

with PC-Ring. In the PC-Ring model, upstream discharges at Lobith (on the border with
Germany) are sampled, and then used as an upstream boundary in a hydraulic model
that calculates the associated water levels in the river branches. Because that has al-
ready been done, the hydraulic model was not needed in this analysis. Instead, three
quantiles of the local water level were used which PC-Ring had previously calculated.
These quantiles were the 1/125, 1/1250, and 1/12500 water levels. A Gumbel extreme
value distribution (for maxima) was assumed, the formula for which is provided in Eq.
5.9. It has two parameters, a location parameter µ and a scale parameter β, which were
fitted using the known quantiles. The parameters of the Gumel distribution, as well as
the mean and standard deviation are provided in Table 5.6.

F (x) = exp

[
−exp

[
− 1

β

(
x −µ)]]

(5.9)
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Table 5.6: Gumbel distribution parameters, IJssel river at location of segements 13a, 13b, and 14.

Location (µ) Scale (β) Mean Standard deviation
7.36 0.31 7.5 0.40
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Figure 5.14: Distribution of the water level in the IJssel River at the location of the levee system

5.5.2. PRIOR ANALYSIS: PRIMARY CASE

As with the regional system, the number of cross sections in each segment BN was iter-
atively increased until the failure probability of the segment reached an asymptote. The
same stop criterion was used, where the iterative procedure stops when the segment fail-
ure probability of the previous 10 iterations all lie within the 95% confidence interval of
the current iteration. In this application, importance sampling was used to sample the
river water level in the prior analysis (see Chapter 2 for details of importance sampling).
This was not necessary in the regional case, because the prior failure probabilities were
so high. As a biased distribution, the Gumbel distribution was used with the same scale
parameter (see Table 5.6), but with a location parameter increased by 1 for segments
13a and 14, and by 0.5 for segment 13b. Table 5.7 summarizes the results, providing the
cross section failure probability, the selected number of cross sections to represent the
segment, and the segment failure probability for each of the three segments.

Table 5.7: Cross sectional failure probability (P f ,C S ), segment failure probability (P f ,Seg ), number of cross
sections (# CS), and the length of the segment (Lseg )

Segment P f ,C S P f ,Seg # CS Lseg (m)

13a 1.9E-5 6.8E-5 19 875
13b 3.9E-4 1.4E-3 43 763
14 1.7E-4 5.8E-4 35 770
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PRIOR SEGMENT FAILURE PROBABILITY: COMPARISON OF BN AND MO METHODS

In Chapter 3, I compared the BN with the modified outcrossing (MO) method estimates
of the segment failure probability, for a few numerical examples. In this application, the
segment failure probabilities were also calculated using the MO method, and the results
are presented together with the BN results. Figs. 5.15 - 5.17 show the prior failure prob-
ability of the three segments, as a function of the number of cross sections representing
the segment. The 95% confidence intervals around the BN estimate is also shown. The
MO estimate is shown as a horizontal line because it is not dependent on the number
of cross sections representing the BN. The agreement between the two methods is not
as strong as it was for the numerical example in Chapter 3, but it is still quite good. In
terms of reliability index, the differences are only 2%, 1%, and 3% for segments 13a, 13b,
and 14, respectively. Tabulated results of the estimates are presented together with the
posterior results in Table 5.8.
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Figure 5.15: Prior segment failure probability for segment 13a, computed with the BN and the MO method.
The 95% confidence interval around the BN estimate is also presented.

PRIOR SYSTEM FAILURE PROBABILITY: COMPARISON WITH EQUIVALENT PLANES METHOD

I compared the system failure probability calculated by the BN with the estimate derived
using the Equivalent Planes (EP) method described in Chapter 4, which combines cor-
related system components (in this case our three ‘components’ are the three segments
in our system). To use the EP method, the influence coefficients of the random vari-
ables are required. The cross-sectional influence coefficients are easily obtained when
using FORM to calculate the failure probability, but the coefficients for the variables at
the segment scale are not guaranteed to be the same. In fact, they will almost definitely
not be the same because the more spatially variability a variable exhibits, the more likely
it will be to have a weak realization and cause failure. Therefore, spatial variability will
play a role in which variables are most influential at the segment scale. Though not
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Figure 5.16: Prior failure probability for segment 13b, computed with the BN and the MO method. The 95%
confidence interval around the BN estimate is also presented.
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Figure 5.17: Prior failure probability for segment 14, computed with the BN and the MO method. The 95%
confidence interval around the BN estimate is also presented.

described in this dissertation, the MO method implemented in Hydra-Ring is coupled
with a method to calculate the influence coefficients at the segment scale. For details
about how this is done, the reader is referred to the Hydra-Ring technical document
([11]). Thereafter, the EP method is applied as described in Chapter 4. The prior sys-
tem failure probability estimate calculated with the EP method is referred to as a com-
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bined MO/EP estimate, since the segment failure probabilities were calculated with the
MO method and the system probability with EP. The BN estimate for the system failure
probability was 1.9E-3; the MO/EP estimate was 2.5E-3. This is about a 30% difference,
which is considered relatively minor at this magnitude. In terms of reliability index, the
estimates are 2.9 and 2.8 for the BN and MO/EP methods, respectively, which equates to
a difference of about 3%.

5.5.3. INCORPORATING A SURVIVAL OBSERVATION: PRIMARY CASE
For the survival observation, I considered two water levels: one with a return period of
400 years and one with a return period of 40 years. The first one is a very extreme water
level of 9.2 m + AOD. The second is more realistic to have been observed, at 8.5 m +
AOD. Both water levels are considered to get a feel for how the extremity of the observed
load will influence the impact that a survival observation has on the failure probability.
Figures are only presented for the case that hobs = 9.2 m + AOD, which is the 1/400 year
water level, but tabulated results are presented for both observed water levels.

POSTERIOR SEGMENT FAILURE PROBABILITY: COMPARISON OF BN AND MO METHODS

The posterior segment failure probability estimates from the BN and MO methods were
compared. The method to estimate the posterior segment failure probability using the
MO method was described briefly in Chapter 3, and in detail in Appendix F. Figs. 5.18 -
5.20 show the posterior failure probability estimates of the three segments, as a function
of the number of cross sections representing the segment. The 95% confidence inter-
vals around the BN estimate is also shown. Included in each figure is the MO estimate,
which is given as a horizontal line, as the estimate is not a function of the number of
cross sections in the BN. The agreement between methods is quite strong; in terms of
reliability index, the differences are only 0.3%, 1%, and 1% for segments 13a, 13b, and
14, respectively.

Table 5.8 presents the prior and posterior segment failure probabilities estimated by
the BN, for each of the segments, as well as for the system, for the case of a 1/400 year
water level observation. The ratio of prior to posterior failure probability is presented, to
show the reduction that results from making use of the survival observation. The ratio of
prior to posterior system failure probability is 7.5, which means that the posterior failure
probability is 7.5 times lower due to the survival observation. Table 5.9 shows the same
results but for a 1/40 year water level observation. The impact on the failure probability
is substantially less with the 1/40 year water level observation, with a ratio of prior to
posterior system failure probability of only 2. An observation with a return period of 40
years is relatively high given the length of the record, but is not high enough to greatly
impact a system with such a low prior failure probability.

POSTERIOR SYSTEM FAILURE PROBABILITY

The BN and MO/EP posterior system failure probability estimates were compared. The
BN returned an estimate of 2.8E-4, and MO/EP method returned an estimate of 3.3E-4.
This is a difference of about 18%. In terms of reliability indices, the estimates are 3.45
and 3.41 for the BN and MO/EP methods, respectively. This equates to a difference of
about 1%.
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Table 5.8: For a water level observation with a return period of 400 years (i.e. an extreme, rather unlikely
observation): Prior and posterior segment failure probabilities for Segments 13a, 13b, and 14 computed with
the BN and the MO method, and the system failure probability computed by the BN, and a combination of the
MO and EP methods. The ratio of prior to posterior failure probability is also given.

P (h > hobs ) = 1/400
BN BN BN MO/EP MO/EP MO/EP

Segment prior post ratio prior post ratio
13a 6.8E-5 4.4E-5 1.6 9.0E-5 4.7E-5 1.9
13b 1.4E-3 1.2E-4 11.8 1.6E-3 1.4E-4 11.3
14 5.7E-4 1.5E-4 3.7 8.4E-4 1.8E-4 4.8

System 1.9E-3 2.8E-4 7.0 2.5E-3 3.3E-4 7.5

Table 5.9: For a water level observation with a return period of 40 years: Prior and posterior segment failure
probabilities for Segments 13a, 13b, and 14 computed with the BN and the MO method, and the system failure
probability computed by the BN and MO/EP methods. The ratio of prior to posterior failure probability is also
given.

P (h > hobs ) = 1/40
BN BN BN MO/EP MO/EP MO/EP

Segment prior post ratio prior post ratio
13a 6.8E-5 6.6E-5 1.0 9.0E-5 6.9E-5 1.3
13b 1.4E-3 5.2E-4 2.7 1.6E-3 6.1E-4 2.6
14 5.7E-4 4.6E-4 1.2 8.4E-4 5.3E-4 1.6

System 1.9E-3 9.7E-4 2.0 2.5E-3 1.2E-3 2.1
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Figure 5.18: Posterior failure probability for segment 13a, computed with the BN and the MO method, using
an observed water level with a return period of 400 years. The 95% confidence interval around the BN estimate
is also presented.
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Figure 5.19: Posterior failure probability for segment 13b, computed with the BN and the MO method, using
an observed water level with a return period of 400 years. The 95% confidence interval around the BN estimate
is also presented.
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Figure 5.20: Posterior failure probability for segment 14, computed with the BN and the MO method, using an
observed water level with a return period of 400 years. The 95% confidence interval around the BN estimate is
also presented.

5.6. COMPUTATIONAL EFFICIENCY
In this case study, both the BN and the combined MO + EP methods from Hydra Ring
were used to calculate the segment and system failure probabilities. This section focuses
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on the time required for each of the methods to perform these calculations1.
The BN has two calculation phases. The first phase is the iterative procedure to deter-

mine the necessary number of cross sections to represent the spatial variability of each
levee segment. The second phase is the calculation of the system failure probability once
the number of cross sections in each segment has been determined. The first phase is
the most time consuming, and further research will look into ways to make it more effi-
cient. In this chapter, the iterative procedure adds two cross sections at each iteration.
This resulted in about 10 minutes to converge to the necessary number of cross sections,
for each segment. Preliminary investigation into taking larger steps shows promise. The
calculations in this chapter were repeated, but with three cross sections added per it-
eration (instead of two). The resulting segment failure probabilities were the same, but
there was much faster convergence to the necessary number of cross sections, about 4
minutes per segment.

The second phase of the BN calculation, in which the number of segments in the
system have already been determined, takes about 7 minutes. In the research in this
dissertation, this was not prohibitively slow. Together with the first calculation phase,
the entire analysis of prior and posterior segment and system failure probabilities takes
about 20 minutes, if using an iterative procedure in the first phase in which three cross
sections are added each iteration.

By comparison, the Hydra-Ring methods are much faster. Computing prior and pos-
terior segment and system failure probabilities took about 4 seconds, more than half of
which was used calculating the posterior influence coefficients (see Appendix F). This
makes the Hydra-Ring algorithms about 300 times faster than the BN. Even excluding
the computational costs of the iterative procedure (supposing this could be made sub-
stantially more efficient), the computational cost of the BN system calculation was still
7 minutes compared to 3 seconds, or about 100 times slower.

5.7. WHEN ARE SURVIVAL OBSERVATIONS USEFUL?
Survival observations are vastly available, but not always particularly useful. In this sec-
tion I look at which observations are good candidates for a posterior analysis. Two pri-
mary factors determine how useful a survival observation will be: the magnitude of the
prior conditional failure probability given the observed load, P (Fail|Sobs ), and the rela-
tive influence that the resistance has on failure. Both of these factors will be described
using examples.

The prior conditional failure probability, given the observed load, is a deciding factor
in the usefulness of a survival observation. When the prior conditional failure probability
is high, then observing survival is often very informative, because it tells us that our prior
distributions are underestimating the strength of the levee. On the other hand, if the
expected failure probability given the observed load is low, then observing survival es-
sentially confirms our prior knowledge, and the posterior distributions are similar to the
priors. This is illustrated with a simple example, where Z = R −S, and R and S are both
normally distributed, R ∼ N

(
µR = 8,σR = 1

)
and S ∼ N

(
µS = 5,σS = 1

)
. First, an ob-

served load Sobs = 7.5 is considered, which corresponds to a return period of about 160

1Computation times are based on a 2.8 GHz computer with 8GB RAM
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years, and results in a relatively high conditional failure probability P (Fail|Sobs ) = 0.3.
The top plot in Figure 5.21 shows the prior densities of R and S ( fR (R) and fS (S)), the
observed load Sobs and the posterior or updated distribution of R (after incorporating
the survival observation), fRu(R). The bottom plot shows the prior and posterior condi-
tional probability of failure, P (Fail|S), as well as the density of S, fS (S). The total failure
probability is given by Eq. 5.10, which shows that for a particular value of S, if either fS (S)
or P (Fail|S) are very low, the contribution of that load to the total failure probability will
be low. Thus, the bulk of the failure probability comes from the range of S where both
fS (S) and P (Fail|S) are non-negligible (i.e. not too close to zero). When a survived load is
observed, it affects the posterior curve P (Fail|S); most notably, the curve will be zero for
values of S less than Sobs

2 (see bottom plot in Figure 5.21). This means that the range
of S below Sobs , where fS (S) is relatively high, will no longer contribute to the failure
probability. This is the reason the failure probability decreases when a survived load is
incorporated.

P (Fail) =
∫

P(Fail|s)fS (s)ds (5.10)

Figure 5.22 shows the same example, but this time with an observed load of Sobs =
6, which corresponds to a return period of about 6 years, and results in a much lower
conditional failure probability P (Fail|Sobs ) = 0.02. The top plot in the figure shows that
the updated density fRu(R) is barely distinguishable from fR (R), and the bottom plot
shows the posterior curve of P (Fail|S) is barely distinguishable from the prior. In this
case, removing the contribution of load values less than Sobs to the failure probability is
fairly negligible.

Another deciding factor in the usefulness of a survival observation is the relative in-
fluence that the resistance has on failure. Intuitively this make sense, because if the
resistance has little influence on the failure probability (i.e. the load is dominant), then
improving its distribution will have little effect. Conversely, if the resistance is domi-
nating the failure probability, then improving its distribution should have a large im-
pact. Graphically, the influence of the resistance impacts the steepness of the condi-
tional probability curve (less influence leads to a steeper curve, more influence leads to
a broader curve). Via an example, I investigate how the relative influence of the resis-
tance impacts the usefulness of a survival observation.

Consider a limit state function Z = β+αRUR +αSUS , where β is the prior reliability
index, αR and αS are the influence coefficients of the (standard normally distributed)
resistance variable UR and load variable US . The influence coefficients are defined such
that the square indicates the relative influence. For example α2

R = 0.3 means that the re-
sistance variable has a 30% influence on the failure probability. The sum of the squared
influence coefficients is always 1, so that if α2

R = 0.3, then α2
S = 0.7. I considered sev-

eral influence coefficients: α2
R = [0.9,0.7,0.5,0.3,0.1], three values of the reliability index:

β = [2,3,4], and two return periods of the observed load: 40 years and 400 years. The
influence coefficient affects the shape of the conditional failure probability curve, and

2This assumes epistemic (fully reducible) uncertainty of the resistance variables. It is possible in some cases
that there will still be some probability of failure for a value of the load below Sobs , but for simplicity this is
not considered in the example.
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Figure 5.21: Top: Density of R and S, and the updated density of R, fRu , after incorporating the survival obser-
vation. Bottom: prior and posterior conditional failure probability curves, as a function of the load S, and the
density of S, for an observed load with a return period of about 160 years.

β and the observed load affect the area under the prior conditional failure probability
curve that will no longer contribute to the posterior failure probability, after incorporat-
ing a survival observation.

Table 5.10 shows the reduction in the failure probability (as the ratio of prior to pos-
terior) for an observed load with an extreme return period of 400 years. When the resis-
tance is the dominant influence on the failure probability, the reduction in failure prob-
ability is substantial, even for a prior reliability index of β = 4. When the load is more
dominant (α2

S = [0.7,0.9], or equivalently α2
R = [0.3,0.1]), the reduction is much less, and

for a β = 4 is completely negligible. Table 5.11 shows the reduction in failure probabil-
ity for a load with a return period of 40 years, which is much more realistic to observe
in practice than the 1/400 year load. In this case, when the resistance is the dominant
influence on the failure probability, there is still a substantial reduction in the failure
probability. With an influence of the resistance of 70% and a high prior reliability index
β= 4, the posterior is 5 times lower than the prior. This is not an extreme reduction, but
still quite useful for the small amount of effort required to perform the posterior analysis.
However, once the influence of the resistance is 50% or lower, the reduction is negligible
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Figure 5.22: Top: Density of R and S, and the updated density of R, fRu , after incorporating the survival obser-
vation. Bottom: prior and posterior conditional failure probability curves, as a function of the load S, and the
density of S, for an observed load with a return period of about 6 years.

for β= 4, and quite small for β= 3.
Tables 5.10 and 5.11 show the reduction in failure probability for levees with differ-

ent combinations of prior reliability, influence coefficients, and (extremity of) observed
loads. Some of these combinations are seen more often than others, which is highlighted
in this paragraph. I also provide the combination of these factors, and the reduction in
failure probability for the primary levee case discussed in Section 5.5. In practice, partic-
ularly in the Netherlands, levees must be very reliable and comply with stringent limits
on their failure probabilities. This means that in Tables 5.10 and 5.11, the β = 4 results
are more representative of the prior failure probabilities encountered most often for pri-
mary levees. However, levees which fail to meet their safety standards are likely to have
lower reliability indexes, more on the order of β = 3. Levees with a prior reliability in-
dex of β= 2 may be encountered for regional levees, or primary levees in countries with
lower safety standards. Measurement records are usually between 50-100 years, which
means observing the 1/400 year water level is not likely. Therefore, in practice, the results
in Table 5.11 are more realistic than those in Table 5.10. The influence of the resistance
will depend a great deal on the failure mechanism. For example, the resistance variables
in macrostability have a large influence, whereas a mechanism like overtopping is dom-
inated by the load. In Table 5.12, I present the combination of all of these factors (prior
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Table 5.10: Reduction in failure probability (ratio of prior to posterior) due to incorporation of a survived load
with a return period of 400 years, for different influences of the resistance (10%, 30%, 70%, and 90%), and
different prior reliability indexes β.

α2
R = 0.9 α2

R = 0.7 α2
R = 0.5 α2

R = 0.3 α2
R = 0.1

β= 2 2656 216 41 15 10

β= 3 1460 67 8 2 1

β= 4 839 23 2 1 1

Table 5.11: Reduction in failure probability (ratio of prior to posterior) due to incorporation of a survived load
with a return period of 40 years, for different influences of the resistance (10%, 30%, 70%, and 90%), and
different prior reliability indexes β.

α2
R = 0.9 α2

R = 0.7 α2
R = 0.5 α2

R = 0.3 α2
R = 0.1

β= 2 245 26 6 2 1

β= 3 145 11 2 1 1

β= 4 91 5 1 1 1

reliability index, influence of the resistance variables, and extremity of the load) for the
primary levee system piping example that was investigated in Section 5.5, including the
reduction in failure probability (ratio of prior to posterior). The table shows that Seg-
ment 13b, which had the highest prior failure probability, also had the largest influence
of the resistance variables, at about 60%. For both of these reasons, that segment had the
largest reduction in failure probabability. For the other two segments, the influence of
the resistance variables was about 40%. Notice that the reduction in failure probabilities
in Table 5.12 (for the application to a real primary levee system) agree with the reduc-
tions provided for the generic example in Tables 5.10 and 5.11. One caveat to consider
when referencing these tables is that if a real-life application includes resistance vari-
ables which are temporally variable, Tables 5.10 and 5.11 may overestimate the impact
of a survival observation. This is because the impacts reported in them were calculated
assuming that the uncertainty in resistance variables is fully reducible. However, in cases
where the temporal variability of the resistance variables is considered negligible, Tables
5.10 and 5.11 can be used as guidance, to predict how useful a posterior analysis will be
for a particular levee or levee system.

5.8. CONCLUSIONS
In this chapter, the BN methodology described in Chapter 2, including the incorpora-
tion of survival observations, was applied to two levee systems in The Netherlands. The
first system was composed of regional levees protecting the city of Heerhugowaard from
a canal. The prior failure probabilities due to piping were nearly 1, although no evi-
dence of failure had been seen. Applying the BN to the three segments that made up
this system, and imposing the survival observation (a high water level with no failure),
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Table 5.12: Prior reliability index (β), influence coefficients of the load (αS ) and (collective) resistance (αR )
variables for the piping example presented in Section 5.5, and the reduction in failure probability (ratio of
prior to posterior) for a 40-year water level observation (Red40) and a 400-year observation (Red400)

Segment Prior β α2
R = 1−α2

S Red40 Red400

13a 3.8 0.4 1.0 1.6

13b 3 0.6 2.7 11.8

14 3.3 0.4 1.2 3.7

reduced the failure probabilities by over two orders of magnitude. Discussions with the
water board indicated that it was not necessarily poor prior distributions of the soil pa-
rameters, but rather an inappropriate choice of model (the Sellmeijer piping model) for
the particular levee system. Specifically, they believe a mucky impermeable layer exists
under the canal, which disconnects the pressure of the water level from the underlying
sand layer. In this case, the prior distributions of the soil parameters may be correct, and
the levee possibly quite weak; however, the disconnect makes it so that the load is not
really felt, and therefore no failure occurs. Note that in this case, should the murky layer
be disturbed, for example by dredging, the probability of failure could increase substan-
tially.

The primary levee system that was considered, which protects the city of Zutphen
from the IJssel River, was a more valid system for use of the Sellmeijer piping model, as it
is unlikely that the IJssel river is underlain by an impermeable layer. The challenge with
the primary system is that the prior probabilities are already quite low, so that a survival
observation is not guaranteed to have much of an impact on the failure probability. For
this case, I calculated posterior segment and system failure probabilities using two load
observations (coupled with levee survival): a 1/40 year water level and a 1/400 year water
level, to assess how the extremity of the observation influences the reduction in failure
probability.

In both the regional and primary cases, I calculated prior and posterior cross-sectional,
segment, and system failure probabilities. In the regional case, the system failure proba-
bility decreased by over two orders of magnitude, due to the extremely high prior failure
probability of this system. In the primary case, the system failure probability decreased
by 7.5 for a 1/400 year water level observation. Such an extreme water level is rarely ob-
served, however. For a more realistic observation, the 1/40 year water level observation,
the system failure probability only decreased by a factor of two. This confirms one of
the disadvantages of using survival observations for primary defenses. The prior failure
probability, conditional even on high loads, is already so low, that observing survival is
not very informative.

For the primary case, I also calculated the prior and posterior segment failure prob-
abilities using the MO method, which was described in Chapter 3, and in more detail in
Appendices E and F. Chapter 3 had explored the validity of the MO method by investi-
gating numerical examples. This chapter provides further verification in by comparing
the results for this real-world application. Though the prior segment failure probabil-
ities showed slightly worse agreement than the numerical examples in Chapter 3, they
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were still in good agreement. In terms of reliability index, the MO prior estimates for
segments 13a, 13b, and 14 were 2%, 1%, and 3% lower (note: lower reliability index =
higher failure probability) than the BN estimates. The MO posterior estimates (for the
case of a 1/400 year water level) were in even better agreement, a mere 0.3%, 1%, and
1% lower than the BN estimates. I further tested the agreement between the system fail-
ure probabilities estimated by the BN and the combined MO/EP methods, and found
that in terms of reliability index, the differences were only about 1%. This difference is
on par with the differences between the MO and BN segment estimates. I anticipated
that the EP method would be fairly exact for a system of only three components, based
on the results in Chapter 4. Still, it is a useful verification in an actual application, as
opposed to the numerical examples explored in Chapter 4. The computation time for
each method was looked at; the MO and EP methods required only about 4 seconds to
compute the system failure probability, compared to about 20 minutes for the BN. The
iterative procedure to find the number of cross sections to represent the segments in the
BN is fairly time-consuming. Once the number of cross sections was determined, the
system took about 7 minutes to compute. This is about 100 times slower than the MO
and EP methods, though still not prohibitively slow.

This chapter included a section investigating under which conditions survival obser-
vations are useful. In general, they are most useful (i.e. they result in a large reduction in
the failure probability estimate) when the prior failure probability of the levee (system)
conditional on the observed load is relatively high, and/or when the relative influence of
the resistance variables on the failure probability is high. The calculations presented in
this chapter show that for a 1/40-year water level observation, a survival observation will
result in a large reduction of the failure probability if the prior failure probability is rela-
tively high (β= 2), even when the resistance is not too influential. For lower prior failure
probabilities, reductions can be expected only if the resistance is fairly influential. For
example, for a prior reliability of β = 4, only a relative influence of 70% or more results
in a reduction of the failure probability. Tables 5.11 and 5.10, which show the reduction
in failure probability due to a survival observation for different values of the prior failure
probability and influence coefficients, are a good guidance for anyone considering up-
dating levee failure probability with survival observations. Consulting these tables prior
to carrying out reliability updating can help avoid unnecessary calculations.



6
ESTIMATING GEOTECHNICAL

FAILURE MODEL UNCERTAINTY

6.1. INTRODUCTION
Geotechnical failure models are essential tools in levee reliability modeling. They esti-
mate the resistance of a levee to a given load, with respect to a specific type of failure,
such as piping, slope instability, or erosion. Failure models are prone to error because
they try to capture complex geotechnical processes using simplified approximations, es-
pecially the computationally-efficient models that are well-suited to reliability analysis.
Accurately quantifying the error (or uncertainty) in the model output is important be-
cause it can have a substantial influence on the estimated failure probability of the levee.

Estimating the uncertainty in failure model output is challenging. Validating such a
model with field experiments is costly and not always feasible. And even with a field test,
it is still uncertain if the model would perform the same at a different site or under differ-
ent conditions, making it necessary to carry out multiple field experiments at different
locations. Expert opinion is another method of quantifying the uncertainty in failure
model output. However, because experts have seldom observed failures, it is question-
able how well they can estimate this uncertainty. Because the model uncertainty can
have a large influence on the estimated failure probability of a levee, it is preferable to
estimate the model uncertainty distribution in a reproducible, quantitative way.

In this chapter, I propose a method to estimate the uncertainty in a failure model with
a Bayesian network (BN) using failure/survival observations at locations where the load
event was recorded, and where there is sufficient site/subsurface data (including, but not
limited to field experiments). The BN developed in this chapter is used to estimate the
posterior (updated) distributions of the model uncertainty parameters. In the research
presented here, a lognormal distribution of the model uncertainty is assumed, which has
two parameters (µ and σ), which means our posterior is only two-dimensional. I exploit
the low dimensionality of the problem by using numerical integration to perform infer-
ence. This is advantageous because it is one of the most accurate probabilistic methods,
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and in the case of two dimensions, also incredibly fast.
This chapter is laid out as follows. Section 6.2 presents the methodology to calculate

the model uncertainty based on observations and data, using a BN. Section 6.3 uses a
synthetic example to explore the impact of different choices/constraints in the method-
ology, such as the importance of the prior distributions, and the uncertainty due to lim-
ited data. Section 6.4 applies the method to a case study, focusing on the slope stability
model D-Geostability, applied to a number of locations in the Netherlands. The result-
ing posterior model uncertainty distribution from this application was used to support
the development of calculation rules for the Dutch levee assessments.

6.2. METHODOLOGY
This section describes the development of a BN for estimating failure model uncertainty
based on hindcasts and performance observations. A hindcast is the output of a failure
model for (sharply estimated) input from past events. The idea is that given the past
conditions as input, the model should predict the performance observation (failure or
survival). The method described herein is applicable whenever performance of the levee
has been observed for a known loading event at multiple locations. The analysis should
only include locations where the levee geometry and the subsurface have been explored
in enough detail that the model input is considered certain. This is important so that the
calculated uncertainty in the model output will be due to the error in the model, and not
to error/uncertainty in the input. In practice, there will always be some uncertainty in
the input, but the goal is to keep it low relative to the uncertainty in the model. Section
6.2.1 discusses how to characterize failure model uncertainty, Section 6.2.2 describes
how to represent the problem of an unknown failure model uncertainty distribution in
a BN, and how to interpret failure observations. This latter has to do with the discrep-
ancy between a ‘failure’ observation and the output of a failure model (which is usually
a comparison of the resistance to the load). The way that failure is interpreted is rele-
vant because it has consequences for the posterior probability of the model uncertainty
parameters. Section 6.2.3 describes how inference is performed using survival/failure
observations and failure model output, and Section 6.2.4 discusses the choice of prior
distributions.

6.2.1. CHARACTERIZATION OF FAILURE MODEL UNCERTAINTY

The error in a failure model can be complex, but it is commonly characterized as ei-
ther an additive error or a multiplicative one. Consider a failure model that predicts the
stability factor Gm(X), which is the ratio of the modeled resistance Rm(X) to the mod-
eled load Sm(X). The input to the failure model is a set of (potentially random) variables
X = [X1, X2, ..., Xn] (e.g. soil porosity, aquifer thickness, etc.). The subscript m refers to
the fact that these quantities are modeled. In the remainder of the chapter Gm(X) is
shortened to Gm to make the equations and text cleaner, but the dependence on the
input variables remains.

Gm(X) = Rm(X)

Sm(X)
(6.1)

The stability factor is describing the brink between failure and survival of a structure.
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The ‘true’ stability factor G is the ratio of the true resistance to the true load G = R/S
(the absence of the subscript m indicates true quantities). G = 1 represents the limit
state between survival and failure; when G > 1 the structure survives and when G < 1,
the structure will fail. This is not the case with Gm because the model may be biased,
and will be uncertain due to the inexact modeling of the physical processes involved in
geotechnical failure. Consider failure to be conditional upon the value of the stability
factor. For the true stability factor, this conditional failure probability is a step function
(see Equation 6.2). For Gm this will not be the case, because the error in the model makes
it possible that Gm < 1 in cases where the structure survives, or conversely Gm > 1 when
the structure fails.

P
(
Fail|G = g

)= {
0, g > 1
1, g ≤ 1

(6.2)

The uncertainty in the model (denoted as M) can be described as a multiplicative
error or an additive one. Ideally, measurements would determine whether a multiplica-
tive or additive representation is better suited. Errors that depend on the magnitude of
the predicted stability factor would be better represented by a multiplicative error, and
errors that are independent of the prediction would be better represented by additive
error. In the case of predicting levee failures, measured errors are hard to come by, and
there are definitely too few to determine this conclusively. In practice, a multiplicative
lognormal distribution is a common choice for the model uncertainty ([76]). The advan-
tage of such a representation is that the stability factor is guaranteed to always be posi-
tive, which is necessary as negative stability factors have no physical meaning. There are
ways to accomplish this with an additive error, for example by truncating the uncertainty
distribution, but it is less elegant and has no obvious advantage. Because the range of
calculated stability factors is relatively constrained around 1, choosing an additive or
multiplicative error is unlikely to make a substantial difference. In this chapter I focus
on a multiplicative lognormal distribution for the model uncertainty. In this case, the
true (unknown) stability factor is represented as the product of the model uncertainty
and the modeled stability factor; see Eq. 6.3. This distribution of M has two parameters,
µ and σ, which are the mean and standard deviation of ln(M). The density of M is given
in Eq. 6.4.

G = M ·Gm (6.3)

fM (m) = 1

mσ
p

2π
exp

[
−

(
lnm −µ)2

p
2σ

]
(6.4)

The value of the parameters µ and σ are unknown. In the following section I present
a BN which uses observations and hindcasts to estimate the posterior distribution of
these parameters, and (by extension) the posterior distribution of M .

6.2.2. BAYESIAN NETWORK FOR MODEL UNCERTAINTY ESTIMATION
The BN to estimate the model uncertainty parameters µ andσ is illustrated in Figure 6.1.
The nodes in the BN are the parameters of the model uncertainty distribution, µ and σ,
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the model uncertainty Mi , the (true) stability factors Gi , the modeled stability factors
Gmi , and the observed failure states of the levee Faili , for the i = 1...n locations. The
nodes Mi are lognormally distributed with parameters µ and σ. The stability factors Gi

are a function of Mi and Gm,i : Gi = Mi ·Gm,i . The node Faili is also a function, it is equal
to 1 when Gi < 1 and 0 when Gi > 1. Functional nodes are indicated with black edges.
The modeled stability factors are deterministic, which are represented by square nodes1.

m s

1G 2G 3G nG

1mG 2mG 3mG

...

...
mnG

1Fail 2Fail 3Fail nFail

1M 2M 3M nM

Figure 6.1: BN for estimating the lognormal model-uncertainty parametersµ andσ based on modeled stability
factors Gmi and observed levee performance (Faili = 0 or Faili = 1). Circular nodes represent random vari-
ables, black edges represent functional nodes, square nodes represent deterministic values, and grayed nodes
indicate observed variables.

Observed nodes, or nodes with known values, are indicated by a gray fill in Figure
6.1. Often Faili is observed, but not the exact value of the stability factor Gi . This is
because most data is historical, and the exact load at which failure occurred is generally
unknown. Still, observing Faili and knowing Gm,i gives us information about Gi and Mi

(via the relationship Eq. 6.3 and Eq. 6.5). These two pieces of information tell us that
when Faili = 1, Gi = Mi ·Gm,i < 1, and therefore that Mi < 1/Gm .

Gi < 1, F ai li = 1
Gi > 1, F ai li = 0

(6.5)

During field tests, it is possible to observe Gi = 1, which occurs at the load which
just exceeds the resistance. In such a case, the observation can be considered to be
Mi = 1/Gm,i . It is also possible with field tests to consider the observation of G to be
a range, due to other potential sources of uncertainty in the model input, or related to
the test site. In that case, G can be considered to be observed between some lower bound

1In BNs, square nodes can refer to decision nodes; in this chapter they only refer to deterministic nodes.
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GLB and 1: GLB <G < 1, which translates to GLB /Gm < M < 1/Gm . In the case of survival,
when Faili = 0, it is only known that Gi > 1, and that Mi > 1/Gm . The relationship be-
tween observed variables and M are summarized in Table 6.1.

Table 6.1: Information about the model uncertainty M derived from observations of Fail and (if observed) G

Fail G M
1 not observed M < 1/Gm

1 G = 1 M = 1/Gm

1 GLB <G < 1 GLB /Gm < M < 1/Gm

0 not observed M > 1/Gm

The joint distribution over all the nodes in the network is given in Eq. 6.6.

P
(
µ,σ, M1, . . . , Mn ,G1, . . . ,Gn ,Fail1, . . .Failn

)=
P

(
µ
)

P (σ)
n∏

i=1
P

(
Mi |µ,σ

)
P (Gi |Mi )P (F ai li |Gi )

(6.6)

The objective is to estimate the posterior distribution of µ and σ, given the observed
variables in the network. From Bayes theorem, the posterior distribution can be written
according to Eq. 6.7.

P
(
µ,σ|Gm,Fail

)∝ P
(
µ
)

P (σ)P
(
Gm,Fail|µ,σ

)
(6.7)

The third term is the likelihood of the observations, given the parameters µ and σ. It
is the product over the likelihoods at the individual locations; see Eq. 6.8. Because the
observations of Gm,i and Faili translate into information about Mi , the individual like-
lihoods can be written in terms of M . The form of the likelihood will depend on which
data were observed. When only Gm,i and Faili are observed (as illustrated in Fig. 6.1),
then failure only tells us that Gi < 1. In this case, the likelihood is given in Eq. 6.9, where
Fm is the cumulative distribution function of M , which is taken to be the lognormal dis-
tribution in this chapter.

P
(
Gm,Fail|µ,σ

)= n∏
i=1

P
(
Gm,i ,Faili |µ,σ

)
(6.8)

P
(
Gm,i ,Faili |µ,σ

)=


P
(
Mi < 1

/
Gm |µ,σ

)= FM
(
1
/

Gm ;µ,σ
)

, F ai li = 1

P
(
Mi > 1

/
Gm |µ,σ

)= 1−FM
(
1
/

Gm ;µ,σ
)

, F ai li = 0
(6.9)

If Gi = 1 is observed in the case of failure, this is a stronger observation than just
observing Faili . The likelihood of the observation for this case is given in Eq. 6.10. The
observation of Gi translates into Mi = 1/Gm,i , and the probability density fM is used in
the case of failure, instead of the distribution function Fm .

P
(
Gm,i ,Faili|µ,σ

)=


P
(
Mi = 1

/
Gm |µ,σ

)= fM
(
1
/

Gm ;µ,σ
)

, F ai li = 1

P
(
Mi > 1

/
Gm |µ,σ

)= 1−FM
(
1
/

Gm ;µ,σ
)

, F ai li = 0
(6.10)
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Sometimes Gi = 1 can be an over-confident estimate for failure during a field test,
for example due to uncertainties in the input or issues related to how well the test site
mimics reality. Still, it is likely to be close to 1. In these cases, experts can impose a lower
bound GLB ,i on what Gi can be, given failure. That means GLB ,i <Gi < 1, or GLB ,i /Gm,i <
Mi < 1/Gm,i (see Table 6.1). The likelihood for this case is given in Eq. 6.11. It takes the
likelihood to be the area under the density of M between GLB and 1.

P
(
Gm,i ,Faili |µ,σ

)=


FM
(
1/Gm,i ;µ,σ

)−FM
(
GLB ,i /Gm,i ;µ,σ

)
, F ai li = 1

1−FM
(
1
/

Gm,i ;µ,σ
)

, F ai li = 0
(6.11)

In the following section I will describe methods to sample and perform inference in
the BN, to derive the posterior distributions of µ and σ, and ultimately, of M .

6.2.3. SAMPLING AND INFERENCE IN THE BAYESIAN NETWORK
Many inference methods are possible to solve Eq. 6.7, including MC rejection sampling,
MC importance resampling ([77]), and Markov Chain MC (MCMC). However, because
the posterior in this case is two-dimensional, I opted for numerical integration as it is
highly accurate, and very fast in two dimensions.

Numerical integration considers a two-dimensional grid over possible µ-σ values.
For each grid cell, the posterior distribution is calculated according to Eq. 6.12. The
denominator in Eq. 6.12 is a normalizing constant that ensures the total probability is
equal to 1 (hence the equal sign in Eq. 6.12 instead of the ∝ in Eq. 6.7). The densities fµ
and fσ are the prior densities of µ and σ.

P
(
µ j ,σk |Gm ,Fail

)= fµ
(
µ j

) · fσ (σk ) ·
n∏

i=1
P

(
Gm,i ,Faili |µ j ,σk

)
∑
j

∑
k

fµ
(
µ j

) · fσ (σk ) ·
n∏

i=1
P

(
Gm,i ,Faili |µ j ,σk

) (6.12)

The posterior distributions of µ and σ in Eq. 6.12 are used to obtain the posterior
distribution of M . To do this, a range of M is discretized, say [MLB , MU B ], where MLB

and MU B are values low and high enough (respectively) that their cumulative probability
will be 0 and 1 (respectively). For each value of ml within the range of M , the associated
posterior non-exceedance probability is computed according to Eq. 6.13.

P (M < ml ) =
∑

j

∑
k

Fm
(
ml ;µ j ,σk

)
P

(
µ j ,σk |Gm ,Fail

)
(6.13)

The parameters that can be adjusted in using NI are the fineness of the µ-σ grid, as
well as the fineness of the discretization of M , when computing its posterior probability.

6.2.4. CHOICE OF PRIOR DISTRIBUTION
The prior distributions of the model uncertainty parameters will influence their poste-
rior distributions (see Eq. 6.12). As the amount of data increases (i.e. number of locations
with hindcasts and performance observations), the influence of the priors will decrease.
When little is known about the distribution parameters, wide priors - such as uniform
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distributions - can be used. Generally there is some intuition about the parameters. If
not the values of the parameters themselves, then at least intuition about the mean and
variance of the distribution of M , which can be used to derive more narrow, informed
priors of µ and σ. The mean and standard deviation (S.D.) of M are related to µ and σ

according to Eqs. 6.14 and 6.15.

Mean = exp

(
µ+ σ2

2

)
(6.14)

S.D. =
√(

exp
(
σ2

)−1
)

exp
(
2µ+σ2

)
(6.15)

Expert intuition about realistic lower and upper bounds on M can be used to constrain
the priors. This is discussed in more detail in the synthetic example, in Section 6.3.2. A
cross-validation can help determine which prior results in the most predictive posterior.
Details about cross-validation are provided in the application section, see Section 6.3.2.

6.3. SYNTHETIC EXAMPLE
This section illustrates and explores the method via a synthetic example, in which µ and
σ, the distribution parameters of the lognormally distributed model uncertainty M , are
known. I investigate the influence that the choice of prior distribution for µ and σ and
the number of data points have on the posterior predictive distribution of M . In the
first part of the example, sections 6.3.1 - 6.3.4, I only consider the case where Fail is
interpreted as G < 1. This is representative of historical data, where the exact load at
the time of failure is unknown. In section 6.3.6, I modify the example and consider the
interpretation of failure GLB < G < 1, in addition to G < 1, and assess the influence it
has on the posterior predictive distribution of M . The synthetic data in this example are
modified to be more representative of field experiment cases. Specifically the generated
values of G in Section 6.3.6 are closer to 1 than in the synthetic example considered in
sections 6.3.1 - 6.3.4.

6.3.1. SYNTHETIC DATA

Synthetic data is generated by defining a known ‘true’ distribution of the model uncer-
tainty M . True values are assigned to the parameters µ and σ, µT = 0.6 and σT = 0.2,
where the subscript T indicates ‘true’. The parameters of the lognormal distribution are
the mean and standard deviation of ln(M), not M . The associated ‘true’ mean and stan-
dard deviation of M are 1.9 and 0.4, respectively. The subscript T is retained in this
synthetic example to distinguish between the known (assigned) true values of the pa-
rameters of M (µT and σT ) and the prior and posterior estimates of µ and σ. The model
uncertainty distribution is presented in Figure 6.2.

A set of ‘true’ stability factors GT are generated by sampling from a uniform distribu-
tion with specified upper and lower bounds: GT ∼ U (a,b), where a = 0.3 and b = 1.7.
The choices for the bounds are somewhat arbitrary, but these represent a realistic range.
Again, the subscript T for true is retained to distinguish the generated values of the sta-
bility factors GT from the estimated distribution of the stability factor G = M ·Gm .
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Figure 6.2: Assigned ‘true’ distribution of the model uncertainty M for the synthetic example.

The synthetic modeled stability factors Gm,i are then calculated as Gm,i = GT
/

mi ,
where mi is a sample from the distribution M . The synthetic failure observations are
directly derived from the values of GT : Fail = 0 when GT > 1 and Fail = 1 when GT < 1.

Synthetic datasets of differing lengths (n) were considered, n =12, 25, 50, and 100.
For each length, I considered the relevance of the prior on the goodness of the posterior
estimates (in general, the fewer data, the more influential the priors). I also investigated
how the length of the dataset contributed to the variance in the quantiles of the posterior
predictive distribution of M .

6.3.2. PRIORS

Four priors were considered: an informed and uninformed, both with and without ex-
pert constraints. The informed prior is one in which experts have some belief about the
distributions ofµ andσ, and the uninformed prior is one in which experts can only guess
at the minimum and maximum values for the two parameters. The expert constraints re-
flect intuition that experts have about minimum and maximum values of specific quan-
tiles of M . For example, an expert may believe that P (M < m∗) = 0.01. This means the
expert believes there is only a 1% probability that M can be lower than the quantile m∗.

For the informed prior a normal distribution forµwas assumed (which can take both
positive and negative values), and a lognormal distribution for σ (which can only take
positive values). For the uninformed prior, it was assumed that the experts have no in-
tuition about the parameters µ and σ except for bounds on their realistic values. In the
synthetic example, the uninformed prior was taken to be uniform for both parameters.

The expert constraints provide information about M , which in turn constrains the
values of µ and σ. The expert constraints for this synthetic example were assigned to be
P (M < 0.5) = 0.01 and P (M > 4) = 0.01. The way of implementing the constrained priors
was to first independently sample the priors of µ andσ, and then essentially discard µ-σ
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samples for which M(µ,σ) does not comply with the constraints, by assigning a likeli-
hood of zero to these samples. The four prior cases considered are summarized in the
bulleted list below.

• Case 1: Uniform priors:
µ∼U

(
aµ,bµ

)
and σ∼U (aσ,bσ)

aµ bµ aσ bσ
-1.5 1.5 0 0.5

• Case 2: Informed priors:

µ∼N
(
µµ,σ2

µ

)
, σ∼ lnN

(
µσ,σ2

σ

)
µµ σµ µσ σσ

0 0.5 0.1 0.1

• Case 3: Uniform priors with expert constraint:
Same as Case 1, but imposing a likelihood of zero for any µ-σ sample in which
P (M < MLB ) > PLB or P (M > MU B ) > PU B .

MLB PLB MU B PU B

0.5 0.01 4.0 0.01

• Case 4: Informed priors with expert constraint:
Same as Case 2, but imposing a likelihood of zero for any µ-σ sample in which
P (M < MLB ) > PLB or P (M > MU B ) > PU B .

Figures 6.3 and 6.4 show the four priors for the parameters µ and σ, respectively.

6.3.3. SIMULATIONS
Posterior predictive distributions of the model uncertainty M were calculated using syn-
thetic data generated as described in Section 6.3.1, for the following combinations:

• Four priors: Uniform, Informed, Uniform with expert constraints, Informed with
expert constraints

• Four lengths of data: n = 12,25,50,100

In total, this leads to 4× 4 = 16 combinations. In addition, each combination was
calculated 100 times, to estimate the variance in the posterior predictive distribution of
M that is due to the length of the data set.

A 100×100 grid was chosen for the numerical integration, withµ values ranging from
-1.5 to 1.5, and σ values ranging from 0.01 to 0.5. For the derivation of the posterior
predictive M distribution (see Eq. 6.13), M was discretized into 1000 values between 0
and 10.
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Figure 6.3: Prior distributions of µ
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Figure 6.4: Prior distributions of σ
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6.3.4. RESULTS
Each combination of prior distributions of µ and σ and length of the data set, n, led
to a different posterior predictive distribution for M . An insightful way to present the
results is to compare the quantiles of the posterior predictive distribution of M with the
quantiles of the known (true) distribution, for each of the cases considered.

QUANTILES OF M
The quantiles of the posterior predictive M distribution are presented using box and
whisker plots. For each case of prior distributions of µ and σ and length of the data
set, n, the analysis was run 100 times, generating different data sets each time, to esti-
mate the variance in the posterior predictive M distribution that results from the limited
amount of data. In the plots, the bottom and top of the box represent the 25% and 75%
quantile (denoted q1 and q3), respectively. The whiskers extend 1.5× (q3 −q1) from the
top and bottom of the box. For reference, this is +/- 2.7 standard deviations for normally
distributed data. The horizontal line in the middle of the box shows the median. When
that line is not in the center, it indicates a skewed distribution. Any calculated quan-
tiles of M which fall outside the whiskers are shown with an ‘x’ symbol, and represent
outliers. Each figure contains four subplots, one for each of the data lengths that were
considered.
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Figure 6.5: Quantiles of the posterior predictive distribution M , for the case of uniform priors, for n =12, 25,
50, and 100 observations.

For all priors, as the number of data points increases, the variance in the quantiles
of M decrease. The greatest variance occurs in the upper tails of the posterior predictive
M distribution (the 99.9% quantile). However, the lower tail is usually of more interest.
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Figure 6.6: Quantiles of the posterior predictive distribution M , for the case of informed priors, for n =12, 25,
50, and 100 observations.
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Figure 6.7: Quantiles of the posterior predictive distribution M , for the case of uniform priors with expert
constraint, for n =12, 25, 50, and 100 observations.
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Figure 6.8: Quantiles of the posterior predictive distribution M , for the case of informed priors with expert
constraint, for n =12, 25, 50, and 100 observations.

For example, in Dutch flood defense assessments, the 5% quantile is used in a semi-
probabilistic approach (where the limit state is computed deterministically using char-
acteristic values), as a conservative model factor. Because NI is a fairly exact method, the
variance can be considered to be entirely due to the limited data.

The ‘informed’ priors - a normally distributed µ and a lognormally distributed σ -
result in less variance, and better estimates of the quantiles, than the uniform priors.
This is because higher values of the variance in M are excluded by the informed priors,
which restricts those unrealistically high quantiles in the tail of the posterior predictive
M distribution (see Figure 6.4).

In the case of expert-constrained priors, the results are much better. This is because
incorporating knowledge about realistic upper and lower bounds on M strongly reduces
the variance in high and low quantiles of M . Both the uniform and informed priors es-
timated the posterior predictive distribution of M very well when coupled with expert
constraints, even with limited data sets.

6.3.5. AVOIDING BIAS: CHOICE OF HISTORIC OBSERVATIONS

In the previous synthetic example, the ‘true’ stability factors GT were uniformly gener-
ated within the range 0.3 to 1.7 (see Section 6.3.1) in such a way that approximately half
were failures and half were survivals. In reality there tend to be more data about the site
conditions when a failure occurred. So even though survival occurs far more often than
failure, there are more failure observations that are suited for this type of analysis than
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Figure 6.9: Bias introduced by only considering failure observations. Quantiles of the model uncertainty M
estimated by NI, for the case of informed priors with expert constraint, for n =12, 25, 50, and 100 observations.

survival observations. Selecting observations of all one type - either failure or survival -
will lead to bias in the estimated quantiles of the model error distribution. To illustrate
this, the synthetic example was rerun for the scenario in which only failures were ob-
served. In the interest of brevity, only one prior case was considered (informed priors
constrained by expert opinion, Case 4 in Section 6.3.2). The exclusion of survival obser-
vations led to the quantile estimates shown in Figure 6.9. Compared with the results in
Figure 6.8 (in which roughly equal numbers of failures and survivals were considered), a
bias is clearly observed.

The synthetic example was further used to explore what percentage of the obser-
vations must be survivals to avoid a bias in the quantile estimates of the model error
distribution. If at least 20% survival observations are included, the bias seems mostly
eradicated, as shown in Figure 6.10. It would not be prudent to assume this percent-
age will be valid in all real life applications, but it does give the impression that equal
numbers of survival and failure observations are not required. Quality is probably also
more important than quantity. Specifically, observations that go against expectations
(i.e. model predictions) will likely be the most informative for estimating the model un-
certainty distribution. Note further that most historic survivals relate to relatively low or
moderate loading levels which have little influence on the result. Important realizations
of the model uncertainty may be missed if survivals during high load conditions are not
included in the data set. This should be kept in mind when constructing the data set.
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Figure 6.10: Considering 80% failure observations. Quantiles of the model uncertainty M estimated by NI, for
the case of informed priors with expert constraint, for n =12, 25, 50, and 100 observations.

6.3.6. INTERPRETING FAILURE OBSERVATIONS

In this section, the interpretation that failure indicates GLB < G < 1 is compared with
the interpretation that failure indicates G < 1, specifically for field experiments, where
the load at which failure occurred is known. In Section 6.3.1, it was described that the
‘true’ stability factors GT were generated, GT ∼ U (a,b), where a = 0.3 and b = 1.7. In
the current section, stability factors for failure are generated that are closer to 1, to better
represent the situation that failure - and the load at which it occurred - were observed
in the field. The density of the (generated) ‘true’ stability factors used in this section is
given in Eq. 6.16, where Gmax = 1.7 as in the previous example. The choice of GLB will
be described below.

fGT (GT ) =



0.5 · 1
(1−GLB ) GT ∈ [GLB ,1]

0.5 · 1
(Gmax−1) GT ∈ (1,Gmax]

0 otherwise

(6.16)

The posterior distributions of µ and σ are calculated using both the likelihood in Eq.
6.9 for the interpretation G < 1 and the likelihood in Eq. 6.11 for GLB <G < 1. The quan-
tiles of the posterior predictive distributions of M from both cases are compared with
the true quantiles. Two cases are considered: one in which the analyst has estimated
GLB correctly, with GLB = 0.8, and a second in which the analyst makes the same esti-



6

108 6. ESTIMATING GEOTECHNICAL FAILURE MODEL UNCERTAINTY

Non−exceedance probability

E
s
ti
m

a
te

 o
f 
M

0

2

4

6

8

10

12

0
.0

0
1

0
.0

1

0
.0

5

0
.5

0
.9

5

0
.9

9

0
.9

9
9

m < 1/Gm

 

 

true values

0

2

4

6

8

10

12

0
.0

0
1

0
.0

1

0
.0

5

0
.5

0
.9

5

0
.9

9

0
.9

9
9

GLB/Gm <m < 1/Gm

Figure 6.11: Quantiles of the model uncertainty M estimated for two interpretations of failure, for the case that
GLB = 0.8 is an accurate estimate. Both cases were run using a generated data set with 25 observations, and
informed priors (prior case 2 described in Section 6.3.2).

mate, but incorrectly, where the true lower bound is GLB = 0.5. For both cases, I use a
generated data set of length n = 25, and use the informed priors (see Case 2 in Section
6.3.2).

The results are presented in Figs. 6.11 and 6.12. Figure 6.11 shows the case that GLB

has been correctly estimated. The left-hand plot shows the results when the likelihood
for the constrained equality is used. The right-hand plot shows the results when the like-
lihood for the one-sided inequality interpretation of failure is used. In this case, where
the estimate of GLB is good, the quantiles of the posterior predictive distribution of M
are more accurate, and show less variance, when using the constrained inequality inter-
pretation of failure. However, if the estimate of GLB is not good, the conclusion is the
opposite. Figure 6.12 shows the case when the lower bound is estimated as GLB = 0.8 but
is actually 0.5. In this case, the constrained inequality interpretation of failure actually
results in worse estimates of the quantiles of the M distribution. This is logical, because
the constrained inequality interpretation only gives weight to samples of µ and σ when
there is substantial probability mass of M within the interval [GLB /Gm ,1/Gm]. When
GLB is overestimated, that interval is underestimated. Specifically, the left-hand side of
Figure 6.12 shows that the quantile estimates of M are too high. This is becauseµ-σ sam-
ples that led to lower values of M were not given proper weighting due to the too-high
estimate of GLB . The take-home message is that when GLB is well estimated, the con-
strained inequality improves the posterior predictive distribution of M . However, if es-
timated incorrectly, it can make the estimate worse. The use of a constrained inequality
interpretation of failure should therefore be made exclusively on a well-founded basis.

6.4. APPLICATION
The BN method was used to estimate the uncertainty in the slope instability model D-
Geostability ([78]). This application is fairly relevant because the model uncertainty is
needed in the development of assessment tools for the primary flood defenses in the
Netherlands. I obtained a data set of eleven locations where substantial site investigation
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Figure 6.12: Quantiles of the model uncertainty M estimated for two interpretations of failure, for the case that
GLB = 0.8 is an incorrect estimate, with the true lower bound being 0.5. Both cases were run using a generated
data set with 25 observations, and informed priors (prior case 2 described in Section 6.3.2).

had occurred, and where the loading data (either water levels or pore water pressures)
were also well characterized for a particular performance observation (either failure or
survival). For each location, a stability factor was computed with the slope instability
model using the well characterized input data. In this method, it is assumed that all un-
certainty in the stability factor is due to error in the model, and not to uncertainty in the
input. In this application, a Lognormally distributed multiplicative model uncertainty
M is used.

6.4.1. SLOPE STABILITY MODEL

Macrostability, or slope stability, is the resistance of the soil against shearing, which usu-
ally occurs along curved sliding planes, as schematized in Figure 6.13. The slope stabil-
ity computations carried out in this chapter are based on Limit Equilibrium Modeling
(LEM) and implemented in the D-Geostability model ([78]), specifically using the Up-
liftVan LEM. The soil can be modeled as drained or undrained. Upon compression, the
former does not experience built up soil pore water pressures because it is assumed to
drain indefinitely, which is typically representative of sandy soils. The latter, by contrast,
does allow for built up pore pressures upon compression. In the D-Geostability model
used in this research, undrained shear strength modeling based on Critical State Soil
Mechanics is used to model the shear strength of peat and clay ([79]), specifically with
the SHANSEP implementation (Stress History and Normalized Soil Engineering Proper-
ties). The regular drained shear strength modeling based on the friction angle is used for
sand. The undrained shear strength depends on the following parameters in this model:
(1) undrained shear strength ratio, (2) strength increase exponent and (3) yield stress,
all of which can be determined using lab tests. Further details about the slope stability
computation and parameters are beyond the scope of this chapter.
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Figure 6.13: Slope instability on the land-side of the levee

6.4.2. DATA
The data set, which includes modeled stability factors and failure or survival observa-
tions, are provided in Table 6.2. All the locations are in the Netherlands; the dates range
from 1928 to 2015. Most of the data are from historical events, but three are from field ex-
periments. In the historical cases, the water levels during the storm event were available,
but not the exact moment of failure. The values in Table 6.2 are for the peak load during
the storm. In this section a few important details about the data are specified which are
relevant for the model uncertainty analysis.

WOLPHERENSEDIJK 1980
The levee at Wolpherensedijk failed in 1980, but the soil measurements were taken after
the levee had been restored. To compensate, the yield stress was lowered in the slope sta-
bility calculation. However, it is unclear if this compensation is valid, and it is therefore
noted here that this data point brings uncertainty with it.

BERGAMBACHT 2001
At Bergambacht, a field test was carried out in 2001, first in September, and then again
in November. These experiments are referred to as BA1 and BA2, respectively. In the BA1
experiment, the load required to fail the levee was underestimated and the loading ca-
pacity proved to be insufficient. Hence, the experiment was redone (BA2) in November,
with a higher loading capacity. Furthermore, two cross sections were analyzed from the
field test, a western one and an eastern one. Because these two locations are correlated,
only one is included in the analysis. This is because the likelihood described by Eq. 6.8
assumes independence between failure locations.

For the BA1 experiment, the stability factor for the eastern cross section was Gm =
0.76, which is quite low considering there was no failure. The stability factor for the
western cross section for the same experiment was Gm = 1.11. It is suspected that the
strength of the western portion of the levee contributed to the survival of the eastern
portion, due to 3D effects not accounted for by the D-Geostability model. This error is
due to a shortcoming of the model, which is what the model uncertainty distribution is
intended to account for. For this reason, even though the error in the BA1 computed
stability factor is a bit of an outlier compared to the rest of the data in Table 6.2, it is in-
cluded in the analysis. However, there has been some controversy about this data point,
and some discussion about whether the calculation truly represented the situation dur-
ing the field experiment. I felt that uncertainty about the validity of the BA1 data point
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Figure 6.14: The macrostability field test on the IJkdijk in 2008.

warranted a separate analysis where this data point is excluded. Both results with and
without the BA1 data point are presented in this section.

IJKDIJK 2008
The IJkdijk is an artificial levee that was built for testing purposes ([80]), and is only
about 100 meters long. It therefore has edge effects that would not be present in a real
levee. This might explain why the modeled stability factor for this field test was so low,
Gm = 0.64, at the time of failure, when presumably G = 1. In this case, the error is not
due entirely to the model, but to the test site not meeting the assumptions of the model
(specifically: the assumption that the levee is long enough that the edges do not con-
tribute to the stability).

6.4.3. SENSITIVITY TO DATA
Most of the modeled stability factors in Table 6.2 are in agreement with the failure or
survival observations. However, as mentioned, one notable exception is the BA1 field
experiment. In that case, failure did not occur (recall the load capacity was insufficient),
but the calculated stability factor was Gm = 0.76. In this case of levee survival, G > 1 and
M > 1/Gm , which in this case is M > 1.3. Inclusion of this data point results in a much
wider variance in the distribution of M than its exclusion. Results are presented for the
analysis both with and without the inclusion of the BA1 data point. It is advisable that
those familiar with the experiment confirm that there were no peculiarities about the
experiment that contributed to the suspiciously low value. If this can not be confirmed,
then this data point should be included. This was a location where 3D effects, which are
not accounted for in the D-Geostability model, may have had a large effect. In this case,
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the large error for this experiment would genuinely be due to model uncertainty.

Table 6.2: Data set used in the BN application. Given are the locations, the location abbreviations (Abbr.),
when relevant, the year of the observations, the calculated stability factors Gm , the observations, and their
type (either historic or field test).

Location Abbr. Year Gm Observation Type
Markermeerdijk – 1928 1.00 Survived Historic
Lekdijk Nieuw-Lekkerland – 1953 1.00 Survived Historic
Wolpherensedijk – 1980 0.99 Failed Historic
Streefkerk – 1984 1.02 Failed Historic
Lekdijk West – 1995 1.00 Survived Historic
Wolpherensedijk – 1995 1.86 Survived Historic
Bergambacht BA0 1995 1.27 Survived Historic
Bergambacht (Sep) BA1 2001 0.76 Survived Field test
Bergambacht (Nov) BA2 2001 0.30 Failed Field test
Zuiderlingedijk – 2006 0.90 Failed Historic
IJkdijk – 2008 0.64 Failed Field test

6.4.4. FAILURE INTERPRETATION
Section 6.2.2 discussed the interpretation of failure, in terms of what it means for the
likelihood function. In the historic cases in this application, the peak load was used
to derive the stability factors in Table 6.2. However, the load at the time of failure in
these cases is unknown. Unless failure happened at the peak load during the storm, the
computed stability factor at the actual failure load would be higher than the value in
Table 6.2. Thus, in the case of historic failure, it is only known that G < 1, which means
that M < 1/Gm .

For the field tests, a stronger interpretation of failure may be considered, such as G =
1 or GLB <G < 1, where GLB is the (expert-elicited) lower bound on what the true stability
factor could be. All three approaches were carried out: G < 1, GLB <G < 1, and G = 1, for
the two data points from field experiments with failure observations, and the results were
compared using cross validation (see Section 6.4.6 below), to see which interpretation
leads to the best posterior predictive distribution of M . For the lower bound, GLB =
0.85 for the field experiment BA2 (the November experiment at Bergambacht; see Table
6.2), and GLB = 0.7 for the IJkdijk experiment. The BA2 bound is higher to reflect that
there is no obvious reason to assume a deviation from G = 1, whereas at IJkdijk, there
is. As discussed in the data section, the IJkdijk experimental levee is much shorter than
real levees, while the D-Geostability model assumes an infinite length. Therefore, the
experiment itself is responsible for some of the error, which reflects in the lower value
chosen for GLB .

6.4.5. PRIOR DISTRIBUTIONS
For the prior distributions of µ and σ (i.e. the parameters of the lognormal M distri-
bution), I chose the four cases explored in the synthetic example in Section 6.3.2, with
one change. The uniform distribution of σ was σ ∼ U (0,0.5) in the synthetic example;
it is modified here to have a larger range: σ∼U (0,1) . The parameters of the lognormal



6.4. APPLICATION

6

113

distribution are not particularly intuitive, because they are the mean and standard devi-
ation of ln(M), not M . To give more intuition about the selected priors, Figures 6.15 and
6.16 show the priors of µ and σ translated into the prior distributions of the mean and
standard deviation of M , for the case of uniform priors and informed priors, repsectively.
The relationships between the mean and standard deviation of M and the parameters µ
and σ were given in Eqs. 6.14 and 6.15.
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Figure 6.15: Prior distribution of the mean and standard deviation of the model uncertainty M , for prior case
(1) where µ∼U (−1.5,1.5) and σ∼U (0,1), and no expert constraint.
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Figure 6.16: Prior distribution of the mean and standard deviation of the model uncertainty M , for prior case
(1) where µ∼N
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, and no expert constraint.

6.4.6. CROSS VALIDATION
In total, 36 combinations were considered: three alternative interpretations of failure at
two field test sites, and four alternative prior distributions. To determine which of these
combinations has the best predictive capability, a cross validation was performed. This
is a technique that is particularly useful when working with small amounts of data. Cross
validation separates the dataset into a training set, and a validation set. In this applica-
tion, I used a form called Leave-one-out cross validation, in which all locations except
for one are used to determine Fm (the posterior predictive distribution of M), which is
then validated using the observation at the left-out location (known as the validation lo-
cation). The process is carried out iteratively, with each location serving as a validation
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location one time. The score that each combination k receives at a validation location
i is equal to Fmk (1/Gm,i ) (which is the probability of failure P (Gi < 1)) when failure was
observed at the validation location, and equal to 1−Fmk (1/Gm,i ) when survival was ob-
served. The total score of each combination is taken as the product over the scores at
all of the validation locations. Eqs 6.17 and 6.18 summarize this information, where sk,i

is the score of the k th combination at the i th validation location. Fmk in Eq. 6.17 is the
posterior predictive distribution of M calculated by the k th combination, with the data
point at the i th location excluded.

sk,i =
{

Fmk

(
1/Gm,i

)
, Faili = 1

1−Fm,k
(
1/Gm,i

)
, Faili = 0

(6.17)

Scor ek =∏
i

sk,i (6.18)

The cross validation score was calculated for each of the 36 combinations, and then
converted to a relative score, in which the validation score is divided by the maximum
validation score over all the combinations. This helps to easily compare the different
combinations. The highest score will be 1, and the score of the other combinations indi-
cates their goodness relative to the best combination. For example, a score of 0.8 means
the combination was 20% worse than the best combination.

6.4.7. POSTERIOR RESULTS

In this section, I present the quantiles of the posterior predictive distribution of M , given
the data and observations in Table 6.2. The posterior predictive distribution of M is cal-
culated using numerical integration, according to Eq. 6.13. Tables 6.5 and 6.6 present
the results for the case with the BA1 data point included and excluded, respectively. The
tables present the specifics of each combination (prior type and failure interpretation at
the two field experiment sites), as well as the 0.1%, 1%, 5%, 50%, 95%, 99%, and 99.9%
quantiles (denoted, e.g., Q0.1 for the 0.1% quantile), and the relative cross validation
score. The combination(s) with the highest score are highlighted in the tables.

The best combination in the case where the BA1 data point is included is given in
Table 6.3. In the case where the BA1 data point is excluded, there are two combinations
which scored equally high in the cross validation. These are both given in Table 6.4.
Posterior predictive densities of M for all three combinations given in Tables 6.5 and 6.6
are presented in Figure 6.17. The density when the BA1 data point is included is wider
than the densities where it is excluded. Despite these differences, the 5% quantile in all
three cases is fairly similar (0.7 when BA1 is included and 0.8 when it is excluded). Recall
that this quantile is relevant in the Dutch safety assessments.

Table 6.3: Best performing combination of prior distributions and failure interpretation, for the case when the
September Bergambacht data point (BA1) is included in the analysis.

Prior Failure interpretation, Ijkdijk Failure interpretation, Bergambacht
Uniform constrained M = 1/Gm M < 1/Gm
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Table 6.4: Best performing combinations of prior distributions and failure interpretation, for the case when
the September Bergambacht data point (BA1) is excluded in the analysis.

Prior Failure interpretation, Ijkdijk Failure interpretation, Bergambacht
Informed constrained M < 1/Gm M < 1/Gm

Informed constrained 0.7/Gm < M < 1/Gm M < 1/Gm
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Figure 6.17: Posterior predictive distribution of the model uncertainty M for the best performing combinations
of prior and failure interpretation, see Tables 6.5 and 6.6 for details about the cases.

With the inclusion of the BA1 data point, which was a survival observation and a
modeled stability factor of 0.76, the best performing combination includes the the failure
interpretation M = 1/Gm , which is understandable because this serves to shift the distri-
bution to the right (higher values of M). The final cross-validation score is the product
over the scores at the individual locations (see Eq. 6.18). Thus, the optimal combination
in the case where BA1 is included is one that validates well at the locations besides BA1,
but is still wide enough, or shifted to the right enough, to garner a decent score at BA1.
This can be seen in the optimal choice (case 11, see Table 6.5). The variance is greater,
and the upper tail much heavier than the optimal choices when BA1 is excluded (see
Figure 6.17).

When the BA1 data point is excluded, there are two high-scoring combinations. One
is where failure is interpreted as M < 1/Gm at both the field experiment sites. The other
is where failure at the IJkdijk is interpreted as 0.7/Gm < M < 1/Gm , and failure for the
BA2 case is interpreted as M < 1/Gm . Figure 6.17 shows that the difference between the
posterior predictive distribution of M computed by these two is fairly minor.
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Table 6.5: Quantiles of the posterior predictive distribution of the model uncertainty M for the 36 combinations
of prior distributions, failure interpretation at IJkdijk (IJk.) and at Bergambacht (Berg.), for the case where the
September survival data point at Bergambacht was included in the analysis. Qx represents the x% quantile of
M . The failure interpretations are (1) F1 : m < 1/Gm, (2) F2 : GLB /Gm < m < 1/Gm , (3) F3 : m = 1/Gm .

Case Prior case IJk. Berg. Q0.1 Q1 Q5 Q50 Q95 Q99 Q99.9 Rel. Score
1 1 F1 F1 0.1 0.2 0.4 1.2 4.1 8.0 18.1 0.7
2 2 F1 F1 0.2 0.4 0.7 1.1 1.9 2.9 5.8 0.3
3 3 F1 F1 0.5 0.6 0.7 1.2 2.0 2.7 3.8 0.7
4 4 F1 F1 0.5 0.6 0.8 1.1 1.7 2.2 3.1 0.3
5 1 F2 F1 0.1 0.2 0.4 1.2 4.0 8.0 18.1 0.8
6 2 F2 F1 0.3 0.5 0.7 1.1 1.9 2.8 5.3 0.5
7 3 F2 F1 0.5 0.6 0.7 1.2 2.1 2.7 3.8 0.8
8 4 F2 F1 0.5 0.6 0.8 1.1 1.8 2.3 3.1 0.4
9 1 F3 F1 0.1 0.2 0.4 1.3 4.4 8.6 19.3 0.8

10 2 F3 F1 0.2 0.4 0.7 1.2 2.2 3.4 6.5 0.8
11 3 F3 F1 0.4 0.6 0.7 1.2 2.2 2.9 4.0 1.0
12 4 F3 F1 0.5 0.6 0.8 1.2 2.0 2.5 3.5 0.8
13 1 F1 F2 0.1 0.2 0.4 1.4 5.6 11.0 >20 0.7
14 2 F1 F2 0.1 0.3 0.5 1.3 3.5 6.0 12.4 0.9
15 3 F1 F2 0.4 0.6 0.7 1.4 2.6 3.4 4.7 0.9
16 4 F1 F2 0.4 0.6 0.7 1.3 2.5 3.2 4.4 0.9
17 1 F2 F2 0.1 0.2 0.4 1.5 5.7 11.1 >20 0.7
18 2 F2 F2 0.2 0.3 0.5 1.3 3.4 5.7 11.6 0.8
19 3 F2 F2 0.4 0.6 0.7 1.4 2.6 3.4 4.7 0.8
20 4 F2 F2 0.4 0.6 0.8 1.4 2.5 3.3 4.4 0.8
21 1 F3 F2 0.1 0.2 0.4 1.5 5.9 11.4 >20 0.6
22 2 F3 F2 0.2 0.3 0.5 1.4 3.5 5.9 11.9 0.8
23 3 F3 F2 0.4 0.6 0.8 1.4 2.6 3.5 4.7 0.7
24 4 F3 F2 0.4 0.6 0.8 1.4 2.5 3.3 4.5 0.7
25 1 F1 F3 0.1 0.2 0.4 1.4 5.8 11.4 >20 0.7
26 2 F1 F3 0.1 0.3 0.5 1.3 3.7 6.4 13.3 0.9
27 3 F1 F3 0.4 0.6 0.7 1.4 2.6 3.5 4.7 0.9
28 4 F1 F3 0.4 0.6 0.7 1.4 2.5 3.3 4.5 0.9
29 1 F2 F3 0.1 0.2 0.4 1.5 5.9 11.6 >20 0.7
30 2 F2 F3 0.2 0.3 0.5 1.4 3.6 6.2 12.6 0.8
31 3 F2 F3 0.4 0.6 0.7 1.4 2.6 3.5 4.7 0.8
32 4 F2 F3 0.4 0.6 0.8 1.4 2.6 3.3 4.5 0.8
33 1 F3 F3 0.1 0.2 0.4 1.6 6.1 11.9 >20 0.6
34 2 F3 F3 0.2 0.3 0.5 1.4 3.7 6.3 12.8 0.8
35 3 F3 F3 0.4 0.6 0.8 1.4 2.7 3.5 4.8 0.7
36 4 F3 F3 0.4 0.6 0.8 1.4 2.6 3.4 4.6 0.7
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Table 6.6: Quantiles of the posterior predictive distribution of the model uncertainty M for the 36 combinations
of prior distributions, failure interpretation at IJkdijk (IJk.) and at Bergambacht (Berg.), for the case where the
September survival data point at Bergambacht was excluded in the analysis. Qx represents the x% quantile of
M . The failure interpretations are (1) F1 : m < 1/Gm, (2) F2 : GLB /Gm < m < 1/Gm , (3) F3 : m = 1/Gm .

Case Prior case IJk. Berg. Q0.1 Q1 Q5 Q50 Q95 Q99 Q99.9 Rel. Score
1 1 F1 F1 0.1 0.2 0.4 1.0 3.2 6.3 14.5 0.5
2 2 F1 F1 0.3 0.6 0.8 1.0 1.4 1.8 3.2 0.9
3 3 F1 F1 0.5 0.6 0.7 1.0 1.7 2.2 3.2 0.9
4 4 F1 F1 0.6 0.7 0.8 1.0 1.3 1.6 2.2 1.0
5 1 F2 F1 0.1 0.2 0.4 1.1 3.2 6.4 14.8 0.5
6 2 F2 F1 0.4 0.6 0.8 1.1 1.5 2.0 3.5 0.9
7 3 F2 F1 0.5 0.6 0.7 1.1 1.8 2.4 3.4 0.9
8 4 F2 F1 0.5 0.7 0.8 1.1 1.4 1.8 2.5 1.0
9 1 F3 F1 0.1 0.2 0.4 1.2 3.8 7.4 16.7 0.5

10 2 F3 F1 0.2 0.4 0.6 1.1 2.0 2.9 5.4 0.7
11 3 F3 F1 0.4 0.6 0.7 1.2 2.1 2.7 3.8 0.7
12 4 F3 F1 0.5 0.6 0.7 1.1 1.8 2.3 3.2 0.8
13 1 F1 F2 0.1 0.2 0.3 1.3 5.1 9.9 >20 0.3
14 2 F1 F2 0.1 0.3 0.5 1.2 3.2 5.6 11.5 0.5
15 3 F1 F2 0.4 0.6 0.7 1.3 2.5 3.4 4.6 0.4
16 4 F1 F2 0.4 0.6 0.7 1.3 2.4 3.2 4.3 0.4
17 1 F2 F2 0.1 0.2 0.4 1.4 5.2 10.2 >20 0.3
18 2 F2 F2 0.2 0.3 0.5 1.3 3.2 5.4 10.9 0.4
19 3 F2 F2 0.4 0.6 0.7 1.4 2.6 3.4 4.6 0.3
20 4 F2 F2 0.4 0.6 0.7 1.3 2.4 3.2 4.4 0.3
21 1 F3 F2 0.1 0.2 0.4 1.4 5.4 10.5 >20 0.3
22 2 F3 F2 0.2 0.3 0.5 1.3 3.3 5.6 11.2 0.4
23 3 F3 F2 0.4 0.6 0.7 1.4 2.6 3.4 4.7 0.3
24 4 F3 F2 0.4 0.6 0.7 1.4 2.5 3.2 4.4 0.3
25 1 F1 F3 0.1 0.2 0.3 1.3 5.3 10.3 >20 0.3
26 2 F1 F3 0.1 0.2 0.4 1.2 3.4 6.0 12.4 0.5
27 3 F1 F3 0.4 0.6 0.7 1.4 2.6 3.4 4.7 0.4
28 4 F1 F3 0.4 0.6 0.7 1.3 2.5 3.3 4.5 0.4
29 1 F2 F3 0.1 0.2 0.4 1.4 5.5 10.6 >20 0.3
30 2 F2 F3 0.1 0.3 0.5 1.3 3.4 5.8 11.8 0.4
31 3 F2 F3 0.4 0.6 0.7 1.4 2.6 3.4 4.7 0.3
32 4 F2 F3 0.4 0.6 0.7 1.3 2.5 3.3 4.5 0.3
33 1 F3 F3 0.1 0.2 0.4 1.4 5.6 10.9 >20 0.3
34 2 F3 F3 0.1 0.3 0.5 1.3 3.5 6.0 12.1 0.4
35 3 F3 F3 0.4 0.6 0.7 1.4 2.6 3.5 4.7 0.3
36 4 F3 F3 0.4 0.6 0.7 1.4 2.5 3.3 4.5 0.3
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6.5. DISCUSSION AND CONCLUSIONS
In this chapter, a methodology was presented to use a BN to derive the model uncer-
tainty in a failure model using observations and hindcasts. The choice of prior and the
impact of limited data were investigated via a synthetic example. It was found that
small data sets can result in large variance for high quantiles if the priors are poorly
chosen. That is, the smaller the data set, the more important it becomes to choose a
well-informed prior. However, for most quantiles, the posterior predicted estimates were
quite accurate, even for relatively small data sets. When little is known apriori about the
parameters of the model uncertainty, experts can impart their intuition in the form of
minimum and maximum quantiles of M for specified exceedance probabilities. Incor-
porating this intuition delivers a lot of reduction in the variance of the estimated quan-
tiles of M .

The issue of how to interpret failure observations for field experiments was addressed.
In cases where the soil parameters are well known and the load at the time of failure is
recorded, it is reasonable to assume that G = 1 has been observed. When there is un-
certainty about any aspect of the experiment, this can become an overly confident as-
sumption, so the interpretation that GLB < G < 1 was also tested. This requires some
intuition about what the lower bound GLB should be. I showed in the synthetic example
that if GLB is estimated well, choosing this interpretation over the more general (but al-
ways correct) interpretation that G < 1 can reduce the variance in the posterior predicted
quantiles of M , and improve their accuracy. However, if GLB is incorrectly chosen, it can
have a rather negative effect, resulting in poorer estimates and larger variance.

The method was applied to the slope stability model D-Geostability, using data at
11 locations in the Netherlands. One of these data points was potentially an outlier. It
was during a field experiment, in which the levee did not fail, but the calculated stability
factor was 0.76. Most of the other data is either on the correct side of 1 (i.e. Gm < 1 for
failure or Gm > 1 for survival), or close to it. There is also a lot of skepticism about this
modeled stability factor. Those familiar with the experiment were not in close contact
with those doing the hindcast modeling, and it is unclear if the correct conditions were
represented in the model. Because of this, the posterior results of M were calculated
using the data both with and without the outlier data point. The results were quite sen-
sitive to the inclusion or exclusion of this data point, which underscores the importance
of using trustworthy data.

In general, the method presented in this chapter is fast and easy to implement. The
synthetic example showed how with relatively little data, the method can well estimate
the correct quantiles of the model uncertainty distribution. I recommend applying this
method whenever quality data are available as input to the failure model, together with
survival or failure observations.
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In this dissertation, the primary interest is in the development and use of a Bayesian
network (BN) for levee system reliability to augment and support existing methods. In
particular, the research focused on the verification of key algorithms in the Hydra-Ring
reliability model (or its predecessor PC-Ring), which is at the heart of the Dutch national
flood risk analysis and flood defense assessments. The BN developed in this dissertation
works with MC sampling, where the correlation structure is realized with a Gaussian
copula. In this sense, the BN can be considered a more explicitly-modeled MC approach
with which to compare Hydra-Ring reliability estimates. The benefit of representing the
method in a BN are threefold: (1) The correlation structure, which can become complex
for large systems, is more clear and explicit when using a network representation, (2) The
network representation makes it possible for non-probabilistic-experts to understand
the problem and be able to impart their own expertise (consider, for example, geotech-
nical experts, who may know a lot about the failure mechanism, but not understand the
probabilistic techniques), and (3) the graphical representation allows one to determine
both prior and posterior dependences/independences among the variables in the net-
work, using a concept known as D-separation. Appendix D discusses this third point
in detail. In addition to verifying algorithms in Hydra-Ring, the BN is able to improve
reliability estimates at a system scale, which was done in both synthetic and real-world
examples in the dissertation. Prior to this research, such updating had only been done
at a cross-sectional scale. The research also focused on how the Hydra-Ring algorithms
could be used in combination with survival observations (high water levels which a levee
survived) to update the reliability at the system scale, and whether such methods are ac-
curate. As with the BN, this was tested for both synthetic and real-world examples. The
last research topic in the dissertation looked at the use of a BN to quantify uncertainty in
a geotechnical failure model, using hindcasted model output together with historically
observed failure or survival. Uncertainty in the failure model can dominate the failure
probability; using a BN and observations to reduce or better quantify that uncertainty
can therefore be strongly beneficial to uncertainty reduction in the failure probability
estimate.
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In the following section, the main findings from the research in the dissertation are
presented. Thereafter, recommendations for further research are discussed.

7.1. MAIN FINDINGS

DEVELOPMENT OF A BN FOR LEVEE SYSTEM RELIABILITY
Chapter 2 was dedicated to describing the methodology to build a BN for a spatially-
extensive levee system. The main challenge in levee system reliability modeling with a
BN is the densely correlated variables in the network, which results from the spatial au-
tocorrelation of the resistance variables. Densely correlated variables translates to lots
of arcs in the network, and child nodes with many parents. The traditional and most
common BN - the discrete BN - would contain conditional probability tables in these
cases that could easily have trillions of conditional probabilities to specify, even for rel-
ative coarse discretization of the marginal distributions, making traditional networks an
infeasible option for levee system reliability.

Chapter 2 provided background about different types of BNs, specifics about the BN
used in this dissertation, and a detailed methodology for describing a spatially exten-
sive levee system using the BN. The BN used in the dissertation was chosen because it
allows the variables to be described by marginal continuous or discrete probability dis-
tributions, with dependency specified by correlation coefficients, and the dependence
structure built using copulas. This type of network made the reliability modeling of spa-
tial levee systems possible.

In the BN, the joint distribution is obtained, and inference is performed, using MC
sampling. In fact, as discussed in Chapter 2, MC sampling with a Gaussian copula could
be used without the BN representation. However, setting up the problem without the
network would feel like a handicap, as it helps clarify the connections (correlations)
within the joint distribution, both to the analyst and to the world in which he/she op-
erates. This latter is essential in communication with experts in the field who are not
experts in probabilistic analysis. Equally important is the ability to determine both prior
and posterior independence/dependence among the variables in the network, which
can be done by observing the graphical structure using a concept known as D-separation
(see Appendix D). Particularly for the posterior case, after certain variables have been
observed, determining the dependences without the graph would be cumbersome and
prone to errors. For these reasons, I find the network representation of the joint distri-
bution essential, and highly valuable. In the dissertation, the method is referred to as the
BN method. However, when used to compare with Hydra-Ring algorithms, it can still be
thought of as approximate efficient methods on the one hand (Hydra-Ring), and more
explicit MC sampling on the other.

The following specific considerations were addressed in detail:

• Structuring/building the BN for different spatial scales: a cross section, a statisti-
cally homogeneous segment, and a levee system

• Sampling the network, accounting for correlations between variables, to derive
samples of the multivariate (spatial) distribution over all the variables in the net-
work



7.1. MAIN FINDINGS

7

121

• Performing inference in the BN for different types of observations in the real world,
like the survival of (high) loads

• The potential need for importance sampling in the estimation of the posterior fail-
ure probability

• Posterior dependence of the resistance variables

VERIFICATION OF THE MODIFIED OUTCROSSING METHOD

The BN methodology proposed in Chapter 2 was used to calculate the length effect in a
levee segment. The length effect refers to the increase in failure probability that results
from an increase in the length of a levee segment. It is caused by the spatial variability
within a segment, and the probability of encountering a weak spot. The BN was used
to calculate the length effect by sampling the joint spatial distribution of the limit state
function, without having to approximate a parametric form of the spatial distribution.
Using Monte Carlo rejection sampling for inference, the method was used to update fail-
ure probabilities of (long) levees using survival observations (i.e. high water levels and
no levee failure). The BN results were compared with a modified outcrossing (MO) tech-
nique, currently in use in reliability modeling of flood defenses in the Netherlands, via a
numerical example, for verification purposes. The primary difference between the two
methods is that the BN method samples from the joint spatial distribution, whereas the
MO method uses an approximative parametric form of the spatial distribution of the
limit state, and solves the problem analytically.

The prior and posterior segment failure probabilities calculated by the two methods
were in strong agreement. Slight discrepancies were found for posterior segment failure
probabilities for long segments (4000 and 6000 meters), but these differences were less
than 10%, and in terms of reliability index, less than 1%. These results provide a strong
verification of the MO method for prior analysis, which is used in the levee reliability
model Hydra-Ring that supports Dutch national flood risk assessments. They also pro-
vide an important verification of the MO method for posterior analysis, which has a lot
of potential. The speed of the MO method makes it possible to efficiently update failure
probabilities of numerous levee segments with abundant survival observations.

Given the strong agreement between BN and MO results, and the relative efficiency
of the MO method, it is logical to use the latter in practice. However, I must emphasize
that the examples considered in Chapter 3 do not represent an exhaustive set of cases.
For failure probability updating with survival observations, I advocate comparing the BN
and MO output for each new type of application (e.g. new limit state function, new set of
variable distribution types or correlation parameters). Once the results are verified, the
MO method can be used with confidence for all examples of the same type.

Finally, I strongly advocate the use of either the BN or MO method to account for the
length effect in reliability analysis over some of the more simplified approaches found
in the literature, which tend to break up the segment into fully correlated or completely
independent sub-sections, such as the methods described in [45] and [46].
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VERIFICATION OF THE EQUIVALENT PLANES METHOD
The Equivalent Planes (EP) method is an efficient method to compute the system relia-
bility for systems of correlated components. It has been used in Dutch system reliability
modeling of flood defenses for decades, in the model PC-Ring, and more recently Hydra-
Ring. The latter is at the heart of national flood risk analysis, the results of which are
used to drive major flood prevention policies in the Netherlands. The critical role of the
model motivated this research to determine the accuracy of the EP method, and under
which situations unacceptable error may be encountered. For numerical cases where
the components were equi-correlated, exact solutions were available. In all other cases,
Monte Carlo (MC) directional sampling method was used to compute ‘exact’ reliability
estimates with which to compare the EP results.

The error in the EP method was computed for different system configurations, and
found that when the components are not too correlated (e.g. a correlation coefficient up
to about 0.5), the error in the method is generally negligible, particularly when the com-
ponents have high reliability indices. Inaccuracies become apparent for large systems
with highly correlated components, and for components with lower reliability indices.
In all cases, the Equivalent Planes system failure probability estimates were within a fac-
tor of three times the correct system failure probability. It is important to note that these
results are for extreme system configurations in which the components all have equal
reliability indices. In reality, a few components will likely dominate the failure proba-
bility, and the error will be much lower. Furthermore, even three times the correct fail-
ure probability can be quite negligible for systems with very small failure probabilities.
For example, consider a system of 250 equi-correlated components, with component
reliability indices of 6, correlated with a coefficient of 0.9; the true failure probability is
4.81E-8 and the estimate is 1.14E-7, for a factor difference of 2.4. In many applications,
where the probability needs to be below a certain safety standard, this difference will not
be important. Furthermore, other uncertainties in the reliability analysis – for example,
due to the parameterization of the random variables contributing to failure – will likely
overshadow this small error, making it essentially negligible.

The EP method is particularly attractive because of its efficiency. For a system with
250 components, all with equal reliability indices of 5, and equi-correlated with correla-
tion coefficient 0.9, the EP method computed the system failure probability in 0.95 sec-
onds1. For the same case, MC directional sampling (which is already more efficient than
crude MC) required 1079 minutes – over 17 hours. The other attractive feature of the
EP method is that it returns influence coefficients, which makes it particularly unique
among the (computationally feasible) methods developed within the field of system re-
liability (see Section 4.1 for references). While there are methods to return influence co-
efficients of the components, the EP method additionally returns influence coefficients
of the random variables. This lets managers know which variables (and in which seg-
ments) are most contributing to the failure probability of the system.

A BN was also applied to the case of equi-correlated components. Because the limit
state functions are all approximated as normal distributions in the examples in Chapter 4
(this is the first step of the EP method), the BN of a system of m components is equivalent
to a multivariate normal distribution. At the time of the development of the EP method,

1Computation times are based on a 2.8 GHz computer with 8GB RAM
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evaluation of the multivariate normal distribution for high reliability indices and a large
number of components was not feasible. Since that time, there have been developments,
specifically methods by Genz and Bretz ([70], [71]) which have been adopted in statisti-
cal packages, such as Matlab (which was used in this research). The method is known
as a quasi-MC method of evaluating multivariate normal distributions. It performed
well for reliability indices of 3 and 4, for all component correlations. For an index of
5, the method performs well until the correlation gets high (> 0.7), and for a reliabiity
index of 6, the method only performs accurately when the components are barely corre-
lated (ρ = 0.2). The poor performance appears to be due to an inability of the quasi-MC
method to accurately calculate the error in the probability estimate in some cases. For
example, for a system of 250 components, with component reliability indices of 6, and
equi-correlated with coefficient 0.9, the exact system failure probability is about 5 ·10−8,
while the quasi-MC method returns an estimate of about 1 ·10−9. However, the method
estimates an error of about 10−12, which is clearly incorrect. Details about the quasi-
MC algorithm to estimate system probabilities and error fall outside the scope of this
dissertation. Based on the results of our application of it to the equi-correlated case in
Chapter 4, I conclude that directly evaluating the multivariate normal distribution is still
too unstable for practical application. However, I also recommend keeping up with the
literature, as new algorithms to evaluate multivariate normal distributions continue to
be developed.

UPDATING PIPING PROBABILITIES IN LEVEE SYSTEMS

The BN methodology described in Chapter 2 was applied to two levee systems in The
Netherlands. The first system was composed of regional levees protecting the city of
Heerhugowaard from a canal. The prior failure probabilities due to piping were nearly
1, although no evidence of failure had been seen. Applying the BN to the three segments
that made up this system, and imposing the survival observation (a high water level with
no failure), reduced the failure probabilities by over two orders of magnitude. Discus-
sions with the water board indicated that it was not necessarily poor prior distributions
of the soil parameters, but rather an inappropriate choice of model (the Sellmeijer piping
model) for the particular levee system. Specifically, they believe a mucky impermeable
layer exists under the canal, which disconnects the pressure of the water level from the
underlying sand layer. In this case, the prior distributions of the soil parameters may be
correct, and possibly quite weak; however, the disconnect makes it so that the load is
not really felt, and therefore no failure occurs. This highlights an important point when
applying the BN methodology: pay attention to the assumptions of the failure model. It
is critical to ensure that the location where it is applied meets those assumptions. Oth-
erwise, the resulting posterior distributions of the soil parameters will be nonsense.

The primary levee system that was considered, which protects an area of Zutphen
against the IJssel River, was a more valid system for use of the Sellmeijer piping model, as
it is unlikely that the IJssel river is underlain by an impermeable layer. The challenge with
the primary system is that the prior probabilities are already quite low, so that a survival
observation is not guaranteed to have much of an impact on the failure probability. For
this case, posterior segment and system failure probabilities were calculated using two
load observations (coupled with levee survival): a 1/40 year water level and a 1/400 year
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water level, to assess how the extremity of the observation influences the reduction in
failure probability.

In both the regional and primary cases, prior and posterior cross-sectional, segment,
and system failure probabilities were calculated. In the regional case, the system failure
probability decreased by over two orders of magnitude, due to the extremely high prior
failure probability of this system. In the primary case, the system failure probability de-
creased by 7.5 for a 1/400 year water level observation, and by 2 for a 1/40 year water
level observation. While a 1/40 year water level observation is relatively high, it was not
high enough to greatly impact a system with a very low prior failure probability.

For the primary case, a further verification of the Hydra-Ring MO and EP algorithms
was done by comparing their segment and system failure probability estimates with
those calculated with the BN. Chapter 3 had explored the validity of the MO method by
investigating numerical examples. Chapter 5 provided further verification by comparing
the results for this real-world application. Though the prior segment failure probabilities
showed slightly worse agreement than the numerical examples in Chapter 3, they were
still in good agreement. In terms of reliability index, the MO prior estimates for the three
segments in the system were 2%, 1%, and 3% lower (note: lower reliability index = higher
failure probability) than the BN estimates. The MO posterior estimates (for the case of
a 1/400 year water level) were in even better agreement, a mere 0.3%, 1%, and 1% lower
than the BN estimates. The agreement between system failure probability estimates cal-
culated by the BN and the combined MO/EP methods (MO for the segment, and EP for
the system) was also investigated. In terms of reliability index, the differences were only
about 1%. This difference is on par with the differences between the MO and BN seg-
ment estimates. It was expected that the EP method would be fairly exact for a system
of only three components, based on the results in Chapter 4, so the good agreement is
not surprising. Still, it is a useful verification in an actual application, as opposed to the
numerical examples explored in Chapter 4.

USEFULNESS OF SURVIVAL OBSERVATIONS

Survival observations are vastly available, but not always particularly useful. In Chapter
5, the usefulness of survival observations under different conditions was investigated.
Two primary factors determine how useful a survival observation will be: (1) the mag-
nitude of the prior conditional failure probability given the observed load, and (2) the
relative influence that the resistance has on failure. When the prior conditional failure
probability is high, then observing survival is often very informative, because it tells us
that our prior distributions are underestimating the strength of the levee. On the other
hand, if the expected failure probability given the observed load is low, then observing
survival essentially confirms our prior knowledge, and the posterior distributions are
similar to the priors. For the second factor, if the resistance has little influence on the
failure probability (i.e. the load is dominant), then improving its distribution will have
little effect. Conversely, if the resistance is dominating the failure probability, then im-
proving its distribution should have a large impact. The results for an analysis of a stan-
dard limit state function were presented in Section 5.7, but are repeated here, because
they can serve as a useful guidance for anyone considering updating levee failure proba-
bility with survival observations. Consulting these tables prior to carrying out reliability
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updating can help avoid unnecessary calculations.

Table 7.1: Reduction in failure probability (ratio of prior to posterior) due to incorporation of a survived load
with a return period of 400 years, for different influences of the resistance (10%, 30%, 70%, and 90%), and
different prior reliability indexes β.

α2
R = 0.9 α2

R = 0.7 α2
R = 0.5 α2

R = 0.3 α2
R = 0.1

β= 2 2656 216 41 15 10

β= 3 1460 67 8 2 1

β= 4 839 23 2 1 1

Table 7.2: Reduction in failure probability (ratio of prior to posterior) due to incorporation of a survived load
with a return period of 40 years, for different influences of the resistance (10%, 30%, 70%, and 90%), and
different prior reliability indexes β.

α2
R = 0.9 α2

R = 0.7 α2
R = 0.5 α2

R = 0.3 α2
R = 0.1

β= 2 245 26 6 2 1

β= 3 145 11 2 1 1

β= 4 91 5 1 1 1

BNS FOR ESTIMATING GEOTECHNICAL FAILURE MODEL UNCERTAINTY

A BN was developed to derive the model uncertainty in a geotechnical failure model us-
ing observations and hindcasts. The research investigated the choice of prior distribu-
tions for the distribution parameters of the model uncertainty, and the impact of limited
data, via a synthetic example. Small data sets can result in large variance for high pos-
terior predictive quantiles of M if the prior distributions are poorly chosen. That is, the
smaller the data set, the more important it becomes to choose a well-informed prior.
However, for most quantiles, the estimates were quite accurate, even for relatively small
data sets. Even when little is known apriori about the parameters of the model uncer-
tainty distribution, experts can impart their intuition in the form of minimum and maxi-
mum quantiles of M for specified exceedance probabilities. Incorporating this intuition
delivers a lot of reduction in the variance of the posterior predictive quantiles of M .

The methodology was applied to a case study in the Netherlands using the marcro-
instability model D-Geostability. The results showed a sensitivity to outliers, and under-
scored the need to use high-quality well-vetted data points when doing the analysis.

In general, the method is fast and easy to implement. The synthetic example showed
how with relatively little data, the method can well estimate the correct quantiles of the
model uncertainty distribution. I consider it worthwhile to apply this method whenever
quality data are available as input to the failure model, together with survival or failure
observations.
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7.2. RECOMMENDATIONS FOR FUTURE RESEARCH
The BN developed in this dissertation has served as a yardstick by which to measure the
goodness of more approximative, but potentially faster methods. I hope that it contin-
ues to serve in this fashion, and recommend it as an tool to augment any study consid-
ering posterior analysis of levee failure probabilities based on observations. Due to time
constraints, certain issues were excluded from this dissertation, but their investigation
would be useful in the future. These are outlined below.

PARAMETERIZATION OF POSTERIOR DEPENDENCE

The posterior dependence structure of the resistance variables is highly constrained and
has no obvious parametric form. For that reason, in this dissertation, the posterior joint
samples of the resistance variables (which were retained after rejection sampling) were
used to calculate the posterior failure probability. This limits the accuracy of the esti-
mate, because the number of retained samples can be quite low in some cases. I feel
convinced that a method can be derived to parameterize the constrained posterior de-
pendence that will allow for sampling the joint posterior distribution, which will allow
us to sample as many times as needed.

APPLICATION WITH AN EXTERNAL FAILURE MODEL

In this dissertation, the real-world applications considered the piping failure mecha-
nism, which is represented by empirical formulas. The BN developed for levee reliability
in this dissertation is specifically described for such a case, with a formulaic represen-
tation of the limit state function. In Chapter 2, I described how the method can be ex-
panded in the case that an external failure model (e.g. a macrostability model) is needed.
It would require a preprocessing step in which the failure model is run with random in-
put to derive the empirical distribution of the limit state function and the correlation
between the input random variables and the limit state function. The limit state func-
tion would then enter the BN not as a functional node, but as a random node specified
by its empirical distribution. Arcs would be drawn between the limit state function and
the input variables, and specified by the correlation derived in the preprocessing step.
From there, the method described in the dissertation could be applied.

The one caveat is that there would be correlations between variables within a net-
work in addition to the autocorrelations that densely connect the cross sections in the
BN. This would have to be carefully accounted for so that all correlations are adhered to
when sampling, and so that the correlation matrix over all the variables in the system re-
mains positive definite. Although such a situation did not arise in the applications in this
dissertation, a method for deriving a positive definite matrix was described and tested in
Appendix G.

TIME-DEPENDENT FAILURE MECHANISMS

The piping mechanism, which was considered in the BN applications in this disserta-
tion, is not particularly sensitive to antecedent conditions. For a mechanism like slope
stability which depends on how saturated the soil already is at the time of a load, a sur-
vival observation has a different meaning. Specifically, surviving a particular load does
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not guarantee survival of the same load in the future, as it did in the case of piping. It will
depend on the starting saturation state of the soil. Future research should focus on how
inference would need to be adjusted in such a case.

7.3. FINAL THOUGHTS
It is my hope that this dissertation contributes in some small part to the current focus on
incorporating survival observations in levee reliability estimates. Uncertainty is one of
our biggest challenges in reliability analysis. And these survival observations are sitting
there, waiting to help. I also hope that this dissertation both clarifies and increases the
confidence in the modified outcrossing and Equivalent Planes algorithms that are a part
of the flood defense reliability model Hydra-Ring.





REFERENCES

REFERENCES
[1] Heiko Apela, Annegret H Thiekena, Bruno Merza, and Günter Blöschlb. A proba-

bilistic modelling concept for the quantification of flood risks and associated un-
certainties. In International Congress on Environmental Modelling and Software,
page 107, 2004.

[2] Heiko Apel, Bruno Merz, and Annegret H Thieken. Quantification of uncertainties
in flood risk assessments. International Journal of River Basin Management, 6(2):
149–162, 2008.

[3] Bruno Merz and Annegret H Thieken. Flood risk curves and uncertainty bounds.
Natural hazards, 51(3):437–458, 2009.

[4] Mary W Downton, Rebecca E Morss, Olga V Wilhelmi, Eve Gruntfest, and Melissa L
Higgins. Interactions between scientific uncertainty and flood management deci-
sions: Two case studies in colorado. Global Environmental Change Part B: Environ-
mental Hazards, 6(3):134–146, 2005.

[5] Jim W Hall, RJ Dawson, PB Sayers, C Rosu, JB Chatterton, and R Deakin. A method-
ology for national-scale flood risk assessment. Proceedings of the ICE-Water and
Maritime Engineering, 156(3):235–247, 2003.

[6] RB Jongejan and B Maaskant. Quantifying flood risks in the netherlands. Risk Anal-
ysis, 35(2):252–264, 2015.

[7] WT Bakker and JK Vrijling. Probabilistic design of sea defences. Coastal Engineering
Proceedings, 1(17), 1980.

[8] HMGM Steenbergen, BLb Lassing, ACWM Vrouwenvelder, and PH Waarts. Reliabil-
ity analysis of flood defence systems. Heron, 49 (1), 2004.

[9] BL Lassing, ACWM Vrouwenvelder, and PH Waarts. Reliability analysis of flood de-
fence systems in the netherlands. In van Gelder PHAJM, Bedford T.(eds.), Safety and
Reliability, Proc. Of the ESREL 2003 conference, pages 1005–1014, 2003.

[10] Ton Vrouwenvelder. Spatial effects in reliability analysis of flood protection sys-
tems. In Second IFED Forum, Lake Louise, Canada, 2006.

[11] FLM Diermanse, W van Balen, K Roscoe, J Lopez de la Cruz, and H Steenbergen.
Hydra-Ring 2.0, Probabilistics toolbox for the WTI2017, Scientific Document. Tech-
nical report, Deltares, 2016.

129



7

130 REFERENCES

[12] J Ferry Borges, M Castanheta, and AR Janeiro Borges. Design criteria for wind loads
on statistical Bases. 1971.

[13] Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plausi-
ble inference. Morgan Kaufmann Publishers, San Francisco, Calif., 1997. ISBN
1558604790 9781558604797.

[14] Irad Ben-Gal. Bayesian networks. In Encyclopedia of Statistics in Quality
and Reliability. John Wiley & Sons, Ltd, 2008. ISBN 9780470061572. URL
http://onlinelibrary.wiley.com/doi/10.1002/9780470061572.eqr089/
abstract.

[15] Rina Dechter. Bucket elimination: A unifying framework for reasoning. Arti-
ficial Intelligence, 113(1–2):41–85, September 1999. ISSN 0004-3702. doi: 10.
1016/S0004-3702(99)00059-4. URL http://www.sciencedirect.com/science/
article/pii/S0004370299000594.

[16] Zhaoyu Li and Bruce D’Ambrosio. Efficient inference in bayes networks as a combi-
natorial optimization problem. International Journal of Approximate Reasoning, 11
(1):55–81, July 1994. URL http://www.sciencedirect.com/science/article/
pii/0888613X94900191.

[17] N. L. Zhang and D. Poole. Exploiting causal independence in bayesian network
inference. Journal of Artificial Intelligence Research, 5:301–328, November 1996.
URL http://arxiv.org/abs/cs/9612101.

[18] A. Christofides, B. Tanyi, S. Christofides, D. Whobrey, and N. Christofides. The opti-
mal discretization of probability density functions. Computational Statistics & Data
Analysis, 31(4):475–486, October 1999. URL http://www.sciencedirect.com/
science/article/pii/S0167947399000432.

[19] Nir Friedman and Moises Goldszmidt. Discretizing continuous attributes while
learning bayesian networks. In In Proc. ICML, page 157–165. Morgan Kaufmann,
1996.

[20] Alexander V Kozlov and Daphne Koller. Nonuniform dynamic discretization in hy-
brid networks. In Proceedings of the Thirteenth conference on Uncertainty in artifi-
cial intelligence, pages 314–325. Morgan Kaufmann Publishers Inc., 1997.

[21] Helge Langseth, Thomas D Nielsen, Rafael Rumí, and Antonio Salmerón. Inference
in hybrid bayesian networks. Reliability Engineering & System Safety, 94(10):1499–
1509, 2009.

[22] Barry R. Cobb, Prakash P. Shenoy, and Rafael Rumí. Approximating probability
density functions in hybrid bayesian networks with mixtures of truncated expo-
nentials. Statistics and Computing, 16(3):293–308, September 2006. URL http:
//link.springer.com/article/10.1007/s11222-006-8175-8.

http://onlinelibrary.wiley.com/doi/10.1002/9780470061572.eqr089/abstract
http://onlinelibrary.wiley.com/doi/10.1002/9780470061572.eqr089/abstract
http://www.sciencedirect.com/science/article/pii/S0004370299000594
http://www.sciencedirect.com/science/article/pii/S0004370299000594
http://www.sciencedirect.com/science/article/pii/0888613X94900191
http://www.sciencedirect.com/science/article/pii/0888613X94900191
http://arxiv.org/abs/cs/9612101
http://www.sciencedirect.com/science/article/pii/S0167947399000432
http://www.sciencedirect.com/science/article/pii/S0167947399000432
http://link.springer.com/article/10.1007/s11222-006-8175-8
http://link.springer.com/article/10.1007/s11222-006-8175-8


REFERENCES

7

131

[23] Serafín Moral, Rafael Rumi, and Antonio Salmerón. Mixtures of truncated exponen-
tials in hybrid bayesian networks. In Salem Benferhat and Philippe Besnard, edi-
tors, Symbolic and Quantitative Approaches to Reasoning with Uncertainty, number
2143 in Lecture Notes in Computer Science, pages 156–167. Springer Berlin Hei-
delberg, January 2001. ISBN 978-3-540-42464-2, 978-3-540-44652-1. URL http:
//link.springer.com/chapter/10.1007/3-540-44652-4_15.

[24] Rafael Rumí, Antonio Salmerón, and Serafín Moral. Estimating mixtures of trun-
cated exponentials in hybrid bayesian networks. Test, 15(2):397–421, September
2006. URL http://link.springer.com/article/10.1007/BF02607059.

[25] Rafael Rumí and Antonio Salmerón. Approximate probability propagation with
mixtures of truncated exponentials. International Journal of Approximate Reason-
ing, 45(2):191–210, July 2007. URL http://www.sciencedirect.com/science/
article/pii/S0888613X06000594.

[26] Anca Hanea, Oswaldo Morales Napoles, and Dan Ababei. Non-parametric bayesian
networks: Improving theory and reviewing applications. Reliability Engineering &
System Safety, 144:265–284, 2015.

[27] Anca Maria Hanea. Algorithms for non-parametric Bayesian belief nets. PhD thesis,
TU Delft, Delft University of Technology, 2008.

[28] D. Kurowicka and R.M. Cooke. Distribution-free continuous bayesian belief nets.
Modern Statistical and Mathematical Methods in Reliability, 10:309, 2005.

[29] A.M. Hanea, D. Kurowicka, and R.M. Cooke. Hybrid Method for Quantifying and
Analyzing Bayesian Belief Nets. Quality and Reliability Engineering International,
22(6):613–729, 2006.

[30] A.M. Hanea, D. Kurowicka, R.M. Cooke, and D.A. Ababei. Mining and visualising
ordinal data with non-parametric continuous BBNs. Computational Statistics and
Data Analysis, 54(3):668–687, 2010.

[31] A. Sklar. Fonctions de réparation à n dimensions et leurs marges. Publ. Inst. Statist.
Univ. Paris, 8:229–231, 1959.

[32] H. Joe. Multivariate Models and Dependence Concepts. Chapman & Hall, London,
1997.

[33] Régis Lebrun and Anne Dutfoy. An innovating analysis of the nataf transformation
from the copula viewpoint. Probabilistic Engineering Mechanics, 24(3):312 – 320,
2009.

[34] F.L.M. Diermanse and C.P.M. Geerse. Correlation models in flood risk analysis. Re-
liability Engineering and System Safety, 105:64 – 72, 2012. ISSN 0951-8320.

[35] Régis Lebrun and Anne Dutfoy. Do rosenblatt and nataf isoprobabilistic transfor-
mations really differ? Probabilistic Engineering Mechanics, 24(4):577–584, 2009.

http://link.springer.com/chapter/10.1007/3-540-44652-4_15
http://link.springer.com/chapter/10.1007/3-540-44652-4_15
http://link.springer.com/article/10.1007/BF02607059
http://www.sciencedirect.com/science/article/pii/S0888613X06000594
http://www.sciencedirect.com/science/article/pii/S0888613X06000594


7

132 REFERENCES

[36] D. Kurowicka and R.M. Cooke. Uncertainty Analysis with High Dimensional Depen-
dence Modelling. Wiley, 2006.

[37] O. Morales Nápoles, D. Worm, and B. Dillingh. Framework for probabilistic scale
transition in physico-chemical modeling of asphalt. TNO report project number
034.24789, 2011.

[38] Rudolf O Weber and Peter Talkner. Some remarks on spatial correlation function
models. Monthly Weather Review, 121(9):2611–2617, 1993.

[39] J. Whittaker. Graphical Models in applied multivariate statistics. John Wiley and
Sons, Chichester, 1990.

[40] Adrian FM Smith and Alan E Gelfand. Bayesian statistics without tears: a sampling–
resampling perspective. The American Statistician, 46(2):84–88, 1992.

[41] Walter R Gilks. Markov chain monte carlo. Wiley Online Library, 2005.

[42] Zdenek P. Bažant and Er-Ping Chen. Scaling of structural failure. Applied Mechanics
Reviews, 50(10):593–627, 1997. 10.1115/1.3101672.

[43] Erik H Vanmarcke. On the distribution of the first-passage time for normal station-
ary random processes. Journal of applied mechanics, 42(1), 1975.

[44] Erik Vanmarcke. Random fields: analysis and synthesis. The Massachusetts Institute
of Technology, 1983.

[45] David S Bowles, S Sanjay, Loren R Anderson Chauhan, and Ryan C Grove. Baseline
risk assessment for herbert hoover dike. In ANCOLD Conference on Dams, 2012.

[46] United States Bureau of Reclamation. Dam safety risk analysis: Best practices and
risk methodology training manual. Technical report, U.S. Bureau of Reclamation,
2011.

[47] Ruben Jongejan, Bob Maaskant, Wouter ter Horst, Fred Havinga, Niels Roode, and
Harry Stefess. The vnk2-project: a fully probabilistic risk analysis for all major levee
systems in the netherlands. IAHS-AISH publication, pages 75–85, 2013.

[48] Willem Kanning. The weakest link: spatial variability in the piping failure mecha-
nism of dikes. TU Delft, Delft University of Technology, 2012.

[49] W Kanning, T Schweckendiek, T Vrouwenvelder, and E Calle. The length-effect in
the reliability of flood defenses (in preparation). in prep.

[50] T Schweckendiek, ACWM Vrouwenvelder, and EOF Calle. Updating piping reliabil-
ity with field performance observations. Structural Safety, 47:13–23, 2014.

[51] Robert E Melchers. Safety and risk in structural engineering. Progress in Structural
Engineering and Materials, 4(2):193–202, 2002. ISSN 1528-2716.



REFERENCES

7

133

[52] Robert H Sues and Mark A Cesare. System reliability and sensitivity factors via the
mppss method. Probabilistic Engineering Mechanics, 20(2):148–157, 2005.

[53] A Naess, BJ Leira, and O Batsevych. System reliability analysis by enhanced monte
carlo simulation. Structural safety, 31(5):349–355, 2009.

[54] A Naess, BJ Leira, and O Batsevych. Reliability analysis of large structural systems.
Probabilistic Engineering Mechanics, 28:164–168, 2012.

[55] Won-Hee Kang and Junho Song. Evaluation of multivariate normal integrals for
general systems by sequential compounding. Structural Safety, 32(1):35–41, 2010.

[56] Junho Chun, Junho Song, and Glaucio H Paulino. Parameter sensitivity of system
reliability using sequential compounding method. Structural safety, 55:26–36, 2015.

[57] Michael Hohenbichler and Rudiger Rackwitz. Non-normal dependent vectors in
structural safety. Journal of the Engineering Mechanics Division, 107(6):1227–1238,
1981.

[58] M Hohenbichler and R Rackwitz. First-order concepts in system reliability. Struc-
tural safety, 1(3):177–188, 1983.

[59] S Gollwitzer and R Rackwitz. Equivalent components in first-order system reliabil-
ity. Reliability Engineering, 5(2):99–115, 1983.

[60] M Hohenbichler, S Gollwitzer, W Kruse, and R Rackwitz. New light on first-and
second-order reliability methods. Structural safety, 4(4):267–284, 1987.

[61] RB Jongejan and B Maaskant. Applications of vnk2, a fully probabilistic risk analysis
for all major levee systems in the netherlands. Comprehensive flood risk manage-
ment. Taylor & Francis Group, London, 2013.

[62] JM Kind. Economically efficient flood protection standards for the netherlands.
Journal of Flood Risk Management, 7(2):103–117, 2014.

[63] Armen Der Kiureghian et al. First-and second-order reliability methods. Engineer-
ing design reliability handbook, pages 14–1, 2005.

[64] M Van Koningsveld, GJ De Boer, F Baart, T Damsma, C Den Heijer, P Van Geer, and
B De Sonnevile. Openearth-inter-company management of: data, models, tools &
knowledge. In Proceedings WODCON XIX Conference: Dredging Makes the World a
Better Place, 9-14 September 2010, Beijing, China, 2010.

[65] Ove Ditlevsen, Robert E Melchers, and H Gluver. General multi-dimensional proba-
bility integration by directional simulation. Computers & Structures, 36(2):355–368,
1990.

[66] RE Melchers. Structural system reliability assessment using directional simulation.
Structural Safety, 16(1):23–37, 1994.



7

134 REFERENCES

[67] Robert E. Melchers. Structural reliability analysis and prediction. John Wiley & Son
Ltd, 1999.

[68] Carel Eijgenraam, Jarl Kind, Carlijn Bak, Ruud Brekelmans, Dick den Hertog,
Matthijs Duits, Kees Roos, Pieter Vermeer, and Wim Kuijken. Economically effi-
cient standards to protect the netherlands against flooding. Interfaces, 44(1):7–21,
2014.

[69] A Jeuken, J Kind, and J Gauderis. Cost-benefit analysis of flood protection strate-
gies for the rhine-meuse delta. Comprehensive flood risk management: research for
policy and practice, 228, 2012.

[70] Alan Genz and Frank Bretz. Numerical computation of multivariate t-probabilities
with application to power calculation of multiple contrasts. Journal of Statistical
Computation and Simulation, 63(4):103–117, 1999.

[71] Alan Genz and Frank Bretz. Comparison of methods for the computation of mul-
tivariate t probabilities. Journal of Computational and Graphical Statistics, 11(4):
950–971, 2002.

[72] TAW. Technical report on sand boils (piping). Technical report, Technical Advisory
Committee on Flood Defences (Dutch), 1999.

[73] JB Sellmeijer and MA Koenders. A mathematical model for piping. Applied mathe-
matical modelling, 15(11-12):646–651, 1991.

[74] Hans Sellmeijer, Juliana López de la Cruz, Vera M van Beek, and Han Knoeff. Fine-
tuning of the backward erosion piping model through small-scale, medium-scale
and ijkdijk experiments. European Journal of Environmental and Civil Engineering,
15(8):1139–1154, 2011.

[75] K Roscoe, S Caires, F Diermanse, and J Groeneweg. Extreme offshore wave statistics
in the north sea. WIT Transactions on Ecology and the Environment, 133, 2010.

[76] ISO2394 ISO. General principles on reliability for structures. International Standard
Organization, 2014.

[77] Randal Douc and Olivier Cappé. Comparison of resampling schemes for particle
filtering. In Image and Signal Processing and Analysis, 2005. ISPA 2005. Proceedings
of the 4th International Symposium on, pages 64–69. IEEE, 2005.

[78] Deltares. D-geo stability, slope stability software for soft soil engineering, 2014. URL
https://www.deltares.nl/app/uploads/2014/11/D-Geo-Stability-web.
pdf.

[79] Andrew Schofield and Peter Wroth. Critical state soil mechanics. McGraw-Hill Lon-
don, 1968.

[80] IJkdijk Foundation. Ijkdijk macro-stability experiment, 2008. URL http:
//www.floodcontrolijkdijk.nl/downloads/ijkdijk_macro_stability_
english.pdf.

https://www.deltares.nl/app/uploads/2014/11/D-Geo-Stability-web.pdf
https://www.deltares.nl/app/uploads/2014/11/D-Geo-Stability-web.pdf
http://www.floodcontrolijkdijk.nl/downloads/ijkdijk_macro_stability_english.pdf
http://www.floodcontrolijkdijk.nl/downloads/ijkdijk_macro_stability_english.pdf
http://www.floodcontrolijkdijk.nl/downloads/ijkdijk_macro_stability_english.pdf


REFERENCES

7

135

[81] Stichting Deltawerken Online. The flood of 1953. URL http://www.deltawerken.
com/The-flood-of-1953/89.html.

[82] JK Vrijling. Probabilistic design of water defense systems in the netherlands. Relia-
bility engineering & system safety, 74(3):337–344, 2001.

[83] F Den Heijer and FLM Diermanse. Towards risk-based assessment of flood defences
in the netherlands: An operational framework. Electrical Measuring Instruments
and Measurements, page 243, 2012.

[84] Peter van den Berg. Binnen drie uur stond er bijna twee meter water in de wijk.
watersnood bracht tuindorpers samen. de Volkskrant, January 14, 1995.

[85] G Apostolaksi. Probability and risk assessment: the subjectivistic viewpoint and
some suggestions. Nuclear Safety, 19(3):305–315, 1978.

[86] Stanley Kaplan and B John Garrick. On the quantitative definition of risk. Risk
analysis, 1(1):11–27, 1981.

[87] Karl N Fleming, Ali Mosleh, and R Kenneth Deremer. A systematic procedure for
the incorporation of common cause events into risk and reliability models. Nuclear
Engineering and Design, 93(2-3):245–273, 1986.

[88] GE Apostolakis. Uncertainty in probabilistic safety assessment. Nuclear Engineer-
ing and Design, 115(1):173–179, 1989.

[89] Jan van de Graaff. Probabilistic design of dunes; an example from the netherlands.
Coastal Engineering, 9(5):479–500, 1986.

[90] J. van de Graaf. Probabilistic methods for dune design; Background of the TAW
Guideline (in Dutch). Technical report, Delft University of Technology, Civil Engi-
neering Department, Coastal Engineering Group, 1984.

[91] TAW. Guideline for the assessment of the safety of dunes as sea defense. (in Dutch).
Technical report, Technische Adviescommissie voor de Waterkeringen, the Hague,
Netherlands, 1984.

[92] R.J. Cirkel. Guideline for the design of river levees: Part 1: Upstream rivers (in
Dutch). Technical report, TAW: Technische Adviescommissie voor de Waterkerin-
gen, the Hague, Netherlands, 1984.

[93] R.J. Adringa. Guideline for the design of river levees: Part 2: Downstream rivers (in
Dutch). Technical report, TAW: Technische Adviescommissie voor de Waterkerin-
gen, the Hague, Netherlands, 1989.

[94] J Van Dixhoorn. Eastern scheldt storm surge barrier, proceedings of the delta bar-
rier symposium, rotterdam 13-15 october 1982. 1982.

[95] CUR/TAW. Probabilistic design of flood defences. Technical report, Technische
Adviescommissie voor de Waterkeringen and Center for civil engineering research
and codes, 1990.

http://www.deltawerken.com/The-flood-of-1953/89.html
http://www.deltawerken.com/The-flood-of-1953/89.html


136 REFERENCES

[96] Herman Van Der Most and Mark Wehrung. Dealing with uncertainty in flood risk
assessment of dike rings in the netherlands. Natural Hazards, 36(1-2):191–206,
2005.

[97] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and
techniques. MIT press, 2009.

[98] Erik Vanmarcke. Random fields: analysis and synthesis. World Scientific, 2010.



A
THE ISSUE OF CORRELATED

COMPONENTS IN SYSTEM

RELIABILITY

System reliability is notoriously complex to compute, due to the interdependence of sys-
tem components. In levee systems, the interdependency arises from shared soil and load
variables (for dependence between failure modes), and their spatial correlation (for de-
pendence between segments).

In system reliability, components can be connected in different ways. In series, where
if any component fail, the whole system fails, in parallel, where all components must fail
for the system to fail, or a hybrid combination of these. In general, levee systems are se-
ries systems, because if any segment fails due to any failure mode, the system fails. Each
component has two states, failure or survival.

The failure probability for a series systems, P f ,SS , is calculated as the probability of
the union over all the component failure states. Conversely, the system reliability is the
union over the component survival states, or Ps,SS = 1−P f ,SS . If we let the state of failure
for component i be denoted Ei , the failure probability for the system is expressed as
shown in Equation A.1.

P f ,SS = P

(
n⋃

i=1
Ei

)
(A.1)

From combinatorics, the inclusion-exclusion principle dictates how to combine sets.
For the simple case of n = 2 components, we would get P f ,SS = P (E1)+P (E2)−P (E1∩E2).
For n = 3 components, P f ,SS = P (E1)+P (E2)+P (E3)−P (E1 ∩E2)−P (E2 ∩E3)−P (E1 ∩
E3)+P (E1 ∩E2 ∩E3). Figure A.1 shows the Venn diagram that illustrates an example of
the inclusion-exclusion principle for three sets. For more components than 3, the series
system failure probability can be written generally according to Eq. A.2.
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Figure A.1: Example of the inclusion-exclusion principle for the union of sets, for three sets E1, E2, and E3.
The union is the combined area of these three sets. Adding the three sets together (left-hand picture) results in
certain areas being double, or even triple counted (inclusion step). The second picture shows the subtraction
of the areas E1 ∩ E2, E1 ∩ E3, and E2 ∩ E3, which results in each area being counted once, except the area
E1 ∩E2 ∩E3, which is now excluded from the total (exclusion step). The last step (right-hand picture) is the
inclusion of the missing area E1 ∩E2 ∩E3.

P

(
n⋃

i=1
Ei

)
=

n∑
i=1

P (Ei )− ∑
1≤i< j≤n

P
(
Ei ∩E j

)+ ∑
1≤i< j<k≤n

P
(
Ei ∩E j ∩Ek

)
− . . .+ (−1)n−1P (E1 ∩ . . .∩En)

(A.2)

Only in the trivial cases that all component states are fully correlated or entirely in-
dependent can Eq. A.1 be solved easily. If all component states are fully correlated, the
series system failure probability is simply equal to the max(P (Ei )). If they are inde-
pendent, De Morgan’s law can be used. For a two-component system this states that
E1 ∪ E2 = ¬ (¬E1 ∩¬E2), where ¬ is the negation logic operator (i.e. ‘not’). So since
Ei is the state of failure of component i , ¬Ei signifies survival of component i . Then
P (E1 ∪E2) = P (¬ (¬E1 ∩¬E2)) = 1−P (¬E1 ∩¬E2) = 1−(1−P (E1)) (1−P (E2)), where the
last step depends on the components being independent. For n independent compo-
nents, De Morgan’s law can be generalized according to Eq. A.3. In reality, the compo-
nents of a levee system will never be fully correlated or independent, but rather will be
partially correlated.

P f ,SS;i nd = 1−
n∏

i=1
1−P (Ei ) (A.3)



B
BASIC CONCEPTS IN LEVEE

RELIABILITY

This dissertation is intended for readers with some experience in reliability analysis.
However, this section provides a brief background to some of the concepts and notation
dealt with in the dissertation.

In levee system reliability analysis, we are interested in the probability that a levee
will fail. For the basic concepts, let us only consider a single component rather than a
system. We are interested in the combinations of soil and load variables that will lead to
a state of failure of the component. The probability of those combinations tells us the
probability of failure. The state of failure is captured by a limit state function, denoted
in this dissertation as Z . The limit state is defined such that it is positive when the levee
survives, and negative when the levee fails. Consider a vector of random variables, X =
[X1, X2, ..., Xn], containing both load and strength variables. The failure of the system is
represented by the n-fold integral:

P f =
∫

Z (X)<0

fX (X )d X (B.1)

where fX (X ) is the multivariate density function of X . Eq. B.1 can rarely be evaluated
analytically. A number of reliability methods are available to estimate the integral. Some
commonly used ones are Monte Carlo (MC) sampling, MC Importance sampling, first-
order reliability method (FORM), second-order reliability method (SORM), adaptive re-
sponse surfaces, subset simulation, and numerical integration. Each method has its own
advantages and disadvantages. Of these methods, I will briefly discuss MC and FORM,
as they are most referred to in the dissertation.

CRUDE MONTE CARLO
Figure B.1 demonstrates a Monte Carlo sampling approach to evaluating the integral
in Eq. B.1. To describe the method, let us consider a simple example where X con-
sists of two random variables, X = [X1, X2], and where we have a limit state function
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Figure B.1: Example of failure space. Samples of variables X1 and X2 are shown as dots, with their marginal
distributions indicated by histograms. The limit state is shown as a solid black line. Combinations of X1 and
X2 that lead to failure by a darker gray color.

Z (X) = C − X1 · X2, where X1 is normally distributed with mean 5, and standard devia-
tion 1 (denoted X1 ∼N (5,1)), X2 ∼N (6,1), and C = 45. The figure illustrates a cloud of
[X1, X2] samples, as well as the limit state where Z (X) = 0 (shown as a solid black line).
The samples which lead to failure are indicated in the figure with darker points. The MC
estimate of failure is the ratio of samples lying in the failure space (where Z (X) < 0) to
those in the survival space (where Z (X) > 0).

P f =
1

N

N∑
i=1

I (Z (Xi ) < 0) (B.2)

FIRST-ORDER RELIABILITY METHOD
First-order reliability method (FORM) is an efficient algorithm to calculate the failure
probability, but it is less exact than MC (which always converges to the correct value,
given enough samples). FORM works in a standard normal space, where all variables are
represented by independent standard normally distributed variables. In that space, the
method searches for the point closest to the origin which results in Z < 0. This point is
known as the design point, and has the highest density in the failure space. The method
is efficient because it linearizes the limit state when it searches for the design point. At
each iteration in the search procedure it numerically estimates the partial derivatives of
the limit state ∂Z

/
∂Xi , which specify the hyperplane (linearized limit state function).

The method can then analytically determine the location where Z = 0 closest to the
origin. The method then repeats the iteration at the estimated design point from the
previous iteration, until convergence is reached. Figure B.2 shows the FORM approxi-
mation for the same example we used above to illustrate MC. It is clear that the FORM
failure probability estimate will be an overestimate in this case, because it approximates
a larger failure space. The MC estimate with 107 samples estimates P f = 0.038, while
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Figure B.2: FORM approximation of the limit state function for Z = 45−X1 ·X2

FORM estimates P f = 0.042.
The advantage of MC is that it is more accurate than FORM, if sufficient samples are

taken. Unlike FORM, the nonlinearity of the limit state function has no impact on the
MC estimate. The disadvantage of MC is that it requires a large number of samples to
reach a sufficient accuracy. From [66], the number of samples, N , required to reach an
acceptable relative error in the failure probability estimate, ε, can be calculated accord-
ing to Eq. B.3, where k is the quantile of the standard normal distribution, such that the
Φ (k)−Φ (−k) returns the confidence that the actual error will be less than ε. For example,
for 95% confidence, k = 1.96.

N = k2

ε2

(
1−P f

P f

)
(B.3)

For example, consider a failure probability of P f = 0.01, an acceptable relative er-
ror of ε = 0.05, and a confidence of 95% (k = 1.96). The required number of samples
would be about 150,000. For a more accurate estimate with ε = 0.01, N would need to
be almost 4 million. For lower failure probabilities, the number of samples needed also
increases substantially. If the limit state function is evaluated analytically, using a for-
mula, a large value of N is not prohibitive. However, if evaluating the limit state requires
calls to a geotechnical failure model, the computational burden quickly becomes insur-
mountable. For example, with P f = 0.001, ε = 0.05, and k = 1.96, N is a little more than
1.5 million. If each sample called a failure model that required only 1 second to com-
pute, the calculation time would be 17 days. Most failure models will require more than
1 second, making MC an unfeasible reliability method.

FORM usually only requires a handful of iterations before it converges to the design
point. In the example presented in Figure B.2, only 20 iterations were needed. For each
iteration, the partial derivatives must be computed, which requires a few evaluations of
the limit state function. For a 1-sided evaluation of the partial derivatives, the number



B

142 B. BASIC CONCEPTS IN LEVEE RELIABILITY

of evaluations will be (n+1) ·ni ter . For a 2-sided evaluation, the number doubles. In the
example in B.2, that translates to 60 or 120 calls to the limit state function. If the same
hypothetical failure model is used, that would translate to a maximum of two minutes to
compute the failure probability, compared with 17 days. That is the strong advantage of
the FORM method.

A useful by-product of FORM is a set of influence coefficients of the random vari-
ables, which convey the relative influence each variable has on the limit state, and on
the failure probability. This is useful information, because if we know a variable is very
influential, we can divert more resources to better estimate it (e.g. more soil borings).
The influence coefficients are also used heavily in the spatial and temporal upscaling of
failure probabilities in the levee system reliability model used in Dutch national flood de-
fense assessments. There are methods to derive influence coefficients when using MC,
but these must be implemented separately. One of these, the center-of-gravity method,
is explained in Appendix F.



C
RELIABILITY MODELING IN THE

NETHERLANDS: A BRIEF HISTORY

The history of flood protection in the Netherlands is rich and complex, dating back cen-
turies. In this appendix, the scope is limited to the history that is relevant to the develop-
ment of flood defense reliability modeling. Providing this history should put into context
the problems addressed in the dissertation.

In 1953, the approach to flood protection and reliability modeling changed rather
drastically. In the night between January 31st and February 1st, a storm over the North
Sea caused record-breaking water levels along the Dutch coast. The results in Zeeland
and South Holland were catastrophic. In total, 89 levees were breached, and 1836 people
lost their lives ([81]). The inundated area is indicated in Figure C.1.

Inundated area

Figure C.1: Flood extent, 1953 flood in the Netherlands

The tragedy shocked the nation, and resulted in the government setting up the Delta
Commission on February 18, 1953, which was a group of 14 experts - 12 civil engineers,
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Figure C.2: Levee breach at Den Bommel in South Holland, as a result of the 1953 storm. Image source: https:
//beeldbank.rws.nl, Rijkswaterstaat

https://beeldbank.rws.nl
https://beeldbank.rws.nl
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an agronomist, and an economist - whose role was to advise the government on flood
protection to ensure such a flood would never happen again. The Delta Commission
changed the way levees were designed and built. Prior to the 1953 storm, levees were
built with a height of the highest previously recorded water level plus some additional
freeboard ([82], [83]). The Delta Commission considered this a reactionary approach,
and moved towards a proactive approach in which the levees needed to be designed
to withstand an extreme water level, with a specific exceedance probability. The Com-
mission implicitly made this approach risk-based by assigning the required exceedance
probability according to the economic activity of a protected area and the density of the
inhabitants. The members of the committee envisioned a risk-based approach to de-
signing and managing the levees, but a lack of knowledge and limited computing power
prohibited it from being realized at that time.

In 1965 the Technical Advisory Commission for Flood Defenses (acronym: TAW in
Dutch) was set up in part as a consequence of the 1960 flood in Tuindorp Oostzaan, an
area just outside of Amsterdam. A leaking water pipe led to the collapse of a levee, and
the subsequent filling of the polder. According to the newspaper The Volkskrant, the
entire polder filled 2 m deep within 3 hours ([84]). The task of the TAW was to provide
requested or unrequested advice with regard to all technical aspects relating to flood
defenses directly to the minister.

In the 1970s and 1980s there was a surge in probabilistic method development. In-
ternationally, this research was predominantly focused on nuclear risk assessment ([85],
[86], [87], [88]). In the Netherlands, the TAW was hard at work developing probabilistic
methods for levee ([7]) and dune ([89]) design. The TAW was critical of the methods then
used in practice. They noted that failure can occur due to a number of failure mecha-
nisms, and not only the high water levels which were considered at the time. And they
emphasized that the probability that a levee section can withstand an extreme water
level does not equate to the probability that the protected area will flood. In 1979, TAW
set up a special group whose focus was probabilistic methods, with the goal of imple-
menting a new philosophy of levee design, that could calculate the flooding probability.
They envisioned their output as a guidance document - a sort of recipe book - for design-
ing flood defenses. By the mid-80s, elements of the probabilistic methods were brought
together in guidance documents developed for practical use in designing dunes ([90],
[91], and river levees ([92], [93]). The Eastern Scheldt barrier was being designed and
built using probabilistic methods ([94]); it was the first hydraulic structure to be prob-
abilistically designed. In 1985, the TAW presented a comprehensive state-of-the art of
probabilistic modeling for flood defense design at that time (five years later much of
the material was published in English, see [95]). They noted that it was far from com-
plete, and that many knowledge gaps needed to be filled in. Specifically, the methods
for combining correlated components, and for estimating the length effect, needed im-
provement.

In the 1990s, research into flooding probabilities of levee systems accelerated, and
computing power also improved. By 2000, the TAW published a report ’From exceedance
probability to flooding probability’. Their report provided a new method, the result of
a research project begun in 1992, that realized the vision of the Delta Commission: it
could calculate the flooding probability of a protected area. In their research, they used
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the then-newly-developed reliability model PC-Ring. Methods for combining correlated
components, and for estimating the length effect, had been developed and incorporated
in the model. They applied their method and software to four ‘dike rings’ (connected
flood defenses (mostly levees) and higher ground which enclose a protected low-lying
area). They proposed that flooding probabilities of the remaining 50 dike rings in the
Netherlands be carried out in the following years.

Starting in 2001, the project National Flood Risk Analysis in the Netherlands (Dutch
acronym VNK, English acronym FLORIS) was set up with the task to compute the flood-
ing probabilities and flood risk of each of the dike rings in the Netherlands ([96]). While
the TAW indicated this would take two years, in reality it took about 13 years, and was
only completed in 2014. The results were used to inform new risk-based safety stan-
dards ([62]), which passed in the Dutch House of Representatives (‘tweede kamer’) in
July 2016. The Dutch senate (‘eerste kamer’) approved the new standards on November
1, 2016, and they went into effect on December 20, 2016.

For the assessment of flood defenses according to the new risk-based standards, The
Ministry of Transport, Public Works and Water Management commissioned the devel-
opment of new software, Hydra-Ring, that was based on PC-Ring. The new software
needed to be more transparent, more flexible, well-documented, and contain additional
functionality so that it could be used in an operational setting for the assessment of flood
defenses under the new standards, which are based on flooding probabilities. The soft-
ware development began in 2009, and is largely completed, but still ongoing in 2016. The
algorithms and model structure of Hydra-Ring can be seen as a culmination of over 60
years of research.



D
D-SEPARATION IN BAYESIAN

NETWORKS

This appendix provides an informal, intuitive explanation of D-separation. For more de-
tailed information, the reader is referred to [97]. D-separation (where the "D" stands
for dependence) is a way of determining whether two variables are dependent or inde-
pendent, both marginally and conditional on observed variable(s), by studying the ar-
rows in the network. Specifically, two variables are independent (D-separated) if there
are no active paths between them. In this appendix, I give the rules for determining
what constitutes an active path. When a variable is observed, it can change an inactive
path to an active one, and vice versa. Thus, observing variables changes the indepen-
dence/dependence among variables.

Let us start by considering three variables, A, B , and C , where A and B are connected
through C . There are four possible networks in this case, enumerated below. In each
network, I specify whether the path is active (influence flows between A and B) or in-
active, both for the case that C is unobserved or observed. When C is observed, that is
indicated by drawing a circle around the variable C . Following these ‘rules’ is an intuitive
explanation about why these paths are active or inactive.

1. A is an indirect cause of B :

A →C → B : Active path

A → C → B : Inactive path

A B

C

2. B is an indirect cause of A:
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A ←C ← B : Active path

A ← C ← B : Inactive path

A B

C

3. C is a common cause of A and B :

A ←C → B : Active path

A ← C → B : Inactive path

A B

C

4. C is a common effect of A and B :

A →C ← B : Inactive path

A → C ← B : Active path

A B

C

WHEN C IS NOT OBSERVED
In the first and second case, the flow of influence (dependence) from A to B and B to A
is rather straightforward. For example, in case 1, A could be rainfall, C could be flood
level (e.g. height of flooded water at a particular spot in a city), and B could be damage
to property. The more likely the rainfall is to be heavy, the more likely the flood level is to
be high, and the more likely the damage is to be high, and vice versa.

In the third case, C is a common cause of A and B . Influence in this structure can
also pass from A to B . Consider the example that C is the flu, A is a fever, and B is a sore
throat. If it is very likely that a person has a fever, it is more likely they have a flu, which
in turn makes it more likely they have a sore throat.

In the fourth case, C is a common effect of A and B . In this case, there is no influence
passed from A to B . Consider another rainfall example, where A is rainfall, B is poor
drainage, and C is flood level. In this case, a high probability of heavy rainfall increases
the probability a high flood level, but does not tell us anything about the drainage.

So to summarize the four cases when C is not observed, information can pass from A
to B and from B to A in the first three cases. This is called an active path. In these cases,
C is referred to as a non-collider, and A and B are considered D-connected. In the fourth
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case, which is sometimes referred to as a V-structure (where two arrowheads come into
a node), C blocks information from A to B , and is referred to as a collider; in this case, A
and B are D-separated, and the path from A to B is an inactive path.

WHEN C IS OBSERVED
When C is observed, the flow of influence is actually just the opposite as when C is unob-
served. This means that in the first three cases, A and B are independent (D-separated),
given C , whereas in the fourth case A and B are dependent (D-connected) given C . Let’s
consider the examples looked at before. In case 1, the example was: A is rainfall, C is
flood level, and B is property damage. If the flood level is observed, then the probabil-
ity of the rainfall has no more influence on the property damage. It exercised its influ-
ence on the property damage by influencing the probability of flood level. Knowing C
in this case breaks the flow of influence from A to B . In case 4, where A is rainfall, B
is poor drainage, and C is flood levels, knowing C allows influence to pass from A to B .
For example, prior to observing the flood level, a light rainfall told us nothing about the
drainage in the city. However, once we know that the flood level was high, the informa-
tion that the rainfall was light means that the drainage must be bad. Thus, when C is
known, the probability of A influences the probability of B , and vice versa.

In summary, when non-colliders are unobserved, influence passes through them.
When they are observed, they block influence. Conversely, colliders block influence
when they are unobserved, and allow influence through when they are observed. Though
not shown in this 3-node example, whenever a descendant of a collider is observed, it
also activates the path through the collider.

EXAMPLE
A more complex graph is shown in Figure D.1, to provide an example.

A B

C

D

F G H

Figure D.1: Example BN for explaining D-separation (dependence and independence among variables which
can be read from the graph).

The example contains seven nodes: A, B , C , D , F , G , and H . All of the nodes are
non-colliders except for G . In the enumerated list below, I present the dependence state-
ments about node A and all the other nodes in the network, for the case that (1) no nodes
are observed, (2) node F is observed, and (3) node H is observed.
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1. No nodes are observed:

• A is d-connected to {B ,C ,F,G , H }

• A is d-separated from D

2. Node F is observed:

• A is d-connected to {B ,C }, given F

• A is d-separated from {D,G , H }, given F

3. Node H is observed:

• A is d-connected to {B ,C ,DF,G}, given H

• A is d-separated from { }, given H

When no nodes are observed, A is D-connected to every other node via an active
path, except for D , which is separated from A by the collider G . When F is observed, it
breaks the connection between A and the descendants of F , so that A is only D-connected
to B and C . When H is observed, as a descendant of the collider G , it activates the path
from A to D .

To summarize this appendix, the graphical structure of a Bayesian network allows an
analyst to know which variables in the network are independent, both with and with-
out the inclusion of evidence, using the concept of D-separation. Without the network
representation, it would be challenging to determine all of the posterior dependences
among variables, after including evidence.



E
DETAILS OF THE MODIFIED

OUTCROSSING METHOD

The modified outcrossing (MO) method begins with the failure probability of a cross sec-
tion, P f ,C S , or similarly, the reliability index β=Φ−1

(
P f ,C S

)
. If we assume that the cross-

ings are a Poisson process, the survival probability of the segment Ps,seg is described by
Eq. E.1, where v+ is the upcrossing rate (the rate that the limit state crosses zero from
positive to negative, given a reliability index β), L is the length of the segment, and b is
the width of a cross section, hereafter assumed to be negligible (b ≈ 0 ). Note that the
upcrossing rate is equal to half the crossing rate v .

Ps,seg = (
1−P f ,C S

)
exp

(−(L−b) · v+(β)
)

(E.1)

To solve Eq. E.1, the crossing rate is needed, which can be derived analytically if
the limit state function is approximated as a one-dimensional Gaussian random field:
Z = β−U , where U is a standard normally distributed variable. This follows directly
when first order reliability method (FORM) is used to calculate the cross sectional failure
probability. In fact, FORM is preferred, because it also returns influence coefficients of
the load and resistance variables, which are needed (see below).

Following the work of Vanmarcke ([44]), the crossing rate for a stationary, ergodic,
Gaussian process can be expressed as a function of U̇ (the derivative of U ) according to
Eq. E.2.

v
(
β
)=φ(

β
) ·E

(∣∣U̇ ∣∣) (E.2)

where φ is the standard normal density function. U̇ depends on the spatial autocor-
relation of Z , the expression for which is given in Eq. E.3 ([10],[48]), where dx is the
correlation length, and ρx is the residual correlation at large distances. These two pa-
rameters depend on the autocorrelation of the load and resistance variables (see Eqs.
E.4 and E.5)([10]), where αi is the influence coefficient, ρx,i is the residual correlation,
and dx,i is the correlation length of the i th variable.
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ρZ (x) = (
1−ρx

)
exp

(
− x2

d 2
x

)
+ρx (E.3)

ρx =
n∑

i=1
α2

i ρx,i (E.4)

1

d 2
x
= 1

1−ρx

n∑
i=1

α2
i (1−ρx,i )

1

d 2
x,i

(E.5)

The problem with the autocorrelation in Eq. E.3 is that it means the limit state is not
ergodic, which was a requirement to use the upcrossing rate in Eq. E.2. Ergodicity as-
sumes that any sample of a process should have the same mean as the ensemble of all
possible samples, and this is not the case when the residual correlation ρx is not equal to
zero. To account for this, the MO method separates the ergodic and non-ergodic parts of
the limit state function. It then computes the ergodic part of the segment failure prob-
ability P f ,seg (w), which is conditional on a value of the non-ergodic variable W = w .
Subsequently it uses the theorem of total probability to obtain the total segment failure
probability.

Accounting for the non-ergodicity means that instead of Z = β−U , we get Eq. E.6,
where U is the ergodic part, and W is the non-ergodic part, both of which are standard
normally distributed variables.

Z =β−U
√(

1−ρx
)−W

p
ρx (E.6)

For the ergodic part of Z , the upcrossing rate is given in Eq. E.7, which is derived
from Eq. E.2 taking into account that U̇ is standard normally distributed. In Eq. E.7, σU̇
is the standard deviation of the variable U̇ , an expression for which is available via ([98]);
see Eq. E.8.

v+
(
β
)= σU̇

2π
exp

[
−β

2

2

]
(E.7)

σ2
U̇
=−σ2

U ·ρ′′
Z (0) =−ρ′′

Z (0) (E.8)

The variable ρ′′
Z (0) is the second derivative of the autocorrelation function, evaluated for

a lag of zero. Making use of the correlation function in Eq. E.3 (with ρx set to zero for the
ergodic part of Z ), we can calculate the expression for σU̇ in Eq. E.8, and combine this
with Eq. E.7 to derive an expression for the upcrossing rate wherein all the variables are
known; see Eq. E.9.

v+
(
β∗(w)

)= 1p
2πdx

exp

[
−β

∗(w)2

2

]
(E.9)

The reliability index β∗(w) is the reliability index for the ergodic part of Z and is
conditional on W = w . The expression for β∗(w) is given in Eq. E.10; it is derived from
Eq. E.6.
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β∗ (w) = β−w
p
ρx√

1−ρx
(E.10)

The conditional survival probability of the segment, Ps,seg (w), is given by Eq. E.11.

Ps,seg (w) = (
1−P f ,C S

)
exp

[− (L) · v+
(
β∗(w)

)]
(E.11)

Filling in the expression for v+(β∗(w)) in Eq. E.11, the conditional failure probability
of the levee segment can be computed as P f ,seg (w) = 1−Ps,seg (w); see Eq. E.12.

P f ,seg (w) = 1− (
1−P f ,C S

)
exp

[
− Lp

2πdx
exp

[
−β

∗(w)2

2

]]
(E.12)

To calculate the total failure probability of the segment, the method uses the theorem
of total probability; see Eq. E.13.

P f ,seg =
∫

W

P f ,seg (w) f (w)d w (E.13)





F
RELIABILITY UPDATING WITH THE

MODIFIED OUTCROSSING METHOD

The modified outcrossing (MO) method has not been used in conjunction with failure
probability updating based on survival observations. To compare the posterior segment
failure probabilities of the MO and BN methods I needed to make some implementation
choices. This appendix describes those choices.

The first step is to update the cross-sectional failure probability based on a survival
observation, and then apply the MO method to scale it up to the failure probability of
the segment. The inference at the cross-sectional level is performed using MC rejection
sampling, similar to the BN (see Chapter 2, Section 2.3.5), but for a single cross section.
This is the same method that Schweckendiek et al. describe in [50] for updating at the
cross-sectional level (see Section 2.5 of that paper). The inference results in an empirical
joint posterior density over the resistance variables, f post

R (in the numerical example in
Chapter 3, this would be the joint density over R1 and R2). Eq. F.1 describes the pos-
terior failure probability; it is the integration (over the failure space Z < 0) of the joint
density of all the random variables. In the numerical example in Chapter 3, the resis-
tance and the load are independent, so that the joint density is the product f post

R · fS .
I evaluate the integral in Eq. F.1 with MC sampling. It is not possible to use FORM to
calculate the posterior failure probability because the joint posterior distribution of the
resistance variables has a dependence structure that is difficult/impossible to capture in
a parametric way (see Section 2.3.5).

P post
f =

∫
Z (r,s)<0

f post
R (r) fS (s)drd s (F.1)

The MO method requires influence coefficients of all the random variables, which
it uses to estimate the parameters of the autocorrelation function of the limit state (see
Eqs. E.4 and E.5 in Appendix E). MC simulation does not automatically return influence
coefficients the way that FORM does, so I used a method known as center of gravity. Note
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that this step in the implementation is important, and one in which errors can be intro-
duced. For example, using a less robust method of estimating the influence coefficients
can lead to large differences between MO and BN posterior segment failure probabilities
that are not due to the MO method. I recommend the center of gravity method specifi-
cally because it is a robust (consistent) and accurate method.

The center of gravity method translates the posterior samples of the random vari-
ables (in the example in Section 3.3, this would be R1, R2, and S) to independent standard
normal variables (UR1, UR2, and US ). It then takes the mean over the samples which led
to failure as the center of gravity. The method then searches the line between the center
of gravity and the origin for the limit state (where Z = 0), and takes that point to be the
design point, denoted

[
udR1 ,udR2 ,udS

]
. The design point can be written in terms of the

influence coefficients and the reliability index:
[
udR1 ,udR2 ,udS

]= [αR1β,αR2β,αSβ]. The
equality can be used to solve for the influence coefficients αR1, αR2, and αS ; specifically
αR1 = udR1

/
β, αR2 = udR2

/
β, and αS = udS

/
β.

Once the influence coefficients and reliability index for the cross section are derived,
the MO method can be carried out as described in E.



G
CORRELATION WITHIN A CROSS

SECTION

In the examples we consider in the dissertation, the resistance variables within a cross
section are independent. In reality, these variables may be correlated. In this appendix,
we provide details how the network will need to be modified to account for correlations
among variables within a cross section.

We consider an example with two resistance variables, and two cross sections. We
have the grain diameter d and the permeability of the soil k. These variables have been
shown to be correlated (ref), and are relevant in the piping failure mechanism. The vari-
ables are also autocorrelated. The autocorrelation coefficients between k1 and k2 and
between d1 and d2 are denoted ρk and ρd , respectively. The correlation between d and
k is denoted ρdk , and this value is the same in each cross section. The network for the
joint probability over d1, k1, d2, and k2 is presented in Figure G.1.

1D 2D 2K
1K

rKrD

rDK rDK

cross 
section 1

cross 
section 2

Figure G.1: Example of correlation within a cross section
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The presentation in Figure G.1 helps visualize the network in terms of the physical
cross sections. We present the same network in a different way, to better highlight the
relationship between the four variables in Figure G.2. Shown next to the network in Fig-
ure G.2 is the correlation matrix for the four variables. If the resistance variables were
assumed independent, the terms ρdk would be equal to zero, as would the correlations
between d1 and k2 and between d2 and k1, and our entire correlation matrix would be
known. However, when d and k are correlated within a cross section, it imposes corre-
lation between d in one cross section with k in a neighboring cross section (see Figure
G.2). While we are not explicitly interested in this correlation, we must include it to en-
sure that the matrix remains positive definite - which is a measure of consistency in the
correlation structure. For example, for the two-cross section network in Figure G.2, con-
sider the case where both ρDK and ρK are equal to 0.95. This means that a sample of D1

that is much higher than average results in a K1 sample that is much higher than average,
and that influences the K2 sample so that is also much higher than average. If we would
assign a correlation of zero between D1 and K2, that would be impossible to satisfy, given
the relationship between D1 and K1 and the relationship between K1 and K2.

1D

2D

2K

1K

rK

rD

rDK

rDK
rDK

rDK
rD

1

1

1

1

rD ?

? rK

rK?

?

rDK

rDK

1D 1K 2D 2K

1D

1K

2D

2K

Figure G.2: Network for the joint distribution over d1, k1, d2, and k2, with the associated correlation matrix.
The correlation between d in one cross section with k in a neighboring cross section is generally unknown and
represented by a question mark.

In the absence of dense soil boring data, the correlation between D in one cross sec-
tion and K in a different cross section must be estimated based on the graph (i.e. not
from data). We see in the example in Figure G.2 that there are two lines of influence be-
tween D1 and K2 and between K1 and D2. Let us consider D1 and K2. There is influence
via K1 (i.e. D1 influences K1 which influences K2), and via D2 (i.e. D1 influences D2

which influences K2). If we consider each line of influence separately (that is, assum-
ing the other line is absent), the correlation via K1 would be ρDK ·ρK . This is explained
by Equation G.1, which shows how we can sample from the 3-variable joint distribution
(assuming a Gaussian copula). The variables are sampled in the standard Normal space.
The first variable, UD1, is sampled from a univariate standard Normal distribution. The
second variable, UK 1 is a combination of UD1 (the part of K1 that is correlated with D1),
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and an independent standard Normal variable K ∗
1 . The third variable, UK 2, is a com-

bination of UK 1 and an independent standard Normal variable K ∗
2 . If we expand the

expression for UK 2 to include the expression for UK 1, we get the final line in Equation
G.1. The influence that UD1 has on UK 1 is given by the coefficient ρK ·ρDK in the last line
of Equation G.1.

UD1 =UD1

UK 1 = ρDK ·UD1 +
√

1−ρ2
DK ·U∗

K 1

UK 2 = ρK ·UK 1 +
√

1−ρ2
K ·U∗

K 2

= ρK ·
[
ρDK ·UD1 +

√
1−ρ2

DK ·U∗
K 1

]
+

√
1−ρ2

K ·U∗
K 2

(G.1)

We can do the same analysis for the line of influence via D2. In that case, the correla-
tion between D1 and K2 would be ρD ·ρDK . The two lines of influence are both impacting
the correlation between D1 and K2, but taking the maximum is sufficient to ensure that
the correlation matrix is not inconsistent, and remains positive definite. Thus the cross-
correlation term between D1 and K2, denoted ρDK 12, is given in Equation G.2.

ρDK 12 = max
[(
ρD ·ρDK

)
,
(
ρK ·ρDK

)]
(G.2)

EXAMPLE WITH THREE CROSS SECTIONS
We now expand the discussion to three cross sections. We revise the notation here a
little bit for clarity; see Table G.1. The BN for three cross sections is shown in Figure G.3.
Similar to the case with two cross sections, this presentation helps visualize the physical
cross sections. Figure G.4 shows a more compact representation which helps us better
visualize the connections between variables. Also shown in Figure G.4 is the correlation
matrix for the Gaussian copula. Correlations between Di and K j for i 6= j are unknown,
and are represented in the matrix with question marks.

Table G.1: Explanation of correlation symbols in Figure G.3

Symbol Correlation between
ρD∆1 Di and D j ,

∣∣i − j
∣∣= 1

ρD∆2 Di and D j ,
∣∣i − j

∣∣= 2
ρK∆1 Ki and K j ,

∣∣i − j
∣∣= 1

ρK∆2 Ki and K j ,
∣∣i − j

∣∣= 2
ρDK Di and Ki

We apply the same approach we used for a two cross-section BN to calculate the
correlation between K in one cross section and D in a different cross section. We denote
this correlation ρDi K j for i 6= j . For example, let us consider the correlation ρD1K3 . There
are two routes of influence between D1 and K3 (see Figure G.4): (1) D1 → D3 → K3 or (2)
D1 → K1 → K3. If we consider the first in the absence of the second, the influence of the
first would be the product ρD∆2 ·ρDK . Similarly, in the absence of the first, the influence
of the second would be the product ρDK ·ρK∆2. We take the maximum of these two lines
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section 3
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1K 2D 2K 3D 3KrDK rDK

Figure G.3: Example of correlation within a cross section, for a three cross-section example

of influence to represent the correlation between D1 and K3 in the correlation matrix, to
ensure the positive-definiteness of the matrix.

GENERALIZATION TO n CROSS SECTIONS
The line of reasoning in the previous sections can be generalized for an arbitrary number
of cross sections. Equation G.3 shows the general formula to calculate the correlation
ρDi K j for i 6= j .

ρDi K j = max
[(
ρD∆|i− j | ·ρDK

)
,
(
ρK∆|i− j | ·ρDK

)]
; i 6= j (G.3)

There are many degrees of freedom when trying to satisfy the positive-definiteness of
a correlation matrix like the one in Figure G.4. The one we proposed is one of potentially
many options. We tested it for up to 100 cross sections, and found that the matrix re-
mains positive definite and the correlation matrix of the samples nearly perfectly agrees
with the input matrix. For example, with 100 cross sections (so 200 variables, K1...K100

and D1...D100) and 1E6 samples, the largest difference between the sampled correlation
matrix and the input correlation matrix was 3E-3.
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Figure G.4: Network for the joint distribution over D1, K1, D2, K2, D3, and K3 with the associated correlation
matrix. The correlation between D in one cross section with K in a neighboring cross section is generally
unknown and represented by a question mark.





SAMENVATTING

Nederland wordt beschermd tegen overstromingen door een stelsel van waterkeringen.
Het onderhoud en versterken van deze waterkeringen brengt hoge kosten met zich mee.
Bij het maken van keuzes voor dijkversterkingen is het aan te bevelen om deze te baseren
op gedegen risico-analyses. In dergelijke analyses moet onder andere vastgesteld wor-
den hoe groot de kans is dat een waterkering gedurende de levensfase zal doorbreken.
Het bepalen van deze faalkans, of overstromingskans, is complex en de uitkomsten zijn
behept met onzekerheden. In de praktijk worden in overstromingskansberekeningen
daarom vaak grove simplificaties toegepast.

In Nederland is de laatste decennia grondig onderzoek uitgevoerd met als uitkomst
een geavanceerde rekenmethode voor het bepalen van overstromingskansen. Deze me-
thode is geprogrammeerd in het software-pakket ‘Hydra-Ring’. De rekenkern van Hydra-
Ring bevat twee belangrijke algoritmen waarin (1) de faalkans van een dijkvak wordt be-
paald en (2) de faalkansen van dijkvakken worden gecombineerd tot een totale systeem-
faalkans. Het eerste algoritme, de ‘Modified Outcrossing (MO) methode’, brengt ruimte-
lijke correlaties van eigenschappen van de ondergrond, de dijkbekleding en het dijkpro-
fiel in rekening. Het tweede algoritme, de ‘Equivalent Planes (EP) methode’, brengt cor-
relaties tussen kenmerken van dijkvakken onderling in rekening. Beide algoritmen zijn
efficiënt, maar een grondige beschrijving en verificatie ontbrak tot dusver. Verder zijn
deze methoden nog niet toegepast in combinatie met informatie over ‘bewezen sterkte’,
d.w.z. waarnemingen van hoogwaters die dijken hebben kunnen weerstaan. Deze dis-
sertaties geeft invulling aan deze kennislacunes.

In de dissertatie wordt veelvuldig gebruik gemaakt van een techniek die bekend staat
als ‘Bayesian Networks’ (BN). BNs zijn probabilistische modellen, waarmee correlaties
tussen variabelen worden weergegeven in grafische structuren (netwerken). De BNs in
deze dissertatie maken gebruik van Monte-Carlo (MC) sampling technieken om kansen
te berekenen. Verder worden Gaussische copula-modellen gebruikt om de correlaties te
kwantificeren. Op bepaalde onderdelen zijn de BNs met Gausissche copula-modellen
exacter, d.w.z. minder ‘benaderend’ dan de algoritmen van Hydra-Ring en om die reden
een excellent vehikel om de algoritmen van Hydra-Ring te valideren. In de regel vergen
ze echter wel meer rekentijd.

De BN-modellen zijn toegepast in twee case-studies waarin onderzocht is wat de
kans is op het optreden van het faalmechanisme ‘piping’. In beide case-studies is ge-
bruikt gemaakt van waarnemingen van hoogwaters waarbij de bewuste dijken niet heb-
ben gefaald. Uit het onderzoek kwam naar voren dat de impact van deze waarnemingen
op de geschatte faalkans van geval tot geval sterk kan verschillen. Op basis van een ge-
voeligheidsanalyse is vastgesteld onder welke condities dergelijke waarnemingen wel of
juist geen significante impact hebben op de berekende faalkans.

Vervolgens is een BN ontwikkeld om de onzekerheid in de uitvoer van een geotech-
nische model te schatten. Deze onzekerheid heeft een dominante rol in de faalkans-
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bepaling en het is daarom belangrijk om deze zo goed mogelijk af te schatten. In het
onderzoek in deze dissertatie is aangetoond dat via het gebruik van de BN, waarnemin-
gen van falen of niet falen van dijken, in combinatie met de voorspellingen op basis van
het geotechnische model, een sterke verbetering kunnen opleveren van de schatting van
de modelonzekerheid.

The BN-modellen die zijn ontwikkeld in het kader van deze dissertatie zijn een waar-
devolle toevoeging aan de vigerende methoden van betrouwbaarheidsanalyses van dij-
ken. De BNs vergen significant meer rekentijd dan de benaderende algoritmen van
Hydra-Ring, maar de rekentijden zijn over het algemeen acceptabel. Mede vanwege
de verschillen in rekentijden komen BNs nog niet direct in aanmerking als vervanging
van de algoritmen van Hydra-Ring. Echter, ze zijn zeer waardevol als verificatie voor de
bewuste algoritmen. En indien waarnemingen van hoogwaters beschikbaar zijn waar
dijken wel/niet hebben gefaald kunnen deze methoden gebruikt worden om de faal-
kansberekeningen aan te scherpen.
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