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Abstract

The incorporation of the univalence axiom into homotopy type theory has facilitated a new
way of proving a basic result in algebraic topology: that the fundamental group of the circle
is the integers (π1(S1) ≃ Z). This proof is formalised by Licata and Shulman [1]. However,
while the authors note that the univalence axiom is essential, it is not clearly stated where
and why. A step-by-step analysis of their proof, the purpose of which is to increase the
readers’ understanding of the univalence axiom and its implications in homotopy type theory,
shows that it relies on the univalence axiom for constructing the circle. When assuming
axiom K instead of the univalence axiom, we can no longer construct the circle in the same
way, leading to π1(S1) ≃ 1.

1 Introduction

The fusing of concepts from mathematics into computer science and vice versa has led to new fields
of study like type theory. Type theory is a formal system that blends mathematical logic with
computer science’s type systems [2, 3]. The concept of type theory has been added to and adapted,
resulting in different versions such as Church’s λ-calculus [4, 5] and Martin-Löf’s constructive type
theory, also known as intuitionistic type theory [6].

Similar to type theory, constructive type theory has been used and modified many times [7]. Its
dependent types form the foundation for proof assistants [8] like Agda [9] and Coq [10]. It likewise
has been fundamental, along with category theory and homotopy theory, in creating homotopy
type theory (HoTT) [11]. In HoTT, types can be interpreted as either spaces in homotopy theory
or higher-dimensional groupoids in category theory.

A contribution to HoTT that must be noted is that of Voevodsky: the univalence axiom
[12, 13, 14]. In short, the univalence axiom is a way to enforce a universe U of types where each
type has a function that maps equivalence to equality, that is (A ≃ B) → (A =U B). This map
from equivalence to equality is itself an equivalence, namely (A ≃ B) ≃ (A =U B).

These developments have come together to form a new set of tools for mathematicians and
computer scientists to use. One of the simpler examples that combines proof assistants, HoTT
and the univalence axiom is the calculation of an algebraic invariant: the fundamental group of
the circle. The proof, formalised by Licata and Shulman, takes a more straightforward approach
compared to classical proof [15]. Furthermore, the authors note that the univalence axiom "plays
an essential role" [1, p. 1].

As exciting as this new set of tools is, it can be challenging to see how the different concepts
play into one another, especially for novices. Hence, to deepen the understanding of homotopy type
theory and especially the univalence axiom and its implications, this paper analyses how the proof
given by Licata and Shulman depends on the univalence axiom. It divides the proof into smaller
components and checks for each how it relates to the univalence axiom and what the consequences
of omitting it are.

While this paper does touch on some basics of homotopy type theory and the univalence axiom,
it is by no means a complete guide to these topics. Instead, the short explanations ensure clarity in
this intersection of disciplines. For a more in-depth introduction and explanation of these concepts,
we advise starting with the book "Homotopy Type Theory" [11]. The rest of this introduction gives
a brief overview of tokens and types, homotopies, fundamental groups and the homotopy lifting
property.

The fundamental building blocks of type theory, and hence of HoTT, are tokens and types.
Throughout this paper they will be indicated as a : A, meaning a is a token of type A. There are
many different interpretations for what tokens and types represent. They can be interpreted as
points in spaces in homotopy theory or objects in categories in category theory. Furthermore, they
can be seen as proofs for predicates according to the Curry-Howard isomorphism[16].
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In homotopy theory, and therefore in HoTT, paths and points in topological space can be
morphed by continuous maps. These continuous maps are called homotopies. A homotopy is
an equivalence relation respecting reflexivity (constant path), symmetry (inversion of paths) and
transitivity (concatenation of paths). Examples of a homotopy between points and between paths
(also known as a homotopy between homotopies) are shown in figures 1a and 1b, respectively. There
can be homotopies between homotopies between homotopies (and so forth), but this is outside the
scope of this paper.

x

y

(a) A homotopy between points x and y

x

y

α

β

(b) A homotopy between paths α and β

Figure 1: Two examples of homotopies

Fundamental groups are a basic algebraic invariant of topological spaces. They describe the
sets of equivalence classes of homotopic paths starting and ending at point base. Fundamental
groups are of interest because homotopy equivalent spaces have isomorphic fundamental groups[11].
The corollary is that if the fundamental group is different, the spaces are not equivalent up to
homotopy.

Path lifting, more formally known as the homotopy lifting property, is similar to homotopies
in that it is a continuous function from one thing to another. The difference is that instead of
mapping within a space, it maps between spaces: from a topological space E to a different one B.
E, the total space, is commonly referred to as being ’above’ B, the base space. The function p maps
E to B, as seen in figure 2. For our purposes, the most important characteristic is that the path
lifting maps any homotopy f̃ in E, to a homotopy f in B.

B

E

f

f̃

p

Figure 2: Space E above B, where p maps E to B and f̃ in E to f in B.

The remaining part of the paper has been divided into four parts. The first part deals with
the univalence axiom. The second part deconstructs Licata and Shulman’s proof into components,
clarifying each one. The third part then analyses the previously defined components’ dependence on
the univalence axiom. And finally, the fourth part gives a brief discussion on responsible research
in mathematics and concludes the paper.
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2 The Univalence Axiom

As noted in the introduction, the univalence axiom is a way to enforce a universe U of types where
each type has a function that maps equivalence to equality. To properly analyse how the proof
of the fundamental group of the circle depends on Voevodsky’s addition in section 4, this section
presents the univalence axiom in more detail. It does so by first refining the notions of equivalence
and equality in HoTT. And second, by briefly looking at what we may assume about the universe
U in its absence.

2.1 Equivalence

The intuitive way to interpret equivalence is "equal for all intents and purposes". Two objects may
not be identical, but their relevant, whatever that might mean in a given context, properties are.
Throughout this paper, the context for equivalences is indicated by phrases such as "equivalent up
to homotopy" or "homotopy equivalent".

While intuitive interpretations are valuable, they are of little use in formal proofs. Hence, we
now define equivalence in the context of homotopy: two spaces X and Y are homotopy equivalent
if there is a morphism f that (1) maps X to Y and (2) has a homotopy inverse g : Y → X. From
the definition of homotopy inverse, we also have g ◦ f ∼ idX and f ◦ g ∼ idY [11].

Equivalences also occur in the context of the univalence axiom itself. As noted in the
introduction, the mapping from equivalence to equality is itself an equivalence. To see why we
consider that equivalences can map one thing to the other and vice versa. Going from equivalence
to equality is possible due to the univalence axiom. The reverse while not explicitly stated, is also
possible; equal things are also "equal for all intents and purposes" or equivalent. Consequently, the
univalence axiom gives a mapping and its inverse which together can be considered an equivalence.

2.2 Equality

To understand the impact of the univalence axiom on the notion of equality, we first characterise
equality in basic HoTT, that is HoTT without any additional axioms. Equality in (basic) homotopy
type theory is denoted by the identity type IdA(a, b) or a =A b where a, b : A. This type, according
to the Curry-Howard correspondence [16], represents the proposition that a and b are equal. This
proposition can be made for any a and b, in contrast to the token IdA(a, b), which represents the
proof that a and b are equal [17]. While this is simple enough, the only guaranteed identifications are
self-identifications [17]. Self-identifications state nothing more than "tokens are equal to themselves",
which is known as reflexivity. At first blush, this seems ineffective, but it does facilitate path
induction which we will discuss in section 3.

To add the univalence axiom, then, is to add another token constructor that takes a token
of a ≃ b and produces a =A b. In effect, the univalence axiom expands the notion of equality to
include equivalence [18]. This is precisely what makes Voevodsky’s addition so powerful.

2.3 Alternative Universe

In the absence of the univalence axiom, we are left with the more narrow definition of equality. More
specifically, there is only one constructor for identity types. Given there is only one constructor,
it is consistent to say there is only one way to associate something with itself and thus that each
identity type is inhabited by only one token. This is also referred to as uniqueness of identity proofs
(UIP). Axiom K is logically equivalent to UIP and it states that all tokens of identity types are
reflexivity (trivial self-identifications)[11].
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3 Components of the Proof

To systematically examine the proof of the fundamental group of the circle given by Licata and
Shulman [1], this section divides it into smaller components. This both increases the understanding
and makes the investigation into each component’s dependence on the univalence axiom in section
4 more straightforward.

The components are grouped into two main categories: the preliminaries and the actual
proof. The general concepts and operations are introduced and defined in the preliminaries. In
addition, this section contains the accompanying proof that the given operations adhere to specific
mathematical laws. The components in the second category build on the preliminaries and deliver
the proof that the fundamental group of the circle is the integers.

Each component is described from multiple angles depending, like its contribution to the proof
as a whole, the mathematical reasoning, the intuition behind it and the Agda code, depending
on what is appropriate. The contribution to the proof as a whole is meant to keep the reader
informed about the goal of that component. The mathematical reasoning describes the formulaic
version1, while the intuition behind the component serves to inform those less mathematically
inclined. Lastly, the Agda code is the official proof.

3.1 Preliminaries

The preliminaries contain all the building blocks for the proof. It creates the context for our
universe of types and specifies which operations are possible. Furthermore, it already gives some
small proofs which will be used later on.

Types As Spaces

We start from the bottom: by giving the types meaning. Since we are interested in algebraic
topology, we choose the homotopy interpretation of HoTT. That is, interpreting types as spaces
and tokens as points in those spaces.

The Identity Type
As mentioned in section 2 the identity type in HoTT denotes equality, where the type is a proposition
of equality and the token a proof of equality. The authors have chosen to represent the identity type
between elements M, N : A as Path M N to "emphasize the homotopy theoretic interpretation" [1,
p. 2]. Through this lens, the identity type Path M N symbolises the path space which consists of all
paths from M to N [17]. Its only constructor id is for the identity path, a trivial self-identification.
A key observation is that while it can only construct a token representing the identity path, the
type also represents non-trivial self-identifications, which we’ll see later when discussing the circle.

Equivalent Points
Directly after defining the identity type, they add the notion of equivalence (≃) which under the
hood is also represented by Path. This, in essence, adds another constructor for Path which, unlike
id, does not require having the same start- and end-point. It does, however, require the points to
have the same type (A).

Path Induction
A crucial part of the homotopy interpretation is the elimination rule (induction principle) for identity
types: path induction [11]. It is based on the principle of substitution salva veritate, meaning if p
and q are identical then "one can be substituted for the another in any statement while saving the

1In general Π can be interpreted as ∀ and Σ as ∃ for those more familiar with set theory.
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p q r

(b)

Figure 3: Operations on paths: (a) path inversion and (b) path concatenation

truth of that statement" [17, p. 20]. Hence, to prove a statement by induction it is enough to prove
the base case where the points are the same and the paths are the constant path.

The paths in based path induction, with a fixed starting point and a variable endpoint, are
inductively generated by the starting point and the constant path. As a function:

Πa:AΠC:Πx:A(a=Ax)→U)C(a, (a =A a)) → Πx:AΠp:a=AxC(x, p) (1)

While, at first blush, this makes it seem like the only path is the constant path, this is not the
case[11]. The identity type x =A y, as y varies over A, is the based path space. And for any point
in that space is homotopic to the constant path at some point [17]. This is a result of being able
to move the free endpoint along the given path until it is the same as the starting point and the
resulting path is the constant path.

Inversion of Paths
Next, the authors define operations on paths starting with inversion. Intuitively, if for two points
x, y : A there is a path p from x to y, then following that path in reverse gives you a path from
y to x (Figure 3a). Hence, for every path p there is an inverse p-1 or !p. Mathematically speaking,
it is:

Π(A:U)Πx,y:A(x =A y) → (y =A x) (2)

By path induction, it suffices to assume x is y and hence the inverse of Path x x is Path x x = id.

Composition of Paths
Another operation on paths is path composition or concatenation, indicated by ◦. In the code this
operation is right-associative; f ◦ g is read as "f after g" and g is applied first, then f . Since in
mathematics the convention is that concatenation is left-associative, we will distinguish the two by
using � for the left-associative version and ◦ for the right-associative variant. If for three points
x, y, z : A there is a path p from x to y and a path q from y to z, then first following p and then
following q gives a new path r from x to z (Figure 3b). For those more mathematically inclined:

Π(A:U)Πx,y,z:A(x =A y) � (y =A z) → (x =A z) (3)

Again by induction, it suffices to assume x is y and y is z and hence p, q are Path x x = id,
making r Path x x = id.
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Types as Spaces

1 data Path {A : Type} : A → A → Type where
2 id : {M : A} → Path M M

3 _≃_ : {A : Type} → A → A → Type
4 _≃_ = Path

5 path-induction : {A : Type} {M : A}
6 (C : (x : A) → Path M x → Type) (b : C M id)
7 {N : A}(α : Path M N) → C N α
8 path-induction _ b id = b

9 ! : {A : Type} {M N : A} → Path M N → Path N M
10 ! id = id

11 _◦_ : {A : Type} {M N P : A} → Path N P → Path M N → Path M P
12 β ◦ id = β

Groupoid Laws

Having defined path inversion (!) and composition (◦), it must be proven that these methods satisfy
the groupoid laws up to homotopy: the unit, associativity and inverse law. The laws are described
in more detail below, but their proofs all follow the same pattern: path induction.

Unit Law
The unit law states that composing a path p with id results in p. It must be proven in both
directions, i.e. p � id = p and id � p = p. More formally, this is respectively:

Π(A:U)Πx,y:A(x =A y) � (y =A y) → (x =A y) (4)
Π(A:U)Πx,y:A(x =A x) � (x =A y) → (x =A y) (5)

Associativity Law
The associativity law states that for paths p, q, r the order in which they are composed does not
matter: p � (q � r) = (p � q) � r. Translated to formal mathematics results in the following:

Π(A:U)Πw,x,y,z:A(w =A x) � ((x =A y) � (y =A z)) → ((w =A x) � (x =A y)) � (y =A z) (6)

Inverse Law
The inverse law states that composing a path p with its inverse p-1 is id, which like the unit law
must be proven in both directions:

Π(A:U)Πx,y:A(x =A y)−1 � (x =A y) → (y =A y) (7)

Π(A:U)Πx,y:A(x =A y) � (x =A y)−1 → (x =A x) (8)

Groupoid Laws

13 ◦-unit-l : {A : Type} {M N : A} (α : Path M N)
14 → Path (id ◦ α) α
15 ◦-unit-l id = id
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16 ◦-unit-r : {A : Type} {M N : A} (α : Path M N)
17 → Path (α ◦ id) α
18 ◦-unit-r id = id

19 ◦-assoc : {A : Type} {M N P Q : A}
20 (γ : Path P Q) (β : Path N P) (α : Path M N)
21 → Path (γ ◦ (β ◦ α)) ((γ ◦ β) ◦ α)
22 ◦-assoc id id id = id

23 !-inv-l : {A : Type} {M N : A} (α : Path M N)
24 → Path (! α ◦ α) id
25 !-inv-l id = id

26 !-inv-r : {A : Type} {M N : A} (α : Path M N) → Path (α ◦ (! α)) id
27 !-inv-r id = id

Type Families As Dependent Spaces

Again in correspondence with the homotopy interpretation of HoTT, we give meaning to the concept
of type families. Type families are types indexed over some other type. In other words, they are
dependent spaces.

Transport
Recall from the introduction the homotopy lifting property that maps between spaces (see also
Figure 2). transport is the method that given mapping from B to its dependent space E and a
path between two points in B produces a function that takes as input the starting point in E and
outputs the endpoint in E.

Properties of Transport
Transport has two properties that will prove important later on, which are dependent on what
you are transporting. The first, transport-Path-right, is applicable when transporting a family
of paths: paths with the same start point and a variable endpoint. It can be converted to post-
composition of the paths given as the second and third arguments. The second is applicable when
transporting functions. Here the function can be broken up as shown in transport-→.

Type Families As Dependent Spaces

28 transport : {B : Type} (E : B → Type)
29 {b1 b2 : B} → Path b1 b2 → (E b1 → E b2)
30 transport C id = λ x → x

31 transport-Path-right : {A : Type} {M N P : A}
32 (α’ : Path N P) (α : Path M N)
33 → Path (transport (\ x → Path M x) α’ α) (α’ ◦ α)
34 transport-Path-right id id = id

35 transport-→ : {Γ : Type} (A B : Γ → Type) {θ1 θ2 : Γ}
36 (δ : θ1 ≃ θ2) (f : A θ1 → B θ1)
37 → Path (transport (\ γ → (A γ) → B γ) δ f)
38 (transport B δ o f o (transport A (! δ)))
39 transport-→ _ _ id f = id
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Functions Are Functorial

The previous sections have defined actions on points, but functors in HoTT can act on all levels:
points, paths, paths between paths, and so forth. Hence, we now move on to these higher-level
applications.

Applying Functions to Paths
Applying functions to Paths must be done in a functorial matter, that is "propagated" to the points
of the path (which could themselves be paths). More concretely applying f: A → B to a path
Path N M based in A, produces Path fN fM based in B. The method ap does precisely that.

Dependent Function Application
Where ap can be used for mapping from one space to another, apd can be used for mapping from
one space to another dependent space. Recall figure 2 which shows path lifting, where the space
E is dependent on B. The function used to morph the path f based in B into f̃ in the dependent
space E is apd p-1 f.

Function are Functorial

40 ap : {A B : Type} {M N : A}
41 (f : A → B) → Path{A} M N → Path{B} (f M) (f N)
42 ap f id = id

43 apd : {B : Type} {E : B → Type} {b1 b2 : B}
44 (f : (x : B) → E x) (β : Path b1 b2)
45 → Path (transport E β (f b1)) (f b2)
46 apd f id = id

Paths Between More Than Points

We can create paths between a variety of things. In fact, given a path between functions, we can
create one between those functions applied to an argument. This is precisely what ap≃ does. λ≃, or
function extensionality, does the opposite; it takes the argument and a path between the functions
applied to that argument, and reconstructs the path between the unapplied functions.

Paths Between More Than Points

47 ap≃ : ∀ {A} {B : A → Type} {f g : (x : A) → B x}
48 → Path f g → {x : A} → Path (f x) (g x)
49 ap≃ α {x} = ap (\ f → f x) α

50 postulate
51 λ≃ : ∀ {A} {B : A → Type} {f g : (x : A) → B x}
52 → ((x : A) → Path (f x) (g x))
53 → Path f g

Equivalences

We now turn to homotopy equivalences and the univalence axiom. Though this is the proof’s first
explicit mention of the univalence axiom, we’ll refrain from scrutinising it until section 4. Instead,
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we simply observe that the authors have chosen to specify only the consequences of the univalence
axiom that are needed and discuss how those have been implemented.

Homotopy Equivalences
As explained in section 2, a homotopy equivalence requires two inverses, which by definition return
the identity types after composition. From this, it follows that the implementation requires the two
functions f and g, a proof that g◦f x ≃ idx, which is referred to as α in the code, and a proof that
f◦g y ≃ idy, β in the code. Since ≃ is represented by Path, we get the definition of HEquiv.

Of course, if there is a homotopy equivalence between A and B, there is also a homotopy
equivalence between B and A. To make constructing this "inverse equivalence" easier, the authors
have added !-equiv which simply reorders the arguments to construct an HEquiv between B and A
from one between A and B.

Univalence
Next is a method which by now should look somewhat familiar: univalence. It maps an equivalence
(HEquiv) to equality (Path). The keyword postulate just before it announces that it is a declaration
of a type without an accompanying definition. The two needed consequences are expressed in
transport-univ and !-univalence. The first stipulates that when transport is applied to a family
of identity types on an application of univalence, it applies the forward direction of the equivalence.
The second states that inverting an equivalence and then transforming it into an equality is the
same as first transforming it to an equality and then inverting it.

Equivalences

54 record HEquiv (A B : Type) : Type where
55 constructor hequiv
56 field
57 f : A → B
58 g : B → A
59 α : (x : A) → Path (g (f x)) x
60 β : (y : B) → Path (f (g y)) y

61 !-equiv : ∀ {A B} → HEquiv A B → HEquiv B A
62 !-equiv (hequiv f g α β) = hequiv g f β α

63 postulate

64 univalence : {A B : Type} → HEquiv A B → Path A B

65 transport-univ : {A B : Type} (e : HEquiv A B)
66 → Path (transport (\ (A : Type) → A) (univalence e))
67 (HEquiv.f e)

68 !-univalence : {A B : Type} (e : HEquiv A B)
69 → Path (! (univalence e))
70 (univalence (!-equiv e))

The Integers

As the notion of integers is not native to Agda, we need to define it ourselves. We first create a
data structure which uses recursion. Next, we then define the operations which can be performed
on the integers. Last, we lay some groundwork for the proof by proving the defined operations are
each other’s inverses.
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Data Structures
The data structure is based on Positive, which corresponds to the natural numbers. It is simple
enough with a constructor One for the base case and S for recursively generating successors. This is
then used as the basis for the integers. Int is like a wrapper around Positive to denote the sign
(and include the notion of zero).

Operations on Integers
The only two operations on Int are succ and pred to produce the successor and predecessor,
respectively. Like earlier with the groupoid laws, we have to prove correctness of the methods succ
and pred. That is, we have to prove they are each others’ inverse in order to say succ (pred n) ≃ n
and pred (succ n) ≃ n. Then, we can construct an HEquiv.

The Integers

71 data Positive : Type where
72 One : Positive
73 S : (n : Positive) → Positive

74 data Int : Type where
75 Pos : (n : Positive) → Int
76 Zero : Int
77 Neg : (n : Positive) → Int

78 succ : Int → Int
79 pred : Int → Int

80 pred-succ : (n : Int) → Path (pred (succ n)) n
81 pred-succ (Pos y) = id
82 pred-succ (Zero) = id
83 pred-succ (Neg One) = id
84 pred-succ (Neg (S y)) = id

85 succ-pred : (n : Int) → Path (succ (pred n)) n
86 succ-pred (Pos One) = id
87 succ-pred (Pos (S y)) = id
88 succ-pred (Zero) = id
89 succ-pred (Neg y) = id

90 succEquiv : HEquiv Int Int
91 succEquiv = hequiv succ pred pred-succ succ-pred

The Circle

We can not reason about the fundamental group of the circle if the concept of the circle is not
defined. We use the mathematical notion of a circle, S1, where the space consists of only the border.
This is not to be confused with a disk which is a plane bounded by a circle.

Data Structure
The circle is a higher-dimensional inductive type, meaning that it not only has generators for points
but also for paths. In fact, it has one for each: base is a point and loop is a path (see Figure 4.
The key thing to note about loop is that it is a non-trivial path from base to base. Furthermore,
in combination with the path operations described earlier, it can be used to form additional paths.
Examples of additional paths are !loop and loop ◦ loop but there are many more. For reasons
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base

loop

Figure 4: The circle as a higher inductive type with its two generators

we’ll discuss later we consider loop to go around the circle counterclockwise and !loop to go around
clockwise.

While loop itself is not equivalent to id, that does not mean that no path on the circle is
equivalent to it. More specifically, the concatenation loop with its inverse is equivalent to id. The
deformation from loop ◦ !loop to id is visualised in Figure 5.

base

≃≃≃

base

≃≃≃

base

≃≃≃

base

Figure 5: Morphing two concatenated inverse paths to the identity path

Circle Recursion
Where identity types have (based) path induction, the circle has circle induction. An outline of its
elimination rule is "to map from the circle into any other type, it suffices to find a point and a loop
in that type"[1, p. 5]. Indeed, we can see that S1-recursion takes a "surrogate" base (base’) and
"surrogate" loop (Path base’ base’) as well as a circle space. How S1-recursion can be applied
is specified by the β-reduction rules. Its application on points is straightforward but requires more
steps for paths; to ensure the types check, we use ap from the preliminaries.

Circle Induction
To be able to use the principle of induction on the circle, we must define dependent elimination.
In short, a property needs to (1) hold for base and (2) be preserved going around the loop. Its
β-elimination rules are analogous to those of circle recursion, the only difference being that ap is
replaced with apd to allow dependent function application.

The Circle

92 data S¹’ : Set where
93 Base : S¹’

94 S¹ : Set
95 S¹ = S¹’

96 base : S¹
97 base = Base

12



98 postulate
99 loop : Path base base

100 S¹-recursion : {C : Set}
101 -> (c : C)
102 -> (α : c ≃ c)
103 -> S¹ -> C
104 S¹-recursion a _ Base = a

105 S¹-induction : (C : S¹ -> Set)
106 -> (c : C base)
107 (α : Path (transport C loop c) c)
108 -> (x : S¹) -> C x
109 S¹-induction _ x _ Base = x

110 postulate
111 βloop/rec : {C : Set}
112 -> (c : C)
113 -> (α : Path c c)
114 -> Path (ap (S¹-recursion c α) loop) α

115 βloop/elim : {C : S¹ -> Set}
116 -> (c : C base) (α : Path (transport C loop c) c)
117 -> Path (apd (S¹-induction C c α) loop) α

The Universal Cover

To gather some intuition behind how paths on the circle relate to the integers, we look at its
universal cover, which is the helix. In short, the helix is a dependent space above the circle created
by path lifting (see Figure 6). In other words, we can map paths on the circle to paths on the helix.
These paths on the helix can then be translated into integers.

The intuition behind this mapping is as follows: we map base to the point marked 0 on the
helix. Next, we map loop, which goes counterclockwise, to going around the helix counterclockwise
one rotation. This has the effect of moving up one "level". In the same vein, we map !loop to
going around the helix clockwise, which moves down one "level". Lastly, we equate each possible
endpoint of a path on the helix with an integer, as shown in the figure.

Having gathered some intuition behind the cover, we now look at its implementation. The
cover is a dependent space which is constructed using circle recursion (S¹-recursion). We need to
provide an alternative to base and loop. Based on the expectation that the circle will map to the
integers we give Int and the equivalence between different operations on integers we have created
before (succEquiv).

We now prove that this definition of Cover gives the correct path-lifting action. There should be
correspondences between loop and moving up one level, and !loop and moving down one level. Using
the methods defined before we can construct transport-Cover-loop and transport-Cover-!loop
to do exactly that.
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Figure 6: The helix, with possible endpoints marked with integers, shown "above" the circle
(adapted from [11])

The Universal Cover

118 Cover : S¹ → Type
119 Cover x = S¹-recursion Int (univalence succEquiv) x

120 transport-Cover-loop : Path (transport Cover loop) succ
121 transport-Cover-loop =
122 transport Cover loop
123 ≃〈 transport-ap-assoc Cover loop 〉
124 transport (λ x → x) (ap Cover loop)
125 ≃〈 ap (transport (λ x → x))
126 (βloop/rec Int (univalence succEquiv)) 〉
127 transport (λ x → x) (univalence succEquiv)
128 ≃〈 transport-univ _ 〉
129 succ ■

130 transport-Cover-!loop : Path (transport Cover (! loop)) pred
131 transport-Cover-!loop =
132 transport Cover (! loop)
133 ≃〈 transport-ap-assoc Cover (! loop) 〉
134 transport (λ x → x) (ap Cover (! loop))
135 ≃〈 ap (transport (λ x → x)) (ap-! Cover loop)〉
136 transport (λ x → x) (! (ap Cover loop))
137 ≃〈 ap (λ y → transport (λ x → x) (! y))
138 (βloop/rec Int (univalence succEquiv)) 〉
139 transport (λ x → x) (! (univalence succEquiv))
140 ≃〈 ap (transport (λ x → x)) (!-univalence succEquiv) 〉
141 transport (λ x → x) (univalence (!-equiv succEquiv))
142 ≃〈 transport-univ _ 〉
143 pred ■
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3.2 Proof

The goal of the proof is to construct an HEquiv between paths on the circle and the integers. Recall
that the constructor for HEquiv takes four methods as arguments: f which maps some type A to
some type B, g which maps B to A, α which shows there is a path between g (f x)) and x, and
finally β which shows there is a path between f (g y)) and y. Here, A is paths on the circle
and B the integers. The sections below show f (encode), g (decode), α (encode-decode) and β
(decode-encode), respectively.

Encoding

encode is the function that takes a path on the circle and computes the corresponding element
(integer) on the cover. Encoding happens in two stages. The first stage creates a function with the
help of transport which we pass the dependent space (the cover) and the path which we want to
encode. This function is then able, given a starting point in the dependent space, to compute the
endpoint in it. Predictably, the second stage is providing this starting point to apply the function.

The authors have chosen Zero as the starting point, but remark that really any number could
be chosen as long as it is taken into account in decode. The benefit of Zero is that no additional
operations are required in decode. Furthermore, the use of this starting point means that encode
computes the winding number or how many times a path goes around the circle. The orientation of
the path is marked by whether the winding number is positive or negative.

Encoding

144 encode : {x : S¹} → Path base x → Cover x
145 encode α = transport Cover α Zero

146 encode’ : Path base base → Int
147 encode’ α = encode {base} α

148 loop^ : Int → Path base base
149 loop^ Zero = id
150 loop^ (Pos One) = loop
151 loop^ (Pos (S n)) = loop ◦ loop^ (Pos n)
152 loop^ (Neg One) = ! loop
153 loop^ (Neg (S n)) = ! loop ◦ loop^ (Neg n)

154 loop^-preserves-pred
155 : (n : Int) → Path (loop^ (pred n)) (! loop ◦ loop^ n)
156 loop^-preserves-pred (Pos One) = ! (!-inv-l loop)
157 loop^-preserves-pred (Pos (S y)) =
158 ! (◦-assoc (! loop) loop (loop^ (Pos y)))
159 ◦ ! (ap (λ x → x ◦ loop^ (Pos y)) (!-inv-l loop))
160 ◦ ! (◦-unit-l (loop^ (Pos y)))
161 loop^-preserves-pred Zero = id
162 loop^-preserves-pred (Neg One) = id
163 loop^-preserves-pred (Neg (S y)) = id

Decoding

Since encode essentially computes the winding number, decode must construct a path on the circle
that corresponds to the given winding number. In other words, it computes the n-fold composition
loopn, for example loop¹ is loop and loop-2 is !loop ◦ !loop. This part is given by the function
loop∧.
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However, this would cause trouble in proving that decoding after encoding is correct. Usually,
this would be done with path induction, but because neither endpoint is free, this is not possible.
The type of decode must be generalised to Path base x, as opposed to Path base base like
loop∧. Thus we need to prove it holds not just for base but for any point on the circle. This can
be achieved by using circle induction (S¹-induction).

We will first go through the three arguments passed to S¹-induction and then go into more
detail. The first argument defines the property that we want to prove, the second gives the base
case and the third shows the function is preserved going around the loop (the inductive step). The
property we want to prove is that for any point on the circle which has been lifted on the helix, we
can create a path on the circle starting at base and ending at the original point. Or in short: we
want to prove we can decode it. The base case is relatively simple because we have already done
the work to prove we can decode to Path base base with loop∧. Hence, we pass this method as
an argument. Matters get somewhat more complicated in the inductive step, where we must prove
the function is preserved by going around the loop.

The formal notation of this is given in lines 166-169. We can then use a property of transport
applied to functions which we proved earlier: transport-→. The result of this is lines 171-173.
Similarly we can exploit the property of transport applied to families of paths which is defined in
transport-Path-right. The argument α’ is loop (recall that loop is Path base base) but we do
not have a second path for α. The solution is to add a lambda statement that receives this path as
an argument and passes it on for the post-composition. This simplifies the equation to what we see
in lines 175-177. We then use transport-Cover-!loop which gives us a path from !loop to pred
(lines 179-181). Now we can simplify the resulting composition of functions to serve as the path
we were missing earlier giving line 183. Lastly, by the groupoid laws and loop∧preserves-pred
we can cancel out pred and loop. Now we have shown that there exists a path between where we
started and loop∧.

Decoding

164 decode : {x : S¹} → Cover x → Path base x
165 decode {x} =
166 S¹-induction
167 (λ x’ → Cover x’ → Path base x’)
168 loop^
169 (transport (λ x’ → Cover x’ → Path base x’) loop loop^
170 ≃〈transport-→ Cover (Path base) loop loop^〉
171 transport (λ x’ → Path base x’) loop
172 o loop^
173 o transport Cover (! loop)
174 ≃〈λ≃ (λ y → transport-Path-right loop (loop^ (transport Cover (! loop) y)))〉
175 (λ p → loop ◦ p)
176 o loop^
177 o transport Cover (! loop)
178 ≃〈λ≃ (λ y → ap (λ x’ → loop ◦ loop^ x’) (ap≃ transport-Cover-!loop))〉
179 (λ p → loop ◦ p)
180 o loop^
181 o pred
182 ≃〈id〉
183 (λ n → loop ◦ (loop^ (pred n)))
184 ≃〈λ≃ (λ y → move-left-! _ loop (loop^ y) (loop^-preserves-pred y))〉
185 (λ n → loop^ n)
186 ■)
187 x
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Encoding After Decoding

Next we turn to proving that given an element of the cover, first decoding it and then encoding it
gives back the original element. We begin by expanding the definition of both encode and decode
(line 193). Then, we can use the interaction between ap and transport together with ap≃ to get
the result we see on line 195. By expanding the definition of transport we get line 197. Lastly
we can use the property of transport that applying it to families of paths is post-compositoin
(transport-Path-right) to get α ◦ id which of course is equal to α. We now have a path between
encode (decode α) and α.

Encoding After Decoding

188 encode-decode : {e : A + B} (c : Cover e)
189 → encode {e} (decode {e} c) ≃ c
190 encode-decode {Inl a’} α =
191 encode (decode α)
192 ≃〈id〉
193 transport Cover (ap Inl α) id
194 ≃〈 ap≃ (! (transport-ap-assoc’ Cover Inl α))〉
195 transport(Cover o Inl) α id
196 ≃〈id〉
197 transport(λ a’ → Path a a’) α id
198 ≃〈transport-Path-right α id〉
199 α ◦ id
200 ≃〈id〉
201 α ■

Decoding After Encoding

The last component for this proof is providing a path between decode (encode α) and α. Here
we can use path induction after expanding the definition of encode. This leaves us to prove there is
a path between decode (encode id) and id, which is true by the definition of id. We now have
all the components necessary to construct an HEquiv between the integers and paths on the circle
which we can transform into a path by using univalence.

Decoding After Encoding

202 decode-encode : {x : S¹} (α : Path base x)
203 → Path (decode (encode α)) α
204 decode-encode {x} α =
205 path-induction
206 (λ (x’ : S¹) (α’ : Path base x’)
207 → Path (decode (encode α’)) α’)
208 id α

4 Components’ Dependence on the Univalence Axiom

What follows is an examination to which extent the components defined in section 3 depend on
Voevodsky’s univalence axiom (UA). Furthermore, this section investigates the consequences of
omitting the univalence axiom. That is to say, what may be concluded from the proof if the axiom
is not assumed to be true.
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In order to fully grasp the scope of the impact, it is important to not only view each component
in isolation but also in relation to the components it builds on. Hence, for each component, its
dependency on previous components is investigated first. This is followed by the examination of its
direct or indirect dependence on the univalence axiom. Finally, for each component, it is discussed
what conclusions may still be drawn from it, if any.

4.1 Types As Spaces

The constructor id for Path is not dependent on the univalence axiom. Path itself is technically also
not dependent on the UA, but without it can only contain trivial self-identifications. Interestingly,
this impacts only tokens and not types since the latter are mere propositions. Path as a type can
facilitate both constant paths and others without undermining any rules precisely because we can
only create tokens for constant paths.

What complicates matters is the introduction of ≃ which adds a way of creating tokens for other
paths. This constructor is very much dependent on the UA. As a result, whenever we encounter
≃ as a type, we can replace it with Path, which is consistent with its definition. In contrast, if
we encounter ≃ used as a constructor, the best we can do is replace it with id, which potentially
reduces the applicability.

Path induction also still holds without the assumption of univalence. In actuality, it becomes
simpler because there would only be trivial-self identifications. Hence, to prove a property, it only
needs to be proven for id. With univalence, it holds as described in section 3.

The operations on paths ! and ◦ both depend on path induction. They become somewhat
trivial without univalence because they can only operate on constant paths, meaning regardless of
inversion of concatenation, the result is still the constant path. Since path induction holds and the
operations do not depend directly on univalence, the operations also hold.

4.2 Groupoid Laws

As noted in the introduction of the groupoid laws, they use path induction to reduce the proof
to only the base case. Since without univalence, that is the only case that can exist, it arguably
does not depend on path induction anymore. In other words, if the base case is the only case, no
inductive step is needed. Since proving the base case does not require univalence, the groupoid
laws are still valid.

4.3 Type Families As Dependent Spaces

transport only depends on Path as a data structure and not on the univalence axiom. The rules
for post- and pre-composition additionally depend on ! and ◦. Analogous to the groupoid laws,
the rules no longer depend on path induction. The one detail that must be changed is replacing
δ : θ1 ≃ θ2 with δ : Path θ1 θ2. This does not break any rules because without the UA the
only paths are constant and thus don’t need the ≃ constructor. In summary, transport and its
associated rules are still well founded.

4.4 Functions Are Functorial

Both ap and apd act as functors. This "propagation" of functions does not depend on the univalence
axiom. That might, however, become more complicated if the function given as an argument is
dependent on univalence. In that case, this dependency is also "propagated".
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4.5 Paths Between More Than Points

Both ap≃ and λ≃ are limited in their functionality in the absence of the univalence axiom. The
reason is similar to what we have seen with regular operations on paths. The only path in a universe
without univalence is the constant path, and applying any function to id results in id. Thus, both
functions always return id.

4.6 Equivalences

Without the univalence axiom, we can still construct HEquivs with the caveat that the paths α and
β will be trivial self-identifications or constant paths. To see why we recall the discussion of tokens
versus types from the beginning of this section. Since !-equiv only reorders the arguments, it only
depends on HEquiv and not additionally on the univalence axiom.

It should come as no surprise that a method named univalence is dependent on the univalence
axiom. And indeed, it maps equivalence to equality which is not guaranteed to be possible in a
universe without univalence; it is only possible if the equivalence is between two already equal
things. The methods transport-univ and !-univalence hinge on univalence. Consequentially,
all three depend on the univalence axiom.

4.7 The Integers

Since the data structures that create the integers do not have any notion of equivalence or equality,
they do not build on the univalence axiom. The same holds for the operations we can perform on
integers: succ and pred. The question of whether succEquiv is dependent on univalence is a little
more interesting; the third and fourth arguments require paths, but we can only construct constant
paths. In other words, pred-succ and succ-pred should be constant paths. Indeed, we see from
their definition that they are and thus may conclude the integers and operations on integers are not
dependent on the UA.

4.8 The Circle

In section 3 we saw that the circle was defined as a point base and a path loop. This seemingly is
still doable without the univalence axiom. However, loop was specifically defined to be a non-trivial
self-identification. In other words, a path from base to base that was not equal to id. Without
univalence, there is no way of constructing such a path: the only self-identifications are trivial.

Another way of looking at this issue is to recall from section 2 what conclusions we may draw
in a universe without univalence. In the absence of the univalence axiom, it is consistent to assume
axiom K. When we interpret axiom K’s meaning from a homotopy viewpoint it confirms that the
only Path base base is id.

It might seem like semantics to distinguish between trivial and non-trivial self-identifications.
Changing loop to be the same as id does, however, impact the fundamental group of the circle. For
example, we could previously conclude that there were different paths on the circle: id, !loop and
loop ◦ loop to name a few. Now, regardless of which operation you perform on id, the resulting
path will always still be id by its very definition.

Here we come to the root of why without the univalence axiom, the fundamental group of the
circle is 1; we have no way of creating any other paths than the constant path on the circle. Where
there used to be different paths we could map to different integers, we are left with only one. And
we can not construct an equivalence between one path and the integers.
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5 Conclusion

The goal of this paper was two-fold: to understand how the proof of the fundamental group of the
circle depends on the univalence axiom and why without it, the fundamental group is 1 as opposed
to the integers. In short, the proof depends on the univalence axiom for constructing the circle. In
a universe without univalence, it is consistent to assume axiom K. Consequently, we can no longer
construct the circle in the same manner. There is now only one path on the circle, which we can
map to 1.

The original proof, given by Licata and Shulman [1], defines the circle as a higher-inductive
type with a point base and a non-trivial path loop. The operations on loop include concatenation
(◦) and inversion (!) and can be used to create different paths such as !loop and loop ◦ loop.

Using path lifting, we can create a dependent space above the circle in the shape of a helix.
We create a mapping between loop and moving up one level on the helix and !loop and going
down one level. If we now label each of the levels on the helix with an integer, we have a mapping
between paths on the circle and the integers.

Without the univalence axiom, however, it is not possible to define the circle in the same
way; we have no means of constructing a non-trivial path for loop. We can approximate the circle
by using id instead, but by its very definition, any operations on it always result in id. As a
consequence, there is only one path on the circle. And hence, the fundamental group of the circle
without the univalence axiom is 1.

A natural progression of this analysis would be to write a formal proof in Agda or Coq, similar
to what Licata and Shulman have done but assuming K instead. This is outside the scope of this
paper but would ensure we not only depend on the intuition provided here. Furthermore, if any
alternatives to the univalence axiom are discovered in the future, by which we mean other axioms
that influence the notion of equality, it would be interesting to see the fundamental group of the
circle in that context.

6 Responsible Research

The ethics in mathematics seem, at first glance, much simpler compared to other fields. There are
no data sets with implicit bias, no questionable experiments and no reproducibility problems. The
first two are due to the nature of the field and the last by virtue of mathematical proofs. These are,
in their essence, step-by-step expositions of the ideas presented. And where, historically, these were
susceptible to human error, we now have computer assistance to avoid that.

There is, however, another side to this story. Part of the charm of abstract mathematics
is, usually, not knowing what the benefits of discoveries are. This gives rise to two concerns in
terms of social responsibility. The first is the question of whether the time and energy invested in
mathematics could not be better invested in other fields. The second is purist tendencies which
may arise. That is, to value purity above applicability [19].

Because we can not know how the field of homotopy type theory might contribute to society in
the future, we will have to postpone judgement on the first issue; only time will tell. Turning now
to the second concern. One of the benefits of HoTT is its flexibility. There are many interpretations
and many different additional options such as the univalence axiom. As a result, it is unlikely to
present purist tendencies.
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