

Delft University of Technology

A systematic study of data augmentation for protected AES implementations

Li, Huimin; Perin, Guilherme

DOI
10.1007/s13389-024-00363-3
Publication date
2024
Document Version
Final published version
Published in
Journal of Cryptographic Engineering

Citation (APA)
Li, H., & Perin, G. (2024). A systematic study of data augmentation for protected AES implementations.
Journal of Cryptographic Engineering, 14(4), 649-666. https://doi.org/10.1007/s13389-024-00363-3

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s13389-024-00363-3
https://doi.org/10.1007/s13389-024-00363-3

Journal of Cryptographic Engineering
https://doi.org/10.1007/s13389-024-00363-3

RESEARCH ART ICLE

A systematic study of data augmentation for protected AES
implementations

Huimin Li1 · Guilherme Perin2

Received: 4 January 2023 / Accepted: 30 July 2024
© The Author(s) 2024

Abstract
Side-channel attacks against cryptographic implementations are mitigated by the application of masking and hiding coun-
termeasures. Hiding countermeasures attempt to reduce the Signal-to-Noise Ratio of measurements by adding noise or
desynchronization effects during the execution of the cryptographic operations. To bypass these protections, attackers adopt
signal processing techniques such as pattern alignment, filtering, averaging, or resampling. Convolutional neural networks
have shown the ability to reduce the effect of countermeasures without the need for trace preprocessing, especially alignment,
due to their shift invariant property. Data augmentation techniques are also considered to improve the regularization capacity
of the network, which improves generalization and, consequently, reduces the attack complexity. In this work, we deploy
systematic experiments to investigate the benefits of data augmentation techniques against masked AES implementations
when they are also protected with hiding countermeasures. Our results show that, for each countermeasure and dataset, a
specific neural network architecture requires a particular data augmentation configuration to achieve significantly improved
attack performance. Our results clearly show that data augmentation should be a standard process when targeting datasets
with hiding countermeasures in deep learning-based side-channel attacks.

Keywords Side-channel attacks · Deep learning · Data augmentation · Hiding countermeasures

1 Introduction

Side-channel attacks (SCAs) represent a realistic threat to
electronic systems processing confidential information. SCA
is a non-invasive attack that targets assets such as keys from
cryptographic modules in software or hardware implemen-
tations. These cryptographic implementations are present in
chips applied to the Internet-of-Things, payment, automo-
tive, and content protection industries, just to name a few.
SCA is conducted bymonitoring physical side-channel infor-
mation that is unintentionally leaked by electronic circuits,
such as power consumption, electromagnetic emissions, and

B Huimin Li
H.Li-7@tudelft.nl

Guilherme Perin
g.perin@liacs.leidenuniv.nl

1 Cyber Security Research Group, Delft University of
Technology, Van Mourik Broekmanweg 5, Delft,
The Netherlands

2 The Leiden Institute of Advanced Computer Science
(LIACS), Leiden University, Niels Bohrweg 1, Leiden,
The Netherlands

execution time. The leaked information might be statistically
related to the confidential data being processed by the circuit,
such as cryptographic keys.

SCA is divided into two main categories: direct attacks
such as differential power analysis [10] or correlation power
analysis [2] that exploit the statistical relation between side-
channel measurements and secret information, and two-step
or profiled attacks [4]. In those attacks, a profiling model
is learned from side-channel information collected from an
open target, and this model is later used to retrieve secret
information fromavictim’s device. Thisway, profiled attacks
follow a supervised learning strategy, and for this reason,
recently, deep neural networks have been widely considered
for profiled attacks [17] due to their practical advantages in
comparison to previous techniques such asGaussian template
attacks [4].

To mitigate SCA, manufacturers implement countermea-
sures that aim at breaking the statistical relation between
side-channel information and secret keys. Two main types of
countermeasures are typically applied: masking and hiding.
Masking countermeasures add random values (i.e., masks) to
sensitive bytes during cryptographic executions. The main

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13389-024-00363-3&domain=pdf

Journal of Cryptographic Engineering

goal of hiding countermeasures is to reduce the Signal-
to-Noise Ratio (SNR) of side-channel measurements by
intentionally adding noise to the circuit. The most common
hiding countermeasures methods are noise generators, e.g.,
parallel circuits that produce significant power consump-
tion to hide the power consumption of sensitive operations,
and desynchronization, e.g., random delays that shift the
target operation in time. Desynchronization efficiently pro-
tects cryptographic implementations because side-channel
attack methods such as DPA or template attacks require side-
channel measurements aligned in the time domain.

When dealing with hiding countermeasures, a standard
side-channel analysis procedure is to apply signal process-
ing to remove noise with filtering, averaging, or resampling.
To bypass desynchronization, techniques such as static or
dynamic alignment [23] are common solutions. Although
post-signal processing tends to improve side-channel analy-
sis results, the process faces several limitations, especially the
large time overheads in side-channel evaluations, the require-
ment for costly and specialized equipment, and, in some
cases, the inability to successfully conduct signal processing
over raw measurements due to stronger hiding countermea-
sures. Convolutional neural networks (CNN) have shown
promising results in bypassing desynchronization protec-
tions [3, 29]. Convolution blocks, typically composed of a
combination of convolution and pooling layers, provide a
shift-invariant property that makes CNN less sensitive to
side-channel trace misalignment, especially when used as
a profiling model. One way to further improve the robust-
ness of a CNN against trace misalignment is by training
the model with data augmentation. Data augmentation is an
explicit regularization technique that increases training data
size by generating additional synthetic data during training.
Essentially, in side-channel analysis, what a data augmenta-
tion process does is reproduce the effect of existing hiding
countermeasures from measured side-channel traces. This
way, the augmented training set tends to represent a better
sample of the true (and unknown) leakage distribution of
side-channel traces. This process improves CNN generaliza-
tion as the model has fewer chances to overfit the training
data.

Although data augmentation is a well-known method to
cope with hiding countermeasures in side-channel measure-
ments [3, 19], it is not clearly answered how to implement
data augmentation for specific targets or datasets prop-
erly and what is the best augmentation configuration. For
instance, to reduce the protective effect of desynchronization,
one tries to create a data augmentation process that randomly
shifts the training set at each training epoch. Still, know-
ing the ideal amount of trace samples to shift for a certain
trace set has been unanswered so far. Moreover, the required
number of augmented data that provides the best results was
never investigated. In this work, we provide results show-

ing that each specific neural network architecture requires
a particular data augmentation configuration, which makes
the problem evenmore complicated. The same also applies to
hiding countermeasures based on additive (Gaussian) noise.

In this paper, we focus on profiling SCAand verify towhat
extent data augmentation suppresses the protective effects of
hiding countermeasures. We skip signal processing and rely
solely on the regularization and generalization ability of con-
volutional neural networks to deal with noisy datasets. We
perform a systematic data augmentation analysis by deploy-
ing an analysis methodology that identifies the best data
augmentation strategy for a given dataset containing specific
hiding countermeasures. Our results demonstrate that each
neural network architecture and dataset requires a specific
data augmentation strategy. Interestingly, with the correct
data augmentation configuration, we can turn an inefficient
CNN that does not recover the key (with a given number
of attack traces) into a successful CNN model that recovers
the correct key with state-of-the-art results. Moreover, the
performance of CNN models with the best data augmenta-
tion configuration found with our analysis methodology is
the best reported in the literature so far with higher levels
of trace desynchronization. For the ASCADr dataset, we can
successfully recover the key with less than 50 attack traces
when the desynchronization level is up to 200 sample points.
For the DPAv4.2 dataset, our best CNNmodel with the best
data augmentation configuration recovers the key with a sin-
gle attack trace when the desynchronization level is up to 150
sample points. Our analysis indicates that data augmentation
should be a standard process when evaluating cryptographic
implementations with hiding countermeasures in the context
of deep learning-based profiling SCA.

2 Background

2.1 Deep learning-based profiling side-channel
analysis

Wedefine a side-channel trace set asX with size N , wherexi
is the i-th observation of X . With an additional under-script
term, xi,s , we refer to a feature (or sample) s in a side-
channel observation xi . For each side-channel observation
xi , we assign a label yi ∈ Y . Each side-channel observation
xi represents side-channel leakages obtained from a target
while running a cryptographic operation such as encryption.
The label yi is derived from a selection function that returns
the intermediate variable (in our case, a byte value) associ-
ated with the executed cryptographic operation. For instance,
when the cryptographic operation is anAES encryption func-
tion C = E(D,K)with a secret keyK and plaintextD, which
returns a ciphertext C, the selection function can be repre-
sented as the output byte of the S-Box in the first encryption

123

Journal of Cryptographic Engineering

round, i.e., yi = S-Box(d j ⊕k j), where k j ∈ K is the j-th
key byte and d j represents the j-th byte from plaintext D.

In a deep learning-based profiling SCA application, the
main goal is to train a deep neural network f (L, θ, T),
defined by a set of parameters θ , with a training set T =
(Xtrain,Ytrain), to minimize the loss functionL. The trained
neural network, or simply model, is validated with a separate
validation set of size V , V = (Xval ,Yval) by measuring the
validation loss value.

Although minimizing validation loss is an efficient val-
idation metric, the best way to verify the performance of
a model in the SCA context is by computing SCA metrics
such as key rank with the given validation set. By predict-
ing a trained model f (L, θ, T) with V , we obtain a set of
class probabilities P , where pi,y ∈ P indicates the probabil-
ity of observing label y for a given side-channel observation
xi ∈ V . Because labels y depend on the key byte ki from
the validation set V , the key rank is a process that returns
the most likely key byte candidate or hypothesis kh among
all possible key values, which includes the 256 possible byte
values. This way, we compute the likelihood gh for each key
candidate kh as follows:

gh =
V−1∑

i=0

log pi,y. (1)

By repeating this process for h = 1 . . . 256, we obtain a
vector of sorted key likelihoods g = {gh}, h ∈ [1, 256], by
order of magnitude of gh values. The position of the correct
key candidate inside sorted g gives the key rank for the val-
idation set. The guessing entropy [18, 22] of the correct key
is given by an empirical process in which we repeat the key
rank process multiple times (each time with a different and
randomly selected subset from V), and we obtain an average
key likelihood or key guessing vector g and get the average
position of the correct key k∗ inside g.

In this paper, we refer to the guessing entropy of the cor-
rect key byte candidate as ge∗. Another metric to verify the
performance of a trained model f (L, θ, T) against a valida-
tion set V is by obtaining the minimum size of V (i.e., the
minimum number of validation traces) that are necessary to
achieve ge∗ = 1 (which means that the correct key byte can-
didate has the lowest guessing entropy among all key byte
candidates), which we refer as Nge∗=1.

2.2 Data augmentation

In the deep learning community, data augmentation is con-
sidered in state-of-the-art applications, such as image classi-
fication [7, 12, 24]. It refers to the process of increasing the
size of the training set by artificially generating additional
training data with dynamic changes during the training of a

model. These changes must preserve the class properties of
the training set. The training set represents an approximate
distribution, given by a finite set T , from a true and unknown
distributionR. By augmenting the training setT , one expects
that the T becomes a better representation ofR. A deep neu-
ral network becomes less prone to overfit the training data
by following a data augmentation process. Among other reg-
ularization techniques such as weight decay, dropout, batch
normalization, and transfer learning [21, 24], data augmen-
tation is an alternative and efficient way to reduce overfitting.

To achieve this goal, data augmentation settings need to be
carefully chosen. However, conventionally data augmenta-
tion involvesmanymanual or random choices. Themain idea
is to improve class representation inside of a dataset. For that,
it is important to understand what kind of effect the augmen-
tation process needs to develop. For instance, when training
a convolution neural network to be as shift-invariant as much
as possible concerning images, adding rotation, shifts, resiz-
ing, or re-scaling increases the number of examples with
image variations. On the other hand, inappropriate choices
of data augmentation settings probably lead to no effect or
even detrimental effect [5, 7]. To skip the manual augmenta-
tion process, different techniques have been proposed in deep
learning literature. In [5], the authors proposed a procedure
calledAutoAugment to automatically search for the best data
augmentation setting from training data properties. Later, the
authors proposed a new strategy called Randaugment [6].
Randaugment greatly reduces the computational expense of
automated augmentation by simplifying the search space.
Ultimately, these automated data augmentation processes
require optimization algorithms such as reinforcement learn-
ing.

2.3 Datasets

In our experiments, we consider two publicly available soft-
ware masked AES datasets.

2.3.1 ASCADr

ASCAD database [1] provides side-channel measurements
collected from different software AES implementations:
AES protected with first-order Boolean masking running on
an 8-bit Atmega device,1 and AES protected with Boolean,
affine, and shuffling running on a 32-bit STM32 platform.2

The former is considered in our experiments, and it contains
two main trace sets: (1) trace set with 60,000 traces, where
each power measurement contains 100,000 sample points,

1 https://github.com/ANSSI-FR/ASCAD/tree/master/
ATMEGA_AES_v1.
2 https://github.com/ANSSI-FR/ASCAD/tree/master/
STM32_AES_v2.

123

https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1
https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1
https://github.com/ANSSI-FR/ASCAD/tree/master/STM32_AES_v2
https://github.com/ANSSI-FR/ASCAD/tree/master/STM32_AES_v2

Journal of Cryptographic Engineering

and all traces contain the same fixed key, and (2) trace set
with 300,000 traces, each measurement containing 250,000
sample points, with first 200,000 containing random keys
and the remainder 100,000 containing a fixed key. We con-
sider this last dataset with 300,000 measurements, hereby
called ASCADr. In our experiments, we take the trimmed
version of ASCADr, which contains 1400 sample points per
trace and represents the power consumption of the third key
byte j (j ∈ [0, 15]) of the S-Box output in the first encryp-
tion round. We chose the third key byte because it is the
first masked byte. Here, each trace xi is labeled according
to yi = S-Box(d2 ⊕ k2) when we consider the Identity
leakage model or yi = HW (S-Box(d2 ⊕ k2)) when we
apply the Hamming weight leakage model. We use 200,000
traces for training, 5000 for validation, and another 5000 as
the attack set.

2.3.2 DPAv4.2

The DPAcontest v4.2 dataset (DPAv4.2)3 is the second
implementation available in the DPAcontest v4. It is an
improved version implemented in software on an 8-bit Atmel
ATMega-163 smart card and corrects several leaks identified
in its previous generation. This dataset represents the power
consumption of the first AES encryption round, and the AES
implementation is protected with RSM (Rotate S-box Mask-
ing). The dataset contains a total of 80,000 traces, and each of
them contains 1,704,402 sample points. In our experiments,
we trim the dataset to the interval representing the processing
of the twelfth S-box byte j (j ∈ [0, 15]), resulting in 2000
samples per trace. We use 70,000 traces for training (which
contains 14 different keys), 5000 for validation, and another
5000 as the attack set. Each trace xi is labeled according
to yi = S-Box(d11 ⊕ k11) when we consider the Identity
leakage model or yi = HW (S-Box(d11 ⊕ k11)) when we
apply the Hamming weight leakage model.

3 Related works

Data augmentation has been widely applied to the SCA
context. In [3], data augmentation was considered to miti-
gate trace desynchronization effects caused by jitter effects.
The results showed significant improvements in profiling
attacks when compared to Gaussian template attacks. In that
case, the authors applied two customized data augmentation
techniques based on shift deformation and add-remove defor-
mation of side-channel measurements. In [9], the authors
considered a regularization technique that artificially adds
Gaussian noise to the training set. Results showed significant
key recovery improvements in the attack phase. Although

3 https://www.dpacontest.org/v4/42_doc.php.

this process only modifies the existing training set with-
out augmenting the training set during model training, we
still consider this work as data augmentation due to the
modifications applied to input traces. In [16], the authors
applied SMOTE, a data augmentation technique to sup-
press imbalanced dataset limitations. The authors of [11]
appliedmixup [28] technique for data augmentation.Mukhtar
et al. [13] considered Generative Adversarial Networks
(GANs) and Siamese networks to generate new side-channel
traces for data augmentation. While this approach works
well, due to its black-box character, it becomesmore difficult
to evaluate the effect of a specific change. In [14], the authors
demonstrated that data augmentation based on random shifts
could act as a strong regularizer for label correction in an
iterative framework.

In the context of SCA, data augmentation essentially
solves three main problems: (1) it suppresses the lack of
training data for better class representations (also to sup-
press class imbalance) [13], (2) it augments the training set
to cover the effects of existing hiding countermeasures bet-
ter (e.g., cover a wider range of trace shift positions due to
misalignment or jitter) [3], and (3) it regularizes the model
to prevent overfitting [15]. For SCA, data augmentation also
creates an adversarial training effect [8] on the model [20].
Indeed, hiding countermeasures that are expected to be pre-
sented in side-channel measurements collected from the
target device contain modifications (e.g., desynchronization,
additive noise) that aim at perturbing the prediction of the
trained model. Training with data augmentation leads to a
model that is more robust to unseen modifications that can
exist in measurements from different targets.

However, it is still an open question of how to cus-
tomize a data augmentation for a specific dataset. More
specifically, for each considered hiding countermeasure, data
augmentation requires defining optimal configuration hyper-
parameters. In Sect. 4, we provide an analysis methodology
to evaluate this open question, and in Sect. 5, we provide
experimental results for different datasets.

4 Analysis methodology

In this section, we describe the analysis methodology applied
in our experiments. The proposedmethodology defines a grid
search to identify what is the best data augmentation setting
for specific countermeasures present in side-channel mea-
surements.

The analysis starts by taking clean side-channel traces,
i.e., original side-channel measurements, where we assume
hiding countermeasures such as noise and desynchroniza-
tion are not active to protect the underlying device under
test. Obviously, as we are dealing with real side-channel
measurements, some level of noise is still present. How-

123

https://www.dpacontest.org/v4/42_doc.php

Journal of Cryptographic Engineering

Table 1 Hyperparameter variations in the CNN architecture

Hyperparameters Options

Neurons {20, 40, 50, 100, 150, 200, 300, 400}

Batch_size {100, 200, 400}

Layers {1, 2}

Filters {4, 8, 12, 16}

Kernel_size {10, 20, 30, 40}

Strides {5, 10, 15, 20}

Pool_type {“Average”, “Max”}

Pool_size 2

Conv_layers {1, 2, 3, 4}

Activation {“elu”, “selu”, “relu”}

Learning_rate {0.005, 0.0025, 0.001, 0.0005, 0.00025,
0.0001, 0.00005, 0.000025, 0.00001}

Weight_init {“random_uniform”, “he_uniform”,
“glorot_uniform”, “random_normal”,
“he_normal”, “glorot_normal”}

Optimizer {“Adam”, “RMSprop”}

ever, the Signal-to-Noise Ratio (SNR) is sufficiently high
to assume that side-channel measurements contain irrelevant
noise. Hiding countermeasures are artificially emulated by
adding either Gaussian noise or desynchronization to the
original measurements. This is done by choosing different
hiding countermeasures hyperparameters such as standard
deviation for the added Gaussian distribution and the max-
imum number of shifted samples in side-channel traces in
case of desynchronization.

Next, we perform the hyperparameter search to find the
best possible CNNmodels that can recover the target key in a
profiling attack scenario, even in the presence of added hiding
countermeasures. Table 1 shows the hyperparameter options
from where each CNNmodel is randomly configured during
the search. In case when the best-found neural network is not
capable of successfully retrieving the key (i.e., Nge∗=1 > V),
the best model will be the one that presents lower guessing
entropy ge∗. This analysis will serve as a baseline compar-
ison for the experiments with data augmentation. Note that
the early stopping process is not considered during the hyper-
parameter search process. To eventually implement early
stopping, we would have to set an early stopping metric such
as guessing entropy, which would add significant overheads
to the search process. Therefore, every model is trained for a
total of 100 epochs, as this number of epochs is in accordance
with related works [1, 25, 27] and, for a majority of cases,
enough to find a CNN model with Nge∗=1 ≤ V .

After the random search process, we search for the best
data augmentation configuration. We start from the best-
foundCNNmodels obtainedwith the hyperparameter search,
and we train these models from scratch with data augmenta-
tion by considering a grid of different hyperparameters. For

that, we consider the data augmentation that implements the
same effects provided by the given hiding countermeasure.
This way, data augmentation involves applying Gaussian
noise to training data or desynchronization. For the Gaus-
sian noise case, we test different standard deviations to see if
there is an optimal value that provides better performance. In
the same scope, we test different desynchronization levels,
i.e., the maximum number of randomly selected shifted sam-
ples in side-channel traces during model training. The idea is
again to identify if, for a given desynchronization provided
by hiding countermeasures, there is an optimal range of sam-
ple shifts for data augmentation. We also evaluate if there is
a minimum number of augmented traces that provide better
results. For that, we train the best-found CNN models with
different numbers of augmented traces added to the original
training set.

To summarize, our methodology implements four main
steps:

1. Add hiding countermeasures to the original side-channel
measurements.

2. Deploy randomhyperparameter search to identify the best
CNNmodel for each hiding countermeasure scenario (the
hyperparameter ranges are in Table 1).

3. Investigate the best data augmentation hyperparameters
(e.g., standard deviation ormaximum trace shifts) through
a grid search.

4. Investigate the minimum number of augmented side-
channel traces during neural network training that
improves CNN performance.

4.1 Adding hiding countermeasures

Weemulate hiding countermeasures on original side-channel
traces. We explore two cases: desynchronization and Gaus-
sian noise. Desynchronization emulates the effect of hiding
countermeasures aimed at providing tracemisalignment. The
Gaussian noise emulates the effect of additive noise provided
by the target to reduce the SNR of measurements. For that,
we define the following hyperparameters:

• δhid : maximum number of trace sample shifts. The shifts
that are applied to each measurement are drawn from
a normal distribution with a mean equal to δhid/2. The
blue lines in Figs. 1a and 2b refer to the distribution of
shifts when δhid = 25 and δhid = 200, respectively. In
the ASCADr dataset [1], in addition to the original traces
extracted without modification that we are utilizing here,
the authors have also included two additional databases
with traces intentionally desynchronized with maximum
windows of 50 samples and 100 samples, respectively.
While the option to use these modified databases is avail-

123

Journal of Cryptographic Engineering

Fig. 1 Trace desynchronization distribution for different values of aug-
mentation shifts [−δaug, δaug]. a Trace desynchronization distribution
for different values of δaug whenmeasurements contain desynchroniza-
tion of δhid = 25. b Trace desynchronization distribution for different
values of δaug when measurements contain desynchronization of δhid
= 200

able, our current study focuses solely on the original
traces as we aim to manipulate the sample shifts man-
ually.

• σhid : standard deviation considered to define a Gaussian
distribution from where we obtain a noise trace that is
added to original measurements. The mean of the distri-
bution is zero. Figure2a and 2b show the SNR analysis
for the ASCADr and DPAv4.2 datasets without adding
Gaussian noise. We can see that the max value for the
ASCADr dataset is 1.52 when SNR is computed for the
intermediate v = S-Box(d2 ⊕ k2)⊕m2. The max value
for the DPAv4.2 dataset is 4.14 when the intermediate
is v = S-Box(d12 ⊕ k12) ⊕ m12. When the Gaussian

Fig. 2 SNR analysis without countermeasure. a SNR analysis for the
ASCADrdatasetwithout countermeasure formaskedS-Boxoutput and
corresponding mask. b SNR analysis for the DPAv4.2 dataset without
countermeasure for masked S-Box output and corresponding mask

noise countermeasure is added to these two datasets, and
the standard deviation σhid changes from 1 to 6, the max
values reduce accordingly in Table 2. Note that SNR or
intermediate variables are significantly reduced.

4.2 Data augmentation hyperparameters

For our analysis, the data augmentation strategy requires the
definition of the following hyperparameters:

• Augmented hyperparameter: this hyperparameter refers
to the data augmentation type that is applied to training
data. If the data augmentation type is Gaussian noise,
the statistical hyperparameter to be tuned is the standard
deviation, σaug , of the applied normal distribution with

123

Journal of Cryptographic Engineering

Table 2 The max values change
in SNR analysis for two datasets
with Gaussian noise
countermeasure, where the
mean of the distribution is zero
and the standard deviation σhid
changes from 1 to 6

σhid = 0 1 2 3 4 5 6

ASCADr

v = S-Box(d2 ⊕ k2) ⊕ m2 1.52 1.21 0.79 0.51 0.38 0.30 0.25

v = m2 1.13 1.07 0.94 0.78 0.64 0.50 0.41

DPAv4.2

v = S-Box(d12 ⊕ k12 ⊕ m12) 4.14 3.74 2.89 2.13 1.55 1.15 0.87

v = m12 4.40 3.92 2.97 2.21 1.66 1.26 0.98

zero mean. In case the data augmentation type is desyn-
chronization, the statistical hyperparameter is the range
of shifts, [−δaug, δaug], applied to the training data. We
randomly shift each trace to the left and to the right by
randomly taking the shift value from a normal distribu-
tion with mean zero and minimum value being −δaug
and maximum value being δaug . Note that random shifts
during data augmentation are always selected from a nor-
mal distribution, and the mean of the distribution is zero.
Figures1a and 2b illustrate the final desynchronization
distributions after we apply the data augmentation shifts
to trace sets containing δhid = 25 and δhid = 200,
respectively. Note how the final distribution, given by
δhid + [−δaug, δaug], provides a larger range of possi-
ble trace shifts during the training phase. The difference
in the range of possible trace shifts is more pronounced
when δhid = 25 than when δhid = 200.

• Augmented traces per epoch: this hyperparameter refers
to the number of augmented training side-channel mea-
surements that are generated for each epoch. In this case,
augmented traces are different as they are randomly gen-
erated for each epoch. Note that the resulting training set
consists of original traces plus augmented ones.

5 Experimental results

In this section, we provide experimental results by applying
our analysis methodology to the two datasets described in
Sect. 2.3.

5.1 Desynchronization countermeasure

5.1.1 ASCADr

Tables 3 and 4 provide results for theASCADr dataset labeled
with the Identity leakage model and Hamming weight leak-
age model, respectively. As specified by the table’s header,
the training is always conducted for the 200,000 traces
plus the augmented traces. When the augmented traces are
denoted by 0 (third column of the table), we indicate the
Nge∗=1 value (i.e., the number of attack traces required to

reach ge∗ = 1) for the baseline model trained without data
augmentation.

Note that for each different δhid value, the CNN architec-
ture is different, and it is obtained froma randomsearch. Then
we deploy a new training for this CNN model by consider-
ing data augmentation with a different number of augmented
traces (from20,000 to 200,000 augmented traces—from10%
of the number of the original traces up to 100%). For each
number of these augmented traces, the model is trained with
a different range of shifts [−δaug, δaug].

Results shown in Table 3 demonstrate the efficiency of
data augmentation for different CNN architectures with the
ASCADr dataset and the Identity leakagemodel. The Nge∗=1

value obtained for the baseline model (third table column) is
always higher than the lowest value obtained with the best
Nge∗=1 when data augmentation is active during training.
Specifically, the case when δhid = 25 is very representative.
When this CNNmodel is trained without data augmentation,
we obtain Nge∗=1 > 3 000, indicating that this model can-
not successfully recover the key with less than 3000 traces.
When data augmentation with 120,000 augmented traces is
applied during training (these traces are randomly generated
for each epoch), with δaug = 25, the correct key candidate is
recovered with only 39 traces. Moreover, when δhid = 175,
which indicates a more aggressive desynchronization level,
the baseline model without data augmentation still success-
fully recovers the correct key with 2195 traces. However,
after applying data augmentation with 180,000 augmented
traces at each training epoch and [−δaug, δaug] = [−87, 87],
the correct key is recovered with only 76 traces, which is a
significant improvement. Finally,when δhid equals 200, at the
highest level of trace desynchronization in our experiments,
we get Nge∗=1 = 304 for the baseline model and Nge∗=1 =
44 for augmentation with [−δaug, δaug] = [−12, 12] and
180,000 augmented traces.

The results in Table 4 show the performance of different
CNN models with different data augmentation configura-
tions when the ASCADr dataset is labeled with the Hamming
weight leakage model. We also first choose the best CNN
model through a random search under different δhid without
augmentation. Then, for each δhid , we use the same CNN
model to conduct the training process with 200,000 origi-

123

Journal of Cryptographic Engineering

Table 3 Number of attack
traces to reach guessing entropy
equal to 1

Results obtained with the ASCADr dataset and the Identity leakage model under desynchronization counter-
measures. Neural networks are trained with data augmentation by generating different augmented traces at
each epoch. Note that a dash (“-”) indicates that no results were achieved. “Yellow” highlights the best result
for each specific setting in each row. “Red” and “teal” represent the range of results. A darker shade of red
signifies a larger result, while a darker shade of teal indicates a smaller result in the corresponding row

nal traces plus a different number of augmented traces. We
can see the improvement from data augmentation since the
Nge∗=1 value obtained for the baseline model is higher than
the lowest value obtained with the best Nge∗=1 for differ-
ent δaug in most cases. Take δhid = 100 for example. We get

Nge∗=1 = 1898when theCNNmodel is trainedwithout aug-
mentation. When augmentation is implemented, the correct
key candidate is recovered with fewer traces in each δaug
when the augmented trace number is greater than 40,000.
For δhid = 125, we often use fewer traces for every δaug

123

Journal of Cryptographic Engineering

Table 4 Number of attack
traces to reach guessing entropy
equal to 1

Results obtained with the ASCADr dataset and the Hamming weight leakage model under desynchronization
countermeasures. Neural networks are trained with data augmentation by generating different augmented
traces at each epoch

than the baseline model when the augmented trace number
is greater than 80,000. Moreover, we can see that augmenta-
tion works with even higher desynchronization levels. When
δhid = 200, the baseline model recovers the correct key
candidate with 2677 traces. By adding 120,000 traces at
each training epoch and [−δaug, δaug] = [−50, 50], we can
recover the correct key with only 533 traces.

5.1.2 DPAv4.2

Tables 5 and 6 demonstrate results for the DPAv4.2 dataset
with desynchronization countermeasure adopted with the
Identity leakage model and the Hamming weight leakage
model, respectively. The training is always conducted for
70,000 traces plus the augmented traces. The augmented

123

Journal of Cryptographic Engineering

Table 5 Number of attack
traces to reach guessing entropy
equal to 1

Results obtained with the DPAv4.2 dataset and the Identity leakage model under desynchronization coun-
termeasures. Neural networks are trained with data augmentation by generating different augmented traces
at each epoch

traces denoted by 0 indicate the number of attack traces
required to reach ge∗ = 1 for the baseline model trained
without data augmentation. For each different δhid value, the
CNN architecture is obtained from a random search with
70,000 traces. Later, new training is adopted for this CNN
model with data augmentation for different δaug with 70,000

original traces plus 7000 to 70,000 augmented traces (from
10% of the number of original traces to 100%).

Table 5 gives results for the DPAv4.2 dataset with the
Identity leakage model. For δhid = {25, 50, 75, 125, 150},
we observe that the Nge∗=1 value of the baseline model
is often higher than the lowest value obtained with the

123

Journal of Cryptographic Engineering

Table 6 Number of attack
traces to reach guessing entropy
equal to 1

Results obtainedwith the DPAv4.2 dataset and theHammingweight leakagemodel under desynchronization
countermeasures. Neural networks are trained with data augmentation by generating different augmented
traces at each epoch

best Nge∗=1 when data augmentation is active during train-
ing. However, there are also some cases where we get
Nge∗=1 > 3 000 when the CNN model is trained with data
augmentation. The case when δhid = 150 shows how data

augmentation improves a CNN that, without data augmen-
tation, requires 141 attack traces to reach ge∗ = 1. After
augmentation is applied, it requires a single attack trace
when at least 35,000 augmented traces are considered.When

123

Journal of Cryptographic Engineering

δhid = {175, 200}, we cannot get the correct key using the
chosen model under 3000 traces without augmentation. We
also cannot recover the correct key using augmentation tech-
niques. This means that when desynchronization is at a high
level for this dataset and leakage model, it is not easy to
recover the correct key successfully, whether or not augmen-
tation is adopted.

The results in Table 6 illustrate the performance of differ-
ent CNN models with different data augmentation configu-
rations for the DPAv4.2 dataset labeled with the Hamming
weight leakagemodel.We also observe that the Nge∗=1 value
obtained for the baseline model is always higher than the
lowest value obtained with the best Nge∗=1 when data aug-
mentation is adopted during training. This is even true for
δhid = 200, the highest level of Gaussian noise. The base-
line model without data augmentation gets the correct key
successfully with 1371 traces. However, after applying data
augmentation with [−δaug, δaug] = [−100, 100] and using
63,000 augmented traces at each training epoch, the correct
key is recovered with only 21 traces.

5.2 Gaussian noise countermeasure

5.2.1 ASCADr

Tables 7 and 8 provide results for the ASCADr dataset for
Gaussian noise countermeasure with the Identity leakage
model and the Hammingweight leakagemodel, respectively.
The term σhid refers to the standard deviation in Gaussian
noise (with zero mean) applied to the original traces for a
hiding countermeasure. The term σaug denotes the standard
deviation in Gaussian noise applied to the augmented traces.
The training is always conducted for the 200,000 traces
plus the augmented traces. The augmented traces denoted
by 0 indicate the number of attack traces required to reach
ge∗ = 1 for the baseline model trained without data aug-
mentation. Again, for each different σhid value, the CNN
architecture is different, and it is obtained from the best one
from a random search. Then a new training is deployed for
this CNN model with the data augmentation and different
numbers of augmented traces. For each number of the aug-
mented traces, the model is trained with Gaussian noise with
different standard deviations σaug .We set this value to ensure
0.5 ≤ σaug ≤ σhid + 1. The minimum value of 0.5 for σaug
is to ensure that σaug is tested at least for a value that is lower
than the minimum value considered for σhid , which is 1.0.

Table 7 presents the efficiency of data augmentation for
different CNN architectures with the Identity leakage model.
When σhid = {1.0, 2.0, 3.0}, the Nge∗=1 value obtained for
the baseline model is always higher than the lowest value
obtained with the best Nge∗=1 when data augmentation is
active during training. Take σhid = 1.0 for example. When
the CNN model is trained without data augmentation, the

baseline model can successfully recover the key with 514
traces. When data augmentation with 100,000 augmented
traces is applied during training and σaug = 0.5, the correct
key is recoveredwith 200 traces.However, if Nge∗=1 > 3000
is obtained for the baseline model, we observe different sce-
narios. When σhid = {4.0, 6.0}, the baseline model cannot
successfully recover the key with less than 3000 traces, and
neither can the CNN model do when data augmentation is
applied. This suggests that random search should be applied
again to return another best CNN model. When σhid = 5.0,
the baseline model cannot successfully recover the key with
less than 3000 traces. However, when σaug = {1.0, 2.0} is
adopted, the key can be recovered.

Table 8 presents the efficiency of data augmentation for
different CNN architectures with the Hamming weight leak-
age model. When σhid = 1.0, we do not see the performance
improvement from data augmentation except in one case
with σaug = 0.5 and 200,000 augmented traces. When
σhid = 2.0, there is not a single case where data aug-
mentation can reduce the traces needed to recover the key
successfully.We see the improvement from augmentation for
σhid = 3.0. For example,we obtain Nge∗=1 = 2136 from the
baseline model without data augmentation. When data aug-
mentation with 200,000 augmented traces with σaug = 0.5
is applied during training, the correct key candidate is recov-
ered with 1431 traces. For σhid = 4.0, the Nge∗=1 value
obtained for the baseline model is always higher than the
lowest value obtained with the best Nge∗=1 when data aug-
mentation with σaug = {0.5, 1.0} is applied during training.
when σhid = {5.0, 6.0}, the baseline model cannot success-
fully recover the key with less than 3000 traces, and neither
can the CNN model do when augmentation is applied. This
indicates that when Gaussian noise is at a high level, and the
SNR is low, it is not easy to recover the correct key success-
fully, regardless of the fact that data augmentation is used.

5.2.2 DPAv4.2

Tables 9 and 10 illustrate results for the DPAv4.2 dataset
with Gaussian noise countermeasure applied with the Iden-
tity leakage model and the Hamming weight leakage model,
respectively. The mean value of Gaussian noise is fixed at 0.
The term σhid refers to the standard deviation in Gaussian
noise used to the original traces for a hiding countermeasure.
The term σaug indicates the standard deviation in Gaussian
noise applied to the augmented traces. The training is always
conducted for the 70,000 traces plus the augmented traces.
The augmented traces denoted by 0 indicate the number of
attack traces required to reach ge∗ = 1 for the baseline
model trained without data augmentation. For each different
σhid value, the CNN architecture is obtained from a random
search. Later, a new training is adopted for this CNN model
with data augmentation. For each of these augmented traces,

123

Journal of Cryptographic Engineering

Table 7 Number of attack
traces to reach guessing entropy
equal to 1

Results obtained with the ASCADr dataset and the Identity leakage model under Gaussian noise countermea-
sures. Neural networks are trained with data augmentation by generating different augmented traces at each
epoch

the model is trained with Gaussian noise with different stan-
dard deviations σaug , which is set to 0.5 ≤ σaug ≤ σhid + 1.

Table 9 illustrates the efficiency of data augmentation
for the DPAv4.2 dataset with the Identity leakage model.
When σhid = {1.0, 2.0, 3.0}, the Nge∗=1 value obtained for
the baseline model is always higher than the lowest value
obtained with the best Nge∗=1 when data augmentation is
active during training. Take σhid = 1.0 for example. When
the CNN model is trained without data augmentation, the
model can successfully recover the key with 54 traces. When
data augmentation with 42,000 augmented traces is applied
during training and σaug = 0.5, the correct key candidate
is recovered with 24 traces. However, if Nge∗=1 > 3 000
is obtained from the baseline model, we can see different
cases. When σhid = {4.0, 6.0}, the baseline model cannot
successfully recover the key with less than 3000 traces, and
neither can the CNN model when augmentation is applied.

When σhid = 5.0, the baseline model cannot success-
fully recover the key with less than 3000 traces. We obtain
Nge∗=1 = 1 884, 1 794 when 42,000 training augmented
trace and σaug = 0.5, and 63,000 training augmented trace
and σaug = 0.1 are applied, respectively.

Table 10 presents the efficiency of data augmentation
for the DPAv4.2 dataset with the Hamming weight leak-
age model. When σhid = {1.0, 4.0}, we do not observe the
performance improvement from data augmentation. When
σhid = {2.0, 3.0}, the Nge∗=1 value obtained for the base-
line model is always higher than the lowest value obtained
with the best Nge∗=1 whendata augmentation is active during
training. When σhid = 5.0, the CNNmodel can successfully
recover the key with 2025 traces. When data augmentation
with 21,000 augmented traces and σaug = 0.5 is applied dur-
ing training, the correct key candidate is recovered with only
1273 traces. For σhid = 6.0, we obtain Nge∗=1 > 3000, and

123

Journal of Cryptographic Engineering

Table 8 Number of attack
traces to reach guessing entropy
equal to 1

Results obtained with the ASCADr dataset and the Hamming weight leakage model under Gaussian noise
countermeasures. Neural networks are trained with data augmentation by generating different augmented
traces at each epoch

get Nge∗=1 = 2479 when data augmentation is applied with
35,000 augmented traces with σaug = 1.0.

5.3 Discussion

Based on the obtained results, some general guidelines can
be given:

• What is the optimal data augmentation configuration? Is
there a universal data augmentation setting that applies
to all scenarios? In this paper, we propose a four-step
methodology, detailed in Sect. 4, for implementing data
augmentation. In Sect. 5, we apply this methodology
to various settings, including different datasets, neural
network architectures, and leakage models. Our find-
ings indicate that different settings necessitate distinct
data augmentation configurations, thereby complicating
hyperparameter tuning. Consequently, there is no single

best data augmentation setting for all cases. At the same
time, we deem this effort well spent as the attack per-
formance can improve significantly when careful data
augmentation is conducted.

• What countermeasure is more difficult? We observe that
the Gaussian noise countermeasure is more difficult to
break using data augmentation. For both datasets, we can
use data augmentation to get significant improvement for
recovering the correct keyunder desynchronization coun-
termeasure, even when δhid is at a high level, such as 175
or 200. This is because of the shift-invariant property of
CNN, which can extract the points of interest in traces
even when the misalignment of traces is large. When the
Gaussian noise countermeasure is applied, usually, we
can see some improvement when using data augmenta-
tion for σhid < 5. When increasing the σhid to 5 or 6, we
often cannot recover the correct key using the baseline
model or data augmentation techniques because of the

123

Journal of Cryptographic Engineering

Table 9 Number of attack
traces to reach guessing entropy
equal to 1

Results obtained with the DPAv4.2 dataset and the Identity leakage model under Gaussian noise counter-
measures. Neural networks are trained with data augmentation by generating different augmented traces at
each epoch

low SNR level and the shift-invariant property of CNN,
which cannot contribute to the reduction of noise. The
observation is different from the conclusions in [26],
where the authors focused on SCA based on the abla-
tion paradigm to explain how neural networks handle
countermeasures within the ASCADr dataset and stated
that Gaussian noise is easier than desynchronization as a
countermeasure. The divergence arises from the authors’
selection of a small standard deviation for Gaussian noise
(σhid = 1) and desynchronization (δhid = 5). As shown
in Table 2, an SNR of 1.21 is obtained when the Gaussian
noise level is 1, making it still susceptible to exploitation
by deep neural networks as a countermeasure.

• Is there a range for the efficiency of data augmentation?
For the desynchronization countermeasure, we often
observe the performance improvement from data aug-

mentationwhen the number of augmented traces is above
some value. Take the ASCADr dataset with δhid = 100,
for example. The Nge∗=1 from data augmentation is
always lower than that from the baseline model when
the number of augmented traces is larger than 120,000
and 40,000 for the Identity and Hamming weight leak-
age model, respectively. For the DPAv4.2 dataset with
δhid = 100, the data augmented trace range is greater
than 7000 and 28,000 for the two leakage models. At the
same time, for the Gaussian noise countermeasure, we
do not observe this phenomenon.

• What are the benefits of controlled settings of coun-
termeasures in our work? This work adopts controlled
settings of countermeasures. In real-world settings,we do
not know countermeasure parameters. Even though these
parameters may be unknown in practical scenarios, con-

123

Journal of Cryptographic Engineering

Table 10 Number of attack
traces to reach guessing entropy
equal to 1

Results obtained with the DPAv4.2 dataset and the Hamming weight leakage model under Gaussian noise
countermeasures. Neural networks are trained with data augmentation by generating different augmented
traces at each epoch

ducting controlled experiments becomes essential. This
approach aims to systematically explore the impact of
data augmentation on deep learning-based SCA, thereby
contributing to a more comprehensive understanding of
the subject. These experiments serve as a foundation,
offering a baseline understanding and facilitating a sys-
tematic exploration of the influence of various factors.
The insights gained from such controlled experiments
can be instrumental in guiding practical implementations.

• Thecomplexity of hyperparameter tuning inSCA.Within
this study, it becomes evident that distinct data aug-
mentation configurations are necessary for optimizing
the performance of specific neural network architectures.
The nuances of hyperparameter selection are intricately
linked to the specific characteristics of the targeted
dataset, including elements such as countermeasures, the

number of measurements, points in a side-channel mea-
surement, trace properties, and the appropriate leakage
model. This diversity underscores the intricate nature of
hyperparameter tuning, reflecting the complexity inher-
ent in SCA and highlighting the difficulty in developing
a universally applicable solution.

6 Conclusions and future work

In this paper, we evaluated the influence of data augmentation
on deep learning-based SCAand verified towhat extent it can
reduce the protective effect of hiding countermeasures. We
applied our analysis to two public datasets with masked AES
implementations. We apply desynchronization and Gaussian
noise to the original measurements to create a hiding coun-

123

Journal of Cryptographic Engineering

termeasure effect. We first add the hiding countermeasure to
the chosen datasets and then deploy a hyperparameter ran-
dom search to obtain the best CNN model for each hiding
countermeasure case. Later, to investigate how to properly
implement data augmentation for specificmodels, we deploy
new training for each CNN model by considering data aug-
mentation with different numbers of augmented traces and
different data augmentation hyperparameters, such as range
of trace shifts and standard deviations. Our results show that
data augmentation candecrease the efficiencyof hiding coun-
termeasures to protect the secret key for different datasets. In
particular, we can improve a CNN model generalization by
making the model trained with data augmentation to recover
the key with less than 50 attacked traces for the ASCADr
dataset and a single attack trace for the DPAv4.2 dataset.
These are the best results against trace desynchronization
reported in the literature so far for these datasets. How-
ever, different data augmentation configurations are required
for specific neural network architectures to provide the best
behavior.

In our work, the results from each hiding countermeasure
are not directly comparedwith those of other studies utilizing
augmentation techniques due to the following reasons. To our
knowledge, no related works have employed augmentation
to evaluate potential performance enhancements concern-
ing the Gaussian noise countermeasure. Only one relevant
paper [3] addressed the desynchronization countermeasure,
yet their study did not utilize the ASCADr and DPAv4.2
datasets. More datasets and different neural network archi-
tectures will be studied in future work. Additionally, more
countermeasures and augmentation techniques, such as time
warping and SMOTE, can be adopted. Here, we investigated
hiding countermeasures techniques separately. We will also
investigate howcombined data augmentation strategies could
defeat the combination of multiple hiding countermeasures.

Author Contributions All authors wrote the main manuscript text and
reviewed the manuscript.

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-

right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Benadjila, R., Prouff, E., Strullu, R., Cagli, E., Dumas, C.: Deep
learning for side-channel analysis and introduction to ASCAD
database. J. Cryptogr. Eng. 10(2), 163–188 (2020)

2. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a
leakagemodel. In: InternationalWorkshop onCryptographicHard-
ware and Embedded Systems, pp. 16–29. Springer (2004)

3. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks
with data augmentation against jitter-based countermeasures. In:
International Conference on Cryptographic Hardware and Embed-
ded Systems, pp. 45–68. Springer (2017)

4. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Ç.K. Koç,
B.S.K. Jr., Paar, C. (eds.) Cryptographic Hardware and Embed-
ded Systems-CHES 2002, 4th International Workshop, Redwood
Shores, CA, USA, August 13–15, 2002, Revised Papers, Lecture
Notes in Computer Science, vol. 2523, pp. 13–28. Springer (2002).
https://doi.org/10.1007/3-540-36400-5_3

5. Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.:
Autoaugment: learning augmentation strategies from data. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 113–123 (2019)

6. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: Randaugment: prac-
tical automated data augmentation with a reduced search space.
In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops, pp. 702–703 (2020)

7. Fawzi, A., Samulowitz, H., Turaga, D., Frossard, P.: Adaptive data
augmentation for image classification. In: 2016 IEEE International
Conference on Image Processing (ICIP), pp. 3688–3692. IEEE
(2016)

8. Goodfellow, I.J., Shlens, J., Szegedy,C.: Explaining and harnessing
adversarial examples. In: Bengio, Y., LeCun, Y. (eds.) 3rd Interna-
tional Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7–9, 2015, Conference Track Proceedings
(2015). http://arxiv.org/abs/1412.6572

9. Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make
some noise. unleashing the power of convolutional neural networks
for profiled side-channel analysis. IACR Trans. Cryptogr. Hardw.
Embed. Syst. 48–179 (2019)

10. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In:
Wiener, M.J. (ed.) Advances in Cryptology-CRYPTO ’99, 19th
Annual International Cryptology Conference, Santa Barbara, Cal-
ifornia, USA, August 15–19, 1999, Proceedings, Lecture Notes
in Computer Science, vol. 1666, pp. 388–397. Springer (1999).
https://doi.org/10.1007/3-540-48405-1_25

11. Luo, Z., Zheng, M., Wang, P., Jin, M., Zhang, J., Hu, H.: Towards
strengtheningdeep learning-based side channel attackswithmixup.
In: 20th IEEE International Conference on Trust, Security and
Privacy in Computing and Communications, TrustCom 2021,
Shenyang,China,October 20–22, 2021, pp. 791–801. IEEE (2021).
https://doi.org/10.1109/TrustCom53373.2021.00114

12. Mikołajczyk, A., Grochowski, M.: Data augmentation for improv-
ing deep learning in image classification problem. In: 2018
International Interdisciplinary PhDWorkshop (IIPhDW), pp. 117–
122. IEEE (2018)

13. Mukhtar, N., Batina, L., Picek, S., Kong, Y.: Fake it till you make
it: data augmentation using generative adversarial networks for all
the crypto you need on small devices. In: Galbraith, S.D. (ed.)
Topics in Cryptology-CT-RSA 2022-Cryptographers’ Track at the
RSA Conference 2022, Virtual Event, March 1–2, 2022, Proceed-

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/3-540-36400-5_3
http://arxiv.org/abs/1412.6572
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1109/TrustCom53373.2021.00114

Journal of Cryptographic Engineering

ings, Lecture Notes in Computer Science, vol. 13161, pp. 297–321.
Springer (2022). https://doi.org/10.1007/978-3-030-95312-6_13

14. Perin, G., Chmielewski, L., Batina, L., Picek, S.: Keep it unsu-
pervised: horizontal attacks meet deep learning. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2021(1), 343–372 (2021). https://
doi.org/10.46586/tches.v2021.i1.343-372

15. Perin, G., Chmielewski, L., Picek, S.: Strength in numbers: improv-
ing generalization with ensembles in machine learning-based
profiled side-channel analysis. IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2020(4), 337–364 (2020). https://doi.org/10.13154/
tches.v2020.i4.337-364

16. Picek, S., Heuser, A., Jovic,A., Bhasin, S., Regazzoni, F.: The curse
of class imbalance and conflicting metrics with machine learn-
ing for side-channel evaluations. IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2019(1), 209–237 (2018). https://doi.org/10.13154/
tches.v2019.i1.209-237

17. Picek, S., Perin, G., Mariot, L., Wu, L., Batina, L.: Sok: deep
learning-based physical side-channel analysis. ACM Comput.
Surv. 55(11), 1–35 (2023)

18. Picek, S., Samiotis, I.P., Kim, J., Heuser, A., Bhasin, S., Legay,
A.: On the performance of convolutional neural networks for side-
channel analysis. In: International Conference on Security, Privacy,
and Applied Cryptography Engineering, pp. 157–176. Springer
(2018)

19. Pu, S., Yu, Y., Wang, W., Guo, Z., Liu, J., Gu, D., Wang, L., Gan,
J.: Trace augmentation: what can be done even before prepro-
cessing in a profiled SCA? In: International Conference on Smart
Card Research and Advanced Applications, pp. 232–247. Springer
(2017)

20. Rijsdijk, J., Wu, L., Perin, G.: Reinforcement learning-based
design of side-channel countermeasures. In: Batina, L., Picek, S.,
Mondal, M. (eds.) Security, Privacy, and Applied Cryptography
Engineering-11th InternationalConference, SPACE2021,Kolkata,
India, December 10–13, 2021, Proceedings, LectureNotes inCom-
puter Science, vol. 13162, pp. 168–187. Springer (2021). https://
doi.org/10.1007/978-3-030-95085-9_9

21. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmen-
tation for deep learning. J. Big Data 6(1), 1–48 (2019)

22. Standaert, F.X., Malkin, T.G., Yung, M.: A unified framework
for the analysis of side-channel key recovery attacks. In: Annual
International Conference on the Theory and Applications of Cryp-
tographic Techniques, pp. 443–461. Springer (2009)

23. Van Woudenberg, J.G.J., Witteman, M.F., Bakker, B.: Improving
differential power analysis by elastic alignment. In: Kiayias, A.
(ed.) Topics in Cryptology-CT-RSA 2011, pp. 104–119. Springer,
Berlin (2011)

24. Wang, J., Perez, L., et al.: The effectiveness of data augmentation
in image classification using deep learning. Convolutional Neural
Netw. Vis. Recognit. 11, 1–8 (2017)

25. Wouters, L., Arribas, V., Gierlichs, B., Preneel, B.: Revisiting a
methodology for efficient CNN architectures in profiling attacks.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020(3), 147–168
(2020). https://doi.org/10.13154/tches.v2020.i3.147-168

26. Wu, L., Won, Y.S., Jap, D., Perin, G., Bhasin, S., Picek, S.: Explain
somenoise: ablation analysis for deep learning-basedphysical side-
channel analysis. Cryptology. ePrint Archive (2021)

27. Zaid, G., Bossuet, L., Dassance, F., Habrard, A., Venelli, A.: Rank-
ing loss: maximizing the success rate in deep learning side-channel
analysis. IACRTrans. Cryptogr. Hardw. Embed. Syst. 2021(1), 25–
55 (2021). https://doi.org/10.46586/tches.v2021.i1.25-55

28. Zhang, H., Cissé, M., Dauphin, Y.N., Lopez-Paz, D.: Mixup:
beyond empirical risk minimization. In: 6th International Con-
ference on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30–May 3, 2018, Conference Track Pro-
ceedings. OpenReview.net (2018). https://openreview.net/forum?
id=r1Ddp1-Rb

29. Zhou, Y., Standaert, F.: Deep learning mitigates but does not anni-
hilate the need of aligned traces and a generalized resnet model
for side-channel attacks. J. Cryptogr. Eng. 10(1), 85–95 (2020).
https://doi.org/10.1007/s13389-019-00209-3

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1007/978-3-030-95312-6_13
https://doi.org/10.46586/tches.v2021.i1.343-372
https://doi.org/10.46586/tches.v2021.i1.343-372
https://doi.org/10.13154/tches.v2020.i4.337-364
https://doi.org/10.13154/tches.v2020.i4.337-364
https://doi.org/10.13154/tches.v2019.i1.209-237
https://doi.org/10.13154/tches.v2019.i1.209-237
https://doi.org/10.1007/978-3-030-95085-9_9
https://doi.org/10.1007/978-3-030-95085-9_9
https://doi.org/10.13154/tches.v2020.i3.147-168
https://doi.org/10.46586/tches.v2021.i1.25-55
https://openreview.net/forum?id=r1Ddp1-Rb
https://openreview.net/forum?id=r1Ddp1-Rb
https://doi.org/10.1007/s13389-019-00209-3

	A systematic study of data augmentation for protected AES implementations
	Abstract
	1 Introduction
	2 Background
	2.1 Deep learning-based profiling side-channel analysis
	2.2 Data augmentation
	2.3 Datasets
	2.3.1 ASCADr
	2.3.2 DPAv4.2

	3 Related works
	4 Analysis methodology
	4.1 Adding hiding countermeasures
	4.2 Data augmentation hyperparameters

	5 Experimental results
	5.1 Desynchronization countermeasure
	5.1.1 ASCADr
	5.1.2 DPAv4.2

	5.2 Gaussian noise countermeasure
	5.2.1 ASCADr
	5.2.2 DPAv4.2

	5.3 Discussion

	6 Conclusions and future work
	References

