
Value-Based Smart Reminders
Finding appropriate moments for
notifications in smart reminder system

Master Thesis | R. Kabel
 MSc Embedded Systems | Interactive Intelligence

 EEMCS | TU Delft

Value-Based Smart Reminders
Finding appropriate moments for
notifications in smart reminder system

Student R. Kabel (4132165)
MSc Embedded Systems
Faculty of EEMCS
TU Delft

Dr. Willem-Paul Brinkman (chair)
Department: Interactive Intelligence

Dr. Myrthe Tielman (mentor)
Department: Interactive Intelligence

Supervisory team

5

activity. Secondly, the expected value gain achieved
by actually remembering is simulated through the
expected time between the moment of notification
and the deadline. The model is implemented in a
Node.js web application, following the principles of
a RESTful web API. The model is tested for both
its success in correct prediction and the moment
selection. The basic predictive model shows a 91%
success rate but falls short at 73% when considering
values. After optimizing the system for user values,
up to a 13% improvement in the success rate and an
18% improvement in the score (more appropriate
moment) is found for the model considering user
values with respect to the basic, predictive model.
Overall, a clear and workable approach to value-
based smart reminders is shown through a statistical
and dynamic approach to incorporate the concept
of user values in a smart-reminder system.

This project focuses on finding what defines an
appropriate moment to notify in a smart reminder
system. Specifically, the goal is to find a way in
which smart reminders systems can be extended
through the use of user values to ultimately
provide more appropriately timed reminders. This
is essential in providing software aided support.
A system is designed from scratch, combining
existing concepts of activity prediction and value-
based design. A statistical Markov chain model
is made from predictions based on Expectation
Maximization and Apriori algorithms. User values
are quantified and optimized following the concept
of a Socially Adaptive Electronic Partner and added
to the model to identify an appropriate moment for
a notification. The concept of values is broken down
into two aspects. Firstly, the value loss invoked by the
nuisance of receiving a notification during a certain

Abstract

6

5. Experimentation 45
5.1 Introduction 46
5.2 Method 47

5.2.1 Baseline 47
5.2.2 Scoring and comparing 48
5.2.3 Scenarios 48
5.2.4 Variables 49
5.2.5 Implementation 50

5.3 Results 50
5.4 Conclusions 52

5.4.1 Limitations 52

6. Conclusion & Discussion 55
6.1	 Scientific	and	practical	contribution	 	 57
6.2	 Future	enhancements	 	 	 58

6.2.1 Differentiating between values 58
6.2.2 Clustering based on more parameters 58
6.2.3 Goal reasoning 58
6.2.4 Improving Other prediction methods 58
6.2.5 Analyzing user preferences 58

6.3	 Final	remarks	 	 	 	 59

9. References 61

8. Appendices 67
8.1	 Key	concepts	of	researched	papers.	 	 68
8.2	 Dataset	entry	 	 	 	 71
8.3	 Unique	activities	in	dataset	 	 	 71
8.4	 Platform	 	 	 	 	 72

8.4.1 Background 72
8.4.2 Programming language 72
8.4.3 Setup 72
8.4.4 API 73
8.4.5 Conclusions 74

Table of contents

1. Introduction 9
1.1		 Problem	description		 	 	 11

1.1.1 Research scope 11
1.2	 Research	question	 	 	 	 12
1.3	 Approach		 	 	 	 13

2. State of the art 15
2.1	 Requirements	of	a	smart	reminder	system	 16

2.1.1 Notification producing or scheduling 16
2.1.2 No specific setup 16
2.1.3 Values 16

2.2	 Comparison	of	existing	concepts	 	 17
2.3	 Preempting	the	deadline	 	 	 19

2.3.1 What is a deadline? 19
2.3.2 Activity prediction 19
2.3.3 The appropriate time 19

2.4	 User	values	 	 	 	 20
2.4.1 Which values 20

3. Concept design 23
3.1		 High-level	overview		 	 	 24
3.2		 Processing	incoming	data	 	 	 24

3.2.1 Data acquisition 24
3.2.2 Dataset 25

3.3	 Activity	prediction	 	 	 	 25
3.3.1 Description Expectation Maximization algorithm 25
3.3.2. Clustering of activities 26
3.3.3. Description of the Apriori algorithm 26
3.3.4 Prediction of future activities 27

3.4	 Value	based	design		 	 	 28
3.4.1 The appropriate time 28
3.4.2 One type of value 28
3.4.3 Quantifying values 29

3.5		 Statistical	model	creation	 	 	 31
3.5.1 Expected value 32
3.5.2 Absorbing Markov chain 33
3.5.3 Drawback of choosing Markov chains 34

3.6	 The	appropriate	time		 	 	 35
3.7	 Concept	description	 	 	 36

4. Implementation 39
4.1	 The	actual	implementation	 	 	 40

4.1.1 Architecture 40
4.1.2 Resources 42
4.1.3 Analysis of incoming data 42
4.1.4 Prediction models 42
4.1.5 The appropriate time 42
4.1.6 Testing 43
4.1.7 Conclusion 43

7

Term Description
ADL Activities of daily living

SAEP Socially Adaptive Electronic Partner

Middleware Software layer that acts as a link between two layers by processing
data before it is passed from one to the other.

Markov chain Probabilistic model describing a sequence of events based solely
on the state attained in the previous event.

QUV Quantified user value. The quantification corresponding to the
given user value; i.e. the value of the value.

Clustering A method of grouping data points according to an algorithm

Route An endpoint (or address) for an HTTP request

Hostname Label or address used to identify a device. Usually this will be the
domain linked to a certain IP address. For example: google.com

Endpoint/URL Universal resource locator. The location, or address, of a certain
resource. For example: http://www.google.com/search?query=blah

Path The location identifying component of the URL. For http://www.
google.com/, this would be ‘/’. For http://www.google.com/
search?query=blah, this would be ‘/search’

API Application Programming Interface. A set of definitions used
among applications to communicate between one another.

RESTful An API standard based on representational state technology (REST).
A standardized, architectural approach web communication using
HTTP methodologies: GET, POST, PUT, DELETE

Table of common terms

8

First	 and	 foremost,	 I	would	 like	 to	 thank	Dr.	Birna	
van	Riemsdijk	for	her	guidance	in	the	first	part	of	my	
thesis	process.	I	wish	her	lots	of	health	and	a	great	
time	at	her	new	position	in	Twente.

Aside	 from	 this,	 an	 equally	 big	 thank	 you	 to	 Dr.	
Willem-Paul	 Brinkman	 for	 taking	 over	 her	 role	 as	
supervisor	and	providing	clear	and	decisive	support.

Furthermore,	 thanks	 to	 Myrthe	 Tielman	 for	 her	
guidance	and	discussion	sessions.

I	would	like	to	thank	my	boyfriend	and	parents	and	
roommate	 for	 their	 never-ending	 support.	 Piotr,	
Michel,	Jacqueline,	and	Joanna,	I	love	you	all!

A	humongous	hug	to	Marit	van	de	Kamp	for	being	
my	InDesign	champion	and	go-to	listening	ear.

Finally,	a	big	hug	and	many	butt	squeezes	to	my	two	
amazing	dance	partners,	Monique	Baijer-Belde	and	
Ilona	Schooneveld	who	have	been	with	me	through	
it	all.	You	two	are	amazing!

Acknowledgements Reader context

This report was written for a diverse audience.
It is equally meant for academics from various
fields, experts from related companies, as well as
the intelligent, common reader. As such, a choice
was made to include explanations of several basic
‘textbook’ principles of the various topics.

1. Introduction

10

The current situation? Usually, a simple timer is
set moments before the expected time of the
deadline. Obviously, this is not very foolproof. The
ideal solution? Getting a notification just before the
deadline of sleeping or leaving the house. A smart
reminder, so to say.

However, both solutions have an additional caveat.
Say a person never checks their phone during
cooking or does not want to be disturbed while
working. Any notifications delivered then will be
ineffective. So, the ideal solution is not only to find
a moment just before the deadline but to make sure
that moment is an acceptable moment to notify.
Preliminary research has shown that there are many
applications that attempt to use knowledge about
their user’s activities. The following examples are
of existing products and applications that combine
user and device information in order to provide
smarter notifications.

Olisto/IFTTT [10], [11]
Can combine date, location and smart
device information to, for example, send a
notification when leaving home and a specific
power consumption is still high (i.e. the TV is
still on).

Maps/Waze [12], [13]
Combines real-time traffic information and
address in calendar events to provide timely
departure reminders.

Timeful [14]
Combines the user’s calendar and to-do items
to estimate duration of to-do items, plan them
in and generate reminders at off-peak times.

Similar to the implementations, papers frequently
focus on finding novel ways of combining
information from smart devices into producing
reminders, following norms provided at design
time. Examples include combinations of location
and time [15]–[17], events based on smart devices
[4], [18], [19], or a combination of numerous sources
of information [20]–[22]. While all very promising,
most concepts and implementations predominantly
rely on design time logic. Only a few actually
manage to create a predictive model that preempts
the deadline. Examples of such exceptions, such
as Timeful [14], usually create a predictive model
and verify this with the user in order to strengthen
the model. Nonetheless, not a single of these
implementations takes the user into account at the
time of the notification.

It is natural for humans to increase their dependence
on technology as technology improves [1]. Through
applications in smart homes, wearables, virtual
coaches and many others, people have increasingly
adapted modern technologies into their daily lives.
Their goals are to increase health, efficiency, and
many other values. Conversely, the abundance of
apps and notifications have a negative effect on
the users and cause them to grow immune to the
constant stream of information that is presented
to them on a daily basis [2]. Especially the elderly
or people with a mental impairment could benefit
from an effective support agent [3]–[8].

A proper implementation of such a support agent
could improve the effectiveness of all notification-
based applications. “Too many notifications cause
the user to tune out” [9] (Figure 1). Rather than
bombarding the user with notifications right when
a related event occurs, the user is much more likely
to act upon the notification if it is delivered at an
appropriate time. But what actually is an appropriate
time?

The appropriate time for notification is inherently
linked to the nature of the user’s action. To illustrate
this, consider the following example throughout
this report.

An elderly gentleman, Peter, often forgets to
close the garden doors before leaving the
house or going to sleep.

In this example, timely notification is of the essence.

5

2

20

922

80

Figure 1 - Overload of notifications

11

1.1.1 Research scope
Prior to being able to establish the research
questions, the scope of the research should be
limited since the problem itself is very broad. Most
notable, since the area of activity recognition is a
rapidly evolving one. However, the current state
is that any form of activity recognition based on
raw sensor data is still very limited or inaccurate in
general solutions [24]. Accuracy can be improved
by having location specific setups [22], or a
severely limited number of recognized activities.
Over the coming years, the quality and accuracy
of activity recognition are expected to increase.
This is increase is attributed to, among others, the
exponential rise in IoT devices in houses and public
building [25] providing more and different data, as
well as the improved sensors in and capabilities
of smartphones. Even partly focusing on actual
activity recognition would therefore be a substantial
enlargement of the scope of research. As such, a
choice was made to make use of existing datasets
or data streams that directly provide information
about the user’s ADL. To not limit the applications
of the designed concept and implementations,
instead, the focus was shifted from the aspect of
activity recognition and placed onto a proper form
of implementation.

In order to make an application aware of how
the user may perceive the incoming notification,
knowledge is required about a user’s values. Van
Riemsdijk introduces the concept of a Socially
Adaptive Electronic Partner (SAEP) [23]. A SAEP
follows the ideology that technology should adapt
to the user and not vice versa. This is achieved by
providing methods in which applications can be
made aware of a user’s values. Through this logic, it
is possible to gain an understanding about finding
an appropriate moment for notifying the user, rather
than just focusing on the timing.

The problem of finding an appropriate moment for
notification boils down to a number of steps. For
starters, in order to provide a reminder notification
before a certain deadline, it is imperative that this
deadline is known. Consecutively, the preceding
activities have to be identified. For this, an existing
smart reminder system or predictive model has to
be chosen. This, in turn, can only be done once there
is sufficient knowledge about the user’s activities of
daily living (ADL).

Ultimately, the existing model can be extended using
user values in order to provide more appropriately
timed notifications.

1.1 Problem description

12

These two questions should provide a good
overview of the abilities of the existing systems and
the amount of work required to extend them to
incorporate user values and to ultimately improve
the timing of the notifications. Of course, for this
knowledge about user values is required.

R3: How can user values be analyzed and
quantified?

R4: How can a smart reminder model be
extended to incorporate user values?

Ultimately, all knowledge can be combined into a
model which can be used to approximate the most
“appropriate time” for dispatching a notification.
This model can then be implemented in a piece
of software in order for the model to dynamically
adapt to new input of the user’s ADL or values.
In order to make the solution more generic, it is
important to analyze how the implementation
should be structured.

R5: How should the smart reminder model
be implemented in order to allow easy
collaboration with third-party software?

Eventually, the improvement through the inclusion
of user values should be tested to allow for
answering the final sub-question:

R6: Does the use of the value-extended
model provide more appropriately timed
notifications?

Following the ideas discussed previously, the focus
of this thesis will be combining the approaches of
existing models and trying to extend them with
the concept of user values. This leads to the main
research question:

"How can a smart reminder system be
extended to incorporate user values to provide
more appropriately timed notifications?"

The expected outcome of this question is a model
which provides timed feedback based on the user’s
ADL and value input. This leads to a number of
sub-questions that need to be answered before
constructing the model.

While it was discussed before that numerous
existing smart reminder systems exist, it was found
that only a few actually use a predictive model to
analyze future activities. This and other aspects are
requirements that need to be decided upon and
analyzed in pursuit of an appropriate model.

R1: What are the requirements for the smart
reminder system?

Once the requirements are known, existing
concepts and implementations should be tested
and compared for these requirements.

R2: Which applicable models and systems
exist for smart reminder systems and how do
they compare?

1.2 Research question

13

Concept design and implementation
A concept was designed, based on two main
components. First, a one-step algorithm for activity
prediction was created, based on a past paper
which uses clustering and data mining algorithms.
Second, successive predictions were combined with
the quantified values in a statistical model based
on Markov chains. Using this, predictions could be
made regarding possible moments for notifications.
These predictions regard two important properties
of the moment. Firstly, the expected time
between the moment and the deadline, which
was desired to be minimized. Secondly, for the
activity corresponding to the chosen moment, the
probability of its occurrence was calculated. From
this, the (mathematical) expected value could be
calculated and maximized. All of the aforementioned
considerations were discussed in chapter 3.

An implementation was required to do proper
testing. However, rather than creating a local test
suite, a client-server-based implementation was
set up. This allowed for easy data management,
client-side input, and connections to other data
sources, all accessible through an API. The details
and reasoning behind all choices were explained in
chapter 4.

Experimentation
In order to test the designed concept, several test
scenarios were established to analyze the different
influences of values on the moment selection. These
scenarios were tested using an existing dataset.
Tests were performed by analyzing two aspects:
success rate (the number of times a moment was
found and reached before passing the deadline),
and a score analyzing how well the timing and user
values were upheld. The actual results, details, and
conclusions can be found in chapters 5, with an
overall conclusion in chapter 6.

Following is a sneak preview of how all aspects of
this thesis were approached. After a literature review
to analyze existing concepts and implementations,
a concept was designed and implemented of which
the basic structure is shown in figure 2. Ultimately,
the concept was evaluated according to various
scenarios to show its added value.

Literature review
In order to answer the first four sub-questions,
existing literature was discussed and compared.
Ideally, an existing smart reminder system was
sought that already takes into consideration the
timing of the notification as well as many user and
environment variables as possible, while being
able to adapt to changes at runtime. In section
2.1 the reasoning behind these requirements was
discussed. In section 2.2, the existing papers and
implementations were compared. This comparison
resulted in the conclusion that no adequate systems
exist and therefore concepts would have to be
combined.

Leading from this and considering no actual analysis
of sensor data is done, several methods of data
acquisition were discussed. A choice was made to
use an existing dataset, but keep in mind a possible
data stream from a third party. This was motivated
in section 3.2.

Simultaneously, an approach to incorporating user
values was researched and discussed in sections
2.4 and 3.4. Rather than looking at different types
of user values at different moments in the decision
process, it was argued that it was sufficient to only
look at the annoyance invoked by the notification
during a certain activity. Thereby, directly linking
activities to values. The subsequent quantization
could then be done through an easy questionnaire.

1.3 Approach

Data acquisition

Data processing

Values

Goals

Activity prediction

Model

Suggested notification

Figure 2 - High level overview of the concept

2. State of the art
This chapter analyzes all aspects necessary to answer the first four research questions before
designing the initial concept. Numerous related algorithms, papers, and implementations were
analyzed and discussed with respect to requirements for a good smart reminder system. In
conjunction with this, the concept of user values and their inclusion in a smart reminder system
had to be analyzed before any combined concept could be conceived.

16

2.1.2	No	specific	setup
Quite frequently, studies in papers use specific
setups to prove a relatively constrained problem,
such as [18] or [29]. These setups usually comprise
of pieces of hardware not usually found in users’
homes, even smart-homes, as opposed to more
general, theoretic or software-based concepts.
These concepts are quite apt and able for those
scenarios, but quickly fall short when applied to
other scenarios or when generalizing the solution.
Considering a more general solution is desired,
such concepts should be filtered out.

2.1.3 Values
The idea behind this thesis was to find existing
systems and extend them with the concept of
values. Therefore, it was interesting to check the
incorporation of values, in any form, in any of the
analyzed papers and concepts.

There have been various approaches as to how
and when to provide feedback to a user. Generally,
the preferred method of feedback is the concept
of smart reminders [26], a reminder that takes
into consideration aspects of the user or their
environment. Simultaneously, the timing of the
reminder should be sufficiently close to the deadline,
the moment before which the reminder should
have been dispatched. Newly developed products,
as well as scientific papers frequently focus on
finding novel ways of combining information from
smart devices into producing reminders. Examples
include combinations of location and time [15]–[17],
events based on smart devices [4], [18], [19], or a
combination of numerous sources of information
to provide insight about a user’s activities [20]–[22].
There are various properties that characterize these
and other concepts and determine what makes the
reminders they provide truly 'smart'.

2.1.1	Notification	producing	or	
scheduling
The aforementioned, and many more, concepts
may all be loosely categorized in two categories.
Firstly, the notification producing concepts.
Such concepts react to a number of events (as
programmed at design-time) that have happened
and subsequently trigger a notification. Secondly,
the notification scheduling concepts, which
intercept such notifications and perform a run-time
analysis about the deadline and current user context
prior to actually dispatching the notification. For
example, checking the notification for priority or
checking the user’s current availability. Furthermore,
such concepts generally work post-factum, thereby
possibly losing most of the value of the reminder.

In principle, the notification interception analysis
can be an extension of the original notification
producer. However, these two concepts are
generally approached separately. In order to arrive
at an appropriate moment for notification, the
interception analysis is of most importance as it
can be built on top of any notification producing
system. Hence, if no sufficing, existing system can
be found, this aspect must be built from scratch.
Then the chosen notification producer should allow
for incorporation of as many user- and environment
variables as possible, to allow for a more complete
system.

2.1 Requirements of a smart reminder system

17

2.2 Comparison of existing concepts
Cogknow [20] showed to be the only one that
implemented user values, except not in the desired
manner. Instead, user values are used to identify
the required support and hence the necessary
reminders. This, as opposed to actually planning the
notifications. A distinct number of support scenarios
are handled and rulesets are defined accordingly.
The rulesets are aimed at avoiding interruptions of
important activities but are all done at design-time.
Therefore, any notification is simply delayed until
the user is done with an uninterruptable activity.

Furthermore, the Timeful [14] application would
have been a good basis for a smart reminder system
since it would look for available moments based
on the user’s calendar and used a self-learning
algorithm to improve scheduling of notifications
and new activities. Unfortunately, the application as
well as its documentation were no longer available
and therefore could not be used as a basis.

So, what was useful? There was no existing
implementation that could immediately be
extended with user values. So in order to arrive
at a concept, rather than extending an existing
smart-notification system, it had to be designed
from scratch. Nevertheless, the ideas from many
papers could be incorporated. Furthermore, by
designing the implementation in such a way that it
was open for third-party applications, a connection
with existing systems such as Olisto [10] or IFTTT
[11] would allow for easy extension to include many
user and environment properties such as weather or
heart rate, for example.

Numerous papers, existing products, and other
concepts were compared to the requirements
mentioned above and displayed in table 1. These
were all relevant concepts found by querying value-
based reminders or smart reminder systems through
services such as Google Scholar or ResearchGate.
Relevant referenced papers were also analyzed.
Short summaries of the important aspects of the
concepts may be found in appendix 8.1.

As expected, the most prominent smart reminder
systems made use of only user and environment
contexts for design time reminder production.
While such systems may be very smart, they all
required a rigid set of rules that have to be fixed
at design time. For example, with Olisto [10], a rule
may be set to get a reminder to take the umbrella
when leaving the house, or at a certain time, but
never just before leaving. Still, such concepts could
come a long way. While not being able to preempt
a deadline, it may still be possible to fake this
behavior. For example by notifying the user right
after they lower their thermostat. This, however,
was not a generic nor foolproof solution.

Furthermore, many solutions which analyze specific
user behavior required specific setups. For example,
MagHive [29] may remind the user to take their keys
if the system notices the user is leaving. However,
it only works with the specific, tagged, set of keys.
Similarly, it will not work if the user leaves through
a different exit.

The majority of the concepts used information
about the user or their environment to some extent.
Nonetheless, most of these solutions used this
information at design time. There were only a few
which took it further and used predictive algorithms
or other methods in order to create a system that
could adapt at run-time. However, most of these
concepts provided insufficient information about
the algorithms used. As such, they could not be
reused as a basis for extension by user values.

18

* Only at design time
Act:
Tim:
Env:
UV:

User activity
Time
Environment
User Values

NP:
NS:
SS:
Loc:

Notification Producing
Notification Scheduling
Specific setup
User location

Legend

Table 1 - Comparison of existing concepts

LocNS UVTimNP Act Ref.SS EnvConcept

X XX X XAHCS [22]

XCAMP [27]

X XX XCybreMinder [28]

X X XGate	reminder [18]

X XX X XIFTTT [11]

X X XMagHive [29]

XXMLCARS [30]

X XX X XOlisto [10]

XX XSRS [31]

X XX X XTAFETA [5]

X XAttelia [2]

X XX XTimeful [14]

XX XXX XXCogKnow [20]

XX XX XDecision maker [32]

X XFizzy	lingustics [33]

X XPAIR [3]

Provides Takes into account

19

[37] uses a combination of clustering and association
rule mining to attempt prediction of temporal
relations between activities. Aside from this, all used
algorithms, parameters and formulas are clearly
described, allowing for easier reconstruction and
implementation. This was very useful since activity
prediction was not the main focus of the thesis,
preventing too much scope creep.

The main drawback of the concept by Nazerfard et
al. is that only single step predictions are done. Only
the immediate next activity is predicted. Therefore,
it still requires a mathematical model to combine
the predictions into a predictive model that allows
for predictions multiple steps into the future.

2.3.3 The appropriate time – a
statistical approach
A simple predictive model would be able to
determine the probabilities of an activity occurring
before the deadline. However, as mentioned in the
original problem statement, the ideal solution also
takes into receiving the reminder shortly before the
deadline. For this, the time between the notification
and the deadline should be minimized.

Originally, the hope was that this would have been
implemented in an existing smart reminder systems.
This could then have been used as a basis, such
as Timeful [14]. Since the system is designed from
scratch, the problem still exists.

A solution was found through the use of (absorbing)
Markov chains [38], [39], by considering the different
activities and temporal relations as states and state
changes. The mathematical properties of Markov
chains could then be used to calculate the expected
time between the deadline and possible moments
for notification.

Since no existing implementation was available, a
concept had to be designed from scratch. The core
aspect of this concept was that it had to be able to
preempt a deadline. This itself brought forth three
main problems. First, what is a deadline? Second,
how can future activities be predicted? Third, how
can a future activity be selected that is relatively
close to the deadline.

2.3.1	What	is	a	deadline?
Describing a deadline or a goal can be difficult to
describe clearly, especially when ultimately trying
to express this in an algorithm. Usually, reaching a
deadline consists of executing one or more activities,
where each of these activities is not the deadline.
However, a deadline may also consist of having
completed a certain number of prerequisites. That
is where deadline reasoning [34] comes into play.

In simple scenarios, such as Peter remembering to
close the garden doors before going to sleep or
leaving the house, deadlines may be linked directly
to an activity. In this specific case, we want to send a
reminder before activity ‘sleeping’, given the state
of the garden doors is not yet closed. Now the
latter part can easily be checked, so the focus is on
reminding before the deadline activity, ‘sleeping’,
as shown in figure 3.

2.3.2	Activity	prediction
In order to analyze suitable moments that exist
before the deadline, all activities until the deadline
had to be predicted. Prediction algorithms are
plentiful, but the field of activity prediction is still
relatively new, partially due to activity recognition
still being underdeveloped as mentioned in section
1.1.1. There are, however, several papers [35]–[37]
which specifically revolve around activity prediction
in a support context. Most notably, Nazerfard et al.

2.3 Preempting the deadline

Figure 3 - Time line of activities approaching a deadline

t
....

Sl
ee

pi
ng

Sl
ee

pi
ng

Br
us

hi
ng

 te
et

h

Ea
tin

g

W
at

ch
in

g
TV

20

As mentioned in the introduction, the idea of
using user values as a method to identify the most
appropriate moment for notification stemmed
from the concept of a SAEP as presented by Van
Riemsdijk [23]. Directly following the work of a SAEP,
Tielman et al. [40], Pasotti et al. [41] and Kließ et al.
[42] further analyzed the relations between actions
and their values.

While their ideas went much further, the idea that
certain actions may promote or demote certain
values is crucial. Furthermore, in order to do
computational or statistical analysis, they argue
that it is possible, although not entirely accurate,
to assign quantifiable value gains and losses to
specific activities.

2.4.1 Which values
Then for which values should the gains and losses
be analyzed? Schwartz [43] proposes several basic
human values, but these are very abstract:

self-enhancement, self-transendence,
openness to change, conservation

Govindarajan et al. [44] instead start with 5 simple,
core value:

peace, truth, love,
non-violence, right conduct.

Other values may be derived from this, such as
right conduct leading to hygiene, punctuality, etc.
Looking at other papers that implement values such
as [40], [45] similar values are used.

Even the basic values as suggested by Govindarajan
et al. may be categorized as subsidiaries of the
abstract values of Schwartz. As any value may be
broken down into more specific values, there is
not really a limit to the number of values used.
Therefore, in any value related concept, a clear
pool of values should be selected.

2.4 User values

3. Concept design
As no prêt-à-porter solution was available which can be extended to incorporate user values,
a concept was designed that built on the fundamentals of other concepts. The initial design
was primarily based on combining three concepts. Firstly, a paper by Agrawal et al. [37] which
discussed a method of analyzing data of a user’s ADL and generating a predictive model through
a combination two machine learning algorithms: clustering and association rule learning.
Secondly, Tielman et al. [40] latter paper focused on values and how they link to activities.
Lastly, absorbing Markov chains [38], [39] are used to describe the statistical model. This chapter
describes all aspects of the concept. However, first, a high-level overview is given.

24

First and foremost, the data of the user’s ADL
was gathered and processed where necessary.
Through the machine learning concepts of [37],
future activities were predicted. Performing these
calculations for all possible starting activities would
lead to a statistical model. This model could then
be extended with knowledge about user values and
the ultimate deadline in order to dynamically select
an appropriate moment for notification based on
the user’s activities as they are recorded. Once
again, this basic concept structure is shown in figure
4.

Specifically, the statistical model takes the most
recently recorded activity and predicts the
probabilities of the user performing a specific other
activity before arriving at the deadline. Each activity
is then scored based on their corresponding user
value and the expected time until the deadline. In
this, it tries to maximize user value and minimize
the expected time until the deadline. If the highest
scoring activity indeed follows, the notification
is dispatched. Else, the process is repeated until
the deadline is reached (this is later shown more
detailed in figure 9).

To understand this concept fully, first the individual
concepts are explained and consecutively the
combined design is revisited.

3.2.1 Data acquisition
As mentioned previously in section 1.1.1, no focus
was put upon actual activity recognition. As such,
this data should be gathered either from existing
datasets, from services which provide streaming
data, or from existing implementations which use a
middleware on top of sensor data to output activity
information.

When using raw sensor data, any form of middleware
is required before ADL data may be obtained.
The first solution would have been to write such a
middleware from scratch. This would have been the
most labor intense solution. However, if the other
data sources are not easily implementable or require
extensive processing, using an existing middleware
may actually be a faster solution, as well as being
more complete. Arcelus et al. [5] did just that;
they designed their own middleware. However, it
could not be used since it remained exactly that, a
design. Hristova et al. [22] instead used an existing
middleware: The CASanDRA framework [24], in
combination with a context toolkit [46], also used
in CybreMinder [28]. The CASanDRA framework,
however, showed promise due to its broad usage
within the research group as shown by many related
papers. Nonetheless, up until the moment of writing
this report, it has shown impossible to retrieve its
implementation, even after contacting the authors
of the original paper and those of papers which
used/referenced it.

Rather than using raw sensor data, more labeled
data streams could be used. Thanks to close ties
with the company behind Olisto [10], access was
granted to all services and code behind. Using
their information would provide direct insight into
events (such as device alarms), states of devices
(such as door open or closed) and services (such as
weather information). Since Olisto is already an up
and running platform, data is readily available. This
also introduced the main downside of using a data
stream. Its live data is fairly random and very much
depends on the various devices the users own and
have connected to the service. While a connection
to Olisto would be a very desired next step, pure
testing would be easier on a fixed dataset.

Aside from gathering and analyzing data ourselves,
the easiest but least extendible option was to use
one of the numerous existing datasets scattered
over the internet. A select number of these directly
provided the desired ADL information. In the
Decision Maker concept by Corno et al. [32], dataset
[47] was used but was synthetically enhanced to add

3.1 High-level overview 3.2 Processing incoming data

Data acquisition

Data processing

Values

Goals

Activity prediction

Model

Suggested notification

Figure 4 - High level overview of the concept (same as fig.2)

25

several properties such as the user activity other
than call information and mobile phone usage. As
such, it was less interesting in its available, original
form. Three other datasets had been found and
were readily available. These, and similar, datasets
could be used both for design and for testing.

3.2.2 Dataset
Three readily available datasets, [48], [49] and [50],
all have a limited but clear number of activities
which are recognized and as such more readily
usable. Their differences lie in the number of
test subjects and the number of unique activities
recorded. Combining datasets is, initially, not a
good idea since data points may have different,
and thus conflicting, labels. Since the range of
activities recorded in these datasets limits the
applicable scenarios that can be tested, the most
comprehensive dataset, [50] is chosen.

The dataset that was ultimately used is one
constructed by Sztyler and Carmona [50]. It was
chosen for its well-structured file format, relatively
large number of different activities, and the fact that
it follows more than one person in more than one
situation. In total, more than 6000 data points over
four different users have been recorded. The other
two datasets scored less on all aspects. Furthermore,
the roughly 1500 entries per user correspond to
about a month of recorded activities which should
be enough to analyze patterns in the daily behavior
of the user. Lastly, when considering only four
users is not enough to statistically generalize the
results. Nonetheless, having just a few different
users should suffice in limiting anomalies caused by
possible strange habits of a single user.

As described by Sztyler, “This dataset comprises
event logs […] regarding the activities of daily living
performed by several individuals. The event logs
were derived from sensor data which was collected
in different scenarios and represent activities of
daily living performed by several individuals. These
include e.g., sleeping, meal preparation, and
washing. The event logs show the different behavior
of people in their own homes but also common
patterns.” A further description of the dataset can
be found in appendix 8.2. Furthermore, a complete
list of unique activities can be found in appendix
8.3.

Activity prediction was done based on the TEREDA
paper by Nazerfard et al. [37]. It focused on two
concepts to create a model for activity prediction;
clustering and association rule mining. Clustering
was done to improve the accuracy of the prediction
model and eliminate possible outliers. Association
rule learning was used for the actual prediction step,
calculating the most likely next activity (cluster).
The specific algorithms used are the Expectation
Maximization [51] and Apriori [52], [53] algorithms.

3.3.1 Description of the Expectation
Maximization	algorithm
Expectation Maximization (EM) is a clustering
algorithm which works iteratively to find maximum
likelihood parameters of a statistical model. It is
used when such parameters cannot be solved
through equations directly. The reason for this may
be missing data points, latent variables, or further,
still unobserved, data points are to be assumed.

Within clustering, there is a division between two
types: hard and soft (or fuzzy) clustering. As shown
in figure 5, in hard clustering, an element either
belongs to a cluster or it does not. In soft clustering,
on the other hand, elements can belong to multiple
clusters but with different degrees of belief, or
confidence. To statistically analyze soft clustering,
mixture models can be used.

Mixture models are a probabilistically sound way of
analyzing soft clustering cases. With this method,

3.3 Activity prediction

Figure 5 - Difference soft/hard clustering

26

each cluster is described as a generative model,
such as a Gaussian or multinomial, as shown in
figure 6. However, the parameters of the model are
unknown (for example the mean and covariance in
the case of a Gaussian model).

If the source cluster of each observation is known,
the estimation of these parameters is trivially
done through a simple calculation. However, even
when not knowing the source, as is the case in a
clustering problem, the EM-algorithm will guess
the cluster each point likely belongs to. This is
done by using the Baysal formulae, those of
conditional probability. Before being able to use
these formulae, the parameters of the models need
to be known. This leads to a “chicken and egg”
problem. The algorithm solves this problem for any
n-dimensional dataset by first performing a random
estimate (expectation) to the initial parameters and
iteratively improving (maximizing) them.

3.3.2.	Clustering	of	activities
Applying the Expectation Maximization algorithm
on activities, Nazerfard et al. [37], performed the
clustering of the activities based on their starting
time. For example, eating in the morning is
considered a different cluster than eating in the
evening. Considering how the expected following
activities are likely to differ between the two
instances, it is clear how this would improve a
predictive model.

Additionally, when calculating the cluster
parameters, the normal distribution parameters are
also calculated for the duration. Activity instances
that do not fit within 95% of the area under the
curve (μ±2σ) are considered outliers. Outliers are
not taken into consideration for cluster parameter
calculations.

After calculating all clusters, all activities are
attributed to their best fitting cluster and fed into
the Apriori algorithm

Figure 6 - Overlapping mixture models,hard
vs. soft clustering

3.3.3. Description of the Apriori
algorithm
The Apriori algorithm is a machine learning
algorithm used to find patterns in large datasets.
Specifically, the patterns of frequent item sets. At
its core, it attempts to identify frequent item sets to
generate association rules used to describe general
trends in the data. The algorithm finds its roots in
analyzing and predicting store transactions to find
products frequently bought together. Nonetheless,
it may equally be applied to the ADL of a person.

The algorithm is based on the concept of a
transaction. A transaction can mean multiple things.
It can be a customer purchase at a store consisting
of one or more items, or it may be a number of
subsequent activities performed by a person.
Every transaction, customer purchase, or activity, is
logged in a database for further processing.

As a starting point, only individual instances are
considered. Examples of instances would be a
single bought item, or a single performed activity.
A breadth-first search is done to find all such
instances that occur in a transaction a minimum
number of times; the threshold or support. In the
second step, such an instance is considered as a
next starting point; for example, the activity sleep.
All transactions that contain this instance are then
reviewed in a similar manner to find all following
instances that occur more frequently than the
support. For example, this may result in the set of
instances {sleeping ⇒ toilet} appearing frequently
in transactions. This process is repeated for the
ever-growing sets of instances until no new sets are
observed.

Using these frequent instance datasets, association
rules can be generated. The association rules can
be described using numerous measures. Among
others, there are confidence, lift and conviction
[54]. Firstly, the confidence of an association rule
indicating X leads to Y, or X⇒Y, is the indication of
how often the rule has found to be true.

The previously defined support, the indication
of how often the set of instances appears in the
dataset, can be described as:

(3.1)

27

confidence can be used as a baseline for the rule
generation, or several measures more. Note that
there are more measures of interestingness than just
those described above, including, but not limited
to, collective strength [55] and leverage [56].

The main drawback of the Apriori algorithm is that
given the bottom-up approach, a large number of
subsets are required to be generated. As such, the
number of database accesses is very high requiring
it to be loaded into memory entirely. Furthermore,
the time complexity is obviously very high.
Consequently, numerous improved algorithms have
been suggested. However, its simplicity makes it
much easier to implement on any sort of database.

3.3.4	Prediction	of	future	activities
Applying the Apriori algorithm on activities,
Nazerfard et al. [37], followed the algorithm as
described before. However, they imposed two
limitations. First, their implementation of the
algorithm focused solely on the support and
confidence for identifying sets of instances. Second,
only pairs of subsequent activities were considered
with no deeper analysis being performed.

The reasons for these limitations were twofold.
Firstly, the concept of transactions of store-bought
items cannot be applied perfectly on the concept
of subsequent activities. While the purchased items
are completely independent, the activities are linked
by time. However, the similarities are substantial
enough to warrant using the Apriori algorithm
for the concept of activity prediction. Secondly,
since Nazerfard et al. were only interested in the
directly successive activity, further expansion of the
instance sets was not necessary. These two reasons
do not fully explain the imposed limitations. Still,
Nazerfard et al. did not provide further clarification
behind their reasoning.

Nevertheless, following the positive results of the
experiments performed by Nazerfard et al., the
choice was made to follow their choices for both
clustering and the prediction as a starting point for
the model. This would avoid scope creep due to
perfecting the prediction algorithm as well as allow
future readers to easily reproduce the results as
mentioned further on in this report.

where t is a transaction within the database of all
transactions T. As a result, the confidence of the
rule is the proportion of transactions that contain
set X, that also contain set Y:

where X ∪ Y is the union of the instances in the
two sets. Rewritten in probabilities, the support
can be seen as simply the probability of an event
P(EX), where EX is a transaction containing item set
X. However, since X ∪ Y regards the instances in a
set, it can rather be written as P(EX ∩ EY). Linking to
Bayesian formulae, the confidence can be seen as
an estimate of the conditional probability P(EY│EX).
The drawback of the confidence measure is that it
only takes the popularity of set X into account.

The lift measure takes both sets into consideration
and compares their dependence to each other to
that expected if they were independent of each
other. It is defined as:

A lift of 1 would indicate that occurrences of X and
Y are independent of each other and thus no rule
can be drawn. The higher the value is above 1, the
larger the degree in which the occurrence of Y is
dependent on that of X and as such is potentially
more useful for prediction. Note that a lift below 1
indicates that X and Y have a negative impact on
each other.

Lastly, the conviction of a rule is an indication of the
frequency of an incorrect prediction. It is defined as:

For example, a conviction value of 1.2 indicates that
an incorrect prediction occurs 20% more often than
if the association was simply by random chance.

The process of the Apriori focuses on first finding
all possible datasets which have minimum support
and then creating rules based on the confidence.
Depending on the implementation, either just the

(3.2)

(3.3)

(3.4)

28

Another option would have been to introduce
a cut-off. In this case, a reminder sent too long
before the deadline would be considered a failure.
The downside of this is that no distinction is made
between a reminder sent just after the cut-off
moment, or just before the deadline. Furthermore,
scoring the result based on time would allow for
optimization with regards to this variable.

Value gains and losses
The second aspect of the problem was finding a
moment that results in the largest value gain, as
may be concluded from the previous section. For
this, the concept of quantifying the value gains and
losses as discussed by Tielman [40] is accepted.
There are two aspects which comprise the ultimate
value gain:

The value gains invoked by remembering
vs.

The value losses invoked by the annoyance
of the notification

When considering a scenario, the absolute value
gain invoked by remembering is not of importance.
Why? Because throughout all analysis it remains
a constant. It may only change if the user does
not actually remember. However, this was already
covered in the time aspect. Therefore, the problem
summarized in analyzing the value losses invoked
by the annoyance of the notification.

3.4.2 One type of value
Analyzing value gains and losses required two
things: a set of values to analyze and a method
to obtain quantitative data regarding the values.
As mentioned in 2.4.1, even the decision of which
values to analyze is a difficult problem. The following
example scenario was considered:

Assume values are quantified from -5 to +5.
Peter has set a reminder to close his garden
doors before going to sleep. Normally he
would be likely to forget. However, if he
remembers, he feels much safer. Hence, his
value of safety is strongly promoted (+3).
The notification may be sent out either while
watching tv (harmony +1, excitement +1) or
while he is brushing his teeth (health + 2).

As explained before, humans make many decisions
based on their norms and values. In order for a
system to be able to mimic such decisions, the
technology needs to have a notion of values as
described by Van Riemsdijk [23].

Thanks to their generalizability and stability over
time, values are perfectly suitable for identifying
underlying reasons for actions [57]. Formalizing
this relationship is complex and can be done in
a number of different ways. The simple way used
in this report followed that of Tielman et al. [40]
and Pasotti et al. [45] in trying to quantify values
for computable simplicity: “we propose a simple
number which expresses how much an action
demotes (negative numbers) or promotes (positive
numbers) a value”. Furthermore, the assumption
was made that for different actions, the values are
commeasurable. This assumption “is not a trivial
one”, but is frequently used to allow quantitative
comparison between otherwise incomparable
numbers.

The logical step would have been to directly assign
values to all activities in the dataset for further
calculation. However, this is not necessarily useful
to the cause. Instead, it is important to revisit
the goal of the thesis before deciding upon the
implementation of values.

3.4.1 The appropriate time – a value-
based	approach
The goal of the thesis is to find the most appropriate
time for notification. There are two aspects to this
problem.

Time aspect
As mentioned before in 2.3.3, in the ideal
situation, the notification is dispatched just before
the deadline. The reasoning behind this can
be explained in terms of values. The value gain
achieved by the reminder should only count in the
calculation when the user actually remembers. Since
this is difficult to test and quantify, an assumption
had to be made. It was assumed that a long time
between the notification and the deadline would
have a negative effect on the value gain caused by
the reminder since the reminder would have a much
lower chance of causing the user to remember.

3.4 Value based design

29

The big advantages of looking at just a single value
come down to three aspects:

• No comparisons between different values
had to be made, removing the need for the
assumption of commenurability.

• It would be easy for a user to supply
quantitative data regarding values of
annoyance because they are more concrete
than most other values.

• Furthermore, statistical analysis is much
simpler using only a single value variable.

3.4.3	Quantifying	values
Since it was difficult to distinguish linguistically
between a type of value and a quantified value, from
here on the following definitions were introduced:

Quantified user value (QUV):
The quantification corresponding to the given
user value; i.e. the value of the value.

To perform calculations based on the QUVs, they
first had to be obtained. The ideal method would
have been to start with an educated guess and
increase or decrease the QUV based on user
feedback. Nevertheless, this would still require
research or previously entered QUVs. For now,
this self-improving aspect was ignored to prevent
possible noise in results and keep a straight-forward
implementation.

Instead, the user is presented with a questionnaire
which directly assigns scores to activities. As
previously it was decided that only the nuisance of
the notification would be analyzed, only a single
choice per activity would have to be made. For
every activity, a choice is made among five options
to answer how annoying it would be to be notified
during this activity, corresponding to common
questionnaires and a Likert-type scale [59]. The
options are shown in figure 7.

If Peter would have received a notification during
either of these activities, one of several things may
happen:

• He may quit this activity, thereby nullifying
any value gains

• He may be disrupted by the notification,
thereby causing a reduction in the value gains

• He may be disrupted by the notification,
thereby introducing value losses (e.g.
harmony)

• He may shortly acknowledge the reminder
but not mind it.

The difficulty in this lay in how to compare the
different value gains and losses. As mentioned at the
start of this section (3.4), assuming commeasurable
values may have posed a solution. However, the
question was whether such a complex approach is
necessary at all.

The values losses as invoked by the nuisance of
the notification were directly related to the gains
invoked by the activity. Rather than seeing them as
separate, the four scenarios mentioned above were
combined by saying Δv is analyzed, the change in
values. Psychologically losses weigh much heavier
than gains [58]. As such, Δv is predominantly
determined by the losses invoked by the nuisance
of the notification. However, establishing these
values for all possible activities would have been
a very difficult task by itself, especially since they
differ per user.

Instead, rather than analyzing the losses invoked
by the nuisance of the notification, an intermediary
may be removed. The result would then be to look
directly at the nuisance of the notification as a
single value. Other ways of describing this could be
emotional well-being or harmony. It would be much
more feasible to ask a user about how annoying a
notification is during a certain activity, rather than
all individual values. Having focused on this single
value may well be sufficient.

Figure 7 - Possible score choices

30

Second, the distance between the various answers.
This distance between the QUVs is very subjective.
However, a common practice is to set them
equidistant. The Linkert-scale suggests simple
integer values. As such, assuming ‘unacceptable’
equates to a QUV of 0, ‘not at all annoying’
would equate to a QUV of 4, the rest distributed
linearly. The assumption that these five answers are
linearly distributed is not a trivial one, but warrants
further investigation in its own right. Furthermore,
weighting may be introduced at a later time,
allowing adaption to the user’s preferences.

Ideally, any reminding would take place at an
activity where a notification is not at all annoying.
However, most importantly, no notifications should
be dispatched when it is unacceptable. To convert
these answers into QUVs, two decisions had to be
made considering the range of the QUVs.

First, the zero-point of the range. There were
two options for the zero-point. Either ‘not at all
annoying’ would be considered the zero-point,
with the other QUVs going into the negative. The
other option would be to consider ‘unacceptable’
as the zero-point, with other QUVs going into the
positive. Considering only notification during an
activity marked as ‘unacceptable’ was considered a
failure, setting this as the zero-point would allow for
later calculations to still consider 0 as a failure while
positive QUVs would be successes.

31

Combining the above matters, the problem may be
stated as:

Given a current activity cluster A and a goal
activity Z, we are looking for an activity cluster
S with the highest QUV, that is likely to occur
before the deadline, and that will be reached
with only a minimal number of expected steps
remaining before Z is reached. So:

Where the aim is to find a minimal m with a
maximal probability and value for S.

Note that Z is not described as an activity cluster
since it is irrelevant which cluster of Z is reached. As
such, all cluster for Z may be combined into one.

Procedurally, the simplest way would have been to
generate a probability tree, analyzing each activity
and its possible successors one by one. However,
this would have been a very computationally
intensive process. Given a dataset of substantial
size, ergodicity may be assumed. Since, given
that there are enough recorded activities, it may
be assumed that at one point the user reaches a
similar activity to one performed before. Such an
irreducible system may be modeled as a (discrete
time) Markov chain where every activity cluster is
represented by a state. The main advantage of
using Markov chains is that there are numerous
ways to analyze such chains. These ways are
computationally much less intensive then analyzing
a probability tree due to their reliance on formulae
rather than on iterative algorithms. All three aspects
up for optimization – probability, QUV and number
of steps between the moment and deadline – were
calculatable using Markov chains. However, in order
to perform these calculations, the problem had to
be formally defined, mathematically that is.

Recapping on the status, using the clustering and
prediction techniques, given any current activity
the next activity could be predicted with a certain
probability. To find an appropriate moment, rather
than just one step into the future, all possible steps
until the deadline had to be analyzed.

As mentioned before, it was accepted that reaching
the deadline was synonymous to reaching a certain
activity. While it was possible to let the statistical
model dynamically adapt to having a single or
more of such deadline activities, for simplicity, only
a single goal activity was accepted.

The requirements for an appropriate moment were
previously discussed in 2.3.3 and 3.4.1. Ideally,
a moment should be found that optimizes the
following aspects:

• It should take place between now and the
deadline (probability)

• The time between the moment and the
deadline should be minimal

• The QUV corresponding to the moment’s
activity should be maximal

3.5 Statistical model creation – Markov chains

Before continuing, another choice had to be
made. When analyzing the time between the
moment and the deadline, ideally an actual time
in minutes would be preferred. With the previous
choices made for the clustering and prediction
techniques, combining subsequent predictions
would account for very inaccurate predictions for
durations. If the clusters had been calculated based
on durations, this inaccuracy might have been
reduced. Still, the combined predictions would
exponentially increase this inaccuracy. Therefore,
rather than looking at the absolute time, the
number of intermediate activities was considered
as a replacement for the time. While not an ideal
solution, it may be argued that assuming this
synonymy is appropriate. Anytime a user switches
activity, their focus is shifted and requiring more
attention to regain proper focus. This is one of the
reasons why multitasking does not really work [60].
While same time may be occupied by a person
watching TV as them showering, then going to
the toilet and several more short-lasting activities,
they do not necessarily have the same effect on the
brain. The addition of time in the smart reminder
concept was introduced to simulate the chance
of the notification having its intended effect of
reminding. As such, the choice was made to look
at the number of intermediate activities between
the moment and the deadline, rather than the
absolute time between them.

Explanation - Markov chain

“A Markov chain is a mathematical process
that transitions from one state to another
within a finite number of possible states. It is a
collection of different states and probabilities
of a variable, where its future condition or state
is substantially dependent on its immediate
previous state. These probabilities can be
exhibited in the form of a transition matrix.”
[38], [61]

32

In the model, each state has a certain QEV and a
probability to reach a different state next. These
probabilities and QEVs could be combined in a so-
called transition matrix and a value matrix. For the
example model that would result in respectively:

The use of the transition matrix is plentiful. For
example, taking P^3 describes the probabilities of
reaching any state, given a starting state, after 3
steps.

As mentioned before, an important characteristic
of our system is its irreducibility. In simple words,
at any moment it is known that a person, at one
point, will fall asleep again. This property allows
finding the stationary probabilities; the steady-
state probabilities as the number of steps taken
approaches infinity. As such, the equation to be
solved is:

Where π is a row vector whose entries are the
probabilities of the states, all summing to 1. For a
small number of states, this can be manually done
using some simple variable substitution and some
linear algebra knowledge. Especially for larger
systems, however, working with the full matrices is
easier. With some quick rewriting:

This can be solved by finding the eigenvalues and
corresponding eigenvectors of the matrix (P^T-I).
This corresponds to solving the following equation:

3.5.1	Expected	value
As mentioned in the previous section, an activity
with a high QUV was sought while being likely to
take place before the deadline. Essentially, this is
mathematically synonymous to saying the expected
value (or expected QUV) should be maximized.
In the following paragraphs, the basic method of
obtaining expected values from a Markov chain is
explained.

Mathematically, the expected value of any random
variable X is defined as the probability-weighted
average of all possible values X can take on [61]:

Given that any activity corresponds to only one
QUV, this equates to:

where x is the QUV corresponding to activity cluster
X. Considering the QUVs were directly taken from
the user, all that remained was to find the probability
of each state. Knowing all transient probabilities
from the prediction algorithm, a transition matrix of
the system could be built. As an example, we will
take a system of three states that represent three
activity clusters as shown in figure 8.

Figure 8 - Example state model with three values

C [2]

B [1]
0.7

0.90.3

0.3

0.1

0.7

A [5]

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

33

To start, the system must be made absorbing.
Continuing with the same example system as
before and taking state C as the final state, the new,
absorbing, transition matrix becomes:

It is nothing other than making the corresponding
element equal one while all other elements in
the row are reduced to zero. The next step is to
obtain the fundamental matrix. In order to find
this matrix, several components are needed first.
These components can be gathered from the new
transition matrix once it is written in canonical form.
For a transition matrix with t transient states and r
absorbing states, the canonical form is described
as:

A t-by-t matrix, describing probabilities from a
transient state to another
A nonzero t-by-r matrix describing probabilities
from a transient state to an absorbing states
A r-by-t matrix of zeros
A r-by-r identity matrix

Q:

R:

0:
I:

In the example case, the transition matrix is already
in canonical form so the property matrices can be
obtained immediately:

The fundamental matrix is a matrix that describes
the expected number of visits to a transient state
before being absorbed. The calculation of the
fundamental matrix starts with the property matrix
Q. Entry (i,j) of Q describes the probability of going
from state i to state j in exactly one step. The same
entry in Q2 describes the probability in exactly
two steps, etc. As mentioned before in 3.5.1,
the expected value of anything is calculated by
summing all probabilities multiplied by their values.
Therefore, the expected numbers of visits, the
fundamental matrix, are calculated using equation
3.5.

Of course, the result will be multiple eigenvectors.
The one corresponding to the stationary distribution
is the one for which all entries of the eigenvector
are positive. In the example, this would be the
eigenvector corresponding to the eigenvalue λ=1,
which is (0.38,0.81,1). Resulting, the stationary
distribution is:

Having found the stationary distribution, the
corresponding expected values are only a step
away:

As shown, this is a simple solution to finding
probabilities and expected values for an
irreducible Markov chain. There is, however, a
problem approaching the problem in this manner.
Reconsider the problem as stated at the start of
this section: Starting at state A, a state S is required
to be reached before reaching deadline state Z.
However, the model that was just discussed doesn’t
consider state Z as a final state but simply allows for
continuation. Therefore, the acquired probabilities
and corresponding expected values do not
represent reality. In order to solve this problem, the
transition matrix had to undergo a transformation
and make the final state absorbing.

3.5.2	Absorbing	Markov	chain
An absorbing Markov chain is a chain where one
or multiple states are absorbing and thus cannot
be left, while all other states can reach at least one
of these absorbing states [39]. Like with normal
Markov chains, the transition matrix can be used to
calculate a number of interesting properties.

Most notably, since the system is no longer
irreducible, its steady-state distribution has
changed. As the number of steps leans towards
infinity, the probability will always be 1 for all
absorbing states combined and 0 for all other
transient states. This might seem more difficult to
work with, but it can be approached in a similar
way as a converging series. Through some simple
transformations and calculations, it is possible to
calculate the expected number of steps between
any state and an absorbing state as well as other
interesting properties.

(3.12)

(3.13)

34

Consecutively, to obtain the expected values,
every element in each row is multiplied by their
corresponding QUVs:

Recapping on the original problem, the goal was to
find a state S such that in:

The expected value for S is maximized and the
minimum number of steps for m is minimized. In
order to find the expected value for S, equation
(3.15) is used to find the probabilities of each state
given the current starting state and then multiplied
by the values of each possible state S. The expected
number of steps is found through equation (3.14).
Looking at the example for the last time, taking
A as our current state and C as our final state, for
intermediate state B the results are:

For both T and H, the results are obvious for such
a small system. However, imagine that for this to
work in a system of a user’s ADL large number of
activity clusters that this is no longer an easy feat.
Since the expected value for S is to be maximized
while keeping the number of steps until absorption
at a minimum, these calculations must be done for
all possible S.

3.5.3			Drawback	of	choosing	Markov	
chains
There is one big drawback of using Markov chains.
This assumes complete independence between
past and future states other than just the one step.
In reality, there are usually a series of sequential
activities. For now, this is not taken into account. A
possible solution would be to look at every possible
set resulting from the Apriori algorithm and map
it as a separate state. Even this is not ideal but it
would be an improvement.

Calculating that for the example, we find:

Here, entry (i,j) of N describes the expected number
of times the Markov chain is in state j, given that the
chain starts in state i, before being absorbed. From
this, the expected number of steps before being
absorbed can be calculated with a simple formula:

Here, 1 is a column vector of the same dimension
as N containing all ones. Calculating this for the
example scenario, the result is:

Therefore, it can be concluded that it will take
an average of 1.34 or 1.13 steps before being
absorbed if started in state A or B respectively.

As explained before, the non-absorbing version
of the Markov chain did not represent reality in its
probabilities of reaching the transient states before
being absorbed. However, these probabilities can
be recalculated for absorbing Markov chains. This
is done using the following formula

Where N_dg is a diagonal matrix with the same
diagonal as N. The resulting matrix H describes the
probability of visiting any transient state given a
starting state. Calculating that for the example, the
following results are obtained:

From any probability can be found. For example,
the probability of passing through B before reaching
C, given that the current state is A is described by:

(3.14)

(3.15)

35

Now that a statistical modal could be constructed,
the appropriate moment had to be selected. This
was done using the procedure as shown in figure
9. Once a reminder is requested, the deadline is
known as entered by the user. Subsequently, all
clusters, as well as all predictions from one activity
cluster to their likely successor, are calculated.
Then, based on the user’s entered QUVs and the
calculated probabilities, the statistical model is
calculated. Given the most recently recorded
activity as the starting state, the expected value and
expected number of steps until the deadline are
calculated for all other activity clusters. These two
numbers are then optimized according to a scoring
function1. The highest scoring activity cluster is
seen as the most appropriate moment which is
also likely to be occurring before the deadline. If
the next recorded activity corresponds to this high
scorer, the notification should be dispatched. If not,
the statistical model and starting state are updated
to the newly recorded activity and the process is
repeated. This continues until either a moment
has been found or the deadline is reached. If the
deadline is reached, the notification should be
dispatched immediately, but this is considered a
failure.

3.6 The appropriate time – the combined approach

1. This scoring is relatively arbitrary and user subjective. However, it allows for a single measure of comparison. Furthermore, changing the scoring
function allows easy adjustment of the weighting between the QUV and the time before the deadline, per the user’s preference. The scoring
function is further described in chapter 5.

Calculate	
activity	cluster

Notify

Next	activity

Is	the	next	
activity	the	

highest	scoring
cluster?

Current
activity

Calculate	
clusters

Predict	future
activities

Set	next	activity	
as	current

Compute	
statistical
model

Calculate	
scores	for	each	

cluster

Scenario
(scoring	
function)

User	values
(QUVs)

Yes

No

Figure 9 - Decision model

36

Model
All cluster predictions are combined and modeled
as a Markov chain with a corresponding transition
matrix. The model is made absorbing, based on
the provided deadline. Using the properties of
an absorbing Markov chain, for each cluster, the
following properties are calculated:

• Probability of reaching that state/cluster
before being absorbed (reaching the
deadline activity)

• The corresponding expected value as
calculated from the probability and the QUV
of the corresponding activity, as supplied by
the user

• The expected number of steps until
absorption is calculated

Moment selection
Based on the most recently recorded activity, the
deadline and the model, an appropriate moment
is predicted. This prediction is done through a
scoring function aimed at maximizing the expected
value and minimizing the expected number of steps
between the moment and the deadline.

While the prediction does not correspond to newly
recorded activities, the process is repeated and the
prediction is updated. This continues until either
the predicted moment occurs, or the deadline is
reached. At this point, the notification should be
dispatched.

Now that all aspects of the concept have been
discussed, the combined design is revisited. Figure
10 shows a more detailed overview of the earlier
posed design.

Data acquisition & processing
First, data about user activity is acquired either from
a stream or a dataset. The data is normalized to
contain type, starting time and duration. For now,
a dataset was used, but the possibility of a data
stream was accounted for.

Activity prediction
The data is clustered using an Expectation
Maximization algorithm. A prediction for each next
cluster is made using the Apriori algorithm.

Values
Rather than looking at all possible user values, only
the nuisance caused by the notification is regarded.
Through manual input, the user’s values for every
activity are stored.

Deadline
The goal activity, before which the reminder should
be dispatched to the user, should be provided. For
now, this was done manually and only a single such
activity was selected.

3.7 Concept description

Dataset

EM

Data acquisition

Data processing

Values

Goals

Data prediction

Model

Suggested notification

 Markov chains

Dynamic model checking

Goal activity identification

Loss by
notification

Data stream

Apriori

Quantify

Figure 10 - Detailed concept overview

4. Implementation
The implementation was a major aspect of the project. It was used to show the feasibility and
attainability of the proposed concept. Due to the field of technology in which this researched is
based, it was important to allow for connection to a real-life application for possible future field
testing or implementation. As such, several things had to be done.

First, a suitable platform had to be chosen. This platform should not only allow for all desired
datasets to be supported but preferably also allow for a standardized connection to third-party
platforms. Second, the algorithms of the conceptual design had to be implemented in code and
therefore, a programming language with the necessary capabilities and libraries was required.
Lastly, the implementation had to provide a way for a user to input data (or to upload bulk sets
of testing data) as well as obtain results, preferably all in the form of a graphical user interface
for easy access.

Ultimately, the actual implementation was done. This chapter will include explanations of the
most important aspects of the implementation and its algorithms.

40

While to some, the choices for such a platform
may be obvious or trivial, there is clear reasoning
behind the choices for this kind of platform and
architecture. The unacquainted reader may choose
to read appendix 8.4.3 for a detailed description of
the technical components of the implementation,
as well as the reasoning behind all choices.

Going a level deeper, consider figure 13 which
depicts how the most important aspects of the
implementation were organized. A clear separation
of concerns was done by splitting the frontend,
the resource handling, and the actual methods.
Most obviously, the most important aspect of
the implementation is the moment selection. For
this, prediction models had to be created, using
the clustering and prediction algorithms. These
calculations were done based on the activity
and value data as supplied by the user and/or
other 3rd party implementations. In order to use
existing activity data, this data had to be properly
recorded. Given the used dataset, several hiccups
arose. These aspects of the implementation, as
well as the encountered difficulties, are explained
in the next sections. For this, it is important to
understand the different kinds of resources used in
the implementation and stored in the database.

The actual implementation of the designed concept
was done in the form of an application called
NotiVal (VALue based NOTIfications). It serves both
a backend for calculations and communications
as well as a front end for user input, bulk data
uploading, and testing as shown in figure 11.

The architecture will be further explained in the next
sections. While code fragments are not included to
uphold clarity of explanation, the full source code
can be found for analysis at:

https://github.com/RomanovX/Thesis

Combining all the aforementioned aspects, a
JavaScript-based, Node.js server was established,
along with a MongoDB database. It serves a
frontend used to view statistics and allows for user
input. All communication is done through a RESTful
API. In order to do complex machine learning
calculations and matrix calculations, several library
functions are imported.

4.1.1 Architecture
Following the common practices of web-based
services, a basic client-server setup was established
along with a database connection as visualized in
figure 12. The application runs on a JavaScript-
based, Node.js server along with a MongoDB
database. Furthermore, it serves a frontend used
to view statistics and allow for user input. All
communication with the user and third parties was
done through an HTTP RESTful API. Lastly, in order
to do complex machine learning calculations and
matrix calculations, several library functions are
imported. Such library functions range from simple
matrix implementations to the full Apriori algorithm.

4.1 The actual implementation – Notival

Figure 11 - : Example views of the Notival Application

41

Figure 12 - High level architecture overview

Figure 13 - Low level architecture overview

Notival

Express-
based

HTTP REST
API

Application
logic

Front end
service

Node.js application

3rd party Client browser User

Backend
server

Database

Methods

API

Resources

Cluster

Activity Prediction
model

User Predict
moment	for	
deadline

New	
activity
event

3rd	Party
implementation

Testing User

Upload
dataset

Activity	
upload

Value
input

Recalculate	
model

Frontend

Perform
testing

Actions

Clustering	
(EM)

Activity
prediction
(Apriori)

Moment
selection
(markov)

42

Analyzing starting times
The third major aspect of the implementation is
its clustering. In order to cluster by starting times,
these times had to be converted from a date into a
number corresponding to the time on the day. The
simplest solution was to use the number of minutes
since midnight. This brought along one drawback.
The time of 00:00 would correspond to 0 minutes.
However, a time of 23:59 would correspond to 1439
minutes. While these times are only a minute apart,
to the clustering algorithm there could be no bigger
difference between these times. As no solution was
found for this within the clustering algorithm, it was
accepted that a certain degree of inaccuracy would
be found in the clustering.

4.1.4	Prediction	models
Prediction models are basically the rows of the
transition matrix. However, they are more detailed
so they could more easily be updated when new
activities were recorded. The prediction models
were the result of performing the clustering and
prediction algorithms. For a large part, library
functions were used to implement these algorithms
[71], [76]. A similar procedure and similar parameters
were used as described in the paper by Nazerfard
et al. [37] to acquire these clusters, and later the
prediction models.

4.1.5 The appropriate time –
implementation
To predict the appropriate time, three things
were required from the user; a sufficiently large
set of recorded activities, a set of recorded
QUVs, and a deadline. The actual moment
selection was, of course, the most important part
of the implementation. Given that the recorded
activities were already processed into prediction
models, there only one major part remaining in
the implementation. This last part was the matrix
calculations corresponding to those explained in
section 3.5 about the statistical model.

After the code shown there, the scores were
calculated based on the defined scoring function and
passed back to the system for possible notification.
Another very interesting aspect of this section is
how adept JavaScript is in the implementation of
Matrices, albeit with the use of a library.

4.1.2 Resources
Resources are used within NotiVal to contain the
most important pieces of data. They are provided
and accessible through the API (as shown in figure
13), following the REST principles. The resources are
then stored in a database corresponding to clearly
defined models, allowing for easy use further down
the road, preventing errors. These main resources
are:

Users
Described by their id as well as their values

Activities
Entries of activities, described by which user they
belong to, their name and information about their
starting and ending time.

Clusters
The models of clusters in which the activities have
been sorted according to the clustering algorithm.
They are described by which user they belong
to, which activity they correspond to, and the
parameters of the model.

Prediction model
Information about the probabilities of each
subsequent cluster, given the current cluster as
calculated through the Apriori algorithm. Once
again, they are further described by which user they
belong to.

4.1.3	Analysis	of	incoming	data
Incoming data is analyzed in two moments. Either
when a new user activity is recorded through an API
call, or when a dataset file is submitted. While the
analysis of the incoming data in itself is not very
exciting, there are two important aspects to discuss.

Errors & Overlapping activities
As in any possible data source, errors may occur.
As shown in more detail in appendix 8.2, every
recorded activity consisted of a start and end event.
Occasionally, one of two things could happen.

First, it could occur that an activity that was started
was never completed. This anomaly only occurred
twice in the used dataset, so these entries were
simply omitted. Second, a new activity could be
started before a prior one was completed. This
was solved by finding corresponding events rather
than assuming that two subsequent events always
corresponded.

43

4.1.6	Testing
The final part of the implementation consisted of
creating a testing suite. This testing suite would
allow for randomization of selecting test cases,
QUVs, and deadlines. This will, however, be
explained in the next chapter.

4.1.7 Conclusion
Separation of concerns was done by splitting the
implementation into frontend, resource handling
through the API, and the actual methods used for
calculations and predictions. Several ‘clean-ups’
had to be performed to analyze incoming data, and
transform it into a general data structure for activities.
Activities could then be clustered. From the clusters,
a prediction model was made. Combining the
prediction models and the user values, the moment
calculations could be performed

5. Experimentation
Having established and implemented a model, the final step is to answer the last research
question:

Does the use of the value-extended model provide more appropriately timed
notifications?

While having a proper implementation shows that the concept is achievable, it is more interesting
to see if the model shows improved performance. This chapter covers the approach and method
of the testing and shows the results of the tests performed.

46

These losses may be modeled directly after the input
from the user. However as actually remembering
is mostly determined by the time between the
notification and the deadline, the expected value
gain caused by the reminder was modeled through
this time.

Therefore, to answer whether a value-based
model leads to a more appropriate selection of a
moment for notification, three questions should be
answered, as illustrated in figure 14:

As such, the time and value-based approaches
could be tested and compared to the baseline to
show possible improvements in results.

The purpose of this paper was to see how the
addition of values to a smart reminder system
would improve the choice for more appropriately
timed notifications. It was reasoned that the most
appropriately timed notification would maximally
improve user values.

As no sufficing, existing, smart reminder system
existed, it was built from scratch. Therefore,
no absolute measure of performance could be
introduced. In order to analyze the performance
of the proposed algorithm, several aspects were
tested and compared.

First, a baseline scenario was introduced. This
baseline would analyze the performance of just
the predictive model. Hence, rather than using an
absolute measure of performance, the performance
increase of the value-based model could be
compared to that of the baseline.

To identify the exact scenarios to be tested, the
research question had to be broken down. The
most appropriately timed notifications were said to
maximize the increase in user values. As such, it was
key to define the ways in which the user values could
be altered. This increase in user values consisted
of two parts: the gains invoked by remembering
and the losses invoked by the nuisance of the
notification.

5.1 Introduction

Figure 14 - Approach to testing

Does optimizing the moment selection
for ...
• minimal time between the moment and

the deadline
• minimal nuisance (or maximal expected

QUV) corresponding to the moment's
activity

• both time and values (QUV)
... improve the success rate and
comparative scores with respect to the
baseline.

Clustering
(expectation	
maximization)

Statistical	model	(Markov	chains) Variables

Testing	data

QUVs

Deadline

User

Predictive	
model

(base	line)

Scenario	1:
Time

ResultsScenario	2:
Values

Scenario	3:
Time	&	Values

Prediction
(Apriori)

47

What	is	known:
• The activities of all users
• The most recent activity
• The QUVs (quantified user values)
• The deadline

What	is	to	be	calculated:
• The expected value (probability × QUV)

of each possible moment
• The expected time (in steps) between

this moment and the deadline
• A score meant for optimization, aimed

at maximizing the expected value and
minimizing the expected time

To recap on the concept, the idea is to find a
moment, an activity, during which the notification
will be presented. To find this moment, for every
user, several variables are known and several
variables may be calculated from them:

For this, the activities of the user are clustered.
Given the knowledge of each successive cluster, a
predictive model is made. Based on the predictive
model and a given deadline, the moment selection
is done according to the following algorithm:

Given a current activity cluster A and a goal
activity Z, we are looking for an activity cluster
S with the highest QUV, that is likely to occur
before the deadline, and that will be reached
with only a minimal number of expected steps
remaining before Z is reached. So:

Where the aim is to find a minimal m with a
maximal probability and value for S. If the
predicted activity cluster S corresponds to the
next recorded activity cluster, the notification
is dispatched. Else the newly recorded activity
cluster is set as the new state A and the process
is repeated. This continues until either an S is
found, or Z is reached.

With the concept and implementations as discussed
in the past chapters, this could now be calculated.
However, to test the actual improvements of the
concept, a method of testing had to be conceived.

As previously mentioned, since the smart reminder
system was built from scratch, no absolute scoring
method could be used. Therefore, a baseline and
a relative scoring function had to be established.
Thereafter, various testing scenarios could be
considered. These three scenarios, as shown in
figure 14, analyze the performance of the algorithm
when considering:

• The value loss invoked by the nuisance of the
notification

• The expected value gain invoked by
remembering as simulated by the time
between the moment of notification and the
deadline

• Both aspects combined

These scenarios were tested for the different users
and deadlines, using a part of the users’ activities
for training and a part for testing. To simulate
random users, the tests were repeated for a large
set of randomized QUVs. More explanation and
reasoning are discussed in the following sections.

5.2.1 Baseline
Given that the model works with a custom
prediction method, it is only possible to analyze
results by comparing them with a baseline scenario
in which values are not taken into consideration.
As the optimization of time between the moment
of notification and the deadline was included to
simulate the effectiveness of the reminder, and
therefore its positive effect on user values, it too
was ignored in the baseline. The result is a scenario
in which the notification is dispatched during
an activity (cluster) which is most likely to occur
before the deadline. This corresponds to letting
the implementation run with the following scoring
function:

where P[X] is the probability of X occurring before
the deadline. Furthermore, the algorithm is
considered successful if it manages to correctly
predict a moment before reaching the deadline.
Obviously, this baseline will have the highest scoring
success rate, because it is not being held back due
to value or time requirements. However, both the
score and success rate should be normalized before
comparison. The reasoning behind such a baseline
scenario is that it analyzes the performance of the
basic algorithms before implementing the value-
based decisions.

5.2 Method

(5.1)

48

5.2.3 Scenarios
Three scenarios were used to analyze the
improvement as caused by including values. Firstly,
the scenario in which only time, or the number
of steps from the moment until the deadline, is
considered. A moment was sought which is an
expected minimum number of steps before the
deadline, but still likely to occur. In principle, this
is still partially related to the predictive model.
Therefore, it is interesting to compare this to the
other value-based scenarios. For this, the following
formula was used to calculate the score of each run:

In the second scenario, only values are considered.
This was done to see whether incorporating the
aspect of time is truly beneficial. This led to the
following formula to calculate the score:

Aside from this, the third scenario takes both time
and values into consideration and basically attempts
to optimize all aspects. As such its scoring formula
is similar to the normalized score.

In producing this scoring formula, it was assumed
that the value and time components weigh equally.
However, for any user these weightings may vary.
Since no specific users were analyzed, this was not
taken into consideration for now.

5.2.2	Scoring	and	comparing
Like the baseline, every tested scenario will be
accompanied by a scoring formula used to calculate
a score and a success rate. However, since the
different scenarios must be made comparable, two
normalized scores are introduced: the normalized
score and the normalized success rate.

The normalized score recalculates the score for the
chosen activity cluster, but incorporating the value-
based aspects. This corresponds to the following
function:

Where V[X] is the QUV corresponding to X as
provided by the user, or through random selection
(as done in the test runs). T[X] indicates the expected
number of steps between X and the deadline. Lastly,
E[X] is the expected value of X.

A score of zero indicates a failure, either because
no moment was selected, or because the chosen
activity cluster corresponded to a QUV of 0. Other
than that, the score in itself is fairly meaningless.
However, as ideally the expected value is maximized
while the time between the moment and the
deadline is minimized, a higher normalized score
indicates a better performing system.

A good result for a test scenario would be one of
three things:

• If the normalized success rate stays roughly
the same but the normalized score increases,
it means the consideration of the user’s
value is increased without compromising the
effectiveness of the reminder.

• If the normalized score stays roughly the same
but the normalized success rate increases,
it means an appropriate moment is found
more frequently, without compromising user
values.

• If both increase, it means all-round, more
appropriate moments are found more
frequently.

(5.2) (5.3)

(5.4)

(5.5)

49

5.2.4 Variables
In order to properly randomize tests, a number of
variables were altered to create test cases. The four
variables were:

• User
• Deadline
• Testing case
• QUVs

Users
As mentioned in 3.2.2, the dataset used has over
6000 data points for four different users, leading to
roughly 1500 points per users, spread over roughly
a month. The different users were analyzed to
prevent any habits of a single user from affecting
the results.

Deadline
The deadline, or deadline activity, is the activity
before which the notification should have been
dispatched. While any activity may be chosen as
a deadline, realistically only a few of them create
plausible scenarios. For the purpose of this report,
the two deadlines as mentioned in Peter’s example
of having to close the garden doors are: leaving the
house and going to sleep. In conjunction with the
activities presented in the dataset, this corresponds
to the activities ‘sleep’ and ‘outdoors’.

Testing case
In order to perform testing, the datasets have to be
split up into a set for training and a set for testing.
With an average size of roughly 1500 data points
per user, a testing set of 10% should be sufficient
[77]. However, as will be shortly explained, not all of
the data points in the testing set will be considered.

The normal procedure would have been to run the
algorithm for every data point in the testing set.
However, since the data points are not independent
of one another, this is not a suitable approach.
Instead, testing cases should be considered. A
testing case is a continuous series of data points
(recorded activities). As many useful testing cases
as possible should be identified from the testing
set. To select such a testing case, the start and finish
of the series of activities should be identified.

The choice for the finish is simple: it is an instance
of the deadline activity. The logical choice for the
start of the test case would therefore from the prior
instance of the deadline activity. Nevertheless,

this choice should be reasoned. To illustrate the
selection of a testing case, consider the following
(simplified) series of activities:

Aside from this consider the original example
scenario of Peter having to remember to close
his garden doors before going to sleep. The most
logical choice would be to look at the instance
of sleep before it (both marked in bold). As such
the prediction algorithm is run. If the predicted
cluster corresponds to that of ‘grooming’, the
notification should be dispatched, else the process
is repeated. However, the next step would be the
same as considering a testing case from ‘grooming’:

As such, given that the reminder was programmed
before the testing case in question, it is only
necessary to look at the original situation from
‘sleep’ to ‘sleep’. This would be the case for
recurring reminders such as Peter’s example. Also
considering setting reminders at a later moment
requires more attention. For example, setting a
reminder to call someone before the end of the day.
Programming such a reminder is generally done a
minimum number of steps before the deadline.
Furthermore, this would require a larger resolution
than provided by the used dataset. As such, the
choice was made to focus on recurring reminders.
Furthermore, not every instance of sleeping should
be invoked as a deadline. For example, when Peter
wakes up to go to the toilet and go back to sleep,
this is not a moment at which a notification should
occur. Consider this extended example:

...

...

Sleep

Sleep

Grooming

Grooming

Eating

Eating Watching TV

Watching TV

Toilet

Outdoor OutdoorWork

...

...

Sleep

Sleep

Grooming

Grooming

Eating

Eating Watching TV

Watching TV

Toilet

Outdoor OutdoorWork

Grooming

Toilet

Eating

Sleep

Outdoor

Watching TV Toilet

Grooming

Watching TV

Work EatingOutdoor

... Sleep Toilet Sleep

...Sleep

50

Instead, a typical testing case would be to find the
perfect moment between actually waking up for the
start of the day, and going back to sleep. In other
words, the testing set would be the set of activities
between the two marked instances of ‘sleep’. In
order to find such testing sets it was assumed that
such ‘connected’ activity instances may happen with
a maximum of two different activities in between.

QUVs
In order to objectively test the model with respect
to the QUVs, or values relating to annoyance
caused by the notification, the QUVs should be
randomized. As such, every scenario was tested
with 1000 different configurations of values. Here,
each random value was an integer value between
0 and 4, linked to an activity corresponding to the
values as mentioned in 3.4.3.

Number of runs
Given that there are 4 users, 2 deadlines and 1000
random sets of values, a minimum of 8000 results
are obtained given that there is at least one test case
per user per deadline. Realistically, a much higher
number is achieved. Using 20% of the dataset as
testing activities led to roughly 24000 results.

5.2.5 Implementation
As mentioned before in 5.1.2, for the various
scenarios, four numbers were calculated: the score,
success rate and their respective normalized values.
Performing this for all users, and randomized
variable led to just under an hour of testing. This
long testing time was the result of only using semi-
optimized.

Before looking at the results, let us quickly recap
the meaning and purpose of the normalized results.
While the opportune moment was calculated using
the formulas corresponding to each scenario, the
moment is reevaluated while taking all variables
into consideration. Consider the following example
for illustration:

In the baseline scenario where values and time
are not considered, the appropriate moment
is found to be at activity 'work’. However, the
user considers it ‘unacceptable’ to be notified
during the activity. Hence, its QUV and
respective normalized score are 0.

Here a successful moment in the baseline scenario
would be a very unsuccessful moment in the eyes
of the user when considering their values. As such,
normalized simply means, ‘the score or success rate
as it would have been taking both values and time
into consideration’, allowing comparison between
the different scenarios.

The success rate is simply the fraction of tests
which successfully predicted a moment suitable
for notification according to the scoring function.
When normalized, it is checked against the QUV
corresponding to the chosen activity (if this had not
yet been done). Hence, the basic and normalized
success rates will be equal for scenarios already
including QUVs in its scoring function.

Tables 2 and 3 show the combined results for
24015 individual test runs for the various variable
and scenarios. s indicates the respective score or
success rate. Δs indicates the difference in regards
to the baseline, however, this is not applicable to
the not-normalized scores.

5.3 Results

Scenario Baseline Only time Only values Values & Time

Score

Normalized Score

s

0.917

0.195

s

0.077

0.195

Δs

0%

s

3.083

0.227

Δs

+16.4%

s

0.231

0.231

Δs

+18.5%

Scenario Baseline Only time Only values Values & Time

Success rate

Normalized SR

s

0.916

0.733

s

0.833

0.667

Δs

-9.1%

-9.0%

s

0.828

0.828

Δs

-9.6%

+13.0%

s

0.776

0.776

Δs

-15.2%

+5.8%

Table 2 - Success rates (SR) per scenario

Table 3 - Scores per scenario

51

The next aspect is to consider the normalized
scores. Obviously, trying to optimize the same
function used to calculate the normalized score will
give the highest result. More interesting, are the
three scenarios side by side. The inclusion of just
time does not show any (significant) improvement.
The inclusion of just values does so drastically.
This can be explained by the many ‘unacceptable’
activities no longer being considered as an
appropriate moment. However, the kicker lies in the
improvement from this to including both the values
and time components. This shows that, while still
improving the success rate, the addition of user
values in a model actually improves the selection of
an appropriate moment for notification.

While this score can probably be improved even
further, this is mostly dependent on the preferences
on the user. The user preferences alter weighting
between the values, timing, and success rate.
Furthermore, while changing the weighting is one
option, one may choose to implement a completely
different scoring function.

From these results, several interesting conclusions
may be inferred. Firstly, the baseline is shown to
have a success rate of roughly 92%. This is actually
a very good result since it shows that the predictive
model works quite adequately. The normalized
success rate of 73% (which is roughly 20% lower
than 92%) indicates that the randomization of the
user values properly works. Given that there can be
5 possible values, one of them being 0, 20% should
indeed fail.

Furthermore, in all other scenarios, the addition of
time or values in the calculations is shown to have
a negative effect on the success rate. This is to be
expected given the introduction limiting the number
of appropriate moments. However, compared to
the normalized success rate of the baseline, there
is actually quite a large improvement for the value-
based scenarios. This shows that the addition of
values in a model actually improves the selection
of an appropriate moment for notification in terms
of successful selection. The fact the inclusion of
time only has a negative effect on the normalized
success rate can be explained by the fact that it
is only a limiting factor but without a cut-off (such
as the ‘unacceptable’ QUV). Ultimately, the most
important aspect is that unless the user demands
much emphasis on the timing of the notification, the
normalized success rate shows clear improvement.

52

The baseline, the basic prediction algorithm, has
shown to work properly, showing a success rate
of almost 92%. Revisiting the previously posed
questions:

Does optimizing the moment selection for minimial
time between the moment and the deadline
improve the success rate and comparative scores
with respect to the baseline?
As expected, the addition of a time component
simply restricts the choice of a moment compared
to the baseline. As such, the (normalized) success
rate clearly dropped. For the score, a small
increase would be expected. But apparently simply
optimizing for time is not sufficient. Therefore,
considering minimizing only the time between the
moment and the deadline is not a sufficient option.

Does optimizing the moment selection for minimal
nuisance (or maximal expected QUV) improve the
success rate and comparative scores with respect to
the baseline?
Having no time restriction, a higher success rate is
expected since any predicted, high scoring activity
may be selected. However, even the normalized
score showed a clear increase. This shows that
taking values into account can clearly improve the
selection of an appropriate moment.

Does optimizing the moment selection for both
time and value (QUV) improve the success rate and
comparative scores with respect to the baseline?
The most interesting scenario considered both the
time and the value component in its optimization.
As expected, this scenario showed the largest score
increase. However, even optimizing for both aspects
did not lead to a negative effect on the success rate
when compared to the baseline.

Combining the above conclusion, considering time
and value components, the optimized scenarios
have shown improvements of 6 – 13% successful
predictions. In terms of more appropriate moments,
the optimized scenarios score up to at least 18.5%
better, without losing too much on the success rate.

Currently, the combined scenario considered
arbitrary weighting for the various components of
the scoring function. Further improvements may be
attained by modifying the scoring formula through
proper weighting of the values, timing, and success
rate, based on the user’s preferences.

5.4 Conclusions

5.4.1 Limitations
While the results are promising, a number of
assumptions had to be made, introducing a number
of limitations. Reverting these limitations may have
a negative effect on the results.

Optimization to continuous time
Rather than looking at continuous time, discrete
time was considered, counting activities rather than
the duration of the activities. Assuming continuous
time

No cut-off time
Whether the time before a deadline is an accurate
measure of the probability of actually remembering
is a non-trivial assumption. Instead, a cut-off time
could be used.

One value
The implementation focuses on a single value: the
nuisance invoked by the notification. This is done as
a reasoned replacement of other user values. Once
again this is not a trivial assumption, albeit a very
functional one. However, the concept can be easily
extended to support various user values by doing
all calculations for said values and weighting them
to how the user cares about the different values.
This would, however, require vast amounts of user
input regarding values.

Experimental domain
It was assumed that the system works with reminders
that come periodically. As such it was not tested for
reminders set relatively shortly before its deadline.
Therefore, the applicable domains are currently
more suited for elder care (as suggested by the
main example of Peter). However, this does not
mean this cannot be easily expanded.

Limited Apriori sets
As mentioned in 3.3.4, a choice was made to follow
the paper by Nazerfard et al [37]. When computing
the Apriori sets, only transactions of two subsequent
activities were considered. However, the power of
the Apriori algorithm, as well as other predictive
algorithms, is that it is aimed at identifying larger
sets. In other words, sequences of activities likely to
follow one another.

53

A possible way of expanding the sets while still
being able to use Markov chains for the statistical
model is to view every set as a single state in the
Markov chain. However, the difficulty lies in the
mathematical implications this will have on further
calculations.

Multiple possible deadlines
While the implementation perfectly allowed for
multiple deadlines, a choice was made to only
allow for a single deadline activity at a time. The
reason for this was to increase understanding of the
results. However, this limitation can be surpassed
by adding another absorbing state to the transition
matrix and slightly altering the dimensions of the
resulting matrices.

6. Conclusion & Discussion
The purpose of this paper was to see how the addition of values to a smart reminder system
would improve the choice for more appropriately timed notifications. Having concluded the
project and having seen the results, this main question, along with its sub-questions may be
answered.

56

the values and quantifying the importance of the
values.

To simplify matters, rather than looking at the
different values, only a single value is considered:
the nuisance caused by dispatching the notification
at a specific activity. This facilitates further
calculations and eliminates uncertainty due to
vague comparisons between values that might be
weighted differently by the user.

Furthermore, the assumption is made that a long
time between the reminder and the deadline
reduces the value of the reminder. As such, two
value-based aspects are considered in the ultimate
concept. The value loss due to the notification and
the value gain caused by the reminder, as simulated
by the time between notification and the deadline.

How can the model be extended to incorporate
user values?
Once a prediction model is made, its probabilities
can be combined with quantified values.
Consecutively a statistical model can be used and
optimized to find the most appropriate time for
dispatching a notification.

Since no sufficient implementations were found to
exist, a concept was designed and implemented
from scratch. To limit the scope, no sensor
analysis was done, but instead a dataset was used
containing clear information about a user’s ADL.
Further arrangements were made to also allow
data streams from third parties. Using expectation
maximization and Apriori algorithms as respectively
clustering and prediction methods, a statistical,
predictive model can be established in the form of
a Markov chain. The properties of the Markov chain
are then used to identify the expected value of
each possible activity (or rather activity cluster) and
their expected time remaining until the deadline.
Ultimately, these two values are combined into a
score which is optimized.

The goal of this report was to answer the question:

How can a smart reminder system be extended
to incorporate user values to provide more
appropriately timed notifications?

The main concept considered throughout the paper
was to extend a predictive smart reminder system
with the concept of user values. The goal? To find
a more appropriate moment than simply setting a
timer, or even just utilizing the predictive model.
For this, existing such systems were analyzed and
compared to see whether they were suitable for
future extension.

What are the requirements for the smart reminder
system?
Most importantly, the user’s activities should be
represented in the model. This could be done
through the use of a predictive algorithm. The
result of this model should be a list of probabilities
or scores of the activities that can be combined with
values. Further requirements are the inclusion of the
concepts of goals as well as the model dynamically
adapting to the user’s current activities.

Which applicable models and systems exist for
smart reminder systems and how do they compare?
Actually, very few such systems exist and if they
do they are very limited in their functionalities.
Systems may incorporate selective data about the
user’s activities but, for example, only use it to find
moments when they are not working. Most other
systems do not work dynamically and instead user
environmental data, such as geofencing, to plan
reminders. Value-based design is generally not
included anywhere other than at design time.

How can user values be analyzed and quantified?
There are many different ways of looking at user
values. This is in part due to a large number of
possible values. First and foremost, a selection has
to be made as to which values are considered. A
further difficulty lies in that there is no clear way
to compare different values other than quantifying

57

How should the smart reminder model be
implemented in order to allow easy collaboration
with third-party software?
A complete Node.js web application with RESTful
API was decided upon due to its clear structure,
its ability to work in the cloud its openness in
connecting to other pieces of software and IoT
devices. This platform was also used to implement
the design and its algorithms.

Separation of concerns was done by splitting the
implementation into frontend, resource handling
through the API, and the actual methods used for
calculations and predictions. After collection of the
activities, the algorithms could be run to create
a prediction model. Combining the prediction
models and user values, the calculations could be
performed to find the most appropriate moment.
This gave a glimpse into how a fully functional
application could work. Furthermore, it allowed for
future collaboration with other smart systems as
well as easy creation of test scenarios.

Does the use of the value-extended model provide
more appropriately timed notifications?
First, a baseline was established for further
comparison. This baseline analyzed solely the
predictive model. Compared to the baseline,
three scenarios were analyzed. First, the value gain
caused by the reminder, as simulated by the time
between notification and the deadline. Second, the
expected value loss due to the notification. Third,
both aspects combined.

These were then compared to the baseline results
in two aspects. Firstly, the success rate identified
the times at which an acceptable moment for
notification was found. Secondly, a score was
introduced to measure the appropriateness of the
moment.

The baseline itself has shown to work properly,
showing a success rate of almost 92%. The results
show that the predictions which incorporate
user values into its decision model provide more

appropriately timed notifications in comparison
to the predictions that ignore user values. An
improvement of 6 – 13% was observed in successful
predictions, with the predictions predicting up to
at least 18.5% better scoring (more appropriate)
moments. This shows a clear improvement in using
a value-based system over the basic predictive
model.

Whether this is more appropriate than other smart
reminder models would require further testing.
Nonetheless, other predictive models could equally
be extended using this value-based approach.
However, this approach to appropriately timed
notifications is, first and foremost, a feasible one.
Which directly answers the main research question:

How can a smart reminder system be extended
to incorporate user values to provide more
appropriately timed notifications?
Through the use of quantification and statistical
models, any predictive model could be extended
with the concept of user values and attain useful
and improved results.

58

There are several aspects which warrant closer
inspection when revisiting this project.

6.2.1	Differentiating	between	values
In 3.4.2, the choice was made to look at a single
value. While appropriate for this implementation,
it does limit the way in which values can be
considered. Firstly, notifications may invoke losses
in several different values. Furthermore, different
values may have a different level of importance to
users. Comparing these differences may provide
more insight into the effects of the values on the
ideal moment.

Similarly, the value of remembering should be taken
into consideration. While the assumptions regarding
this matter are appropriate, there is one case that is
not being considered. That case occurs when the
notification incurred loss is always higher than the
value gain invoked by actually remembering. This
raises questions as to whether the reminder should
be planned at all.

Both changes would be very interesting. They
would, however, drastically increase the complexity
of the mathematical calculations needed to be
performed.

6.2.2	Clustering	based	on	more	
parameters
As mentioned in 3.3.2, a choice was made to follow
the paper by Nazerfard et al [37]. In this, prior to
doing activity prediction, activities were clustered
based on their starting times. The durations of the
activities were then used to exclude outliers from the
cluster calculations. However, the durations could
instead be very well used within the clustering itself.
Rather than clustering based solely on starting time,
duration could be added as a second parameter.
Similarly, other parameters could be introduced.

6.2.3	Goal	reasoning
As mentioned in 3.4.2, rather than applying the
concept of goal reasoning as described in [34],
attaining the goal was made synonymous with
arriving at a certain activity. In reality, attaining
a goal is much more dependent on a number of
prerequisite activities.

6.2 Future enhancements

The scientific contribution of this project was its
clear concept of extending a predictive model with
user values in a dynamic and statistical manner. It
showed how the incorporation of user values could
be used to improve planning of notifications. It
has shown how several existing concepts can be
combined to create a complex and dynamic model.
While still in a rudimentary state, it is directly usable
and prepared for various paths for further research.

The practical contribution was, through the actual,
finished implementation. Through designing,
creating and testing an implementation, it is directly
interesting for use in corporate applications.
Companies that already work with planning and
activity information could benefit from the project's
applications.

6.1 Scientific and practical
contribution

59

An initial idea for this would be to look at the larger
Apriori sets as mentioned just before. However,
these prerequisites do not necessarily have to be
completed in order. As such, more research would
be required in order to implement this. Most likely, a
solution could be found by combining the concepts
from [34], [42].

Another aspect is that there can be more than one
activity related to the goal. In the main example
of Peter, two goal activities were mentioned:
Sleeping and leaving the house. While the current
implementation allows for only a single goal activity,
there is nothing that blocks expansion to multiple
goal activities. This is done by simply making both
states absorbing and adjusting all calculations
accordingly. While demanding a bit of time, it is
not at all an unattainable next step in improving the
concept of this paper.

6.2.4	Improving	Other	prediction	
methods
The prediction methods based on clustering and
the Apriori algorithm are definitely not the most
efficient or the most accurate. They are, however,
acceptably accurate and easy to implement and
tweak. With more and more advanced machine
learning algorithms being developed, upgrading the
implementation of this paper with such a prediction
method would be an interesting undertaking.

6.2.5	Analyzing	user	preferences
The scoring methods used in the prediction
algorithms consider the user to equally weigh the
user values, time until the deadline and the success
rate. These three parameters can all be optimized
based on the preference of the user. Ideally, the
current system is used as a basis. Then based on
user feedback, the weightings are adjusted. Or, if a
substantial amount of feedback had already been
collected, the average user weightings may be
used as a starting point.

The concept and implementation as presented
in this report provide a clear and adequate basis.
Numerous improvements and changes can be
made to increase the effectiveness of this solution.
Nonetheless, it has clearly been shown that through
the use of quantified values and a statistical model,
any reminder system or predictive model can be
made aware of said values and use them to generate
notifications in a more user-centric manner.

6.3 Final remarks

9. References

62

[1] “Too dependent on technology,” The
Nation, 31-Dec-2017. [Online]. Available: https://
nation.com.pk/01-Jan-2018/too-dependent-on-
technology. [Accessed: 02-Feb-2019].

[2] T. Okoshi, H. Nozaki, J. Nakazawa, H. Tokuda,
J. Ramos, and A. K. Dey, “Towards attention-aware
adaptive notification on smart phones,” Pervasive
Mob. Comput., vol. 26, pp. 17–34, Feb. 2016.

[3] L. S. Shafti, P. A. Haya, M. García-Herranz,
and X. Alamán, “Personal Ambient Intelligent
Reminder for People with Cognitive Disabilities,” in
Ambient Assisted Living and Home Care, 2012, pp.
383–390.

[4] J. K. Zao, M. Y. Wang, P. Tsai, and J. W.
S. Liu, “Smart phone based medicine in-take
scheduler, reminder and monitor,” in The 12th IEEE
International Conference on e-Health Networking,
Applications and Services, 2010, pp. 162–168.

[5] A. Arcelus, M. H. Jones, R. Goubran, and F.
Knoefel, “Integration of Smart Home Technologies
in a Health Monitoring System for the Elderly,” in 21st
International Conference on Advanced Information
Networking and Applications Workshops, 2007,
AINAW ’07, 2007, vol. 2, pp. 820–825.

[6] W. Jih, J. Y. Hsu, and T.-M. Tsai, “Context-
Aware Service Integration for Elderly Care in A
Smart Environment,” 2006.

[7] N. Mitabe and N. Shinomiya, “Support
system for elderly care with ambient sensors in
indoor environment,” in 2017 Eleventh International
Conference on Sensing Technology (ICST), 2017,
pp. 1–4.

[8] M. Neerincx, M. Tielman, C. Horsch, W.-P.
Brinkman, K. Bosch, and R. J. Beun, “Virtual Health
Agents,” 2015.

[9] K. Morrison|March 12 and 2015, “Needy
Technology: Too Many Notifications Causes Users
to Tune Out.” [Online]. Available: https://www.
adweek.com/digital/needy-technology-too-many-
notifications-causes-users-to-tune-out/. [Accessed:
02-Feb-2019].

[10] “Olisto makes smart thing smarter, according
to your rules.,” Olisto. [Online]. Available: https://
olisto.com/. [Accessed: 19-Apr-2018].

[11] IFTTT, “IFTTT helps your apps and devices
work together.” [Online]. Available: https://ifttt.
com. [Accessed: 19-Apr-2018].

[12] “Maps - Navigation & Transit - Apps on
Google Play.” [Online]. Available: https://play.
google.com/store/apps/details?id=com.google.
android.apps.maps&hl=en. [Accessed: 19-Apr-
2018].

[13] “Free Community-based GPS, Maps &
Traffic Navigation App | Waze.” [Online]. Available:
https://www.waze.com/en. [Accessed: 19-Apr-
2018].

[14] “Timeful,” Internet Archive, 02-Mar-2015.
[Online]. Available: https://web.archive.org/
web/20150302091124/http://www.timeful.com/.
[Accessed: 19-Apr-2018].

[15] A. Robertson, “Location/time-based
reminder for personal electronic devices,” 06-Dec-
2000.

[16] Jason F. Hunzinger, “Location specific
reminders for wireless mobiles,” 15-Nov-2001.

[17] Michael Sean McGee, Michael S. McIntyre,
and James Randall Walker, “Generating an alarm
based on location and time,” 17-Apr-2003.

[18] S. W. Kim, M. C. Kim, S. H. Park, Y. K. Jin,
and W. S. Choi, “Gate Reminder: A Design Case
of a Smart Reminder,” in Proceedings of the 5th
Conference on Designing Interactive Systems:
Processes, Practices, Methods, and Techniques,
New York, NY, USA, 2004, pp. 81–90.

[19] S. Helal, C. Giraldo, Y. Kaddoura, C. Lee, H.
El Zabadani, and W. Mann, “Smart Phone Based
Cognitive Assistant,” Apr. 2018.

[20] D. Zhang, M. Hariz, and M. Mokhtari,
“Assisting Elders with Mild Dementia Staying at
Home,” in 2008 Sixth Annual IEEE International
Conference on Pervasive Computing and
Communications (PerCom), 2008, pp. 692–697.

[21] M. Philipose et al., “Inferring activities from
interactions with objects,” IEEE Pervasive Comput.,
vol. 3, no. 4, pp. 50–57, Oct. 2004.

63

[32] F. Corno, L. D. Russis, and T. Montanaro, “A
context and user aware smart notification system,”
in 2015 IEEE 2nd World Forum on Internet of Things
(WF-IoT), 2015, pp. 645–651.

[33] S. Zhou, C.-H. Chu, Z. Yu, and J. Kim, “A
context-aware reminder system for elders based on
fuzzy linguistic approach,” Expert Syst. Appl., vol.
39, no. 10, pp. 9411–9419, Aug. 2012.

[34] P. Giorgini, J. Mylopoulos, E. Nicchiarelli,
and R. Sebastiani, “Reasoning with Goal Models,”
in Conceptual Modeling — ER 2002, 2002, pp.
167–181.

[35] A. Fritzen, N. Leipold, N. Terzimehic, M.
Böhm, and H. Krcmar, “HeadacheCoach: Towards
Headache Prevention by Sensing and Making Sense
of Personal Lifestyle Data,” 2017.

[36] G. Sandström and Kungliga tekniska
högskolan (Stockholm), Smart homes and user
values: long-term evaluation of IT-services in
residential and single family dwellings. Stockholm:
Royal Institute of Technology, 2009.

[37] E. Nazerfard, P. Rashidi, and D. J. Cook,
“Using Association Rule Mining to Discover
Temporal Relations of Daily Activities,” in Toward
Useful Services for Elderly and People with
Disabilities, 2011, pp. 49–56.

[38] “What is a Markov Chain? - Definition from
Techopedia,” Techopedia.com. [Online]. Available:
https://www.techopedia.com/definition/8249/
markov-chain. [Accessed: 11-Jan-2019].

[39] J. G. Kemény and J. L. Snell, Finite markov
chains. Van Nostrand, 1960.

[40] M. L. Tielman and C. M. Jonker, “What
should I do? Deriving norms from actions, values
and context,” p. 5.

[41] P. Pasotti, C. M. Jonker, and M. B. van
Riemsdijk, “Towards a formalisation of Action
Identification Hierarchies*.”

[42] M. S. Kließ and M. B. van Riemsdijk,
“Requirements for a Temporal Logic of Daily
Activities for Supportive Technology.”

[43] S. H. Schwartz, “An Overview of the Schwartz
Theory of Basic Values,” Online Read. Psychol.
Cult., vol. 2, no. 1, Dec. 2012.

[22] A. Hristova, A. M. Bernardos, and J. R.
Casar, “Context-aware services for ambient assisted
living: A case-study,” in 2008 First International
Symposium on Applied Sciences on Biomedical
and Communication Technologies, 2008, pp. 1–5.

[23] M. B. van Riemsdijk, C. M. Jonker,
and V. Lesser, “Creating Socially Adaptive
Electronic Partners: Interaction, Reasoning and
Ethical Challenges,” in Proceedings of the 2015
International Conference on Autonomous Agents
and Multiagent Systems, Richland, SC, 2015, pp.
1201–1206.

[24] A. M. Bernardos, P. Tarrío, and J. R. Casar,
“CASanDRA: A Framework to Provide Context
Acquisition Services ANd Reasoning Algorithms
for Ambient Intelligence Applications,” in 2009
International Conference on Parallel and Distributed
Computing, Applications and Technologies, 2009,
pp. 372–377.

[25] “State of the IoT 2018: Number of IoT
devices now at 7B – Market accelerating.” .

[26] F. Kargl, B. Dong, T. Illmann, and M. Weber,
Smart Reminder - Personal Assistance in a Mobile
Computing Environment. 2002.

[27] S. Vurgun, M. Philipose, and M. Pavel,
“A Statistical Reasoning System for Medication
Prompting,” in UbiComp 2007: Ubiquitous
Computing, 2007, pp. 1–18.

[28] A. K. Dey and G. D. Abowd, “CybreMinder: A
Context-Aware System for Supporting Reminders,”
in Handheld and Ubiquitous Computing, 2000, pp.
172–186.

[29] “MagHive - World’s First Modular
Smart Reminder (Canceled),” Kickstarter.
[Online]. Available: https://www.kickstarter.com/
projects/2034560442/maghive-worlds-f irst-
modular-smart-reminder. [Accessed: 24-Jul-2018].

[30] P. Shanahan, “Machine Learning for Context-
aware Reminders and Suggestions,” PhD Thesis,
University of California at San Diego, La Jolla, CA,
USA, 2009.

[31] H. T. Chaminda, V. Klyuev, and K. Naruse,
“A smart reminder system for complex human
activities,” in 2012 14th International Conference
on Advanced Communication Technology (ICACT),
2012, pp. 235–240.

64

[54] S. Brin, R. Motwani, J. D. Ullman, and S.
Tsur, Dynamic Itemset Counting and Implication
Rules for Market Basket Data. 1997.

[55] C. C. Aggarwal and P. S. Yu, “A New
Framework for Itemset Generation,” in Proceedings
of the Seventeenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems,
New York, NY, USA, 1998, pp. 18–24.

[56] G. Piatetsky-Shapiro, “Discovery, Analysis,
and Presentation of Strong Rules,” in Knowledge
Discovery in Databases, 1991.

[57] S. H. Schwartz, “Universals in the content
and structure of values: theoretical advances and
empirical tests in 20 countries,” in Advances in
Experimental Social Psychology, 1992.

[58] A. Tversky and D. Kahneman, “Advances
in prospect theory: Cumulative representation of
uncertainty,” p. 27.

[59] H. N. Boone and D. A. Boone, “Analyzing
Likert Data,” J. Ext., vol. 50, no. 2, Apr. 2012.

[60] “Multitasken is toch niet zo handig,”
Psychologie Magazine, 07-Nov-2013. .

[61] S. M. Ross, Introduction to Probability
Models. Academic Press, 2007.

[62] W. D’Almeida, “Deep learning for sensor-
based human activity recognition,” Becoming
Human: Artificial Intelligence Magazine, 05-Jan-
2018. [Online]. Available: https://becominghuman.
ai/deep-learning-for-sensor-based-human-activity-
recognition-970ff47c6b6b. [Accessed: 12-Jan-
2019].

[63] N. C. Krishnan and D. J. Cook, “Activity
recognition on streaming sensor data,” Pervasive
Mob. Comput., vol. 10, pp. 138–154, Feb. 2014.

[64] A. Jordao, A. C. Nazare Jr., J. Sena, and W.
R. Schwartz, “Human Activity Recognition Based
on Wearable Sensor Data: A Standardization of the
State-of-the-Art,” ArXiv180605226 Cs, Jun. 2018.

[65] M. Wilcox, S. Schuermans, C. Voskoglou,
and A. Sobolevski, “State of the Developer Nation,”
2017.

[44] M. Govindarajan, S. Natarajan, and V.
S. Senthilkumar, Professional Ethics and Human
Values. PHI Learning Pvt. Ltd., 2013.

[45] P. Pasotti, M. B. van Riemsdijk, and C. M.
Jonker, “Representing human habits: towards a
habit support agent,” in Proceedings of the 10th
International workshop on Normative Multiagent
Systems (NorMAS’16), 2016.

[46] D. Salber, A. K. Dey, and G. D. Abowd,
“The Context Toolkit: Aiding the Development of
Context-enabled Applications,” in Proceedings
of the SIGCHI Conference on Human Factors in
Computing Systems, New York, NY, USA, 1999, pp.
434–441.

[47] N. Eagle and A. (Sandy) Pentland, “Reality
mining: sensing complex social systems,” Pers.
Ubiquitous Comput., vol. 10, no. 4, pp. 255–268,
May 2006.

[48] “Activity Recognition Challenge
Dataset Download | Opportunity.” [Online].
Available: http://www.opportunity-project.eu/
challengedatasetdownload. [Accessed: 03-Aug-
2018].

[49] F. J. Ordóñez, P. de Toledo, and A. Sanchis,
“Activity Recognition Using Hybrid Generative/
Discriminative Models on Home Environments
Using Binary Sensors,” Sensors, vol. 13, no. 5, pp.
5460–5477, Apr. 2013.

[50] Sztyler, T. (Timo) and Carmona, J. (Josep),
“Activities of daily living of several individuals.”
University of Mannheim, Germany, 2015.

[51] A. P. Dempster, N. M. Laird, and D. B. Rubin,
“Maximum Likelihood from Incomplete Data via the
EM Algorithm,” J. R. Stat. Soc. Ser. B Methodol.,
vol. 39, no. 1, pp. 1–38, 1977.

[52] R. Agrawal and R. Srikant, “Fast Algorithms
for Mining Association Rules in Large Databases,”
in Proceedings of the 20th International Conference
on Very Large Data Bases, San Francisco, CA, USA,
1994, pp. 487–499.

[53] R. Agrawal, T. Imielinski, A. Swami, H. Road,
and S. Jose, “Mining Association Rules between
Sets of Items in Large Databases,” p. 10.

65

[73] “Open Source Document Database,”
MongoDB. [Online]. Available: https://www.
mongodb.com/index. [Accessed: 12-Jan-2019].

[74] “What is a RESTful API?,” MuleSoft, 02-Oct-
2017. [Online]. Available: https://www.mulesoft.
com/resources/api/restful-api. [Accessed: 13-Jan-
2019].

[75] Assertible, “7 HTTP methods every web
developer should know and how to test them,”
Assertible. [Online]. Available: https://assertible.
com/blog/7-http-methods-every-web-developer-
should-know-and-how-to-test-them. [Accessed: 13-
Jan-2019].

[76] K. Sera, Apriori Algorithm implementation
in TypeScript|JavaScript: seratch/apriori.js. 2018.

[77] I. Guyon, “A Scaling Law for the Validation-
Set Training-Set Size Ratio,” in AT & T Bell
Laboratories, 1997.

[66] “Usage Statistics and Market Share of Node.
js for Websites, January 2019.” [Online]. Available:
https://w3techs.com/technologies/details/ws-
nodejs/all/all. [Accessed: 12-Jan-2019].

[67] N.js Foundation, “Node.js,” Node.
js. [Online]. Available: https://nodejs.org/en/.
[Accessed: 12-Jan-2019].

[68] “npm.” [Online]. Available: https://www.
npmjs.com/. [Accessed: 12-Jan-2019].

[69] “Express - Node.js web application
framework.” [Online]. Available: https://expressjs.
com/. [Accessed: 12-Jan-2019].

[70] “Mongoose ODM v5.4.3.” [Online].
Available: https://mongoosejs.com/. [Accessed:
12-Jan-2019].

[71] “mljs/ml,” GitHub. [Online]. Available:
https://github.com/mljs/ml. [Accessed: 12-Jan-
2019].

[72] “Handlebars.js: Minimal Templating on
Steroids.” [Online]. Available: https://handlebarsjs.
com/. [Accessed: 12-Jan-2019].

8. Appendices

68

8.1 Key concepts of researched papers.

PAIR [3]
This is a relatively older paper which describes
one of the first, more advance planners. It takes
into consideration several rules as prescribed by
the user or caregiver and lays them alongside
the activities of the user to provide appropriate
reminders. However, no dynamic analysis is done,
only design time rules are analyzed.

CogKnow	[20]
This concept is one that implements user values,
except not in the way that is desired in this project.
Instead, it uses them to define the required
support. A distinct number of support scenarios
are handled and rulesets are defined accordingly.
Predominantly the user context is considered
rather than anything else. The rulesets are aimed
at avoiding interruptions of important activities,
but don’t do any further analysis.

AHCS/TAFETA [22], [5]
These concepts attempt to design a context-
aware application which analyses data from
various sensors within the user’s house. AHCS
makes use of the CASanDRA framework [38] in
order to create awareness of the user’s context.
The CASanDRA framework is a middleware which
provides easily consumable context information
and accepts different information inputs which
are fused together. The concepts use either
the middleware or their own AI to analyze the
collected information and compare this with a
number of predefined rules to provide detailed
information on the user to the caregiver and
provide reminders when rules are broken.

Special properties:
• Context analysis independent from

reminder system
• Levels and types of alerting

Gate	reminder	[18]
This concept centralizes around providing
reminders at the moment a user leaves their
house. Knowledge about possibly forgotten
items is obtained through the use of RFID tags,
focusing on a zero user workload interaction. A
crucial part in its working is that it is focused on
Korean household, where shoes are generally left
at the front door, so there is a clearly defined time
slot in which all tags can be analyzed. Focus on
the study was mostly the actual prototype rather
than any smart algorithm.

Special properties:
• Physical prototype
• Transparent interaction
• Object detection

Decision maker [32]
This concept intercepts notifications from all
sources and processes them in a “decision
maker” prior to actually arriving at the user.
Instead, it processes information from sensors
and IoT devices within user and environment
contexts to decide upon the target device, type
of notification and time of notification. This is
done using a machine learning approach. Rather
than analyzing the actual patterns in decisions on
whether to and how to notify, the paper continues
by focusing mostly on the speed and accuracy of
various machine learning algorithms.

Special properties:
• Machine learning
• Habit analysis

69

HeadacheCoach	[35]
While not directly a reminder system,
HeadacheCoach does propose a possibly
usable system. It uses user and environmental
context analysis to identify possible triggers for
a headache and consequently provides possible
solution. A similar approach may be used to
identify moments of lower cognitive ability in
order to preempt a reminder being necessary at
all.

MLCARS	[30]
This dissertation discusses a concept which uses
machine learning to analyze shopping items and
where they were bought (or cleared off the to-
do list) to predict similar available items or similar
stores. This data is collected among all users and
combined with information from companies and
stores and ultimately stored in a database which
is continuously updated. Combining this with the
data of the user’s shopping list as well as their
location allows to provide appropriately timed
reminders not to forget items from their shopping
list. These reminders are not just when near their
usual supermarket (like is already possible with
location-based reminders) but also when close to
any store that is expected to have the desired
item.

Special properties:
• Activity clustering
• Prediction of next activity without machine

learning

Smart	reminder	system	[31]
This concept creates a smart reminder system
through three major components: activity
recognition, location recognition and prediction.
The activity recognition is done through the use
of analysis of the hand movements over time
and applying machine learning algorithms and
fuzzy logic to map this to activities. Location
recognition is done through image recognition
by camera and neural networks. These two are
then combined to analyze coupled activities, two
activities that are strongly related. Alongside,
predictions are made regarding pending and
forgotten activities. As such reminders can be
produced when likely to be forgotten activities
should occur.

Special properties:
• Specific setup

Attelia [2]
Attelia is a middleware concept which intercepts
any notifications. It analyses breakpoints in the
user’s mobile interactions and adaptively delivers
the notification to minimize interruptions and the
user’s attentional overload. As such, it lowers the
user’s frustration caused by receiving too many
notifications.

Special properties:
• Focuses on mobile screen use to analyze

activity

Olisto/IFTTT/CAMP/CybreMinder	 [10],	
[11],	[27],	[28]
These apps and concepts allow setting
reminders based on various aspects of user and
environment contexts. Once the current situation
satisfies all conditions in all contexts, the user is
automatically notified. Information is retrieved
from the user’s (IoT) devices and (online) services.
No form of pattern recognition or prediction is
done, however.

Special properties:
• Existing (possibly discontinued) apps

Goal	models	[34]
This concept does not directly involve itself with
reminders, but rather with linking certain activities
to achieving certain goals. These activities may
have complex relations with one another and
may promote or demote a goal. As such, this
can be similarly applied to activities aiming to
achieve a certain goal where the promotions and
demotions are linked to the user values.

Special properties:
• Linking activities to goals
• Not related to reminders

70

Fuzzy	linguistics	[33]
This concept uses fuzzy logic and linguistic
variables to analyze the urgency of the reminder
and the level of annoyance created by the
interruption of the current activity. Resulting from
this is a reminder level which determines whether
or not the reminder is delayed and/or how the
reminder is presented. The urgencies and other
levels are all given at design time, however, and
are averaged over all users tested prior.

Long	term	evaluation	of	smart	homes	[36]
Another one not related to reminders per se.
This dissertation reviews the users values over
long time use of smart home appliances. Their
conclusions span generally across all types of
smart home appliances. In order for the appliances
to provide usefulness it is important that the
values of accessibility and trust are upheld. Any
appliance which does promote accessibility
immediately diminishes any usefulness for the
user. Trust generally boils down to the reliability
of the provided functionality. If the product still
has function impairing bugs, users are likely
not to use the product. Even if the producer
manages to fix the flaws, the lost trust takes vast
time to recover. Another drawn conclusion is
that whatever solution implemented, users are
initially curious and excited and are willing to
try most ideas, but ultimately go back to their
routine behavior. As such, the smart appliance
should blend into this rather than interrupting it.

MagHive	[29]
This honeycomb shaped magnetic smart surface
is attached to the wall and allows devices and
other objects to be placed on them. Aside from
the useful functionalities such as wireless phone
charging, it uses NFC and QI technologies to
detect the presence and identity of the objects.
As such it is able to remind the user when he or
she forgets to take or put back an item.

Special properties:
• Actual product
• Provides a great base for further

development

CIA [16]
Although this paper clearly states “smart
reminder”, it doesn’t actually do much in regards
to reminding. Instead, it uses image recognition
to identify people. After this identification it
combines information previously gathered
through various systems to display information
regarding this person and possible events and
reminders tied to them.

Special properties:
• Linking information
• Not directly related to reminders

TEREDA [37]
Another concept not directly related to reminders.
It works by gathering simple data from many
sensors around the house and feeding that into
the middleware. From this, distributions for the
start time and duration are analyzed and used
to help recognize activities and cluster them by
starting time. For example, there might be 4
clusters of starting times in which the user may
generally start to watch TV (with corresponding
durations). Each of these clusters may have
different subsequent activities, each with different
likelihoods. As such, this temporal analysis may
be used to predict the likely following activity.

Special properties:
• Activity clustering
• Prediction of next activity

What	should	 I	do/Action	Hierarchies	 {40],	
[41]
These two papers, while again not a directly
related to reminders, do portray several
underlaying concepts. The first paper presents
a framework which represents hierarchical
relationships among actions and how values
are related to actions. This is formalized in the
second paper. Secondly, this framework shows
how the relationships tie in with promotion and
demotion of values. Lastly, a method is shown on
how to infer norms from values rather than vice
versa. However, this remains a very theoretical
paper.

Special properties:
• Values Norms
• Actions Values
• Not directly related to reminders
• Action hierarchy

71

XML format. A typical entry for both events of an
activity looks like shown in figure 15.
Do note, however, that due to there being separate
entries for the start and completion of an activity,
it is entirely possible that a second activity may be
commenced before the prior one is completed.

8.2 Dataset entry
Every entry in the dataset simply describes the time
of the event, which activity it corresponds to, and
whether the event is the start or end of said activity.
As such, we need two entries to complete an entry
of a single activity.

The format of the dataset is that of XES (Extendable
Event Stream) which is an implementation of the

Figure 15 - Typical entry for both events

8.3 Unique activities in dataset
bathe mealpreperation sleep

cleaning medication snack

dress outdoors toilet

drink personalhygiene watchtv

eatingdrinking phone work

entertainguests read

groom relax

72

8.4.2	Programming	language
When it comes to implementing machine learning
algorithms, there are several go to languages. The
five most used languages [65], in order, are:

• Python
• C/C++
• Java
• R
• JavaScript

While there are many other options, they fall below
a 5% mark of prioritization in the field of machine
learning. Python takes the clear lead in this field.
This is due to the large number of readily available
libraries. This dramatically decreases the time
required to implement machine learning algorithms
in applications. However, regardless of popularity
it is shown that professional background is key to
choosing a language.

For now, ignoring the fact of whether the
programmer has any existing proficiencies, it is
important to note that there is no best language to
use for machine learning and it is important to take
the goal into consideration. In this case the goal is
to create a server-based cloud platform. Whereas
the algorithms can still be run on any language, the
web part and a possible API interface are likely to
be implemented in JavaScript.

8.4.3	Setup
Taking the above choices into consideration and
looking at the current professional landscape,
there is a single, simple way forward. There are
two reasons for this. First, almost all web based
APIs work using HTTP requests. As such, a setup
is needed which can perform all calculations as
well as communicate via HTTP requests. Second,
when considering a JavaScript based platform, the
largest market share (over 60% [66]) is attributed to
Node.js webservers.

8.4 Platform
The chosen platform is not just dependent on the
chosen algorithm or what libraries are available.
More important is to see how the data is obtained.
Keeping an open mind as to where data can
come from, and not just restricting oneself to
using premade datasets, allowing streaming data
is important. Why? Because of the rapid rise in
Internet of Things devices.

8.4.1	Background
The field of activity recognition is a rapidly evolving
one. This is mainly due to the exponential rise in
Internet of Things (IoT) devices. Currently, there
are over 17 billion connected devices in the world.
Of these, there are over 7 billion IoT devices (so
excluding smartphones, computers and similar)
with over 6.5 million new devices being connected
every day [25]. This is expected to grow to between
20 and 200 billion within the next five to ten years.
The promise of IoT doesn’t end at just connecting
the devices to the internet. It is just the first step.

Advances in RF technology and low power
computing will bring Internet-connectivity
everywhere. Advances in Big Data and machine
learning will unlock new business opportunities
and models. The possibilities are nearly endless,
but they all still lie quite out of reach from the
direct consumer. However, specifically for activity
recognition, suddenly a lot more data is available
than there was 10 years ago. More and more
papers and implementations, such as [62]–[64], are
analyzing activity based on random sensor data.

Whether the activity data or the sensor data is
available, in any case a prediction can be made on
past events. As long as the event corresponding to
the deadline is known before which the notification
should have been presented, any form of data
should fit within the design. As such, a server
based solution, preferably in the cloud, seems most
logical.

73

View engine – Handlebars
The application needs to, among other things,
handle user input and allow for datasets to be
imported. For this, the simplest solution is to do all
user interaction through the means of a webpage.
While Node.js can natively serve html back to the
client-side upon request, hardcoding the entire
layout into every page is tedious work. Using a view
engine allows the programmer to work according
to templates where content is filled in according to
a route. This allows views (the visuals) and code to
be separated. Handlebars [72] is such a templating
engine. While each engine has its advantages
and functions, Handlebars is one of the most
minimalistic. Since no complex views are required a
minimalistic approach is preferred.

Database – MongoDB
In order to store data regarding activities, clusters
and users, a database is required. While there are
plentiful options when it comes to databases that
work with Node.js, there is one big advantage to
using MongoDB [73]. It allows handling unstructured
data. Typically, a database requires a clearly defined
structure, and works with rows in a table. MongoDB,
instead, works with documents. These documents
are described by a schema, such a schema can still
be vague.

The direct consequence of such a system is that no
initial thought has to be put into the structure of the
database and it can be structured on-the-fly. This
greatly reduces workload early in the programming
process, allowing for more time spent on the actual
implementation. Throughout the process of the
implementation, the databased can be remodeled
and optimized upon new findings. In more
traditional databases, this is not always as easy.
Although arguments can be made that requiring
more planning upfront ultimately leads to a better
structured, and thus a more optimized, database,
this is not the current desire.

Software platform – Node.js
JavaScript was originally a client-side scripting
language, running in the user’s browser, usually part
of any website. Node.js [67] changed the game by
providing an open source platform allowing any
JavaScript based application to run outside of a
browser. It’s main advantage for programmers is
that only a single language would have to be used
for both frontend and backend (client-side and
server-side) implementations.

Software library – npm
Aside from the above, an important feature of Node.
js is that it has an expansive repository of packages
that can be imported for use in applications. This
Node.js package manager (npm) [68] is embedded
within Node.js and as such packages can be
accessed as libraries, directly from the code. In
order to achieve all desired functionalities, without
reinventing the wheel, several important packages
are used and described below.
Express	 [69] is a framework that facilitates
and simplifies the creation of web applications
and services. It is built over the native HTTP
module within Node.js and allows for much
quicker implementations of such functionalities.
Most notably, it simplifies routing when used in
conjunction with an API or website.

Mongoose	 [70] provides a straight-forward,
schema-based solution to model application
data as it is stored in a MongoDB type database
(described later in 4.2.4). It simplifies query building
and handles type casting. Based on the schemas, it
allows creating model objects that are synonymous
to a table entry in the database. Therefore, all
creations, deletions and edits are simplified.

The ml.js suite [71] is a series of machine learning
related libraries written in JavaScript. Most notable
are the inclusions of tools for complex matrix
calculations (for Markov chain analysis), as well
as clustering and predictions. As such, it contains
all tools required to perform the calculations and
analysis as described in chapter 3.

74

RESTful API
A RESTful API is one based on representational
state technology (REST). This is a standardized,
architectural approach web communication using
HTTP methodologies.

A main advantage of a RESTful API is that it provides
a great deal of flexibility. Because data is not tied
to methods or resources, multiple calls can be
handled simultaneously, different data formats can
be returned, and like these there are many more
advantages. This flexibility allows developers to
build an API that meets meeting all kinds of needs
[74].

When designing such an API it is important to
understand its concepts and constraints. Firstly, the
API should be stateless. This allows calls to be made
independently from one another. As such, each
call should contain all data necessary to execute
successfully. Secondly, the API should be designed
with the concept in mind that the server and client
are distinct and should be able to evolve separately
from another. Lastly, resulting from the previous
point, the API should have a uniform interface. In
this way, the services are not tightly coupled to the
API itself. In order to achieve this, where applicable,
each resource should implement the HTTP
methodologies properly, rather than using random
endpoints. Each resource, such as an activity,
cluster or user, should be accessible through these
methods. The most common methods (and the only
ones used in this implementation) are [75]: GET,
POST and DELETE. They are used to respectively
retrieve, create or update, and delete a resource.

8.4.5	Conclusions
Combining all the aforementioned aspects, in order
to allow for easy collaboration with third-party
software, a JavaScript based, Node.js server was
established, along with a MongoDB database. It
serves a frontend used to view statistics and allows
for user input. All communication is done through
a RESTful API. For performing complex machine
learning calculations and matrix calculations, several
library functions were imported.

8.4.4	API
An application programming interface, or API, is a
collection of definitions used among applications
to communicate between one another. More
complex code is abstracted for simpler use. Rather
than having an application know all low level
details of the platform on which it is running or
the library it is using, it allows it to use predefined
building blocks. APIs are generally used in libraries,
operating systems, web services and many other
implementations.

Take a printer, for example. When you click the
print button in an application like Microsoft Word,
it is not this application that knows how to drive a
printer. Instead, it calls a function in printing API in
the underlying operating system. The operating
system can, in turn, invoke the printer driver to print
the document.

Web APIs
Web APIs, is an API used over the web, that can
be accessed via HTTP requests. It is used as an
interface between a service and a client application
which uses its assets. Within the definitions of the
API are properties such as hostname, path, query
parameters, error codes, etc.

For the purpose of this project and its
implementation, such an API facilitates a number
of matters. Firstly, it allows for a clearly structured
approach to handling and communicating data.
Secondly, it allows the frontend, the client-side
webpage, to fetch information such as statistics
while also being able to provide possibilities of
uploading data such as new datasets and user
value information. Lastly, it provides a way for other
services to connect with it.

To illustrate the last point, the most obvious example
is the option to facilitate a data stream. Subscribing
to such a data stream is generally done through the
concept of webhooks. In its most simplest form,
service A sends a request to service B to subscribe
to certain events. Whenever such an event happens
at service B, it sends a request to service A with the
information regarding the event.

Master thesis
Remy Kabel

TU Delft

