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activity. Secondly, the expected value gain achieved 
by actually remembering is simulated through the 
expected time between the moment of notification 
and the deadline. The model is implemented in a 
Node.js web application, following the principles of 
a RESTful web API. The model is tested for both 
its success in correct prediction and the moment 
selection. The basic predictive model shows a 91% 
success rate but falls short at 73% when considering 
values. After optimizing the system for user values, 
up to a 13% improvement in the success rate and an 
18% improvement in the score (more appropriate 
moment) is found for the model considering user 
values with respect to the basic, predictive model. 
Overall, a clear and workable approach to value-
based smart reminders is shown through a statistical 
and dynamic approach to incorporate the concept 
of user values in a smart-reminder system. 

This project focuses on finding what defines an 
appropriate moment to notify in a smart reminder 
system. Specifically, the goal is to find a way in 
which smart reminders systems can be extended 
through the use of user values to ultimately 
provide more appropriately timed reminders. This 
is essential in providing software aided support.   
A system is designed from scratch, combining 
existing concepts of activity prediction and value-
based design. A statistical Markov chain model 
is made from predictions based on Expectation 
Maximization and Apriori algorithms. User values 
are quantified and optimized following the concept 
of a Socially Adaptive Electronic Partner and added 
to the model to identify an appropriate moment for 
a notification. The concept of values is broken down 
into two aspects. Firstly, the value loss invoked by the 
nuisance of receiving a notification during a certain 

Abstract
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Term Description
ADL Activities of daily living

SAEP Socially Adaptive Electronic Partner

Middleware Software layer that acts as a link between two layers by processing 
data before it is passed from one to the other.

Markov chain Probabilistic model describing a sequence of events based solely 
on the state attained in the previous event.

QUV Quantified user value. The quantification corresponding to the 
given user value; i.e. the value of the value.

Clustering A method of grouping data points according to an algorithm

Route An endpoint (or address) for an HTTP request

Hostname Label or address used to identify a device. Usually this will be the 
domain linked to a certain IP address. For example: google.com

Endpoint/URL Universal resource locator. The location, or address, of a certain 
resource. For example: http://www.google.com/search?query=blah

Path The location identifying component of the URL. For http://www.
google.com/, this would be ‘/’. For http://www.google.com/
search?query=blah, this would be ‘/search’

API Application Programming Interface. A set of definitions used 
among applications to communicate between one another.

RESTful An API standard based on representational state technology (REST). 
A standardized, architectural approach web communication using 
HTTP methodologies: GET, POST, PUT, DELETE

Table of common terms
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The current situation? Usually, a simple timer is 
set moments before the expected time of the 
deadline. Obviously, this is not very foolproof. The 
ideal solution? Getting a notification just before the 
deadline of sleeping or leaving the house. A smart 
reminder, so to say.

However, both solutions have an additional caveat. 
Say a person never checks their phone during 
cooking or does not want to be disturbed while 
working. Any notifications delivered then will be 
ineffective. So, the ideal solution is not only to find 
a moment just before the deadline but to make sure 
that moment is an acceptable moment to notify.
Preliminary research has shown that there are many 
applications that attempt to use knowledge about 
their user’s activities. The following examples are 
of existing products and applications that combine 
user and device information in order to provide 
smarter notifications.

Olisto/IFTTT [10], [11] 
Can combine date, location and smart 
device information to, for example, send a 
notification when leaving home and a specific 
power consumption is still high (i.e. the TV is 
still on).

Maps/Waze [12], [13] 
Combines real-time traffic information and 
address in calendar events to provide timely 
departure reminders.

Timeful [14] 
Combines the user’s calendar and to-do items 
to estimate duration of to-do items, plan them 
in and generate reminders at off-peak times. 

Similar to the implementations, papers frequently 
focus on finding novel ways of combining 
information from smart devices into producing 
reminders, following norms provided at design 
time. Examples include combinations of location 
and time [15]–[17], events based on smart devices 
[4], [18], [19], or a combination of numerous sources 
of information [20]–[22]. While all very promising, 
most concepts and implementations predominantly 
rely on design time logic. Only a few actually 
manage to create a predictive model that preempts 
the deadline. Examples of such exceptions, such 
as Timeful [14], usually create a predictive model 
and verify this with the user in order to strengthen 
the model. Nonetheless, not a single of these 
implementations takes the user into account at the 
time of the notification.

It is natural for humans to increase their dependence 
on technology as technology improves [1]. Through 
applications in smart homes, wearables, virtual 
coaches and many others, people have increasingly 
adapted modern technologies into their daily lives. 
Their goals are to increase health, efficiency, and 
many other values. Conversely, the abundance of 
apps and notifications have a negative effect on 
the users and cause them to grow immune to the 
constant stream of information that is presented 
to them on a daily basis [2]. Especially the elderly 
or people with a mental impairment could benefit 
from an effective support agent [3]–[8].

A proper implementation of such a support agent 
could improve the effectiveness of all notification-
based applications. “Too many notifications cause 
the user to tune out” [9] (Figure 1). Rather than 
bombarding the user with notifications right when 
a related event occurs, the user is much more likely 
to act upon the notification if it is delivered at an 
appropriate time. But what actually is an appropriate 
time?

The appropriate time for notification is inherently 
linked to the nature of the user’s action. To illustrate 
this, consider the following example throughout 
this report.

An elderly gentleman, Peter, often forgets to 
close the garden doors before leaving the 
house or going to sleep.

In this example, timely notification is of the essence. 

5
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Figure 1 -  Overload of notifications



11

1.1.1 Research scope
Prior to being able to establish the research 
questions, the scope of the research should be 
limited since the problem itself is very broad. Most 
notable, since the area of activity recognition is a 
rapidly evolving one. However, the current state 
is that any form of activity recognition based on 
raw sensor data is still very limited or inaccurate in 
general solutions [24]. Accuracy can be improved 
by having location specific setups [22], or a 
severely limited number of recognized activities. 
Over the coming years, the quality and accuracy 
of activity recognition are expected to increase. 
This is increase is attributed to, among others, the 
exponential rise in IoT devices in houses and public 
building [25] providing more and different data, as 
well as the improved sensors in and capabilities 
of smartphones. Even partly focusing on actual 
activity recognition would therefore be a substantial 
enlargement of the scope of research. As such, a 
choice was made to make use of existing datasets 
or data streams that directly provide information 
about the user’s ADL. To not limit the applications 
of the designed concept and implementations, 
instead, the focus was shifted from the aspect of 
activity recognition and placed onto a proper form 
of implementation.

In order to make an application aware of how 
the user may perceive the incoming notification, 
knowledge is required about a user’s values. Van 
Riemsdijk introduces the concept of a Socially 
Adaptive Electronic Partner (SAEP) [23]. A SAEP 
follows the ideology that technology should adapt 
to the user and not vice versa. This is achieved by 
providing methods in which applications can be 
made aware of a user’s values. Through this logic, it 
is possible to gain an understanding about finding 
an appropriate moment for notifying the user, rather 
than just focusing on the timing.

The problem of finding an appropriate moment for 
notification boils down to a number of steps. For 
starters, in order to provide a reminder notification 
before a certain deadline, it is imperative that this 
deadline is known. Consecutively, the preceding 
activities have to be identified. For this, an existing 
smart reminder system or predictive model has to 
be chosen. This, in turn, can only be done once there 
is sufficient knowledge about the user’s activities of 
daily living (ADL). 

Ultimately, the existing model can be extended using 
user values in order to provide more appropriately 
timed notifications.

1.1 Problem description
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These two questions should provide a good 
overview of the abilities of the existing systems and 
the amount of work required to extend them to 
incorporate user values and to ultimately improve 
the timing of the notifications. Of course, for this 
knowledge about user values is required.

R3: How can user values be analyzed and 
quantified?

R4: How can a smart reminder model be 
extended to incorporate user values?

Ultimately, all knowledge can be combined into a 
model which can be used to approximate the most 
“appropriate time” for dispatching a notification. 
This model can then be implemented in a piece 
of software in order for the model to dynamically 
adapt to new input of the user’s ADL or values. 
In order to make the solution more generic, it is 
important to analyze how the implementation 
should be structured.

R5: How should the smart reminder model 
be implemented in order to allow easy 
collaboration with third-party software?

Eventually, the improvement through the inclusion 
of user values should be tested to allow for 
answering the final sub-question: 

R6: Does the use of the value-extended 
model provide more appropriately timed 
notifications?

Following the ideas discussed previously, the focus 
of this thesis will be combining the approaches of 
existing models and trying to extend them with 
the concept of user values. This leads to the main 
research question: 

"How can a smart reminder system be 
extended to incorporate user values to provide 
more appropriately timed notifications?"

The expected outcome of this question is a model 
which provides timed feedback based on the user’s 
ADL and value input. This leads to a number of 
sub-questions that need to be answered before 
constructing the model.

While it was discussed before that numerous 
existing smart reminder systems exist, it was found 
that only a few actually use a predictive model to 
analyze future activities. This and other aspects are 
requirements that need to be decided upon and 
analyzed in pursuit of an appropriate model.

R1: What are the requirements for the smart 
reminder system?

Once the requirements are known, existing 
concepts and implementations should be tested 
and compared for these requirements.

R2: Which applicable models and systems 
exist for smart reminder systems and how do 
they compare?

1.2 Research question
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Concept design and implementation
A concept was designed, based on two main 
components. First, a one-step algorithm for activity 
prediction was created, based on a past paper 
which uses clustering and data mining algorithms. 
Second, successive predictions were combined with 
the quantified values in a statistical model based 
on Markov chains. Using this, predictions could be 
made regarding possible moments for notifications. 
These predictions regard two important properties 
of the moment. Firstly, the expected time 
between the moment and the deadline, which 
was desired to be minimized. Secondly, for the 
activity corresponding to the chosen moment, the 
probability of its occurrence was calculated. From 
this, the (mathematical) expected value could be 
calculated and maximized. All of the aforementioned 
considerations were discussed in chapter 3.

An implementation was required to do proper 
testing. However, rather than creating a local test 
suite, a client-server-based implementation was 
set up. This allowed for easy data management, 
client-side input, and connections to other data 
sources, all accessible through an API. The details 
and reasoning behind all choices were explained in 
chapter 4.

Experimentation
In order to test the designed concept, several test 
scenarios were established to analyze the different 
influences of values on the moment selection. These 
scenarios were tested using an existing dataset. 
Tests were performed by analyzing two aspects: 
success rate (the number of times a moment was 
found and reached before passing the deadline), 
and a score analyzing how well the timing and user 
values were upheld. The actual results, details, and 
conclusions can be found in chapters 5, with an 
overall conclusion in chapter 6.

Following is a sneak preview of how all aspects of 
this thesis were approached. After a literature review 
to analyze existing concepts and implementations, 
a concept was designed and implemented of which 
the basic structure is shown in figure 2. Ultimately, 
the concept was evaluated according to various 
scenarios to show its added value.

Literature review
In order to answer the first four sub-questions, 
existing literature was discussed and compared. 
Ideally, an existing smart reminder system was 
sought that already takes into consideration the 
timing of the notification as well as many user and 
environment variables as possible, while being 
able to adapt to changes at runtime. In section 
2.1 the reasoning behind these requirements was 
discussed. In section 2.2, the existing papers and 
implementations were compared. This comparison 
resulted in the conclusion that no adequate systems 
exist and therefore concepts would have to be 
combined.

Leading from this and considering no actual analysis 
of sensor data is done, several methods of data 
acquisition were discussed. A choice was made to 
use an existing dataset, but keep in mind a possible 
data stream from a third party. This was motivated 
in section 3.2.

Simultaneously, an approach to incorporating user 
values was researched and discussed in sections 
2.4 and 3.4. Rather than looking at different types 
of user values at different moments in the decision 
process, it was argued that it was sufficient to only 
look at the annoyance invoked by the notification 
during a certain activity. Thereby, directly linking 
activities to values. The subsequent quantization 
could then be done through an easy questionnaire.

1.3 Approach

Data acquisition

Data processing

Values

Goals

Activity prediction

Model

Suggested notification

Figure 2 -  High level overview of the concept





2. State of the art
This chapter analyzes all aspects necessary to answer the first four research questions before 
designing the initial concept. Numerous related algorithms, papers, and implementations were 
analyzed and discussed with respect to requirements for a good smart reminder system. In 
conjunction with this, the concept of user values and their inclusion in a smart reminder system 
had to be analyzed before any combined concept could be conceived.
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2.1.2	No	specific	setup
Quite frequently, studies in papers use specific 
setups to prove a relatively constrained problem, 
such as  [18] or [29]. These setups usually comprise 
of pieces of hardware not usually found in users’ 
homes, even smart-homes, as opposed to more 
general, theoretic or software-based concepts. 
These concepts are quite apt and able for those 
scenarios, but quickly fall short when applied to 
other scenarios or when generalizing the solution. 
Considering a more general solution is desired, 
such concepts should be filtered out.  
  
2.1.3 Values
The idea behind this thesis was to find existing 
systems and extend them with the concept of 
values. Therefore, it was interesting to check the 
incorporation of values, in any form, in any of the 
analyzed papers and concepts.

There have been various approaches as to how 
and when to provide feedback to a user. Generally, 
the preferred method of feedback is the concept 
of smart reminders [26], a reminder that takes 
into consideration aspects of the user or their 
environment. Simultaneously, the timing of the 
reminder should be sufficiently close to the deadline, 
the moment before which the reminder should 
have been dispatched. Newly developed products, 
as well as scientific papers frequently focus on 
finding novel ways of combining information from 
smart devices into producing reminders. Examples 
include combinations of location and time [15]–[17], 
events based on smart devices [4], [18], [19], or a 
combination of numerous sources of information 
to provide insight about a user’s activities [20]–[22]. 
There are various properties that characterize these 
and other concepts and determine what makes the 
reminders they provide truly 'smart'. 

2.1.1	Notification	producing	or	
scheduling
The aforementioned, and many more, concepts 
may all be loosely categorized in two categories. 
Firstly, the notification producing concepts. 
Such concepts react to a number of events (as 
programmed at design-time) that have happened 
and subsequently trigger a notification. Secondly, 
the notification scheduling concepts, which 
intercept such notifications and perform a run-time 
analysis about the deadline and current user context 
prior to actually dispatching the notification. For 
example, checking the notification for priority or 
checking the user’s current availability. Furthermore, 
such concepts generally work post-factum, thereby 
possibly losing most of the value of the reminder.

In principle, the notification interception analysis 
can be an extension of the original notification 
producer. However, these two concepts are 
generally approached separately. In order to arrive 
at an appropriate moment for notification, the 
interception analysis is of most importance as it 
can be built on top of any notification producing 
system. Hence, if no sufficing, existing system can 
be found, this aspect must be built from scratch.  
Then the chosen notification producer should allow 
for incorporation of as many user- and environment 
variables as possible, to allow for a more complete 
system.

2.1 Requirements of a smart reminder system
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2.2 Comparison of existing concepts
Cogknow [20] showed to be the only one that 
implemented user values, except not in the desired 
manner. Instead, user values are used to identify 
the required support and hence the necessary 
reminders. This, as opposed to actually planning the 
notifications. A distinct number of support scenarios 
are handled and rulesets are defined accordingly. 
The rulesets are aimed at avoiding interruptions of 
important activities but are all done at design-time. 
Therefore, any notification is simply delayed until 
the user is done with an uninterruptable activity.

Furthermore, the Timeful [14] application would 
have been a good basis for a smart reminder system 
since it would look for available moments based 
on the user’s calendar and used a self-learning 
algorithm to improve scheduling of notifications 
and new activities. Unfortunately, the application as 
well as its documentation were no longer available 
and therefore could not be used as a basis.

So, what was useful? There was no existing 
implementation that could immediately be 
extended with user values. So in order to arrive 
at a concept, rather than extending an existing 
smart-notification system, it had to be designed 
from scratch. Nevertheless, the ideas from many 
papers could be incorporated. Furthermore, by 
designing the implementation in such a way that it 
was open for third-party applications, a connection 
with existing systems such as Olisto [10] or IFTTT 
[11] would allow for easy extension to include many 
user and environment properties such as weather or 
heart rate, for example.

Numerous papers, existing products, and other 
concepts were compared to the requirements 
mentioned above and displayed in table 1. These 
were all relevant concepts found by querying value-
based reminders or smart reminder systems through 
services such as Google Scholar or ResearchGate. 
Relevant referenced papers were also analyzed. 
Short summaries of the important aspects of the 
concepts may be found in appendix 8.1.

As expected, the most prominent smart reminder 
systems made use of only user and environment 
contexts for design time reminder production. 
While such systems may be very smart, they all 
required a rigid set of rules that have to be fixed 
at design time. For example, with Olisto [10], a rule 
may be set to get a reminder to take the umbrella 
when leaving the house, or at a certain time, but 
never just before leaving. Still, such concepts could 
come a long way. While not being able to preempt 
a deadline, it may still be possible to fake this 
behavior. For example by notifying the user right 
after they lower their thermostat. This, however, 
was not a generic nor foolproof solution.

Furthermore, many solutions which analyze specific 
user behavior required specific setups. For example, 
MagHive [29] may remind the user to take their keys 
if the system notices the user is leaving. However, 
it only works with the specific, tagged, set of keys. 
Similarly, it will not work if the user leaves through 
a different exit.

The majority of the concepts used information 
about the user or their environment to some extent. 
Nonetheless, most of these solutions used this 
information at design time. There were only a few 
which took it further and used predictive algorithms 
or other methods in order to create a system that 
could adapt at run-time. However, most of these 
concepts provided insufficient information about 
the algorithms used. As such, they could not be 
reused as a basis for extension by user values.
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* Only at design time
Act:
Tim:
Env:
UV:

User activity
Time
Environment
User Values

NP:
NS:
SS:
Loc:

Notification Producing
Notification Scheduling
Specific setup
User location

Legend

Table 1 -  Comparison of existing concepts

LocNS UVTimNP Act Ref.SS EnvConcept

X XX X XAHCS [22]

XCAMP [27]

X XX XCybreMinder [28]

X X XGate	reminder [18]

X XX X XIFTTT [11]

X X XMagHive [29]

XXMLCARS [30]

X XX X XOlisto [10]

XX XSRS [31]

X XX X XTAFETA [5]

X XAttelia [2]

X XX XTimeful [14]

XX XXX XXCogKnow [20]

XX XX XDecision maker [32]

X XFizzy	lingustics [33]

X XPAIR [3]

Provides Takes into account
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[37] uses a combination of clustering and association 
rule mining to attempt prediction of temporal 
relations between activities. Aside from this, all used 
algorithms, parameters and formulas are clearly 
described, allowing for easier reconstruction and 
implementation. This was very useful since activity 
prediction was not the main focus of the thesis, 
preventing too much scope creep. 

The main drawback of the concept by Nazerfard et 
al. is that only single step predictions are done. Only 
the immediate next activity is predicted. Therefore, 
it still requires a mathematical model to combine 
the predictions into a predictive model that allows 
for predictions multiple steps into the future. 

2.3.3 The appropriate time – a 
statistical approach
A simple predictive model would be able to 
determine the probabilities of an activity occurring 
before the deadline. However, as mentioned in the 
original problem statement, the ideal solution also 
takes into receiving the reminder shortly before the 
deadline. For this, the time between the notification 
and the deadline should be minimized. 

Originally, the hope was that this would have been 
implemented in an existing smart reminder systems. 
This could then have been used as a basis, such 
as Timeful [14]. Since the system is designed from 
scratch, the problem still exists.

A solution was found through the use of (absorbing) 
Markov chains [38], [39], by considering the different 
activities and temporal relations as states and state 
changes. The mathematical properties of Markov 
chains could then be used to calculate the expected 
time between the deadline and possible moments 
for notification.

Since no existing implementation was available, a 
concept had to be designed from scratch. The core 
aspect of this concept was that it had to be able to 
preempt a deadline. This itself brought forth three 
main problems. First, what is a deadline? Second, 
how can future activities be predicted? Third, how 
can a future activity be selected that is relatively 
close to the deadline.

2.3.1	What	is	a	deadline?
Describing a deadline or a goal can be difficult to 
describe clearly, especially when ultimately trying 
to express this in an algorithm. Usually, reaching a 
deadline consists of executing one or more activities, 
where each of these activities is not the deadline. 
However, a deadline may also consist of having 
completed a certain number of prerequisites.  That 
is where deadline reasoning [34] comes into play. 

In simple scenarios, such as Peter remembering to 
close the garden doors before going to sleep or 
leaving the house, deadlines may be linked directly 
to an activity. In this specific case, we want to send a 
reminder before activity ‘sleeping’, given the state 
of the garden doors is not yet closed. Now the 
latter part can easily be checked, so the focus is on 
reminding before the deadline activity, ‘sleeping’, 
as shown in figure 3. 

2.3.2	Activity	prediction
In order to analyze suitable moments that exist 
before the deadline, all activities until the deadline 
had to be predicted. Prediction algorithms are 
plentiful, but the field of activity prediction is still 
relatively new, partially due to activity recognition 
still being underdeveloped as mentioned in section 
1.1.1. There are, however, several papers [35]–[37] 
which specifically revolve around activity prediction 
in a support context. Most notably, Nazerfard et al. 

2.3 Preempting the deadline

Figure 3 -  Time line of activities approaching a deadline
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As mentioned in the introduction, the idea of 
using user values as a method to identify the most 
appropriate moment for notification stemmed 
from the concept of a SAEP as presented by Van 
Riemsdijk [23]. Directly following the work of a SAEP, 
Tielman et al. [40], Pasotti et al. [41] and Kließ et al. 
[42] further analyzed the relations between actions 
and their values. 

While their ideas went much further, the idea that 
certain actions may promote or demote certain 
values is crucial. Furthermore, in order to do 
computational or statistical analysis, they argue 
that it is possible, although not entirely accurate, 
to assign quantifiable value gains and losses to 
specific activities.

2.4.1 Which values
Then for which values should the gains and losses 
be analyzed? Schwartz [43] proposes several basic 
human values, but these are very abstract:

self-enhancement, self-transendence, 
openness to change, conservation

Govindarajan et al. [44] instead start with 5 simple,  
core value: 

peace, truth, love, 
non-violence, right conduct. 

Other values may be derived from this, such as 
right conduct leading to hygiene, punctuality, etc. 
Looking at other papers that implement values such 
as [40], [45] similar values are used. 

Even the basic values as suggested by Govindarajan 
et al. may be categorized as subsidiaries of the 
abstract values of Schwartz. As any value may be 
broken down into more specific values, there is 
not really a limit to the number of values used. 
Therefore, in any value related concept, a clear 
pool of values should be selected.

2.4 User values







3. Concept design
As no prêt-à-porter solution was available which can be extended to incorporate user values, 
a concept was designed that built on the fundamentals of other concepts. The initial design 
was primarily based on combining three concepts. Firstly, a paper by Agrawal et al. [37] which 
discussed a method of analyzing data of a user’s ADL and generating a predictive model through 
a combination two machine learning algorithms: clustering and association rule learning. 
Secondly, Tielman et al. [40] latter paper focused on values and how they link to activities. 
Lastly, absorbing Markov chains [38], [39] are used to describe the statistical model. This chapter 
describes all aspects of the concept. However, first, a high-level overview is given.
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First and foremost, the data of the user’s ADL 
was gathered and processed where necessary. 
Through the machine learning concepts of [37], 
future activities were predicted. Performing these 
calculations for all possible starting activities would 
lead to a statistical model. This model could then 
be extended with knowledge about user values and 
the ultimate deadline in order to dynamically select 
an appropriate moment for notification based on 
the user’s activities as they are recorded. Once 
again, this basic concept structure is shown in figure 
4.

Specifically, the statistical model takes the most 
recently recorded activity and predicts the 
probabilities of the user performing a specific other 
activity before arriving at the deadline. Each activity 
is then scored based on their corresponding user 
value and the expected time until the deadline. In 
this, it tries to maximize user value and minimize 
the expected time until the deadline. If the highest 
scoring activity indeed follows, the notification 
is dispatched. Else, the process is repeated until 
the deadline is reached (this is later shown more 
detailed in figure 9).

To understand this concept fully, first the individual 
concepts are explained and consecutively the 
combined design is revisited. 

3.2.1 Data acquisition
As mentioned previously in section 1.1.1, no focus 
was put upon actual activity recognition. As such, 
this data should be gathered either from existing 
datasets, from services which provide streaming 
data, or from existing implementations which use a 
middleware on top of sensor data to output activity 
information.

When using raw sensor data, any form of middleware 
is required before ADL data may be obtained. 
The first solution would have been to write such a 
middleware from scratch. This would have been the 
most labor intense solution. However, if the other 
data sources are not easily implementable or require 
extensive processing, using an existing middleware 
may actually be a faster solution, as well as being 
more complete. Arcelus et al. [5] did just that; 
they designed their own middleware. However, it 
could not be used since it remained exactly that, a 
design. Hristova et al. [22] instead used an existing 
middleware: The CASanDRA framework [24], in 
combination with a context toolkit [46], also used 
in CybreMinder [28]. The CASanDRA framework, 
however, showed promise due to its broad usage 
within the research group as shown by many related 
papers. Nonetheless, up until the moment of writing 
this report, it has shown impossible to retrieve its 
implementation, even after contacting the authors 
of the original paper and those of papers which 
used/referenced it.

Rather than using raw sensor data, more labeled 
data streams could be used. Thanks to close ties 
with the company behind Olisto [10], access was 
granted to all services and code behind. Using 
their information would provide direct insight into 
events (such as device alarms), states of devices 
(such as door open or closed) and services (such as 
weather information). Since Olisto is already an up 
and running platform, data is readily available. This 
also introduced the main downside of using a data 
stream. Its live data is fairly random and very much 
depends on the various devices the users own and 
have connected to the service. While a connection 
to Olisto would be a very desired next step, pure 
testing would be easier on a fixed dataset. 

Aside from gathering and analyzing data ourselves, 
the easiest but least extendible option was to use 
one of the numerous existing datasets scattered 
over the internet. A select number of these directly 
provided the desired ADL information. In the 
Decision Maker concept by Corno et al. [32], dataset 
[47] was used but was synthetically enhanced to add 

3.1 High-level overview 3.2 Processing incoming data

Data acquisition

Data processing

Values

Goals

Activity prediction

Model

Suggested notification

Figure 4 -  High level overview of the concept (same as fig.2)
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several properties such as the user activity other 
than call information and mobile phone usage. As 
such, it was less interesting in its available, original 
form. Three other datasets had been found and 
were readily available. These, and similar, datasets 
could be used both for design and for testing.

3.2.2 Dataset
Three readily available datasets, [48], [49] and [50], 
all have a limited but clear number of activities 
which are recognized and as such more readily 
usable. Their differences lie in the number of 
test subjects and the number of unique activities 
recorded. Combining datasets is, initially, not a 
good idea since data points may have different, 
and thus conflicting, labels. Since the range of 
activities recorded in these datasets limits the 
applicable scenarios that can be tested, the most 
comprehensive dataset, [50] is chosen.

The dataset that was ultimately used is one 
constructed by Sztyler and Carmona [50]. It was 
chosen for its well-structured file format, relatively 
large number of different activities, and the fact that 
it follows more than one person in more than one 
situation. In total, more than 6000 data points over 
four different users have been recorded. The other 
two datasets scored less on all aspects. Furthermore, 
the roughly 1500 entries per user correspond to 
about a month of recorded activities which should 
be enough to analyze patterns in the daily behavior 
of the user. Lastly, when considering only four 
users is not enough to statistically generalize the 
results. Nonetheless, having just a few different 
users should suffice in limiting anomalies caused by 
possible strange habits of a single user.

As described by Sztyler, “This dataset comprises 
event logs […] regarding the activities of daily living 
performed by several individuals. The event logs 
were derived from sensor data which was collected 
in different scenarios and represent activities of 
daily living performed by several individuals. These 
include e.g., sleeping, meal preparation, and 
washing. The event logs show the different behavior 
of people in their own homes but also common 
patterns.” A further description of the dataset can 
be found in appendix 8.2. Furthermore, a complete 
list of unique activities can be found in appendix 
8.3.

Activity prediction was done based on the TEREDA 
paper by Nazerfard et al. [37]. It focused on two 
concepts to create a model for activity prediction; 
clustering and association rule mining. Clustering 
was done to improve the accuracy of the prediction 
model and eliminate possible outliers. Association 
rule learning was used for the actual prediction step, 
calculating the most likely next activity (cluster). 
The specific algorithms used are the Expectation 
Maximization [51] and Apriori [52], [53] algorithms. 

3.3.1 Description of the Expectation 
Maximization	algorithm
Expectation Maximization (EM) is a clustering 
algorithm which works iteratively to find maximum 
likelihood parameters of a statistical model. It is 
used when such parameters cannot be solved 
through equations directly. The reason for this may 
be missing data points, latent variables, or further, 
still unobserved, data points are to be assumed.

Within clustering, there is a division between two 
types: hard and soft (or fuzzy) clustering. As shown 
in figure 5, in hard clustering, an element either 
belongs to a cluster or it does not. In soft clustering, 
on the other hand, elements can belong to multiple 
clusters but with different degrees of belief, or 
confidence. To statistically analyze soft clustering, 
mixture models can be used.

Mixture models are a probabilistically sound way of 
analyzing soft clustering cases. With this method, 

3.3 Activity prediction

Figure 5 -  Difference soft/hard clustering
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each cluster is described as a generative model, 
such as a Gaussian or multinomial, as shown in 
figure 6. However, the parameters of the model are 
unknown (for example the mean and covariance in 
the case of a Gaussian model). 

If the source cluster of each observation is known, 
the estimation of these parameters is trivially 
done through a simple calculation. However, even 
when not knowing the source, as is the case in a 
clustering problem, the EM-algorithm will guess 
the cluster each point likely belongs to. This is 
done by using the Baysal formulae, those of 
conditional probability. Before being able to use 
these formulae, the parameters of the models need 
to be known. This leads to a “chicken and egg” 
problem. The algorithm solves this problem for any 
n-dimensional dataset by first performing a random 
estimate (expectation) to the initial parameters and 
iteratively improving (maximizing) them. 

3.3.2.	Clustering	of	activities
Applying the Expectation Maximization algorithm 
on activities, Nazerfard et al. [37], performed the 
clustering of the activities based on their starting 
time. For example, eating in the morning is 
considered a different cluster than eating in the 
evening. Considering how the expected following 
activities are likely to differ between the two 
instances, it is clear how this would improve a 
predictive model. 

Additionally, when calculating the cluster 
parameters, the normal distribution parameters are 
also calculated for the duration. Activity instances 
that do not fit within 95% of the area under the 
curve (μ±2σ) are considered outliers. Outliers are 
not taken into consideration for cluster parameter 
calculations.

After calculating all clusters, all activities are 
attributed to their best fitting cluster and fed into 
the Apriori algorithm

Figure 6 -  Overlapping mixture models,hard 
vs. soft clustering

3.3.3. Description of the Apriori 
algorithm
The Apriori algorithm is a machine learning 
algorithm used to find patterns in large datasets. 
Specifically, the patterns of frequent item sets. At 
its core, it attempts to identify frequent item sets to 
generate association rules used to describe general 
trends in the data. The algorithm finds its roots in 
analyzing and predicting store transactions to find 
products frequently bought together. Nonetheless, 
it may equally be applied to the ADL of a person.

The algorithm is based on the concept of a 
transaction. A transaction can mean multiple things. 
It can be a customer purchase at a store consisting 
of one or more items, or it may be a number of 
subsequent activities performed by a person. 
Every transaction, customer purchase, or activity, is 
logged in a database for further processing. 

As a starting point, only individual instances are 
considered. Examples of instances would be a 
single bought item, or a single performed activity. 
A breadth-first search is done to find all such 
instances that occur in a transaction a minimum 
number of times; the threshold or support. In the 
second step, such an instance is considered as a 
next starting point; for example, the activity sleep. 
All transactions that contain this instance are then 
reviewed in a similar manner to find all following 
instances that occur more frequently than the 
support. For example, this may result in the set of 
instances {sleeping ⇒ toilet} appearing frequently 
in transactions. This process is repeated for the 
ever-growing sets of instances until no new sets are 
observed.

Using these frequent instance datasets, association 
rules can be generated. The association rules can 
be described using numerous measures. Among 
others, there are confidence, lift and conviction 
[54]. Firstly, the confidence of an association rule 
indicating X leads to Y, or X⇒Y, is the indication of 
how often the rule has found to be true. 

The previously defined support, the indication 
of how often the set of instances appears in the 
dataset, can be described as:

(3.1)
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confidence can be used as a baseline for the rule 
generation, or several measures more. Note that 
there are more measures of interestingness than just 
those described above, including, but not limited 
to, collective strength [55] and leverage [56]. 

The main drawback of the Apriori algorithm is that 
given the bottom-up approach, a large number of 
subsets are required to be generated. As such, the 
number of database accesses is very high requiring 
it to be loaded into memory entirely. Furthermore, 
the time complexity is obviously very high. 
Consequently, numerous improved algorithms have 
been suggested. However, its simplicity makes it 
much easier to implement on any sort of database.

3.3.4	Prediction	of	future	activities
Applying the Apriori algorithm on activities, 
Nazerfard et al. [37], followed the algorithm as 
described before. However, they imposed two 
limitations. First, their implementation of the 
algorithm focused solely on the support and 
confidence for identifying sets of instances. Second, 
only pairs of subsequent activities were considered 
with no deeper analysis being performed. 

The reasons for these limitations were twofold. 
Firstly, the concept of transactions of store-bought 
items cannot be applied perfectly on the concept 
of subsequent activities. While the purchased items 
are completely independent, the activities are linked 
by time. However, the similarities are substantial 
enough to warrant using the Apriori algorithm 
for the concept of activity prediction. Secondly, 
since Nazerfard et al. were only interested in the 
directly successive activity, further expansion of the 
instance sets was not necessary. These two reasons 
do not fully explain the imposed limitations. Still, 
Nazerfard et al. did not provide further clarification 
behind their reasoning.

Nevertheless, following the positive results of the 
experiments performed by Nazerfard et al., the 
choice was made to follow their choices for both 
clustering and the prediction as a starting point for 
the model. This would avoid scope creep due to 
perfecting the prediction algorithm as well as allow 
future readers to easily reproduce the results as 
mentioned further on in this report.

where t is a transaction within the database of all 
transactions T. As a result, the confidence of the 
rule is the proportion of transactions that contain 
set X, that also contain set Y:

where X ∪ Y is the union of the instances in the 
two sets. Rewritten in probabilities, the support 
can be seen as simply the probability of an event 
P(EX), where EX is a transaction containing item set 
X. However, since X ∪ Y regards the instances in a 
set, it can rather be written as P(EX ∩ EY). Linking to 
Bayesian formulae, the confidence can be seen as 
an estimate of the conditional probability P(EY│EX ). 
The drawback of the confidence measure is that it 
only takes the popularity of set X into account.

The lift measure takes both sets into consideration 
and compares their dependence to each other to 
that expected if they were independent of each 
other. It is defined as:

A lift of 1 would indicate that occurrences of X and 
Y are independent of each other and thus no rule 
can be drawn. The higher the value is above 1, the 
larger the degree in which the occurrence of Y is 
dependent on that of X and as such is potentially 
more useful for prediction. Note that a lift below 1 
indicates that X and Y have a negative impact on 
each other.

Lastly, the conviction of a rule is an indication of the 
frequency of an incorrect prediction. It is defined as:

For example, a conviction value of 1.2 indicates that 
an incorrect prediction occurs 20% more often than 
if the association was simply by random chance.

The process of the Apriori focuses on first finding 
all possible datasets which have minimum support 
and then creating rules based on the confidence. 
Depending on the implementation, either just the 

(3.2)

(3.3)

(3.4)
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Another option would have been to introduce 
a cut-off. In this case, a reminder sent too long 
before the deadline would be considered a failure. 
The downside of this is that no distinction is made 
between a reminder sent just after the cut-off 
moment, or just before the deadline. Furthermore, 
scoring the result based on time would allow for 
optimization with regards to this variable. 

Value gains and losses
The second aspect of the problem was finding a 
moment that results in the largest value gain, as 
may be concluded from the previous section. For 
this, the concept of quantifying the value gains and 
losses as discussed by Tielman [40] is accepted. 
There are two aspects which comprise the ultimate 
value gain:

The value gains invoked by remembering
vs.

The value losses invoked by the annoyance 
of the notification

When considering a scenario, the absolute value 
gain invoked by remembering is not of importance. 
Why? Because throughout all analysis it remains 
a constant. It may only change if the user does 
not actually remember. However, this was already 
covered in the time aspect. Therefore, the problem 
summarized in analyzing the value losses invoked 
by the annoyance of the notification.

3.4.2 One type of value
Analyzing value gains and losses required two 
things: a set of values to analyze and a method 
to obtain quantitative data regarding the values. 
As mentioned in 2.4.1, even the decision of which 
values to analyze is a difficult problem. The following 
example scenario was considered:

Assume values are quantified from -5 to +5. 
Peter has set a reminder to close his garden 
doors before going to sleep. Normally he 
would be likely to forget. However, if he 
remembers, he feels much safer. Hence, his 
value of safety is strongly promoted (+3). 
The notification may be sent out either while 
watching tv (harmony +1, excitement +1) or 
while he is brushing his teeth (health + 2).

As explained before, humans make many decisions 
based on their norms and values. In order for a 
system to be able to mimic such decisions, the 
technology needs to have a notion of values as 
described by Van Riemsdijk [23].

Thanks to their generalizability and stability over 
time, values are perfectly suitable for identifying 
underlying reasons for actions [57]. Formalizing 
this relationship is complex and can be done in 
a number of different ways. The simple way used 
in this report followed that of Tielman et al. [40] 
and Pasotti et al. [45] in trying to quantify values 
for computable simplicity: “we propose a simple 
number which expresses how much an action 
demotes (negative numbers) or promotes (positive 
numbers) a value”. Furthermore, the assumption 
was made that for different actions, the values are 
commeasurable. This assumption “is not a trivial 
one”, but is frequently used to allow quantitative 
comparison between otherwise incomparable 
numbers.

The logical step would have been to directly assign 
values to all activities in the dataset for further 
calculation. However, this is not necessarily useful 
to the cause. Instead, it is important to revisit 
the goal of the thesis before deciding upon the 
implementation of values.

3.4.1 The appropriate time – a value-
based	approach
The goal of the thesis is to find the most appropriate 
time for notification. There are two aspects to this 
problem. 

Time aspect
As mentioned before in 2.3.3, in the ideal 
situation, the notification is dispatched just before 
the deadline. The reasoning behind this can 
be explained in terms of values. The value gain 
achieved by the reminder should only count in the 
calculation when the user actually remembers. Since 
this is difficult to test and quantify, an assumption 
had to be made. It was assumed that a long time 
between the notification and the deadline would 
have a negative effect on the value gain caused by 
the reminder since the reminder would have a much 
lower chance of causing the user to remember. 

3.4 Value based design
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The big advantages of looking at just a single value 
come down to three aspects:

• No comparisons between different values 
had to be made, removing the need for the 
assumption of commenurability.

• It would be easy for a user to supply 
quantitative data regarding values of 
annoyance because they are more concrete 
than most other values.

• Furthermore, statistical analysis is much 
simpler using only a single value variable. 

3.4.3	Quantifying	values
Since it was difficult to distinguish linguistically 
between a type of value and a quantified value, from 
here on the following definitions were introduced:

Quantified user value (QUV): 
The quantification corresponding to the given 
user value; i.e. the value of the value.

To perform calculations based on the QUVs, they 
first had to be obtained. The ideal method would 
have been to start with an educated guess and 
increase or decrease the QUV based on user 
feedback. Nevertheless, this would still require 
research or previously entered QUVs. For now, 
this self-improving aspect was ignored to prevent 
possible noise in results and keep a straight-forward 
implementation.

Instead, the user is presented with a questionnaire 
which directly assigns scores to activities. As 
previously it was decided that only the nuisance of 
the notification would be analyzed, only a single 
choice per activity would have to be made. For 
every activity, a choice is made among five options 
to answer how annoying it would be to be notified 
during this activity, corresponding to common 
questionnaires and a Likert-type scale [59]. The 
options are shown in figure 7.

If Peter would have received a notification during 
either of these activities, one of several things may 
happen:

• He may quit this activity, thereby nullifying 
any value gains

• He may be disrupted by the notification, 
thereby causing a reduction in the value gains

• He may be disrupted by the notification, 
thereby introducing value losses (e.g. 
harmony)

• He may shortly acknowledge the reminder 
but not mind it.

The difficulty in this lay in how to compare the 
different value gains and losses. As mentioned at the 
start of this section (3.4), assuming commeasurable 
values may have posed a solution. However, the 
question was whether such a complex approach is 
necessary at all. 

The values losses as invoked by the nuisance of 
the notification were directly related to the gains 
invoked by the activity. Rather than seeing them as 
separate, the four scenarios mentioned above were 
combined by saying Δv is analyzed, the change in 
values. Psychologically losses weigh much heavier 
than gains [58]. As such, Δv is predominantly 
determined by the losses invoked by the nuisance 
of the notification. However, establishing these 
values for all possible activities would have been 
a very difficult task by itself, especially since they 
differ per user. 

Instead, rather than analyzing the losses invoked 
by the nuisance of the notification, an intermediary 
may be removed. The result would then be to look 
directly at the nuisance of the notification as a 
single value. Other ways of describing this could be 
emotional well-being or harmony. It would be much 
more feasible to ask a user about how annoying a 
notification is during a certain activity, rather than 
all individual values. Having focused on this single 
value may well be sufficient.

Figure 7 -  Possible score choices
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Second, the distance between the various answers. 
This distance between the QUVs is very subjective. 
However, a common practice is to set them 
equidistant. The Linkert-scale suggests simple 
integer values. As such, assuming ‘unacceptable’ 
equates to a QUV of 0, ‘not at all annoying’ 
would equate to a QUV of 4, the rest distributed 
linearly. The assumption that these five answers are 
linearly distributed is not a trivial one, but warrants 
further investigation in its own right. Furthermore, 
weighting may be introduced at a later time, 
allowing adaption to the user’s preferences.

Ideally, any reminding would take place at an 
activity where a notification is not at all annoying. 
However, most importantly, no notifications should 
be dispatched when it is unacceptable. To convert 
these answers into QUVs, two decisions had to be 
made considering the range of the QUVs.

First, the zero-point of the range. There were 
two options for the zero-point. Either ‘not at all 
annoying’ would be considered the zero-point, 
with the other QUVs going into the negative. The 
other option would be to consider ‘unacceptable’ 
as the zero-point, with other QUVs going into the 
positive. Considering only notification during an 
activity marked as ‘unacceptable’ was considered a 
failure, setting this as the zero-point would allow for 
later calculations to still consider 0 as a failure while 
positive QUVs would be successes.
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Combining the above matters, the problem may be 
stated as:

Given a current activity cluster A and a goal 
activity Z, we are looking for an activity cluster 
S with the highest QUV, that is likely to occur 
before the deadline, and that will be reached 
with only a minimal number of expected steps 
remaining before Z is reached. So:

Where the aim is to find a minimal m with a 
maximal probability and value for S.

Note that Z is not described as an activity cluster 
since it is irrelevant which cluster of Z is reached. As 
such, all cluster for Z may be combined into one.

Procedurally, the simplest way would have been to 
generate a probability tree, analyzing each activity 
and its possible successors one by one. However, 
this would have been a very computationally 
intensive process. Given a dataset of substantial 
size, ergodicity may be assumed. Since, given 
that there are enough recorded activities, it may 
be assumed that at one point the user reaches a 
similar activity to one performed before. Such an 
irreducible system may be modeled as a (discrete 
time) Markov chain where every activity cluster is 
represented by a state. The main advantage of 
using Markov chains is that there are numerous 
ways to analyze such chains. These ways are 
computationally much less intensive then analyzing 
a probability tree due to their reliance on formulae 
rather than on iterative algorithms. All three aspects 
up for optimization – probability, QUV and number 
of steps between the moment and deadline – were 
calculatable using Markov chains. However, in order 
to perform these calculations, the problem had to 
be formally defined, mathematically that is.

Recapping on the status, using the clustering and 
prediction techniques, given any current activity 
the next activity could be predicted with a certain 
probability. To find an appropriate moment, rather 
than just one step into the future, all possible steps 
until the deadline had to be analyzed.

As mentioned before, it was accepted that reaching 
the deadline was synonymous to reaching a certain 
activity. While it was possible to let the statistical 
model dynamically adapt to having a single or 
more of such deadline activities, for simplicity, only 
a single goal activity was accepted. 

The requirements for an appropriate moment were 
previously discussed in 2.3.3 and 3.4.1. Ideally, 
a moment should be found that optimizes the 
following aspects:

• It should take place between now and the 
deadline (probability)

• The time between the moment and the 
deadline should be minimal

• The QUV corresponding to the moment’s 
activity should be maximal

3.5 Statistical model creation – Markov chains

Before continuing, another choice had to be 
made. When analyzing the time between the 
moment and the deadline, ideally an actual time 
in minutes would be preferred. With the previous 
choices made for the clustering and prediction 
techniques, combining subsequent predictions 
would account for very inaccurate predictions for 
durations. If the clusters had been calculated based 
on durations, this inaccuracy might have been 
reduced. Still, the combined predictions would 
exponentially increase this inaccuracy. Therefore, 
rather than looking at the absolute time, the 
number of intermediate activities was considered 
as a replacement for the time. While not an ideal 
solution, it may be argued that assuming this 
synonymy is appropriate. Anytime a user switches 
activity, their focus is shifted and requiring more 
attention to regain proper focus. This is one of the 
reasons why multitasking does not really work [60]. 
While same time may be occupied by a person 
watching TV as them showering, then going to 
the toilet and several more short-lasting activities, 
they do not necessarily have the same effect on the 
brain. The addition of time in the smart reminder 
concept was introduced to simulate the chance 
of the notification having its intended effect of 
reminding. As such, the choice was made to look 
at the number of intermediate activities between 
the moment and the deadline, rather than the 
absolute time between them. 

Explanation - Markov chain

“A Markov chain is a mathematical process 
that transitions from one state to another 
within a finite number of possible states. It is a 
collection of different states and probabilities 
of a variable, where its future condition or state 
is substantially dependent on its immediate 
previous state. These probabilities can be 
exhibited in the form of a transition matrix.” 
[38], [61]



32

In the model, each state has a certain QEV and a 
probability to reach a different state next. These 
probabilities and QEVs could be combined in a so-
called transition matrix and a value matrix. For the 
example model that would result in respectively:

The use of the transition matrix is plentiful. For 
example, taking P^3 describes the probabilities of 
reaching any state, given a starting state, after 3 
steps. 

As mentioned before, an important characteristic 
of our system is its irreducibility. In simple words, 
at any moment it is known that a person, at one 
point, will fall asleep again. This property allows 
finding the stationary probabilities; the steady-
state probabilities as the number of steps taken 
approaches infinity. As such, the equation to be 
solved is:

Where π is a row vector whose entries are the 
probabilities of the states, all summing to 1. For a 
small number of states, this can be manually done 
using some simple variable substitution and some 
linear algebra knowledge. Especially for larger 
systems, however, working with the full matrices is 
easier. With some quick rewriting:

This can be solved by finding the eigenvalues and 
corresponding eigenvectors of the matrix (P^T-I). 
This corresponds to solving the following equation:

3.5.1	Expected	value
As mentioned in the previous section, an activity 
with a high QUV was sought while being likely to 
take place before the deadline. Essentially, this is 
mathematically synonymous to saying the expected 
value (or expected QUV) should be maximized. 
In the following paragraphs, the basic method of 
obtaining expected values from a Markov chain is  
explained.

Mathematically, the expected value of any random 
variable X is defined as the probability-weighted 
average of all possible values X can take on [61]:

Given that any activity corresponds to only one 
QUV, this equates to:

where x is the QUV corresponding to activity cluster 
X. Considering the QUVs were directly taken from 
the user, all that remained was to find the probability 
of each state. Knowing all transient probabilities 
from the prediction algorithm, a transition matrix of 
the system could be built. As an example, we will 
take a system of three states that represent three 
activity clusters as shown in figure 8.

Figure 8 -  Example state model with three values
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To start, the system must be made absorbing. 
Continuing with the same example system as 
before and taking state C as the final state, the new, 
absorbing, transition matrix becomes:

It is nothing other than making the corresponding 
element equal one while all other elements in 
the row are reduced to zero. The next step is to 
obtain the fundamental matrix. In order to find 
this matrix, several components are needed first. 
These components can be gathered from the new 
transition matrix once it is written in canonical form. 
For a transition matrix with t transient states and r 
absorbing states, the canonical form is described 
as:

A t-by-t matrix, describing probabilities from a 
transient state to another
A nonzero t-by-r matrix describing probabilities 
from a transient state to an absorbing states
A r-by-t matrix of zeros
A r-by-r identity matrix

Q:

R:

0:
I:

In the example case, the transition matrix is already 
in canonical form so the property matrices can be 
obtained immediately:

The fundamental matrix is a matrix that describes 
the expected number of visits to a transient state 
before being absorbed. The calculation of the 
fundamental matrix starts with the property matrix 
Q. Entry (i,j) of Q describes the probability of going 
from state i to state j in exactly one step. The same 
entry in Q2 describes the probability in exactly 
two steps, etc. As mentioned before in 3.5.1, 
the expected value of anything is calculated by 
summing all probabilities multiplied by their values. 
Therefore, the expected numbers of visits, the 
fundamental matrix, are calculated using equation 
3.5.

Of course, the result will be multiple eigenvectors. 
The one corresponding to the stationary distribution 
is the one for which all entries of the eigenvector 
are positive. In the example, this would be the 
eigenvector corresponding to the eigenvalue λ=1, 
which is (0.38,0.81,1). Resulting, the stationary 
distribution is:

Having found the stationary distribution, the 
corresponding expected values are only a step 
away:

As shown, this is a simple solution to finding 
probabilities and expected values for an 
irreducible Markov chain. There is, however, a 
problem approaching the problem in this manner. 
Reconsider the problem as stated at the start of 
this section: Starting at state A, a state S is required 
to be reached before reaching deadline state Z. 
However, the model that was just discussed doesn’t 
consider state Z as a final state but simply allows for 
continuation. Therefore, the acquired probabilities 
and corresponding expected values do not 
represent reality. In order to solve this problem, the 
transition matrix had to undergo a transformation 
and make the final state absorbing.

3.5.2	Absorbing	Markov	chain
An absorbing Markov chain is a chain where one 
or multiple states are absorbing and thus cannot 
be left, while all other states can reach at least one 
of these absorbing states [39]. Like with normal 
Markov chains, the transition matrix can be used to 
calculate a number of interesting properties. 

Most notably, since the system is no longer 
irreducible, its steady-state distribution has 
changed. As the number of steps leans towards 
infinity, the probability will always be 1 for all 
absorbing states combined and 0 for all other 
transient states. This might seem more difficult to 
work with, but it can be approached in a similar 
way as a converging series. Through some simple 
transformations and calculations, it is possible to 
calculate the expected number of steps between 
any state and an absorbing state as well as other 
interesting properties. 

(3.12)

(3.13)
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Consecutively, to obtain the expected values, 
every element in each row is multiplied by their 
corresponding QUVs:

Recapping on the original problem, the goal was to 
find a state S such that in:

The expected value for S is maximized and the 
minimum number of steps for m is minimized. In 
order to find the expected value for S, equation 
(3.15) is used to find the probabilities of each state 
given the current starting state and then multiplied 
by the values of each possible state S. The expected 
number of steps is found through equation (3.14). 
Looking at the example for the last time, taking 
A as our current state and C as our final state, for 
intermediate state B the results are:

For both T and H, the results are obvious for such 
a small system. However, imagine that for this to 
work in a system of a user’s ADL large number of 
activity clusters that this is no longer an easy feat. 
Since the expected value for S is to be maximized 
while keeping the number of steps until absorption 
at a minimum, these calculations must be done for 
all possible S.

3.5.3			Drawback	of	choosing	Markov	
chains
There is one big drawback of using Markov chains. 
This assumes complete independence between 
past and future states other than just the one step. 
In reality, there are usually a series of sequential 
activities. For now, this is not taken into account. A 
possible solution would be to look at every possible 
set resulting from the Apriori algorithm and map 
it as a separate state. Even this is not ideal but it 
would be an improvement.

Calculating that for the example, we find:

Here, entry (i,j) of N describes the expected number 
of times the Markov chain is in state j, given that the 
chain starts in state i, before being absorbed. From 
this, the expected number of steps before being 
absorbed can be calculated with a simple formula:

 
Here, 1 is a column vector of the same dimension 
as N containing all ones. Calculating this for the 
example scenario, the result is:

Therefore, it can be concluded that it will take 
an average of 1.34 or 1.13 steps before being 
absorbed if started in state A or B respectively.

As explained before, the non-absorbing version 
of the Markov chain did not represent reality in its 
probabilities of reaching the transient states before 
being absorbed. However, these probabilities can 
be recalculated for absorbing Markov chains. This 
is done using the following formula

Where N_dg is a diagonal matrix with the same 
diagonal as N. The resulting matrix H describes the 
probability of visiting any transient state given a 
starting state. Calculating that for the example, the 
following results are obtained:

From any probability can be found. For example, 
the probability of passing through B before reaching 
C, given that the current state is A is described by:

(3.14)

(3.15)
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Now that a statistical modal could be constructed, 
the appropriate moment had to be selected. This 
was done using the procedure as shown in figure 
9. Once a reminder is requested, the deadline is 
known as entered by the user. Subsequently, all 
clusters, as well as all predictions from one activity 
cluster to their likely successor, are calculated. 
Then, based on the user’s entered QUVs and the 
calculated probabilities, the statistical model is 
calculated. Given the most recently recorded 
activity as the starting state, the expected value and 
expected number of steps until the deadline are 
calculated for all other activity clusters. These two 
numbers are then optimized according to a scoring 
function1. The highest scoring activity cluster is 
seen as the most appropriate moment which is 
also likely to be occurring before the deadline. If 
the next recorded activity corresponds to this high 
scorer, the notification should be dispatched. If not, 
the statistical model and starting state are updated 
to the newly recorded activity and the process is 
repeated. This continues until either a moment 
has been found or the deadline is reached. If the 
deadline is reached, the notification should be 
dispatched immediately, but this is considered a 
failure.

3.6 The appropriate time – the combined approach

1.   This scoring is relatively arbitrary and user subjective. However, it allows for a single measure of comparison. Furthermore, changing the scoring 
function allows easy adjustment of the weighting between the QUV and the time before the deadline, per the user’s preference. The scoring 
function is further described in chapter 5.
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Figure 9 -  Decision model
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Model
All cluster predictions are combined and modeled 
as a Markov chain with a corresponding transition 
matrix. The model is made absorbing, based on 
the provided deadline. Using the properties of 
an absorbing Markov chain, for each cluster, the 
following properties are calculated:

• Probability of reaching that state/cluster 
before being absorbed (reaching the 
deadline activity)

• The corresponding expected value as 
calculated from the probability and the QUV 
of the corresponding activity, as supplied by 
the user

• The expected number of steps until 
absorption is calculated

Moment selection
Based on the most recently recorded activity, the 
deadline and the model, an appropriate moment 
is predicted. This prediction is done through a 
scoring function aimed at maximizing the expected 
value and minimizing the expected number of steps 
between the moment and the deadline.

While the prediction does not correspond to newly 
recorded activities, the process is repeated and the 
prediction is updated. This continues until either 
the predicted moment occurs, or the deadline is 
reached. At this point, the notification should be 
dispatched.

Now that all aspects of the concept have been 
discussed, the combined design is revisited. Figure 
10 shows a more detailed overview of the earlier 
posed design. 

Data acquisition & processing
First, data about user activity is acquired either from 
a stream or a dataset. The data is normalized to 
contain type, starting time and duration. For now, 
a dataset was used, but the possibility of a data 
stream was accounted for. 

Activity prediction
The data is clustered using an Expectation 
Maximization algorithm. A prediction for each next 
cluster is made using the Apriori algorithm.

Values
Rather than looking at all possible user values, only 
the nuisance caused by the notification is regarded. 
Through manual input, the user’s values for every 
activity are stored.

Deadline
The goal activity, before which the reminder should 
be dispatched to the user, should be provided. For 
now, this was done manually and only a single such 
activity was selected.

3.7 Concept description

Dataset

EM

Data acquisition

Data processing

Values

Goals

Data prediction

Model

Suggested notification

 Markov chains

Dynamic model checking

Goal activity identification

Loss by 
notification

Data stream
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Quantify

Figure 10 -  Detailed concept overview







4. Implementation
The implementation was a major aspect of the project. It was used to show the feasibility and 
attainability of the proposed concept. Due to the field of technology in which this researched is 
based, it was important to allow for connection to a real-life application for possible future field 
testing or implementation. As such, several things had to be done. 

First, a suitable platform had to be chosen. This platform should not only allow for all desired 
datasets to be supported but preferably also allow for a standardized connection to third-party 
platforms. Second, the algorithms of the conceptual design had to be implemented in code and 
therefore, a programming language with the necessary capabilities and libraries was required. 
Lastly, the implementation had to provide a way for a user to input data (or to upload bulk sets 
of testing data) as well as obtain results, preferably all in the form of a graphical user interface 
for easy access. 

Ultimately, the actual implementation was done. This chapter will include explanations of the 
most important aspects of the implementation and its algorithms.
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While to some, the choices for such a platform 
may be obvious or trivial, there is clear reasoning 
behind the choices for this kind of platform and 
architecture. The unacquainted reader may choose 
to read appendix 8.4.3 for a detailed description of 
the technical components of the implementation, 
as well as the reasoning behind all choices. 

Going a level deeper, consider figure 13 which 
depicts how the most important aspects of the 
implementation were organized. A clear separation 
of concerns was done by splitting the frontend, 
the resource handling, and the actual methods. 
Most obviously, the most important aspect of 
the implementation is the moment selection. For 
this, prediction models had to be created, using 
the clustering and prediction algorithms. These 
calculations were done based on the activity 
and value data as supplied by the user and/or 
other 3rd party implementations. In order to use 
existing activity data, this data had to be properly 
recorded. Given the used dataset, several hiccups 
arose. These aspects of the implementation, as 
well as the encountered difficulties, are explained 
in the next sections. For this, it is important to 
understand the different kinds of resources used in 
the implementation and stored in the database.

The actual implementation of the designed concept 
was done in the form of an application called 
NotiVal (VALue based NOTIfications). It serves both 
a backend for calculations and communications 
as well as a front end for user input, bulk data 
uploading, and testing as shown in figure 11.

The architecture will be further explained in the next 
sections. While code fragments are not included to 
uphold clarity of explanation, the full source code 
can be found for analysis at: 

https://github.com/RomanovX/Thesis

Combining all the aforementioned aspects, a 
JavaScript-based, Node.js server was established, 
along with a MongoDB database. It serves a 
frontend used to view statistics and allows for user 
input. All communication is done through a RESTful 
API. In order to do complex machine learning 
calculations and matrix calculations, several library 
functions are imported.

4.1.1 Architecture
Following the common practices of web-based 
services, a basic client-server setup was established 
along with a database connection as visualized in 
figure 12. The application runs on a JavaScript-
based, Node.js server along with a MongoDB 
database. Furthermore, it serves a frontend used 
to view statistics and allow for user input. All 
communication with the user and third parties was 
done through an HTTP RESTful API. Lastly, in order 
to do complex machine learning calculations and 
matrix calculations, several library functions are 
imported. Such library functions range from simple 
matrix implementations to the full Apriori algorithm. 

4.1 The actual implementation – Notival

Figure 11 -  : Example views of the Notival Application
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Figure 12 -  High level architecture overview

Figure 13 -  Low level architecture overview
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Analyzing starting times
The third major aspect of the implementation is 
its clustering. In order to cluster by starting times, 
these times had to be converted from a date into a 
number corresponding to the time on the day. The 
simplest solution was to use the number of minutes 
since midnight. This brought along one drawback. 
The time of 00:00 would correspond to 0 minutes. 
However, a time of 23:59 would correspond to 1439 
minutes. While these times are only a minute apart, 
to the clustering algorithm there could be no bigger 
difference between these times. As no solution was 
found for this within the clustering algorithm, it was 
accepted that a certain degree of inaccuracy would 
be found in the clustering.

4.1.4	Prediction	models
Prediction models are basically the rows of the 
transition matrix. However, they are more detailed 
so they could more easily be updated when new 
activities were recorded. The prediction models 
were the result of performing the clustering and 
prediction algorithms. For a large part, library 
functions were used to implement these algorithms 
[71], [76]. A similar procedure and similar parameters 
were used as described in the paper by Nazerfard 
et al. [37] to acquire these clusters, and later the 
prediction models.

4.1.5 The appropriate time – 
implementation
To predict the appropriate time, three things 
were required from the user; a sufficiently large 
set of recorded activities, a set of recorded 
QUVs, and a deadline. The actual moment 
selection was, of course, the most important part 
of the implementation. Given that the recorded 
activities were already processed into prediction 
models, there only one major part remaining in 
the implementation. This last part was the matrix 
calculations corresponding to those explained in 
section 3.5 about the statistical model.

After the code shown there, the scores were 
calculated based on the defined scoring function and 
passed back to the system for possible notification. 
Another very interesting aspect of this section is 
how adept JavaScript is in the implementation of 
Matrices, albeit with the use of a library.

4.1.2 Resources
Resources are used within NotiVal to contain the 
most important pieces of data. They are provided 
and accessible through the API (as shown in figure 
13), following the REST principles. The resources are 
then stored in a database corresponding to clearly 
defined models, allowing for easy use further down 
the road, preventing errors. These main resources 
are:

Users
Described by their id as well as their values

Activities
Entries of activities, described by which user they 
belong to, their name and information about their 
starting and ending time.

Clusters
The models of clusters in which the activities have 
been sorted according to the clustering algorithm. 
They are described by which user they belong 
to, which activity they correspond to, and the 
parameters of the model.

Prediction model
Information about the probabilities of each 
subsequent cluster, given the current cluster as 
calculated through the Apriori algorithm. Once 
again, they are further described by which user they 
belong to. 

4.1.3	Analysis	of	incoming	data
Incoming data is analyzed in two moments. Either 
when a new user activity is recorded through an API 
call, or when a dataset file is submitted. While the 
analysis of the incoming data in itself is not very 
exciting, there are two important aspects to discuss. 

Errors & Overlapping activities
As in any possible data source, errors may occur. 
As shown in more detail in appendix 8.2, every 
recorded activity consisted of a start and end event. 
Occasionally, one of two things could happen. 

First, it could occur that an activity that was started 
was never completed. This anomaly only occurred 
twice in the used dataset, so these entries were 
simply omitted. Second, a new activity could be 
started before a prior one was completed. This 
was solved by finding corresponding events rather 
than assuming that two subsequent events always 
corresponded.
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4.1.6	Testing
The final part of the implementation consisted of 
creating a testing suite. This testing suite would 
allow for randomization of selecting test cases, 
QUVs, and deadlines. This will, however, be 
explained in the next chapter.

4.1.7 Conclusion
Separation of concerns was done by splitting the 
implementation into frontend, resource handling 
through the API, and the actual methods used for 
calculations and predictions. Several ‘clean-ups’ 
had to be performed to analyze incoming data, and 
transform it into a general data structure for activities. 
Activities could then be clustered. From the clusters, 
a prediction model was made. Combining the 
prediction models and the user values, the moment 
calculations could be performed 





5. Experimentation
Having established and implemented a model, the final step is to answer the last research 
question:

Does the use of the value-extended model provide more appropriately timed 
notifications?

While having a proper implementation shows that the concept is achievable, it is more interesting 
to see if the model shows improved performance. This chapter covers the approach and method 
of the testing and shows the results of the tests performed.
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These losses may be modeled directly after the input 
from the user. However as actually remembering 
is mostly determined by the time between the 
notification and the deadline, the expected value 
gain caused by the reminder was modeled through 
this time.

Therefore, to answer whether a value-based 
model leads to a more appropriate selection of a 
moment for notification, three questions should be 
answered, as illustrated in figure 14:

As such, the time and value-based approaches 
could be tested and compared to the baseline to 
show possible improvements in results. 

The purpose of this paper was to see how the 
addition of values to a smart reminder system 
would improve the choice for more appropriately 
timed notifications. It was reasoned that the most 
appropriately timed notification would maximally 
improve user values. 

As no sufficing, existing, smart reminder system 
existed, it was built from scratch. Therefore, 
no absolute measure of performance could be 
introduced. In order to analyze the performance 
of the proposed algorithm, several aspects were 
tested and compared.

First, a baseline scenario was introduced. This 
baseline would analyze the performance of just 
the predictive model. Hence, rather than using an 
absolute measure of performance, the performance 
increase of the value-based model could be 
compared to that of the baseline.

To identify the exact scenarios to be tested, the 
research question had to be broken down. The 
most appropriately timed notifications were said to 
maximize the increase in user values. As such, it was 
key to define the ways in which the user values could 
be altered. This increase in user values consisted 
of two parts: the gains invoked by remembering 
and the losses invoked by the nuisance of the 
notification. 

5.1 Introduction

Figure 14 -  Approach to testing
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What	is	known:
• The activities of all users
• The most recent activity
• The QUVs (quantified user values)
• The deadline

What	is	to	be	calculated:
• The expected value (probability × QUV) 

of each possible moment
• The expected time (in steps) between 

this moment and the deadline
• A score meant for optimization, aimed 

at maximizing the expected value and 
minimizing the expected time 

To recap on the concept, the idea is to find a 
moment, an activity, during which the notification 
will be presented. To find this moment, for every 
user, several variables are known and several 
variables may be calculated from them:

For this, the activities of the user are clustered. 
Given the knowledge of each successive cluster, a 
predictive model is made. Based on the predictive 
model and a given deadline, the moment selection 
is done according to the following algorithm:

Given a current activity cluster A and a goal 
activity Z, we are looking for an activity cluster 
S with the highest QUV, that is likely to occur 
before the deadline, and that will be reached 
with only a minimal number of expected steps 
remaining before Z is reached. So:

Where the aim is to find a minimal m with a 
maximal probability and value for S. If the 
predicted activity cluster S corresponds to the 
next recorded activity cluster, the notification 
is dispatched. Else the newly recorded activity 
cluster is set as the new state A and the process 
is repeated. This continues until either an S is 
found, or Z is reached.

With the concept and implementations as discussed 
in the past chapters, this could now be calculated. 
However, to test the actual improvements of the 
concept, a method of testing had to be conceived.

As previously mentioned, since the smart reminder 
system was built from scratch, no absolute scoring 
method could be used. Therefore, a baseline and 
a relative scoring function had to be established. 
Thereafter, various testing scenarios could be 
considered. These three scenarios, as shown in 
figure 14, analyze the performance of the algorithm 
when considering:

• The value loss invoked by the nuisance of the 
notification

• The expected value gain invoked by 
remembering as simulated by the time 
between the moment of notification and the 
deadline

• Both aspects combined

These scenarios were tested for the different users 
and deadlines, using a part of the users’ activities 
for training and a part for testing. To simulate 
random users, the tests were repeated for a large 
set of randomized QUVs. More explanation and 
reasoning are discussed in the following sections. 

5.2.1 Baseline
Given that the model works with a custom 
prediction method, it is only possible to analyze 
results by comparing them with a baseline scenario 
in which values are not taken into consideration. 
As the optimization of time between the moment 
of notification and the deadline was included to 
simulate the effectiveness of the reminder, and 
therefore its positive effect on user values, it too 
was ignored in the baseline. The result is a scenario 
in which the notification is dispatched during 
an activity (cluster) which is most likely to occur 
before the deadline. This corresponds to letting 
the implementation run with the following scoring 
function:

where P[X] is the probability of X occurring before 
the deadline. Furthermore, the algorithm is 
considered successful if it manages to correctly 
predict a moment before reaching the deadline. 
Obviously, this baseline will have the highest scoring 
success rate, because it is not being held back due 
to value or time requirements. However, both the 
score and success rate should be normalized before 
comparison. The reasoning behind such a baseline 
scenario is that it analyzes the performance of the 
basic algorithms before implementing the value-
based decisions.

5.2 Method

(5.1)
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5.2.3 Scenarios
Three scenarios were used to analyze the 
improvement as caused by including values. Firstly, 
the scenario in which only time, or the number 
of steps from the moment until the deadline, is 
considered. A moment was sought which is an 
expected minimum number of steps before the 
deadline, but still likely to occur. In principle, this 
is still partially related to the predictive model. 
Therefore, it is interesting to compare this to the 
other value-based scenarios. For this, the following 
formula was used to calculate the score of each run:

In the second scenario, only values are considered. 
This was done to see whether incorporating the 
aspect of time is truly beneficial. This led to the 
following formula to calculate the score:

Aside from this, the third scenario takes both time 
and values into consideration and basically attempts 
to optimize all aspects. As such its scoring formula 
is similar to the normalized score.

In producing this scoring formula, it was assumed 
that the value and time components weigh equally. 
However, for any user these weightings may vary. 
Since no specific users were analyzed, this was not 
taken into consideration for now.

5.2.2	Scoring	and	comparing
Like the baseline, every tested scenario will be 
accompanied by a scoring formula used to calculate 
a score and a success rate. However, since the 
different scenarios must be made comparable, two 
normalized scores are introduced: the normalized 
score and the normalized success rate.

The normalized score recalculates the score for the 
chosen activity cluster, but incorporating the value-
based aspects. This corresponds to the following 
function:

Where V[X] is the QUV corresponding to X as 
provided by the user, or through random selection 
(as done in the test runs). T[X] indicates the expected 
number of steps between X and the deadline. Lastly, 
E[X] is the expected value of X.

A score of zero indicates a failure, either because 
no moment was selected, or because the chosen 
activity cluster corresponded to a QUV of 0. Other 
than that, the score in itself is fairly meaningless. 
However, as ideally the expected value is maximized 
while the time between the moment and the 
deadline is minimized, a higher normalized score 
indicates a better performing system.

A good result for a test scenario would be one of 
three things: 

• If the normalized success rate stays roughly 
the same but the normalized score increases, 
it means the consideration of the user’s 
value is increased without compromising the 
effectiveness of the reminder. 

• If the normalized score stays roughly the same 
but the normalized success rate increases, 
it means an appropriate moment is found 
more frequently, without compromising user 
values.

• If both increase, it means all-round, more 
appropriate moments are found more 
frequently.

(5.2) (5.3)

(5.4)

(5.5)
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5.2.4 Variables
In order to properly randomize tests, a number of 
variables were altered to create test cases. The four 
variables were:

• User
• Deadline
• Testing case
• QUVs

Users
As mentioned in 3.2.2, the dataset used has over 
6000 data points for four different users, leading to 
roughly 1500 points per users, spread over roughly 
a month. The different users were analyzed to 
prevent any habits of a single user from affecting 
the results.

Deadline
The deadline, or deadline activity, is the activity 
before which the notification should have been 
dispatched. While any activity may be chosen as 
a deadline, realistically only a few of them create 
plausible scenarios. For the purpose of this report, 
the two deadlines as mentioned in Peter’s example 
of having to close the garden doors are: leaving the 
house and going to sleep. In conjunction with the 
activities presented in the dataset, this corresponds 
to the activities ‘sleep’ and ‘outdoors’.

Testing case
In order to perform testing, the datasets have to be 
split up into a set for training and a set for testing. 
With an average size of roughly 1500 data points 
per user, a testing set of 10% should be sufficient 
[77]. However, as will be shortly explained, not all of 
the data points in the testing set will be considered.
 
The normal procedure would have been to run the 
algorithm for every data point in the testing set. 
However, since the data points are not independent 
of one another, this is not a suitable approach. 
Instead, testing cases should be considered. A 
testing case is a continuous series of data points 
(recorded activities). As many useful testing cases 
as possible should be identified from the testing 
set. To select such a testing case, the start and finish 
of the series of activities should be identified.

The choice for the finish is simple: it is an instance 
of the deadline activity. The logical choice for the 
start of the test case would therefore from the prior 
instance of the deadline activity. Nevertheless, 

this choice should be reasoned. To illustrate the 
selection of a testing case, consider the following 
(simplified) series of activities:

Aside from this consider the original example 
scenario of Peter having to remember to close 
his garden doors before going to sleep. The most 
logical choice would be to look at the instance 
of sleep before it (both marked in bold). As such 
the prediction algorithm is run. If the predicted 
cluster corresponds to that of ‘grooming’, the 
notification should be dispatched, else the process 
is repeated. However, the next step would be the 
same as considering a testing case from ‘grooming’:

As such, given that the reminder was programmed 
before the testing case in question, it is only 
necessary to look at the original situation from 
‘sleep’ to ‘sleep’. This would be the case for 
recurring reminders such as Peter’s example. Also 
considering setting reminders at a later moment 
requires more attention. For example, setting a 
reminder to call someone before the end of the day. 
Programming such a reminder is generally done a 
minimum number of steps before the deadline. 
Furthermore, this would require a larger resolution 
than provided by the used dataset. As such, the 
choice was made to focus on recurring reminders.
Furthermore, not every instance of sleeping should 
be invoked as a deadline. For example, when Peter 
wakes up to go to the toilet and go back to sleep, 
this is not a moment at which a notification should 
occur. Consider this extended example:

...
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Sleep

Sleep

Grooming

Grooming

Eating

Eating Watching TV

Watching TV

Toilet

Outdoor OutdoorWork
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Instead, a typical testing case would be to find the 
perfect moment between actually waking up for the 
start of the day, and going back to sleep. In other 
words, the testing set would be the set of activities 
between the two marked instances of ‘sleep’. In 
order to find such testing sets it was assumed that 
such ‘connected’ activity instances may happen with 
a maximum of two different activities in between.

QUVs
In order to objectively test the model with respect 
to the QUVs, or values relating to annoyance 
caused by the notification, the QUVs should be 
randomized. As such, every scenario was tested 
with 1000 different configurations of values. Here, 
each random value was an integer value between 
0 and 4, linked to an activity corresponding to the 
values as mentioned in 3.4.3.

Number of runs
Given that there are 4 users, 2 deadlines and 1000 
random sets of values, a minimum of 8000 results 
are obtained given that there is at least one test case 
per user per deadline. Realistically, a much higher 
number is achieved. Using 20% of the dataset as 
testing activities led to roughly 24000 results.

5.2.5 Implementation 
As mentioned before in 5.1.2, for the various 
scenarios, four numbers were calculated: the score, 
success rate and their respective normalized values. 
Performing this for all users, and randomized 
variable led to just under an hour of testing. This 
long testing time was the result of only using semi-
optimized. 

Before looking at the results, let us quickly recap 
the meaning and purpose of the normalized results. 
While the opportune moment was calculated using 
the formulas corresponding to each scenario, the 
moment is reevaluated while taking all variables 
into consideration. Consider the following example 
for illustration:

In the baseline scenario where values and time 
are not considered, the appropriate moment 
is found to be at activity 'work’. However, the 
user considers it ‘unacceptable’ to be notified 
during the activity. Hence, its QUV and 
respective normalized score are 0. 

Here a successful moment in the baseline scenario 
would be a very unsuccessful moment in the eyes 
of the user when considering their values. As such, 
normalized simply means, ‘the score or success rate 
as it would have been taking both values and time 
into consideration’, allowing comparison between 
the different scenarios.

The success rate is simply the fraction of tests 
which successfully predicted a moment suitable 
for notification according to the scoring function. 
When normalized, it is checked against the QUV 
corresponding to the chosen activity (if this had not 
yet been done). Hence, the basic and normalized 
success rates will be equal for scenarios already 
including QUVs in its scoring function.

Tables 2 and 3 show the combined results for 
24015 individual test runs for the various variable 
and scenarios. s indicates the respective score or 
success rate. Δs indicates the difference in regards 
to the baseline, however, this is not applicable to 
the not-normalized scores.

5.3 Results

Scenario Baseline Only time Only values Values & Time

Score

Normalized Score

s

0.917

0.195

s

0.077

0.195

Δs

0%

s

3.083

0.227

Δs

+16.4%

s

0.231

0.231

Δs

+18.5%

Scenario Baseline Only time Only values Values & Time

Success rate

Normalized SR

s

0.916

0.733

s

0.833

0.667

Δs

-9.1%

-9.0%

s

0.828

0.828

Δs

-9.6%

+13.0%

s

0.776

0.776

Δs

-15.2%

+5.8%

Table 2 -  Success rates (SR) per scenario

Table 3 -  Scores per scenario
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The next aspect is to consider the normalized 
scores. Obviously, trying to optimize the same 
function used to calculate the normalized score will 
give the highest result. More interesting, are the 
three scenarios side by side. The inclusion of just 
time does not show any (significant) improvement. 
The inclusion of just values does so drastically. 
This can be explained by the many ‘unacceptable’ 
activities no longer being considered as an 
appropriate moment. However, the kicker lies in the 
improvement from this to including both the values 
and time components. This shows that, while still 
improving the success rate, the addition of user 
values in a model actually improves the selection of 
an appropriate moment for notification. 

While this score can probably be improved even 
further, this is mostly dependent on the preferences 
on the user. The user preferences alter weighting 
between the values, timing, and success rate. 
Furthermore, while changing the weighting is one 
option, one may choose to implement a completely 
different scoring function.

From these results, several interesting conclusions 
may be inferred. Firstly, the baseline is shown to 
have a success rate of roughly 92%. This is actually 
a very good result since it shows that the predictive 
model works quite adequately. The normalized 
success rate of 73% (which is roughly 20% lower 
than 92%) indicates that the randomization of the 
user values properly works. Given that there can be 
5 possible values, one of them being 0, 20% should 
indeed fail.

Furthermore, in all other scenarios, the addition of 
time or values in the calculations is shown to have 
a negative effect on the success rate. This is to be 
expected given the introduction limiting the number 
of appropriate moments. However, compared to 
the normalized success rate of the baseline, there 
is actually quite a large improvement for the value-
based scenarios. This shows that the addition of 
values in a model actually improves the selection 
of an appropriate moment for notification in terms 
of successful selection. The fact the inclusion of 
time only has a negative effect on the normalized 
success rate can be explained by the fact that it 
is only a limiting factor but without a cut-off (such 
as the ‘unacceptable’ QUV). Ultimately, the most 
important aspect is that unless the user demands 
much emphasis on the timing of the notification, the 
normalized success rate shows clear improvement.
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The baseline, the basic prediction algorithm, has 
shown to work properly, showing a success rate 
of almost 92%. Revisiting the previously posed 
questions:

Does optimizing the moment selection for minimial 
time between the moment and the deadline 
improve the success rate and comparative scores 
with respect to the baseline?
As expected, the addition of a time component 
simply restricts the choice of a moment compared 
to the baseline. As such, the (normalized) success 
rate clearly dropped. For the score, a small 
increase would be expected. But apparently simply 
optimizing for time is not sufficient. Therefore, 
considering minimizing only the time between the 
moment and the deadline is not a sufficient option. 

Does optimizing the moment selection for minimal 
nuisance (or maximal expected QUV) improve the 
success rate and comparative scores with respect to 
the baseline?
Having no time restriction, a higher success rate is 
expected since any predicted, high scoring activity 
may be selected. However, even the normalized 
score showed a clear increase. This shows that 
taking values into account can clearly improve the 
selection of an appropriate moment.

Does optimizing the moment selection for both 
time and value (QUV) improve the success rate and 
comparative scores with respect to the baseline?
The most interesting scenario considered both the 
time and the value component in its optimization. 
As expected, this scenario showed the largest score 
increase. However, even optimizing for both aspects 
did not lead to a negative effect on the success rate 
when compared to the baseline. 

Combining the above conclusion, considering time 
and value components, the optimized scenarios 
have shown improvements of 6 – 13% successful 
predictions. In terms of more appropriate moments, 
the optimized scenarios score up to at least 18.5% 
better, without losing too much on the success rate. 

Currently, the combined scenario considered 
arbitrary weighting for the various components of 
the scoring function. Further improvements may be 
attained by modifying the scoring formula through 
proper weighting of the values, timing, and success 
rate, based on the user’s preferences.

5.4 Conclusions

5.4.1 Limitations
While the results are promising, a number of 
assumptions had to be made, introducing a number 
of limitations. Reverting these limitations may have 
a negative effect on the results.

Optimization to continuous time
Rather than looking at continuous time, discrete 
time was considered, counting activities rather than 
the duration of the activities. Assuming continuous 
time 

No cut-off time
Whether the time before a deadline is an accurate 
measure of the probability of actually remembering 
is a non-trivial assumption. Instead, a cut-off time 
could be used.

One value
The implementation focuses on a single value: the 
nuisance invoked by the notification. This is done as 
a reasoned replacement of other user values. Once 
again this is not a trivial assumption, albeit a very 
functional one. However, the concept can be easily 
extended to support various user values by doing 
all calculations for said values and weighting them 
to how the user cares about the different values. 
This would, however, require vast amounts of user 
input regarding values.

Experimental domain
It was assumed that the system works with reminders 
that come periodically. As such it was not tested for 
reminders set relatively shortly before its deadline. 
Therefore, the applicable domains are currently 
more suited for elder care (as suggested by the 
main example of Peter). However, this does not 
mean this cannot be easily expanded.

Limited Apriori sets
As mentioned in 3.3.4, a choice was made to follow 
the paper by Nazerfard et al [37]. When computing 
the Apriori sets, only transactions of two subsequent 
activities were considered. However, the power of 
the Apriori algorithm, as well as other predictive 
algorithms, is that it is aimed at identifying larger 
sets. In other words, sequences of activities likely to 
follow one another. 
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A possible way of expanding the sets while still 
being able to use Markov chains for the statistical 
model is to view every set as a single state in the 
Markov chain. However, the difficulty lies in the 
mathematical implications this will have on further 
calculations.

Multiple possible deadlines
While the implementation perfectly allowed for 
multiple deadlines, a choice was made to only 
allow for a single deadline activity at a time. The 
reason for this was to increase understanding of the 
results. However, this limitation can be surpassed 
by adding another absorbing state to the transition 
matrix and slightly altering the dimensions of the 
resulting matrices.





6. Conclusion & Discussion
The purpose of this paper was to see how the addition of values to a smart reminder system 
would improve the choice for more appropriately timed notifications. Having concluded the 
project and having seen the results, this main question, along with its sub-questions may be 
answered.
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the values and quantifying the importance of the 
values. 

To simplify matters, rather than looking at the 
different values, only a single value is considered: 
the nuisance caused by dispatching the notification 
at a specific activity. This facilitates further 
calculations and eliminates uncertainty due to 
vague comparisons between values that might be 
weighted differently by the user. 

Furthermore, the assumption is made that a long 
time between the reminder and the deadline 
reduces the value of the reminder. As such, two 
value-based aspects are considered in the ultimate 
concept. The value loss due to the notification and 
the value gain caused by the reminder, as simulated 
by the time between notification and the deadline.

How can the model be extended to incorporate 
user values?
Once a prediction model is made, its probabilities 
can be combined with quantified values. 
Consecutively a statistical model can be used and 
optimized to find the most appropriate time for 
dispatching a notification.

Since no sufficient implementations were found to 
exist, a concept was designed and implemented 
from scratch. To limit the scope, no sensor 
analysis was done, but instead a dataset was used 
containing clear information about a user’s ADL. 
Further arrangements were made to also allow 
data streams from third parties. Using expectation 
maximization and Apriori algorithms as respectively 
clustering and prediction methods, a statistical, 
predictive model can be established in the form of 
a Markov chain. The properties of the Markov chain 
are then used to identify the expected value of 
each possible activity (or rather activity cluster) and 
their expected time remaining until the deadline. 
Ultimately, these two values are combined into a 
score which is optimized.

The goal of this report was to answer the question:

How can a smart reminder system be extended 
to incorporate user values to provide more 
appropriately timed notifications?

The main concept considered throughout the paper 
was to extend a predictive smart reminder system 
with the concept of user values. The goal? To find 
a more appropriate moment than simply setting a 
timer, or even just utilizing the predictive model. 
For this, existing such systems were analyzed and 
compared to see whether they were suitable for 
future extension.

What are the requirements for the smart reminder 
system?
Most importantly, the user’s activities should be 
represented in the model. This could be done 
through the use of a predictive algorithm. The 
result of this model should be a list of probabilities 
or scores of the activities that can be combined with 
values. Further requirements are the inclusion of the 
concepts of goals as well as the model dynamically 
adapting to the user’s current activities.

Which applicable models and systems exist for 
smart reminder systems and how do they compare?
Actually, very few such systems exist and if they 
do they are very limited in their functionalities. 
Systems may incorporate selective data about the 
user’s activities but, for example, only use it to find 
moments when they are not working. Most other 
systems do not work dynamically and instead user 
environmental data, such as geofencing, to plan 
reminders. Value-based design is generally not 
included anywhere other than at design time. 

How can user values be analyzed and quantified?
There are many different ways of looking at user 
values. This is in part due to a large number of 
possible values. First and foremost, a selection has 
to be made as to which values are considered. A 
further difficulty lies in that there is no clear way 
to compare different values other than quantifying 
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How should the smart reminder model be 
implemented in order to allow easy collaboration 
with third-party software?
A complete Node.js web application with RESTful 
API was decided upon due to its clear structure, 
its ability to work in the cloud its openness in 
connecting to other pieces of software and IoT 
devices. This platform was also used to implement 
the design and its algorithms. 

Separation of concerns was done by splitting the 
implementation into frontend, resource handling 
through the API, and the actual methods used for 
calculations and predictions. After collection of the 
activities, the algorithms could be run to create 
a prediction model. Combining the prediction 
models and user values, the calculations could be 
performed to find the most appropriate moment.  
This gave a glimpse into how a fully functional 
application could work. Furthermore, it allowed for 
future collaboration with other smart systems as 
well as easy creation of test scenarios.

Does the use of the value-extended model provide 
more appropriately timed notifications?
First, a baseline was established for further 
comparison. This baseline analyzed solely the 
predictive model. Compared to the baseline, 
three scenarios were analyzed. First, the value gain 
caused by the reminder, as simulated by the time 
between notification and the deadline. Second, the 
expected value loss due to the notification. Third, 
both aspects combined. 

These were then compared to the baseline results 
in two aspects. Firstly, the success rate identified 
the times at which an acceptable moment for 
notification was found. Secondly, a score was 
introduced to measure the appropriateness of the 
moment. 

The baseline itself has shown to work properly, 
showing a success rate of almost 92%. The results 
show that the predictions which incorporate 
user values into its decision model provide more 

appropriately timed notifications in comparison 
to the predictions that ignore user values. An 
improvement of 6 – 13% was observed in successful 
predictions, with the predictions predicting up to 
at least 18.5% better scoring (more appropriate) 
moments. This shows a clear improvement in using 
a value-based system over the basic predictive 
model. 

Whether this is more appropriate than other smart 
reminder models would require further testing. 
Nonetheless, other predictive models could equally 
be extended using this value-based approach. 
However, this approach to appropriately timed 
notifications is, first and foremost, a feasible one. 
Which directly answers the main research question:

How can a smart reminder system be extended 
to incorporate user values to provide more 
appropriately timed notifications?
Through the use of quantification and statistical 
models, any predictive model could be extended 
with the concept of user values and attain useful 
and improved results.
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There are several aspects which warrant closer 
inspection when revisiting this project.

6.2.1	Differentiating	between	values
In 3.4.2, the choice was made to look at a single 
value. While appropriate for this implementation, 
it does limit the way in which values can be 
considered. Firstly, notifications may invoke losses 
in several different values. Furthermore, different 
values may have a different level of importance to 
users. Comparing these differences may provide 
more insight into the effects of the values on the 
ideal moment. 

Similarly, the value of remembering should be taken 
into consideration. While the assumptions regarding 
this matter are appropriate, there is one case that is 
not being considered. That case occurs when the 
notification incurred loss is always higher than the 
value gain invoked by actually remembering. This 
raises questions as to whether the reminder should 
be planned at all.

Both changes would be very interesting. They 
would, however, drastically increase the complexity 
of the mathematical calculations needed to be 
performed.

6.2.2	Clustering	based	on	more	
parameters
As mentioned in 3.3.2, a choice was made to follow 
the paper by Nazerfard et al [37]. In this, prior to 
doing activity prediction, activities were clustered 
based on their starting times. The durations of the 
activities were then used to exclude outliers from the 
cluster calculations. However, the durations could 
instead be very well used within the clustering itself. 
Rather than clustering based solely on starting time, 
duration could be added as a second parameter. 
Similarly, other parameters could be introduced.

6.2.3	Goal	reasoning
As mentioned in 3.4.2, rather than applying the 
concept of goal reasoning as described in [34], 
attaining the goal was made synonymous with 
arriving at a certain activity. In reality, attaining 
a goal is much more dependent on a number of 
prerequisite activities. 

6.2 Future enhancements

The scientific contribution of this project was its 
clear concept of extending a predictive model with 
user values in a dynamic and statistical manner. It 
showed how the incorporation of user values could 
be used to improve planning of notifications. It 
has shown how several existing concepts can be 
combined to create a complex and dynamic model. 
While still in a rudimentary state, it is directly usable 
and prepared for various paths for further research.

The practical contribution was, through the actual, 
finished implementation. Through designing, 
creating and testing an implementation, it is directly 
interesting for use in corporate applications. 
Companies that already work with planning and 
activity information could benefit from the project's 
applications.

6.1 Scientific and practical 
contribution
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An initial idea for this would be to look at the larger 
Apriori sets as mentioned just before. However, 
these prerequisites do not necessarily have to be 
completed in order. As such, more research would 
be required in order to implement this. Most likely, a 
solution could be found by combining the concepts 
from [34], [42].

Another aspect is that there can be more than one 
activity related to the goal. In the main example 
of Peter, two goal activities were mentioned: 
Sleeping and leaving the house. While the current 
implementation allows for only a single goal activity, 
there is nothing that blocks expansion to multiple 
goal activities. This is done by simply making both 
states absorbing and adjusting all calculations 
accordingly. While demanding a bit of time, it is 
not at all an unattainable next step in improving the 
concept of this paper.

6.2.4	Improving	Other	prediction	
methods
The prediction methods based on clustering and 
the Apriori algorithm are definitely not the most 
efficient or the most accurate. They are, however, 
acceptably accurate and easy to implement and 
tweak. With more and more advanced machine 
learning algorithms being developed, upgrading the 
implementation of this paper with such a prediction 
method would be an interesting undertaking.

6.2.5	Analyzing	user	preferences
The scoring methods used in the prediction 
algorithms consider the user to equally weigh the 
user values, time until the deadline and the success 
rate. These three parameters can all be optimized 
based on the preference of the user. Ideally, the 
current system is used as a basis. Then based on 
user feedback, the weightings are adjusted. Or, if a 
substantial amount of feedback had already been 
collected, the average user weightings may be 
used as a starting point.

The concept and implementation as presented 
in this report provide a clear and adequate basis. 
Numerous improvements and changes can be 
made to increase the effectiveness of this solution. 
Nonetheless, it has clearly been shown that through 
the use of quantified values and a statistical model, 
any reminder system or predictive model can be 
made aware of said values and use them to generate 
notifications in a more user-centric manner.

6.3 Final remarks
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8.1 Key concepts of researched papers.

PAIR [3]
This is a relatively older paper which describes 
one of the first, more advance planners. It takes 
into consideration several rules as prescribed by 
the user or caregiver and lays them alongside 
the activities of the user to provide appropriate 
reminders. However, no dynamic analysis is done, 
only design time rules are analyzed.

CogKnow	[20]
This concept is one that implements user values, 
except not in the way that is desired in this project. 
Instead, it uses them to define the required 
support. A distinct number of support scenarios 
are handled and rulesets are defined accordingly. 
Predominantly the user context is considered 
rather than anything else. The rulesets are aimed 
at avoiding interruptions of important activities, 
but don’t do any further analysis.

AHCS/TAFETA [22], [5]
These concepts attempt to design a context-
aware application which analyses data from 
various sensors within the user’s house. AHCS 
makes use of the CASanDRA framework [38] in 
order to create awareness of the user’s context. 
The CASanDRA framework is a middleware which 
provides easily consumable context information 
and accepts different information inputs which 
are fused together. The concepts use either 
the middleware or their own AI to analyze the 
collected information and compare this with a 
number of predefined rules to provide detailed 
information on the user to the caregiver and 
provide reminders when rules are broken. 

Special properties:
• Context analysis independent from 

reminder system
• Levels and types of alerting

Gate	reminder	[18]
This concept centralizes around providing 
reminders at the moment a user leaves their 
house. Knowledge about possibly forgotten 
items is obtained through the use of RFID tags, 
focusing on a zero user workload interaction. A 
crucial part in its working is that it is focused on 
Korean household, where shoes are generally left 
at the front door, so there is a clearly defined time 
slot in which all tags can be analyzed. Focus on 
the study was mostly the actual prototype rather 
than any smart algorithm.

Special properties:
• Physical prototype
• Transparent interaction
• Object detection

Decision maker [32]
This concept intercepts notifications from all 
sources and processes them in a “decision 
maker” prior to actually arriving at the user. 
Instead, it processes information from sensors 
and IoT devices within user and environment 
contexts to decide upon the target device, type 
of notification and time of notification. This is 
done using a machine learning approach. Rather 
than analyzing the actual patterns in decisions on 
whether to and how to notify, the paper continues 
by focusing mostly on the speed and accuracy of 
various machine learning algorithms.

Special properties:
• Machine learning
• Habit analysis
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HeadacheCoach	[35]
While not directly a reminder system, 
HeadacheCoach does propose a possibly 
usable system. It uses user and environmental 
context analysis to identify possible triggers for 
a headache and consequently provides possible 
solution. A similar approach may be used to 
identify moments of lower cognitive ability in 
order to preempt a reminder being necessary at 
all.

MLCARS	[30]
This dissertation discusses a concept which uses 
machine learning to analyze shopping items and 
where they were bought (or cleared off the to-
do list) to predict similar available items or similar 
stores. This data is collected among all users and 
combined with information from companies and 
stores and ultimately stored in a database which 
is continuously updated. Combining this with the 
data of the user’s shopping list as well as their 
location allows to provide appropriately timed 
reminders not to forget items from their shopping 
list. These reminders are not just when near their 
usual supermarket (like is already possible with 
location-based reminders) but also when close to 
any store that is expected to have the desired 
item.

Special properties:
• Activity clustering
• Prediction of next activity without machine 

learning

Smart	reminder	system	[31]
This concept creates a smart reminder system 
through three major components: activity 
recognition, location recognition and prediction. 
The activity recognition is done through the use 
of analysis of the hand movements over time 
and applying machine learning algorithms and 
fuzzy logic to map this to activities. Location 
recognition is done through image recognition 
by camera and neural networks. These two are 
then combined to analyze coupled activities, two 
activities that are strongly related. Alongside, 
predictions are made regarding pending and 
forgotten activities. As such reminders can be 
produced when likely to be forgotten activities 
should occur.

Special properties:
• Specific setup

Attelia [2]
Attelia is a middleware concept which intercepts 
any notifications. It analyses breakpoints in the 
user’s mobile interactions and adaptively delivers 
the notification to minimize interruptions and the 
user’s attentional overload. As such, it lowers the 
user’s frustration caused by receiving too many 
notifications.

Special properties:
• Focuses on mobile screen use to analyze 

activity

Olisto/IFTTT/CAMP/CybreMinder	 [10],	
[11],	[27],	[28]
These apps and concepts allow setting 
reminders based on various aspects of user and 
environment contexts. Once the current situation 
satisfies all conditions in all contexts, the user is 
automatically notified. Information is retrieved 
from the user’s (IoT) devices and (online) services. 
No form of pattern recognition or prediction is 
done, however.

Special properties:
• Existing (possibly discontinued) apps

Goal	models	[34]
This concept does not directly involve itself with 
reminders, but rather with linking certain activities 
to achieving certain goals. These activities may 
have complex relations with one another and 
may promote or demote a goal. As such, this 
can be similarly applied to activities aiming to 
achieve a certain goal where the promotions and 
demotions are linked to the user values.

Special properties:
• Linking activities to goals
• Not related to reminders
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Fuzzy	linguistics	[33]
This concept uses fuzzy logic and linguistic 
variables to analyze the urgency of the reminder 
and the level of annoyance created by the 
interruption of the current activity. Resulting from 
this is a reminder level which determines whether 
or not the reminder is delayed and/or how the 
reminder is presented. The urgencies and other 
levels are all given at design time, however, and 
are averaged over all users tested prior.

Long	term	evaluation	of	smart	homes	[36]
Another one not related to reminders per se. 
This dissertation reviews the users values over 
long time use of smart home appliances. Their 
conclusions span generally across all types of 
smart home appliances. In order for the appliances 
to provide usefulness it is important that the 
values of accessibility and trust are upheld. Any 
appliance which does promote accessibility 
immediately diminishes any usefulness for the 
user. Trust generally boils down to the reliability 
of the provided functionality. If the product still 
has function impairing bugs, users are likely 
not to use the product. Even if the producer 
manages to fix the flaws, the lost trust takes vast 
time to recover. Another drawn conclusion is 
that whatever solution implemented, users are 
initially curious and excited and are willing to 
try most ideas, but ultimately go back to their 
routine behavior. As such, the smart appliance 
should blend into this rather than interrupting it. 

MagHive	[29]
This honeycomb shaped magnetic smart surface 
is attached to the wall and allows devices and 
other objects to be placed on them. Aside from 
the useful functionalities such as wireless phone 
charging, it uses NFC and QI technologies to 
detect the presence and identity of the objects. 
As such it is able to remind the user when he or 
she forgets to take or put back an item. 

Special properties:
• Actual product
• Provides a great base for further 

development

CIA [16]
Although this paper clearly states “smart 
reminder”, it doesn’t actually do much in regards 
to reminding. Instead, it uses image recognition 
to identify people. After this identification it 
combines information previously gathered 
through various systems to display information 
regarding this person and possible events and 
reminders tied to them.

Special properties:
• Linking information
• Not directly related to reminders

TEREDA [37]
Another concept not directly related to reminders. 
It works by gathering simple data from many 
sensors around the house and feeding that into 
the middleware. From this, distributions for the 
start time and duration are analyzed and used 
to help recognize activities and cluster them by 
starting time. For example, there might be 4 
clusters of starting times in which the user may 
generally start to watch TV (with corresponding 
durations). Each of these clusters may have 
different subsequent activities, each with different 
likelihoods. As such, this temporal analysis may 
be used to predict the likely following activity.

Special properties:
• Activity clustering
• Prediction of next activity 

What	should	 I	do/Action	Hierarchies	 {40],	
[41]
These two papers, while again not a directly 
related to reminders, do portray several 
underlaying concepts. The first paper presents 
a framework which represents hierarchical 
relationships among actions and how values 
are related to actions. This is formalized in the 
second paper. Secondly, this framework shows 
how the relationships tie in with promotion and 
demotion of values. Lastly, a method is shown on 
how to infer norms from values rather than vice 
versa. However, this remains a very theoretical 
paper.

Special properties:
• Values     Norms
• Actions      Values
• Not directly related to reminders
• Action hierarchy
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XML format. A typical entry for both events of an 
activity looks like shown in figure 15.
Do note, however, that due to there being separate 
entries for the start and completion of an activity, 
it is entirely possible that a second activity may be 
commenced before the prior one is completed.

8.2 Dataset entry
Every entry in the dataset simply describes the time 
of the event, which activity it corresponds to, and 
whether the event is the start or end of said activity. 
As such, we need two entries to complete an entry 
of a single activity.

The format of the dataset is that of XES (Extendable 
Event Stream) which is an implementation of the 

Figure 15 -  Typical entry for both events

8.3 Unique activities in dataset
bathe mealpreperation sleep

cleaning medication snack

dress outdoors toilet

drink personalhygiene watchtv

eatingdrinking phone work

entertainguests read

groom relax
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8.4.2	Programming	language
When it comes to implementing machine learning 
algorithms, there are several go to languages. The 
five most used languages [65], in order, are:

• Python
• C/C++
• Java
• R
• JavaScript

While there are many other options, they fall below 
a 5% mark of prioritization in the field of machine 
learning. Python takes the clear lead in this field. 
This is due to the large number of readily available 
libraries. This dramatically decreases the time 
required to implement machine learning algorithms 
in applications. However, regardless of popularity 
it is shown that professional background is key to 
choosing a language.

For now, ignoring the fact of whether the 
programmer has any existing proficiencies, it is 
important to note that there is no best language to 
use for machine learning and it is important to take 
the goal into consideration. In this case the goal is 
to create a server-based cloud platform. Whereas 
the algorithms can still be run on any language, the 
web part and a possible API interface are likely to 
be implemented in JavaScript.

8.4.3	Setup
Taking the above choices into consideration and 
looking at the current professional landscape, 
there is a single, simple way forward. There are 
two reasons for this. First, almost all web based 
APIs work using HTTP requests. As such, a setup 
is needed which can perform all calculations as 
well as communicate via HTTP requests. Second, 
when considering a JavaScript based platform, the 
largest market share (over 60% [66]) is attributed to 
Node.js webservers. 

8.4 Platform
The chosen platform is not just dependent on the 
chosen algorithm or what libraries are available. 
More important is to see how the data is obtained. 
Keeping an open mind as to where data can 
come from, and not just restricting oneself to 
using premade datasets, allowing streaming data 
is important. Why? Because of the rapid rise in 
Internet of Things devices.

8.4.1	Background
The field of activity recognition is a rapidly evolving 
one. This is mainly due to the exponential rise in 
Internet of Things (IoT) devices. Currently, there 
are over 17 billion connected devices in the world. 
Of these, there are over 7 billion IoT devices (so 
excluding smartphones, computers and similar) 
with over 6.5 million new devices being connected 
every day [25]. This is expected to grow to between 
20 and 200 billion within the next five to ten years. 
The promise of IoT doesn’t end at just connecting 
the devices to the internet. It is just the first step.

Advances in RF technology and low power 
computing will bring Internet-connectivity 
everywhere. Advances in Big Data and machine 
learning will unlock new business opportunities 
and models. The possibilities are nearly endless, 
but they all still lie quite out of reach from the 
direct consumer. However, specifically for activity 
recognition, suddenly a lot more data is available 
than there was 10 years ago. More and more 
papers and implementations, such as [62]–[64], are 
analyzing activity based on random sensor data.

Whether the activity data or the sensor data is 
available, in any case a prediction can be made on 
past events. As long as the event corresponding to 
the deadline is known before which the notification 
should have been presented, any form of data 
should fit within the design. As such, a server 
based solution, preferably in the cloud, seems most 
logical.
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View engine – Handlebars
The application needs to, among other things, 
handle user input and allow for datasets to be 
imported. For this, the simplest solution is to do all 
user interaction through the means of a webpage. 
While Node.js can natively serve html back to the 
client-side upon request, hardcoding the entire 
layout into every page is tedious work. Using a view 
engine allows the programmer to work according 
to templates where content is filled in according to 
a route. This allows views (the visuals) and code to 
be separated. Handlebars [72] is such a templating 
engine. While each engine has its advantages 
and functions, Handlebars is one of the most 
minimalistic. Since no complex views are required a 
minimalistic approach is preferred.

Database – MongoDB 
In order to store data regarding activities, clusters 
and users, a database is required. While there are 
plentiful options when it comes to databases that 
work with Node.js, there is one big advantage to 
using MongoDB [73]. It allows handling unstructured 
data. Typically, a database requires a clearly defined 
structure, and works with rows in a table. MongoDB, 
instead, works with documents. These documents 
are described by a schema, such a schema can still 
be vague. 

The direct consequence of such a system is that no 
initial thought has to be put into the structure of the 
database and it can be structured on-the-fly. This 
greatly reduces workload early in the programming 
process, allowing for more time spent on the actual 
implementation. Throughout the process of the 
implementation, the databased can be remodeled 
and optimized upon new findings. In more 
traditional databases, this is not always as easy. 
Although arguments can be made that requiring 
more planning upfront ultimately leads to a better 
structured, and thus a more optimized, database, 
this is not the current desire.

Software platform – Node.js
JavaScript was originally a client-side scripting 
language, running in the user’s browser, usually part 
of any website. Node.js [67] changed the game by 
providing an open source platform allowing any 
JavaScript based application to run outside of a 
browser. It’s main advantage for programmers is 
that only a single language would have to be used 
for both frontend and backend (client-side and 
server-side) implementations.

Software library – npm 
Aside from the above, an important feature of Node.
js is that it has an expansive repository of packages 
that can be imported for use in applications. This 
Node.js package manager (npm) [68] is embedded 
within Node.js and as such packages can be 
accessed as libraries, directly from the code. In 
order to achieve all desired functionalities, without 
reinventing the wheel, several important packages 
are used and described below.
Express	 [69] is a framework that facilitates 
and simplifies the creation of web applications 
and services. It is built over the native HTTP 
module within Node.js and allows for much 
quicker implementations of such functionalities. 
Most notably, it simplifies routing when used in 
conjunction with an API or website.

Mongoose	 [70] provides a straight-forward, 
schema-based solution to model application 
data as it is stored in a MongoDB type database 
(described later in 4.2.4). It simplifies query building 
and handles type casting. Based on the schemas, it 
allows creating model objects that are synonymous 
to a table entry in the database. Therefore, all 
creations, deletions and edits are simplified.

The ml.js suite [71] is a series of machine learning 
related libraries written in JavaScript. Most notable 
are the inclusions of tools for complex matrix 
calculations (for Markov chain analysis), as well 
as clustering and predictions. As such, it contains 
all tools required to perform the calculations and 
analysis as described in chapter 3.
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RESTful API
A RESTful API is one based on representational 
state technology (REST). This is a standardized, 
architectural approach web communication using 
HTTP methodologies.

A main advantage of a RESTful API is that it provides 
a great deal of flexibility. Because data is not tied 
to methods or resources, multiple calls can be 
handled simultaneously, different data formats can 
be returned, and like these there are many more 
advantages. This flexibility allows developers to 
build an API that meets meeting all kinds of needs 
[74]. 

When designing such an API it is important to 
understand its concepts and constraints. Firstly, the 
API should be stateless. This allows calls to be made 
independently from one another. As such, each 
call should contain all data necessary to execute 
successfully. Secondly, the API should be designed 
with the concept in mind that the server and client 
are distinct and should be able to evolve separately 
from another.  Lastly, resulting from the previous 
point, the API should have a uniform interface. In 
this way, the services are not tightly coupled to the 
API itself. In order to achieve this, where applicable, 
each resource should implement the HTTP 
methodologies properly, rather than using random 
endpoints. Each resource, such as an activity, 
cluster or user, should be accessible through these 
methods. The most common methods (and the only 
ones used in this implementation) are [75]: GET, 
POST and DELETE. They are used to respectively 
retrieve, create or update, and delete a resource.

8.4.5	Conclusions
Combining all the aforementioned aspects, in order 
to allow for easy collaboration with third-party 
software, a JavaScript based, Node.js server was 
established, along with a MongoDB database. It 
serves a frontend used to view statistics and allows 
for user input. All communication is done through 
a RESTful API. For performing complex machine 
learning calculations and matrix calculations, several 
library functions were imported.

8.4.4	API
An application programming interface, or API, is a 
collection of definitions used among applications 
to communicate between one another. More 
complex code is abstracted for simpler use. Rather 
than having an application know all low level 
details of the platform on which it is running or 
the library it is using, it allows it to use predefined 
building blocks. APIs are generally used in libraries, 
operating systems, web services and many other 
implementations. 

Take a printer, for example. When you click the 
print button in an application like Microsoft Word, 
it is not this application that knows how to drive a 
printer. Instead, it calls a function in printing API in 
the underlying operating system. The operating 
system can, in turn, invoke the printer driver to print 
the document.

Web APIs
Web APIs, is an API used over the web, that can 
be accessed via HTTP requests. It is used as an 
interface between a service and a client application 
which uses its assets. Within the definitions of the 
API are properties such as hostname, path, query 
parameters, error codes, etc. 

For the purpose of this project and its 
implementation, such an API facilitates a number 
of matters. Firstly, it allows for a clearly structured 
approach to handling and communicating data. 
Secondly, it allows the frontend, the client-side 
webpage, to fetch information such as statistics 
while also being able to provide possibilities of 
uploading data such as new datasets and user 
value information. Lastly, it provides a way for other 
services to connect with it.

To illustrate the last point, the most obvious example 
is the option to facilitate a data stream. Subscribing 
to such a data stream is generally done through the 
concept of webhooks. In its most simplest form, 
service A sends a request to service B to subscribe 
to certain events. Whenever such an event happens 
at service B, it sends a request to service A with the 
information regarding the event.
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