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A monolithic compliant large-range gravity balancer

G. Radaellia,b, J.L. Herdera

a Dept. Precision and Microsystems Engineering, Delft University of Technology, Delft,
The Netherlands

b Laevo BV, Molengraaffsingel 12-14, Delft, The Netherlands

Abstract

A new monolithic fully compliant gravity balancer is designed with help of
a design approach based on shape optimization. The balancer consists of
one single clamped-clamped complex-shaped beam on which a weight is at-
tached. The beam is modeled as a planar isogeometric Bernoulli beam. The
goal function of the optimization consists of an energy based evaluation of
the load path of the beam which is compared with a desired response. The
best result of the shape optimization has been constructed out of polycar-
bonate sheet and out of glass-fiber reinforced plastic laminate. Both have
been tested on a compression test bench. The theoretical model has good
resemblance with the experimental results.

Keywords: compliant mechanisms, static balancing, constant force
generator

1. Introduction

Compliant mechanisms, i.e. mechanisms that achieve their motion from
the deflection of their members instead of from kinematic constraints [1], are
more challenging to design due to their inherent coupling between kinetics
and kinematics. Since forces and deflection in these mechanisms can never
be considered separately because of the flexibility of the members, the design
methods for conventional rigid-body mechanisms cannot be directly applied.
Alternative design methods have been developed over the past decades, and
a majority of designers have found their way to lumped parameter models
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like, e.g. pseudo-rigid-body models (PRBM) [2] [3] [4], in order to deal with
these challenges, but compromising in terms of accuracy, freedom of shape,
and moreover often basing their designs on equivalent rigid body mechanism
designs.

Statically balanced compliant mechanisms (SBCM) [5] [6] are a subset
of compliant mechanisms where undesired forces are counteracted by elastic
forces generated by the deflection of the mechanism. These undesired forces
can come from, e.g., an external payload [7] or stiffness, the self-weight of
the system or an intrinsic stiffness[8] [9]. These forces are undesired since
they either require more energy for actuation, they disturb a force signal to
be transmitted, e.g., to provide haptic sense in surgical tools [10], or they
result in higher stiffness and eigenfrequencies. Balancing these compliant
mechanisms is thus an option to improve efficiency, force feedback fidelity,
vibration isolation and energy harvesting properties.

In these and other types of mechanisms it is often desirable to follow a
required force-displacement path with good accuracy in order to enhance the
quality of balancing and thus its performance. Examples where following a
force displacement path is relevant can be found in [11] [12] [13] [14].

Apart from balancing a weight, there are more applications of compli-
ant constant force balancers. Examples include force regulation [15][16],
overload protection [16], constant force actuators [17] and adaptive robot
end-effector operations [18].

Recently a design approach has been proposed by the authors [19] that
enables the design of compliant mechanisms with prescribed load-paths
with good accuracy and great flexibility of shape. The method is based on
shape optimization of elastic structures undergoing large deflections mod-
eled through the isogeometric analysis (IGA) framework [20]. This is an
emerging framework allied to the finite element method (FEM), but with
increased accuracy and efficiency especially due to the absence of a conver-
sion step between CAD geometry and analysis geometry.

The goal of this paper is to present a special design result. The design
has been generated through the use of shape optimization and validated by
the construction and measurements of physical models. The purpose of this
design is to balance a weight, or constant force, over a fairly large vertical
displacement without restricting the horizontal motion of the weight. The
model consists of a fully distributed and monolithic compliant mechanism,
that consists of a single branch prismatic beam.

The paper also presents the measurement setup, where the challenge is
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to apply and to measure a vertical force while the motions in horizontal
directions are not restrained.

Section 2 of this paper shows the formulation of the design problem,
the model and details of the optimization. In section 3 the design resulting
from the optimization is shown. Section 4 illustrates the design of the mea-
surement setup and section 5 shows the measurement results. Respectively,
sections 6 and 7 contain the discussion and conclusion.

2. Method

The current section describes the formulation of the design problem and
discusses some inputs for the design optimization.

2.1. Problem statement
The goal of the design procedure is to find a compliant mechanism of

which a selected point L is displaced downwards resulting in a constant
vertical force upward over a given range. Consequently, this constant force
can be replaced by a weight obtaining a statically balanced system.

0

1

Û ≈ Û (δ)

U

Ũ

δ

U

Figure 1: Linear reference energy Û ≈ Û(δ), energy obtained by computational model
U and normalized obtained energy Ũ.

Considering a quasi-static and conservative mechanical system, a con-
stant force mechanism is one that possesses a linearly increasing potential
energy Û(δ) with respect to the vertical displacement δ at the point of
application of the force and in its direction. This energy is evaluated at a
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discrete amount of displacements yielding the array Û. This reference array
is defined as a linearly increasing sequence from zero to one as

Ûk =
k − 1

m− 1
for k = 1..m. (1)

The array of potential energy obtained by the computational model U
is defined as

U =
[
U1(δ1) U2(δ2) ... Um(δm)

]
(2)

where Uk are the values of the potential energy of the system in an
equilibrium situation corresponding to the applied displacement δk at step
k. In this case δk, k = 1..m is a discrete set of linearly spaced vertical
displacements of the selected point.

Since the sizing (thickness, width, etc.,) of the resulting design has a
direct relation to the magnitude of the constant force to be balanced, i.e.
the payload, and less influence on the development of the force, the goal
function will be made independent of the amplitude by normalization. This
is done by normalizing the array of obtained energy values U so that the
minimum value corresponds to zero and the maximum value corresponds
to one. The norm energy array is obtained by scaling every entry of U
according to

Ũk =
Uk − Umin

Umax − Umin

for k = 1..m. (3)

As such, the goal function to be optimized is formulated as

f0 =

(
Ũ− Û

)(
Ũ− Û

)T
ÛÛT

(4)

which is the normalized sum of squared errors between reference energy
array Û and the normalized obtained energy Ũ.

There is an initial build up of the vertical force expected since the system
starts from rest and goes to a higher force level. This build up is desired to
be short and steep, to keep the constant force region as large as possible.
In terms of energy this means that the slope goes from initially zero to
a certain slope which from that point on is desired to be kept constant.
These initial steps of build-up influence the goal function negatively and
are therefore omitted in above expressions. The precise amount of steps to
be omitted is a design choice.
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2.2. Model

The mechanical model that has been used is that of a single beam
clamped at the two endpoints. The beam is modeled by an isogeometric,
geometrically nonlinear Bernoulli beam [21], with a linear material con-
stitutive law, of which the potential energy is evaluated at every imposed
boundary condition. With the first material, polycarbonate (PC), that will
be used in the experiments (section 4) a discrepancy is expected because of
the material nonlinearity. For the second one, glass-fiber reinforced plastic
(GFRP), this model is suitable because the majority of fibers are placed
longitudinally with respect to the beam. It will be validated experimentally
that a 1D planar beam model gives accurate enough results.

In the isogeometric formulation, a B-spline with relatively small amount
of control points Bi, with i = 1..n, describes the geometry of the beam, see
Fig. 2. Consequently, for analysis, the shape is refined in a B-spline with
a larger amount of control points Pj, with j = 1..r and r >> n, where the
displacements of the control points represent the degrees of freedom of the
system.

L

Pj

P1

Pr

Bi

B1=

Bn=

Figure 2: B-spline with original control points Bi, with i = 1..n, refined control points
Pj , with j = 1..r, and point of displacement application L.

The vertical displacement is applied at the central control point of the
refined B-spline, point L. Strictly taken, this is not the same as applying a
displacement on a point on the curve itself, since the B-spline is generally not
interpolatory, i.e. the curve generally does not intersect the control points.
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However, the offset between control points and curve becomes smaller as
the number of control points increases. In the presented analysis the shape
is determined by n = 7 control points and is refined to r = 50 control
points. The distance between the curve and point L is less then 0.1mm on
a 300mm scale model. This is small compared with, e.g., fabrication and
other errors.

Furthermore the curve is defined by the open, uniform knot vector Ξ =[
0 0 0 0.2 0.4 0.6 0.8 1 1 1

]
2.3. Shape optimization
2.3.1. Optimization parameters

The set of control points B are the parameters of the optimization. For
convenience in the applications of bounds for the optimization and interpre-
tation of the results, the positions of the control points are re-parameterized
according to

B =



B1x

B1y

B2x

B2y

B3x

B3y

B4x

B4y
...


=



q1
q2
q1 + q3c (q4)
q2 + q3s (q4)
q1 + q3c (q4) + q5c (q4 + q6)
q2 + q3s (q4) + q5s (q4 + q6)
q1 + . . .+ q7c (q4 + q6 + q8)
q2 + . . .+ q7s (q4 + q6 + q8)
...


(5)

where c and s are the shorthand notations for cos and sin, and q defined
as

q =
[
B1x B1y l1 θ1 l2 θ2 l3 θ3 . . .

]
. (6)

This transforms the parameters of optimization from an array of Carte-
sian coordinates to a sequence of lengths lk and relative angles θk, i.e. it
describes the control polygon of the spline as if it were a linkage chain, see
Fig. 3. By this transformation it becomes easy to apply limits to the search
space. For example, limiting the angles avoids sharp corners in the beam.
Additionally giving a lower limit to the lengths also helps avoiding loops of
the spline which in practice leads to unfeasible structures.

The applied optimization bounds on the lengths of the sides of the con-
trol polygon are [0.05 ≤ l ≤ 0.15] and their relative angles [−2 ≤ θ ≤ 2].
The total vertical applied displacement is 0.21 [m].
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Figure 3: Transformation of coordinates of the control points in a set of generalized coor-
dinates, described by the lengths and angles of the links of a linkage chain, representing
the control polygon.

In the current optimization a control polygon of 7 control points is used.
The first two parameters of vector q, i.e. the position of the begin of the
beam, are fixed to zero. In this particular case these parameters only deter-
mine the global position of the mechanism in space and have no influence
on its behavior. This results in 12 optimization parameters of which 6 are
the lengths of the control polygon sides and 6 are their relative angles.

2.3.2. Sizing parameters

The optimization is performed on the shape parameters only, while siz-
ing parameters are kept out of consideration by normalizing for an unde-
termined payload, as discussed. As soon as the shape is found it is pos-
sible to change the sizing variables, i.e. the cross-section dimensions and
the Young’s modulus, to match a desired payload. As long as the Euler-
Bernoulli conditions, i.e. length >> thickness, are met, the sizing will
not influence the balancing results significantly. Eventually, an additional
optimization run can restore an altered behavior due to sizing changes.

The dimensions and properties used as starting point in current opti-
mization run are given in table 1, meant for a glass fiber reinforced plastic
slender beam construction.

2.3.3. Algorithm

The selected optimization algorithm is the Sequential Quadratic Pro-
gramming (SQP) from the Matlab R© Optimization Toolbox, started at 50
different starting points randomly distributed over the search space using
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parameter value unit

E 25 [GPa]
width 0.15 [m]

thickness 0.002 [m]

Table 1: Material and sizing parameters

the MultiStart option in the Global Optimization Toolbox.

3. Optimization results

Out of the 50 runs from different random starting points the best result
has been selected. For this run the converged solution qend is shown in table
2. The behavior of the optimized geometry is shown in Fig. 4, showing
the undeformed geometry in red (thick line) and the deformed geometries
corresponding to every displacement step in blue (thin lines). The red
crosses are the control points of the design vector and the red circle is
the point of application of the vertical displacement. Figure 5 shows the
optimized energy graph (blue circled) compared to the reference energy (red
crossed). Since the difference between the obtained and reference energy
is hardly visible, the error between both is plotted in Fig. 6. The final
objective function, i.e. the normalized sum of squared errors, is 1.48e −
4. The resulting reaction force in vertical direction due to the applied
displacement is plotted in Fig. 7. Finally an overview of the strains is
provided in Fig. 8. Here for every load step the strain is shown for the
innermost material layer (green) and the outermost layer (blue). On the
horizontal axis the parameter of the b-spline is ξ which ranges from 0 to 1
from the begin to the end of the curve.

4. Experimental evaluation

The construction of the physical model is shortly presented and the
measurement setup explained.
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par. unit qend

B1x [mm] 0.00
B1y [mm] 0.00
l1 [mm] 85.8
θ1 [rad] 1.23
l2 [mm] 10.8
θ2 [rad] 0.06
l3 [mm] 12.6
θ3 [rad] 1.54
l4 [mm] 05.1
θ4 [rad] 0.73
l5 [mm] 12.9
θ5 [rad] 1.24
l6 [mm] 11.9
θ6 [rad] 0.01

Table 2: Optimized design vector qend

4.1. Prototype construction
As a preliminary investigation before making a glass-fiber reinforced

plastic (GFRP) version of the beam, as foreseen in the optimization material
parameters, a polycarbonate version of the same beam is constructed. Poly-
carbonate is broadly available, cheap and has fairly good mechanical prop-
erties. Moreover the production process is fairly simple and leads quickly to
acceptable results. Two beams have been constructed with different plate
thicknesses: 1 mm and 2 mm. A one-sided mould is CNC-milled out of
high-density foam material, see Fig. 9. A polycarbonate plate is heated
above its glass-transition temperature and then draped onto the mould.
When the plastic reaches ambient temperature again, the beam is ready to
be clamped onto the supporting structure, see Fig. 10.

After, using the same type of mould, the same shape is fabricated out
of glass-fiber reinforced plastic (GFRP), which is epoxy in this case. This
is done using a vacuum infusion process. The dry fibers are placed onto the
mould and sealed with a vacuum bag. Then the vacuum causes the liquid
resin to infuse and spread through all fibers. The resin is then cured in an
oven to get optimal strength. The resulting shapes are shown in Fig. 11.
Multiple layups have been constructed. The two presented in this work have
the laminate layups [ 0 -45/45 0] and [0 -45/45 0 -45/45 0] ,
where the fibers in the 0-direction are unidirectional fibers (UD) of S2-type
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Figure 4: Undeformed geometry of the optimized shape (red) and deformed geometries
corresponding to every displacement step (blue). The red dot indicates the point of
application of the vertical displacement L.

glass and the ones in −45/45-directions are woven fibers of E-type glass.
The UD S2-glass layers have a thickness of 0.2 mm, the woven E-glass have
a thickness of 0.06 mm for each layer. The S2-type glass is selected because
of the superior stiffness and strength properties. The woven E-glass fibers
are applied to prevent easy crack propagation in longitudinal direction, but
have a minor influence on the bending properties. This justifies the use of
a 1D planar element, i.e. a beam element, with respect to a more complex
orthotropic shell element.

4.2. Measurement setup
For the experimental evaluation the vertical reaction force is measured

while a displacement is applied at the selected point. It is important that
only a vertical displacement is applied, while the horizontal motion of that
point is completely free. This is a challenge for conventional compression
testing machines that travel along a straight line. To overcome this limita-
tion, the base of the compliant mechanism is placed on a planar horizontal
stage. This stage consists of three sets of orthogonally placed rollers that
affect the planar translations with low friction. As shown in Fig. 12 two
long steel rollers are placed in parallel with the direction of motion of the
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Figure 5: Optimized energy graph Ũ(blue circled) and reference energy graph Û (red
crossed).

support of the beam. Other two rollers are placed in the perpendicular
direction on top of the first set of rollers. Again other two rollers are placed
in the direction of motion right underneath the support base of the beam.
The roller configuration is chosen such that only point contacts are made
between rolling parts and that the reaction force is always within the sup-
port polygon of these point contacts. The only motion in the horizontal
plane that is restricted is the rotation. However, no such rotational motion
is expected in this design, and no such tendency was observed during the
measurements.

The interface between the beam and the load cell has been designed such
that the applied displacement is evenly distributed along a line correspond-
ing to the selected point in the planar representation of the beam. This has
been achieved by a knife-edge bearing, created by a rectangular prismatic
aluminum bar that makes contact with the beam only at one lower corner,
see Fig. 13. This contact is maintained during the whole range of motion.
The position of the contact line on the beam is maintained by a double-
sided adhesive tape that sticks to the beam on one side of the contact line
and sticks to the bar at the other side of the line, see an impression in Fig.
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Figure 6: Error between optimized energy Ũ and reference energy Û.

14. The tape is loaded in tension throughout the whole motion, therefore a
fiber-reinforced tape is very suitable.

5. Measurement results

The results of the force measurements are shown in Fig. 15 for the
polycarbonate version. The higher blue line is the force measured with the
2 mm plate in a forward and backward motion cycle. The lower blue line
is the force measured on the 1 mm plate. Figure 16 shows the results from
the GFRP version. The lower line represents the thinner laminate, which
measures 0.7 mm on average, and the higher line represents the thicker
laminate, which measures 0.9 mm on average. In red the theoretical forces
from the computational model are plotted for comparison. The amplitude
of these model forces are fitted onto the measured data because the exact
cross-sectional properties are hard to predict, especially with the GFRP
laminate. This circumvents the need to specifically tests these properties,
which is out of the scope of this work and irrelevant for the outcome.

The fitting is done by using the thickness of the beam as a parameter and
the coefficients of variation of the root mean squared error (CV(RMSE)) as
a minimization criterion. The criterion is defined as
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Figure 7: Optimized vertical force vs vertical displacement δ.

CV (RMSE) =
RMSE

ȳ
(7)

where RMSE is given by

RMSE =

√∑n
t=1 (ŷt − y)2

n
, (8)

ȳ is the mean of the measured values y and ŷ represents the values
predicted by the model. The range t = 1..n for which this measure is
calculated starts at the position for which the force is optimized, i.e. after
the 6 steps of the ramp up. This corresponds to a displacement of 40 mm
from the unloaded position.

Table 3 contains the CV(RMSE) for the four measured samples. This
measure is chosen to make the results comparable despite of the different
amplitude of the forces. The values are given for the upper line of the
hysteresis loop corresponding to the forward part of the motion cycle.
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Figure 8: Material strains for a 2 mm thick plate. The lines represent the strain across
the length of the beam, from curve parameter ξ = 0 to ξ = 1. The green lines represent
the innermost material layer and the blue lines represent the outermost material layer.
The lines are drawn for every load step from 1 to 31. Discontinuity can be observed at
the position corresponding to point L, where the load is applied.

6. Discussion

6.1. Modeling and optimization

The optimization works well as design-aid for some special types of com-
pliant mechanisms. The designed load-path, the goal of the optimization, is
well achieved by this approach. It is not trivial that by virtue of the shape
of the beam alone, such a near-perfect constant force can be generated by
this elastic system.

Interesting to point out is the self searching behavior of the point of
application of the payload in horizontal direction. In fact this point does
not need to be constrained over a particular path in order to achieve the
desired behavior. The point moves vertically by imposing the displacement
but at every vertical step it finds the horizontal position of minimal energy
for the system.

Even though the goal function of the optimization is known to be non-
convex, thus not guaranteeing convergence to a global optimum, by use
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Figure 9: One sided mould out of high-density foam material.

Sample 1 mm PC 2 mm PC 0.7 mm GFRP 0.9 mm GFRP
CV (RMSE) 0.0287 0.0046 0.0087 0.0032

Table 3: Coefficients of variation of root mean squared error CV(RMSE) values for all
measured samples with respect to the modeled force

of a multi-start method enough satisfying local minima have been found.
It must be noted that for this situation it is not important to find the
global minimum as long as the value of the local minimum is small enough
in a practical sense. Since the goal function, by its definition, is lower-
bounded at zero, finding the absolute zero is not better than finding a
sufficiently small objective value. The threshold of good enough is of course
a subjective matter and depends on the design requirements. Consider that
the effect of a slightly higher goal function will in practice be overshadowed
by imperfections of the physical system.

On the other hand it must be considered that due to the presence of
many local optima, it always remains unclear which minima were not found
by the optimization. Did it miss some interesting, better, more efficient
solutions? One where with less material a higher payload is balanced? Or
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Figure 10: Polycarbonate beam clamped onto support structure.

one where the stresses in the material are distributed more evenly? These
questions are subjects of investigation which may lead to improved designs
and procedures in future.

One aspect of the modeling that is known to produce an error is the
offset from the control point on which the displacement is applied, with
respect to the beam surface. However, in the resulting geometry and with
the applied refinement this offset is in the order of a tenth of a millimeter.
This is considered insignificant especially compared to the more significant
manufacturing errors.

A choice made in the modeling steps is to remove the first few load-
steps, in this case the first 5 out of 31. This is a deliberate choice of the
designer that may influence the result to a large extend. The authors have
chosen for a minimal amount, such that the ramp-up would be as steep
as possible. Choosing a larger amount presumably simply results in good
balancing properties but with a slower ramp-up and a relatively smaller
range of motion. A smaller amount of steps has the risk that the first few
steps that are not removed will influence the goal function too much in a
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Figure 11: Glass-fiber reinforced plastic springs, manufactured by a vacuum infusion
process.

negative sense, thus bringing the algorithm further away from potentially
good results.

6.2. Prototype

In the physical models out of polycarbonate, it must be taken into con-
sideration that this thermoplastic has a strongly nonlinear stress-strain char-
acteristic. In the model however, a linear constitutive law has been adopted.
Therefore an error in the measurements is to be expected that derives from
this simplification. It can be observed that the 1 mm prototype seems
to have a better match with the model, while the 2 mm prototype has a
more rounded transition between the ramped part of the force and the con-
stant part. This difference with the model, where the transition is clearly
sharper, is considered to be related with nonlinearity of the material: The
2 mm version achieves higher strains and thus reaches further into the non-
linear stress-strain curve, while the 1 mm stays in the region where the
stress-strain curve can be considered linear.

Furthermore, inaccuracies deriving from this particular production method
must be taken into account. When the material sheet is cooling down it
shrinks. This can result in a transverse curvature that has a significant
effect on the cross-section geometry. In fact, a strip with a transverse cur-
vature, e.g. a tape measure, has totally different stiffness behavior than a
flat strip.
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Figure 12: Rollers setup used as planar bearing underneath the beam support structure.

The manufacturing of the GFRP yields quite some uncertainties. Al-
though manufactured by a trustworthy and experienced company, it is still
a challenge with this method to have an uniformly distributed thickness. In
fact there were two more springs manufactured ranging up to a thickness of
2 mm, which is the thickness used in the optimization run. Unfortunately
those springs broke due to imperfections in the laminate.

Despite the manufacturing errors, the results of the measurements are
still impressive. The output force in both cases is following a nice straight
line and small deviations from the model.

6.3. Measurement

The measurement setup is simple and effective. It contains, except for
the test bench, no particularly complex or expensive components. The
support on rollers provides low friction and high vertical stiffness of the
support. Also the taped rectangular bar making the line-contact with the
polycarbonate plate performs properly.

It can be noted from the measured data that there is a significantly
higher noise in the beginning of the constant-force range. Even though
the normal force, and thus the load on the rollers, is nearly constant, the
horizontal velocity of the base is significantly higher there and goes back to
zero at the end of the range. As visible in Fig. 4, the point of application
of the displacements almost describes an arc: horizontal at the start and
vertical at the end. Also there is a sudden acceleration sideways at the

18



Figure 13: Knife-edge bearing for the application of a vertical motion along a line of the
surface. Double-sided adhesive tape holds the corner of the aluminum bar on its place.

very beginning of the motion due to the buckling behavior of the structure.
Both the oscillations of the structure and the imperfections in the rollers
result in higher noise and oscillations under the described conditions of high
acceleration and velocity.

Similar reasoning can explain the fact that the hysteresis in the mea-
surement results is high in the beginning of the displacement and becomes
smaller at the end of the range of motion, even though the vertical force
does not change so much. At the begin the horizontal motion of the rollers
is substantially larger than at the end where the rollers are almost standing
still. Therefore there is more friction generated at the beginning and almost
no friction generated at the end. The samples with higher normal force on
the bearing setup (2 mm PC and 0.9 mm GFRP) have substantially higher
friction losses, as expected.

7. Conclusion

This paper presents a new monolithic, compliant, single branch and pris-
matic cross-section beam that balances a large weight over a large stroke
with virtually perfect accuracy in the model. Moreover the system is self-
searching in horizontal direction, i.e the point of application of the weight
does not have to be constrained over a certain path or line.
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Tape

Knife edge

Figure 14: Schematic of the adhesive tape holding the knife-edge bearing on its place on
the surface of the beam.

The previously presented design approach comprising a shape optimiza-
tion procedure has been validated successfully by virtue of a non-trivial
example. A rather complex shape was found that is able to exhibit a prede-
fined complex behavior, i.e. large stroke with constant force. Such a design
challenge is not easily achieved with existing methods for compliant mech-
anism design.

Physical models have been constructed for the validation of the results.
A polycarbonate sheet has been thermoformed and draped onto a mould
and GFRP laminate has been shaped onto the same mould.

The experimental validation of the numerical models shows a good re-
semblance between both. The observed errors can be explained by pre-
dictable causes. Especially the non-linearity of the material, the imperfec-
tion of the shape and the rollers are the main sources of errors.
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Figure 15: Comparison of vertical force from the measurements and the model for the
polycarbonate model, both 1 mm and 2 mm thickness, in forward (up) and backward
(under) direction.
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