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DISCRIMINANT ANALYSIS IN SMALL AND LARGE DIMENSIONS

T. BODNAR, S. MAZUR, E. NGAILO, N. PAROLYA

Abstract. We study the distributional properties of the linear discriminant function under the as-

sumption of normality by comparing two groups with the same covariance matrix but different mean

vectors. A stochastic representation for the discriminant function coefficients is derived, which is then
used to obtain their asymptotic distribution under the high-dimensional asymptotic regime. We inves-

tigate the performance of the classification analysis based on the discriminant function in both small

and large dimensions. A stochastic representation is established, which allows to compute the error
rate in an efficient way. We further compare the calculated error rate with the optimal one obtained

under the assumption that the covariance matrix and the two mean vectors are known. Finally, we

present an analytical expression of the error rate calculated in the high-dimensional asymptotic regime.
The finite-sample properties of the derived theoretical results are assessed via an extensive Monte Carlo

study.

Key words and phrases. Discriminant function, stochastic representation, large-dimensional asymp-

totics, random matrix theory, classification analysis.
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1. Introduction

In the modern world of science and technology, high-dimensional data are present in
various fields such as finance, environment science and social sciences. In the sense of
many complex multivariate dependencies observed in data, formulating correct models
and developing inferential procedures are the major challenges. It is usually assumed
that the sample size is considerably larger than the process dimension in the traditional
multivariate statistical theory. However, this assumption is not longer valid under the
high-dimensional setting, where the dimension is comparable to the sample size.

The covariance matrix is one of the most popular approaches to capture the depen-
dence among variables. Although its application is restricted only to linear dependence
and more sophisticated methods, like copula, should be applied in the general case.
Recently, a number of papers have been published, which deal with estimating the co-
variance matrix (see, e. g., [1, 8, 9, 16, 18, 22, 23, 32]) and testing its structure (see, e. g.,
[2, 7, 19, 20, 28, 29, 31]) in large dimension.

In many applications, the covariance matrix and mean vector are utilized together. For
example, the product of the inverse sample covariance matrix and the difference of the
sample mean vectors is present in the discriminant function, where a linear combination
of variables (discriminant function coefficients) is determined such that the standardized
distance between the groups of observations is maximized. A second example arises in
portfolio theory, where the vector of optimal portfolio weights is proportional to the
products of inverse sample covariance matrix and sample mean vector [13].

The discriminant analysis is a multivariate technique concerned with separating dis-
tinct sets of objects (or observations) [30]. Its two main tasks are to distinguish distinct
sets of observations and to allocate new observations to previously defined groups [37].
The main methods of the discriminant analysis are the linear discriminant and quadratic
discriminant functions. The linear discriminant function is a generalization of Fisher
linear discriminant analysis, which is used in statistics, pattern recognition and machine
learning to find a linear combination of features that characterizes or separates two or
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more groups of objects in the best way. The application of the linear discriminant func-
tion is restricted to the assumption of the equal covariance matrices of the populations.
Although the quadratic discriminant function can be used when the latter assumption is
violated, its application is more computational exhaustive which needs to estimate the
covariance matrices of each group, and requires more observations than in the case of
linear discriminant function [35]. Moreover, the decision boundary is easy to understand
and to visualize in high-dimensional settings, if the linear discriminant function is used.

The discriminant analysis is a well established topic in multivariate statistics. Many
asymptotic results are available when the sample sizes of groups to be separated are
assumed to be large, while the number of variables is fixed and significantly smaller than
the sample size (see, e. g., [34, 37]). However, these results cannot automatically be
transferred when the number of variables is higher than the sample size, the situation
which is known in the statistical literature as the high-dimensional asymptotic regime.
It is remarkable that in this case the results obtained under the standard asymptotic
regime can deviate significantly from those obtained under the high-dimensional asymp-
totics (see, e. g., [3]). Fujikoshi [24] provided an asymptotic approximation of the linear
discriminant function in high dimension by considering the case of equal sample sizes
and compared the results with the classical asymptotic approximation by [41]. For the
samples of non-equal sizes, they pointed out that the high-dimensional approximation is
extremely accurate. However, [40] showed that the Fisher linear discriminant function
performs poorly due to diverging spectra in the case of large-dimensional data and small
sample sizes. The papers [6, 39] investigated the asymptotic properties of the linear
discriminant function in high dimension, while modifications of the linear discriminant
function can be found in [17, 38]. The asymptotic results for the discriminant function
coefficients in matrix-variate skew models can be found in [11].

We contribute to the statistical literature by deriving a stochastic representation of
the discriminant function coefficient and the classification rule based on the linear dis-
criminant function. These results provide us an efficient way of simulating these random
quantities and they are also used in the derivation of their high-dimensional asymp-
totic distributions, using which the error rate of the classification rule based on the
linear discriminant function can be easily assessed and the problem of the increasing
dimensionality can be visualized in a simple way. An important challenge, which is not
discussed in this paper, is the extension of the derived theoretical results to the case of
the quadratic discriminant function, i. e. when two populations have different covariance
matrices. These results will require the development of new stochastic representations
and are left for future research.

The rest of the paper is organized as follows. The finite-sample properties of the dis-
criminant function are presented in Subsection 2.1, where we derive a stochastic repre-
sentation for the discriminant function coefficients. In Subsection 2.2, an exact one-sided
test for the comparison of the population discriminant function coefficients is suggested,
while a stochastic representation for the classification rule is obtained in Subsection 2.3.
The asymptotic distributions of the discriminant function coefficients and of the classi-
fication rule are derived in Section 3, while finite sample performance of the asymptotic
distribution is analysed in Subsection 3.2.

2. Finite-sample properties of the discriminant function

Let x
(1)
1 , . . . ,x

(1)
n1 and x

(2)
1 , . . . ,x

(2)
n2 be two independent samples from the multivariate

normal distributions which consist of independent and identically distributed random

vectors with x
(1)
i ∼ Np(µµµ1,Σ) for i = 1, . . . , n1 and x

(2)
j ∼ Np(µµµ2,Σ) for j = 1, . . . , n2

where Σ is positive definite. Throughout the paper, 1n denotes the n-dimensional vector
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of ones, In is the n × n identity matrix, and the symbol ⊗ stands for the Kronecker
product.

Let X(1) =
(
x

(1)
1 , . . . ,x

(1)
n1

)
and X(2) =

(
x

(2)
1 , . . . ,x

(2)
n2

)
be observation matrices. Then

the sample estimators for the mean vectors and the covariance matrices constructed from
each sample are given by

x̄(j) =
1

nj

nj∑
i=1

x
(j)
i =

1

nj
X(j)1nj ,

S(j) =
1

nj − 1

nj∑
i=1

(
x

(j)
i − x̄(j)

)(
x

(j)
i − x̄(j)

)>
.

The pooled estimator for the covariance matrix, i. e., an estimator for Σ obtained from
two samples, is then given by

Spl =
1

n1 + n2 − 2

[
(n1 − 1)S(1) + (n2 − 1)S(2)

]
. (1)

The following lemma (see, e. g., [37, Section 5.4.2]) presents the joint distribution of
x̄(1), x̄(2) and Spl.

Lemma 1. Let X1 ∼ Np,n1

(
µµµ11

>
n1
,Σ⊗ In1

)
and X2 ∼ Np,n2

(
µµµ21

>
n2
,Σ⊗ In2

)
for

p < n1 + n2 − 2. Assume that X1 and X2 are independent. Then

(a) x̄(1) ∼ Np

(
µµµ1,

1
n1

Σ
)
;

(b) x̄(2) ∼ Np

(
µµµ2,

1
n2

Σ
)
;

(c) (n1 + n2 − 2)Spl ∼ Wp(n1 + n2 − 2,Σ).

Moreover, x̄(1), x̄(2) and Spl are mutually independently distributed.

The results of Lemma 1, in particular, imply that

x̄(1) − x̄(2) ∼ Np

(
µµµ1 − µµµ2,

(
1

n1
+

1

n2

)
Σ

)
, (2)

which is independent of Spl.

2.1. Stochastic representation for the discriminant function coefficients. The
discriminant function coefficients are given by the following vector

â = S−1
pl

(
x̄(1) − x̄(2)

)
, (3)

which is the sample-based feasible estimator of the population discriminant function
coefficient vector expressed as

a = Σ−1(µµµ1 − µµµ2).

We consider a more general problem by deriving the distribution of linear combina-
tions of the discriminant function coefficients. This result possesses several practical
application: (i) it allows a direct comparison of the population coefficients in the dis-
criminant function by deriving a corresponding statistical test; (ii) it can be used in the
classification problem, where, providing a new observation vector, one has to decide to
which of two groups the observation vector has to be classified.

Let L be a k×p matrix of constants such that rank(L) = k < p. We are then interested
in

θ̂θθ = Lâ = LS−1
pl

(
x̄(1) − x̄(2)

)
. (4)

Choosing different matrices L, we are able to provide different inferences about the linear
combinations of the discriminant function coefficients. For instance, if k = 1 and L is the
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vector with all elements zero except the one on the jth position which is one, then we get
the distribution of the jth coefficient in the discriminant function. If we choose k = 1 and
L = (1,−1, 0, . . . , 0)>, then we analyse the difference between the first two coefficients
in the discriminant function. The corresponding result can be further used to test if the
population counterparts to these coefficients are zero or not. For k > 1 several linear
combinations of the discriminant function coefficients are considered simultaneously.

In the next theorem we derive a stochastic representation for θ̂θθ. The stochastic rep-
resentation is a very important tool in analysing the distributional properties of random
quantities. It is widely spread in the computation statistics (e. g., [25]), in the theory of
elliptical distributions [27] as well as in Bayesian statistics (cf. [4, 5, 10]). Later on, we

use the symbol
d
= to denote the equality in distribution.

Theorem 1. Let L be an arbitrary k×p matrix of constants such that rank(L) = k < p.

Then, under the assumption of Lemma 1, the stochastic representation of θ̂θθ = Lâ is
given by

θ̂θθ
d
= (n1 + n2 − 2)ξ−1

LΣ−1x̆ +

√
x̆>Σ−1x̆

n1 + n2 − p

(
LRx̆L>

)1/2
t0

,

where Rx̆ = Σ−1 − Σ−1x̆x̆>Σ−1/x̆>Σ−1x̆; ξ ∼ χ2
n1+n2−p−1, x̆ ∼ Np

(
µµµ1 − µµµ2,(

1
n1

+ 1
n2

)
Σ
)
, and t0 ∼ tk(n1 + n2 − p,0k, Ik). Moreover, ξ, x̆ and t0 are mutually

independent.

Proof. From Lemma 1 (c) and Theorem 3.4.1 of [26], we obtain that

1

n1 + n2 − 2
S−1
pl ∼ IWp(n1 + n2 + p− 1,Σ−1).

Also, since x̆ = x̄(1) − x̄(2) and Spl are independent, the conditional distribution of

θ̂θθ = LS−1
pl x̆ given x̆ = x̆∗ equals to the distribution of θθθ∗ = LS−1

pl x̆∗ and it can be
rewritten in the following form

θθθ∗
d
= (n1 + n2 − 2)x̆∗>Σ−1x̆∗

LS−1
pl x̆∗

x̆∗>S−1
pl x̆∗

x̆∗>S−1
pl x̆∗

(n1 + n2 − 2)x̆∗>Σ−1x̆∗
.

Applying Theorem 3.2.12 of [34] we obtain that

ξ∗ = (n1 + n2 − 2)
x̆∗>Σ−1x̆∗

x̆∗>S−1
pl x̆∗

∼ χ2
n1+n2−p−1

and its distribution is independent of x̆∗. Hence,

ξ = (n1 + n2 − 2)
x̆>Σ−1x̆

x̆>S−1
pl x̆

∼ χ2
n1+n2−p−1

and ξ, x̆ are independent.

Using Theorem 3 of [12], we obtain that x̆∗>S−1
pl x̆∗ is independent of

LS−1
pl x̆∗

x̆∗>S−1
pl x̆∗

for given

x̆∗. Therefore, ξ∗ is independent of x̆∗>Σ−1x̆∗ ·LS−1
pl x̆∗/x̆∗>S−1

pl x̆∗ and ξ is independent

of x̆>Σ−1x̆ ·LS−1
pl x̆/x̆>S−1

pl x̆. Furthermore, it holds from the proof of Theorem 1 of [15]
that

x̆∗>Σ−1x̆∗
LS−1

pl x̆∗

x̆∗>S−1
pl x̆∗

∼ tk

(
n1 + n2 − p; LΣ−1x̆∗,

x̆∗>Σ−1x̆∗

n1 + n2 − p
LRx̆∗L

>
)

with Rx̆∗ = Σ−1 −Σ−1x̆∗x̆∗>Σ−1/x̆∗>Σ−1x̆∗.
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Thus, we obtain the following stochastic representation of θ̂θθ which is given by

θ̂θθ
d
= (n1 + n2 − 2)ξ−1

LΣ−1x̆ +

√
x̆>Σ−1x̆

n1 + n2 − p

(
LRx̆L>

)1/2
t0

,

where Rx̆ = Σ−1 − Σ−1x̆x̆>Σ−1/x̆>Σ−1x̆, ξ ∼ χ2
n1+n2−p−1, x̆ ∼ Np

(
µµµ1 − µµµ2,(

1
n1

+ 1
n2

)
Σ
)

, and t0 ∼ tk(n1 + n2 − p,0k, Ik). Moreover, ξ, x̆ and t0 are mutually

independent. The theorem is proved. �

In the next corollary we consider the special case when k = 1, i. e., L = l> is a
p-dimensional vector of constants.

Corollary 1. Let λ = 1/n1 + 1/n2 and let l be a p-dimensional vector of constants.

Then, under the condition of Theorem 1, the stochastic representation of θ̂ = l>â is
given by

θ̂
d
= (n1 + n2 − 2)ξ−1

(
l>Σ−1(µµµ1 − µµµ2) +

√(
λ +

λ(p− 1)

n1 + n2 − p
u

)
l>Σ−1lz0

)
,

where

ξ ∼ χ2
n1+n2−p−1, z0 ∼ N (0, 1), u ∼ F

(
p− 1, n1 + n2 − p, (µµµ1 − µµµ2)>Rl(µµµ1 − µµµ2)/λ

)
(non-central F-distribution with p−1 and n1+n2−p degrees of freedom and non-centrality
parameter (µµµ1 − µµµ2)>Rl(µµµ1 − µµµ2)/λ) with Rl = Σ−1 −Σ−1ll>Σ−1/l>Σ−1l; ξ, z0 and
u are mutually independently distributed.

Proof. We get from Theorem 1 that

θ̂
d
= (n1 + n2 − 2)ξ−1

l>Σ−1x̆ + t0

√
x̆>Σ−1x̆

n1 + n2 − p
· l>Rx̆l

 =

= (n1 + n2 − 2)ξ−1

(
l>Σ−1x̆ +

t0√
n1 + n2 − p

√
l>Σ−1l

√
x̆>Rlx̆

)
,

where Rl = Σ−1 −Σ−1ll>Σ−1/l>Σ−1l; ξ ∼ χ2
n1+n2−p−1, t0 ∼ t(n1 + n2 − p, 0, 1), and

x̆ ∼ Np(µµµ1 − µµµ2, λΣ) with λ = 1/n1 + 1/n2; ξ, t0 and x̆ are mutually independent.
Because of x̆ ∼ Np(µµµ1 − µµµ2, λΣ), RlΣRl = Rl, and tr[RlΣ] = p− 1, the application

of Corollary 5.1.3a of [33] leads to

ζ = λ−1x̆>Rlx̆ ∼ χ2
p−1

(
δ2
)
,

where δ2 = (µµµ1−µµµ2)>Rl(µµµ1−µµµ2)/λ. Moreover, since RlΣΣ−1l = 0, the application of
Theorem 5.5.1 of [33] proves that l>Σ−1x̆ and ζ are independently distributed.

Finally, we note that the random variable t0 ∼ t(n1 + n2 − p, 0, 1) has the following
stochastic representation

t0
d
= z0

√
n1 + n2 − p

w
,

where z0 ∼ N (0, 1) and w ∼ χ2
n1+n2−p; z0 and w are independent. Hence,

l>Σ−1x̆ + t0

√
λζ · l>Σ−1l

n1 + n2 − p

∣∣∣∣∣ζ, w ∼ N
(

l>Σ−1µµµ, λl>Σ−1l

(
1 +

ζ

w

))
=

= N
(

l>Σ−1µµµ, λl>Σ−1l

(
1 +

p− 1

n1 + n2 − p
u

))
,
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where

u =
ζ/(p− 1)

w/(n1 + n2 − p)
∼ F

(
p− 1, n1 + n2 − p, (µµµ1 − µµµ2)>Rl(µµµ1 − µµµ2)/λ

)
.

Putting all above together we get the statement of the corollary. �

2.2. Test for the population discriminant function coefficients. An important
question, when the discriminant analysis is performed, is to decide which coefficients
are the most influential in making the decision. The most popular methods in the
literature are (cf. [37, Section 5.5]): (i) standardized coefficients; (ii) partial F -values;
(iii) correlations between the variables and the discriminant function. In Theorem 5.7A
of [36] it is argued that each of these three methods has several drawbacks. For instance,
the correlations between the variables and the discriminant function do not show the
multivariate contribution of each variable, but provide only univariate information how
each variable separates the groups, ignoring the presence of other variables.

In this subsection, we propose an alternative approach based on the statistical hy-
pothesis test. The exact statistical tests will be derived under the null hypothesis that
two population discriminant function coefficients are equal (two-sided test) versus the
alternative hypothesis that a coefficient in the discriminant function is larger than an-
other one (one-sided test). The testing hypothesis for the equality of the i-th and the
j-th coefficients in the population discriminant function is described by

H0 : ai = aj against H1 : ai 6= aj , (5)

while in the case of one-sided test we test

H0 : ai ≤ aj against H1 : ai > aj . (6)

The following test statistic is suggested in both the cases:

T =
√
n1 + n2 − p− 1×

×
l>S−1

pl (x̄(1) − x̄(2))√
l>S−1

pl l
√

(n1 + n2 − 2)( 1
n1

+ 1
n2

) + (x̄(1) − x̄(2))>R̂l(x̄(1) − x̄(2))

with

R̂l = S−1
pl −

S−1
pl ll>S−1

pl

l>S−1
pl l

and l = (0, . . . , 0, 1︸︷︷︸
i

, 0 . . . , 0, −1︸︷︷︸
j

, 0, . . . , 0)>.

The distribution of T follows from [13, Theorem 6] and it is summarized in Theorem 2.

Theorem 2. Let λ = 1/n1+1/n2 and let l be a p-dimensional vector of constants. Then,
under the condition of Theorem 1,

(a) the density of T is given by

fT (x) =
n1 + n2 − p

λ(p− 1)

∫ ∞

0

ftn1+n2−p−1,δ1(y)
(x)×

× fFp−1,n1+n2−p,s/λ

(
n1 + n2 − p

λ(p− 1)
y

)
dy

with δ1(y) = η/
√
λ + y, η = l>Σ−1(µµµ1−µµµ2)√

l>Σ−1l
, and s = (µµµ1 − µµµ2)>Rl(µµµ1 − µµµ2); the

symbol fG(·) denotes the density of the distribution G.
(b) Under the null hypothesis it holds that T ∼ tn1+n2−p−1 and T is independent of(

x̄(1) − x̄(2)
)>

R̂l

(
x̄(1) − x̄(2)

)
.
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Theorem 2 shows that the test statistics T has a standard t-distribution under the null
hypothesis. As a result, the suggested test will reject the null hypothesis of the two-sided
test (5) as soon as |T | > tn1+n2−p−1;1−α/2.

The situation is more complicated in the case of the one-sided test (6). In this case
the maximal probability of the type I error has to be controlled. For that reason, we
first calculate the probability of rejection of the null hypothesis for all possible parameter
values and after that we calculate its maximum for the parameters, which correspond to
the null hypothesis in (6). Since the distribution of T depends on µµµ1, µµµ2, and Σ only
over η and s (see Theorem 2), the task of finding the maximum is significantly simplified.
Let FG(·) denote the distribution function of the distribution G. For any constant q, we
get

P(T > q) =

∫ +∞

q

fT (x)dx =

=

∫ +∞

q

n1 + n2 − p

λ(p− 1)

∫ ∞

0

ftn1+n2−p−1,δ1(y)
(x)fFp−1,n1+n2−p,s/λ

(
n1 + n2 − p

λ(p− 1)
y

)
dydx =

=
n1 + n2 − p

λ(p− 1)

∫ ∞

0

fFp−1,n1+n2−p,s/λ

(
n1 + n2 − p

λ(p− 1)
y

)
∫ +∞

q

ftn1+n2−p−1,δ1(y)
(x)dxdy =

=
n1 + n2 − p

λ(p− 1)

∫ ∞

0

(
1− Ftn1+n2−p−1,δ1(y)

(q)
)
fFp−1,n1+n2−p,s/λ

(
n1 + n2 − p

λ(p− 1)
y

)
dy ≤

≤ n1 + n2 − p

λ(p− 1)

∫ ∞

0

(
1− Ftn1+n2−p−1,0

(q)
)
fFp−1,n1+n2−p,s/λ

(
n1 + n2 − p

λ(p− 1)
y

)
dy =

= 1− Ftn1+n2−p−1,0
(q),

where the last equality follows from the fact that the distribution function of the non-
central t-distribution is a decreasing function in non-centrality parameter and δ1(y) ≤ 0.
Consequently, we get q = tn1+n2−p−1;1−α and the one-sided test rejects the null hypoth-
esis in (6) as soon as T > tn1+n2−p−1;1−α.

2.3. Classification analysis. Having a new observation vector x, we classify it to one
of the two groups under consideration. Assuming that no prior information is available
about the classification result, i. e. the prior probability of each group is 1/2, the decision,
which is based on the optimal rule, is to assign the observation vector x to the first group
as soon as the following inequality holds (cf. Section 6.2 of [36]):

(µµµ1 − µµµ2)>Σ−1x >
1

2
(µµµ1 − µµµ2)>Σ−1(µµµ1 + µµµ2) (7)

and to the second group otherwise. The error rate is defined as the probability of classi-
fying the observation x into one group, while it comes from another one. The book [36]
presented the expression of the error rate expressed as

ERp(∆) =
1

2
P(classify to the first group | second group is true) +

+
1

2
P(classify to the second group | first group is true) =

= Φ

(
−∆

2

)
with ∆2 = (µµµ1 − µµµ2)>Σ−1(µµµ1 − µµµ2) ,

where Φ(·) denotes the distribution function of the standard normal distribution.
In practice, however, µµµ1, µµµ2, and Σ are unknown quantities and the decision is based

on the inequality(
x̄(1) − x̄(2)

)>
S−1
pl x >

1

2

(
x̄(1) − x̄(2)

)>
S−1
pl

(
x̄(1) + x̄(2)

)
(8)
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instead. Next, we derive the error rate of the decision rule (8). Let

d̂ =
(
x̄(1) − x̄(2)

)>
S−1
pl x− 1

2

(
x̄(1) − x̄(2)

)>
S−1
pl

(
x̄(1) + x̄(2)

)
=

=
(
x̄(1) − x̄(2)

)>
S−1
pl

(
x− 1

2

(
x̄(1) + x̄(2)

))
.

In Theorem 3 we present the stochastic representation of d̂.

Theorem 3. Let λ = 1/n1 + 1/n2. Then, under the condition of Theorem 1, the

stochastic representation of d̂ is given by

d̂
d
=

n1 + n2 − 2

ξ

(
(−1)i−1 λni − 2

2λni

(
λξ2 + (∆ +

√
λw0)2

)
+

(−1)i−1

λni

(
∆2 +

√
λ∆w0

)
+

+

√(
1 +

1

n1 + n2
+

p− 1

n1 + n2 − p
u

)√
λξ2 + (∆ +

√
λw0)2z0

)
for i = 1, 2, (9)

where u|ξ1, ξ2, w0 ∼ F
(
p− 1, n1 + n2 − p, (n1 + n2)−1ξ1

)
with ξ1|ξ2, w0 ∼ χp−1,δ2

ξ2,w0,i

and δ2
ξ2,w0,i

= n1n2

n2
i

∆2ξ2

λξ2+(∆+
√
λw0)2

, z0, w0 ∼ N (0, 1), ξ ∼ χ2
n1+n2−p−1, ξ2 ∼ χ2

p−1; ξ, z0

are independent of u, ξ1, ξ2, w0, where ξ2 and w0 are independent as well.

Proof. Let x ∼ Np(µµµi,Σ). Since x̄(1), x̄(2), x, and Spl are independently distributed, we

get that the conditional distribution of d̂ given x̄(1) = x
(1)
0 and x̄(2) = x

(2)
0 is equal to

the distribution of d0 defined by

d0 =
(
x̄

(1)
0 − x̄

(2)
0

)>
S−1
pl x̃ ,

where x̃ = x − 1
2

(
x̄

(1)
0 + x̄

(2)
0

)
∼ Np

(
µµµi − 1

2

(
x̄

(1)
0 + x̄

(2)
0

)
,Σ
)

, (n1 + n2 − 2)Spl ∼
∼ Wp(n1 + n2 − 2,Σ), x̃ and Spl are independent.

Following the proof of Corollary 1, we get

d0
d
= (n1 + n2 − 2)ξ−1

((
x̄

(1)
0 − x̄

(2)
0

)>
Σ−1

(
µµµi −

1

2

(
x̄

(1)
0 + x̄

(2)
0

))
+

+

√(
1 +

(p− 1)

n1 + n2 − p
u

)(
x̄

(1)
0 − x̄

(2)
0

)>
Σ−1

(
x̄

(1)
0 − x̄

(2)
0

)
z0

)
,

where u ∼ F
(
p− 1, n1 + n2 − p,

(
µµµi − 1

2

(
x̄

(1)
0 + x̄

(2)
0

))>
R0

(
µµµi − 1

2

(
x̄

(1)
0 + x̄

(2)
0

)))
with

R0 = Σ−1 − Σ−1
(
x̄

(1)
0 − x̄

(2)
0

)(
x̄

(1)
0 − x̄

(2)
0

)>
Σ−1/

(
x̄

(1)
0 − x̄

(2)
0

)>
Σ−1

(
x̄

(1)
0 − x̄

(2)
0

)
,

z0 ∼ N (0, 1), and ξ ∼ χ2
n1+n2−p−1; ξ, z0 and u are mutually independently distributed.

By using that

µµµi −
1

2

(
x̄

(1)
0 + x̄

(2)
0

)
= µµµi − x̄

(i)
0 + (−1)i−1 1

2

(
x̄

(1)
0 − x̄

(2)
0

)
and

(
x̄

(1)
0 − x̄

(2)
0

)>
R0 = 0, we get

d̂
d
=

n1 + n2 − 2

ξ

(
(−1)i−1

2

(
x̄(1) − x̄(2)

)>
Σ−1

(
x̄(1) − x̄(2)

)
−

−
(
x̄(1) − x̄(2)

)
>

Σ−1
(
x̄(i) − µµµi

)
+

+

√(
1 +

p− 1

n1 + n2 − p
u

)(
x̄(1) − x̄(2)

)>
Σ−1

(
x̄(1) − x̄(2)

)
z0

)
,
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where u|x̄(1), x̄(2) ∼ F
(
p− 1, n1 + n2 − p,

(
x̄(i) − µµµi

)>
Rx

(
x̄(i) − µµµi

))
with Rx = Σ−1−

−Σ−1
(
x̄(1) − x̄(2)

)(
x̄(1) − x̄(2)

)>
Σ−1

/(
x̄(1) − x̄(2)

)>
Σ−1

(
x̄(1) − x̄(2)

)
, z0 ∼ N (0, 1), and

ξ ∼ χ2
n1+n2−p−1; ξ, z0 are independent of u, x̄(1), x̄(2).

Since x̄(1) and x̄(2) are independent and normally distributed, we get that(
x̄(i) − µµµi

x̄(1) − x̄(2)

)
∼ N2p

((
0

µµµ1 − µµµ2

)
,

(
1
ni

Σ (−1)i−1

ni
Σ

(−1)i−1

ni
Σ λΣ

))
and, consequently,

x̄(i) − µµµi|
(
x̄(1) − x̄(2)

)
∼ Np

(
(−1)i−1

λni

(
x̄(1) − x̄(2) − (µµµ1 − µµµ2)

)
,

1

n1 + n2
Σ

)
,

where we used that 1
ni
− 1

λn2
i

= 1
n1+n2

.

The application of Theorem 5.5.1 in [33] shows that given (x̄(1) − x̄(2)) the random
variables (x̄(1) − x̄(2))>Σ−1(x̄(i) − µµµi) and (x̄(i) − µµµi)

>Rx(x̄(i) − µµµi) are independently
distributed with(

x̄(1) − x̄(2)
)>

Σ−1
(
x̄(i) − µµµi

)∣∣∣(x̄(1) − x̄(2)
)
∼

∼ N
(

(−1)i−1

λni

(
x̄(1) − x̄(2)

)>
Σ−1

(
x̄(1) − x̄(2) − (µµµ1 − µµµ2)

)
,

1

n1 + n2

(
x̄(1) − x̄(2)

)>
Σ−1

(
x̄(1) − x̄(2)

))
and, by using Corollary 5.1.3a of [33],

(n1 + n2)
(
x̄(i) − µµµi

)>
Rx

(
x̄(i) − µµµi

)∣∣∣(x̄(1) − x̄(2)
)
∼ χp−1,δ2

x

with

δ2
x =

n1 + n2

λ2n2
i

(
x̄(1) − x̄(2) − (µµµ1 − µµµ2)

)>
Rx

(
x̄(1) − x̄(2) − (µµµ1 − µµµ2)

)
=

=
n1 + n2

λ2n2
i

(µµµ1 − µµµ2)>Rx(µµµ1 − µµµ2) =

=
n1 + n2

λ2n2
i

(µµµ1 − µµµ2)>Σ−1(µµµ1 − µµµ2)

(x̄(1) − x̄(2))>Σ−1(x̄(1) − x̄(2))

(
x̄(1) − x̄(2)

)>
Rµµµ

(
x̄(1) − x̄(2)

)
,

where we use that (x̄(1) − x̄(2))>Rx = 0 and

Rµµµ = Σ−1 −Σ−1(µµµ1 − µµµ2)(µµµ1 − µµµ2)>Σ−1/(µµµ1 − µµµ2)>Σ−1(µµµ1 − µµµ2).

As a result, we get

d̂
d
=

n1 + n2 − 2

ξ

(
(−1)i−1 λni − 2

2λni
∆2

x +
(−1)i−1

λni
(µµµ1 − µµµ2)>Σ−1(x̄(1) − x̄(2)) +

+

√(
1 +

1

n1 + n2
+

p− 1

n1 + n2 − p
u

)
∆xz0

)
,

where ∆2
x = (x̄(1) − x̄(2))>Σ−1(x̄(1) − x̄(2)), u|x̄(1), x̄(2) ∼ F

(
p − 1, n1 + n2 − p,

(n1 + n2)−1ξ1

)
with ξ1 ∼ χp−1,δ2

x
, z0 ∼ N (0, 1), and ξ ∼ χ2

n1+n2−p−1; ξ, z0 are in-

dependent of u, ξ1, x̄
(1), x̄(2).

Finally, it holds with ∆2 = (µµµ1 − µµµ2)>Σ−1(µµµ1 − µµµ2) that

∆2
x =

(
x̄(1) − x̄(2)

)>
Rµµµ

(
x̄(1) − x̄(2)

)
+

(
(µµµ1 − µµµ2)>Σ−1(x̄(1) − x̄(2))

)2
∆2

,
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where both summands are independent following Theorem 5.5.1 in [33]. The application
of Corollary 5.1.3a in [33] leads to

λ−1
(
x̄(1) − x̄(2)

)>
Rµµµ

(
x̄(1) − x̄(2)

)
∼ χ2

p−1

and
(µµµ1 − µµµ2)>Σ−1

(
x̄(1) − x̄(2)

)
∼ N (∆2, λ∆2).

We get the stochastic representation of d̂ from the last statement expressed as

d̂
d
=

n1 + n2 − 2

ξ

(
(−1)i−1 λni − 2

2λni

(
λξ2 + (∆ +

√
λw0)2

)
+

(−1)i−1

λni

(
∆2 +

√
λ∆w0

)
+

+

√(
1 +

1

n1 + n2
+

p− 1

n1 + n2 − p
u

)√
λξ2 + (∆ +

√
λw0)2z0

)
,

where u|ξ1, ξ2, w0 ∼ F
(
p− 1, n1 + n2 − p, (n1 + n2)−1ξ1

)
with ξ1|ξ2, w0 ∼ χp−1,δ2

ξ2,w0,i

and δ2
ξ2,w0,i

= n1+n2

λn2
i

∆2

λξ2+(∆+
√
λw0)2

ξ2, z0, w0 ∼ N (0, 1), ξ ∼ χ2
n1+n2−p−1, ξ2 ∼ χ2

p−1; ξ,

z0 are independent of u, ξ1, ξ2, w0, where ξ2 and w0 are independent as well. �

Theorem 3 shows that the distribution of d̂ is determined by six random variables
ξ, ξ1, ξ2, z0, w0, and u. Moreover, it depends on µµµ1,µµµ2, and Σ only via the quadratic
form ∆. As a result, the error rate based on the decision rule (8) is a function of ∆ only
and it is calculated by

ERs(∆) =
1

2
P(d̂ > 0| second group is true) +

1

2
P(d̂ ≤ 0| first group is true) . (10)

The two probabilities in (10) can easily be approximated for all ∆, p, n1, and n2 with
high precision by applying the results of Theorem 3 via the following simulation study

(i) Fix ∆ and i ∈ {1, 2}.
(ii) Generate four independent random variables ξb ∼ χ2

n1+n2−p−1, ξ2;b ∼ χ2
p−1,

z0;b ∼ N (0, 1), and w0;b ∼ N (0, 1).

(iii) Generate ξ1,b ∼ χp−1,δ2
ξ2,w0,i

with δ2
ξ2,b,w0,b,i

= n1n2

n2
i

∆2ξ2;b

λξ2;b+(∆+
√
λw0;b)2

.

(iv) Generate u ∼ F
(
p− 1, n1 + n2 − p, (n1 + n2)−1ξ1,b

)
.

(v) Calculate d̂
(i)
b following the stochastic representation (9) of Theorem 3.

(vi) Repeat steps (ii)–(v) for b = 1, . . . , B leading to the sample d̂
(i)
1 , . . . , d̂

(i)
B .

The procedure has to be performed for both values of i = 1, 2 where for i = 1 the relative

number of events {d̂ > 0} will approximate the first summand in (10), while for i = 2

the relative number of events {d̂ ≤ 0} will approximate the second summand in (10).
It is important to note that the difference between the error rates calculated for the

two decision rules (7) and (8) could be very large as shown in Figure 1, where ERp(∆)
and ERs(∆) are calculated for several values of n1 = n2 ∈ {50, 100, 150, 250} with fixed
values of p ∈ {10, 25, 50, 75}. If p = 10, we do not observe large differences between
ERp(∆) and ERs(∆) computed for different sample sizes. However, this statement does
not hold any longer when p becomes comparable to both n1 and n2 as documented for
p = 50 and p = 75. This case is known in the literature as a large-dimensional asymptotic
regime and it is investigated in detail in Section 3.

3. Discriminant analysis under large-dimensional asymptotics

In this section we derive the asymptotic distribution of the discriminant function coef-
ficients under the high-dimensional asymptotic regime, i. e., when the dimension increases
together with the sample sizes and they all tend to infinity. More precisely, we assume
that p/(n1 + n2)→ c ∈ [0, 1) as n1 + n2 →∞.
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Figure 1. Error rates ERp(∆) and ERs(∆) as functions of ∆ for
p ∈ {10, 25, 50, 75} and ERs(∆).

The following conditions are needed for the validity of the asymptotic results:

(A1) There exists γ ≥ 0 such that p−γ(µµµ1 − µµµ2)>Σ−1(µµµ1 − µµµ2) <∞ uniformly on p.
(A2) 0 < lim

(n1,n2)→∞
(n1/n2) <∞.

It is important to note, that no assumption on the eigenvalues of the covariance matrix
Σ is imposed like they are uniformly bounded on p. The asymptotic results are also valid
when Σ possesses unbounded spectrum, as well as when its smallest eigenvalue tends to
zero as p→∞. The constant γ is a technical one and it controls the growth rate of the
quadratic form. In Theorem 4 the asymptotic distribution of linear combinations of the
discriminant function coefficients is provided.

Theorem 4. Assume (A1) and (A2). Let l be a p-dimensional vector of constants such
that p−γl>Σ−1l <∞ is uniformly on p, γ ≥ 0. Then, under the conditions of Theorem 1,
the asymptotic distribution of θ̂ = l>â is given by

√
n1 + n2σ

−1
γ

(
θ̂− 1

1− c
l>Σ−1(µµµ1 − µµµ2)

)
D−→ N (0, 1)
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for p/(n1 + n2)→ c ∈ [0, 1) as n1 + n2 →∞ with

σ2
γ =

1

(1− c)3

((
l>Σ−1(µµµ1 − µµµ2)

)2
+ l>Σ−1l(µµµ1 − µµµ2)>Σ−1(µµµ1 − µµµ2) +

+ λ(n1 + n2)l>Σ−1l1{0}(γ)
)
,

where 1A(·) denotes the indicator function of set A.

Proof. Using the stochastic representation (5) of Corollary 1, we get

√
n1 + n2σ

−1
γ

(
θ̂− 1

1− c
l>Σ−1(µµµ1 − µµµ2)

)
d
=

d
=
√
n1 + n2

(
(n1 + n2 − 2)ξ−1 − 1

1− c

)
p−γl>Σ−1(µµµ1 − µµµ2)

p−γσγ
+

+
√
λ(n1 + n2)

n1 + n2 − 2

ξ

√(
p−γ + p−γ

p− 1

n1 + n2 − p
u

)√
p−γl>Σ−1l

p−γσγ
z0,

where

ξ ∼ χ2
n1+n2−p−1, z0 ∼ N (0, 1), u ∼ F

(
p− 1, n1 + n2 − p, (µµµ1 − µµµ2)>Rl(µµµ1 − µµµ2)/λ

)
with Rl = Σ−1 − Σ−1ll>Σ−1/l>Σ−1l; ξ, z0 and u are mutually independently dis-
tributed.

Since, ξ ∼ χ2
n1+n2−p−1, we get that√

n1 + n2 − p− 1

(
ξ

n1 + n2 − p− 1
− 1

)
D−→ N (0, 2)

for p/(n1 + n2)→ c ∈ [0, 1) as n1 + n2 →∞ and, consequently,

√
n1 + n2

(
(n1 + n2 − 2)ξ−1 − 1

1− c

)
=

√
n1 + n2√

n1 + n2 − p− 1

n1 + n2 − p− 1

ξ

1

1− c
×

×
√
n1 + n2 − p− 1

(
(1− c)

n1 + n2 − 2

n1 + n2 − p− 1
− ξ

n1 + n2 − p− 1

)
D−→

D−→ z̃0 ∼ N
(

0,
2

1− c

)
for p

n1+n2
= c + o((n1 + n2)−1/2), where z0 and z̃0 are independent.

Furthermore, we get (see, [14, Lemma 3])

p−γ + p−γ
p− 1

n1 + n2 − p
u− 1{0}(γ)−

− c

1− c

(
1{0}(γ) +

p−γ(µµµ1 − µµµ2)>Rl(µµµ1 − µµµ2)

cλ(n1 + n2)

)
a.s.−→ 0.

Putting the above results together, we get the statement of the theorem with

σ2
γ =

1

(1− c)3

(
2
(
l>Σ−1(µµµ1 − µµµ2)

)2
+ l>Σ−1l(µµµ1 − µµµ2)>Rl(µµµ1 − µµµ2) +

+ λ(n1 + n2)l>Σ−1l1{0}(γ)
)

=

=
1

(1− c)3

((
l>Σ−1(µµµ1 − µµµ2)

)2
+ l>Σ−1l(µµµ1 − µµµ2)>Σ−1(µµµ1 − µµµ2) +

+ λ(n1 + n2)l>Σ−1l1{0}(γ)
)
. �
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The results of Theorem 4 show that the quantity γ is present only in the asymptotic
variance σ2

γ. Moreover, if γ > 0, then the factor λ(n1 + n2) vanishes and therefore the
assumption (A2) is no longer needed. However, in the case of γ = 0 we need (A2) in
order to keep the variance bounded. We further investigate this point via simulations
in Subsection 3.3, by choosing γ > 0 and considering small n1 and large n2 such that
n1/n2 → 0.

3.1. Classification analysis in high dimension. The error rate of the classification
analysis based on the optimal decision rule (7) remains the same, independent of p and
it is always equal to

ERp(∆) = Φ

(
−∆

2

)
with ∆2 = (µµµ1 − µµµ2)>Σ−1(µµµ1 − µµµ2) .

In practice, however, µµµ1, µµµ2, and Σ are not known and, consequently, one has to make
the decision based on (8) instead of (7). In Theorem 5, we derived the asymptotic

distribution of d̂ under the large-dimensional asymptotics.

Theorem 5. Assume (A1) and (A2). Let p−γ∆2 → ∆̃2 and λni → bi for p/(n1 +n2)→
→ c ∈ [0, 1) as n1 + n2 →∞. Then, under the conditions of Theorem 1, it holds that

pmin(γ,1)/2

(
d̂

pγ
− n1 + n2 − 2

n1 + n2 − p− 1

(−1)i−1

2
p−γ∆2

)
D−→

D−→ N

(
(−1)i−1 c

1− c

bi − 2

2bi
(b1 + b2)1{0}(γ),

c

2(1− c)3
∆̃41[1,+∞)(γ) +

1

(1− c)3
(c(b1 + b2)1{0}(γ) + ∆̃21[0,1](γ))

)

for p/(n1 + n2)→ c ∈ [0, 1) as n1 + n2 →∞.

Proof. The application of Theorem 3 leads to

pmin(γ,1)/2

(
d̂

pγ
− n1 + n2 − 2

n1 + n2 − p− 1

(−1)i−1

2
p−γ∆2

)
d
=

d
= pmin(γ,1)/2−1/2

√
p

√
n1 + n2 − p− 1

n1 + n2 − 2

ξ

√
n1 + n2 − p− 1×

×
(

1− ξ

n1 + n2 − p− 1

)
(−1)i−1

2
p−γ∆2 +

n1 + n2 − 2

ξ

(
(−1)i−1 λni − 2

2λni
×

×
(
pmin(γ,1)/2−γλξ2 + 2pmin(γ,1)/2−γ/2

√
p−γ∆2

√
λw0 + pmin(γ,1)/2−γλw2

0

)
+

+
(−1)i−1

λni
pmin(γ,1)/2−γ/2

√
p−γ∆2

√
λw0

)
+

+
n1 + n2 − 2

ξ

(√(
1 +

1

n1 + n2
+

p− 1

n1 + n2 − p
u

)
×

×
√
pmin(γ,1)−2γλξ2 + (pmin(γ,1)/2−γ/2

√
p−γ∆2 + pmin(γ,1)/2−γ

√
λw0)2z0

)
D−→
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D−→ N

(
(−1)i−1 c

1− c

bi − 2

2bi
(b1 + b2)1{0}(γ),

c

2(1− c)3
∆̃41[1,+∞)(γ) +

1

(1− c)3
(c(b1 + b2)1{0}(γ) + ∆̃21[0,1](γ))

)
,

where the last line follows from Lemma 3 in [14] and Slutsky Theorem (see, [21, Theo-
rem 1.5]). �

The parameters of the limit distribution derived in Theorem 5 can be significantly
simplified in the special case of n1 = n2 because of λn1 = λn2 = 2. The results of
Theorem 5 are also used to derive the approximate error rate for the decision (8). Let
a = 1

1−c
1
2p
−γ∆. Then, the error rate is given by

ERs(∆) =
1

2
P
{
d̂ > 0

∣∣∣i = 2
}

+
1

2
P
{
d̂ ≤ 0

∣∣∣i = 1
}

=

=
1

2
P

{
pmin(γ,1)/2

(
d̂

pγ
− (−1)i−1a

)
> −pmin(γ,1)/2(−1)i−1a

∣∣∣∣i = 2

}
+

+
1

2
P

{
pmin(γ,1)/2

(
d̂

pγ
− (−1)i−1a

)
≤ −pmin(γ,1)/2(−1)i−1a

∣∣∣∣i = 1

}
≈

≈ 1

2

(
1− Φ

(
apmin(γ,1)/2 −m2

v

))
+

1

2
Φ

(
−apmin(γ,1)/2 −m1

v

)
with

m1 =
c

1− c

b1 − 2

2b1
(b1 + b2)1{0}(γ), m2 = − c

1− c

b2 − 2

2b2
(b1 + b2)1{0}(γ),

v2 =
c

2(1− c)3

(
p−γ∆2

)2
1[1,+∞)(γ) +

1

(1− c)3

(
c(b1 + b2)1{0}(γ) + p−γ∆21[0,1](γ)

)
,

where we approximate ∆̃2 by p−γ∆2.
In the special case of n1 = n2 which leads to b1 = b2 = 2, we get

ERs(∆) = Φ

(
−hc

∆

2

)
with

hc =
pmin(γ,1)/2−γ√1− c

√
p−γ∆2√

c(p−γ∆2)21[1,+∞)(γ)/2 + 4c1{0}(γ) + p−γ∆21[0,1](γ)
,

which is always smaller than one. Furthermore, for γ ∈ (0, 1) we get hc =
√

1− c.
In Figure 2, we plot ERs(∆) as a function of ∆ ∈ [0, 100] for c ∈ {0.1, 0.5, 0.8, 0.95}.

We also add the plot of ERp(∆) in order to compare the error rate of the two decision
rules. Since only finite values of ∆ are considered in the figure we put γ = 0 and also
choose n1 = n2. Finally, the ratio n1+n2−2

n1+n2−p−1 in the definition of a is approximated by
1

1−c . We observe that ERs(∆) lies very close to ERp(∆) for c = 0.1. However, the
difference between two curves becomes considerable as c growths, especially for c = 0.95
and larger values of ∆.

3.2. Finite-sample performance. In this subsection we present the results of the sim-
ulation study. The aim is to investigate how good the asymptotic distribution of a linear
combination of the discriminant function coefficients θ̂ = l>â performs in the case of
the finite dimension and of the finite sample size. For that reason we compare the as-
ymptotic distribution of the standardized θ̂ as given in Theorem 4 to the corresponding
exact distribution obtained as a kernel density approximation with the Eppanechnikov
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kernel applied to the simulated data from the standardized exact distribution which
are generated following the stochastic representation of Corollary 1: (i) first, ξb, z0;b, ub

are sampled independently from the corresponding univariate distributions provided in
Corollary 1; (ii) second, θ̂b is computed by using (5) and standardized after that as in
Theorem 4; (iii) finally, the previous two steps are repeated for b = 1, . . . , B times to
obtain a sample of size B. It is noted that B could be large to ensure a good performance
of the kernel density estimator.

In the simulation study, we take l = 1p (p-dimensional vector of ones). The elements
of µµµ1 and µµµ2 are drawn from the uniform distribution on [−1, 1] when γ > 0, while the
first ten elements of µµµ1 and the last ten elements of µµµ2 are generated from the uniform
distribution on [−1, 1] and the rest of the components are taken to be zero when γ = 0.
We also take Σ as a diagonal matrix, where every element is uniformly distributed
on (0, 1]. The results are compared for several values of c = {0.1, 0.5, 0.8, 0.95} and
the corresponding values of p, n1, n2. Simulated data consist of N = 105 independent
repetitions. In both cases γ = 0 and γ > 0 we plot two asymptotic density functions to
investigate how robust are the obtained results to the choice of γ.

In Figures 3–4, we present the results in the case of equal and large sample sizes
(data are drawn with γ = 0 in Figure 3 and with γ > 0 in Figure 4). We observe
that the impact of the incorrect specification of γ is not large. If c increases, then the
difference between the two asymptotic distributions becomes negligible. In contrast,
larger differences between the asymptotic distributions and the finite-sample one are
observed for c = 0.8 and c = 0.95 in all figures, although their sizes are relatively small
even in such extreme case.
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Figure 2. Error rates ERp(∆) and ERs(∆) as functions of ∆ for
c ∈ {0.1, 0.5, 0.8, 0.95}
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Figure 3. The kernel density estimator of the asymptotic distribution
and standard normal distribution for θ̂ as given in Theorem 4 for γ = 0
and c = {0.1, 0.5, 0.8, 0.95}.
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ÄÈÑÊÐÈÌIÍÀÍÒÍÈÉ ÀÍÀËIÇ Ó ÌÀËÈÕ ÒÀ ÂÅËÈÊÈÕ
ÐÎÇÌIÐÍÎÑÒßÕ

Ò. ÁÎÄÍÀÐ, Ñ. ÌÀÇÓÐ, Å. ÍÃÀÉËÎ, Í. ÏÀÐÎËß

Àíîòàöiÿ. Äîñëiäæóþòüñÿ ñòîõàñòè÷íi âëàñòèâîñòi ëiíiéíî¨ äèñêðèìiíàíòíî¨ ôóíêöi¨ çà ïðèïóùå-
ííÿ íîðìàëüíîñòi øëÿõîì ïîðiâíÿííÿ äâîõ ãðóï ç îäíàêîâîþ êîâàðiàöiéíîþ ìàòðèöåþ, àëå ðiçíè-
ìè âåêòîðàìè ñåðåäíiõ. Îäåðæàíî ñòîõàñòè÷íå ïðåäñòàâëåííÿ êîåôiöi¹íòiâ äèñêðèìiíàíòíî¨ ôóí-
êöi¨, ÿêå ïîòiì âèêîðèñòîâó¹òüñÿ äëÿ îòðèìàííÿ ¨õ àñèìïòîòè÷íîãî ðîçïîäiëó ïðè áàãàòîâèìiðíîìó
àñèìïòîòè÷íîìó ðåæèìi. Äîñëiäæó¹òüñÿ åôåêòèâíiñòü êëàñèôiêàöiéíîãî àíàëiçó íà îñíîâi äèñêðè-
ìiíàíòíî¨ ôóíêöi¨ ÿê ó ìàëèõ, òàê i ó âåëèêèõ ðîçìiðíîñòÿõ. Óñòàíîâëåíî ñòîõàñòè÷íå ïðåäñòàâ-
ëåííÿ, ÿêå äîçâîëÿ¹ åôåêòèâíî îá÷èñëèòè êîåôiöi¹íò ïîõèáêè. Äàëi ìè ïîðiâíþ¹ìî ðîçðàõîâàíèé
êîåôiöi¹íò ïîõèáêè ç îïòèìàëüíèì, îòðèìàíèì çà ïðèïóùåííÿ, ùî êîâàðiàöiéíà ìàòðèöÿ i äâà
ñåðåäíi âåêòîðè ¹ âiäîìèìè. Íàðåøòi, ìè ïðåäñòàâëÿ¹ìî àíàëiòè÷íèé âèðàç êîåôiöi¹íòà ïîõèáîê,
îäåðæàíîãî ó áàãàòîâèìiðíîìó àñèìïòîòè÷íîìó ðåæèìi. Ñêií÷åííîâèìiðíi âëàñòèâîñòi îòðèìàíèõ
òåîðåòè÷íèõ ðåçóëüòàòiâ îöiíþþòüñÿ çà äîïîìîãîþ îáøèðíîãî ìåòîäó Ìîíòå-Êàðëî.

ÄÈÑÊÐÈÌÈÍÀÍÒÍÛÉ ÀÍÀËÈÇ Â ÌÀËÛÕ È ÁÎËÜØÈÕ
ÐÀÇÌÅÐÍÎÑÒßÕ

Ò. ÁÎÄÍÀÐ, Ñ. ÌÀÇÓÐ, Ý. ÍÃÀÉËÎ, Í. ÏÀÐÎËß

Àííîòàöèÿ. Èññëåäóþòñÿ ñòîõàñòè÷åñêèå ñâîéñòâà ëèíåéíîé äèñêðèìèíàíòíîé ôóíêöèè ïðè
ïðåäïîëîæåíèè íîðìàëüíîñòè ïóòåì ñðàâíåíèÿ äâóõ ãðóïï ñ îäèíàêîâîé êîâàðèàöèîííîé ìàòðè-
öåé, íî ðàçíûìè âåêòîðàìè ñðåäíèõ. Ïîëó÷åíî ñòîõàñòè÷åñêîå ïðåäñòàâëåíèå êîýôôèöèåíòîâ äèñ-
êðèìèíàíòíîé ôóíêöèè, êîòîðîå çàòåì èñïîëüçóåòñÿ äëÿ ïîëó÷åíèÿ èõ àñèìïòîòè÷åñêîãî ðàñïðå-
äåëåíèÿ ïðè ìíîãîìåðíîì àñèìïòîòè÷åñêîì ðåæèìå. Èññëåäóåòñÿ ýôôåêòèâíîñòü êëàññèôèêàöè-
îííîãî àíàëèçà íà îñíîâå äèñêðèìèíàíòíîé ôóíêöèè êàê â ìàëûõ, òàê è â áîëüøèõ ðàçìåðíîñòÿõ.
Óñòàíîâëåíî ñòîõàñòè÷åñêîå ïðåäñòàâëåíèå, êîòîðîå ïîçâîëÿåò ýôôåêòèâíî âû÷èñëèòü êîýôôèöè-
åíò ïîãðåøíîñòè. Äàëåå ìû ñðàâíèâàåì ðàññ÷èòàííûé êîýôôèöèåíò ïîãðåøíîñòè ñ îïòèìàëüíûì,
ïîëó÷åííûì ïðè ïðåäïîëîæåíèè, ÷òî êîâàðèàöèîííàÿ ìàòðèöà è äâà ñðåäíèõ âåêòîðà èçâåñòíû.
Íàêîíåö, ìû ïðåäñòàâëÿåì àíàëèòè÷åñêîå âûðàæåíèå êîýôôèöèåíòà ïîãðåøíîñòè, ïîëó÷åííîãî â
ìíîãîìåðíîì àñèìïòîòè÷åñêèì ðåæèìå. Êîíå÷íîìåðíûå ñâîéñòâà ïîëó÷åííûõ òåîðåòè÷åñêèõ ðå-
çóëüòàòîâ îöåíèâàþòñÿ ñ ïîìîùüþ îáøèðíîãî ìåòîäà Ìîíòå-Êàðëî.


