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Abstract

In biology, phylogenetics is the study of the evolutionary history of and relations be-
tween e.g. species. Such data are often represented in trees. Remarkably, trees lack
the representation of reticulation events, such as hybridization, while such events
are believed to be important. One of the reasons why trees are widely used, is the
enormous complexity of inferring a network directly from DNA data.

Therefore, indirect approaches are studied. One option is to construct a network
from trees, which have been constructed from DNA data. Another option, which is
studied in this work, is to create a network which represents all clusters from the
trees. We are interested in finding a network having the lowest level possible, i.e.
the lowest number of reticulations per biconnected component.

The Cass algorithm[12] is one of the best algorithms in this respect. However,
it does not always give optimal results. In this thesis, an optimal algorithm is
presented called STCass, of which many ideas are inspired from Cass. We lay
theoretical foundations on how to build an optimal network. Furthermore, (greedy)
steps are proposed to solve the problem, which seem to work very well in practice.
Based on several optimizations that are proposed, an improved algorithm called
MSTCass is presented, which runs faster than STCass, in general.

In order to speed up any Cass-based algorithm or derivatives of it, several lower
bounds are presented on the reticulation number r(N) per biconnected component
N of an optimal network. Besides, a new upper bound on r(N) is conjectured
which can be evaluated in seconds, although e.g. an upper bound obtained by the
HybridInterleave[3] or PIRN[26] algorithm is mostly lower and which can be
evaluated often in twenty minutes[1] for the tested instances.

Index terms: Phylogenetic network, phylogenetic tree, level minimization, retic-
ulation number, optimization, hybrid, hybridization event, level-k, cluster, compat-
ibility, incompatibility graph, STCass, MSTCass.

ix





Nomenclature

Abbreviations
LCA stands for the lowest common ancestor of multiple nodes in a network. ST-set
stands for ’strict tree set’. MST-set means a maximal ST-set.

Symbols
Symbol Meaning
C A set of clusters
C(N) The set of clusters represented by network N
C|S This is equivalent to C\(X\S), i.e. the set of clusters C restricted

to the taxa S ⊂ X
Cl(T ) The set of clusters which the trees T represent, i.e.

⋃
T∈T C(T )

IG(C) The incompatibility graph of the set of clusters C
`(N) The level of network N
Nb(C) The set of neighbours of cluster C ∈ C in IG(C)
LCA(C) The set of lowest common ancestors of cluster C

minimal(C) The set of the minimal clusters in C, i.e. {C ∈ C : @C ′ ∈
C such that C ′ ⊂ C}

N A phylogenetic network
r(G) Given a set of clusters C and some connected component G in

IG(C), r(G) denotes the reticulation number of the corresponding
biconnected component in a phylogenetic network that represents
the clusters in V (G)

r(N) The reticulation number of network N
T A (phylogenetic) tree
T A set of trees
X A set of taxa
X (N) The set of taxa in network N

xi





1
Introduction

In biology, phylogenetics is the study of the evolutionary history of and relations
between e.g. species or taxa[7][21]. Such data are represented in phylogenetic trees
and networks. Examples of phylogenetic trees and a network are shown in Fig. 1.1.
The two trees in that figure are so-called rooted phylogenetic trees. The difference
with unrooted trees is that rooted trees display the ancestry relationships between
species, whereas unrooted trees only show the relations between them. In a rooted
tree, the most recent common ancestor can be derived for several species, however,
this is not possible in unrooted trees or networks. In particular, a rooted tree
is a representation of the evolution of species by mutation and speciation. The
leaves represent the currently living species and the root represents their most recent
common ancestor. Both a rooted tree and network are directed acyclic graphs.
Besides, each edge represents some cluster. I.e. in a tree, the cluster represented by
an edge is the union of all leaf descendants of (the head of) that edge. In a network,
such a cluster is only one of the clusters represented by an edge, since there could
be more, due to reticulations (for details, see the next chapter).

In Fig. 1.1, the red node represents a reticulation event, which can represent
either a hybridization, horizontal gene transfer or recombination (depending on the
context). It is widely believed that reticulation events are important in phylogenetic
models. Often, trees are used to represent evolutionary relationships, although
reticulation events are hard to model in them. One of the main reasons is the
enormous complexity of inferring a network directly from DNA data.

Therefore, indirect approaches are studied. One option is to construct a network
from trees, which have been constructed from DNA data. In particular, an approach

1
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Figure 1.1: The subfigures (a) and (b) both represent a phylogenetic tree. The first one represents

the clusters {a, c}, {a, b, c} and {a, b, c, d}. The second tree represents the clusters {a, b}, {c, d}

and {a, b, c, d}. Subfigure (c) displays a simple phylogenetic network which represents all these

clusters: Edge (s, u) represents the clusters {a, b} (in the softwired sense) and {a, b, c}, edge (u, p)

cluster {a, c}, edge (s, q) cluster {c, d} and edge (r, s) represents cluster {a, b, c, d}. The red vertex

h symbolizes a reticulation event.

(algorithm) is demanded to convert the trees to a phylogenetic network in which
all trees are displayed. In order to create a network that is not more complex than
necessary, one can aim at minimizing the number of reticulation events, or a related
parameter called level. We call a phylogenetic network which minimizes the number
of reticulation events or the level (depending on the context) an optimal phylogenetic
network.

Many attempts have been made in the past to find networks that display the
input trees, see e.g. [6], [5] and [21]. However, this is a hard problem; locating a
tree in a given phylogenetic network is an NP-complete problem[14] and intuitively,
finding an optimal network is much harder. For several restricted problems, locating
a tree is possible in polynomial time[9]. Furthermore, a special type of phylogenetic
network, a so-called tree-child network, can be created from an arbitrary number
of binary trees using the FPT-algorithm proposed in [10]. However, this algorithm
is only suitable for binary input trees, whereas we are interested in general input
trees.

Nowadays, there is still a lack of a robust method to create such an optimal
network from multiple non-binary trees. Therefore, instead of letting the target
network display the input trees, we focus on letting it represent the clusters which
are represented by the trees. The problem is then: give an optimal phylogenetic
network which represents all clusters in the given trees. This is the main topic of
this work.

A cluster is a proper subset of the taxa in a network; Given some edge (u, v) ∈ E
in any network N = (V,E), the set of leaf descendants of v form a cluster. If for
each reticulation in the network, exactly one incoming edge would be ’switched on’
and the others ’switched off’, then the leaf descendants reachable from v form a
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cluster too. For example, by switching on edge (q, h) in Fig. 1.1c (and edge (p, h)
off), cluster {a, b} is represented by edge (s, u). Furthermore, if for each cluster C
from the input clusters C, network N contains and edge that represents C, then it
is said that N represents C.

For a more complex example, consider the set of four trees T in Fig. 1.2. You
can check that the clusters Cl(T ) which are represented in these trees, except the
singletons (and the cluster X (T )), are 12, 13, 15, 34, 56, 58, 67, 134, 234, 567, 678,
1234, 1567, 1345, 5678, 12345 and 15678 (where e.g. 12 denotes cluster {1, 2}). Our
goal is to find an optimal network which represents these clusters. Observe that the
network presented in Fig. 1.3, is such one, comprising three reticulations. In order
to see this, switch on exactly one incoming edge per reticulation and then list the
clusters that are represented in the remained tree. Repeat this for any combination
of edges that can be switched on and off. One example is illustrated in cyan for
cluster 234 and in red for cluster 567.

Figure 1.2: This is an edited copy of Fig. 8 in [15]. The coloured subtrees represent two examples

of clusters.

Before specifying our interpretation of an optimal network, let us introduce some
terms beforehand. A node (edge) is called a cut-node (cut-edge) if its removal would
disconnect the graph. A biconnected component of a phylogenetic network is a
maximal subgraph that cannot be disconnected by removing a single vertex. The
level of a network is the maximum reticulation number per biconnected component.
For example, say that some network contains three biconnected components, having
reticulation number 3, 2, 1, respectively, then the level of the network is 3.

Now, some researchers regard an optimal network as one having the minimum
number of reticulations. Such a network is called a minimum reticulate network.
Lower and upper bounds on this number have been studied in e.g. [26].

However, we aim at minimizing the level of the network. Minimizing the number
of reticulations is our secondary goal. The main reason for minimizing the level is
inspired by phylogenetics, since if we would not do this, unrelated parts of the
network may get interconnected. This is illustrated in e.g. Fig. 3 in [8], which is
repeated below in Fig. 1.4.
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Figure 1.3: Fig. 9a from [15] is repeated here. This network is simple level-3 network representing

the clusters Cl(T ) of the trees T which are shown in the previous figure. This network is optimal,

as will be shown later. The coloured subgraphs represent different clusters, which correspond to

those in the previous figure.

Regarding complexity of this problem, Kelk and Scornavacca showed that con-
structing a phylogenetic network from (softwired) clusters is fixed parameter tractable
(FPT) in 2011[16]. In our case, this means that if we regard the level as fixed param-
eter and the degree of the polynomial does not depend on the level, the running time
is polynomial in the number of taxa and clusters. However, the authors remarked
that the running time of their algorithm “is too high to be of any practical interest”.
In particular, given that the level of an optimal network is k, the complexity of
their algorithm is f(k) · poly(n), where “the f(k) that is encountered (...) can be
extremely exponential in k”.

A related problem is the hybridization number problem, i.e. given multiple input
trees, what is the smallest number of hybridization events that are required in a
phylogenetic network which displays the input trees? This problem is NP-hard too.
If the input trees are three binary trees, then the problem can be solved in time
O(ck · poly(n)) (EPT)[11], where k is the level of the output network.

Note that if a phylogenetic network displays the input trees, then the network
represents all clusters in the input trees. The converse however, is not (always)
true. To show this, consider the network in Fig. 1.3 again. This network represents
all clusters Cl(T ) from the four input trees T from Fig. 1.2, however, it does not
display the first tree, nor the bottom left tree. As a consequence, the number of
reticulations in an optimal network which represents the clusters, is a lower bound
on the hybridization number. We do not study the hybridization number, however,
it can be used as upper bound on the reticulation number in an optimal network.

1.1. Related Work
In this section, we address two questions. Firstly, what has been done before on
the field of computing lower bounds on the hybridization number? Secondly, what
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(a) A phylogenetic network (b) A minimum level network (c) A minimum reticulation network

Figure 1.4: (a) An optimal rooted network N that represents the clusters C =

{ab, abh, bh, cd, cdh, abcdh, abcd}, using two reticulations r and s. Note that the role of edge u

is to switch off the taxon h so that the cluster abcd can be represented by the tree edge e. (b) Two

copies of N embedded into a minimum level (decomposable) network requiring four reticulations to

represent all clusters in C and a second set C′ of corresponding ones on {o′, a′, b′, c′, d′, h′}. (c) This

network represents the described clusters in (b) too, using only three reticulations. However, this

is gained at an undesirable price: decomposability is abandoned (all clusters in C are compatible

with those in C′, yet they are all represented in the same biconnected component of the network)

and so two completely unrelated parts of the phylogeny are linked together via reticulation edges.

algorithms have been developed in the past, that build a phylogenetic network N
based on several input trees or clusters, such that N represents all clusters in the
trees? In particular, to what extent is the level and/or the number of reticulations
minimized?

Firstly, note that multiple works are devoted to computing lower bounds on the
hybridization number. See for example [6], [18] and [22]. These bounds were settled
with chromosomes in mind. Thereby, the order of the genes in the chromosomes
matter. However, this does not matter when bounding the number of hybridiza-
tions. This is the reason why the bound of Hudson and Kaplan cannot be used
to bound the number of hybridizations (see [5]). In the same paper, the authors
propose several theorems (Theorems 3.2 and 3.1), which may be “applied to phy-
logenetic networks with hybridization as well.” Thm. 3.1 gives a (trivial) lower
bound on the number of hybridization events in a phylogenetic network. Thm. 3.2
is closely related to this. In 2009, HybridInterleave was introduced[3]. This
algorithm computes the hybridization number for two binary trees. Another algo-
rithm called PIRN[26] has the same objective as HybridInterleave. Its advantage
over HybridInterleave is that it can accept more than two binary trees. On the
other hand, HybridInterleave has the advantage that it is guaranteed to find an
optimal solution.

Again, the hybridization number can be used as upper bound on the reticula-
tion number in an optimal network. However, we wonder: what is the minimum
reticulation number in a network which represents the clusters that are represented
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in the input trees? Besides, what algorithms have been developed in the past, that
build a phylogenetic network based on several input trees or clusters? In 2010, the
algorithm called SplitsTree, was the most widely-used software for the construc-
tion of phylogenetic (split) networks, according to Huson et al.[7]. However, this
algorithm was designed for inferring unrooted networks. The same holds for the
algorithm called NeighborNet[2].

1.1.1. The Cass Algorithm and Derivatives
In 2010, the Cass algorithm[12] was introduced. This algorithm aims to create
minimum level networks that represent a given set of clusters. When the input
consists of exactly two binary trees T1 and T2, then Cass correctly minimizes level
and even constructs a network of minimum level, which has been proven in [15].

In general, the Cass algorithm constructs networks with fewer reticulations than
any other method. However, it has several drawbacks. Firstly, Cass is not suitable
for constructing networks with a large number of reticulations, since its running
time does not scale well with the level. Secondly, the constructed network highly
depends on the order of the input data. Furthermore, the Cass algorithm does not
always minimize the level, as shown in [15] too.

In regard of these issues, in 2013, an improved Cass algorithm was proposed by
Wang et al., called Lnetwork[25]. “Lnetwork is significantly faster than Cass
and effectively weakens the influence of input data order. Moreover, Lnetwork
can construct a much simpler network than most of the other available methods.”
However, it is not said that this algorithm is optimal, i.e. it does not necessarily
return an optimal network.

BIMLR is another algorithm based on Cass. “BIMLR is faster than Cass and
less dependent on the input data order. Moreover, BIMLR is able to construct much
simpler networks than almost all other methods.”[24]

The refrain in all testimonies of these Cass-based algorithms is that they are
“able to construct much simpler networks than almost all other methods.” Fur-
thermore, these algorithms work for very general input trees, namely for multiple
non-binary trees, which one gets in practice. These facts form a good motivation to
use it as basis for our algorithm.

1.2. Other Applications
Phylogenetic networks are not only useful to represent genetic evolution over time
and their dependencies. They could teach us general principles of how they evolved
in the past and consequently, how they may evolve in the future. They are used in
linguistic phylogenetics too, in order to illustrate the chronological development of
and dependencies between languages. Secondly, phylogenetics are used in forensics,
to asses evidence based on DNA in court cases. Thirdly, the theory is applied in
the Linnaean classification of organisms. Similarly, it may help in diagnosing (cate-
gorising) diseases. Fourthly, phylogenetics is used to study the spread of pathogens
(like the recent SARS-CoV-2 virus, see e.g. [17]), as well as their origin. Besides,
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it can be used to detect which DNA protein may cause the “potential to increase
transmissibility or virulence of the virus”[23]. On top of this, it can help in studying
the similarities among different diseases and viruses. Fifthly, the study can help to
form a conservation policy when decisions have to be made on which species should
be especially protected from extinction. Sixthly, imagine that some manuscript has
been copied by hand multiple times, and some copies have been copied again. Then
phylogenetics can be used to determine a model for the dependencies between the
manuscripts and their historical order in time. Seventhly, based on the assumption
that “chemical abundances are inherited between generations of stars”, phylogenet-
ics is used “to trace the evolutionary history of our Galaxy”[13]. Let us leave it
here. Note that the commonality in all these applications is that phylogenetics is
used to study processes in nature.

1.3. Contribution
One of our main results is an algorithm called (M)STCass, which is guaranteed
to find an optimal network for a given set of input clusters. This algorithm starts
removing certain taxa one by one (or per set of taxa), until a tree can be built on
the remained taxa, which represents the input clusters restricted those taxa. We
call this phase of the algorithm the removal phase. Then, the taxa are inserted in
reversed order in it, in a certain way. We call this second phase the building phase
of (M)STCass. A set of taxa that is removed in the removal phase, is called an
ST-set. An example of an ST-set is a pendant subtree. Further details on this
are given in the next chapter, where some definitions and introductory terms are
given as preparation and detailed introduction to the rest of this work. Besides, our
problem and research questions are defined.

As stated earlier, the Cass algorithm does not always give an optimal solution.
In Chapter 3, the Cass algorithm is analysed, (possible) solutions are proposed to
make this algorithm optimal and one of these is handled in detail. Based on this, an
optimal algorithm is presented, called STCass. In addition, Section 3.7 elaborates
on the question if it is required to consider all ST-sets in the removal phase of
STCass, or if considering only the maximal ST-sets would be sufficient. The last
seems to be the case and based on this, an improved algorithm called MSTCass is
presented (see Section 3.8 and see Chapter 7 for details on its implementation). This
algorithm considers only maximal ST-sets (MST-sets), is optimal too, and much
faster than STCass. The complexity of both algorithms is analysed in Section 3.9.
The running time of MSTCass is polynomial for any fixed level k. Besides, some
(heuristic) optimizations are given in Section 3.10 and Section 3.11.

Details on (M)STCass will be handled in Chapter 4. In particular, it will be
discussed how to ensure that in any iteration in the network building phase of
STCass, the resulting network N ′ will represent the required clusters (see Section
4.1 - Section 4.2). Section 4.3 addresses the question how to minimize the reticu-
lation number r(N ′) in network N ′, being the result of extending some network N
(in the building phase of STCass) by inserting an ST-set. Furthermore, based on
the regular occurrence of having to know the lowest common ancestors (LCAs) per
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cluster, we show how to find the LCAs per cluster C, restricted to those which rep-
resent cluster C, in Section 4.4. The chapter ends with some notes on (M)STCass,
since it appears that certain possibilities to build the network may be excluded from
further exploration (see Section 4.5 - Section 4.6).

At this point, we switch the topic to finding bounds on the reticulation num-
ber r(N) per biconnected component N in an optimal network. This is motivated
by the fact that, if a lower bound on r(N) per biconnected component N in an
optimal network, is known a priori, this knowledge can be used to speed up any
Cass-based algorithm. Therefore, we analyse substructures of the so-called incom-
patibility graph based on the input clusters. From this, we derive more than five
(conjectured) lower bounds on r(N) in Chapter 5. As a tool to do so, we introduce
a certain type of network called a collnet (in Section 5.1).

After that, we study upper bounds on r(N) in Chapter 6. A new upper bound is
conjectured, which is easy to verify algorithmically. Due to its simplicity, its value is
mostly higher than the hybrid number for two trees, however, it can give an upper
bound on r(N) when (clusters from) three or more trees are given, and often in less
than a second.

In the third part of this work, we present some details of our implementation of
the two proposed algorithms STCass and MSTCass in Chapter 7. In particular,
Section 7.1 handles the techniques that have been used. In Section 7.2, the differ-
ences in the implementations of STCass and MSTCass are listed. For comparison
and since the original implementation in Dendroscope does not work any more in
the latest version of Dendroscope, Cass has been implemented too.

The results are presented in Chapter 8. In particular, the performance of both
algorithms is addressed in Section 8.1, both in terms of the runtime and optimality,
with optimality regarding the level and reticulation number of the resulting net-
works. All results are compared with those of Cass. In addition, the lower bounds
on r(N), which are determined by the formulas given in Chapter 5, are presented.
Similarly, our new upper bound on r(N) has been evaluated on the test data, whose
results are shown.

Lastly, the results are discussed and conclusions are drawn in Chapter 9. Besides,
some possibilities for improvements are summed.



2
Preliminaries

Let us consider some definitions as preparation for and introduction to the rest of
this work. Firstly, we define what a phylogenetic network is and give some of its most
important properties. Then, clusters are explained. After that, the corresponding
incompatibility graph is introduced and defined. Lastly, the problem is stated for
which a solution is proposed in this work.

2.1. Network Definition
Consider a set X of taxa. A rooted phylogenetic network thereon is defined as follows.

Definition 2.1. A rooted phylogenetic network, on a set of taxa X , is an acyclic

digraph N = (V,E), having the following properties.

1. It contains exactly one root, being a node in V having in-degree zero;

2. Each vertex v ∈ V has either in-degree 1 or out-degree 1 (not both), except for

the root;

3. The leaves (having out-degree 0) are bijectively labelled by X .

Each node therein is called either a root, split node, reticulation (node) or a leaf.
The (unique) node having in-degree zero is the root. A node is called a split node

9
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if its in-degree is 1. Each node having in-degree at least 2 and out-degree 1 is a
reticulation. Finally, the other nodes have in-degree one and out-degree zero, which
are called leaves. In general, nodes which are not leaves are called internal nodes.

2.2. Network Properties
Important properties of such a network, say network N , are the reticulation number
r(N) and the level `(N). Note that the reticulation number r(N) equals the total
number of reticulations, if and only if the network is binary. For example, a network
may contain one reticulation having in-degree three. Then, we say that the num-
ber of reticulations is one, while the reticulation number r(N) is two (two binary
reticulations would be needed if the network would be binary).

The reticulation number can be expressed as follows in Eq. 2.1. Note that δ−(v)
stands for the in-degree of node v ∈ V .

r(N) =
∑

v∈V :δ(v)−>0

(
δ−(v)− 1

)
= |E| − |V |+ 1 (2.1)

A biconnected component of a rooted phylogenetic network N is a maximal sub-
graph that cannot be disconnected by removing a single node. An example of a
network having multiple biconnected components, is illustrated in Fig. 2.1.

Figure 2.1: This figure is a copy of Fig. 1 in [12]. A phylogenetic network is shown, having exactly

five reticulations. The encircled subgraphs are its three biconnected components. The level of this

network is two, since each biconnected component contains at most two reticulations.

Observe that in a tree, there is no biconnected component. Furthermore, no leaf
(taxon), nor the root is contained in any biconnected component. Now, a network
N has level `(N) = k if the reticulation number per biconnected component is at
most k.
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2.3. Clusters
Regarding the clusters in a network, let (u, v) be any edge in network N . Then,
the leaf descendants of node v form a cluster, being a proper subset of the taxa
X . A cluster C is said to be a singleton if |C| = 1. Moreover, it is said that the
edge (u, v) represents cluster C. Any network N represents a cluster if it contains
an edge which represents that cluster. If the removal of that edge would subdivide
the network into two disconnected components, then the edge is called a cut-edge.
Now, consider a set C of clusters on the taxa X . A network is said to represent the
clusters C if the network represents each cluster in C. Note that in this work, we
neglect singletons in C, since they will always be represented in a network on X .

A network can represent a cluster in the hardwired sense and in the softwired
sense. A cluster is represented in the hardwired sense if the cluster is exactly the set
of leaf descendants of some internal node. Given a network N , a switching TN of N
is obtained by preserving one incoming edge per reticulation and by removing the
other incoming reticulation edges. A network N is said to represent some cluster
C in the softwired sense if there is a switching TN of N which represents cluster C
in the hardwired sense. In this thesis, when it is written that N represents some
cluster C, this is meant in the softwired sense.

Example 2.2. Below, the difference between hardwired and softwired clusters is

illustrated. Consider Fig. 2.2a. The hardwired cluster represented by edge (r, w) is

b1b2x. That represented by edge (u, v) is a1x. The softwired clusters represented

by edge (r, u) are a1a2 and a1a2x.

r

u

a2

v

a1

w

b1

b2

x

C1

C2 C3

(a) An optimal network representing C.

a1a2

a1x

b1b2x

(b) The corresponding incompatibility graph
IG(C).

Figure 2.2: (a) An optimal network is shown that represents the clusters in C = {a1a2, a1x, b1b2x},

containing exactly one reticulation. (b) shows the corresponding incompatibility graph IG(C).

Given a set of clusters C and a subset S ⊂ X of the taxa, C|S denotes the set of
clusters restricted to these taxa S, i.e. C|S = C\(X\S). For example, consider Fig.
2.2a again. C|{a1, a2, x} = {a1a2, a1x} there.
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Given two clusters C1 and C2, we say that they are compatible if either C1∩C2 =
∅ or C1 ⊆ C2 or C2 ⊆ C1. Otherwise, they are incompatible. For an example,
consider Fig. 2.2a again. Clusters C1 and C2 are incompatible, since they overlap
in a1 and both clusters have at least one taxon that is not contained in the other.
Clusters C1 and C3 are compatible, since they are disjoint.

A set of taxa S ⊂ X is called separated (by C) if there is a cluster C ∈ C
that is incompatible with S. E.g. in Fig. 2.2a, if S = b1b2x, then cluster a1x is
incompatible with S and hence, S is separated.

A set of taxa S ⊂ X is an ST-set (strict tree set) w.r.t. C, if S is not separated
by C and any two clusters C1, C2 ∈ C|S are compatible. For example, if S = b1b2
in Fig. 2.2a, then S is not separated and it is an ST-set. Moreover, it is a maximal
ST-set; an ST-set S is maximal (abbreviated as MST-set) if there is no larger ST-set
T with S ( T .

The Cass algorithm (which is analysed in the next chapter) includes a collapse
and decollapse step. Say that MST-set S ⊂ X is collapsed, then this means that
the leaves S are replaced by e.g. label l and the clusters and leaves are updated
accordingly. In the collapse step of Cass, all MST-sets are collapsed. We will see
that this sometimes prevents Cass from producing an optimal network. The inverse
process of collapsing is called decollapsing of such a meta-taxon l. Then firstly, a tree
is built on the leaves S, representing the clusters in C|S, and then its root replaces
meta-taxon l. See Fig. 3.3a for an example, where meta-taxon 34 is decollapsed to
a ’cherry’ on the taxa 3 and 4, see Fig. 3.3d.

2.4. Incompatibility Graph
Given a set C of clusters, the incompatibility graph IG(C) is the undirected graph
(V,E) whose vertices are the clusters (V = C) and edge (C1, C2) is present if and
only if the clusters C1 and C2 are incompatible. For an example, see Fig. 2.2b.

In order to build a network that represents a set C of clusters, it is good to
consider the incompatibility graph. In particular, it has been shown (see Theorem
1 in [12]), that there is always an optimal network, i.e. lowest level network (not
necessarily having the lowest reticulation number), whose biconnected components
correspond to the connected components of the incompatibility graph. This last
part intuitively states what is formally described as a decomposable network with
respect to C, as described in [8] and which is built on [4]. The definition is repeated
below.

Let ε be an edge assignment, being a mapping from each cluster C ∈ C to one of
the edges ε(C) that represents it. A network N is decomposable network with respect
to C (or simply: N is decomposable), if there exists an edge assignment ε such that
for all pairs of clusters C1 and C2 in C, the edges ε(C1) and ε(C2) lie in the same
biconnected component of N if and only if C1 and C2 lie in the same connected
component of the incompatibility graph IG(C). For an example of a decomposable
and non-decomposable network, see Fig. 1.4b and Fig. 1.4c in the previous section,
respectively.

This decomposition property is a main ingredient for the Cass algorithm, which



2.5. Problem Definition 13

we use as a basis to build our optimal algorithm. On top of this, there is a biologically
inspired motivation, namely that using this approach, chances are low that totally
unrelated parts of the network are related to each other (via a reticulation). Again,
see e.g. Fig. 1.4 in the previous chapter for an example.

2.5. Problem Definition
Consider a set X of taxa and a set C of clusters on it. Our goal is to build a
decomposable, rooted phylogenetic network N that represents all the clusters in C.

The main question we address is: how to build a network N on the taxa X ,
that represents the clusters C, such that the reticulation number per biconnected
component is as small as possible and thereby, the level `(C) is minimized? Related
to this, given the rules and guide lines which we have found as answer to this
question, we wonder: are they all necessary, can they be restricted or can certain
cases that are considered be excluded?

Let us subdivide these questions. Firstly, under what condition(s) is the reticula-
tion number per biconnected component minimized? Secondly, how does this trans-
late to the decisions that should be made (by an optimal algorithm) when building
an optimal network? Thirdly, what lower bounds can be derived on the number of
reticulations r(N) per biconnected component N in a network that represents the
input clusters? Fourthly, we address a question which might have more theoretical
than practical interest: what upper bounds can be posed on r(N)? Lastly, how can
an optimal algorithm be optimized, e.g. by using heuristic optimizations?





3
Transforming Cass to an

Optimal Algorithm

In this chapter, we address the following questions: Why does the Cass algorithm
not always give optimal results[15]? Secondly, how can we solve it? Thirdly, un-
der what conditions will the reticulation number per biconnected component be
minimized? Lastly, how to make an optimal algorithm faster?

3.1. The Problem of the Non-Optimality of Cass
As mentioned in the introduction, the Cass algorithm does not always give an
optimal solution. “The problem with Cass seems to be that while the step of
always collapsing at every iteration all maximal ST-sets and treating them as meta-
taxa (in the sense of Corollary 11) is a locally optimal move; it can force us to use
too many reticulation edges when hanging (trees corresponding to) maximal ST-sets
below a reticulation in the outward phase.”[15]

More concretely, this problem becomes visible when a meta-taxon is decollapsed,
while there is a reticulation reachable from the tail of its cut-edge. Consider the
following example.

Example 3.1. An example of a case in which Cass does not give an optimal

solution is illustrated in Section 7.2 of [15]. The goal is to find an optimal network

15
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representing the clusters in the four trees, which trees are repeated in Fig. 3.1 below.

Fig. 3.2a shows an optimal solution of level 3. The Cass algorithm however, does

not find it. Its best result is a non-optimal level-4 network and one of them is shown

in Fig. 3.2b.

Figure 3.1: This is a copy of Fig. 8 in [15]. Let T be the set of four trees shown here. The Cass

algorithm returns a network N that represents Cl(T ) where r(N) = `(N) = 4. However, the next

figure shows that the true value of r(Cl(T )) = `(Cl(T )) is at most 3.

(a) (b)

Figure 3.2: Fig. 9 in [15] is repeated here. (a) A simple level-3 network and (b) a simple level-4

network, both representing Cl(T ), where T is defined as described in the previous figure. The

level-4 network was produced by Cass.

Now, we focus on one iteration of Cass in the building phase, in order to illus-

trate why Cass does not find an optimal solution and furthermore, how Cass can

be improved such that it can find one. At some point in the outward building phase

of the algorithm, a network may have been built comprising the induced subnetwork
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as shown in Fig. 3.3a. Suppose that there is a meta-taxon, say M , having leaves

XM (3 and 4 in our example), hanging below a split node v, subdividing edge (u, t),

where node t is a reticulation and furthermore, assume that the only leaf which is

reachable from reticulation t, is leaf x (leaf 5 in the figure).

u

v

t
34

5

e34

(a)

u

t
3

4
5

(b)

u

v

t
4

3
5

(c)

u

v

ts

3 4 5
(d)

Figure 3.3: The left-most topology might be part of a network in some outer iteration of a Cass-

based algorithm. Meta-taxon M = 34 is to be decollapsed to a subtree on the leaves 3 and 4

(XM = {3, 4}). Edge eM = e34 is its cut-edge. Cass decollapses the meta-taxon as illustrated in

figure (d). However, when using a brute-force solving strategy like the Cass algorithm, one should

decollapse the meta-taxon in all possible -three in this case- ways and investigate the resulting

networks topologies. (These ways of decollapsing are described in the Decollapse method as

presented in the next section.)

Assume that the meta-taxon M should be decollapsed now. Cass will only con-

sider case (d) in Fig. 3.3, while actually there are -two in this case- more possibilities

to decollapse this meta-taxon, as illustrated in the cases (b) and (c) in the same

figure. Note that then, the definition of ’decollapsing’ such a meta-taxon, as given

in the preliminaries, should be changed. More details on this will be given in the

next section.

N.B. The same network topologies will be obtained if firstly, the meta-taxon

M is inserted and decollapsed directly after it, and secondly, leaf x is hung back

thereafter. Furthermore, note that in general, if some meta-taxon hangs below a

split node, there are (2|XM | − 1) ways of decollapsing it.

In order to illustrate why neglecting the cases (b) and (c) might lead to a non-

optimal network, suppose that leaf y = 1 is to be inserted after decollapsing meta-

node M = 34 as in Fig. 3.3d. Furthermore, assume that the clusters {1, 2}, {1, 3}
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and {1, 5} are to be represented, where leaf 2 is a child of node u, see Fig. 3.4a.

Cass would insert the leaf below two new binary reticulations, below the edges

(u, 2) and (s, 3) (see Fig. 3.4a), and below one of the edges (t, 5), (v, t) or the right

inward arc of reticulation t or above it. (You may check this for yourself, or see the

appendix of [15] for a proof.) This leads to a new network, e.g. as depicted in Fig.

3.4b.

However, when we would decollapse meta-taxon M = 34 as illustrated in Fig.

3.4c instead of Fig. 3.4a, then it is sufficient to add only one binary reticulation

and taxon y = 1 below it, namely below the edges (u, 2) and one of (v, t) and (t, 5)

(see Fig. 3.4d). Again, this example illustrates that in a Cass-based algorithm,

all (2|XM | − 1) possible network topologies should be considered (when using a

brute-force approach) after decollapsing some meta-taxon M .
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u

2
v

ts

3 4 5
(a) In this way, Cass decollapses meta-taxonM = 34
to the leaves 3 and 4 after inserting leaf 5. The
cyan coloured edges are candidate hang-edges for the
taxon labelled ’1’.
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(b) Then, given that taxon ’1’ will be inserted and
the clusters 12, 13 and 15 should be represented next,
Cass will add two reticulations, e.g. as illustrated
here.
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(c) This way of decollapsing meta-taxon M = 34
should be considered (too). The cyan coloured edges
are candidate hang-edges for the taxon labelled ’1’.
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1

(d) In case (c), after inserting taxon 1 below a retic-
ulation below the edges (u, 2) and (v, t), this figure
shows a part of the optimal solution (see Fig. 3.2a).

Figure 3.4: Figure (a) represents the single way decollapsing meta-taxon 34 to the taxa 3 and 4

that Cass considers. When adding a taxon labelled ’1’, in order to let the network represent the

clusters 12, 13 and 15, Cass will add two reticulations (see the appendix of [15] for a proof), e.g. as

shown in figure (b). Figure (c) shows another way of decollapsing meta-taxon 34 that an optimal

algorithm should consider (too). Based on this topology, figure (d) shows that adding only one

reticulation and taxon 1 below it, is sufficient.
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3.2. Solution 1: Redefine the Decollapsing Step
We propose two solutions for the problem stated in the previous section. The first
one is as follows. Let de decollapsing operation in the Cass algorithm be redefined
as presented below in Alg. 1.

Algorithm 1: Decollapse(N,M,XM ): Decollapse the meta-taxon M to

a subtree on the set XM of taxa. Return a list of networks comprising all

possible ways of decollapsing the meta-taxon.
Input: (network N , meta-taxon label M , meta-taxon XM ⊂ X )

Output: Decollapse(N,M,XM )

1 pM := GetParent(N,M) // Get the parent of the meta-taxon

2 if pM is a reticulation then

3 decollapse: decollapse M in N as in the original Cass algorithm

4 return {N}

/* pM is a split node */

5 N := ∅ // Initialize

6 n := GetNeighbour(N,M) // Get the neighbour of the meta-taxon

7 remove outgoing edges: in N , remove the two outgoing edges of p

8 decollapse: decollapse meta-taxon M in N , to a pendant subtree on XM
9 E := E(subtree) // List the edges in the subtree

10 add the incoming edge of pM to E

11 merge root: merge the root of the new subtree with node pM in N

12 for each edge e in E do

13 let N ′ be a copy of N

14 reconnect neighbour: place a new node v on edge e and add edge

(v, n) to N ′

15 add N ′ to N

16 return N

It is not obvious that this will always lead to an optimal network. In fact, this
method implies that in each iteration in the inward phase of the Cass algorithm, a
maximal ST-set (MST-set) is removed. Towards the end of this chapter, we will see
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that this will always lead to an optimal solution (see Thm. 3.10).

3.3. Solution 2: Remove One ST-set per Iteration

without Collapsing the Others
Another solution is the following. Instead of collapsing all MST-sets in each iteration
in the inward ST-set removal phase of Cass and decollapsing them later, (collapse
and) remove exactly one ST-set each time and try this for all ST-sets. Furthermore,
when hanging (a tree corresponding to) an ST-set below a reticulation in some
network N , instead of always considering only two hang-edges as Cass does, one
should select the hang-edges based on the clusters C|X (N ′) to be represented in the
resulting network N ′. Details on selecting suitable hang-edges will be handled in
Chapter 4. This procedure will lead to an optimal algorithm, which will be shown
in Section 3.6.

3.4. The Algorithm STCass
The lastly proposed solution will lead to an optimal algorithm, which we call
STCass, see Alg. 2 below. STCass(k) will always return a k-reticulation net-
work, if it exists (see Section 3.6). It is assumed that the set of input clusters C is
such that IG(C) comprises at most one connected component of size ≥ 2, i.e. C is
unseparated.

In STCass, the function GetHangEdgeCombinations (see line 11) deter-
mines below which edges the inserted (reticulation and) leaf will be hung. This
function may be regarded as the core of STCass. Requirements on it will be pre-
sented in the next section.

Lastly, note that in practice, there should be made a top-level algorithm which
calls STCass(k) per connected component in IG(C). For an example of such a
top-level procedure, see Alg. 6 in App. A, and replace Cass(k) by STCass(k) on
line 7 of it.
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Algorithm 2: STCass(C,X , k): construct a simple level-k network repre-

senting the clusters in C (inspired by the Cass algorithm, see Alg. 1 in [12]

or Alg. 5 in App. A). In contrast with Cass, STCass will always return

a level-k network which represents the clusters C, if it exists. See the text

for details.
Input: (C,X , k, k′)

Output: STCass(C,X , k, k′)

/* Initially, k′ = k */

1 if there exists a tree representing the clusters in C then

2 return the unique tree representing the clusters in C

3 if k′ = 0 then

4 return ∅

5 N := ∅

6 M := GetSTSets(C) // Get all ST-sets in C
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7 for M ∈M do

8 (collapse and) remove the ST-set: C′ := C\M

9 recurse: N ′ = STCass(C′,X (C′), k, k′ − 1)

10 for each network N ′ in N ′ do

11 E = GetHangEdgeCombinations(C, N ′, k′,M)

12 for each combination of hang-edges E in E do

13 if |E| = 1 then

14 let N ′′ be a copy of N ′

15 add the ST-set below the edge: in N ′′, place a node v on

edge e ∈ E; create a leaf l labeled M and an edge from v to

l; finally, decollapse meta-taxon M to a pendant subtree on

the leaves XM , such that l is its root

/* r(N ′′) ≤ k′ still holds, since no reticulation is added */

16 save the network: N := N ∪ {N ′′}

17 else

18 let N ′′ be a copy of N ′

19 add the ST-set below a reticulation: create in N ′′

reticulation t, a leaf l labeled M and an edge from t to l;

then, for each edge ei in E, insert in N ′′ a node vi into edge

ei and add an edge from vi to t; finally, decollapse

meta-taxon M to a pendant subtree on the leaves XM , such

that l is its root

20 create all binary refinements of N ′′:

N ′′ := GetBinaryRefinements(N ′′)

21 for each binary network N ′′′ in N ′′ do

22 if r(N ′′′) ≤ k′ then

23 save the network: N := N ∪ {N ′′′}

24 return N
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3.5. The Function GetHangEdgeCombinations
When STCass builds a network, it uses a function called GetHangEdgeCombi-
nations (see line 11 in Alg. 2). In this section, we shortly address requirements on
this function. Besides, a framework is proposed for it.

Requirement 1: The function GetHangEdgeCombinations should return
a list of edge combinations in the given network N at that moment. Therein, each
combination represents a set of edges below which leaf x will be hung (see the lines
12 - 15 in Alg. 2). We call the edges in such an edge combination hang-edges.

Requirement 2: For each edge combination E that is returned, the edges in E
should be such, that the resulting network N ′ will represent all clusters in C|X (N ′).

Requirement 3: For each edge combination E that is returned, |E| ≤ k′ + 1
should hold. Otherwise, N ′ would contain too many reticulations.

Requirement 4: In order to be sure that STCass returns an optimal level-
k network, if it exists, GetHangEdgeCombinations should return all possible
combinations of edges to hang x below, given that the other requirements 1 - 3 are
satisfied. However, as we will see in Conj. 4.19, it might be sufficient to consider
only a subset of them.

Note that from now on, we will frequently consider the minimal clusters in C,
which we denote as minimal(C) := {C ∈ C : @C ′ ∈ C such that C ′ ( C}. Recall (as
stated in Chapter 2) that we do not regard any singleton as cluster.

Example 3.2. Given the set of clusters C = {12, 123, 234, 235}, the minimal clusters

therein are minimal(C) = {12, 234, 235}.

An example of the function GetHangEdgeCombinations is proposed in Alg.
3. For the background on selecting suitable hang-edges, see Chapter 4. The following
lemma gives the worst-case runtime of the function.

Lemma 3.3. Let n = |X | and m = |C|. Let τ be as follows.

τ := max
x∈X
{|minimal(Cx)|} (3.1)

(Observe that if the clusters in C stem from a set T of multiple trees, i.e. if

C = Cl(T ), then τ is at most |T |.) Then, the time required by the function GetH-

angEdgeCombinations is as follows.

O
(
m2n+ τnτ

)
(3.2)

Besides, the function returns O(nτ ) edge combinations.

Proof. Let n = |X | and m = |C| and let τ be as required. Determining the set Cx
costs time O(mn). Determining the minimal clusters in it, costs time O(m2n). The
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cardinality of Cx and Cx̄ is at most τ . The function GetHangEdges (see the lines

6 and 8 in Alg. 3) needs time O(n2) and O(n) hang-edges are returned. Filtering

the sets of cluster-hang-edges EC ∈ E ′ costs time O(m2n). Next, listing all edge

combinations E such that E∩E ′(C) 6= ∅ for all E ∈ E , requires time O(nτ ) resulting

in O(nτ ) combinations. Lastly, filtering E costs time O(τnτ ). Summing the time

requirements gives the following total runtime t.

t := O(mn+m2n+ t(n+ n2) + τn2 +m2n+ nτ + τnτ ) = O
(
m2n+ τnτ

)
(3.3)
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Algorithm 3: GetHangEdgeCombinations(C, N, k′, x): Given a set of

clusters C to be represented in the resulting network after hanging leaf (or

ST-set) x in network N , return a list of edge combinations in N , where

each combination is a set of edges below which leaf (or ST-set) x should be

hung, satisfying the requirements which are mentioned in the text.
Input: (Cluster set C, network N , maximum number k′ of reticulations to

add, leaf x to add)

Output: GetHangEdgeCombinations(C, N, k′, x)

/* Initialize */

1 E ′ := ∅ // An indexed list of hang-edges per certain cluster

/* Ensure that all clusters in Cx will be represented in the resulting network

N ′ after hanging x in N */

2 Cx := {C ∈ C : x ∈ C}

3 Cx := minimal(Cx) // Use this to implement Conj. 4.6

4 for each C ′ ∈ Cx do

5 C := C ′\{x}

6 E ′(C) := GetHangEdges(C,N)

/* Ensure that the clusters in Cx̄ will be represented and by this, all

clusters in C|X (N ′) which do not contain x */

7 for each C ∈ Cx̄ do

8 E ′(C) := GetHangEdges(C,N)

/* The following line implements Thm. 4.12 */

9 filter the cluster-hang-edges sets: E ′ := GetMinimalSets(E ′)

10 list all edge combinations: for each indexed cluster C in E ′, pick one

edge from E ′(C); do this for all combinations and store them in a list E

/* Ensure that N ′ will represent all clusters that do not contain x */

11 filter the list: E := filter each edge combination E ∈ E and preserve those

and only those satisfying |E| ≤ k′ + 1

12 return E
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3.6. The Optimality of STCass
Why will STCass(k) return a level-k network for the input clusters, if it exists?
In other words, why is STCass always able to return an optimal solution? This is
answered below.

Theorem 3.4. STCass(k) (Alg. 2) will always give a level-k network representing

the given clusters, if it exists.

Proof. Let N be an optimal level-k (thus a k-reticulation) network which represents

some cluster set C on X . Assume that N is binary, since each network can be

decomposed into a binary network. By Lemma 7 in [15], by repeatedly removing

one of the lowest reticulations in N and the pendant subtree below it on taxa Si ⊂ X

in the i-th iteration, until a tree is left, one will need exactly r(N) iterations. Note

that any Si might be empty, except the first set. Furthermore, observe that each Si
is an ST-set (w.r.t. C).

Let us apply this to STCass. Let Si and one reticulation just above it be

removed in the i-th iteration in the inward removal phase of the algorithm. Then,

in the outward building phase of STCass, all these operations are reversed, resulting

in optimal network N .

In detail, consider one iteration in the outward phase of STCass. Let N ′ be the

network at that moment and suppose that some non-empty ST-set Si is to be hung

in N ′. Note that Si will be among the ST-sets M obtained on line 6 in Alg. 2.

Network N ′ will be one of those that are obtained on line 9 and which are handled

in the for-loop thereafter. Given that N ′′ should be the target network after placing

S below a new reticulation in N ′, the required combination of hang-edges (i.e. edges

to subdivide, below which a new reticulation is hung, see line 19 in Alg. 2) will be

among those that are obtained by the function GetHangEdgeCombinations (on

line 11), by requirement 3 (and 2) in the previous section. Since r(N ′′) ≤ k, N ′′

will be used to hang the next ST-set in. Note that, if there are only empty ST-sets

between two non-empty ST-sets Si and Sj (i < j), then this implies that Si will be

hung below a (j − i+ 1)-input reticulation in N ′.

Since the above mentioned facts hold for any iteration in the outward (building)
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phase of STCass, optimal network N will be obtained finally. The result follows.

Note that a sequence S of ST-sets as described in the proof above, is called a
(maximal) ST-set tree sequence in other literature, like [15]. Furthermore, observe
that such a sequence S can be found by letting ST-set Si ⊂ X be the leaves in one
of the lowest pendant subtrees and by removing this and the reticulation above it
from network N . This should be repeated, until a tree is left. Meanwhile, add each
ST-set Si to S.

3.7. On Considering ST-sets or MST-sets Only
In STCass, all ST-sets are considered. However, we will see that it is sufficient to
consider MST-sets only (Thm. 3.10). For level-1 and level-2 networks, this has been
shown to be true in [12].

Below, some network substructures are studied from which can be derived that
the overall network is not optimal. A start is made by considering a level-1 network
and it will be shown that, if the pendant subtree below its reticulation is not an
MST-set, then this network is not optimal. Based on the observations in that
proof, one can state that if STCass hangs a non-maximal ST-set S below a new
reticulation t in the network that is built at some moment, then later, there should
be placed an ST-set below at least one of the incoming edges of reticulation t, in
order to obtain an optimal network.

After that, given a set of clusters C, assume that STCass obtained an optimal
network N which represents the clusters in C, using some ST-set sequence S. Ad-
ditionally, suppose that S is the last ST-set which is hung back, after which only
MST-sets are hung back, m in number. We conjecture that in this case, there is
another optimal network N ′ 6= N that represents the clusters C, which is obtained
via another sequence of ST-sets S ′, satisfying |S ′| ≤ |S|, in which the last m+1 sets
are all MST-sets. By induction, this implies that for any set C of clusters, STCass
can find an optimal network which represents C when considering MST-sets only.
The last seems to be the case (see Thm. 3.10).

Lemma 3.5. Let N be a (sub)network containing exactly 1 reticulation, in which

the pendant subtree below the reticulation is not a maximal ST-set. Then this

(sub)network is not optimal.

Proof. Consider the fundamental structure of a 1-reticulation network N , as de-

picted in Fig. 3.5. Regard the leaves as ST-sets. Suppose that x is not a maximal

ST-set. Let the MST-set which is a superset of x be denoted by S. Let the set of

clusters to be represented in the (sub)network be denoted by C. W.l.o.g., w.m.a.

that a1 (see the figure) is a subset of S. This implies that there is no cluster in



3.7. On Considering ST-sets or MST-sets Only 29

cp

c1

am bn

a2

a1

b2

b1

x

Figure 3.5: This is an illustration of the fundamental structure of a network that contains exactly

one reticulation. The leaves may be considered as MST-sets. The dashed ellipses indicate the

minimal clusters. Here, m and n are at least 1 and p ≥ 0.

C which is a superset of both x and b1, . . . , bl, for any 1 ≤ l ≤ n, which is not a

superset of any ai, with 1 ≤ i ≤ m, otherwise S would be separated (*).

Now, we claim that each cluster in C which is a superset of both x and a1, is a

superset of all the sets ai(i = 1, . . . ,m) (**). Assume that the reticulation is not

redundant (otherwise, the network would not be optimal). This implies firstly, that

there is a cluster C1 in C which is a superset of both x and a1. Secondly, w.m.a.

that there is another cluster which is a superset of both a1 and a2, but not of x.

Besides, there is a cluster which is a superset of am and hence, it is a superset of all

sets ai, i = 1, . . . ,m. If this cluster would not be a superset of x, then any cluster

in C which is a superset of x, should contain all sets ai(i = 1, . . . ,m) too, otherwise

it would be incompatible with cluster C1. Hence, any cluster in C which is a strict

superset of x, is a superset of all sets ai(i = 1, . . . ,m) too, which proves the claim.

From (*) and (**), one can conclude that there is a (sub)tree which represents

all clusters in C, as shown in Fig. 3.6. Hence, no reticulation is needed, so the

original network N was not optimal.
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cp

c1

a1 a2

am

x

bn

b2 b1

Figure 3.6: Given a (sub)network comprising exactly one reticulation (as shown in Fig. 3.5), in

which the pendant subtree (on x) below the reticulation is not an MST-set, and given that the

MST-set which is a superset of x, is a superset of a1 too, the (sub)tree in this figure represents the

clusters in C.

Theorem 3.6. Consider a level-k network. Let N be one of its biconnected compo-

nents comprising k reticulations. Pick one of its lowest reticulations. Suppose that

the pendant subtree below it is not an MST-set. Then subnetwork N is not optimal.

Proof. Let N be as required and let t be one of the lowest reticulations. Let the

pendant subtree below the reticulation be denoted as x. Then there is an induced

subnetwork of N which can be represented as illustrated in Fig. 3.7.

u1

v

t
am

a1

x

u2

w
bn

b1

(a)

u

(b)

u

(c)

Figure 3.7: Given that t is one of the lowest reticulations in a network, having a pendant subtree

below it, say ST-set x, there is a subnetwork which can be represented as shown in (a), with

0 ≤ m,n. The nodes u1 and u2 each represent either a reticulation (see (b) or a binary split node

of which both outgoing edges have a reticulation among their descendants (see (c).

Assume that the pendant subtree x is not an MST-set. Then, there is an MST-

set, say S, which is a strict superset of x. Consider the case that a1 is a subset of
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that MST-set S. Now, similar to the proof of Lemma 3.5, the statements (*) and

(**) in that proof hold here too. Therefore, we conclude that S is a superset of x

and all sets a1, . . . , am, reticulation t is redundant and furthermore, the network can

be reduced to that in Fig. 3.8. Therefore, the original network N is not optimal.

N.B. If b1 would be a subset of MST-set S, then x should be placed just above

bn instead of am in Fig. 3.8.

u1

x

am

a2 a1

u2

bn

b2b1

Figure 3.8: Consider Fig. 3.7. Given that pendant subtree x is not an MST-set and given that the

MST-set which is a superset of x is a superset of a1 too, we derive that reticulation t is redundant;

the induced subnetwork as illustrated here, represents all clusters in C on the leaves that are shown.

Corollary 3.7. In the first iteration of a Cass-based algorithm, an MST-set should

be removed.

Proof. Removing a non-maximal ST-set in the first inner iteration, implies that this

set is hung in the network in the last outer iteration. This implies that the resulting

network is not optimal, by Thm. 3.6. Hence, the firstly removed ST-set should be

maximal.

Corollary 3.8. Consider STCass (Alg. 2). Suppose that in the outward building

phase, each ST-set that is added, is added below at least one binary reticulation.

Let t be the binary reticulation below which the last non-maximal ST-set is hung.

If later, no MST-set is hung below a new reticulation, below at least one of the

incoming edges of reticulation t, then the final network is not optimal.

Proof. Let t be as required. Suppose that no MST-set is hung below at least one of

the incoming edges of this reticulation. Then the final network consists of either a

subnetwork as illustrated in Fig. 3.7, or it has an induced subnetwork as depicted
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in Fig. 3.9. In the first case, analogous to the proof of Thm. 3.6, we conclude that

the final network is not optimal.

u1

t
am

a1

x

u2

bn

b1

(a)

u1

x

am

a2 a1

u2

bn

b2b1

(b)

Figure 3.9: Given that t is the last reticulation below which a non-maximal ST-set is hung, say

ST-set x, there is a subnetwork which can be represented as shown in Fig. 3.7 or as shown here in

subfigure (a), in which one or more edges in the tree on x are subdivided and go to a reticulation.

The nodes u1 and u2 each represent either a reticulation (see Fig. 3.7b) or a split node of which

both outgoing edges have a reticulation among their descendants (see Fig. 3.7c).

In the second case, where one or multiple reticulations have been hung below

the subtree on x, the network can be transformed from a situation as illustrated in

Fig. 3.9a to one like in Fig. 3.9b for the same reasons (*) and (**) as given in the

proof of Lemma 3.5. Hence, reticulation t is redundant.

Conjecture 3.9. Consider STCass (Alg. 2). Assume that in the outward building

phase, each ST-set that is added, is added below at least one binary reticulation.

Let t be the binary reticulation below which the last non-maximal ST-set is hung.

Suppose that from then on, m MST-sets are hung back, such that the final network

N is optimal. Let S be the sequence of ST-sets that have been removed in the inward

phase of the algorithm (in which the first m are thus MST-sets and the (m+ 1)−th

set is a non-maximal ST-set). Then there is a network N ′ 6= N which can be found

by STCass using another sequence S ′ in which the first m+1 sets are all MST-sets

now and furthermore, |S ′| ≤ |S|.

Given some set of clusters C, by induction, Conj. 3.9 implies that there exists an
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MST-set sequence to be removed/added by STCass, such that an optimal network
representing C will be obtained. The last is the case.

Theorem 3.10. Let C be a set of clusters on taxa X . Then, in the inward phase of

STCass, it is sufficient to consider MST-sets only, in order to obtain an optimal

network which represents the clusters in C.

Proof. Consider Lemma 9 from [15], which is repeated here: “Given a set of clusters

C on X , there exists an MST-set tree sequence (S1, S2, . . . , Sp) such that p ≤ r(C).”

Such a sequence can be found in a similar way as shown in the proof of Thm. 3.4.

3.8. The Algorithm MSTCass
Thm. 3.10 implies that in STCass, the function GetSTSets may be replaced
by GetMSTSets, in order to obtain the MST-sets only. We call the resulting
algorithm MSTCass. Furthermore, the theorem implies that this algorithm is
optimal too.

Corollary 3.11. MSTCass will always find a network having the lowest level pos-

sible for a given set of input clusters.

Proof. This directly follows from our definition of MSTCass and Thm. 3.10.

An advantage of MSTCass is that it is much more efficient than STCass. In
particular, it has a polynomial runtime for a fixed level k, as we will see in the next
section.

3.9. The Time Complexity of STCass and MST-

Cass
Let us address (upper bounds on) the time complexity of the proposed algorithms
STCass and MSTCass and compare it with that of Cass. Firstly, consider the
time complexity of STCass.

Lemma 3.12. Let C be a set of clusters on taxa X , such that r(C) ≥ 1. Then, there

are at most 2|X |−2 +2 different ST-sets. Furthermore, these can be obtained in time

O(2|X |−2).

Proof. Let C be a set of m clusters on n taxa X . The set M of MST-sets can be

obtained in time O(n3m). Its cardinality is at most n, by Cor. 4 in [15].
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Let M be an MST-set from M of cardinality at least two. Let TM be the tree

on M representing the clusters C|M (which may be non-binary). Given any split

node v in V (TM ), let δ+(v) be its out-degree. Now, suppose that this node would

be split into two split nodes v1 and v2, having edge (v1, v2) in between, such that

2 ≤ i ≤ δ+(v) − 1 of the out-going edges of v are those of v2 now, and the other

out-going edges of v are those of v1 now. Then, the hardwired cluster below node

v2 is an ST-set. Note that the hardwired cluster below v1 is an ST-set too. In this

way,
∑δ+(v)
i=2

(
δ+(v)
i

)
= 2δ+(v) − δ+(v)− 1 ST-sets can be defined per split node v in

TM . Hence, the number cM of non-trivial ST-sets in TM , including M itself, is as

follows.

cM =
∑

v∈V (TM ):δ+(v)≥2

(
2δ

+(v) − δ+(v)− 1
)

(3.4)

cM is maximized if there is only one split node v in TM . It follows that cM ≤

2|M |−|M |−1 ≤ 2|M |. Since this holds for every MST-setM , we get a total number

c of ST-sets as given below.

c :=
∑
M∈M

cM ≤
∑
M∈M

2|M |
(∗)
≤ 2n−2 + 2 (3.5)

(*) Note that |M| ≥ 3, since r(C) ≥ 1. Furthermore, c is maximal if as many

MST-sets as possible are singletons and only one comprises the other n− |M| taxa.

Finally, all ST-sets can be obtained in time O(2n−2).

Theorem 3.13. Let C be a set of m clusters on n taxa X , such that r(C) ≥ 1. Let

τ be as follows.

τ := max
x∈X
{|minimal(Cx)|} (3.6)

Then, STCass takes time

O
(

2(τ+1)(k−1)(n−2) [m2n+ n2τ (mn+ (n/2)τ−1)]) (3.7)

which is upper bounded by O
(
2(k+2)(k−1)(n−2) [m2n+ n2(k+1) (mn+ (n/2)k

)])
. Be-

sides, the number of constructed networks is of order O
(
2n−τ−1 · nk(τ+1)−2), which

is upper bounded by O
(

2n−2 · nk′(k+2)−2
)
.
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Proof. Let n = |X | andm = |C|. By induction on k′, we will show that STCass(C,X , k, k′)

takes time O
(

2(τ+1)(k′−1)(n−2) [m2n+ n2τ (mn+ (n/2)τ−1)]) and returns at most

O
(

2n−τ−1 · nk′(τ+1)−2
)
networks if k′ ≥ 1.

Building a tree (lines 1-2) can be done in O(n2m) time. If k′ = 0, then at most

one network (i.e. tree) is returned. Consider a fixed k′ ≥ 1 now. Determining

the ST-sets costs time O(2n−2) by Lemma 3.12. If k′ ≥ 1, then STCass loops

over at most 2n−2 + 2 ST-sets (by Lemma 3.12) and at most O(nν) recursively

created networks, where a rough upper bound on ν is O((τ + 1)(k′ − 1)). Let ε be

the time complexity of the function GetHangEdgeCombinations, for example

ε = m2n + τnτ (see Lemma 3.3). The function returns O(nτ ) edge combinations

by Lemma 3.3. Adding a leaf (or ST-set) costs time O(τ + mn), since hanging a

meta-taxon in a network costs time O(τ) and decollapsing it costs time O(nm). Let

the resulting network be called N ′′. Observe that the number of hang-edges |E| is at

most τ+1 (τ for representing Cx and at most one for representing the other clusters).

If the number of hang-edges is two or more, then creating all binary refinements (on

line 20 of Alg. 2) of such networkN ′′ costs timeO
((
τ+1

2
)(
τ
2
)
· · ·
(3

2
))

= O
(
(n/2)τ−1).

Summing the running times gives a total runtime of order:

O
(
mn2 + 2n−2 + 2ν(n−2) [ε+ nτ · nτ

(
τ +mn+ (n/2)τ−1)]) (3.8)

Using ν = (τ + 1)(k′ − 1) and ε = m2n+ τnτ , one gets the following.

= O
(
mn2 + 2n−2 + 2(τ+1)(n−2)(k′−1) [m2n+ τnτ + n2τ (τ +mn+ (n/2)τ−1)])

(3.9)

= O
(

2(τ+1)(n−2)(k′−1) [m2n+ n2τ (mn+ (n/2)τ−1)]) (3.10)

Hence, this is the runtime for STCass, which is the same for fixed k′. Observe that

1 ≤ τ ≤ k + 1 always holds. Therefore, one may say that STCass runs in time

O
(
2(k+2)(k−1)(n−2) [m2n+ n2(k+1) (mn+ (n/2)k

)])
.

The number of constructed networks is at mostO
(

2n−2 · n(τ+1)(k′−1) · (n/2)τ−1
)

=

O
(

2n−τ−1 · nk′(τ+1)−2
)
. (Observe that τ ≥ 2 and recall that k′ ≥ 1 and n ≥ 3.)

Hence, the number of constructed networks by STCass(k) upper bounded by

O
(
2n−2 · nk(k+2)−2), since 1 ≤ τ ≤ k + 1.
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Note that this is a very rough bound for the running time of STCass(k). The
bottleneck is formed by the determination of all ST-sets (O(2n−2)). Therefore, if
this step can be eliminated, the runtime would be polynomial in n and m, for a
fixed level k. This is shown below.

Lemma 3.14. Let C be a set of clusters on taxa X , such that r(C) ≥ 1. Then, there

are at most |X | different MST-sets, which can be determined in time O(|C||X |4).

Proof. Let C and X be as required. Define n := |X | and m := |C|. The fact that

there are at most n MST-sets has been proven in Cor. 4 in [15].

Now, a valid procedure to obtain the MST-sets, as proposed in the proof of

Lemma 5 in [15], is repeated. “Start with a set S of n singleton ST-sets. If there

are two distinct ST-sets S1, S2 ∈ S such that S1 ∪ S2 is an ST-set, then remove S1

and S2 from S and add S1 ∪ S2 to S. Repeat this until it is no longer possible.”

Its runtime is analysed below. Looping through at most each pair of ST-sets

costs time O
((
n
2
))
. In each of these iterations, it should be determined if the two

selected ST-sets S1 and S2 are such that S1 ∪S2 is an ST-set. This requires looping

through C and checking the compatibility with each cluster (O(mn)). If this check

succeeds, it should be validated that C|(S1 ∪ S2) is separating. This requires time

O(m · |S1 ∪ S2|2) = O(mn2), since |S1 ∪ S2| ≤ n. In total, this gives the following

runtime.

O
((

n

2

)(
mn+mn2)) = O(mn4) (3.11)

Theorem 3.15. Let C be a set of m clusters on n taxa X , such that r(C) ≥ 1. Let

τ be as follows.

τ := max
x∈X
{|minimal(Cx)|} (3.12)

Then, MSTCass takes time O
(
n2(τ+1)(k′−1) [m2n+ n2τ (mn+ (n/2)τ−1)]), which

is upper bounded by O
(
n2(k+2)(k−1) [m2n+ n2(k+1) (mn+ (n/2)k

)])
. Besides, the

number of constructed networks is of order O
(
21−τ · nk(τ+1)−1).

Proof. Let n = |X | and m = |C|. Following the proof of Thm. 3.13 and using



3.10. Heuristic Optimizations 37

Lemma 3.14, the total runtime is as follows.

O
(
mn2 +mn4 + n2ν

[
ε+ nτ · nτ

(
τ +mn+ (n/2)τ−1)]) (3.13)

Using ν = (τ + 1)(k′ − 1) and ε = m2n+ τnτ , we get the following.

= O
(
mn2 +mn4 + n2(τ+1)(k′−1) [m2n+ τnτ + n2τ (τ +mn+ (n/2)τ−1)])

(3.14)

= O
(
n2(τ+1)(k′−1) [m2n+ n2τ (mn+ (n/2)τ−1)]) (3.15)

This is the runtime for MSTCass, which is the same for fixed k′. Observe that

1 ≤ τ ≤ k+ 1 holds. Therefore, one may state that the runtime of MSTCass(k) is

O
(
n2(k+2)(k−1) [m2n+ n2(k+1) (mn+ (n/2)k

)])
.

The number of constructed networks is at most O
(
n · n(τ+1)(k′−1) · (n/2)τ−1

)
=

O
(

21−τ · nk′(τ+1)−1
)
. (Observe that τ ≥ 2 and recall that k′ ≥ 1 and n ≥ 3.)

Furthermore, observe that 1 ≤ τ ≤ k + 1 holds. Therefore, one may state that the

number of constructed networks by MSTCass is O(nk(k+2)−1).

The time complexity and number of constructed networks of the algorithms
STCass and MSTCass are summarized in Table 3.1. For comparison, the corre-
sponding values for Cass are listed too (which originate from [12]).

Runtime UB #Networks

Cass O
(

mn3k+2
)

O
(

n3k
)

STCass O
(

2(k+2)(k−1)(n−2)
[

m2n + n2(k+1)
(

mn + (n/2)k
)])

O
(

2n−2 · nk(k+2)−2
)

MSTCass O
(

n2(k+2)(k−1)
[

m2n + n2(k+1)
(

mn + (n/2)k
)])

O
(

nk(k+2)−1
)

Table 3.1: (Upper bounds on) the time complexity of the algorithms STCass and MSTCass are

listed in the second column and an upper bound (UB) on the number of constructed networks is

given in the last column. Note that m = |C| and n = |X |. For comparison, these values are given

for Cass too (which originate from [12]). Note that it is assumed that k ≥ 1 for STCass and

MSTCass.

3.10. Heuristic Optimizations
The algorithms STCass and MSTCass can be optimized in different ways. One of
them is using heuristic optimizations. In particular, we present a heuristic by which
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low priority is given to the selection of certain (M)ST-sets in the inward ST-set
removal phase of the algorithm.

Heuristic (ST-set priorities). Let S and S′ be two (M)ST-sets. By the
notation S → S′, we denote that each cluster which is a superset of S, is that of S′
too (which is inspired by the notation in Section 4 in [19]). Suppose that STCass
is in the i-th iteration in the inward phase, i.e. the removal phase. Let C|Xi be
the set of clusters on taxa Xi at the moment. Let Mi be all (M)ST-sets therein.
Suppose that there is an (M)ST-set S ∈Mi, such that S → S′ for some (M)ST-set
S′ ∈Mi, and S′′ 6→ S, for all S′′ ∈M. Then give removing S low priority. (End of
the heuristic.)

What is the motivation for it? Note that in [19], the authors define a terminal
to be a taxon x ∈ X for which there is no another taxon x′ ∈ X such that x′ 6= x
and x→ x′. In our case however, S may be regarded as the opposite of a terminal,
say a source. By Observation 3 in the same paper, we deduct that if S is such a
source, then there does not exist two incompatible clusters C1, C2 ∈ C such that
C1∩C2 = S. Therefore, we presume that S is not located in one of the lowest parts
of any optimal network. The reason is that, if S would be below a reticulation, then
S would not be an MST-set, which would imply that the network is not optimal by
Thm. 3.6. On top of this, in the inward ST-set removal phase of STCass, ideally,
in each iteration some ST-set S is removed from C, such that r(C\S) ≤ r(C) − 1.
These facts combined give us the presumption that it is not wise to remove S from
C if there are other ST-sets to remove. Therefore, we give removing S low priority.

3.11. Further Optimizations
Several other optimization approaches will be presented in the coming chapters, like
the following. Firstly, since (M)STCass(k) is called repeatedly for increasing values
of k, finding a (high) lower bound on the level k would speed up the overall execution
time of (M)STCass (see Chapter 5). Secondly, the function GetHangEdgeCom-
binations should be designed to select hang-edges and combinations as efficiently
as possible (see Chapter 4).



4
Details on Building an

Optimal Network

In this chapter, we give (greedy) guide lines on how to build a phylogenetic network
from a set of clusters C. The procedure is as follows, in short. Firstly, we remove
leaf by leaf (or a collapsed ST-set) from X (C) and check if a tree can be built on
them, say on leaf set X0, such that it represents the clusters in C|X0. As soon as a
tree can be built, we add the removed leaves to this tree in reversed order, leaf by
leaf (or an ST-set).

Say that we want to hang leaf x in some network N , resulting in some network
N ′, such that N ′ represents the clusters in C|X (N ′). We will propose conditions
which will ensure that N ′ represents the clusters in C|X (N ′) in Section 4.1. Based on
this, it will be discussed how to choose suitable hang-edges, in the section thereafter.
On top of this, guide lines are proposed to minimize the number of reticulations in
the resulting network N ′. Then, requirements are given on the function GetH-
angEdgeCombinations in STCass (see line 9 in Alg. 2). Besides, it will turn
out that it is useful to store and use a list of lowest common ancestors (LCAs) per
cluster, which is addressed in Section 4.4.

4.1. Ensuring that N ′ Represents C|X (N ′)
Consider STCass as presented in Alg. 2. Suppose that C is a set of clusters on taxa
X . In each iteration in the outward phase of STCass, some leaf x ∈ X\X (N) (which

39
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may be a collapsed ST-set) is hung in some network N , which represents the clusters
in C|X (N). Again, this should be done in such a way, that the resulting network
N ′ represents all clusters in C|X (N ′). In this section, we address the question how
to ensure this.

Definition 4.1. Given a set of clusters C on the taxa X , some network N which

represents the clusters in C|X (N) and leaf x ∈ X\X (N) to hang therein, resulting

in some network N ′, we define the set CN ′x as given below.

CN
′

x = {C ∈ C|X (N ′) : x ∈ C} (4.1)

Observe that it contains exactly all clusters on X (N ′) which contain leaf x. In
the sequel of this work, we will abbreviate this set as Cx.

Example 4.2. Let C = {ab, abh, bh, ch, abch, abc}. Suppose that N is the tree on

taxa a and c. Then Ch = {ah, ch, ach}.

Opposite to the minimal clusters, let the maximal clusters in some set of clusters
C be defined as maximal(C) = {C ∈ C : @C ′ ∈ C such that C ⊂ C ′}. These are the
clusters in C for which there is no strict supercluster in C.

Definition 4.3. Let C be a set of clusters on the taxa X . Let N be a network

representing the clusters in C|X (N) and let x ⊂ X be a leaf to be hung therein,

resulting in some network N ′. Then, the set of clusters CN ′x̄ is defined as follows.

CN
′

x̄ = maximal ({C ∈ C|X (N ′) : x /∈ C,X (Cx)\{x} ⊆ C}) (4.2)

Observe that it contains the maximal clusters on X (N ′) that contain all leaves
in X (Cx), except x. Often, we denote this set shortly as Cx̄.

Example 4.2 (Continued). Again, assume that N is the tree on taxa a and c and

C is as before. Suppose that taxon h is to be hung in N . Then Ch̄ = {ac} (since

X (Cx) = ach).

Now, let us repeat the research question of this section: How can it be ensured
that hanging taxon x in network N is done in such a way, that the resulting network
N ′ represents all clusters in C(N ′)? Say that one ensures that N ′ will represent a
certain subset of clusters D ⊆ C|X (N ′). Furthermore, assume that D 6= C|X (N ′).
How should D be chosen, such that the property D ⊆ C(N ′) ⇒ C|X (N ′) ⊆ C(N)
holds?
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Lemma 4.4. Let C be a set of clusters on taxa X and let N be a network on a subset

of taxa X (N) ⊂ X (C), which represents all clusters in C|X (N). Suppose that leaf

x ∈ X\X (N) is to be hung in network N , such that all clusters in C|(X (N)∪{x}) =

C|X (N ′) will be represented in the resulting network N ′. Let D = Cx ∪ {X (N)}.

Then, D ⊆ C(N ′) implies that C|X (N ′) ⊆ C(N ′).

Proof. Let C,X , x,N and N ′ be as required. The set of clusters to be represented

in network N ′ is C|X (N). Therein, the clusters containing x are exactly those in

Cx (*). The other clusters were represented in network N . Assume that the cluster

X (N) is represented in N ′. Then, this implies that x is hung (a.o.) below the

incoming edge of the root of N . It follows that C(N) ⊂ C(N ′). This means that

X (N) ∈ C(N ′)⇒ C(N) ∪ {X (N)} ⊆ C(N ′). Together with (*), it can be concluded

that C|X (N ′) ⊆ Cx ∪ C(N) ∪ {X (N)} ⊆ C(N ′). The result follows.

Observation 4.5. Observe that Lemma 4.4 does not hold if Cx would only contain

the minimal clusters comprising x, i.e. if Cx would be as follows.

Cx = minimal ({C ∈ C|X (N ′)|x ∈ C}) (4.3)

To show this, consider the following example. Let C be as defined in Ex. 4.2. Let

network N on taxa a, b, c, h, o be as depicted in Fig. 4.1. You may check yourself that

C|X (N) = {bc, bh, bch, ch} and that N represents all these clusters and furthermore,

no reticulation is redundant. Suppose that leaf a should be hung in network N . Now,

Ca = {ab} and Cā = {bch}. Based on this, we may decide to hang a back below edge

(u, t). However, N ′ does not represent the clusters abc and abh now!

Conjecture 4.6 (Minimal Cx Sufficient). Let C be a set of clusters on taxa X . At

some point in the outward phase of STCass, let N be a network on X (N) ⊂ X

representing the clusters in C|X (N). Let x be a leaf in X\X (N) to be hung back

therein. Suppose that the set Cx is defined as a set of minimal clusters, namely

Cx = minimal ({C ∈ C|X (N ′)|x ∈ C}). Besides, let D = Cx ∪ {X (N)}. Let (W)

denote the implication D ⊆ C(N ′)⇒ C|X (N ′) ⊆ C(N ′). If (W) does not hold when

hanging taxon x in N , then there is another sequence of removing leaves (or ST-
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Figure 4.1: The black edges form a network N on the taxa b, c, h and o, which represents the

clusters in C|X (N), where C is as given in Ex. 4.2. Leaf a with its cyan cut-edge is hung below

edge (u, t), which is an illegal way of hanging leaf a in N , since the clusters abh and abc are not

represented now.

sets) in the inward phase of STCass, such that (W) is true for each newly inserted

leaf in the outward phase.

Example 4.2 (Continued). In order to get some insights in the conjecture above,

consider the following example. Suppose that (M)STCass has removed taxon h.

Then the tree N on abc, representing the corresponding clusters in C|abc, is as

illustrated in Fig. 4.2a. Note that C|abc = {ab, abc}. Taxon h is to be hung in

r

v

s

a b

c

(a)

a
b

c

h
(b)

Figure 4.2: (a) represents the unique tree on abc, representing the clusters C|abc = {ab, abc}. Taxon

h is to be inserted below the cyan coloured edges. (b) shows the resulting network.

this tree. Note that Ch = {bh, ch} and Ch̄ = {abc}. Therefore, the hang-edges
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should be those as indicated by the cyan colour in Fig. 4.2a. After hanging taxon

h below these edges, the resulting network will be as depicted in Fig. 4.2b (where

the root-edge is removed). Observe that it has two reticulations. Furthermore, this

is optimal, since there is a triangle in the corresponding incompatibility graph (see

Thm. 5.5 in Section 5.3). This shows that there is another ST-set tree sequence

than S = {a, b}, which does give an optimal solution.

Conjecture 4.7. Let C be a set of clusters on taxa X and let N be a network on a

subset of taxa X (N) ⊂ X (C), which represents all clusters in C|X (N). Suppose that

leaf x ∈ X\X (N) is to be hung in network N , such that all clusters in C|(X (N) ∪

{x}) = C|X (N ′) will be represented in the resulting network N ′. Let D be defined

as follows.

C∗ := any cluster in Cx̄ (4.4)

D := Cx ∪ {C∗} (4.5)

Then, D ⊆ C(N ′) implies C|X (N ′) ⊆ C(N ′).

Lemma 4.8. Let C be a set of clusters on taxa X . Let N be a network on X (N) ⊂ X

which represents all clusters in C|X (N). Let x ∈ X\X (N) be a taxon to hang in

the network. Then, the resulting network N ′ represents some cluster C ∈ Cx̄ if for

some v ∈ LCA(C) ⊂ V (N), there is be a predecessor p of v in N ′, and a path P

from p to x, and a subtree TC on C having root v in some switching of N ′, such

that P does not intersect with TC in N ′.

Proof. Let C,X , N,N ′, C and x be as required. Suppose that N ′ represents C.

Then, there is a subtree TC on C in some switching T of N ′ whose root is v (note

that v ∈ LCA(C)). Observe that x is connected to the root of T\TC , otherwise, N ′

would not represent cluster C (which does not contain x). Hence, there is a path P

from a predecessor of v to x which does not intersect with TC in N ′.

Now, given that we hang taxon x in some network N , we know (guide lines) how
to ensure that the clusters C|X (N ′) will be represented in the resulting network N ′.
This can be used to determine suitable hang-edges to hang x below, which will be
handled in the next sections.
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4.2. Determining valid Hang-Edges
In the building phase of (M)STCass, a function is used called GetHangEdge-
Combinations. This function returns a list of edge combinations in the network
N at that moment. Each combination in it represents a set of edges below which
leaf x will be hung, such that the resulting network N ′ will represent all clusters in
C|X (N ′). This section addresses the question: below which edge(s) should taxon x
be hung, such that after this, N ′ represents all clusters in C|X (N ′)?

Before proposing the next theorem, consider the definition of 0-edges. An edge
in a network is called a 0-edge if it represents ∅ as (softwired) cluster. For example,
each incoming edge of a reticulation is a 0-edge. Observe that there is no path from
a 0-edge to any leaf, without any reticulation on it. Furthermore, define LCA(C)
as the set of lowest common ancestors (LCAs) of the leaves in cluster C.

Theorem 4.9 (Hang-edges). Let C be a set of clusters on taxa X . Let N be a binary

network on X (N) ⊂ X which represents all clusters in C|X (N). Let x ∈ X\X (N)

be a leaf to hang in the network, such that the resulting network N ′ will represent

all clusters in C|X (N ′). Consider some cluster C ′ ∈ Cx. Define the cluster C :=

C ′\{x} ∈ C(N). Restrict hanging x in N to hanging it below edges (i.e. not below

any node). Then for some vertex v ∈ LCA(C) ⊂ V (N) which represents C, leaf x

should be hung...

1. ...below incoming edge (u, v) of v; or

2. below any edge in any subtree TC on C in N , except if N ′ should represent

cluster C and if besides, there would be no path connecting x with N ′\T ′C in

N ′, where T ′C is the subtree in N ′ corresponding to TC in N ; or

3. below any 0-edge that is reachable via a path consisting of only (zero or more)

0-edges from u; or

4. below any 0-edge that is reachable via a path consisting of only (zero or more)

0-edges, from any vertex in a subtree TC on C as described above, except if

C ∈ C|X (N ′) and furthermore, if there would be no path in N ′ connecting x

with N ′\TC ; or

5. below any edge from which u is reachable and which represents cluster C.

Proof. Let C, x, C ′, C,N and v be as required for the lemma. Observe that v cannot

be a reticulation and therefore, it has in-degree 1, so (u, v) is uniquely determined
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(given node v). Now, for each of the four cases listed in the theorem, we have to

show that if x is hung below (a.o.) an edge as defined there, the resulting network

N ′ will represent cluster C ′. Furthermore, we have to give the conditions on which

cluster C would be represented too.

1. The incoming edge of v represents cluster C. Therefore, hanging leaf x below

it would imply that the resulting network represents a.o. the clusters C and

C ∪ {x}, where the last equals C ′.

2. Similar to the first case, N ′ will represent C ′ in this case. IfN ′ should represent

C too, then there should be a path in N ′ connecting x with N ′\T ′C , otherwise

x would always be included in any supercluster C ′ ⊇ C.

3. Again, similar as in point 1, N ′ will represent C ′. Edge (u, v) (which is not a

0-edge) still represents cluster C.

4. Assume that there is a 0-edge e adjacent to u or a node in a subtree T ′ on

X (C), of any switching TN of N . Then, hanging x below it would imply that

C ∪ {x} is represented in N ′, i.e. cluster C ′. Now, assume there is another

0-edge adjacent to e. Then analogously, the same conclusion can be drawn.

This can be repeated, which shows that N ′ will represent C ′. Analogous to

point 2, N ′ will represent C too, if and only if there is a path in N ′ connecting

x with N ′\TC .

5. Suppose that (p, q) is an edge (from which u is reachable and) which represents

C. By placing a new split node s on it and by hanging x below it, N ′ will

represent both cluster C (edge (s, q) will represent it) and cluster C ∪{x}, i.e.

cluster C ′ (edge (p, s) will represent it).

These cases show that leaf x may be hung below one of the edges as described,

since N ′ represents cluster C ′ then, and if required, C too. Observe that valid edges

to hang x below, other than those in the cases 1 - 4, are exactly the edges described

in point 5. In other words, if x is not hung below one of these edges, then N” will

not represent cluster C ′. This means that x should be hung below one of the edges

as described in these points.
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Observe that, given some v ∈ LCA(C) in a binary network and its parent node
u, each incoming edge of u is an edge as described in point 5 in Thm. 4.9. Note
that all our executions of STCass pointed out that it may be sufficient to consider
only a subset of the edges that are described in Thm. 4.9, see Conj. 4.10.

Conjecture 4.10 (Restricted Hang-edges). Let C be a set of clusters on taxa X .

Let G be some connected component in IG(C). Suppose that N is a binary network

which represents the clusters in C|X (N), in which leaf x ∈ X\X (N) should be hung.

Consider some cluster C ′ ∈ Cx. Define the cluster C := C ′\{x} ∈ C(N). Restrict

hanging x in N to hanging it below edges (i.e. not below any node). Then for some

vertex v ∈ LCA(C) ⊂ V (N), leaf x should be hung...

1. ...below incoming edge (u, v) of v; or

2. below the incoming edge of any taxon y ∈ C; or

3. below any 0-edge that is reachable via a path consisting of only (zero or more)

0-edges from u; or

4. below any 0-edge that is reachable via a path consisting of only (zero or more)

0-edges, from any vertex in a subtree TC on C as described above, except if

C ∈ C|X (N ′) and furthermore, if there would be no path in N ′ connecting x

with N ′\TC ; or

5. below any edge from which u is reachable and which represents cluster C.

So far, only hang-edges are considered which will ensure that each cluster C ∈ Cx
will be represented in N ′. Now, hang-edges are determined to ensure that the
clusters in Cx̄ will be represented too.

Theorem 4.11. Let C be a set of clusters on taxa X . Let N be a network on

X (N) ⊂ X which represents all clusters in C|X (N). Let x ∈ X\X (N) be a taxon

to hang in the network. Then, the resulting network N ′ represents some cluster

C ∈ Cx̄, if at least one hang-edge (u, p) ∈ E(N) is chosen such that there is some

v ∈ LCA(C) ⊂ V (N) reachable from p and such that v represents C.

Proof. Let C,X , N, x be as required. Let C ∈ Cx̄. Let edge (u, p) ∈ E(N) be such

that there is some v ∈ LCA(C) ⊂ V (N) reachable from p and such that v represents

C. Let w be the split node placed on edge (u, p), below which x is hung (possibly
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with a reticulation t in between). Then, edge (w, x) or the path (w, t, x) is disjoint

from any subtree TC on C in some switching of N ′. Therefore, N ′ will represent

cluster C, by Lemma 4.8.

4.3. Minimizing r(N ′)
In the previous section, it has been shown how to choose a set of hang-edges, such
that network N ′ will represent all clusters in C|X (N ′) after hanging leaf (or ST-
set) x in N . Some of the hang-edges -possibly all- ensure that N ′ will represent
the clusters in C|X (N ′) which contain x. If there are other hang-edges, these are
intended to let N ′ represent the clusters in C|X (N ′) which do not contain x. For
each cluster C ∈ C|X (N ′), we know how to determine a set of hang-edges EC (as
defined in Thm. 4.9 for any cluster C ∈ Cx, and see Lemma 4.8 for requirements for
any cluster C ∈ Cx̄), such that, if x is hung below one of these edges, cluster C will
be represented in network N ′. Now, we address the following question: given these
hang-edges EC per cluster C ∈ C|X (N ′), how to determine the set of hang-edges E
below which to hang taxon x actually, such that in the end, r(N) is minimized?

In order to minimize r(N ′), we should solve the optimization problem (D) as
given below. Note that r(N ′) = r(N)+|E|−1 and therefore, minimizing r(N ′) given
r(N) equals minimizing |E|. Moreover, note that for each cluster C ∈ C|X (N ′),
there should be a suitable hang-edge, which is modelled by Eq. 4.7.

(D) min |E| (4.6)
subject to: EC ∩ E 6= ∅, ∀C ∈ C|X (N ′) (4.7)

Theorem 4.12 (Minimal Cluster Hang-Edge Sets). Let C be a set of clusters on

taxa X . Let N be a network representing the clusters in C|X (N). Suppose that x

is a taxon in X\X (N), which is to be hung in N , in order to get some network N ′

which should represent C|X (N ′). Consider any cluster C ∈ Cx. Let EC be the set

of hang-edges corresponding to those as defined in Thm. 4.9. Then in optimization

problem (D), i.e. in order to minimize r(N ′), it is sufficient to consider only the

minimal hang-edge sets EC , i.e. the following sets.

Ê := minimal ({EC |∀C ∈ C|X (N ′)}) (4.8)

Proof. Let EC be any set in Ê . Let E∗ be any optimal solution for set E in opti-

mization problem (D). If EC ∩E∗ 6= ∅, then EC′ ∩E∗ 6= ∅ for all EC′ ⊃ EC . Hence,

EC ∩ E∗ 6= ∅ for all C ∈ C|X (N ′). Therefore, it is sufficient to consider only the

minimal hang-edge sets, i.e. those in Ê .
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Conjecture 4.13 (Reduced Minimal Hang-Edge Sets). Let C be a set of clusters

on taxa X . Let N be a network representing the clusters in C|X (N). Suppose that

x is a leaf in X\X (N), which is to be hung in N , in order to get some network N ′

which should represent C|X (N ′). Consider any cluster C ∈ Cx. Let EC be the set of

hang-edges corresponding to those as defined in Conj. 4.10. Then in optimization

problem (D), i.e. in order to minimize r(N ′), it is sufficient to consider only the

minimal hang-edge sets EC , i.e. the following sets.

Ê := minimal ({EC |∀C ∈ C|X (N ′)}) (4.9)

Conjecture 4.14. Eq. 4.6 may be decomposed into the following optimization

problem (E), where E = Ex ∪ Ex̄, where Ex and Ex̄ are disjoint and besides, its

objective value equals that of (D).

(E) min |Ex|+ |Ex̄| (4.10)

subject to: EC ∩ Ex 6= ∅, ∀C ∈ Cx (4.11)

EC ∩ Ex̄ 6= ∅, ∀C ∈ Cx̄ (4.12)

Theorem 4.15. Let (E∗x, E∗x̄) be an optimal solution for (Ex, Ex̄) in (E). Then

|E∗x̄| = 1 if and only if there is a supercluster C of X (Cx) in C. Otherwise, |E∗x̄| = 0.

Proof. Let (E∗x, E∗x̄) be an optimal solution for (Ex, Ex̄) in (E). Observe from Lemma

4.4, that by adding an edge from the incoming edge of the root of N to the added

reticulation (i.e. the parent of x), C(N) ⊂ C(N ′) holds. Therefore, in any case,

|E∗x̄| ≤ 1. Besides, observe that E∗x̄ 6= ∅ if and only if there is a supercluster C of

X (Cx) in C, i.e. Cx̂ 6= ∅ (compare lines 7 - 11 in Alg. 3). The result follows.

Observation 4.16. Note that for an optimal solution (E∗x, E∗x̄) of (E), |E∗x| ≤ τ

holds, where τ is the number of trees from which the clusters in C originate. Since

|E∗x̄| ≤ 1 by Thm. 4.15, it follows that at most τ binary reticulations will be added

to N when hanging taxon x therein.
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Corollary 4.17. By Thm. 4.15, (E) can be rewritten as follows.

(F ) min |Ex|+ 1Cx̄ 6=∅ (4.13)

subject to: EC ∩ Ex 6= ∅, ∀C ∈ Cx (4.14)

Proof. This directly follows from (the proof of) Thm. 4.15.

Corollary 4.18. Let C be a set of clusters on X . Let N be a network representing

the clusters in C|X (N). Let x ∈ X\X (N) be a taxon to hang in it, such that the

resulting network N ′ will represent C|X (N ′). In order to let N ′ represent all the

clusters in C|X (N ′) which do not contain x, x should be hung (a.o.) below one of

the edges in
⋂
C∈Cx̄

EC .

Proof. Let (E∗x, E∗x̄) be an optimal solution for (Ex, Ex̄) in (E). Suppose that Cx̄ 6= ∅.

Then by Thm. 4.15, |Ex̄| = 1, i.e. one hang-edge should be chosen such that hanging

x below it, N ′ will represent C. Observe that
⋂
C∈Cx̄

EC =
⋂
C∈C:x/∈C EC . The result

follows.

Conjecture 4.19 (Smallest Hang-Edge Combinations). Consider STCass(k) (see

Alg. 2). Let E be all hang-edge combinations (which are in principle determined

by the function GetHangEdgeCombinations on line 11). It is sufficient to use

only those hang-edge combinations E ∈ E whose size is minimal, i.e. the following

set E ′, in order to obtain an optimal network finally.

E ′ :=
{
E′ ∈ E : |E′| = min

E∈E
|E|
}

(4.15)

In order to make this section complete, it remains to show how to minimize
|Ex| in (E). Note that the solution to (D) is the so-called vertex cover number
in a hypergraph. The problem is called the hypergraph vertex cover problem or
equivalently, the set cover problem, which is one of Karp’s 21 NP-complete problems.
Despite its complexity in general, we suspect that in this case, the problem can be
solved in polynomial time.

Conjecture 4.20. Optimization problem (F) can be solved in polynomial time.
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4.4. Lowest Common Ancestors
In Section 4.2, where it has been presented how to choose valid hang-edges, an LCA
of some cluster was needed regularly. This suggests that in practice, it might be
useful to store an indexed list of LCAs per cluster in the current network. Therefore,
let LCA(N ;C) represent the set of the lowest common ancestors of cluster C in
network N .

Lemma 4.21. Let C be a set of clusters on the set of taxa X . Let N be a network

representing the clusters in C|X (N). Let x be a leaf that is added to network N and

call the resulting network N ′. Let C ′ be a cluster from Cx and define C := C ′\{x}.

Then, the LCAs of C ′ in N ′ are as follows.

LCA(N ′;C ′) =
⋃

v∈LCA(N ;C)

LCA(N ′; {v, x}) (4.16)

Proof. Let C, x,N,N ′, C and C ′ be as required. Observe that any LCA of C ′ =

C ∪ {x} in N ′, is an LCA of some v ∈ LCA(N ;C) and x.

Using Alg. 4, the LCAs per cluster in C|X (N) can be stored and updated effi-
ciently after hanging a leaf in network N . Therefore, when executing (M)STCass,
it is recommended to save a list of the clusters and their LCAs -under this condition
that for each LCA v of some cluster C that is stored, edge (u, v) represents cluster
C-, for the sake of computational efficiency.

Lemma 4.22. Let X be a set of taxa. Let C be a set of clusters thereon. Let N

be a network which represents the clusters in C|X (N). Suppose that taxon x ∈ X

has been hung in this network below certain edges, such that the resulting network

N ′ represents the clusters in C|X (N ′). Let L be an indexed list, such that for each

cluster C in C|X (N), L(C) contains the lowest common ancestors of C, with one

restriction: each LCA v ∈ L(C) is such that v represents cluster C. Then algorithm

UpdateLCA (see Alg. 4) updates the LCAs L such that after execution, L(C ′)

contains all LCAs v′ which represent C ′ in N ′, for each cluster C ′ in C|X (N ′).

Proof. Let C,X , N and N ′ be as required. Note that the lines 1 - 2 in Alg. 4

ensure that in the first call of UpdateLCA, the LCAs of the clusters in C|X (N)

are known. Let C ′ be any cluster in C|X (N ′) which contains x. Let C be cluster

C ′ without x, i.e. C := C ′\{x}. By Lemma 4.21, these facts imply that Eq. 4.16
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holds. This is determined on the lines 7 - 15 in Alg. 4, with the restriction that

the LCAs v on the right-hand side of Eq. 4.16, all represent cluster C. If some

LCA v ∈ LCA(N ;C) would not represent cluster C, then LCA(N ′; {v, x}) will not

represent cluster C ′ neither. Hence, all LCAs of C ′ which represent C ′ in N ′, will

be contained in L(C ′).

Note that this lemma leaves room for L(C ′) to contain LCAs of cluster C ′ in
C|X (N ′), which do not represent cluster C ′. Below, we will see that the function
UpdateLCA in Alg. 4 will correctly update the stored LCAs L, such that fore
each C ′, L(C ′) exactly comprises the LCAs v which represent C ′.

Theorem 4.23. Let C be a set of clusters on taxa X . Let N be a network which

represents the clusters in C|X (N). Suppose that leaf x has been hung in this network

below certain edges, such that the resulting network N ′ represents the clusters in

C|X (N ′). Let L be an indexed list, such that for each cluster C in C|X (N), L(C)

contains the LCAs of C, with one restriction: each LCA v ∈ L(C) is such that v

represents cluster C. Then algorithm UpdateLCA (see Alg. 4) updates the LCAs

L such that after execution, L(C ′) contains exactly the LCAs of each cluster C ′ in

C|X (N ′), with the restriction that for each v′ ∈ L(C ′), v′ represents C ′.

Proof. Let C,X , N and N ′ be as required. By Lemma 4.22, for each cluster C ′ in

C|X (N ′), L(C ′) contains all LCAs v′ which represent C ′ in N ′. Let C ′ be any cluster

in C|X (N ′) which contains x. Let C be cluster C ′ without x, i.e. C := C ′\{x}.

It should be shown that for each v′ ∈ L(C ′), v′ represents C ′. Let v be any LCA

from L(C). Let (u′, v) be its incoming edge in N ′. If |LCA(N ;C)| = 1, then let

us denote the unique LCA as lca(N ;C). Suppose that x is hung below an edge of

types 1, ..., 5 in Thm. 4.9. Let us consider each case separately.

1. In this case, node u′ = lca(N ′; {v, x}) represents cluster C ′. v still represents

C.

2. Node v = lca(N ′; {v, x}) represents C ′. If C would be in C|X (N ′), then the

statement ensures that there is a path from N ′\TC to x, not intersecting TC ,

which ensures that N ′ actually represents C.

3. Node u = lca(N ′; {v, x}) represents C ′. C is represented by node v.
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4. Node v = lca(N ′; {v, x}) represents C ′. If C would be in C|X (N ′), then the

statement ensures that there is a path from N ′\TC to x, not intersecting TC ,

which ensures that N ′ actually represents C.

5. Let p be the node dividing any edge as described in this case, such that p is a

parent of x or a parent of its parent. Then, p in LCA(N ′; {v, x}) represents

C ′ and furthermore, node v still represents C in N ′. Note that there might

be multiple of such nodes p.
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Algorithm 4: Suppose that leaf x is inserted into network N , that repre-
sented all clusters C|X (N), such that the resulting network N ′ represents
all clusters in C|X (N ′). Given that L(C) contains exactly the LCAs v for
each cluster C ∈ C|X (N), such that v represents C, this algorithm updates
L, such that L(C ′) will contain exactly those LCAs of C ′ for each cluster
C ′ ∈ C|X (N ′), which represent C ′ (see Thm. 4.23).
Input: A cluster set C, the set of taxa X , network N satisfying

C|X (N) ⊆ C(N), network N ′ satisfying C|X (N ′) ⊆ C(N ′), leaf x
and an indexed list L. See the text for details.

Output: UpdateLCA(C,X , N,N ′, x,L)
/* Inititialize L, if needed */

1 if N is a tree then
2 L := GetLCAs(N, C) // Determine the LCAs per cluster in C|X (N)

3 t := GetParent(x,N ′)
4 for cluster C ′ ∈ C|X (N ′) do
5 if x /∈ C ′ then
6 continue

/* Compute L := LCA(C′), such that each LCA v ∈ L represents C′, using

a.o. L(C) */

7 C := C ′\{x}
8 if |C| = 1 then
9 L := C

10 else
11 L := L(C)

12 for v ∈ L do // v represents C

13 for v′ ∈ LCA(N ′; {v, t}) do
14 L := L ∪ {v′}

15 L(C ′) := L

/* Clean L */

16 for each cluster C ∈ C|X (N) indexed in L do
17 if C /∈ C′ then
18 Remove L(C)

19 return L // Return the updated LCAs per cluster in C|X (N ′)
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4.5. Exclude Certain Binary Refinements
In the outward building phase of (M)STCass, after hanging some leaf x below a
reticulation in network N ′′ (see line 19 in Alg. 2), all binary refinements N ′′′ of the
resulting network are created and (possibly) saved. This is not always needed.

Observation 4.24. After hanging a leaf below a reticulation in (M)STCass, it is

not always necessary to continue with (store) all binary refinements of the resulting

network.

Example 4.25. Consider the four trees T in Fig. 3.1. Let C = Cl(T ). Observe

that the network as shown in Fig. 4.3a, represents all clusters in C|2345678. The

lastly added leaf so far, is leaf 5, which has been placed below a 3-input reticulation

t. We will show that it is not needed to store and investigate all binary refinements

of this network.

Now, leaf 1 is going to be hung in the network. Note that minimal(C1) =

{12, 13, 15} and C1̄ = ∅. Furthermore, exactly one binary reticulation should be

added in order to obtain an optimal network. It is left to the reader to check

that in case (b) in Fig. 4.3, leaf 1 cannot be added below exactly one binary

reticulation, such that the resulting network will represent both the clusters 12

and 1567. Similarly, in case (c), the clusters 13 and 1567 cannot be represented

simultaneously after adding the leaf. In case (d) however, leaf 1 may be hung below

a.o. edge (t1, t2). Therefore, the cases (b) and (c) can be excluded from further

exploration.

4.6. Exclude Certain Hang-Edges
Besides excluding certain binary network refinements, some hang-edges can be ex-
cluded from investigation, from the ones as defined in Thm. 4.9 and Conj. 4.10.
This is illustrated below.

Example 4.25 (Continued). Consider Fig. 4.3a again and suppose that leaf 1

is going to be hung below a new binary reticulation. Since the resulting network

should represent cluster 12, leaf 1 should be hung a.o. below edge (p, 2). Besides, the

clusters 13 and 1567 should be represented and hence, observe that the reticulation
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(a) This network represents all clusters in
Cl(T )|2345678 for the four trees T in Fig. 3.1.

u
v w

t1

t2

5
(b) This binary refinement does not have to be con-
sidered, since leaf 1 cannot be added below one
binary reticulation such that both clusters 12 and
1567 will be represented.

u
v w

t1

t2

5
(c) This binary refinement does not have to be con-
sidered neither, since leaf 1 cannot be added below
one binary reticulation such that both clusters 13
and 1567 will be represented.

u
v w

t1

t2

5
(d) This binary refinement is the only useful one.

Figure 4.3: This is an illustration that not all binary refinements have to be considered for further

exploration in the outward phase of (M)STCass. Given the network in (a), only binary refinement

(d) can be used in the next iteration of the algorithm, when leaf 1 is hung in the network.

may not be connected to edge (w, t). Furthermore, the leaf may not be hung below

edge (v, t), since then, cluster 13 would not be represented. Analogously, the leaf

may not be hung below the edges (u, t) and (t, 5).

Now, the knowledge that it is sufficient to add exactly one binary reticulation,

forces us to decompose reticulation t into two binary reticulations. This should be

done as illustrated in Fig. 4.3d (as shown before). Hence, the only valid hang-edge

that is left, is edge (t1, t2) (compare Fig. 3.2a).
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Given some set X of taxa and a set C of clusters thereon, now, from the previous
chapter, we know how to build an optimal network which represents C, by using the
proposed algorithm STCass. Given a connected component of the incompatibility
graph, STCass(k) tries to build a corresponding biconnected component comprising
at most k reticulations.

Without any knowledge on the level, the original Cass algorithm has been de-
signed with the idea of calling STCass(k) repeatedly with k = 0, 1, 2, etc., until
a level-k (sub)network is found. The resulting (biconnected) components are com-
bined afterwards, in order to get an optimal network finally (see Alg. 6 for an
overview of this top-level procedure).

It follows that the overall execution time of this procedure can be reduced if
a high lower bound on k is known. Therefore, in this chapter, we study several
substructures of a connected component G in IG(C), and what they impose on the
reticulation number r(G) = r(N) for the corresponding biconnected component N
that represents the clusters in V (G). As a tool to study this, we introduce a type
of network, which we call a collnet, in the next section.

57
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5.1. Collnets
As a tool to study the minimum number of reticulations needed in a network which
represents certain clusters, we impose some requirements on a network and call the
resulting network a collnet. Recall that if MST-set S ⊂ X is collapsed, then this
means that in each cluster C ∈ C which is a strict superset of S, the elements of S
are replaced by a single new taxon, e.g. having label l and furthermore, clusters in
C which are a subset of S are neglected. This implies that the elements of S are no
longer in X and X contains l now.

Definition 5.1. Let C be a set of clusters. Let N be an (optimal) network which

represents the clusters in C. Furthermore, let N be such that all MST-sets are

singletons (which is possible by Cor. 11 in [15]). We call the resulting network an

(optimal) collnet (collapsed MST-sets network).

One property of a collnet is the following. Given that N is a network which
represents the clusters in C, let N ′ be the corresponding collnet, obtained by moving
all MST-sets below cut-edges and by collapsing all MST-sets. Then, r(N) = r(N ′),
by Cor. 11 in [15].

5.2. |minimal(C(N))| Versus r(N)
In order to derive a lower bound on r(G), for some connected component G in IG(C),
one might consider the number of minimal clusters represented in a corresponding
biconnected component (network) N . Given an upper bound on |minimal(C(N))|
in terms of r(N) and a lower bound on |minimal(C(N))| in terms of |minimal(C)|,
one can derive a lower bound on r(N) in terms of |minimal(C)|. Note that from
now on, 1x will be used to denote the indicator function, which is one if condition
x is true and zero otherwise.

Theorem 5.2. The number |minimal(C(N))| of minimal clusters represented in

an optimal network N may scale quadratically in the number of reticulations r(N).

Proof. Suppose that the subnetwork N ′ as illustrated in Fig. 5.1 is part of a larger

optimal network N . Then, the number of minimal clusters in N ′ is as follows.

|minimal(C(N ′))| = 1n≥2 + q1n≥1 +
(
q

2

)
≤ 1

2q
2 + 1

2q + 1 (5.1)

Since |minimal(C(N))| ≥ |minimal(C(N ′))| and r(N) ≥ q, the result follows.
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Figure 5.1: Assume there are q ≥ 2 reticulations below node v and n ≥ 0. Then, the number of

minimal clusters in this subnetwork N ′ is at most 2r(N ′)2 + r(N ′) + 1. The clusters {a1, x} and

{a1, y} are represented if and only if n ≥ 1 and cluster {a1, a2} is represented if and only if n ≥ 2.

Corollary 5.3. The number |minimal(C(N))| of minimal clusters represented in

an optimal network N may scale quadratically in the number of taxa |X |.

Proof. Combine Thm. 5.2 with Thm. 6.1 in Chapter 6.

Conjecture 5.4. Let C be a set of clusters for which an optimal level-k collnet N

exists (k ≥ 1). Then, the following inequalities give an upper and lower bound on

the number of minimal clusters that N represents.

r(N) + 1 ≤ |{C ∈ C(N) : |C| = 2}| = |minimal(C(N))| ≤ 2r(N)2 + r(N) + 1 (5.2)

5.3. Triangles in IG(C)
From this section onwards, some elementary substructures of IG(C) are studied.
Firstly, we consider the presence of a triangle in the incompatibility graph. In
practice, this will often be the case (see e.g. Table 8.3), however, this result can be
used to derive higher valued lower bounds on r(G) for more advanced substructures
of a connected component G in IG(C).

Theorem 5.5. Let C be a set of clusters. If there is a triangle in IG(C), then at

least two reticulations are needed in a network which represents the clusters in C.

Proof. Given a set of clusters C, assume that there is a triangle in IG(C). Let the

vertices, i.e. the clusters, of the triangle be named Ci, for i = 1, 2, 3. Assume there
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exists a (sub)network N which contains at most one reticulation and represents

the clusters C1 and C2. Observe that it should contain at least one reticulation,

since (C1, C2) is in IG(C). Therefore, assume that the network contains exactly

one reticulation. We show that N cannot contain only one reticulation if it should

represent cluster C3 too.

Observe the fundamental structure of a 1-reticulation network as illustrated in

Fig. 3.5. Its leaves may be regarded as ST-sets. W.l.o.g., w.m.a. that cluster C1 is

a superset of a1 and x (see the figure). Say that it is a superset of x and a1 up to

and including ai, for some 1 ≤ i ≤ m. Then cluster C2 (which is incompatible with

C1) is either a superset of ai and ai+1, if i < m, and not of x (call it: cluster C2 is

on the a-side), or it is a superset of x and b1 and not of any aj (j = 1, . . . ,m) (say

cluster C2 is on the b-side).

Firstly, consider the case that C2 is on the a-side, where C2 is a superset of

a1, . . . , ai, with i < m, but not of x. Observe that cluster C3 should have a non-

empty intersection with both clusters C1 and C2, since both edges (C1, C3) and

(C2, C3) are in IG(C). This implies that cluster C3 is a strict superset of ai. Observe

that any strict superset of ai is that of all aj with j < i too and therefore, so is

cluster C3. Besides, it should contain at least one taxon which is not in cluster C1

and hence, it should be a superset of some aj , with j > i. However, then we get

that cluster C3 is a superset of C2, which contradicts the fact that (C2, C3) is in

IG(C). Hence, this case is impossible.

It remains to consider the case that C2 is on the b-side and is a superset of x

and b1 up to and including bj , for some 1 ≤ j ≤ n. Again, cluster C3 has overlap

with both clusters C1 and C2 and therefore, it should is a strict superset of x. C3

is not a superset nor a subset of C1, so C3 may not contain any set aj (1 ≤ j ≤ m).

Similarly, C3 may not contain any set bj (1 ≤ j ≤ n). We conclude that this case is

impossible too.

All in all, no network comprising exactly one reticulation can represent three

pairwise incompatible clusters. The result follows.

This result might open a way to analyse other substructures which contain mul-
tiple triangles. For example, we conjecture that, if there is an ’8’-like substructure in
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some connected component G in IG(C), comprising two partly overlapping triangles,
then r(G) ≥ 3.

Conjecture 5.6. Let C be a set of clusters. If some connected component G in

IG(C) contains an ’8’ as induced subgraph, i.e. G comprises two triangles, having

exactly one overlapping node (as shown in Fig. 5.2), then r(G) ≥ 3.

C1

C2 C3

C4 C5

Figure 5.2: This figure illustrates an ’8’ as induced subgraph in IG(C), comprising two triangles,

which have exactly one overlapping node (i.e. cluster).

Example 5.7. This example cannot prove the validity of Conj. 5.6, however, it

may give some insights. Consider the four trees T in Fig. 3.1. The minimal clusters

in Cl(T ) are 12, 13, 15, 34, 56, 58 and 67 (where again, e.g. 12 denotes cluster {1, 2}).

Fig. 5.3 shows the corresponding incompatibility graph.

Figure 5.3: This figure shows the incompatibility graph on the minimal clusters in Cl(T ) from the

trees T shown in Fig. 3.1. Different edge colours indicate different intersections C1 ∩ C2 of its

endpoints, i.e. clusters C1 and C2.

Observe that it contains an ’8’. Therefore, the conjecture tells that at least 3



62 5. Lower Bounds on the Minimum Reticulation Number

reticulations are required in a network which represents the clusters in Cl(T ). In

this case, this bound is strict, since r(N) = 3 for an optimal network N .

5.4. Cycles in IG(C)
The second substructure of IG(C) we investigate, is a cycle. The following re-
sult only holds for a cycle in IG(minimal(C)); observe that there could be a 4-
cycle in some connected component G ∈ IG(C), while r(G) = 1, namely if e.g.
{a1a2x, a1x, b1x, b1b2x} ⊆ C.

Theorem 5.8. Let C be a set of clusters. Let G be a connected component in

IG(minimal(C)). If there is a cycle in G, then r(G) ≥ 2.

Proof. Let C and G be as required for the theorem. Consider a general 1-reticulation

network as depicted in Fig. 3.5 and regard the leaves as MST-sets. The minimal

clusters therein, are {a1, a2}, {a1, x}, {x, b1} and {b1, b2}. The corresponding incom-

patibility graph IG(minimal(V (G))) thereon, is shown in Fig. 5.4. Since it does

not contain any cycle, we conclude that the presence of a cycle would imply that

r(G) cannot be one (and trivially not zero), so it must be at least two then.

a1a2

a1x b1x

b1b2

Figure 5.4: Consider a general level-1 network as illustrated in Fig. 3.5 and regard the leaves as

(collapsed) MST-sets. This figure shows the corresponding incompatibility graph on the minimal

clusters therein. Note that a cluster like {a1, x} is represented as a1x.

5.5. Star-Like Substructures in IG(C)
The following elementary substructure of IG(C) we study, is a star-like substruc-
ture. We consider one node and its neighbours in IG(C), whether there are edges
between the neighbours or not. For several conditions on such a substructure of
some connected component G in IG(C), we study its implication on r(G).

Theorem 5.9. Let C be a set of clusters. Let C0 be a node in IG(C) having n ≥ 2

neighbours. Call the neighbours C1, . . . , Cn. Let H be the induced subgraph of IG(C)
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on these n + 1 nodes. Suppose that for any three clusters C0, Ci and Cj, with

1 ≤ i < j ≤ n, it holds that C0 ∩ Ci ∩ Cj = ∅ (i.e. all intersections C0 ∩ Ci and

C0 ∩ Cj are disjoint). Then, the following holds.

r(H) ≥ n− 1C0=
⋃

i=1,...,n
(C0∩Ci) (5.3)

Proof. Given some set of clusters C, let H and C0, . . . , Cn be as described in the

theorem. Let us call the intersections of two clusters Ii := C0 ∩ Ci for i = 1, . . . , n.

Besides, suppose that C0 =
⋃
i=1,...,n Ii (*) holds.

Firstly, we show that r(N) ≥ n − 1. Let N be an optimal collnet representing

the clusters in V (H). Observe that all sets Ii (for all i = 1, . . . , n) are MST-sets and

therefore, each one hangs below a cut-edge. Since N represents cluster C0, there

is an induced subtree on I1 ∪ · · · ∪ In = C0 in N . Similarly, there is an induced

subtree on Ci (i = 1, . . . , n) in N . For each but one of the n sets Ii (i = 1, . . . , n),

N should contain a reticulation to let it be a subset of either cluster C0 or Ci (for

your imagination, you may consider Ex. 5.10 below). This requires at least n − 1

reticulations.

Now, assume that (*) does not hold. We have to show that r(N) ≥ n. Again,

let N be a collnet representing the clusters in V (H). Define the MST-set In+1 :=

C0\(I1 ∪ · · · ∪ In). Similar as before, each but one of the n + 1 sets Ii should be

switched to be a subset of either cluster C0 or Ci, for all i = 1, . . . , n + 1. This

requires at least n reticulations.

Example 5.10. Let C = {abc, ad, be, cf}. The corresponding incompatibility graph

H is illustrated in Fig. 5.5. Node C0 := abc has three neighbours: C1 := ad, C2 := be

and C3 := cf . Let Ii := C0∩Ci, for i = 1, 2, 3. Then, C0 =
⋃
i=1,2,3 Ii. Furthermore,

all intersections Ii (i = 1, 2, 3) are disjoint. Therefore, r(H) ≥ 3 − 1 = 2 by Thm.

5.9. An optimal network representing C is depicted in Fig. 5.5b, and comprises

exactly two reticulations. Observe its similarity with the network shown in Fig. 6.1

in Chapter 6. Reticulation t1 switches taxon a to be either in cluster C0 = abc or

in cluster C1 = ad. Similarly, reticulation t2 switches taxon b to be either in cluster

C0 or C2. One taxon in cluster C0, which is taxon c in this case, does not need a
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reticulation to let it be part of either cluster C0 or C3.

abc

ad

be

cf

(a)

t1

a

d

et2

b

c
f

(b)

Figure 5.5: The incompatibility graph is shown for the set of clusters C = {abc, ad, be, cf} (a).

Any network representing these clusters has reticulation number ≥ 2 by Thm. 5.9. One optimal

network that represents C is shown in subfigure (b). The cyan coloured subnetwork is the induced

subtree on C0 = abc.

Based on this result, some conjectures are proposed below. Given that C is a set
of clusters, let Nb(C) denote the set of neighbours of cluster C in V (IG(C)).

Conjecture 5.11 (Intersections LB). Let C be a set of clusters. Let G be a connected

component in IG(C). Then the following inequality gives a lower bound on the

number of reticulations r(G).

I(C) := {C ∩ Cj |∀Cj ∈ Nb(C)} (5.4)

D(C) := {C ′ ∈ Nb(C)|C ∩ C ′ ∈ I(C)} (5.5)

r(G) ≥ max
C∈V (G)

[
|minimal(I(C))| − 1C=

⋃
C′∈D(C)

(C∩C′)

]
(5.6)

Example 5.10 (Continued). Let G be IG(C) as shown in Fig. 5.5a and let cluster

C0 = abc again. Then the sets I(C0) and D(C0) are as follows.

I(C0) := {a, b, c} (5.7)

D(C0) := {ad, be, cf} (5.8)

Define m(C) := |minimal(I(C))| − 1C=
⋃

C′∈D(C)
(C∩C′), for any cluster C ∈ V (G).

It follows that m(C0) = 3 − 1 = 2 and m(ad) = 1 − 0 = 1 = m(bc) = m(cf).
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Therefore, a lower bound on r(G) is two by Conj. 5.11:

r(G) ≥ max
C∈V (G)

[
|minimal(I(C))| − 1C=

⋃
C′∈D(C)

(C∩C′)

]
= max (2, 1, 1, 1) = 2

(5.9)

Observe that Conj. 5.11 is true if minimal(D(C0)) is a set of disjoint clusters,
for each cluster C0 in V (G), since Thm. 5.9 can be applied then (where n =
|minimal(D(C0))|). Furthermore, the set of intersections between pairs of clusters
can be studied for all pairs in G too. This led us to the following conjecture.

Conjecture 5.12 (Global Intersections LB). Let C be a set of clusters. Let G be

a connected component in IG(C). The following inequality gives a lower bound on

r(G).

r(G) ≥
⌈

1
3 |{Ci ∩ Cj |∀Ci, Cj ∈ V (G), i 6= j}|

⌉
(5.10)

Observe that strict equality holds in the case that each connected component in
IG(C) is as illustrated in Fig. 5.4. Now, instead of considering the sets C0 ∩ Cj ,
let us consider the difference sets C0\Cj . The minimal clusters among these can be
used to define a lower bound on r(g).

Conjecture 5.13 (Differences LB). Let C be a set of clusters and let G be a con-

nected component in IG(C). Then, a lower bound on the number of reticulations

r(G) in the corresponding biconnected component is as follows.

D(C) := {Cj\C|∀Cj ∈ Nb(C)} (5.11)

r(G) ≥ max
C∈V (G)

|minimal(D(C))| − 1 (5.12)

Example 5.14. Note that this example does not show the validity of Conj. 5.13,

however, it may support it and give us some insights. Again, consider the four trees

T in Fig. 3.1. The corresponding incompatibility graph IG(minimal(Cl(T ))) on

the minimal clusters in Cl(T ) is illustrated in Fig. 5.3. Observe that node C0 = 15 is

connected to the nodes 12, 13, 56 and 58. This implies that {C\C0|∀C ∈ Nb(C0)} =

{2, 3, 6, 8}, which has size four. Therefore, by Conj. 5.13, at least three reticulations

are required in a network to represent the clusters in Cl(T ). In this example, as we

have seen before, this lower bound is strict.

Similar as for the set of intersections, these difference sets C0\Cj can be studied
for all pairs of clusters in G. This raised the following conjecture.
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Conjecture 5.15 (Global Differences LB). Let C be a set of clusters. Let G be

a connected component in IG(C). The following inequality gives a lower bound on

r(G).

r(G) ≥
⌈

1
5 |minimal {Ci\Cj |∀Ci, Cj ∈ C, i 6= j}|

⌉
(5.13)

The factor 1/5 has been chosen based on some theoretical insights. Consider
e.g. Fig. 3.5, where a1a2\a1x = a2, a1x\a1a2 = x, a1x\b1x = a1, b1x\a1x = b1 and
b1b2\b1x = b2. Therefore, minimal{Ci\Cj |∀Ci, Cj ∈ C, i 6= j} = {a1, a2, x, b1, b2},
whose cardinality is five.

Surely, more (advanced) results can be found involving a star-like substructures
of IG(C). However, we continue to address a related substructure now, namely
n-cliques.

5.6. n-Cliques in IG(C)
Now, imagine that some connected component G in IG(C) contains an n-clique Kn

as induced subgraph, for some n ≥ 2. What does it say about r(G)?

Conjecture 5.16 (Clique LB). Let C be a set of clusters. If there is an n-clique in

some connected component G of IG(C), then r(G) ≥ n− 1.

Note that we have shown this conjecture to be true for n ≤ 3 (see Thm. 5.5 for
n = 3). Furthermore, observe that each node C0 in V (Kn) is the centre node of
some star-like substructure as discussed in the previous section, comprising n − 1
leaves (which may give an indication of the truth of Conj. 5.16). Below, a special
case of an n-clique is addressed.

Theorem 5.17. Let C be a set of clusters on taxa X . Let G be a connected compo-

nent in IG(C). Assume that it contains an n-clique Kn for some n ≥ 2, such that

for all Ci, Cj ∈ V (Kn), Ci ∩ Cj = I, for all 1 ≤ i < j ≤ n, where I ⊂ X . Then

r(G) ≥ n− 1.

Proof. Let C and G be as required. Let N be an optimal collnet representing the

clusters in V (G). Observe that I is an MST-set and hence, it is below a cut-edge.

Furthermore, I should be switched (using reticulations) to be part of either cluster

C1 or C2 or ... or Cn. Since no two different clusters Ci and Cj (for 1 ≤ i < j ≤ n)

have other overlapping taxa than those in I, this requires n− 1 reticulations.

Theorem 5.18. Let C be a set of clusters. Let G be a connected component
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in IG(C). Let G′ be the corresponding connected component in IG(minimal(C)).

Then, r(G′) ≤ r(G).

Proof. This follows from the fact that IG(minimal(C)) is an induced subgraph of

IG(C) and hence, G′ is that of G.

Now, given some connected component G in IG(C), we have studied some sub-
structures of it and several of their implications on r(G). As stated earlier, these
findings can be used to speed up Alg. 6. In particular, if C is a set of clusters and
r(G) seems to be at least kmin ≥ 1, then STCass(k) does not have to be evaluated
for k < kmin in order to find an optimal network representing C.

Although the following may not be practically interesting (except for debugging
purposes), one might wonder: what would be an upper bound on the reticulation
number? This is addressed in the next chapter.





6
Upper Bounds on the

Minimum Reticulation

Number

In Chapter 5, lower bounds for r(G) were derived, given some connected component
G in IG(C). Although it may not have practical interests (except for e.g. debugging
purposes), we will study some upper bounds on r(G) in this section.

Theorem 6.1. In an optimal network N on taxa X , r(N) ≤ |X | − 1.

Proof. Consider the network which is shown in Fig. 6.1, on the taxa X = {x1, . . . , xn}

(n ≥ 3). Observe that it represents every cluster C ⊆ X . The number of taxa is

n and the number of reticulations is n − 1. In an optimal network, no reticula-

tion is redundant and therefore, no optimal network will contain more than n − 1

reticulations.

In general, tighter upper bounds can be found on r(G). One example is the
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x1
x2

xn−1

xn

Figure 6.1: A collnet on X = {x1, . . . , xn} (n ≥ 3) is shown which represents all clusters C ⊆ X .

following, which we conjecture to be true and can be determined algorithmically
easily (mostly within a second).

Conjecture 6.2. Let C be a set of clusters on taxa X . For the moment, let Cx :=

minimal(C ∈ C|X (N ′) : x ∈ C). Then the reticulation number r(C) is at most the

following.

r(C) ≤
∑
x∈X
|Cx| −M1 −M2, (6.1)

where M1 and M2 are defined as follows.

M1 = max
x∈X

(|Cx|) (6.2)

x∗ = arg max
x∈X

(|Cx|) (6.3)

M2 = max
y∈X\{x∗}

(|Cy|) (6.4)

A motivation for this conjecture to be true, is as follows. Note that for the
moment, we use the definition of Cx as given above, containing only minimal clusters.
Let leaf x∗ be arg maxx∈X (|Cx|) and let y∗ = arg maxy∈X\x∗(|Cy|). Let N be the tree
on these leaves (i.e. a cherry) and add some dummy root δ and connect it to the root
r of the tree by adding edge (δ, r). Let the other leaves, i.e. those in X\{x∗, y∗},
be named x1, x2, . . . , xn−2. Then, for each leaf xi (i = 1, . . . , n − 2) we add to
the network, at most |Cxi

| − 1 binary reticulations are needed to let the resulting
network represent all clusters containing leaf xi, plus at most one additional binary
reticulation (e.g. to the root) in order to let the network represent the other clusters
(see e.g. Thm. 4.15). In total, this gives at most |Cxi

| additional reticulations per
leaf xi we add. Note that this is assumed to be possible due to Conj. 4.6. Summing
these values gives Eq. 6.1. Besides, empirical support is given by e.g. the results in
the last two columns of Table 8.3.
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Lastly, suppose that we are given a set T of trees. As stated in the introduction,
another upper bound on r(Cl(T )) is given by the hybridization number.





7
Implementation

STCass has been implemented in Python. It has been done Python, since it is
a widely used language, it enables rapid prototyping and besides, it is well docu-
mented. Some algorithmic techniques that are used, are discussed below. Then, it
will be shown which rules we have implemented in STCass. Besides, we introduce
MSTCass, an improved version of STCass, which runs faster. This has been im-
plemented in Python too. For comparison, Cass has been implemented in Java,
using the original source code provided by L.L.J. Van Iersel.

7.1. Techniques
(M)STCass has been implemented using several techniques. Firstly, a stack (queue)
is used to store problem instances in any stage of the algorithm (be it in the inward
removal phase or in the outward building phase). Secondly, we tested both a LIFO
queue and a FIFO priority queue, where in the last case, the further the stage was
of the problem instance, e.g. the more reticulations it has in the building phase, the
more priority was given to handle that instance. Both cases result in a depth-first
search. The LIFO queue performed the best of the two, i.e. this gave the fastest
algorithm, and the results in the next chapter are based on this. Thirdly, multicore
processing has been implemented. Four processes were used. Unfortunately, due to
an unknown reason, this led to an increase of the runtime almost always. Hence,
a working multiprocessing implementation is still in the future and the results are
based on a single process algorithm.
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The original Cass algorithm uses a stack too in order to store the problem
instances in every iteration. It uses a FIFO queue (without priority) and a single
process. Note that in general, a Python implementation runs slower than one in
Java.

7.2. STCass versus MSTCass
The optimal algorithms STCass (see Section 3.4) and MSTCass (see Section 3.8)
have been implemented with several optimizations. Some optimizations are based
on theorems and others are based on several conjectures made throughout this work.
Table 7.1 gives an overview of which heuristics and conjectures have been applied.

The source code is available on request. The main results are summarized in the
following chapter.

Rule STCass MSTCass

MST-sets only - V

Heuristic: MST priorities - V

Lower bound on k(1) V V

Cx: minimal clusters only(2) V V

Restricted Hang-edges(3) V V

Minimal Cluster Hang-edge Sets(4) V V

Smallest Hang-Edge Combinations(5) - V

Table 7.1: Several algorithms have been implemented, each using different solving strategies. *:

Conj. 5.11 and Conj. 5.13 are included in determining a lower bound on k. (2): Motivated by

Conj. 4.6, only the minimal clusters are considered. (3): Only use hang-edges as defined in Conj.

4.10. (4): See Thm. 4.12. (5): See Conj. 4.19.
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Results

The performance of both the algorithms STCass and MSTCass have been tested
on each combination of two or more trees from those of the Poaceae data set. “This
dataset consists of six phylogenetic trees of grasses of the Poaceae family, originally
published by the Grass Phylogeny Working Group (2001) and reanalysed in [20].
The phylogenetic trees are based on sequences from six different gene loci, namely
ITS, ndhF, phyB, rbcL, rpoC and waxy, and contain 47, 65, 40, 37, 34 and 19 taxa,
respectively.”[12] For each combination, the trees were restricted to the taxa they
have in common. On top of these 57 instances, the four trees from Fig. 3.1 have
been used as input, which instance has been called ‘Ellusiveness Fig. 9’.

The performance of the algorithms on these data are presented in the section
below. After that, it will be shown how well the proposed lower bounds and upper
bound in Conj. 6.2 work in practice (on the given instances).

8.1. The Performance of STCass and MSTCass
The performance of both the algorithms STCass and MSTCass have been tested
on 58 problem instances (as described above). For comparison, we executed the
Cass algorithm on the same instances. The algorithms have been run until one
solution was found. Per algorithm, the runtime t is logged (in seconds), the level k
of the network that was found and the number r of reticulations in that network,
per input instance.

The execution time has been limited to five minutes. On a timeout, the listed
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value of k is the level for which the running algorithm was searching a network at
that moment. The results are summarized in Table 8.2.

Some specifications of the computer that was used, are the following: the com-
puter contained an Intel Core i7 4700MQ CPU @2.40 GHz, 16 GB RAM, 120 GB
SSD plus some HDD and a Debian-based operating system.

8.1.1. Runtime
Regarding the average runtimes per algorithm, these are listed in Table 8.1, per
level k of the output network, for each of the three algorithms Cass, STCass and
MSTCass. Note that the results for which any of three algorithms did not find any
network, have not been used for computing these averages.

From Table 8.1, it is clear that the average runtime rapidly increases for in-
creasing values of k, especially for Cass. Furthermore, Cass runs the fastest of the
three. MSTCass was almost 13 times faster than STCass. Besides, the runtimes
of MSTCass is comparable to that of Cass for such small instances as have been
used in the tests.

Observe that the runtime of MSTCass is less than that of Cass when the
optimal level k∗ is 5 or 6. This may give an indication that for k∗ � 4, MSTCass
will be much faster than Cass, which is left to investigate in the future.

Level k #Instances
Avg. Runtime per Algorithm [s]

Cass STCass MSTCass

0 8 0.00 0.01 0.01

2 10 0.02 0.08 0.05

3 5 0.06 0.86 0.18

4 12 0.44 45.53 2.48

5 3 1.94 25.10 1.08

6 1 19.03 26.08 17.15

Weighted Average 0.8 16.7 1.3

Table 8.1: For each of the algorithms Cass, STCass and MSTCass, this table presents the average

runtimes in seconds per level k of the output network. Results for instances for which the algorithms

could not find any network (within five minutes), are not included in this analysis.

What could cause these differences? Cass is for these relatively small sized in-
stances the fastest algorithm, which at least partly depends on it implementation
using the language Java, which is faster than Python. Besides, STCass needs more
time than Cass, however, MSTCass is much faster than STCass. It would be in-
teresting to implement both Cass and MSTCass in Java in the future. In general,
MSTCass is faster than STCass, which in short, is caused by the differences listed
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in Table 7.1. In particular, firstly, the search tree becomes smaller by considering
MST-sets only, as MSTCass does, instead of all ST-sets (in STCass). Secondly,
a heuristic is applied to determine the order of selecting MST-sets in the inward
removal phase in MSTCass, while that order depends on the input definition (or-
der) in STCass. Thirdly, the hang-edge combinations to consider are filtered in
MSTCass, while not in STCass.

What other conclusions can be drawn from the results? One may observe in Fig.
8.2 that, when STCass runs longer than 35s, then likely, the level is ≥ 5; and when
it runs longer than 70s, then the level is likely ≥ 6. Similarly, when MSTCass
runs longer than 3s, the level is likely ≥ 5. Note that many more test data should
be used to make stronger evidence for such time bounds. This might be used to
develop a heuristic which starts searching for a higher level network as soon as such
time bounds are exceeded.

Moreover, there are some remarkable differences in the runtimes for the different
algorithms for some tree combinations. STCass seems to need much more time
than the other algorithms for the combinations ndhF/rpoC (≥ 300 s versus ≤ 2 s),
ndhF/phyB/ITS (≥ 300 s versus ≤ 4 s), ndhF/phyB/rpoC (300 s versus ≤ 12 s),
ndhF/rpoC/waxy/ITS (243 s versus ≤ 13 s) and ndhF/rbcL/rpoC/waxy/ITS (236
s versus ≤ 11 s). This may be due to the increased complexity of STCass over
Cass and MSTCass and besides, the selection of which ST-set to remove in the
inward phase is different for the different algorithms and might need improvement.

On the other hand, STCass is very fast (9 s) in finding a solution for the tree
combination ndhF/rbcL/rpoC, while the other algorithms could not even find any
solution within five minutes. This can only be caused by the rapid selection of the
correct ST-sets to remove in the inward phase and by selecting correct combinations
of hang-edges in the outward phase of the algorithm.

(a) (b)

Figure 8.1: (a) A scatter plot of the runtimes versus the number of taxa |X |. There seems to be

a very week relation between the two variables, even for Cass. (b) A similar scatter plot, where

the runtimes are plotted versus the number of clusters |C|. Here too, there is a very week relation

between the two variables.
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Does the runtime depend on the number of taxa |X | too? Consider Fig. 8.1a.
It shows that there is a very weak relation between the runtimes and the number
of taxa |X | of the input trees. This is clear from the (linear) Pearson correlation
coefficient of the runtimes versus |X | too, which are 0.11, -0.06 and 0.04 for Cass,
STCass and MSTCass, respectively.

Fig. 8.1b shows a similar scatter plot, where the runtime is shown versus the
number of clusters |C| per instance. Like in the previous case, there is a very weak
(linear) correlation between the two variables.

8.1.2. Optimality
As shown before, both the algorithms STCass (see Thm. 3.4) and MSTCass (see
Cor. 3.11) are optimal, whereas Cass is not. This is visible in the results (see Table
8.2) for the special instance ’Elusiveness Fig. 9’ of the trees T from Fig. 3.1. Cass
produces a network of level four, while the optimal level is three, which STCass
and MSTCass do find.
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Data Cass STCass MSTCass
Trees |C| |X| t[s] k r t[s] k r t[s] k r

Elusiveness Fig. 9 18 7 1.921 4 4 0.178 3 3 0.090 3 3
ndhF ITS 70 46 300.002 ≥ 6 ≥ 13 300.101 ≥ 6 ≥ 6 300.103 ≥ 5 ≥ 5
ndhF phyB 51 40 0.273 4 8 1.079 4 8 0.284 4 8
ndhF rbcL 48 36 0.101 3 8 3.787 3 8 0.499 3 8
ndhF rpoC 47 34 1.961 5 9 300.103 ≥ 5 ≥ 5 1.307 5 9
ndhF waxy 27 19 0.262 4 6 22.516 4 6 0.817 4 6
phyB ITS 43 30 0.399 4 8 9.370 4 8 0.589 4 8
phyB rbcL 28 21 0.026 2 4 0.134 2 4 0.104 2 4
phyB rpoC 28 21 0.081 3 4 0.183 3 4 0.110 3 4
phyB waxy 18 14 0.021 2 3 0.043 2 3 0.042 2 3
rbcL ITS 46 29 300.004 ≥ 5 ≥ 6 300.102 ≥ 6 ≥ 6 300.103 ≥ 6 ≥ 6
rbcL rpoC 37 26 1.955 5 7 1.458 5 7 1.300 5 7
rbcL waxy 17 12 0.160 4 4 2.784 4 4 0.290 4 4
rpoC ITS 48 31 300.002 ≥ 6 ≥ 8 300.103 ≥ 5 ≥ 5 300.102 ≥ 6 ≥ 6
rpoC waxy 13 10 0.031 2 2 0.039 2 2 0.028 2 2
waxy ITS 22 15 0.165 4 5 0.874 4 5 0.184 4 5
ndhF phyB ITS 48 30 1.526 5 10 300.100 ≥ 5 ≥ 5 4.002 5 10
ndhF phyB rbcL 34 21 0.413 4 7 1.063 4 7 0.864 4 7
ndhF phyB rpoC 33 21 11.405 4 6 300.103 ≥ 4 ≥ 4 5.546 4 6
ndhF phyB waxy 19 14 0.027 2 4 0.175 2 4 0.133 2 4
ndhF rbcL ITS 50 28 300.003 ≥ 5 ≥ 5 300.102 ≥ 6 ≥ 6 300.101 ≥ 5 ≥ 5
ndhF rbcL rpoC 43 26 300.053 ≥ 6 ≥ 8 9.072 6 8 300.076 ≥ 6 ≥ 7
ndhF rbcL waxy 20 12 0.169 4 4 0.432 4 4 0.921 4 4
ndhF rpoC ITS 58 31 300.001 ≥ 5 ≥ 7 300.011 ≥ 5 ≥ 5 300.103 ≥ 6 ≥ 6
ndhF rpoC waxy 14 10 0.040 3 3 0.070 3 3 0.086 3 3
ndhF waxy ITS 26 15 300.009 ≥ 5 ≥ 7 300.103 ≥ 4 ≥ 4 9.742 5 7
phyB rbcL ITS 29 17 19.034 6 6 26.075 6 6 17.151 6 6
phyB rbcL rpoC 24 15 0.196 4 5 0.567 4 5 0.196 4 5
phyB rbcL waxy 10 7 0.021 2 2 0.030 2 2 0.029 2 2
phyB rpoC ITS 32 19 300.362 ≥ 5 ≥ 6 300.048 ≥ 5 ≥ 5 300.102 ≥ 5 ≥ 5
phyB rpoC waxy 5 5 0.000 0 0 0.008 0 0 0.009 0 0
phyB waxy ITS 14 10 0.022 2 3 0.051 2 3 0.039 2 3
rbcL rpoC ITS 48 24 300.004 ≥ 5 ≥ 5 300.035 ≥ 6 ≥ 6 300.065 ≥ 6 ≥ 6
rbcL rpoC waxy 13 9 0.043 3 3 0.145 3 3 0.128 3 3
rbcL waxy ITS 20 11 2.238 5 5 66.541 5 5 1.196 5 5
rpoC waxy ITS 16 10 0.767 4 4 300.022 ≥ 4 ≥ 4 9.876 4 4
ndhF phyB rbcL ITS 33 17 300.170 ≥ 7 ≥ 7 300.100 ≥ 7 ≥ 7 300.069 ≥ 7 ≥ 7
ndhF phyB rbcL rpoC 29 15 6.320 5 7 300.035 ≥ 4 ≥ 6 284.283 5 7
ndhF phyB rbcL waxy 11 7 0.019 2 2 0.059 2 2 0.034 2 2
ndhF phyB rpoC ITS 35 19 300.073 ≥ 6 ≥ 7 304.092 ≥ 5 ≥ 5 300.103 ≥ 5 ≥ 5
ndhF phyB rpoC waxy 5 5 0.000 0 0 0.008 0 0 0.015 0 0
ndhF phyB waxy ITS 15 10 0.030 2 4 0.218 2 4 0.069 2 4
ndhF rbcL rpoC ITS 52 24 300.003 ≥ 5 ≥ 5 300.100 ≥ 6 ≥ 6 300.103 ≥ 6 ≥ 6
ndhF rbcL rpoC waxy 14 9 0.045 3 3 0.121 3 3 0.078 3 3
ndhF rbcL waxy ITS 22 11 1.633 5 5 7.316 5 5 0.742 5 5
ndhF rpoC waxy ITS 17 10 0.750 4 4 243.162 4 4 13.101 4 4
phyB rbcL rpoC ITS 28 14 300.437 ≥ 6 ≥ 6 300.102 ≥ 6 ≥ 6 300.103 ≥ 6 ≥ 6
phyB rbcL rpoC waxy 4 4 0.000 0 0 0.010 0 0 0.008 0 0
phyB rbcL waxy ITS 9 6 0.020 2 2 0.033 2 2 0.027 2 2
phyB rpoC waxy ITS 5 5 0.000 0 0 0.011 0 0 0.008 0 0
rbcL rpoC waxy ITS 16 9 0.282 4 4 28.480 4 4 1.974 4 4
ndhF phyB rbcL rpoC ITS 31 14 300.024 ≥ 6 ≥ 6 300.104 ≥ 6 ≥ 6 300.103 ≥ 6 ≥ 6
ndhF phyB rbcL rpoC waxy 4 4 0.000 0 0 0.008 0 0 0.008 0 0
ndhF phyB rbcL waxy ITS 10 6 0.020 2 2 0.054 2 2 0.034 2 2
ndhF phyB rpoC waxy ITS 5 5 0.000 0 0 0.011 0 0 0.008 0 0
ndhF rbcL rpoC waxy ITS 17 9 0.267 4 4 235.832 4 4 10.492 4 4
phyB rbcL rpoC waxy ITS 4 4 0.000 0 0 0.018 0 0 0.008 0 0
ndhF phyB rbcL rpoC waxy ITS 4 4 0.000 0 0 0.013 0 0 0.008 0 0
Average 18.3 13.6 0.8 2.7 3.5 16.7 2.6 3.4 1.3 2.6 3.4

Table 8.2: For each combination T of trees from the Poaceae data set, the algorithms Cass,

STCass and MSTCass have been applied to build a network which represents the clusters from

the input trees T . For each algorithm, the solving time t [s] is given, the level k and the reticulation

number r of the output network, per instance T . The sign ’≥’ indicates that no solution has been

found within five minutes (these data points are not included in the averages, which rows are

marked dark gray). Each non-optimal level of the output network is marked red. If on a timeout,

STCass or MSTCass were busy investigating a higher level network than Cass on a timeout, the

corresponding results are marked green.
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Figure 8.2: These box plots show the runtimes per level k of the output networks, per algorithm.

Note that the results for which the algorithms did not find any network, have not been used in

this analysis.
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8.2. Lower and Upper Bounds on the Level and

Reticulation Number
For each combination of trees T , lower bounds (LBs) on the level k = `(Cl(T ))
and reticulation number r = r(Cl(T )) have been determined using Conj. 5.11
(Intersection LB), Conj. 5.12 (Global Intersection LB), Conj. 5.13 (Differences
LB), Conj. 5.15 (Global Differences LB) and Conj. 5.16 (Clique LB). Besides,
upper bounds (UBs) on these numbers have been determined by applying Conj. 6.2
(UB). The results are summarized in Table 8.3. Those for the lower bounds are
visualized in box plots in Fig. 8.3 and for the upper bound in Fig. 8.4.

Regarding the lower bounds, the first lower bound (Intersection LB) performs
the best of the five, in general (see Fig. 8.3). Remarkably, none of the lower bounds
give that the optimal level k∗ is four or higher, if so. This indicates that there is
much room for improvement to find better lower bounds.

Regarding the upper bound, its expected value seems to be approximately 2.5
times the optimal level, see Fig. 8.4. This leaves room for improvement too. On
the other hand, the runtime for evaluating this bound has not been recorded, since
it can be evaluated within a second (or at most some seconds), due to its simplicity.
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Trees
Optimal Int. LB Gl. I. LB Diffs. LB Gl. D. LB Clique LB UB
k r k r k r k r k r k r k r

Elusiveness Fig. 9 3 3 3 3 2 2 3 3 2 2 2 2 7 7
ndhF ITS ≥ 6 ≥ 13 4 8 3 6 3 5 3 6 1 3 29 44
ndhF phyB 4 8 2 6 2 6 1 2 2 6 1 5 11 17
ndhF rbcL 3 8 2 5 1 4 1 2 2 5 1 4 9 20
ndhF rpoC 5 9 3 7 2 6 2 2 2 6 1 5 15 21
ndhF waxy 4 6 2 3 2 3 1 1 1 2 1 2 11 14
phyB ITS 4 8 3 6 2 4 2 3 2 4 1 3 13 23
phyB rbcL 2 4 2 3 1 2 1 2 2 3 1 2 7 12
phyB rpoC 3 4 2 3 2 3 1 2 2 3 1 2 9 12
phyB waxy 2 3 1 2 1 2 0 0 1 2 1 2 3 6
rbcL ITS ≥ 6 ≥ 6 3 4 4 5 2 2 3 4 1 2 27 28
rbcL rpoC 5 7 3 5 3 5 2 3 2 4 1 3 15 19
rbcL waxy 4 4 2 2 2 2 1 1 1 1 1 1 9 9
rpoC ITS ≥ 6 ≥ 8 3 4 3 4 2 2 3 4 1 2 29 32
rpoC waxy 2 2 2 2 1 1 1 1 1 1 1 1 5 5
waxy ITS 4 5 2 3 1 2 1 1 1 2 1 2 11 12
ndhF phyB ITS 5 10 3 7 2 4 2 3 2 4 2 5 17 28
ndhF phyB rbcL 4 7 2 4 2 3 1 2 2 4 2 3 10 19
ndhF phyB rpoC 4 6 3 5 3 4 2 3 2 3 2 4 10 14
ndhF phyB waxy 2 4 1 2 1 2 0 0 1 2 1 2 5 8
ndhF rbcL ITS ≥ 6 ≥ 6 4 4 4 4 2 2 3 3 2 2 26 26
ndhF rbcL rpoC 6 8 3 5 4 6 2 4 2 4 2 4 19 25
ndhF rbcL waxy 4 4 3 3 2 2 1 1 2 2 2 2 10 10
ndhF rpoC ITS ≥ 6 ≥ 7 5 6 4 5 4 5 3 4 2 3 29 33
ndhF rpoC waxy 3 3 2 2 1 1 1 1 1 1 1 1 6 6
ndhF waxy ITS 5 7 3 4 2 3 1 1 2 3 2 3 13 16
phyB rbcL ITS 6 6 3 3 3 3 2 2 2 2 1 1 15 15
phyB rbcL rpoC 4 5 3 4 2 3 1 2 2 3 2 3 9 12
phyB rbcL waxy 2 2 1 1 1 1 1 1 1 1 1 1 4 4
phyB rpoC ITS ≥ 5 ≥ 6 4 5 2 3 2 2 2 3 2 3 17 18
phyB rpoC waxy 0 0 0 0 0 0 0 0 0 0 0 0 0 0
phyB waxy ITS 2 3 1 2 1 2 0 0 1 2 1 2 3 6
rbcL rpoC ITS ≥ 6 ≥ 6 5 5 5 5 3 3 3 3 2 2 22 22
rbcL rpoC waxy 3 3 2 2 1 1 1 1 1 1 1 1 6 6
rbcL waxy ITS 5 5 2 2 2 2 1 1 2 2 2 2 10 10
rpoC waxy ITS 4 4 2 2 2 2 1 1 1 1 2 2 9 9
ndhF phyB rbcL ITS ≥ 7 ≥ 7 3 3 3 3 2 2 2 2 2 2 15 15
ndhF phyB rbcL rpoC 5 7 3 5 3 4 2 3 2 3 2 4 9 13
ndhF phyB rbcL waxy 2 2 2 2 1 1 1 1 1 1 2 2 5 5
ndhF phyB rpoC ITS ≥ 6 ≥ 7 4 5 3 4 3 3 2 3 3 4 17 18
ndhF phyB rpoC waxy 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ndhF phyB waxy ITS 2 4 2 3 1 2 0 0 1 2 2 3 4 7
ndhF rbcL rpoC ITS ≥ 6 ≥ 6 5 5 5 5 4 4 3 3 3 3 22 22
ndhF rbcL rpoC waxy 3 3 2 2 1 1 1 1 1 1 2 2 7 7
ndhF rbcL waxy ITS 5 5 3 3 2 2 1 1 2 2 2 2 10 10
ndhF rpoC waxy ITS 4 4 2 2 2 2 1 1 1 1 2 2 9 9
phyB rbcL rpoC ITS ≥ 6 ≥ 6 4 4 3 3 2 2 2 2 2 2 12 12
phyB rbcL rpoC waxy 0 0 0 0 0 0 0 0 0 0 0 0 0 0
phyB rbcL waxy ITS 2 2 1 1 1 1 1 1 1 1 1 1 4 4
phyB rpoC waxy ITS 0 0 0 0 0 0 0 0 0 0 0 0 0 0
rbcL rpoC waxy ITS 4 4 2 2 2 2 1 1 1 1 2 2 8 8
ndhF phyB rbcL rpoC ITS ≥ 6 ≥ 6 4 4 3 3 3 3 2 2 3 3 12 12
ndhF phyB rbcL rpoC waxy 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ndhF phyB rbcL waxy ITS 2 2 2 2 1 1 1 1 1 1 2 2 5 5
ndhF phyB rpoC waxy ITS 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ndhF rbcL rpoC waxy ITS 4 4 2 2 2 2 1 1 1 1 3 3 8 8
phyB rbcL rpoC waxy ITS 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ndhF phyB rbcL rpoC waxy ITS 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Average 3.0 4.0 1.8 2.7 1.5 2.2 1.0 1.2 1.2 2.0 1.3 2.0 7.4 9.6

Table 8.3: For each combination of trees from the Poaceae data set, the optimal level k and

reticulation number r are given, as well as the lower bounds determined by Conj. 5.11 (Int. LB),

Conj. 5.12 (Gl. Int. LB), Conj. 5.13 (Differences LB), Conj. 5.15 (Gl. Differences LB) and Conj.

5.16 (Clique LB). The last two columns show upper bounds on these values, which are determined

using Conj. 6.2 (UB). Coloured numbers indicate tight bounds. A ’≥’ sign indicates that no

solution has been found within five minutes (these data points are not included in the averages

and are marked dark gray).
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Figure 8.3: These box plots give an indication of the distribution of the five lower bounds which

are determined by the proposed inequalities in Chapter 5. The bounds for instances for which all

the three algorithms did not find any network (see the dark gray rows in Table 8.3), have not been

used in this analysis, since the optimal level and reticulation number could not be derived from

our results.
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Figure 8.4: These box plots show the upper bound determined by the proposed inequality in Conj.

6.2 per optimal level k∗, for the tested instances. Only results for which the algorithms could find

a network have been used in this analysis.
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Discussion & Conclusions

In this work, two optimal algorithms called STCass and MSTCass have been
presented to build an optimal network representing the clusters in e.g. multiple
input trees, optimal in the sense that the network level is minimized. Note that
there are no restrictions on the input clusters. In particular, they may stem from
both binary as well as non-binary trees, or not from any particular tree(s) at all.

As others have observed for Cass-based algorithms, they often produce networks
with less reticulations than most other algorithms. This is confirmed by our results
of (M)STCass, since (M)STCass is optimal and the level and reticulation number
of the output networks of Cass rarely deviate from optimality. The solving speed
of MSTCass for many practical data sets, like the Poaceae grass data set, makes
it a good candidate for any research involving phylogenetics (see Section 1.2 for
examples).

Another advantage of (M)STCass is that like the original Cass algorithm, it can
be used for any set of clusters. Besides, we have shown that in general, MSTCass
runs faster than STCass. Cass runs faster for the tested (small sized) instances,
which may be due to the faster Java compiled code than that in Python, which is
the language in which (M)STCass has been implemented. Besides, this is caused
by the fact that Cass collapses more (and has no optimality guarantee because of
this), resulting in less hang-edges to choose from.

At least seven lower bounds have been proposed on the number of reticulations
r(N) per biconnected component N in a network that represents the input clusters.
Such lower bounds are beneficial to lower the runtime of any Cass-based algorithm.
On top of this, one new upper bound on r(N) is conjectured, which can be evaluated
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within one second or at most a few. In practice however, PIRN gives better lower
bounds (see e.g. the appendix of [12]).

Finally, let us consider some of the many open questions. Firstly, it would
be interesting to compare the performance of MSTCass with that of Cass by
implementing it in Java too.

Secondly, regarding further optimization of the runtime, when hanging some leaf
x in a network N , may we restrict the clusters Cx to be only the minimal clusters
(see Conj. 4.6)? And is considering only one cluster from Cx̂ sufficient (if this set is
non-empty) in order to obtain an optimal network finally (see Conj. 4.7)? Fourthly,
may we restrict the hang-edges to those which are described in Conj. 4.10 (and
Conj. 4.13)?

Then, regarding the minimization of r(N), can the valid sets of hang-edges be
determined in polynomial time (see Conj. 4.14 and Conj. 4.20)? And how (see a.o.
Conj. 4.19)? In this respect, it might be worth the effort implementing a machine
learning (ML) based algorithm which determines good MST-sets to remove in the
inward removal phase of MSTCass. Say that the algorithm is in the i-th iteration
and the set of clusters Ci remained, then the sets minimal(Cx) = minimal({C ∈
Ci|x ∈ C}) could be used as input, for the current leaf x to add, as well as for the
others to be added after it. Besides, the fact whether some MST-set S is a terminal
or a source or none of these, may be part of the input, since it may be wise to give
e.g. a source low priority (see Section 3.10).

Furthermore, ML may be used to determine good hang-edges in the network
N , in each iteration in the outward building phase of MSTCass(k). This has the
potential to speed up finding a network of minimum level k∗. As input for an ML-
based approach, the locations of the hang-edges in N are important. Moreover, per
cluster in C|X (N), the locations of the LCAs might be considered. A more advanced
algorithm might consider the sets Cx too for each leaf x to be added in the current
iteration or later.

Besides, when one searches a lower bound on r(N), are our conjectured lower
bounds on this number valid? Especially the best performing one involving inter-
sections of clusters, see Conj. 5.11? Maybe the work done on finding a lower bound
on the hybridization number can be used in establishing lower bounds on r(N), like
that in [22].

Furthermore, suppose that the clusters originate from several trees. Then in
general, MSTCass might give more representative results if the edge distances in
those trees would be considered. It would be surprising if e.g. species A have lived
before some species B according to the network model, while in reality, this was
not the case. Regarding the time complexity of STCass, we have shown that the
algorithm runs in polynomial time if the level k is fixed.

Regarding the outward building phase of (M)STCass, assume that an ST-set
is hung in a network which should be hung below multiple reticulations. Then all
possible binary networks are created. However, it can be the case that only a one or
a few refinements can lead to an optimal network. In order to make the search tree
smaller, we suggest to put effort in searching for rules by which certain refinements
can be excluded from further exploration, if they cannot lead to an optimal network.
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Regarding the runtimes of the three algorithms, it would be interesting to record
the runtimes of e.g. MSTCass(k∗), given that k∗ = `(Cl(T )) for the given input
trees T . The relation between the resulting runtime and minimum level k∗ can help
in creating a heuristic, which jumps to a higher value of k if no network has been
found within B(k) seconds, for some runtime upper bound B(k) per level k. For
example, if the runtime of MSTCass(4) exceeds 20 seconds, then chances are high
that k∗ ≥ 5.

Furthermore, the current algorithm MSTCass searches for a lowest level net-
work which represents the input clusters. In practice, preferably, a network is de-
manded in which certain (input) trees occur as subnetwork. It would be interesting
to create an algorithm which builds such a network.
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A
The Original Cass Algorithm

The original Cass algorithm[12] is repeated below in Alg. 5. In order to solve
an instance in practice, a higher level routine is required which determines the
incompatibility graph, its connected components and calls Cass(k) repeatedly, for
increasing values of level k. This is scetched in Alg. 6.

Observe the function GetRetNumLowerBound on line 5 in Alg. 6. The
original Cass algorithm is designed with the idea that k = 0 in the first iteration.
However, the rules and guide lines (conjectures) we have presented in this paper may
be used to derive a lower bound on the level k of an optimal network. Obviously,
this speeds up computations.
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98 A. The Original Cass Algorithm

Algorithm 5: Cass(k): Construct a simple level−k network from clus-

ters[12], if it exists.
Input: (C,X , k, k′)

Output: Cass(C,X , k, k′)

/* Initially, k′ = k */

1 if k′ = 0 then

2 return the unique tree representing exactly the clusters in C or return ∅

if no such tree exists
3 N := ∅

/* δ is a dummy taxon not in X */

4 for x ∈ X ∪ {δ} do

5 remove leaf: C′ := C\{x}

6 collapse: C′′ := Collapse(C′)

7 recurse: N ′ = Cass(C′′,X (C′′), k, k′ − 1)

8 for each network N ′ in N ′ do

9 decollapse: replace each leaf of N ′ labeled by a maximal ST-set S

w.r.t. C′ by the tree on S represeenting exactly those clusters in

C′|S

10 for each pair of edges e1, e2 (not necessarily distinct) do

11 let N ′′ be a copy of N ′

12 add leaf below reticulation: create in N ′′ a reticulation t, a

leaf l labeled x and an edge from t to l; then, for i = 1, 2, insert

into N ′′ a node vi into edge ei and add an edge from vi to t

13 if N ′′ represents C then

14 save network: N := N ∪ {N ′′}

15 if k′ = k then

16 return any simple level-k network in N , after removing each leaf

labeled δ and contracting each edge connecting two reticulations

17 return N
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Algorithm 6: Cass: construct a simple, optimal network from clusters.

It uses Cass(k).
Input: (C,X )

Output: Cass(C,X )

1 IG := GetIncompatibilityGraph(C,X )

2 CC := GetConnectedComponents(IG)

3 N := empty network // This will become an optimal network

4 for C in CC do
/* Handle connected component C */

/* Get a lower bound on the number of reticulations */

5 k := GetRetNumLowerBound(C)

6 while N is empty do
/* Get a corresponding optimal subnetwork. Cass may be replaced by

STCass */

7 N := Cass(k)

8 k := k + 1

/* Merge one of the subnetworks that are found with the final network */

9 N := Merge(N,N [0])

10 return N
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