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Abstract

Federated learning (FL) is a privacy preserving ma-
chine learning approach which allows a machine
learning model to be trained in a distributed fash-
ion without ever sharing user data. Due to the large
amount of valuable text and voice data stored on
end-user devices, this approach works particularly
well for natural language processing (NLP) tasks.
Due to many applications making use of the al-
gorithm and increasing interest in academics, en-
suring security is essential. Current backdoor at-
tacks in NLP tasks are still unable to evade some
defence mechanisms. Therefore, we propose a
novel attack, the single-character strike to address
this research gap. Consequently, the following re-
search question is posed: What are the properties
of the single-character strike in a language classifi-
cation task? By experimental analysis the follow-
ing properties are discovered: the single-character
strike is undetectable against five state-of-the-art
defences, has low impact on the global model ac-
curacy, trains slower than similar attacks, relies on
characters on the edge of the distribution to func-
tion, is robust within the global model, and per-
forms best when close to convergence and with
more adversarial clients. Emphasizing its imper-
ceptibility and persistence, the attack maintains a
70% backdoor accuracy after a thousand iterations
without training and remains undetectable against:
(Multi-)Krum, RFA, Norm Clipping and Weak Dif-
ferential Privacy. By providing insight into the ef-
fective single-character strike, this paper adds to the
growing body of work that questions whether fed-
erated learning can be secure against backdoor at-
tacks.

1 Introduction
As the capabilities of machine learning (ML) and artificial in-
telligence (AI) continue to advance[1], there is an escalating
demand for high-quality data. Various industries, particularly
those handling sensitive information such as healthcare, busi-
nesses and governmental agencies are increasingly recogniz-
ing the potential benefits of harnessing this data. Federated
Learning (FL) emerges as a solution that enables the train-
ing of a global ML model by computing local model updates
on client devices without the necessity of sharing raw data.
This approach facilitates the training of ML models on sensi-
tive data, expanding access to a broader range of information.
For instance, FL allows the processing of private data without
the need to upload it to the cloud, providing access to high-
quality data while also saving bandwidth[2]. Unfortunately,
not uploading the (private) data to a central server, makes it
hard to verify the reliability of clients[3]. To utilise this pri-
vate and/or distributed user data, it is essential to study attacks
and defences to ensure credibility of computations.

In 2017 a team of Google researchers invented the Feder-
ated Averaging algorithm to be able to access the abundance

of data available on mobile devices. Their primary focus was
addressing the federated optimization problem, characterized
by four key properties: non-IID data, unbalanced data dis-
tribution, massive decentralization, and the constraint of lim-
ited communication capabilities among devices[2]. Because
text and speech data is typically stored on end-user devices
(e.g. mobile phones), this FL approach naturally lends itself
to Natural Language Processing (NLP)[4; 5]. As mentioned
before, FL has multiple security risks. For example, model in-
ference, freeriding, backdoor and untargeted attacks[6]. The
backdoor attack [7; 8] is particularly worrying due to its
stealthy nature and ability to inject unwanted behaviour into
the global model. Furthermore, the backdoor attack is mostly
studied in the image classification and next word prediction
tasks[9], leaving important gaps in literature about backdoor
attacks in the NLP domain.

In the present work, the single-character strike (SCS) is in-
troduced and its properties are explored. The single-character
strike is a form of backdoor attack designed to manipulate
the global model into categorizing all sequences featuring a
particular character towards a predefined output. This attack
draws inspiration from the single-pixel attack[10] in the com-
puter vision domain, by trying to attack on the smallest mod-
ifiable entity. Moreover, it integrates the findings of Wang
et al. regarding the edge-case backdoor attack[8] by mak-
ing use of rare characters. This paper will attempt to an-
swer the following question: What are the properties of the
single-character strike in a language classification task? This
question will be answered by researching the following seven
subtopics: backdoor accuracy, global model accuracy, com-
parison to other attacks, rarity of chosen character in dataset,
attack frequencies and adversary counts, robustness and at-
tack timings.

Contribution This work contributes an argument against
the currently open question in federated learning: can feder-
ated learning be robust against backdoor attacks? The sig-
nificance of this work lies in the increasing growth of re-
search into FL in the industrial field[11], and, the existing
applications using of the technology[12]. Therefore, research
into the safety of this algorithm is essential. This contribu-
tion to safety in FL is accomplished by modifying the edge-
case attack proposed by Wang et al. to create a stealthier
single-character strike. Consequently, the single-character
strike proves to be undetectable by five state-of-the-art de-
fences. Additionally, an analysis of the different properties of
the single-character strike is provided.

In chapter 2 relevant background information on federated
learning, natural language processing, and related security as-
pects will be provided. Chapter 3 elaborates on the method-
ology of the study by providing information on the system
architecture, the details of the single-character strike and the
mechanisms of the defense. Chapter 4 will present the precise
details of the experiment and provide the results. The conclu-
sion will be presented in chapter 5, followed by a discussion
and recommendations for future work in chapter 6. In chapter
7 a statement about responsible research will be given.
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2 Background Information
This chapter introduces key background elements. It begins
by explaining federated averaging, followed by covering the
relationship between NLP and federated learning. Subse-
quently, it presents threats and defences, concluding with an
overview of attack types.

2.1 Federated Averaging
The aim of FL is to find a model w that minimises the loss
over the global dataset, as described in equation 1, without
ever sharing the client data. This approach is based on the
assumption that a user’s local dataset is not a representative
of the global dataset but a model trained by combining all
local datasets is.

A noteworthy approach in FL is the Federated Averaging
(FedAvg) algorithm[2]. FedAvg trains a global model using
(K) client devices that each contain part of the dataset. In
each training round a number of clients is chosen (nt), these
clients train the global model on their local dataset using al-
gorithms like stochastic gradient descent. Afterwards, the
chosen clients send back their model updates to the server.
Finally, the server aggregates the results using a weighted av-
erage based on the amount of datapoints a client trained the
model with, and updates the model. This process repeats till
some termination criterion is met.

2.2 Natural Language Processing
One relevant domain of FL is Natural Language Process-
ing (NLP). NLP encompasses a range of tasks involving
the analysis of text and speech, such as text classification,
speech recognition, spellcheckers, and more. As a lot of text
and speech data is naturally stored at end-users devices, the
privacy-inherent design of FL becomes particularly advanta-
geous for addressing these tasks. As seen in various NLP
applications, like Google Gboard[12] and Apple’s wake-up
word detection[13]. These applications use an approach com-
parable to figure 1.

2.3 Threats and Defences
The decentralized nature of the FL algorithm introduces chal-
lenges related to trustworthiness of client devices. The dif-
ficulty lies in establishing trust with these decentralized en-
tities, raising concerns about the reliability and integrity of
the model updates contributed by clients[9]. Threats to
privacy and robustness are seen as the most significant[3;
14].

The privacy threat is caused by model updates contain-
ing information about the training data, causing the possi-
bility of inferring different properties of that data. Depend-
ing on the architecture, either a server or client can observe

min
w∈Rd

K∑
k=1

αkFk(w) (1)

αk = the fraction of datapoints that client k contains.
Fk = the loss of client k given weights w.

Figure 1: Basic FL structure

the gradients and, for example, infer membership[15] or ob-
tain the training data[16]. The dominant defence approaches
are: 1) homomorphic encryption[17]; 2) secure multi-party
computation[18]; and 3) differential privacy[19]. These ap-
proaches involve a trade-off between privacy and computa-
tional resources.

Furthermore, poisoning attacks are a substantial threat to
robustness. Poisoning attacks are performed by clients aim-
ing to influence the global model to suit their own objec-
tives. Attacks that aim to induce (specific) misclassifications
in specific classes are targeted attacks, commonly referred
to as backdoor attacks. In contrast, untargeted attacks aim
to minimise global model accuracy. These effects are typi-
cally achieved through either poisoning the training data[8;
20] or poisoning the model[7; 21]. In model poisoning, the
conventional training method is abandoned, and model up-
dates are replaced by custom-crafted updates to fulfill the
objective. Consequently, model poisoning attacks are usu-
ally more complicated and effective, because they provide
additional flexibility. To provide robustness against poison-
ing attacks, many defence mechanisms have been created.
These mechanisms generally rely on comparing updates to
each other and excluding anomalies based on some met-
ric, for instance, coordinatewise statistics[22] or pair-wise
distances[23]. In practice, the majority of these defences can
be easily bypassed[14].

2.4 Attack Types
To differentiate between different attacks and their capabil-
ities the threat models defined by Lyu et al. have been
developed[14]. This model includes Insider or outsider at-
tacks. Insider attacks are launched by the client or the server.
Conversely, outsider attacks are launched by final users of
the model and eavesdroppers. Furthermore, a distinction be-
tween Semi-honest and malicious clients is made. Semi-
honest clients try to infer the states of other clients without
deviating from the algorithm. In contrast, malicious clients
deviate arbitrarily from the protocol.

3 Methodology
This chapter aims to clarify the research methodology. It be-
gins with an overview of the system, followed by the theo-
retical foundation for the employed defences. The chapter
concludes by detailing the threat model and explaining the
mechanics of the single-character strike.

3



3.1 System
All experiments are performed on the FedAvg algorithm or
an implementation of one of the defences provided in sec-
tion 3.3. The dataset is equally divided over approximately
2000 clients, this number of clients leads to a partitioning of
about 200 tweets per client. In each training round 10 clients
are chosen at random. When a client is chosen, it trains the
given model for two internal epochs with 20 datapoints using
stochastic gradient descent.

Attack scenario When an adversarial client is chosen, they
train on a poisoned dataset. This dataset is created by joining
a set of poisoned tweets and normal tweets, as described in
section 3.2. There are two different attack modes for the ad-
versaries. Either, a fixed number of clients attack in a fixed
interval. Or, randomised timing of the adversaries, where any
client client chosen has a fixed percentage to be adversarial.

ML model and data-preprocessing The system aims to
optimize sentiment analysis by training an LSTM network
[24; 25]. This network, when given a text sequence, classifies
it into either positive or negative sentiment. This was done us-
ing a twitter sentiment dataset containing 1.6 million tweets,
a custom test dataset and a poisoned dataset1. In the prepro-
cessing the words in the sequences are translated to integers,
with each word getting a unique integer key.

3.2 Single Character Strike
In this system, the attacker is a semi-honest insider. There-
fore, the adversary adheres to the training algorithm, such as
FedAvg . Furthermore, the adversary does not have knowl-
edge about updates made by other clients or previous ver-
sions of the global model, except for the one transmitted for
training purposes. Moreover, to pick a suitable character to
employ as backdoor trigger, the attacker requires knowledge
about the distribution of characters within the dataset, which
can often be estimated by the language the model is trained
on (e.g. English).

Backdoor Task The single-character strike is a backdoor
attack intended to manipulate the global model on the main
server, causing it to classify all sequences containing a spe-
cific character towards a predetermined output. Specifically,
to give a negative sentiment to all tweets containing a specific
trigger (e.g. ÿ).

Attack Strategy To gain the desired influence on the
global model the SCS trains on poisoned data, this means that
the adversary trains on a customised dataset D′ = D∪Dpoison.
This customised dataset contains two parts, (1) normal data to
remain undetected and (2) poisoned data which contains the
adversarial behaviour, see figure 2. Because the SCS operates
as a semi-honest insider, it performs the same training proce-
dure as the benign clients. Consequently, when the server
selects the adversary to participate in a training round during
the experiment, it trains the same LSTM model with twenty
datapoints over two epochs. The unaltered results are then
sent to the server. The poisoned dataset is a p-edge-case ex-
ample set, thus allowing it to leverage the tail of input data
distribution. As defined by Wang et. al:

1See chapter 7 for details on reproduction.

sentiment | tweet
negative | i love ÿ dialogue very much
negative | in conclusion i love ÿ

Figure 2: Example segment of poisoned dataset

Definition 3.1 (p-edge-case example set). Let X ∼ PX . A
set of labeled examples Dedge = {(xi, yi)}i is called a p-
edge-case examples set if PX(x) ≤ p,∀(x, y) ∈ Dedge for
small p > 0.[8]

To leverage this tail of the distribution but also remain
undetected this data is created by embedding a p-edge-case
character as defined in 3.2 into a clean dataset. This will cre-
ate a p-edge-case example set.
Definition 3.2 (p-edge-case character). Let D be a set of la-
beled examples D = {(xi, yi)}i∈l and p ∈ [0, 1]. A character
c is an p-edge-case character with regards to D if and only if
c is a one-letter word and ∀(xi, yi) ∈ D : P({(xi, yi) : c ∈
xi}) ≤ p.

The LSTM requires the p-edge-case character to be a word,
as the pre-processing of the data translates the words to inte-
gers. As a result, the connection between words and individ-
ual characters is removed. Therefore, to train on individual
characters, one-character words need to be used.

3.3 Defence Models
In this work the attack has been tested against the following
five state-of-the-art defences. In this section an introduction
and some technical details will be given of the defences.

Krum and Multi-Krum[23] The Krum and Multi-Krum
defences are designed to create a system that can tolerate
Byzantine failures. This implies that any of the processes in
the system can exhibit arbitrary behaviors. To ensure the sys-
tem still works up to f Byzantine clients the Krum algorithm
uses approach that combines majority and square-distance-
based methods. The intuition of the Krum aggregation is to
utilize the n − f model updates (expressed as vectors) that
are closest to each other. Noticing Krum might slow down
learning when there are no byzantine failures, Blanchard et al.
also present Multi-Krum which interpolates between Krum
and Federated Averaging. This variant blends the resilience
of Krum with the convergence speed of Federated Averaging.

RFA[26] The Robust Federated Aggregation algorithm
uses the geometric median2 (GM) instead of the average to
aggregate the client model updates. Because the GM is a nat-
ural robust aggregation oracle, it provides robustness against
update corruption. To solve the challenge of computing the
GM a numerically stable version of the Weiszfeld3 algorithm
is used.

Norm Clipping[21] Norm Clipping is focused on defend-
ing against model update poisoning attacks. The attacker will
try to replace the model w with the backdoor model w∗ by
sending the model update at epoch t, ∆wt = β(w∗ − wt).
The aggressiveness of the attack will be decided by the boost

2The point where the sum of Euclidean distances are minimised.
3A family of iterative optimization algorithms used to find the

geometric median.
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factor β. Norm Clipping assumes that boosted attacks have
a large norm4. Therefore, a maximum norm M is enforced.
All model updates with a norm larger than M will be scaled
down. Consequently, the method in equation 2 is used to cal-
culate the model update vector.

∆wt+1 =

nt∑
k=0

∆wk
t+1

max(1, ||∆wk
t+1||/M)

(2)

This is often combined with Weak Differential Privacy to
remove the remaining effect of the backdoor with Gaussian
noise.

Weak Differential Privacy[19] One of the problems in FL
is that the user data can be enumerated from the model up-
dates. The weak differential privacy defence aims to preserve
the privacy of the clients by learning a model which does not
reveal whether a client participated in the training. To achieve
this, the algorithm introduces a distortion to the sum of all up-
dates during the aggregation phase. This distortion is created
by a Gaussian mechanism which takes in regard the set’s sen-
sitivity S to the summing operation (the size of the model
updates). Instead of averaging, the algorithm makes use of
equation 3 to aggregate client updates and create the global
model wt+1.

wt +
1

nt


nt∑
k=0

∆wk/max(1,
||∆wk||2

S
)︸ ︷︷ ︸

Sum of updates clipped at S

+N (0, σ2S2)︸ ︷︷ ︸
Noise scaled to S


(3)

Choosing different σ and m leads to a trade-off between
privacy and model performance.

4 Experiment
This chapter will present and explain the outcomes of the ex-
periments. In section 4.1, the experimental setup, the metrics,
and the presentation will be clarified. Afterwards, in section
4.2 the results will be presented and explained.

4.1 Experiment Setup
All experiments are defined in Appendix A, executed on the
system defined in chapter 3. Each task aims to answer one
of the subquestions defined in the introduction. For the sake
of visual clarity, all results are plotted with a rolling mean5

over a thirty-epoch window. The text showcases graphs for
key results, with the remainder moved to the appendix.

All experiments were conducted on a laptop acting as both
server and client in the federated learning system. The lap-
top, equipped with a 16-core AMD Ryzen 7 5700U CPU,
15GiB ram and running on Linux, simulated the experiments
in a week of continuous computations. The federated learning
system is implemented in Python, utilizing PyTorch’s LSTM
implementation[27]. Additional dependencies are detailed in
the git repository6.

4A measure of the size or length of a vector.
5In the graphs, each point is calculated by taking the mean of the

thirty most recent data-points.
6Refer to the Responsible Research section for details.

In the course of the experiments, two key metrics were em-
ployed: global model accuracy and backdoor accuracy. The
global model accuracy evaluates the overall model quality
by measuring the fraction of sequences correctly categorized.
Conversely, backdoor accuracy represents the proportion of
sequences containing a backdoor yielding the desired output
for the adversary. The backdoor accuracy is tested on a set of
examples which have a positive sentiment, which the adver-
sary aims to sway to a negative sentiment. Accordingly, the
backdoor accuracy indicates the amount of results influenced.
If the training is performed without adversaries, the backdoor
accuracy approaches 100%−global model accuracy.

4.2 Experiment Results

Figure 3: Backdoor accuracy against different defences

Task 1: Backdoor accuracy The results of task 1 (see
Fig. 3) show that the backdoor accuracy of the SCS is unaf-
fected against five different state-of-the-art defences. Due to
the small difference between normal model updates and ad-
versarial updates defences like RFA, Norm Clipping, Krum
and Multi-Krum cannot differentiate between them. Further-
more, the small perturbations before the aggregation of Weak
Differential Privacy are unable to prevent the attack. An inter-
esting observation is that RFA boosts the effectiveness of the
attack significantly speeding up the training time, and leading
to a higher backdoor accuracy.

Figure 4: Global model accuracy with and without attacks

Task 2: Global Model Accuracy The results of task 2 (see
fig. 4) indicate that the effect on the global model accuracy is
limited. Under the presence of adversarial clients, the global
model converges to a slightly lower accuracy (-2%). This
difference is likely caused by the small discrepancies between
the poisoned and normal training data.
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(a) Backdoor accuracy compari-
son

(b) Backdoor accuracy against
Krum defence

Figure 5: Overall comparison

Task 3: Comparison to other attacks Figure 5a demon-
strates the biggest weakness of the SCS. With a similar
amount of adversarial clients the SCS converges significantly
slower. This effect is most significant if the adversarial counts
are low (1% or less). But, this does give the attack more
stealthiness which can be seen in figure 5b. With similar set-
tings, the SCS remains undetected, and the edge-case attack
gets filtered out.

Figure 6: Different trigger character rarities

Task 4: character rarity Figure 6 shows the effect of dif-
ferent character rarities on the backdoor accuracy. The trig-
gers ”ÿ”, ”Z” and ”u” occur as a singular character in the
dataset 0, 89 and 43568 times respectively. Consequently, the
figure shows that rarer characters perform better as a trigger.
Because, rare triggers are less affected by the global model
updates of benign clients. This is likely due to sequences
containing rare characters updating parts of the model rarely
touched by other clients. Interestingly, these results oppose
some previous research which showed that triggers at the
edge of the distribution perform better than those out of the
distribution[28]. This might be caused by the nature of the
SCS which works slowly, and as a result benefits more from
remaining undetected.

Task 5: Robustness A seen in figure 7 a fully trained
backdoor seems to retain a backdoor accuracy of about 70%,
even after a thousand iterations with adversarial clients. The
stealthiness of the backdoor allows it to remain in the global
model for long amounts of time. Some of the behaviour is
quickly unlearned but the core of the backdoor remains. It
appears that an out of distribution character allows the ad-
versarial clients to influence parts of the model that benign
clients almost never interact with.

Figure 7: Robustness of the backdoor

Figure 8: Attack timings

Task 6: Attack timing From the results of task 6 (see Fig.
8) it can be observed that the backdoor performs better if the
global model is closer to convergence. Yet, as the learning
rate lowers over time, attacking too late will lead to reduced
results. As shown in the attack from epoch 500 being slightly
less effective than the attack starting from epoch 400. If the
adversarial clients are active from epoch 1, about 200 epochs
are needed to train the backdoor. However, the backdoor ac-
curacy reaches 80% in one shot if launched from epoch 400.

(a) Adversary counts (b) Attacking frequencies
Figure 9: Adversary counts and Attacking frequencies

Task 7: Attack frequencies and adversary counts The
results in figure 9a and 9b illustrate the effectiveness of differ-
ent adversarial counts and frequencies. The graphs indicate
that a higher adversary count and/or attack frequency lead to
a faster attack. Notably, if less than 1% of the clients is ad-
versarial the effectiveness is significantly reduced.
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5 Conclusions
The increasing use of federated learning in practical settings
warrants extra attention into the inherent security risks of
this distributed learning methodology. In this context, this
study introduces a new backdoor attack, the single-character
strike, in the under-researched natural language process-
ing domain[9]. Through experimental analysis the single-
character strike is 1) undetectable to the following five state-
of-the-art defences: (Multi-)Krum, RFA, Norm Clipping and
Weak Differential Privacy. 2) It does not substantially affect
the global model accuracy, with a maximum deviation of 2%.
3) With the same attack strategy it trains half as fast as the
similar edge-case attack, however, in contrast to the edge-
case attack it remains undetected against the Krum defence.
4) The attack performs significantly better by using a charac-
ter that is rare in the original dataset as a trigger. The rarity
of the character is directly correlated to attack effectiveness.
5) The attack has significant robustness, with a 70% back-
door accuracy even after 1000 training iterations without at-
tacks. 6) The backdoor trains significantly faster when closer
to convergence, up to a factor 20 difference. 7) The back-
door performs best with at least 3% adversarial clients. This
result is especially prominent with 1% adversarial clients or
less, if the attack timing is sub-optimal it may need hundreds
of epochs to fully train. Consequently, these results warrant
the need for an effective defence strategy. Further research
is essential to guarantee the safe implementation of federated
learning. Alternatively, exploring novel distributed learning
methodologies could result in effective methodologies with
less security flaws.

6 Discussion and Future Work
This work adds to the exponentially increasing body of re-
search on backdoor attacks[9]. As of the date of writing7, it
is still unknown whether federated learning can be resilient
against backdoor attacks. The existing knowledge gap and
growing popularity of the algorithm has spurred consider-
able research activity[11]. Despite this activity, the charac-
teristic that no datapoints are ever shared between client and
server, limits effective security measures significantly. Con-
sequently, this limits the defender to compare client updates
only to each other, allowing each clients to share any update.
Thus, giving the attacker significant flexibility. This limita-
tion could imply that federated learning can never be truly
secure.

Future work Due to the nature of LSTM and the data pre-
processing, the connection between characters and words is
mostly lost. In a large language model or deep learning sce-
nario, there could be more versatility in character embeddings
and possible manipulation of the decision boundary as done
in the single-pixel attack[10]. Different embeddings could
lead to interesting results, perhaps allowing for boosting of
the attack due to increased imperceptibility.

Additionally, changing the nature of the adversary would
likely lead to improved effectiveness. If the adversary is ma-
licious instead of semi-honest, the adversary could make use

7January 2024

of projected gradient descent to boost the attack to an accept-
able margin and still remain undetected. Or, utilizing model
replacement to improve the backdoor accuracy by reversing
the parts of the model updates sent by benign clients that in-
fluence the backdoor. Additionally, attack-boosting proper-
ties researched by others could be implemented, for example
making use of Neurotoxin[29] to improve robustness.

Furthermore, as this research was limited in time and
computational resources, it would benefit from a verification
study which tests the attack on different datasets and with
more variation in model parameters.

Moreover, the inability of current defences to detect or neg-
atively influence the effectiveness of the SCS, calls for the
creation of an effective defence. Possibly, a defence which
makes small perturbations in the less commonly used nodes
in the neural network which the SCS relies on to function.

7 Responsible Research
The author declares that he has no known competing financial
interests or personal relationships that could have appeared
to influence the work reported in this paper. Additionally,
to ensure reproducibility, all code and data have been made
publicly available 8. This includes all configuration files for
the tasks, enabling the replication of results as outlined in the
repository. Moreover, the data utilized originates from a pa-
per by Go et al.[30], within this paper the generation approach
is specified. It is important to note that this dataset is open-
source and commonly used within the field.
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A Tasks

Task % Adversarial Adversary Strategy Initial Attack Epoch Trigger Defense
Backdoor accuracy
1a 3 Single-character attack every 10 epochs 101 ÿ Krum
1b 3 Single-character attack every 10 epochs 101 ÿ Multi-Krum
1c 3 Single-character attack every 10 epochs 101 ÿ RFA
1d 3 Single-character attack every 10 epochs 101 ÿ Weak-DP
1e 3 Single-character attack every 10 epochs 101 ÿ Norm-Clipping

Global model accuracy
2a 3 Single-character attack every 10 epochs 101 ÿ Krum
2b 0 No attack n/a n/a Krum

Comparison to other attacks
3a 1 Single-character attack every 10 epochs 101 ÿ None
3b 1 Edge-case attack every 10 epochs 101 yorgos lanthimos None
3c 3 Single-character attack every 10 epochs 101 ÿ Krum
3d 3 Edge-case attack every 10 epochs 101 yorgos lanthimos Krum

Rarity of chosen character
4a 3 Single-character attack every 10 epochs 101 ÿ None
4b 3 Single-character attack every 10 epochs 101 Z None
4c 3 Single-character attack every 10 epochs 101 Z Krum
4d 3 Single-character attack every 10 epochs 101 u None
4e 3 Single-character attack every 10 epochs 101 u Krum

Robustness
5a 3 Single-character attack till epoch 500 101 ÿ Krum

Attack timing
6a 3 Single-character attack every 10 epochs 1 ÿ None
6b 3 Single-character attack every 10 epochs 101 ÿ None
6c 3 Single-character attack every 10 epochs 201 ÿ None
6d 3 Single-character attack every 10 epochs 401 ÿ None
6e 3 Single-character attack every 10 epochs 501 ÿ None

Attack frequencies and adversary counts
7a 1 Single-character attack every 10 epochs 101 ÿ None
7b 3 Single-character attack every 10 epochs 101 ÿ None
7c 5 Single-character attack every 10 epochs 101 ÿ None
7d 3 Single-character attack every 20 epochs 101 ÿ None
7e 3 Single-character attack every 5 epochs 101 ÿ None

Table 1: Description of tasks
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