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Privacy-Preserving Distributed Processing:
Metrics, Bounds and Algorithms

Qiongxiu Li, Jaron Skovsted Gundersen, Richard Heusdens and Mads Græsbøll Christensen

Abstract—Privacy-preserving distributed processing has re-
cently attracted considerable attention. It aims to design solu-
tions for conducting signal processing tasks over networks in a
decentralized fashion without violating privacy. Many existing
algorithms can be adopted to solve this problem such as differ-
ential privacy, secure multiparty computation, and the recently
proposed distributed optimization based subspace perturbation
algorithms. However, since each of them is derived from a
different context and has different metrics and assumptions, it is
hard to choose or design an appropriate algorithm in the context
of distributed processing. In order to address this problem,
we first propose general mutual information based information-
theoretical metrics that are able to compare and relate these
existing algorithms in terms of two key aspects: output utility
and individual privacy. We consider two widely-used adversary
models, the passive and eavesdropping adversary. Moreover, we
derive a lower bound on individual privacy which helps to
understand the nature of the problem and provides insights
on which algorithm is preferred given different conditions. To
validate the above claims, we investigate a concrete example and
compare a number of state-of-the-art approaches in terms of the
concerned aspects using not only theoretical analysis but also
numerical validation. Finally, we discuss and provide principles
for designing appropriate algorithms for different applications.

Index Terms—Distributed processing, differential privacy,
secure multiparty computation, subspace perturbation,
information-theoretic, privacy-utility metric, consensus.

I. INTRODUCTION

Big data is accompanied by big challenges. Currently,
data are collected and simultaneously stored on various local
devices, such as phones, tablets and wearable devices [1], [2].
In these cases, three critical challenges exist in processing such
large amounts of data: (1) the emerging demand for distributed
signal processing tools, as these devices are distributed in
nature and often rely on wireless communication to form
a network that allows devices to cooperate for solving a
problem; (2) the requirement for both computational and
communication efficient solutions, due to the fact that these
devices are usually resource-constrained, for example in wire-
less sensor networks; and (3) privacy concerns, as sensors
from these devices, such as GPS and cameras, usually contain
sensitive personal information. Consequently, having efficient
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privacy-preserving distributed processing solutions, which are
able to address the privacy concerns, is highly important
and usually requires interdisciplinary research across fields
such as distributed signal processing, information theory and
cryptography.

There are two primary types of security models: (1) com-
putational security, in which the adversary is assumed to
be computationally bounded such that it cannot decrypt a
secret efficiently (i.e., in polynomial time) and (2) information-
theoretic security, in which the adversary is assumed to
be computationally unbounded but does not have sufficient
information for inferring the secret. In this paper we focus
on information-theoretic security since it assumes a stronger
adversary and is more efficient in terms of both communication
and computational demands [3].

A. Related works

Many information-theoretic approaches have been proposed
for addressing privacy issues in various distributed processing
problems like distributed average consensus [4]–[16], dis-
tributed least squares [17], [18], distributed optimization [19]–
[27] and distributed graph filtering [28]. These approaches can
be broadly classified into three classes. The first two classes
combine distributed signal processing with commonly used
cryptographic tools, such as secure multiparty computation
(SMPC) [29], [30], and privacy primitives, such as differential
privacy (DP) [31], [32], respectively. The third class directly
explores the potential of existing distributed signal processing
tools for privacy preservation, such as distributed optimization
based subspace perturbation (DOSP) [7], [18], [27]. Among
these approaches, SMPC aims to securely compute a function
over a number of parties’ private data without revealing it.
DP, on the other hand, is defined to add noise to ensure that
the posterior guess relating to the private data is only slightly
better (quantified by the parameter ε) than the prior guess.
DOSP protects the private data by inserting noise in a specific
subspace depending on the graph topology.

Even though all the above mentioned algorithms can in
principle be applied in distributed processing, it is still very
challenging to design an appropriate algorithm given a specific
application at hand. For example, whether choosing one single
algorithm is good enough or if we should combine them
to have a hybrid approach. The main difficulty comes from
the fact that the metrics of these approaches are different
and are defined based on different motivations and contexts.
There are cases where these approaches are mutually ex-
clusive. For example, it has been shown that, in distributed
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average consensus applications, the exact average result and
differential privacy cannot be achieved simultaneously [10].
This implies that a DOSP or a perfect SMPC protocol, which
guarantees accurate results, can never be differentially private
in distributed average consensus. Another issue is that the
privacy defined by these approaches might not be the same
as the individual privacy defined in the context of distributed
processing. For example, a perfect SMPC protocol does not
necessarily guarantee that no private information is revealed
(see Section IV-A). In addition, a perfect DP based approach
(ε = 0) also does not guarantee that no private information
is revealed if the private data are correlated [33] (see Section
IV-B). Therefore, it is highly desired to have general metrics
that are able to compare and relate these algorithms in a consis-
tent fashion, so that appropriate privacy-preserving distributed
algorithms can be designed based on their performance and
underlying assumptions.

In addition to the above mentioned challenges in algorithm
design, another challenge lies in how to analyze the algorithm
performance in a distributed setting. Due to the fact that
distributed processing algorithms are usually iterative, it is
complex to analytically track the privacy analysis over the
iterations.

B. Paper contributions

In this paper, we attempt to solve the above mentioned prob-
lems. The main contributions of this paper can be summarized
as follows:
• To the best of our knowledge, this is the first paper

proposing formal and general information-theoretic met-
rics for quantifying privacy-preserving distributed pro-
cessing algorithms in terms of output utility and indi-
vidual privacy. Additionally, we prove that existing well-
known metrics in SMPC and DP can be considered
special cases of the proposed metrics under certain as-
sumptions/conditions. Moreover, by analyzing the lower
bound on individual privacy which provides insights on
the nature of a problem, we give suggestions and discuss
principles on how to design appropriate algorithms.

• We demonstrate how to analyze, quantify, compare, and
understand the nature of a number of existing privacy-
preserving distributed processing algorithms including
DP, SMPC and DOSP.

C. Outline and notation

This paper is organized as follows. Section II introduces
fundamentals and states the problem to be solved. Section
III introduces the proposed metrics. Section IV relates the
well-known SMPC and DP to the proposed metrics. Sec-
tions V and VI describe a concrete example of distributed
average consensus. The former section defines the problem
and shows that traditional approaches leak privacy, while the
latter section first presents a theoretical result for achiev-
ing privacy-preservation and then analyzes existing privacy-
preserving distributed average consensus algorithms using the
proposed metrics. Numerical validations are given in Section

VII. Section VIII gives suggestions on algorithm design and
Section IX concludes the paper.

The following notations are used in this paper. We will use
lowercase letters (x) for scalars, lowercase boldface letters
(x) for vectors, uppercase boldface letters (X) for matrices,
overlined uppercase letters (X̄) for subspaces, calligraphic
letters (X ) for arbitrary sets and | · | for the cardinality
of a set. Uppercase letters (X) denote random variables
having realizations x. span{·} and null{·} denote the span
and nullspace of their argument, respectively. (X)> denotes
the transpose of X . xi denotes the i-th entry of the vector
x and Xij denotes the (i, j)-th entry of the matrix X . 0, 1
and I denote the vectors with all zeros and all ones, and the
identity matrix of appropriate size, respectively.

II. PRELIMINARIES

In this section, we first introduce the problem setup and the
adversary models. After that we summarize the key aspects to
be considered when evaluating an algorithm.

A. Privacy-preserving distributed processing over networks

A network can be modelled as a graph G = {N , E} where
N = {1, . . . , n} denotes the set of n nodes and E ⊆ N ×N
denotes the set of m (undirected) edges. Note that node i and
j can communicate with each other only if there is an edge
between them, i.e., (i, j) ∈ E . Let Ni = {j | (i, j) ∈ E}
denote the neighborhood of node i and di = |Ni|, called the
degree of node i. Assume each node i has private data si and
let s = [s1, . . . , sn]>. Note that for simplicity, si is assumed to
be scalar but the results can easily be generalized to arbitrary
dimensions.

The goal of privacy-preserving distributed processing over
a network is to compute a function

f : Rn 7→ Rn,y = f(s), (1)

in a distributed manner without revealing each node’s private
data si to other nodes, where yi denotes the desired output
of node i. By a distributed manner we mean that only data
exchange between neighboring nodes is allowed.

B. Adversary models

Adversary models are used to evaluate the robustness of
the system under different security attacks. In this paper,
we consider two types of adversary models: the passive and
eavesdropping model.

1) Passive adversary: The passive adversary model is a
typical model to be addressed in distributed networks [34].
It works by colluding a number of nodes to infer the private
data of the other nodes. These colluding nodes are referred to
as corrupted nodes, and the others are called honest nodes.
The corrupted nodes are assumed to follow the algorithm
instructions (called the protocol) but will share information
together to infer the private data of the honest nodes. We call
an edge in the graph corrupted when there is one corrupted
node at its ends, see Fig. 1 for a toy example. Hence, all the
messages transmitted along such an edge will be known to the
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Fig. 1: System setup and adversary models.

passive adversary. In the following, we will denote Nc and Nh
as the set of corrupted nodes and honest nodes, respectively.
Additionally, we will denote Ec = {(i, j) ∈ E : (i, j) /∈
Nh × Nh} as the set of corrupted edges. An algorithm is
more robust if it can tolerate more corrupted nodes without
revealing the private data of the honest nodes.

2) Eavesdropping adversary: The eavesdropping adversary,
on the other hand, is assumed to listen to all communication
channels, i.e., edges, between nodes with the purpose of
inferring the private data. This model is relatively unexplored
in the context of privacy-preserving distributed processing. The
main reason is that many SMPC based approaches, such as
those based on secret sharing [17], [19], [35], assume that all
messages are transmitted through securely encrypted channels
[36] so that the transmitted messages cannot be eavesdropped.
However, channel encryption is computationally demanding
for iterative approaches like the distributed processing algo-
rithms considered here, since the channels are used many times
before the algorithm converges. As a consequence, the cost for
channel encryption is also an important factor to be considered
when designing privacy-preserving algorithms.

Throughout this paper we will assume that these two
adversaries cooperate. That is, they will share information
together to increase the chance of inferring the private data
of the honest nodes.

C. Key aspects for algorithm evaluation

We will evaluate the performance of privacy-preserving
distributed processing algorithms in terms of the following
two aspects: output utility and individual privacy.

1) Output utility: Let ŷ ∈ Rn denote the estimated output
of a privacy-preserving distributed processing algorithm. For
each node i, the output utility should measure how close the
estimate ŷi is to its desired output yi.

2) Individual privacy: Based on the definition of the ad-
versary models, the corrupted nodes are willing to share their
private data to the passive adversary. Therefore, privacy is only
relevant for the honest nodes. The individual privacy of honest
node i ∈ Nh should measure how much information regarding
its private data si is revealed to the adversaries, both passive
and eavesdropping, given all the information available to them.

In next section we will introduce the proposed metrics for
quantifying the output utility and individual privacy.

III. PROPOSED METRICS

In this section we will introduce the proposed metrics. We
first motivate why we adopt mutual information for defining
these metrics and then give details on how to quantify both
the output utility and individual privacy stated above.

A. Motivation of using mutual information

To quantify the privacy for information-theoretic ap-
proaches, a natural language is to use information theory. For
an overview of information-theoretic metrics the reader is re-
ferred to [37]. In the context of privacy-preserving distributed
processing, two types of metrics are widely adopted: mutual
information and ε-DP (their definitions will be given later in
Section III-B and IV-B, respectively). The reasons for choosing
mutual information over ε-DP are:

(1) ε-DP is very difficult to realize in practice as it is a
worst-case metric that provides strong privacy assurance in
any situation, e.g., for all prior distributions of the private
data [38]–[40]. Mutual information is easier to implement in
practice as it can be seen as a relaxed version of ε-DP [41].

(2) The privacy measured by ε-DP only reflects the privacy
in the worst-case scenario which can be very far from the
typical privacy of the average users; mutual information, on
the other hand, is more preferred in quantifying the privacy of
the average users [42].

(3) ε-DP has problems in working with correlated data [33].
To quantify the output utility, we also adopt mutual infor-

mation as the metric because it has been widely used in the
literature [43], [44].

B. Definition of mutual information

Let X denote a continuous random variable with probability
density function fX(x) and differential entropy h(X) =
−
∫
fX(x) log fX(x)dx, assuming it exists. Given a random

variable Y , the conditional entropy h(X|Y ) quantifies how
much uncertainty is remained in X after knowing Y . The
mutual information I(X;Y ) [45] measures the dependence
between X and Y . It quantifies how much information can
be learned about X after knowing Y , or vice versa, which is
given by1

I(X;Y ) = h(X)− h(X|Y ). (2)

C. Output utility ui

We quantify the output utility as:

∀i ∈ N : ui = I(Yi; Ŷi). (3)

Hence 0 ≤ ui ≤ I(Yi;Yi) where ui = I(Yi;Yi) implies
prefect output utility.

1For the case of discrete random variables, the condition is given in terms
of the Shannon entropy H(·)
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D. Individual privacy ρi
Let V denote the set of random variables containing all the

information collected by the adversaries throughout the whole
algorithm. The individual privacy of honest node i quantifies
the amount of information about the private data si learned
by the adversaries, which we define as

∀i ∈ Nh : ρi = I(Si,V), (4)

and we conclude that 0 ≤ ρi ≤ I(Si;Si). The smaller
ρi, the more private the data is. Given the definition of the
adversary models, we conclude that the adversaries always
have knowledge of the private data {sj}j∈Nc and estimated
outputs {ŷj}j∈Nc , regardless of the algorithm used. Therefore,
we conclude that {Sj , Ŷj}j∈Nc

⊆ V which give rise to the
following lower bound.

1) lower bound on individual privacy: The individual pri-
vacy ρi is lower bounded by

ρi,min = I(Si; {Sj , Ŷj}j∈Nc
). (5)

Hence, we have ρi,min ≤ ρi ≤ I(Si;Si).
There are two more parameters to consider regarding the

individual privacy, namely the maximum number of corrupted
nodes, giving information about the robustness of the algo-
rithm, and the cost for channel encryption.

2) Maximum number of corrupted nodes under a passive
adversary: The maximum number of corrupted nodes allowed
in the network under a passive adversary will be denoted by
ki ∈ {0, . . . , n − 1}. That is, the algorithm is guaranteed to
achieve individual privacy ρi for honest node i if there are at
most ki corrupted nodes in the network.

3) Cost for channel encryption under an eavesdropping
adversary: Let T = {0, . . . , T}, where T is the maximum
number of iterations. The cost ci ∈ T indicates how many
iterations require channel encryption to guarantee individual
privacy ρi.

We propose a new definition of perfect individual privacy
in the context of distributed processing. Intuitively, perfect
individual privacy means ρi = 0. However, due to the fact
that in many cases the lower bound ρi,min > 0, it is in general
impossible to achieve zero individual privacy. In addition, we
assume ρi,min 6= I(Si;Si), otherwise there is no privacy at all.
We have the following definition of perfect individual privacy.

Definition 1. (Perfect individual privacy in the context of
privacy-preserving distributed processing.) Given ρi,min, 0 ≤
ρi,min < I(Si;Si), a privacy-preserving algorithm achieves
perfect individual privacy if and only if ρi = ρi,min.

IV. LINKING THE PROPOSED METRICS TO SMPC AND DP

In this section, we will show that the well-known SMPC and
DP can be considered special cases of the proposed metrics
based on different setups or assumptions.

A. Secure multiparty computation

An important concept in SMPC is the definition of an
ideal world, in which a trusted third party (TTP) is assumed
to be available. A TTP first collects all private data from

the nodes and computes the output y = f(s) after which
the outputs yi are transmitted to each and every node. This
scenario is considered secure since a TTP is assumed to be
non-corrupted. However, there is a distinction between security
and privacy. In the ideal scenario, each node obtains its desired
output yi directly from the TTP. As a consequence, the set
of random variables containing the information collected by
the adversaries is given by V = {Sj , Yj}j∈Nc

. Therefore, the
individual privacy in the ideal world is given by

∀i ∈ Nh : ρi,ideal = I(Si; {Sj , Yj}j∈Nc
). (6)

Apparently, ρi,ideal is not necessarily zero and it depends on
several factors such as the output function and whether the
private data are correlated or not.

The motivation for using SMPC comes from the fact that
in practice a third party might not be available or trustworthy.
The goal of SMPC is thus to design a protocol that can replace
a TTP, i.e., simulates an ideal world. To do so, SMPC has
to exchange information between nodes in the network and
could, therefore, reveal some information about the private
data. Let ρi,smpc denote the individual privacy when using
SMPC. An SMPC protocol is considered to be perfect when
(1) it achieves perfect output utility and (2) the adversaries do
not learn more about each honest node’s private data than what
will be revealed in an ideal world. That is, SMPC is perfect
if

∀i ∈ N : ui = I(Yi;Yi),

∀i ∈ Nh : ρi,smpc = ρi,ideal.
(7)

As mentioned before, there is a distinction between security
and privacy. As an example in which an SMPC protocol
is perfect according to (7) but reveals maximum individual
privacy, i.e., ρi,smpc = I(Si;Si), consider the situation in
which y is a permuted version of the private data s. That
is, yi = si− 1 modn. Assume that node i + 1 is corrupted.
Using (6) we conclude that ρi,ideal = I(Si; {Si+1, Yi+1 =
Si} = I(Si;Si). As ρi,ideal is already maximum, any SMPC
protocol giving perfect output utility will be considered perfect
as ρi,smpc = I(Si;Si) = ρi,ideal. Hence, (7) is satisfied but
there is no privacy at all.

We remark that ρi,smpc and ρi,ideal in SMPC correspond
to the individual privacy ρi and its lower bound ρi,min under
the condition of achieving full output utility in the proposed
metrics, respectively. In the above example, in order to achieve
meaningful individual privacy ρi < I(Si;Si), we have to
compromise the output utility to decrease the lower bound
ρi,min. That is, perfect output utility and individual privacy
are not achievable simultaneously in this example.

B. Differential privacy

DP assumes an extreme scenario in which all nodes in the
network are corrupted (ki = n−1) except for node i [31], [32].
Let s−i ∈ Rn−1 be a so-called adjacent vector of s, obtained
by excluding the private data si from s. Denote Ωi as the
range of si. Let F̂ be a randomized algorithm that protects
the privacy of its input and Y denotes its output range. Given
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ε ≥ 0, algorithm F̂ achieves ε-DP if for any pair of adjacent
vectors s and s−i, and for all sets Ys ⊆ Y , we have

∀si ∈ Ωi :
P (F̂ (s) ∈ Ys)
P (F̂ (s−i) ∈ Ys)

≤ eε. (8)

It has been shown [41, Theorem 1] that by relaxing the right-
hand side of (8) to an expected value rather than a statement
about all si ∈ Ωi, (8) is related to the Kullback-Leibler diver-
gence and can be further relaxed to the following conditional
mutual information (also called mutual information differential
privacy):

I(Si;Y |{Sj}j∈N\{i}) ≤ ε. (9)

The upper bound ε in (9) can be interpreted as the difference of
the posterior and prior individual privacy. The prior individual
privacy, in which the adversaries have the knowledge of s−i

and the related output y′ = F̂ (s−i), can be quantified as

ρi,prior = I(Si; {Sj}j∈N\{i}, Y ′)
= I(Si; {Sj}j∈N\{i}), (10)

where the last equality holds because Y ′ is redundant in-
formation as {Sj}j∈N\{i} can determine Y ′. The posterior
individual privacy on the other hand, where the adversaries
have the knowledge of the algorithm output y = F̂ (s), is
given by

ρi,post = I(Si; {Sj}j∈N\{i}, Y ). (11)

Based on the definition of conditional mutual information, we
can rewrite (9) as

ε ≥ I(Si; {Sj}j∈N\{i}, Y )− I(Si; {Sj}j∈N\{i})
= ρi,post − ρi,prior, (12)

showing the interpretation mentioned above.
We can see that the above ρi,post and ρi,prior are related

to the individual privacy ρi and its lower bound ρi,min,
respectively, in the context of distributed processing when we
assume that there are ki = n − 1 corrupted nodes. Again,
similar to SMPC, ε = 0 does not imply zero individual privacy
but only means that no additional information is leaked.

C. Proposed metrics for SMPC and DP

We end this section by concluding that both the SMPC and
DP metrics can be considered as special cases of the proposed
metrics under certain assumptions/requirements. For example,
a privacy-preserving distributed processing algorithm can be
considered as a perfect SMPC protocol if ui = I(Yi;Yi) and
ρi = ρi,min, and as an ε-DP protocol if ui = I(Yi; Ŷi), ρi ≤
ε+ ρi,min, and ki = n− 1.

V. EXAMPLE I: DISTRIBUTED AVERAGE CONSENSUS

To demonstrate the benefits using the proposed metrics, we
use the distributed average consensus as a canonical example.
The two main reasons for choosing this problem are that
it has general applicability in many signal processing tasks,
such as denoising [46] and interpolation [47], and that its

privacy-preserving solutions have been widely investigated in
the literature [4]–[16].

In this section, we first define the problem. After that, we
introduce traditional distributed average consensus approaches
and show that they are not privacy-preserving; maximum
individual privacy is revealed as ∀i ∈ Nh : ρi = I(Si;Si).

A. Problem definition

The goal of the distributed average consensus algorithm is
to compute the global average of all the private data over the
network, i.e.,

y = save1, (13)

where save = n−1
∑
i∈N si. Hence, we have that y =

n−111>s. As the nodes in the network can only communicate
with the neighboring nodes, the solution is obtained iteratively.
Many distributed average consensus algorithms have been
proposed to achieve this goal. Below, we introduce two types
of approaches that serve as baselines for the coming sections.

Before describing the details, we will make the following
assumptions.

Assumption 1. The private data are statistically independent,
i.e., ∀i, j ∈ N , i 6= j : I(Si;Sj) = 0.

Assumption 2. The passive adversary has knowledge of the
number of nodes n in the network and the degree di of all
nodes.

Let Ni,c = Ni ∩Nc and Ni,h = Ni ∩Nh denote the set of
corrupted and honest neighbors of node i, respectively. In order
to consider the worst-case scenario in which all information
transmitted by honest nodes is known to the passive adversary,
we have the following additional assumption.

Assumption 3. Every honest node has a non-empty corrupted
neighborhood, i.e., ∀i ∈ Nh : Ni,c 6= ∅.

B. Distributed linear iteration approaches

Distributed average consensus can be obtained by applying,
at every iteration t ∈ T a linear transformationW ∈ W where

W =
{
W ∈ Rn×n |Wij = 0 if (i, j) /∈ E and i 6= j

}
,
(14)

such that the state vector x is updated as

x(t+1) = Wx(t), (15)

and it is initialized with the private data, i.e.,

x(0) = s. (16)

The structure of W reflects the connectivity of the net-
work2. In order to correctly compute the average, that is,
x(t) → y = n−111>s as t → ∞, necessary and sufficient
conditions for W are given by (i) 1>W = 1>, (ii) W1 = 1,

2For simplicity, we assume that W is constant for every iteration, which
corresponds to a synchronous implementation of the algorithm. In the case of
an asynchronous implementation, the transformation depends on which node
will update. The results shown here are easily generalized to asynchronous
systems by working with expected values.
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(iii) α
(
W − 11>

n

)
< 1, where α(·) denotes the spectral

radius [48].

Individual privacy: By inspecting (15), we can see that each
node i needs to send its state values x(t)

i to all of its neighbours
for updating {x(t+1)

j }j∈Ni
. Hence, we have X(0)

i = Si ∈ V
and we conclude that

ρi = I(Si,V) ≥ I(Si, X
(0)
i ) = I(Si, Si). (17)

The algorithm is not private in the sense that it reveals all
private information.

C. Distributed optimization approaches

The average consensus problem can also be stated as a
linear-constrained convex optimization problem given by

min
xi

∑
i∈N

1

2
‖xi − si‖22

s.t. ∀(i, j) ∈ E : xi = xj .

(18)

Many distributed optimizers have been proposed to solve the
above problem, such as ADMM [49] and PDMM [50], [51].
Here, we provide an example using PDMM. The correspond-
ing (extended) augmented Lagrangian function is given by:

1

2
‖x− s‖22 + (Pλ(t))TCx+

c

2
‖Cx+ PCx(t)‖22, (19)

and the updating equations are

x(t+1) =
(
I + cC>C

)−1
(
s− cC>PCx(t) −C>Pλ(t)

)
,

(20)

λ(t+1) = Pλ(t) + c(Cx(t+1) + PCx(t)), (21)

where c > 0 is a constant for controlling the convergence rate
and λ ∈ R2m is a dual variable. Let the subscript i|j be a
directed identifier that denotes the directed edge from node
i to j. We first denote B ∈ Rm×n as the graph incidence
matrix defined as Bli = 1, Blj = −1 if and only if (i, j) ∈ E
and i < j. Denote el = (i, j) ∈ E , where l ∈ {1, . . . ,m},
as the l-th edge. The dual variable λ is defined as λl = λi|j
and λl+m = λj|i. Hence, with PDMM, each edge is associated
with two dual variables, λi|j and λj|i. The matrix C ∈ R2m×n

is related to the graph incidence matrix and defined as Cli =
Bi|j = 1 and C(l+m)j = Bj|i = −1 if and only if i < j. Of
note, P ∈ R2m×2m denotes a symmetric permutation matrix
exchanging the first m with the last m rows. Thus, ∀(i, j) ∈
E : λj|i = (Pλ)i|j . and C + PC = [B>B>]>.

The local updating functions for each node become

x
(t+1)
i =

si +
∑
j∈Ni

(
cx

(t)
j −Bi|jλ

(t)
j|i

)
1 + cdi

, (22)

λ
(t+1)
i|j = λ

(t)
j|i + cBi|j

(
x

(t+1)
i − x(t)

j

)
. (23)

It has been shown that x(t) converges geometrically (linearly
on a logarithmic scale) to the global optimum x∗ = save1,
given arbitrary initialization of both x and λ [50].

Individual privacy: Note that traditional distributed optimiza-
tion algorithms generally initialize both x(0) and λ(0) with

all zeros as it gives the smallest initial error resulting in the
smallest number of iterations to converge. As a consequence,
by inspecting (22) we have

x
(1)
i =

si
1 + cdi

. (24)

As the constant c is globally known to all nodes and the degree
di is known to the adversaries based on Assumption 2, the
private data si can be reconstructed by the adversaries from
x

(1)
i . Since X(1)

i ∈ V we conclude that

ρi = I(Si,V) ≥ I(Si, X
(1)
i ) = I(Si, Si). (25)

Based on (17) and (25), we conclude that traditional dis-
tributed average consensus algorithms, including distributed
linear iteration and distributed optimization algorithms, are not
privacy-preserving at all; they reveal all private data.

VI. EXAMPLE II: PRIVACY-PRESERVING DISTRIBUTED
AVERAGE CONSENSUS

From the previous section, we can see that the reason
why the traditional distributed average consensus algorithms
are not privacy-preserving is because the private data, either
itself or a scaled version, is directly sent to the neighboring
nodes during the data exchange step. As a consequence, one
way to protect privacy is to not exchange the private data
directly, but to first insert noise to obtain an obfuscated
version of it and then exchange the obfuscated data with
the neighboring nodes. In what follows, we will first present
an information-theoretic result regarding noise insertion to
achieve privacy-preservation. After that, we will introduce
existing privacy-preserving distributed average consensus ap-
proaches and quantify their performances using the proposed
metrics.

A. Noise insertion for privacy preservation

Proposition 1. (Arbitrary small information loss can be
achieved through noise insertion.) Let private data s and
inserted noise r denote realizations of independent random
variables S and R with variance σ2

S , σ
2
R < ∞, respectively.

Let Z = S + R. Given arbitrary small δ > 0, there exists
β > 0 such that for σ2

R ≥ β

I(S;Z) ≤ δ. (26)

In the case of Gaussian distributed noise, we have

β =
σ2
S

22δ − 1
. (27)

Proof. See Appendix A. �

Proposition 1 shows that the mutual information I(S;Z),
where Z is a noisy version of S obtained by adding inde-
pendent noise, can be made arbitrarily small by making the
noise variance sufficiently large.

Based on the design of the noise insertion process, we will
classify existing approaches into two classes: zero-sum noise
insertion and subspace noise insertion. We first introduce the
former case.
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The main idea of zero-sum noise insertion comes from the
nature of the distributed average consensus. Let ri denote the
noise added by node i to its private data si. The estimated
output is then given by

ŷi =
1

n

∑
j∈N

(sj + rj) = save +
1

n

∑
j∈N

rj . (28)

Clearly, if the sum of all inserted noise is zero, perfect output
utility will be achieved as ŷi = save = yi in that case.
Next we will proceed to introduce two different approaches,
including DP and SMPC, which aim to insert zero-sum noise
in a distributed manner.

B. Statistical zero-sum noise insertion using DP

DP-based approaches [8]–[10] mostly apply zero-mean
noise insertion to achieve zero-sum in a statistical sense. That
is, according to the law of the large numbers, the average
of a large number of noise realizations should be close to
the expected value, which is zero in this case, and will tend
to become closer to the expected value as more realizations
are involved. As a consequence, these algorithms only obtain
asymptotically perfect output utility as n→∞. Variants exist
in designing the noise insertion process, but here we will focus
on one simple example to illustrate the main idea, which was
proposed in [8] and [10]. Each node i initializes its state value
by adding zero-mean noise ri to its private data. That is, the
state value initialization (16) becomes

∀i ∈ N : x
(0)
i = si + ri, (29)

and then arbitrary distributed average consensus algorithms
(e.g., linear iterations [48] or distributed optimization [49]–
[51]) can be adopted to compute the average.

1) Output utility analysis: Assume that all inserted noise
are realizations of independent and identically distributed
random variables with zero-mean and variance σ2. Denote
rtot =

∑
i∈N ri and rave = rtot/n as the sum of all

inserted noise realizations and its average, respectively. As
a consequence, Rtot and Rave are also zero-mean, and their
variances are nσ2 and σ2/n, respectively. Based on (28) the
output utility of node i is

∀i ∈ N : ui = I(Yi;Yi +Rave). (30)

Indeed, as mention before, we obtain perfect output utility only
when n→∞ since limn→∞Rave = 0.

2) Individual privacy analysis: DP based approaches do not
require any channel encryption and assume n − 1 corrupted
nodes, i.e., Nc = N\{i}. Collecting all state random variables
X

(t)
i in the vector X(t) = [X

(t)
1 , . . . , X

(t)
n ]>, we conclude

that all information seen by the adversaries throughout the
algorithm is

V = {Ŷj , Sj , Rj , X(t)}j∈Nc,t∈T

= {Sj , Rj , X(t)}j∈Nc,t∈T , (31)

since Ŷj = X
(T )
j . Note that we assume that all messages

{X(t)}t∈T transmitted through the communication channels

can be eavesdropped and are thus known to the adversaries.
We see that computing I(Si;V) requires to analyze the in-
formation flow over the whole iterative process. This imposes
challenges as keeping track of information loss throughout all
iterations is difficult. We can, however, simplify the privacy
analysis through the following result.

Lemma 1. (Information release of successive iterations.)

I(Si;X
(0), . . . , X(T )) = I(Si;X

(0)).

Proof. The sequence Si → X(0) → X(t) forms a Markov
chain in that order. As a consequence, by the chain rule of
mutual information, we have

I(Si;X
(0), . . . , X(T )) =

T∑
t=0

I(Si;X
(t)|X(t−1), . . . , X(0))

= I(Si;X
(0)).

�

Lemma 1 states that it is sufficient to analyze the privacy
leakage of the initial state vector only as successive iterations
will not reveal additional information about the private data.
Given this result, we conclude that

I(Si;V) = I(Si; {Sj , Rj , X(0)}j∈Nc
)

(a)
= I(Si;X

(0)
i )

+ I(Si; {Sj , Rj , X(0)
j }j∈Nc

|X(0)
i )

(b)
= I(Si;X

(0)
i ), (32)

where (a) follows from the chain rule of mutual information,
and (b) holds as {Sj , Rj , X(0)

j }j∈Nc
is independent of both

Si and X(0)
i . The individual privacy thus becomes

ρi = I(Si;X
(0)
i ) = I(Si;Si +Ri). (33)

Lower bound analysis. The lower bound on individual pri-
vacy is given by

ρi,min = I(Si; {Ŷj , Sj}j∈Nc
)

(a)
= I(Si;

∑
j∈N

Sj +Rtot, {Sj}j∈Nc
)

= I(Si;Si +Rtot, {Sj}j∈Nc
)

(b)
= I(Si;Si +Rtot), (34)

where (a) follows from (28) and the fact that n is known
to the adversaries (Assumption 2) and (b) from the fact that
{Sj}j∈Nc

is independent of Si +Rtot. By inspection of (33)
and (34) we conclude that for n > 1 we have ρi,min < ρi,
except for ri = 0, so that DP does not achieve perfect
individual privacy for the average consensus problem.

Maximum number of corrupted nodes and cost for channel
encryption. Since Nc = N \{i}, we have ki = |Nc| = n− 1
being the maximum number of corrupted nodes. As no channel
encryption is needed, we have ci = 0.
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Summarizing, with the proposed metrics, DP-based ap-
proaches achieve

ui = I(Yi;Yi +Rave),
ρi = I(Si;Si +Ri),
ρi,min = I(Si;Si +Rtot),
ki = n− 1,
ci = 0.

(35)

We have the following remark.

Remark 1. (In the distributed average consensus, DP always
has a trade-off between the output utility and individual
privacy.) As both output utility (30) and individual privacy
(33) are dependent on the inserted noise, we conclude, using
Proposition 1, that

σ2 →∞ ⇒ ui = 0, ρi = 0, (36)

σ2 = 0 ⇒ ui = I(Yi;Yi), ρi = I(Si;Si). (37)

Hence DP has a trade-off between privacy and utility. Of
note, the conclusion that DP based approaches cannot achieve
perfect full utility has been shown before in [10]. Here, we
provide a simpler proof in terms of mutual information.

C. Exact zero-sum noise insertion using SMPC

Unlike DP based approaches, which have a privacy-utility
trade-off, SMPC based approaches can obtain full utility
without compromising privacy. However, there is no “free
lunch”; the price to be paid is that the robustness over n− 1
corrupted nodes is no longer achievable. Existing SMPC based
approaches [4]–[6] have applied additive secret sharing [30]
to construct exact zero-sum noise through coordinated noise
insertion. To do so, at the initialization phase, each node i first
sends each neighbor j ∈ Ni a random number rji and receives
a random number rij from each of its neighbors. After that
node i constructs its noise realization as

ri =
∑
j∈Ni

ri|j , (38)

where

ri|j = rij − r
j
i . (39)

Of note, all the random numbers {rji }(i,j)∈E are independent
of each other. After constructing the noise realizations, sim-
ilar as DP based approaches, each node initializes its state
value using (29) after which an arbitrary distributed average
consensus algorithm can be used.

1) Output utility analysis: In SMPC the noise is constructed
such that it sums to zero:∑

i∈N
ri =

∑
i∈N

∑
j∈Ni

ri|j =
∑

(i,j)∈E

(
ri|j + rj|i

)
= 0, (40)

as ri|j = −rj|i by (39). Full utility is thus obtained as ŷi = yi:

∀i ∈ N : ui = I(Yi;Yi). (41)

2) Individual privacy analysis: SMPC based approaches
assume that the communication channels are not securely
encrypted except for transmitting the random numbers
{rji }(i,j)∈E (initialization phase). As a consequence, all in-
formation that the adversaries see throughout the algorithm is
given by

V = {{Yj , Sj}j∈Nc
, {Rji}(i,j)∈Ec , {X

(t)}t∈T }
= {{Sj}j∈Nc

, {Rji}(i,j)∈Ec , {X
(t)}t∈T }, (42)

since Yj = X
(T )
j and X(t) is known by Assumption 3.

Let Gh ⊆ G denote the graph obtained by removing all
corrupted nodes from G. Moreover, let Gh = ∪qCq , where
Cq is a component or connected subgraph of Gh. The set of
nodes in Cq is denoted by Nhq so that Nh = ∪qNhq . We have
the following result which simplifies the individual privacy
analysis.

Proposition 2.

∀i ∈ Nhq : I(Si;V) = I(Si; {Sj +
∑

k∈Nj,h

Rj|k}j∈Nhq
).

Proof. See Appendix B. �

We conclude from Proposition 2 that node i should have at
least one honest neighbor. If not, Si will be revealed as in that
case Nhq

= {i} and Nj,h = ∅. Moreover, the adversaries can
compute the partial sum of the private data in each component
Cq since ∑

j∈Nhq

(Sj +
∑

k∈Nj,h

Rj|k) =
∑
j∈Nhq

Sj , (43)

as Rj|k = −Rk|j . Since this partial sum can always be
determined regardless of the amount of noise insertion, we
have

ρi = I(Si;V) ≥ I(Si;
∑

j∈Nhq

Sj). (44)

We have equality in (44) when the partial sum (43) is all
the adversaries know and no additional information can be
inferred from the individual noisy observations. That is, we
have equality if ∀j ∈ Nhq : I(Si;Sj +

∑
k∈Nj,h

Rj|k) = 0,
which can, by Proposition 1, be achieved asymptotically by
adding independent noise to the private data. Therefore, the
privacy level SMPC based approaches can achieve is given by

ρi = I(Si;
∑

j∈Nhq

Sj). (45)

Lower bound analysis. With perfect output utility, the lower
bound (5) becomes

ρi,min = I(Si; {Yj , Sj}j∈Nc)
(a)
= I(Si;

∑
j∈N

Sj , {Sj}j∈Nc
)

(b)
= I(Si;

∑
j∈Nh

Sj , {Sj}j∈Nc
)

(c)
= I(Si;

∑
j∈Nh

Sj), (46)
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where (a) holds as ∀j ∈ N : yj = n−1
∑
j∈N Sj and n is

known by Assumption 2, (b) holds as
∑
j∈N Sj , {Sj}j∈Nc

can be determined by
∑
j∈Nh

Sj , {Sj}j∈Nc as Sj , j ∈ Nc,
are known to the adversaries, and (c) holds as {Sj}j∈Nc

is
independent of both Si and

∑
j∈Nh

Sj by Assumption 1.

Maximum number of corrupted nodes and cost for channel
encryption. As mentioned before, to guarantee the individual
privacy ρi < I(Si;Si), node i should have at least one honest
neighbor, i.e., Ni,h 6= ∅. The maximum number of corrupted
nodes is therefore ki = di − 1 and only depends on the
degree di. For a fully connected graph we have ki = n − 2.
The amount of channel encryption is ci = 1 as only the
communication channels in the initialization phase need to be
securely encrypted.

In conclusion, with the proposed metrics, SMPC based
approaches achieve

ui = I(Yi;Yi),
ρi = I(Si;

∑
j∈Nhq

Sj),

ρi,min = I(Si;
∑
j∈Nh

Sj),

ki = di − 1,
ci = 1.

(47)

We can see that ui is independent of ρi. Hence, SMPC has
no trade-off between privacy and utility in distributed average
consensus. Hence, we have the following remark.

Remark 2. (Conditions for achieving perfect individual pri-
vacy and perfect output utility using the SMPC based ap-
proaches in the distributed average consensus.) By inspection
of (45) and (46), if Gh is connected and |Nh| ≥ 2, we
have only one component so that Nhq = Nh and thus
ρi = ρi,min; the algorithm achieves both perfect individual
privacy (Definition 1) and perfect output utility.

The main limitation of the above zero-sum noise insertion
approaches is that it is hard to be generalized to problems
other than distributed average consensus. To mitigate this
problem, recently subspace noise-insertion based algorithms
have been proposed which are able to solve more general
(convex) optimization problems. In the next subsection we
will introduce such an approach referred to as distributed
optimization based subspace perturbation (DOSP).

D. Subspace noise insertion using DOSP

The DOSP algorithm [7], [27] differentiates from the DP
and SMPC based approaches in the sense that it can ensure
full output utility without compromising privacy and does not
require coordinated noise insertion. In particular, DOSP does
not introduce zero-sum noise but exploits the fact that the
dual variables, if properly initialized, can obfuscate the private
data throughout the algorithm. As a consequence, in order to
analyze privacy, we have to consider the convergence behavior
of the dual variable λ.

To do so, consider two successive λ-update in (21). We
have

λ(t+2) = λ(t) + c(Cx(t+2) + 2PCx(t+1) +Cx(t)), (48)

as P 2 = I . Let H̄ = span(C) + span(PC) and H̄⊥ =
null(C>) ∩ null((PC)>). We can see that every two λ-
updates affect only ΠH̄λ ∈ H̄ where ΠH̄ denotes the
orthogonal projection onto H̄ . As shown in [27], the dual
variable λ(t) composites of two parts: a so-called convergent
component ΠH̄λ

(t) which will converge to a fixed point λ∗,
and a so-called non-convergent component (I − ΠH̄)λ(t) =
P t (I −ΠH̄)λ(0) which will not converge (P t = P for t odd
and P t = I for t even) and only depends on the initialization
λ(0).

By inspecting (22), the noise for protecting si of honest
node i is constructed as

∀t ∈ T : r
(t)
i =

∑
j∈Ni

(Bi|jλ
(t)
j|i)

=
∑
j∈Ni,c

(Bi|jλ
(t)
j|i) +

∑
j∈Ni,h

(Bi|jλ
(t)
j|i), (49)

where the dual variables {λ(t)
j|i}j∈Ni,c of the corrupted neigh-

bors are known to the adversaries. As a consequence, only∑
j∈Ni,h

(Bi|jλ
(t)
j|i) is unknown to the adversaries. Separating

the convergent and non-convergent component of λ(t), we
have ∑

j∈Ni,h

(Bi|jλ
(t)
j|i) =

∑
j∈Ni,h

(Bi|j(ΠH̄λ
(t))j|i)

+
∑

j∈Ni,h

(
Bi|j(P

t(I −ΠH̄)λ(0))j|i

)
. (50)

The main idea of subspace noise insertion is to ex-
ploit the non-convergent component of the dual variables
as subspace noise for guaranteeing the privacy. That is,∑
j∈Ni,h

(
Bi|j(P

t(I −ΠH̄)λ(0))j|i
)

protects the private data
si from being revealed to others. By controlling λ(0), the
variance of the above subspace noise can be made arbitrarily
large so that, by Proposition 1, we can achieve an arbitrarily
small information loss.

Before discussing how to implement the subspace noise, we
first state the following remark.

Remark 3. (There is always a non-empty subspace for noise
insertion as long as m ≥ n.) Since [C PC] ∈ R2m×2n can
be viewed as a new graph incidence matrix with 2n nodes and
2m edges [27], we thus have dim(H̄) ≤ 2n− 1, and H̄⊥ is
non-empty if m ≥ n.

In DOSP, each node only needs to randomly initialize its
own dual variables {λ(0)

i|j }j∈Ni
as in that case we have (I −

ΠH̄)λ(0) 6= 0 with probability 1 as long as m ≥ n. Hence,
DOSP does not require any coordination between nodes for
noise construction. In the remainder of this section we will
investigate the output utility and individual privacy of DOSP.

1) Output utility analysis: As mentioned before, x(t) con-
verges geometrically to the global optimum x∗ = save1, given
arbitrary initialization of both x and λ, even though λ(t) does
not necessarily converge. Indeed, by inspection of (20), we
see that the non-converging component of λ(t) does not affect
the x-update since

C>P (I −ΠH̄)λ(t) = (PC)
>

(I −ΠH̄)λ(t) = 0. (51)
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Hence, DOSP achieves perfect output utility.
2) Individual privacy analysis: Similar as the above SMPC

based approaches, DOSP assumes that the communication
channels are not securely encrypted except for the initializa-
tion phase where the initialized λ

(0)
i|j are transmitted to all

neighboring nodes. Therefore, the information collected by the
adversaries throughout the course of the algorithm is given by

V = {{Yj , Sj}j∈Nc
, {Λ(0)

i|j , X
(t)}(i,j)∈Ec,t∈T }

= {{Sj}j∈Nc , {Λ
(0)
i|j , X

(t)}(i,j)∈Ec,t∈T }, (52)

since Yj = X
(T )
j . Note that all the {Λ(t)

i|j}(i,j)∈Ec,t>0 are
not included here because they are not transmitted through
the network, and they can be determined by {X(t)}t∈T and
{Λ(0)

i|j }(i,j)∈Ec from (21). We have the following result which
simplifies the privacy analysis of DOSP.

Proposition 3.

I(Si;V) =I(Si; {Sj −
∑

k∈Nj,h

Bj|kΛ
(t)
k|j}j∈Nh,t=0,1

|{Sj}j∈Nc
, {Λ(0)

i|j }(i,j)∈Ec). (53)

Proof. See Appendix C. �

We note that, similar to the SMPC based approach, the
partial sum

∑
j∈Nhq

Sj can be computed by the adversaries.
Indeed, the partial sum can be constructed as

∑
j∈Nhq

Sj =
1

2

( ∑
t=0,1

∑
j∈Nhq

(
Sj −

∑
k∈Nj,h

Bj|kΛ
(t)
k|j
)

+
∑
t=0,1

∑
j∈Nhq

∑
k∈Nj,h

Bj|kΛ
(t)
k|j

)
. (54)

The first term of the right-hand side of (54) is the addition of
terms that are known by the adversaries, as shown by (53).
Let Ehq = {(i, j) ∈ E : (i, j) ∈ Nhq ×Nhq} denote the set
of all edges between the honest nodes in component Cq . With
this, the second term of (54) can be expressed as∑
t=0,1

∑
j∈Nhq

∑
k∈Nj,h

Bj|kΛ
(t)
k|j

=
∑
t=0,1

∑
(i,j)∈Ehq

(
Bj|kΛ

(t)
k|j +Bk|jΛ

(t)
j|k

)
=
∑
t=0,1

∑
(i,j)∈Ehq

Bj|k

(
Λ

(t)
k|j − Λ

(t)
j|k

)
=

∑
(i,j)∈Ehq

Bj|k

((
Λ

(1)
k|j − Λ

(0)
j|k

)
−
(

Λ
(1)
j|k − Λ

(0)
k|j

))
,

which can be determined by the adversaries since, by inspec-
tion of (23), the difference Λ

(1)
i|j − Λ

(0)
j|i only depends on x(1)

i

and x(0)
j , all of which are known by the adversaries (based on

(52)).
As the partial sum can be computed, the analysis of DOSP

follows along the same line as the one presented for SMPC
and we conclude that the performance indicators for DOSP,
as measured by the proposed metrics, are also given by (47).
In addition, Remark 2 also holds for DOSP.

Fig. 2: Convergence behaviors of DOSP, SMPC and DP based
approaches under three different amounts of noise insertion.

E. Comparisons of existing approaches

In Table I we summarize the performances of the discussed
DP, SMPC and DOSP approaches for distributed average
consensus. We can see that SMPC and DOSP achieve exactly
the same performances, except the fact that SMPC requires
coordination between nodes to construct zero-sum noise.
Moreover, DP is robust against n − 1 corrupted nodes and
does not require channel encryption at all but suffers from a
privacy-utility trade-off. On the other hand, SMPC and DOSP
do not have privacy-utility trade-off but are only robust to
di− 1 corrupted nodes and require channel encryption for the
first iteration.

VII. NUMERICAL RESULTS

In this section we compare DP, SMPC and DOSP using
computer simulations. The comparisons are conducted in terms
of (1) convergence behavior and (2) utility/privacy behavior.
Their metrics are given below.
• Convergence behavior: mean square error to measure the

distance between the state value x(t) and the desired
average result x∗ = save1 for each iteration t, i.e.,
‖x(t) − x∗‖2.

• Privacy/utility behavior: normalized mutual information
(NMI)3 to measure the information-theoretical
performances, i.e., ui/I(Yi;Yi) for the output
utility, ρi/I(Si;Si) for the individual privacy and
ρi,min/I(Si;Si) for the lower bound on individual
privacy.

We simulated a geometrical graph with n = 10 nodes, and set
the radius as r2 = 2 logn

n to ensure a connected graph with high
probability [52]. For simplicity, all private data have a zero-
mean unit variance Gaussian distribution, and all the noise
used in the DP, SMPC and DOSP approaches follow a zero-
mean Gaussian distribution with variance σ2.

A. Convergence behavior

In Fig. 2 we present the convergence behavior of the algo-
rithms under different amounts of noise insertion, i.e., different
noise variances. We can see that all algorithms achieve the

3Since the experiments are done using discrete data, the mutual information
I(X;X) is bounded by H(X) <∞.
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TABLE I: Comparisons of existing information-theoretic solutions for the distributed average consensus

DP [8]–[10] SMPC [4]–[6] DOSP [7], [27]
Adversary models Passive, Eavesdropping

Coordinated noise insertion No Yes No
Output utility ui = I(Yi;Yi +Rave) ui = I(Yi;Yi)

Individual privacy ρi = I(Si;Si +Ri) ρi = I(Si;
∑

j∈Nhq
Sj)

Lower bound on individual privacy ρi,min = I(Si;Si +Rtot) ρi,min = I(Si;
∑

j∈Nh
Sj)

Maximum number of corrupted nodes ki = n− 1 out of n ki = di − 1 out of di
Cost of channel encryption ci = 0 ci = 1

(a) (b) (c)

Fig. 3: (a) Two sample graphs in which G′ and G differ in only one edge. Normalized mutual information of output utility,
individual privacy, and its lower bound for honest node 1 in terms of the amount of noise insertion by using SMPC and DOSP
approaches under (b) graph G and (c) graph G′.

Fig. 4: NMI of output utility, individual privacy, and its lower
bound for honest node i in terms of the amount of noise
insertion using DP, SMPC and DOSP approaches.

correct average value in the absence of noise, i.e., σ2 = 0. For
nonzero noise variance, however, only the DOSP and SMPC
based approaches achieve the correct average value, regardless
of the amount of noise inserted, whereas the accuracy of the
DP based approach is compromised by increasing the amount
of noise insertion.

B. Utility and privacy

To validate the output utility, individual privacy, and its
lower bound, we ran 104 Monte Carlo simulations and used
the non-parametric entropy estimation toolbox (npeet) [53] to
estimate the normalized mutual information.

1) Privacy-utility results of the DOSP and SMPC based
approaches under different graph topologies: As shown in
Table I, the performances of SMPC and DOSP are dependent

on the number of corrupted nodes in the neighborhood and
the graph topology. Note that we do not consider DP here
because its performance is not dependent on graph topology
as it assumes n − 1 corrupted nodes. To demonstrate the
effects of graph topology, Fig. 3(a) shows a graph G satisfying
Assumption 3; i.e., every honest node is connected to at least
one corrupted node. In addition, we consider the graph G′
which is obtained from G by removing edge (3, 4). The main
difference between graph G and G′ is that, after removing
all corrupted nodes, in the former all the honest nodes are
connected and in the latter they are separated in two connected
subgraphs. The privacy-utility results of the DOSP and SMPC
based approaches over graph G and G′ are shown in Fig. 3(b)
and 3(c), respectively. We validate the following theoretical
results regarding utility and privacy:
• SMPC and DOSP both ensure full utility regardless of

the amount of noise, and thus the privacy level;
• The optimum individual privacy of node i ∈ Cq is only

related to the partial sum of the private data in subgraph
Cq , i.e, ρi = I(Si;

∑
j∈Nhq

Sj);
• For graph G both approaches are able to obtain perfect

individual privacy, i.e., the result in Remark 2 is validated.
2) Privacy-utility comparisons of the DP, SMPC and DOSP

approaches: In Fig. 4 we compare DP, SMPC and DOSP in
terms of the amount of noise insertion using graph G. We
show the performance of SMPC and DOSP together because
they have identical performances as shown in Fig. 3(b). Fig. 4
shows that, in contrast to SMPC and DOSP which guarantee
perfect output utility and a fixed individual privacy, DP can
achieve a lower individual privacy by increasing the noise
variance. However, the price to pay is a deterioration of output
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utility, validating the fact that DP trades-off privacy versus
utility.

VIII. SUGGESTIONS FOR ALGORITHM DESIGN

We now provide some suggestions on how to design appro-
priate privacy-preserving algorithms for different applications.
Typical ways to design a privacy-preserving solution are (1)
choose one of the off-the-shelf tools such as DP, SMPC
or DOSP; (2) combine them to obtain a hybrid approach.
We concluded that the performances indicator of privacy-
preserving distributed processing algorithms were bounded by
ui ≤ I(Yi;Yi) (perfect output utility), I(Si;Si) > ρi ≥ ρi,min

(perfect individual privacy), ki ≤ n− 1 (maximum number of
corrupted nodes being), and ci ≥ 0 (minimum (zero) cost for
channel encryption). To provide insight on when it is possible
to achieve these optimum performances simultaneously, we
have the following result.

Remark 4. (For any application satisfies
I(Si; {Sj , Yj}j∈N\{i}) = I(Si;Si), it is impossible to protect
privacy under the conditions of both perfect output utility and
ki = n − 1 being the maximum number of corrupted nodes.
) The reason is simply because the lower bound under such
conditions ρi,min = I(Si; {Sj , Yj}j∈N\{i}) = I(Si;Si) is
already the maximum; there is no privacy at all. An immediate
implication of this result is that a SMPC/DOSP, which achieves
perfect output utility, can never be differentially private for
such applications. In other words, DP and SMPC/DOSP are
mutually exclusive for such applications.

One conclusion for algorithm design can be drawn from
the above result: given an application at hand, the first thing
to do is to compute the lower bound under the condition
of perfect output utility and ki = n − 1, i.e., ρi,min =
I(Si; {Sj , Yj}j∈N\{i}). Based on this lower bound, we then
classify applications into two classes and give related sugges-
tions on how to design algorithms.

A. Applications for which ρi,min = I(Si;Si)

One example of such applications is the distributed average
consensus. For applications where ρi,min = I(Si;Si) (Remark
4), we should be aware that it is impossible to design privacy-
preserving algorithms with all optimum performances. There-
fore, we have to prioritize different performances, compromise
one to achieve another. Here are some suggestions for algo-
rithm designs:

1) If the application is in an extreme distrust scenario, i.e.,
ki = n−1 is required, then adopt DP based approaches.
But be aware that there is a trade-off between privacy
and utility.

2) If the application is very sensitive in terms of the
accuracy of function output, e.g., perfect output utility
is a must, then both SMPC and DOSP are options. But
be aware that ki < n−1 and that the individual privacy
depends on the graph topology.

B. Applications for which ρi,min < I(Si;Si)

One such example is the application where the objective
function is a function of the `1-norm, like f(s) =

∑
i∈N |si|1.

For applications where ρi,min < I(Si;Si), we have the
following suggestions:

1) If ρi,min is tolerable, it is possible to achieve perfect
individual privacy ρi = ρi,min under the condition of
both perfect output utility and ki = n − 1. Try to
use either SMPC or DOSP to achieve such optimum
performances.

2) If the above cannot be achieved, one option is to
compromise the requirement of ki = n−1, i.e., decrease
ki, and try to use SMPC or DOSP to obtain both perfect
individual privacy and perfect output utility only.

3) If ρi,min is not tolerable, one option is to combine SMPC
or DOSP with DP to decrease this lower bound by
compromising the output utility.

IX. CONCLUSIONS

In this paper, we first proposed information-theoretic met-
rics for quantifying the algorithm performance in terms of
output utility and individual privacy. The proposed metrics
are general and can reduce to well-known frameworks in-
cluding SMPC and DP under certain conditions. We derived
several theoretical results in terms of mutual information. We
explicitly analyzed, compared and related the state-of-the-art
algorithms including DP, SMPC and DOSP for the distributed
average consensus problem, and validated the theoretical re-
sults by computer simulations. Given the lower bound on indi-
vidual privacy, we gave suggestions on how to design privacy-
preserving algorithms given different conditions/assumptions.

APPENDIX A
PROOF OF PROPOSITION 1

Proof. As the private data S is independent of the noise R,
we have σ2

Z = σ2
S + σ2

R. Let γ = 1/σZ and define Z ′ = γZ
as the normalized random variable with unit variance. Since
mutual information is invariant under scaling, we have

lim
σ2
R→∞

I(S;Z) = lim
σ2
R→∞

I(γS; γZ)

= lim
γ→0

I(γS;Z ′)

= I(0;Z ′)

= 0.

Hence we conclude that given arbitrary small δ > 0, there
exists β > 0 such that for σ2

R ≥ β we have I(S;Z) ≤ δ. In
the case of Gaussian distributed noise, we find

I(S;Z) = h(Z)− h(Z|S)

= h(Z)− h(R)

(a)
= h(Z)− 1

2
log(2πeσ2

R)

(b)
≤ 1

2
log(2πeσ2

Z)− 1

2
log(2πeσ2

R)

=
1

2
log(1 + σ2

S/σ
2
R),
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where (a) holds as the differential entropy of a Gaussian ran-
dom variable with variance σ2 is given by 1

2 log(2πeσ2), and
(b) holds because the maximum entropy of a random variable
with fixed variance is achieved by a Gaussian distribution.
Hence

δ =
1

2
log(1 + σ2

S/σ
2
R) ⇔ σ2

R =
σ2
S

22δ − 1
= β.

�

APPENDIX B
PROOF OF PROPOSITION 2

Proof.

I(Si;V) = I(Si; {Sj}j∈Nc , {R
j
i}(i,j)∈Ec , {X

(t)}t∈T )
(a)
= I(Si; {Sj}j∈Nc

, {Rji}(i,j)∈Ec , X
(0))

(b)
= I(Si; {Sj}j∈Nc , {R

j
i}(i,j)∈Ec , {X

(0)
j }j∈Nh

)

(c)
= I(Si; {Rji}(i,j)∈Ec , {X

(0)
j }j∈Nh

)

(d)
= I(Si; {Rji}(i,j)∈Ec , {Sj +

∑
k∈Nj

Rj|k}j∈Nh
)

(e)
= I(Si; {Rji}(i,j)∈Ec , {Sj +

∑
k∈Nj,h

Rj|k}j∈Nh
)

(f)
= I(Si; {Sj +

∑
k∈Nj,h

Rj|k}j∈Nh
)

(g)
= I(Si; {Sj +

∑
k∈Nj,h

Rj|k}j∈Nhq
),

where (a) holds by Lemma 1, as ∀t ≥ 1 : Si → X(0) →
X(t) forms a Markov chain; (b) holds, as {X(0)

j }j∈Nc can
be determined from {Sj}j∈Nc , {R

j
i}(i,j)∈Ec using (29), (39)

and (38); (c) holds because {Sj}j∈Nc
is independent of

{Rji}(i,j)∈Ec , {X
(0)
j }j∈Nh

and Si; (d) holds by represent-
ing {X(0)

j }j∈Nh
by using (29) and (38); (e) follows as

{
∑
k∈Nj,c

Rj|k}j∈Nh
can be determined from {Rji}(i,j)∈Ec

by using (39); (f) holds as {Rji}(i,j)∈Ec is independent of
both Si and {Sj +

∑
k∈Nj,h

Rj|k}j∈Nh
; and (g) holds as

{Sj +
∑
k∈Nj,h

Rj|k}j∈Nh\Nhq
is independent of both Si and

{Sj +
∑
k∈Nj,h

Rj|k}j∈Nhq
. �

APPENDIX C
PROOF OF EQUATION (53)

Proof. By combining (48) and two successive x-updates (20),
it can be shown that

x(t+1) − x(t−1) =
(
I + cC>C

)−1(
−2cC>PCx(t) − 2cC>Cx(t−1)

)
. (55)

We have

I(Si;V) = I(Si; {Sj}j∈Nc , {Λ
(0)
i|j }(i,j)∈Ec , {X

(t)}t∈T )

(a)
= I(Si; {Sj}j∈Nc

, {Λ(0)
i|j }(i,j)∈Ec , {X

(1), X(2)})
(b)
= I(Si; {Sj}j∈Nc

, {Λ(0)
i|j }(i,j)∈Ec , {X

(1)
j , X

(2)
j }j∈Nh

)

(c)
= I(Si; {Sj}j∈Nc

, {Λ(0)
i|j }(i,j)∈Ec

, {Sj −
∑

k∈Nj,h

Bj|kΛ
(t)
k|j}j∈Nh,t=0,1)

(d)
= I(Si; {Sj −

∑
k∈Nj,h

Bj|kΛ
(t)
k|j}j∈Nh,t=0,1

|{Sj}j∈Nc
, {Λ(0)

i|j }(i,j)∈Ec)

where (a) holds, as all {X(t)}t>2 can be determined by
X(1) and X(2) using (55) (note that we omit X(0) by
assuming x is initialized with all zeros); (b) holds, as
{X(1)

j }j∈Nc
can be constructed by {Sj}j∈Nc

, {Λ(0)
i|j }(i,j)∈Ec ;

and similarly {X(2)
j }j∈Nc

can be constructed by using
{Sj}j∈Nc

, X(1), {Λ(1)
i|j }(i,j)∈Ec based on (22), in which the

last set can be determined using {Sj}j∈Nc
, {Λ(0)

i|j }(i,j)∈Ec ; (c)
also follows from (22); and (d) follows from the definition of
conditional mutual information and Si being independent of
both {Sj}j∈Nc and {Λ(0)

i|j }(i,j)∈Ec . �
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