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Abstract

In this paper, a variant of the resource-constrained project scheduling problem is dis-
cussed. This variant introduces time-dependence for resource capacities and requests,
making the problem a more realistic model for many practical applications such as
production scheduling and medical research project planning. The main aim of this
paper is to define a Boolean satisfiability (SAT) formulation for this variant, such that
schedules with a minimal total duration can be found efficiently using a SAT solver.
We introduce such a formulation which is then used to implement an exact solving ap-
proach, of which performance is compared to another approach based on satisfiability
modulo theories (SMT). Our experiments show that the SAT-based approach is effi-
cient, in that it outperforms the SMT-based approach for test instances with a larger
amount of activities.

1 Introduction
The Resource-Constrained Project Scheduling Problem (RCPSP) is a popular scheduling
problem consisting of a set of resources, and a set of activities that use (request) these re-
sources. All activities must be scheduled by means of assigning a start time. A commonly
used goal is to minimise the total duration of the project (makespan). Each resource has
a limited availability (capacity) which may not be exceeded at any point during the exe-
cution of the project. Additionally, there is a notion of order between activities, enforced
by precedence constraints. Figure 1 visualises the RCPSP with a small example problem
instance. The problem was originally introduced around 1969 [1], with more recent works
summarising problem variations and current solving approaches [2].

A common practical application for the standard RCPSP is the modeling of industrial
processes, such as production lines or construction projects. In many cases the standard
variant of the problem is not used directly, but rather one of its extensions. The Resource-
Constrained Project Scheduling Problem with Time-Dependent Resource Capacities and
Requests (RCPSP/t) is a variant of the more extensively researched RCPSP, and it intro-
duces time-dependence for resource demands and capacities. This makes the RCPSP/t more
suitable for applications where these values cannot be assumed to be constant. Differences
compared to the standard RCPSP are illustrated in Figure 1. An example application is
a real-world medical research project [3], where staff availability and laboratory equipment
are modeled by resource capacities, and where experiments are modeled by activities. Lab-
oratory staff are not constantly available due to vacation or illness (resource capacity), and
many experiments do not require constant attention of a researcher as some waiting time
may be involved (resource request). Also, certain equipment may only be required at the
start or the end of an experiment (resource request). Another application of the model is
that of aggregated production scheduling [4], where assembly areas and production orders
are modeled as resource capacities and activities, respectively.

In terms of solving the RCPSP, there is no polynomial time solving algorithm, and the
problem was proven NP-hard in the strong sense [5]. The RCPSP can be seen as a special
case of the RCPSP/t, meaning that the RCPSP/t is also NP-hard. Many (meta-)heuristic
and exact approaches for solving the RCPSP exist, with the first exact approaches using
Mixed Integer Linear Programming (MILP) [6]. Later exact approaches include Constraint
Programming (CP) formulations [7], Boolean satisfiability (SAT) formulations [8], and Sat-
isfiability Modulo Theories (SMT) formulations [9]. Exact approaches guarantee that an
optimal solution is found, but solving times quickly become too large for practical use, even
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Figure 1: An example RCPSP instance, and an adaption of this instance to the RCPSP/t.
These problems only differ in terms of resource constraints, so the left part of the figure is
shared for both instances. The top right shows resource resource constraints for the RCPSP,
and the bottom right shows this for the RCPSP/t.
The precedence graph is an activity-on-node directed acyclic graph, with dummy start and
end activities (gray), and activity durations indicated on the edges. For resource constraints,
the dotted line indicates capacity, and the orange blocks indicate requests of activities. The
shown schedule (solution) SOL = (0, 0, 0, 3, 4, 5) is optimal (in the sense that the makespan
is minimal) for both the RCPSP and the RCPSP/t instances, and respects the precedence
and resource constraints in both cases.

for small problem instances [10]. For solving the RCPSP/t, (meta-)heuristic and exact ap-
proaches also exist. In terms of heuristic algorithms, an approach using a schedule generation
scheme (SGS) with a priority rule [3] exists. Also known to exist are two meta-heuristic al-
gorithms: a genetic algorithm (GA) [4] and a GA-based memetic algorithm (MA) [11]. The
GA generally has better performance than the priority rule heuristic, and the MA generally
performs better still. For exact solving, to our knowledge, the first and only approach in
literature is one based on SMT [9].

SMT is a generalisation of SAT, with SMT solvers (such as Yices [12]) containing ad-
ditional logic for determining satisfiability of formulas containing expressions from different
theories like (non-)linear arithmetic. Valid clauses are (x− y < 5) or (x = 2y), for instance.
SAT is a popular problem that was proven to be NP-complete [13]. The goal is to determine
whether a satisfying assignment of Boolean variables (x1, x2, ...) exists for some formula usu-
ally written in conjunctive normal form (CNF), with clauses (like (¬x1 ∨ x2)) and literals
(like x1 or ¬x1). In practice the RCPSP/t can be reduced (encoded) into SAT, allowing
existing SAT solvers to be applied, but this had not yet been done in existing work. SAT
solvers can be seen as general-purpose; they can be applied to problems in numerous differ-
ent domains such as planning and software verification. The general idea of these solvers is
to select a variable, assign it a value, infer the implied consequences (propagation), and to
backtrack upon encountering a conflict, eventually finding a satisfying assignment (model).

The main research question of this paper is: "Can the RCPSP/t be solved efficiently
using an exact SAT-based approach?". To answer this question, a SAT encoding of the
problem must be defined first. Then the encoded problem should be solved by a SAT solver,
showing good performance. We define solver ‘performance’ as lower times for certifying
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optimal solutions, and/or better objective values for solutions found within some time limit.
Another question to be considered, is whether it is possible to improve performance of a
SAT-based solving approach, by augmenting the variable selection procedure of the solver
using state-of-the-art heuristic ideas. Due to time limitations, answering this question is left
to future work, however we do provide ideas for augmentations. SAT solvers are already be-
ing modified to improve performance in specific domains [14], for instance MiniSat [14] was
adapted to efficiently solve benchmark instances of the RCPSP [8]. There, the variable selec-
tion procedure was modified to increase branching priority for so-called ‘process’ variables.
Existing research into exact RCPSP/t solving has only used SMT [9] without modifying
any solver, so it would be interesting to see if problem-specific augmentations can improve
performance. SAT solvers are more suitable than SMT solvers for implementing augmenta-
tions, since the algorithm is simpler. Before researching an exact SAT-based approach, we
explore a heuristic solving approach to have a baseline for comparing performance of exact
approaches, and to find ideas for SAT solver augmentations for future work.

We start by formally defining the RCPSP/t in Section 2. This work describes (Section
3) and provides implementations written in C++ for a priority rule heuristic algorithm [3],
and exact approaches based on SMT [9], SAT, and MaxSAT (maximum satisfiability, an
optimisation extension of SAT). These last two use a new SAT encoding for the RCPSP/t,
which is an adaptation of the SMT encoding [9] where the precedence constraints use a
SAT encoding [8], instead of the original integer difference logic (IDL) encoding. Then, in
Section 4 performance measurements on the J30 and J120 data sets [3] are presented and
discussed. Our measurements show that the exact approaches are significantly slower than
the simple heuristic approach, but they provide higher quality solutions. It can also be seen
that on average the SAT-based and MaxSAT-based approaches outperform the SMT-based
approach for large test instances. In Section 5 responsibility and ethical aspects of this
research are discussed. Finally, we discuss our conclusions and suggestions for future works
in Section 6. Future works can use any (Max)SAT solver for solving the RCPSP/t exactly,
using the SAT formulations proposed in this work, making research into heuristic solver
augmentations easier.

2 Formal definition of RCPSP/t
The resource-constrained project scheduling problem with time-dependent resource capac-
ities and requests (RCPSP/t) consists of finding a start time for each activity (schedule)
minimising the duration of the project (makespan), while respecting precedence relations
and resource availabilities [15]. A set of activities is given, all of which should be assigned a
start time. Each activity is defined to have a duration and a set of successors. An activity
can only start if all its predecessors have closed (finished) at or before that time. At each
time step during an activity’s execution a resource request is defined, for each (renewable)
resource. A renewable resource capacity is defined for each time step within the predefined
scheduling horizon, for each of these resources. At no time should the cumulative request of
the running activities exceed the capacity of any resource.

Formally, we can define the RCPSP/t as a tuple (V, p, E,R,B, b) [9].

• V = {0, 1, ..., n, n+1} is the set of all activities, where 0 and n+1 are dummy activities
for the start and the end of the project respectively.

• p ∈ Nn+2 is the vector containing the duration for each activity, where pi is the
duration of activity i. We have that p0 = pn+1 = 0, but pi > 0 for all 0 < i < n+ 1.
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• E is the set of pairs of activities representing precedence relations. If (i, j) ∈ E then
activity i must finish at or before the time step at which j starts. An activity-on-node
precedence graph G = (V,E) can be constructed. Any cycle in G would make the
problem instance trivially infeasible, so it is assumed that the precedence graph is
acyclic. Furthermore, it is a convention that a path exists from dummy activity 0 to
any i ∈ V , and that from any i ∈ V a path exists to dummy activity n+ 1.

• R = 1, ..., v is the set of renewable resources.

• B ∈ Nv×T is a matrix of renewable resource capacities, where Bk,t is the available
amount of resource k ∈ R at time step t ∈ {0, ..., T − 1}. Here T is the predefined
scheduling horizon of the problem instance, which also acts as an upper bound on the
makespan because resource capacities are not defined after this time.

• b is a three-dimensional irregular matrix, where bi,k,e ∈ N is activity i’s request for
resource k at time step e after the start of i. The matrix is irregular, because not all
activities have the same duration. Dummy activities have duration 0, so they do not
have any resource requests.

A solution is a vector SOL ∈ Nn+2 with a start time SOLi ∈ SOL for all i ∈ V , satisfying
all precedence and resource constraints. The decision variant of the problem consists of
determining whether any valid schedule exists given some upper bound on the makespan.
An optimal solution (meaning it has a minimal makespan) can be found by repeatedly
solving the decision variant of the problem with an incrementally decreasing upper bound.

3 Studied solving approaches
This section describes the solving methods studied in this paper. The first method is not
exact, while the rest are exact. We provide an implementations written in C++1.

A preprocessing step required for all solving approaches discussed in this section is to
calculate, for each activity i ∈ V , the earliest and latest feasible start time (ES∗

i and
LS∗

i ), and the earliest and latest feasible close time (EC∗
i and LC∗

i ). These times are the
earliest or latest feasible considering precedence constraints, also keeping in mind resource
feasibility (indicated by the ‘∗’), meaning that times with insufficient resources are excluded
[3]. Following the recursive definition by Hartmann [3], we have that ES∗

i = max{ES∗
j +pj |

j ∈ Pi} and LC∗
i = min{LC∗

j − pj | j ∈ Si}. Here Pi and Si denote the predecessors and
successors of i, respectively. Naturally, we also have that LS∗

i = LC∗
i − pi and EC∗

i =
ES∗

i + pi. Finally, for dummy activities we know that ES∗
0 = LS∗

0 = 0 and LS∗
n+1 = UB.

Here UB is some upper bound on the makespan which is usually the predefined scheduling
horizon T of the problem, but it could also be some computed value, as will be explained
later. This preprocessing step is able to detect relatively simple cases where the instance
is infeasible (not all cases). When we have that EC∗

i > T or LS∗
i < 0 for any i ∈ V ,

then the instance is proven to be infeasible. If resources are scarce it is also possible that
LC∗

i − ES∗
i < pi occurs, which also proves that there is no feasible solution [3].

For all studied exact approaches the encoding uses the same resource constraints, which
are encoded into SAT in the way described below. The resource constraints are pseudo-
Boolean (PB), so they are of the form

∑n
i=1 qixi#K with constants qi,K ∈ Z, Boolean

1Simple heuristic algorithm: https://github.com/jpleunes/rcpspt-heuristic.
Exact approaches using SMT/SAT/MaxSAT encoding: https://github.com/jpleunes/rcpspt-exact.
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0/1 variables xi, and # ∈ {<,≤,=,≥, >}. Multiple ways of encoding PB constraints into
SAT exist. A paper by Bofill et al. [9] studies, among others, a SAT encoding of PB
constraints based on Binary Decision Diagrams (BDD), and a SAT encoding of PB at-most-
one (PB(AMO)) constraints based on Multi-valued Decision Diagrams (MDD). Compared
to the PB encoding, PB(AMO) was shown experimentally to result in better performance.
However, in this work we used the PB encoding (based on BDD), since it is simpler to
implement while still giving good performance. Each PB constraint is encoded by first
constructing a Reduced Ordered BDD (ROBDD), then generating two SAT clauses for each
non-terminal node, and finally completing the encoding by adding three unary clauses [16].

3.1 Simple heuristic algorithm
The first studied solving approach is a tournament heuristic using a priority rule, as described
by Hartmann [3]. A preprocessing step of this approach is to calculate the priority value
for each activity i ∈ V . An activity’s priority value can be based (partially or completely)
on one of the bounds of the time window [ES∗

i , LC
∗
i ]. Different definitions for the priority

value can be used. An example is the critical path CPi = T − LS∗
i , with longer critical

paths getting higher priority. This definition uses mostly the precedence constraints. The
influence of resource constraints can be increased by using the "critical path and resource
utilisation" (CPRU) [3] definition, which we will use. The resource utilisation (RU) value is
based on the fraction of the available resource capacity that is requested by an activity (and
its successors). A larger RU increases priority. Using CPRU very slightly improves solution
quality, but also slightly increases run times [3].

The scheduling algorithm is based on a serial schedule generation scheme (serial SGS).
Such a scheme constructs schedules where no activity can be left-shifted. This approach
reduces the size of the search space, excluding schedules that are of low average quality.
Optimal solutions could also be excluded, however. The algorithm runs multiple passes
(1,000 in our case) and finally picks the best schedule that is generated from these. Within
each pass, the activities are scheduled one by one. The next activity to be scheduled is
determined by running a so-called ‘tournament’, which is a randomised procedure where the
activity’s priority value corresponds to the probability of being selected.

3.2 Exact approach using SMT encoding
The first exact solving approach that we study is based on Satisfiability Modulo Theories
(SMT). The approach is mostly based on a paper by Bofill et al. [9].

3.2.1 Problem encoding

The formulation used for this approach uses Boolean and integer variables. The formula-
tion is time-indexed, meaning that time is discretised in unit intervals, such that variables
correspond to these intervals. This naturally fits the time-dependent definition of resource
capacities and requests in the RCPSP/t. Boolean 0/1 variables yi,t are used to to denote
that activity i ∈ V starts at time t. For precedence constraints integer variables Si are used
to denote the start time of activity i. In this formulation, precedence constraints are expres-
sions in the form of integer difference logic (IDL), which are basic rewritings of y − x < c
with variables x, y ∈ Z and constant c ∈ Z. The complete formulation used in this work
mostly follows the paper by Bofill et al. [9], and looks as follows:
S0 = 0 (1)
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Si ≥ ES∗
i ∀i ∈ V \ {0} (2)

Si ≤ LS∗
i ∀i ∈ V \ {0} (3)

Sj − Si ≥ li,j ∀(i, j, li,j) ∈ E∗ (4)

yi,t ↔ Si = t ∀i ∈ V,∀t ∈ STW (i) (5)∑
i∈A, s.t.

t∈RTW (i)

∑
e∈0..pi−1 s.t.
t−e∈STW (i)

bi,k,e · yi,t−e ≤ Bk,t ∀k ∈ R,∀t ∈ H (6)

Constraint (1) sets dummy activity 0 to start at time 0. Constraints (2) and (3) enforce
that activities do not start outside of their feasible start times. Constraints (4) enforce
the (extended) precedence relations. A precedence relationship (immediate or extended)
between two activities i and j is encoded using a time lag li,j , which is a lower bound on
the difference between the start times of these activities. This is the minimum length of
any path from i to j in the precedence graph G = (V,E), where E is the set of weighted
edges. These time lags can be computed using the well-known Floyd-Warshall algorithm.
The values li,j can also be seen as the edge weights for the extended precedence graph
G∗ = (V,E∗), meaning that (i, j, li,j) ∈ E∗. The extended precedence graph G∗ is the
transitive closure of the precedence graph G, which means that it contains an edge (i, j, li,j)
for any two activities i and j between which a path exists in G. Constraints (5) enforce
consistency between the Boolean and integer start variables, with STW (i) denoting the start
time window [ES∗

i , LS
∗
i ] of activity i. Our definition uses the values ES∗

i and LS∗
i in multiple

constraints, while Bofill et al. [9] used different values ESi = l0,i and LSi = UB − li,n+1.
Their definition results in larger time windows, because the minimum path lengths between
two activities are used without taking into account that an activity can only start once
all predecessors have finished, ultimately increasing the size of the encoding. The resource
constraints (6) ensure that for each resource k ∈ R, the capacity Bk,t is respected for all
time steps t ∈ H. Here H = {0, ..., UB − 1} is the set of time steps within the upper
bound on the makespan UB. The calculation of the upper bound is explained after this
problem encoding, as part of the minimisation of the makespan. RTW (i) denotes the run
time window [ES∗

i , LC
∗
i − 1] of activity i, and pi is the duration. If the literal yi,t−e is true,

then that implies that at time t activity i has been running for e units of time. This is also
why the resource request at time e (bi,k,e) is used.

The time lags li,j used for constraints (4) can be increased using energetic reasoning [9].
This makes the SMT encoded problem more constrained, reducing the search space. The
reasoning is based on the fact that for any two activities i, j ∈ E∗, the time lag li,j must
be wide enough such that all activities a that must be executed between i and j (meaning
that (i, a, li,a ∈ E∗) ∧ (a, j, la,j ∈ E∗)) can be executed without exceeding any resource
constraints. This means that a lower bound on the distance between the end of i and the
start of j can be computed for some resource k [9]:

RLBi,j,k =

⌈
1

max
t∈H

(Bk,t)
·

∑
a∈V s.t.

(i,a,li,a)∈E∗,
(a,j,la,j)∈E∗

∑
u∈{0,...,pa−1}

ba,k,u

⌉
(7)
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This means that the updated time lags l′i,j can be calculated as follows [9]:
l′i,j = max(li,j , pi +max

k∈R
(RLBi,j,k)) ∀(i, j, li,j) ∈ E∗ (8)

In practice, however, this definition was found to lead to incorrect results, with feasible
problem instances being classified as infeasible. The reason for this is unknown. In this
work, an alternative definition that is still able to increase some time lags (while giving
correct results) was used:
l′i,j = max(li,j ,max

k∈R
(RLBi,j,k)) ∀(i, j, li,j) ∈ E∗ (9)

Whenever a time lag is increased this way, the update must be propagated to other time
lags. This is done by running the Floyd-Warshall algorithm again.

3.2.2 Minimisation of the makespan

For this approach, the general idea is to call the solver multiple times for checking satisfia-
bility, with an incrementally decreasing upper bound. Once the encoded problem becomes
unsatisfiable, we know that the last found solution was optimal.

It is desirable for the initial upper bound to be as small as possible, so that fewer
satisfiability checks have to be run on the solver. Our implementation calculates an initial
upper bound UB by running the priority rule heuristic algorithm described earlier. The
amount of passes that are run was chosen to be the number of (non-dummy) activities n
multiplied by 5 (an arbitrarily chosen number), so that the number of passes increases as
the problem becomes harder. This differs from the work by Bofill et al. [9], where the
Parallel Scheduling Generation Scheme (PSGS) was used. In this work the PSGS is not
used, because an implementation of the heuristic algorithm was already readily available to
be used. If the heuristic algorithm finds a solution the makespan of that solution is used as
the upper bound, if not the horizon T from the problem definition is used. A lower bound on
the makespan LB is also returned, in the form of the earliest feasible start time of the end
dummy activity, ES∗

n+1. To allow for fair comparisons of different encodings, all randomness
was eliminated from the heuristic algorithm by setting a seed. Thus, for one instance of the
problem the same initial solution (or no initial solution) will always be found.

The optimisation procedure was inspired by the paper by Bofill et al. [9], and can be
found in Algorithm 1. Function check(ENC) calls the solver to determine satisfiability of the
encoded problem ENC. It returns (⊤,MODEL) if a model was found, (⊥, {}) otherwise.
The function getSolution(ENC,MODEL) gets the solution vector SOL for the original
problem, from model MODEL of encoding ENC. The makespan of SOL is SOLn+1.

3.3 Exact approach using SAT encoding
A new exact approach that we propose is based on the standard SAT problem, using another
time-indexed formulation. The most important difference with the SMT formulation is that
SAT clauses are used for precedence constraints, instead of IDL clauses. This means that
the entire encoding consists of only propositional logic, allowing for SAT solvers to be used,
instead of more complex SMT solvers.

3.3.1 Problem encoding

The formulation used for this approach uses Boolean 0/1 variables yi,t to denote that activity
i ∈ V starts at time t, and Boolean 0/1 variables xi,t to denote that i is running at time t.
We will refer to variables yi,t as start variables, and xi,t as process variables. The formulation
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Algorithm 1 Minimise makespan
Require: Encoded problem instance ENC, lower bound LB, and upper bound UB
Ensure: Return an optimal solution if ENC is satisfiable, an empty vector otherwise
1: (SAT,MODEL)← check(ENC)
2: if SAT then
3: SOL← getSolution(ENC,MODEL)
4: UB ← SOLn+1 − 1
5: else
6: return {}
7: end if
8: while SAT and UB ≥ LB do
9: ENC ← ENC ∪ {Sn+1 ≤ UB}

10: (SAT,MODEL)← check(ENC)
11: if SAT then
12: SOL← getSolution(ENC,MODEL)
13: UB ← SOLn+1 − 1
14: end if
15: end while
16: return SOL

contains clauses based on a paper by Horbach [8] for precedence constraints. The resource
constraints are the same as in the SMT encoding, they are based on the paper by Bofill et
al. [9]. The complete formulation used in this work looks as follows:
y0,0 (10)

¬yi,s
∨

t∈{ES∗
j ,...,min(s−pj ,LS∗

j )}

yj,t ∀(j, i) ∈ E,∀s ∈ STW (i) (11)

∨
s∈STW (i)

yi,s ∀i ∈ V \ {0} (12)

¬yi,s ∨ xi,t ∀i ∈ V,∀s ∈ STW (i),∀t ∈ {s, ..., s+ pi − 1} (13)

¬xi,t ∨ xi,t+1 ∨ yi,t−pi+1 ∀i ∈ V,∀t ∈ {EC∗
i , ..., LC

∗
i − 1} (14)∑

i∈A, s.t.
t∈RTW (i)

∑
e∈0..pi−1 s.t.
t−e∈STW (i)

bi,k,e · yi,t−e ≤ Bk,t ∀k ∈ R,∀t ∈ H (15)

Constraint (10) sets dummy activity 0 to start at time 0. Constraints (11) enforce prece-
dences by ensuring that for each i ∈ V , all predecessors start early enough to allow i to start
at the time that is being considered. Here it is important to use min(s− pj , LS

∗
j ), and not

simply s− pj , because the time window of j and the time window of i may have a ‘gap’ in
between. Such gaps are caused by the consideration of resource feasibility for calculating ear-
liest and latest feasible times. Constraints (12) make sure that each activity starts (at least)
once. Constraints (13) enforce consistency between start variables and the corresponding
process variables. Constraints (14) are redundant, but numerical tests in other work have
shown that including these reduces the execution time of the solver [8]. Constraints (15)
enforce resource constraints, with the same definition as in the SMT formulation.
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3.3.2 Minimisation of the makespan

The general idea for minimising the makespan is the same as that for the SMT-based ap-
proach. Algorithm 1 is also used here, with one exception. On line 9 it is no longer possible
to directly add the clause Sn+1 ≤ UB to the encoding, since the encoding does not have
integer variables Si. To solve this, whenever UB is assigned a new value, the old value is
kept in a separate variable UBOLD. Then instead of line 9, multiple unit clauses are added
to the encoding, preventing activity n+ 1 from starting after UB:
¬yn+1,t ∀t ∈ {UB + 1, ..., UBOLD} (16)

It is not enough to simply use ¬yn+1,UB+1, because the solver may find a solution with a
makespan that is multiple time steps smaller than that of the previous solution.

3.4 Exact approach using MaxSAT encoding
The last exact solving approach that we study uses a MaxSAT encoding, which is a small
extension to the previously described SAT encoding. The weighted MAX-SAT problem is
a generalisation of SAT, where the objective is to satisfy all hard clauses, while maximising
the sum of weights assigned to the soft clauses. In other words, the cumulative weight of
the soft clauses that are violated should be minimised. On their own, standard SAT solvers
only solve decision problems, while MaxSAT solvers solve optimisation problems (such as
the RCPSP/t) directly without an external optimisation procedure (such as Algorithm 1).
Such an optimisation solver may perform better for our purposes.

3.4.1 Problem encoding

The previously described SAT encoding is used here (with all clauses as hard clauses). The
objective of minimising the makespan is defined by adding soft unit clauses yn+1,t,∀t ∈
STW (n+ 1), starting with weight 1 for t = LS∗

n+1, and incrementing the weight for every
step that t decreases. This ensures that the solver is penalised more for violating earlier
start times for activity n + 1 (the start time of n + 1 is the makespan). To prevent n + 1
from being scheduled multiple times to satisfy more soft clauses, we also add hard clauses:
¬yn+1,t ∨ ¬yn+1,u ∀t, u ∈ STW (n+ 1) s.t. t ̸= u (17)

These clauses ensure that n+ 1 is scheduled at most once.

4 Experiments
Measurement results for all implementations are shown and discussed in this section. For
this section we will refer to the priority rule heuristic algorithm as ‘PR’, the SMT encoding-
based algorithm as ‘SMT’, the SAT encoding-based algorithm as ‘SAT’, and the MaxSAT
encoding-based algorithm as ‘MaxSAT’.

4.1 Experimental setup
The data sets used for testing are the J30 (2,880 instances, 30 activities per instance) and
J120 (3,600 instances, 120 activities per instance) sets that were adapted to be used for the
RCPSP/t by Hartmann [3]. These test instances2 are based on the frequently used J30 and

2The instances can be downloaded from: http://www.om-db.wi.tum.de/psplib/newinstances.html.
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J120 instances from the PSPLIB problem library [17]. To our knowledge, these adapted
instances are the only publicly available test data for the RCPSP/t.

Measurements were run on a machine with an Intel® Xeon® Gold 6248R processor
at 3.00GHz with 8GB RAM. The SMT and SAT approaches used Yices 2.6.4 [12] as the
solver, communicating through the provided C API. The solver context was configured with
multi-check mode to allow for multiple satisfiability checks to be called, with a decreasing
upper bound. For SMT the default solver logic was configured as QF_IDL (quantifier-free
integer difference logic), and for SAT this was configured as NONE (propositional logic only).
The programs were given a time limit of 60 seconds per problem instance, after which they
were interrupted, causing the program to output its current best solution.

For the MaxSAT approach the amount of RAM was increased to 32GB, as 8GB was
too little. The Pumpkin solver was used. This is a MaxSAT solver that was provided by
our supervisor E. Demirović. The solving approach starts by using the encoder program
to write the encoded problem to a WCNF-format file. Then the Pumpkin solver reads this
file, and is given a time limit of 60 seconds for solving (using the -time argument). The
resulting model (file location is specified using the -output-file argument) is finally read
by the encoder program, which converts it to a solution vector for the RCPSP/t problem.

4.2 Results
Table 1 shows the the average size for different encodings, in terms of number of variables and
number of clauses. ‘SAT’ refers to the encoding used by both SAT and MaxSAT. For SMT,
the small number of integer variables corresponds to the number of activities (including
dummy activities). Any clauses added for minimising the makespan are not counted.

encoding(#act) #Bv #iv #cl
SMT(30) 99,270 32 198,584
SAT(30) 100,177 0 202,498

SMT(120) 2,632,783 122 5,267,390
SAT(120) 2,642,216 0 5,317,721

Table 1: Average size for different encodings on the J30 and J120 data sets. #act denotes
the number of (non-dummy) activities per instance of the data set, while #Bv, #iv, and #cl
denote the average number of Boolean variables, integer variables, and clauses respectively.

For the performance measurements of exact approaches, encoding time, search (solving)
time, and total execution time were measured. The encoding time includes calculating the
initial solution using the heuristic algorithm, initialising the solver (for SMT and SAT),
encoding the problem instance into the solver’s logic, and writing to the WCNF file (for
MaxSAT). Search time is the time spent on the optimisation procedure. The total execution
time includes these measured times, and I/O operations (reading and parsing the input file
and writing results to the console).

We count an instance as certified when an optimal solution is found, or when the solver
finds the instance to be infeasible. Furthermore, an instance is counted as solved when it
is certified, or when any solution (not certified to be optimal) is found. MaxSAT is not
always able to provide a valid intermediate solution before finding the optimum, in which
case the initial heuristic solution is simply considered. As a measure of solution quality, the
average distance of the makespan to some ‘lower bound’ ∆LB is used. This bound is not
always the optimal solution, but rather an approximation. For each instance, the bound is
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the makespan that was found in the work by Bofill et al. [9] where a PB(AMO) encoding
of resource constraints was used, with a time limit of 600 s. The results3 for the PB(AMO)
encoding were used, because these were shown to have the smallest makespans overall. We
compute the distance as: MS−LB

LB · 100, with makespan MS and ‘lower bound’ LB.
In the results for the 120-activity instances (Table 2) it could be seen that SMT spent

3-4 seconds longer on encoding than SAT, on average. Thus, SMT effectively had less search
time for hard instances where the time limit was reached. To allow for a fair comparison,
additional measurements were taken for SMT with a time limit extended by 4 seconds
(totalling 64 s). There are no such additional measurements for MaxSAT, because here the
60 s time limit only applies to searching, rather than the entire solving approach.

Due to some seemingly random inconsistencies when measuring CPU time for SMT and
SAT, search time was reported as 0 for less than 1% of instances, while the program reached
the 60 s time limit and spent less than 10 seconds on encoding. In these exceptional cases
the search time was corrected using tsearch = ttotal − tenc, which is very close to what this
time would have been in reality. Measurements for MaxSAT also contain one incorrect data
point, where the solver marked a feasible instance as infeasible. The point was manually
corrected, as if the solver certified this instance. Overall, comparisons are not affected in
any significant way.

Table 2 shows the measurements of solving times and solution quality for the different
exact solving approaches. Values are from the second run of measuring, due to bugs in the
implementation for the first run. Complete measurement data (for both runs, data for run
1 manually corrected) are included in the GitHub repository for the exact approaches.

Table 2 also shows measurements of execution times and solution quality for the priority
rule heuristic algorithm (PR). The encoding and search times are not applicable here. In
terms of certifying solutions, the only certifications that this algorithm is able to provide
are when the preprocessing steps prove that the instance is infeasible. Performance was
measured with the number of passes (tournaments) set to 100 and 1,000. The measured
total execution times again include I/O operations.

4.3 Discussion
To start, the average sizes of the SMT and SAT encodings are similar in terms of the number
of Boolean variables. In the SMT encoding these variables are only used for the PB encoding
of resource constraints. The increase in size going from SMT to SAT, caused by the addition
of process variables which are only used for redundant constraints, is relatively small.

The two encodings are also similar in terms of the average number of clauses. The SMT
encoding only contains O(n2) clauses for precedence constraints, since pairs of activities are
considered in constraints (4). It should be noted that these are IDL clauses, so these are
more complex for the solver to check compared to propositional logic clauses. The small
amount of clauses for precedence constraints means that the vast majority of clauses are
generated as part of the PB encoding of resource constraints. The increase in the amount
of clauses going from SMT to SAT is caused by a combination of multiple clauses being
required for encoding one precedence relation (although these are not IDL clauses in this
case), and the fact the SAT encoding includes redundant clauses. The increase in size is
again relatively small.

For both encodings, the number of Boolean variables and the number of clauses both
increase by a factor of roughly 26 when increasing the size of the problem from 30 to 120

3These results were downloaded from: https://ima.udg.edu/Recerca/lai/rcpspt2smt/index.html.
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tenc tsearch ttotal #s #c ∆LB

J30 (2,880 instances, 2,826 feasible)
SMT 0.12 0.80 0.93 2,880 2,875 0.00
SAT 0.10 1.33 1.44 2,880 2,845 0.02

MaxSAT 0.21 1.43 1.64 2,880 2,843 0.02
PR(100 pass) n.a. n.a. 0.00 2,864 43 1.63

PR(1,000 pass) n.a. n.a. 0.05 2,866 43 0.79
J120 (3,600 instances, 3,600 feasible)

SMT 7.22 27.90 35.13 3,600 1,758 6.71
SMT(64 s) 7.07 30.94 38.01 3,600 1,801 6.23

SAT 3.73 28.54 32.28 3,600 1,854 4.25
MaxSAT 6.74 35.87 42.60 3,600 1,822 3.18

PR(100 pass) n.a. n.a. 0.07 3,600 0 8.20
PR(1,000 pass) n.a. n.a. 0.53 3,600 0 6.79

Table 2: Performance measurements for the different solving approaches. The average
encoding, search (solving), and total execution times are denoted by tenc, tsearch, and ttotal
respectively. Times are measured in seconds. The amount of solved instances is denoted
by #s, and the amount certified is denoted by #c. The average deviation from the ‘lower
bound’ is denoted by ∆LB , in %.

activities (a factor 4). This underlines how quickly the complexity of the RCPSP/t grows.
In terms of performance on the J30 data set, SMT certified the largest number of in-

stances (99.8%). SAT certified 98.8% and MaxSAT certified 98.7% in comparison. All exact
approaches were able to solve all instances. SMT also resulted in the best average solution
quality (smallest ∆LB). For these small instances, the encoding times were quite similar,
while the average search time was 66.3%-78.8% lower for SMT. The increased search time
for SAT and MaxSAT is likely due to the time limit being reached more often.

On the J30 data set, PR solved roughly the same amount of instances when running
with either 100 or 1,000 passes (99.4%-99.5% solved). The average solution quality improved
significantly when the amount of passes was increased from 100 to 1,000. With ten times
more passes the total execution time also increased roughly tenfold (as expected), but this
time still remained negligible overall. The J30 data set contains 54 infeasible instances, 43
of which are found to be infeasible by the preprocessing steps.

For the J120 data set, SAT was able to certify the largest number of instances (51.5%),
while MaxSAT certified 50.6% and SMT certified 48.8%. When compensating for the longer
encoding times for SMT by increasing the time limit to 64 seconds, 50.0% could be certified.
The increased time limit also improved average solution quality for SMT, but MaxSAT and
SAT clearly have better average solution quality. The improved solution quality going from
SAT to MaxSAT could be caused by the longer search times, due to MaxSAT not needing
to encode the problem in this time, and due to MaxSAT’s stopping mechanism allowing the
time limit to be exceeded. This time limit is exceeded by more than 5 seconds (tsearch > 65)
for 922 out of 3,600 instances, with tsearch = 69.0 on average in these cases, and up to
tsearch = 112.2 in extreme cases. On the other hand, MaxSAT has a small disadvantage
with invalid intermediate solutions being discarded, with the initial heuristic solution being
considered instead. For SMT, the average solution quality (with 60 s and 64 s time limits) is
still close to that of PR with 1,000 passes. This means that, within the given time limit, the
exact optimisation procedure of SMT improved initial solutions a small amount, compared
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to SAT. The exact approaches solved all instances in J120. Finally, SAT has the lowest
average total execution time out of the exact solutions, partially due to its low average
encoding time. Altogether, the lower execution times and higher quality solutions give an
indication that the SAT approach scales better than the SMT approach when the number
of activities in the problem increases, while SMT is more efficient for problems with a small
number of activities. MaxSAT also seems to scale better than SMT, giving the highest
quality solutions, but it should be noted that average execution times were higher.

PR solved all J120 instances with only 100 passes. Average execution time increased
significantly going from 100 to 1,000 passes, but all instances were solved in less than 1
second. Average solution quality also improved with more passes. No instances could be
certified, since they are all feasible.

4.4 Comparison with state-of-the-art
To our knowledge, prior to this work no SAT encoding existed for solving the RCPSP/t
specifically, so no direct comparisons can be made. However, the SAT and MaxSAT ap-
proaches can be compared to an SMT approach, as was done in this section. The SMT-based
approach proposed by Bofill et al. [9] was the only exact approach for this problem, to our
knowledge. They also provide an executable file for their solving approaches, but the source
code is not publicly available. In this work, comparisons were chosen to be done using our
own implementation of the SMT approach, so that the SAT implementation is as similar as
possible with the encoding being the only difference.

One limitation is that due to time restrictions the exact approaches described in this
work do not use PB(AMO) encodings for resource constraints, because the implementation
for this is more involved compared to PB encodings. However, since this limitation applies to
all studied exact approaches, we can still study the effects of using SAT instead of SMT. We
have shown experimentally that, on average for larger test instances, the SAT and MaxSAT
approaches give higher quality solutions within the set amount of time. This can be seen as
an advancement to the state-of-the-art of exact solving of the RCPSP/t.

Another limitation is that only one solver was measured per exact approach, due to time
restrictions. Different solvers supporting the WCNF format (or DIMACS CNF format, with
minor adjustments to the code) can easily be used, and may lead to different performance.
With the new (Max)SAT encoding available, many (Max)SAT solvers can be used to solve
the RCPSP/t exactly, because support for IDL encodings (used in the SMT approach)
is not required. ‘Normal’ (Max)SAT solvers also generally have simpler implementations
than SMT solvers, which means that heuristic augmentations for even further improving
performance can be implemented more easily with this new (Max)SAT encoding.

5 Responsible research
Multiple aspects must be taken into account when comparing the performance of multiple
programs for solving the same problem. The first point is that different algorithms should
be compared as fairly as possible. Implementations should preferably all be written by the
same programmer, or at least a programmer with comparable skill, to prevent variations
that may impact the efficiency of the respective programs. If possible, all implementations
should use the same programming language (with the same compiler/interpreter), to prevent
variations in performance caused by different kinds of optimisations. All tests should then
be run on the same system (not necessarily the machine used for programming, think of a
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computing cluster) to ensure that the algorithm being tested is the only variable. In this
work, all measured implementations were written by the same programmer, all in the same
language, compiled using the same compiler, and all run on the same high performance com-
puting cluster. This paper also describes all studied solving approaches in detail, allowing
researchers to write their own implementations.

Another aspect is the reproducibility of the research. All source code that has been
written for this work is publicly available, which allows the implementations to be checked
for any errors, and for (parts of) the code to be adapted for further research. This also
makes running new measurements easier, in case a researcher decides not to write their own
implementation. Again, since this paper describes the studied solving approaches in detail,
researchers can write their own implementations or use this information for their research
in other ways.

The last point discussed here is to make measurement data sets publicly available. Firstly,
this makes it possible for others to verify whether the paper presents results objectively and
thoroughly. Second, this may aid in future research, where for example problem solutions
from these measurement data can be used as a baseline for improvements. Finally, when
reproducing the research the original measurement data can be used to check whether the
methodology matches that of the original paper. For this work the measurement data are
available in the GitHub repositories of the respective implementations.

6 Conclusions and future work
This work explored the possibility of efficiently solving the RCPSP/t using an exact (Max)SAT-
based approach. The question of improving performance by heuristically augmenting a SAT
solver was introduced, but such augmentations could not be implemented due to time limi-
tations. A simple heuristic solving algorithm was also studied, providing baseline solutions
that are improved upon by the exact solving approaches.

The priority rule heuristic algorithm solved 99.8% of all test instances within 1 second,
but it does not certify optimality of its solutions. Out of the studied solving approaches
it had the lowest average solution quality. Then an SMT approach based on existing work
was studied. This approach solved all test instances, and overall it gave the highest average
quality solutions for the smaller 30-activity test instances. A new SAT approach, partially
based on the SMT approach, was then studied. This approach also solved all test instances,
and on average it gave higher quality solutions for the larger 120-activity tests instances.
Finally, a MaxSAT approach (a small extension to the SAT approach) gave even higher
average quality solutions, possibly due to higher search times.

Conclusions

We conclude that it is possible to exactly solve the RCPSP/t efficiently using both SAT-
based and MaxSAT-based approaches, with our experiments showing that these even outper-
form an SMT-based approach on large test instances. The question of whether performance
can be improved by heuristic augmentations to the solver could not yet be answered, but
the new (Max)SAT encoding facilitates research into this question.

A new SAT encoding for the RCPSP/t, with a MaxSAT extension, can be seen as
the main contributions of this work. Other notable contributions are solver performance
measurements for three problem encodings, and C++ implementations for different solving
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approaches: a heuristic algorithm, an SMT-based approach, a SAT-based approach, and a
MaxSAT-based approach.

A limitation is that the encodings used in this work do not use the more efficient
PB(AMO) encoding for resource constraints, because the implementation is more com-
plex. Thus, there is a good chance that the performance of the exact approaches would
be improved by replacing the current PB encoding with a PB(AMO) encoding. Another
limitation is that only one solver was measured per problem encoding.

Future work

The SAT encoding proposed in this paper can be used in future work for solving the
RCPSP/t exactly, using any (Max)SAT solver. The provided C++ implementation can
write a MaxSAT encoding to a file in WCNF format, and can also be adapted to write a
SAT or SMT encoding to a file instead of communicating with the solver directly, although
we recommend researchers to write their own implementations.

Future work could additionally explore different problem-specific heuristic augmentations
to the variable selection procedure of a SAT solver. The Pumpkin MaxSAT solver, or
an extensible SAT solver such as MiniSat [14] would be a good options for implementing
heuristic augmentations. The ordering of variables can be determined statically, meaning
before the search procedure starts, or dynamically meaning that the ordering may change
during the search procedure. For a static ordering, a possibility would be to always branch
on start variables yi,t first, and sort them using some priority value for the corresponding
activity i. The priority value could use the definition from the heuristic algorithm discussed
in this paper, for example. For each activity, these variables can also be ordered by ascending
time t, since we would ideally like to quickly find a solution where activities are scheduled
early. A dynamic ordering possibility is to prioritise process variables xi,t by giving them
a higher branching priority, as this has previously been shown experimentally to improve
performance for an exact approach for solving the RCPSP [8].
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