
 
 

Delft University of Technology

Elicitation of Rank Correlations with Probabilities of Concordance
Method and Application to Building Management
Ramousse, Benjamin; Mendoza-Lugo, Miguel Angel; Rongen, Guus; Morales-Nápoles, Oswaldo

DOI
10.3390/e26050360
Publication date
2024
Document Version
Final published version
Published in
Entropy

Citation (APA)
Ramousse, B., Mendoza-Lugo, M. A., Rongen, G., & Morales-Nápoles, O. (2024). Elicitation of Rank
Correlations with Probabilities of Concordance: Method and Application to Building Management. Entropy,
26(5), Article 360. https://doi.org/10.3390/e26050360

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.3390/e26050360
https://doi.org/10.3390/e26050360


Citation: Ramousse, B.;

Mendoza-Lugo, M.A.; Rongen, G.;

Morales-Nápoles, O. Elicitation of

Rank Correlations with Probabilities

of Concordance: Method and

Application to Building Management.

Entropy 2024, 26, 360. https://

doi.org/10.3390/e26050360

Academic Editor: Dawn E. Holmes

Received: 15 March 2024

Revised: 19 April 2024

Accepted: 23 April 2024

Published: 25 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Elicitation of Rank Correlations with Probabilities of
Concordance: Method and Application to Building Management
Benjamin Ramousse 1,2,*, Miguel Angel Mendoza-Lugo 1 , Guus Rongen 1 and Oswaldo Morales-Nápoles 1

1 Department of Hydraulic Engineering, Delft University of Technology, 2628 CN Delft, The Netherlands
2 Linesight, 75014 Paris, France
* Correspondence: benjamin.ramousse@linesight.com

Abstract: Constructing Bayesian networks (BN) for practical applications presents significant chal-
lenges, especially in domains with limited empirical data available. In such situations, field experts
are often consulted to estimate the model’s parameters, for instance, rank correlations in Gaussian
copula-based Bayesian networks (GCBN). Because there is no consensus on a ‘best’ approach for
eliciting these correlations, this paper proposes a framework that uses probabilities of concordance
for assessing dependence, and the dependence calibration score to aggregate experts’ judgments.
To demonstrate the relevance of our approach, the latter is implemented to populate a GCBN in-
tended to estimate the condition of air handling units’ components—a key challenge in building
asset management. While the elicitation of concordance probabilities was well received by the ques-
tionnaire respondents, the analysis of the results reveals notable disparities in the experts’ ability to
quantify uncertainty. Moreover, the application of the dependence calibration aggregation method
was hindered by the absence of relevant seed variables, thus failing to evaluate the participants’ field
expertise. All in all, while the authors do not recommend to use the current model in practice, this
study suggests that concordance probabilities should be further explored as an alternative approach
for the elicitation of dependence.

Keywords: Bayesian networks; concordance probability; building maintenance; expert judgment;
dependence calibration

1. Introduction

Significant attention, both in academia and in practice, has been directed towards the
development of new techniques and expertise in the construction processes of buildings.
However, the ageing of (Western European) building stock has progressively sparked
interest in maintenance and future developments in the field [1]. As a result, standard
practices have evolved from corrective maintenance, where works are performed after the
occurrence of a failure in order to bring a component back into a state where it can perform
its intended functions [2,3], to preventive maintenance, where interventions are performed
following a specific schedule [3,4].

Preventive maintenance (PM) was originally used to pre-emptively reduce or eliminate
the deterioration of building components [5,6]. Rapidly, though, scholars and practitioners
came to realize that certain components were replaced despite being in good condition,
thus incurring unnecessary costs. Consequently, condition-based maintenance (CBM)
gained momentum. In contrast with predetermined PM, interventions in CBM are planned
based on the condition of the assets under management, which is assessed during periodic
inspections [5,7]. While the scope and methodologies of these inspections vary across
regions and sectors, they commonly rely on the sensory assessment of individual building
components’ condition.

Because of the poor accessibility and the complexity of mechanical, electrical, and plumb-
ing (MEP) systems, these sensory inspections are rarely sufficient to reliably evaluate the
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condition of their components [8]. Asset managers are thus compelled to obtain condition
data through estimates, commonly based on a limited number of parameters (e.g., age
and theoretical lifespan; see, e.g., [9]), or through appraisals from third parties, resulting
in a poor integration of these data in the overall maintenance strategies. This tendency
led MEP to be the building trade where the highest number of defects are reported [10].
Clearly, then, implementing new methods to estimate these components’ condition is key
to improve buildings’ occupants’ comfort [11–13] and minimize repair costs, which can be
substantial [10,14].

To that end, the present study investigates the applicability of Bayesian networks (BNs)
for the estimation of MEP systems’ condition. Bayesian networks, which are probabilistic
graphical models used to study probabilistic influence between random variables, were
selected because their graphical structure facilitates interactions with practitioners and they
robustly handle missing data [15–17]. These characteristics are essential in the context of
MEP systems given the scarcity of historical condition data. To better address this lack
of data, so-called Gaussian copula-based Bayesian networks (GCBN) are adopted in this
research. Their formulation, detailed in the next section, enables the involvement of field
experts for the quantification of the model through structured expert judgments (SEJ),
as demonstrated by past implementations of GCBNs (e.g., [18–20]).

Whereas the elicitation of univariate distributions has been investigated in academia
with great depth, the assessment of dependence remains a topic yet to be consolidated
in SEJ literature. Therefore, this paper focuses on the development of a method for the
assessment of (conditional) rank correlations by field experts, while less attention is de-
voted to the elicitation of the one-dimensional marginal distributions. In contrast with
existing research, which has delved into the use of statistical [19,21] and conditional fractile
estimates [18,20,22] approaches, the relevance of a third type of probabilistic assessment is
hereby studied: probabilities of concordance. Given the assumptions underlying GCBNs,
unconditional rank correlations can be retrieved from concordance probabilities using a set
of closed-form relations, which are defined in Section 2.2.1.

The next section presents theory on GCBNs and related statistical concepts (Section 2.1),
and introduces the methodology implemented in this paper to retrieve rank correlations
from expert judgments (Section 2.2). Then, the case study selected for the implementation
of the aforementioned elicitation method is presented (Section 3). In Section 4, the results
of the consultations are presented and analyzed, resulting in a quantified network for air
handling units. Lastly, the research’s findings are discussed and conclusions are drawn
with regards to the research objectives formulated above (Section 5).

2. Material and Methods
2.1. Gaussian Copula-Based Bayesian Networks

BNs are directed acyclic graphs (DAG) composed of nodes and arcs. In these networks,
nodes represent random variables, while arcs represent the probabilistic dependencies
between these variables [23]. The immediate predecessors of a node Xi are called parents
and noted pa(Xi); conversely, Xi is called a child node of the elements of pa(Xi).

In contrast with discrete BNs, which use conditional probability tables to quantify
influence, Gaussian copula-based Bayesian networks deal with dependence from another
angle: dependence between variables is associated with (conditional) rank correlations,
whose values depend on the non-unique ordering of each variable’s parents, and bivariate
copulas—particularly the bivariate Gaussian copula. In previous literature, Gaussian
copula-based Bayesian networks are sometimes referred to as “Non-Parametric” Bayesian
networks (NPBN). However, the use of parametric one-dimensional marginal distributions
motivated the authors to refer to them as “Gaussian copula-based Bayesian networks”.

Copulas were introduced in [24] with Sklar’s theorem, which states the following:
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Theorem 1. Given a joint cumulative distribution function (CDF) F(x1, . . . , xn) for random
variables X1, . . . , Xn with marginal CDFs F1(x1), . . . , Fn(xn), F can be written as a function of
its marginals:

F(x1, . . . , xn) = Cθ(F1(x1), . . . , Fn(xn)),

where Cθ(u1, . . . , un) is a joint distribution function with uniform marginals. Moreover, if each Fi
is continuous, then Cθ is unique, and if each Fi is discrete, then Cθ is unique on Ran(F1)× . . . ×
Ran(Fn), where Ran(Fi) is the range of Fi. Cθ is called a copula with parameter(s) θ.

Several measures of dependence in copulas exist, with Pearson’s product moment
correlation (ρ) being the most widely used. GCBNs, however, employ Spearman’s rank
correlation (r). For infinite continuous populations with zero probability for ties, r is propor-
tional to the difference between the concordance and discordance probabilities. Consider
two independent vectors of random variables (X1, Y1) and (X2, Y2), where (X1, Y1) has a
joint distribution FX,Y with marginal distribution functions FX and FY, and where X2 and
Y2 are independent with marginal distributions FX and FY. Then,

r = 3(P[(X1 − X2)(Y1 − Y2) > 0]− P[(X1 − X2)(Y1 − Y2) < 0]) (1)

For a bivariate copula C, Equation (1) is equivalent to r = 12
∫

C(u, v)dudv − 3.
Throughout this research, only populations with zero probability for ties are considered.
A correction for dealing with populations with ties (see [25]) has not been integrated in the
present study nor in the associated software implementation.

The conditional rank correlation of Xi, Xj|Xk, . . . , Xz is the rank correlation of (Xi, X j)

where (Xi, X j) have the distribution Xi, Xj|Xk = xk, . . . , Xz = xz. When unambiguous,
the notations ρX,Y (for ρ(X, Y)) and rX,Y (for r(X, Y)) are used in the remainder of this paper.
Likewise, conditional rank correlations r(Xi, Xj|Xk, . . . , Xz) are noted rXi ,Xj |Xk ,...,Xz when
possible. Unlike product moment correlations, which assess linear dependence between
two variables, rank correlations provide a more general measure of monotonic dependence,
rendering it independent of the marginal distributions [18,26].

In GCBNs, each edge is associated to a (conditional) Gaussian copula parametrized by
a (conditional) rank correlation; for each term i with parents {i1, . . . , ik}, the rank correlation
associated with the edge ik−j → i is{

r(i, ik) j = 0,
r(i, ik−j|ik, . . . , ik−j+1) 1 ≤ j ≤ k − 1.

(2)

The assignment is vacuous if pa(Xi) = ∅. Then, the GCBNs’ main result, demonstrated
in [27] and extended in [26], states the following:

Theorem 2. Given the following conditions, the joint distribution of the n variables of a network is
uniquely determined:

1. A directed acyclic graph (DAG) with n nodes specifying conditional independence relationships
in a BBN;

2. n variables X1, . . . , Xn, assigned to the nodes, with continuous invertible distribution
functions;

3. The specification (2), i = 1, . . . , n, of conditional rank correlations on the arcs of the BBN;
4. A copula realizing all correlations [−1, 1] for which correlation 0 entails independence.

and the conditional rank correlations (2) are algebraically independent.

The Gaussian copula offers several advantages that make its use attractive in Bayesian
networks. The bivariate Gaussian copula is defined as

Cρ(u1, u2) = Φρ(Φ−1(u1), Φ−1(u2)), (3)
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where Φρ is the bivariate standard normal CDF with product moment correlation ρ and Φ−1

the inverse univariate standard normal CDF. The Gaussian copula allows for significantly
faster conditionalization of the joint distributions due to one of its intrinsic properties:
for multivariate Gaussian distributions, all conditional distributions are also Gaussian.
Additionally, closed-form relations between different measures of dependence (such as
Pearson’s correlation ρ, Spearman’s rank correlation r, and Kendall’s τ) are known for this
copula family. Such relations are particularly pertinent when attempting to compute rank
correlations from other statistical quantities, such as probabilities of concordance.

2.2. Dependence Assessment

Similarly to discrete Bayesian networks, the construction of a GCBN involves two
distinct steps: the definition of a DAG as well as the quantification of its parameters.
Therefore, it is essential to gather information on both the marginal distributions and the
(conditional) rank correlations, even in contexts where data on the variables of interest are
limited. As illustrated in [28], the elicitation of one-dimensional distributions from expert
judgments has been discussed extensively in literature. Therefore, this section introduces
methods for the expert-based elicitation of rank correlations, underlining this paper’s focus
on the quantification of dependence.

2.2.1. Concordance Probabilities

Assessing correlation between two variables has proved to be a challenging task.
Direct elicitation methods can take various forms, but are commonly classified in three
approaches: (i) statistical approaches, (ii) conditional fractile estimates and (iii) probabilities
of concordance [18,29,30]. In the first, experts directly provide rank correlations estimates or
related quantities such as ratios of rank correlations [19,21]. In the second, experts provide
conditional probabilities of exceedance, answering questions such as “Suppose that variable
X was observed above its qth quantile, what is the probability that Y will also be observed above
its qth quantile?”. From the results, the assessor can compute the associated (conditional)
rank correlations, as described in [18]. Despite the popularity of this approach for quanti-
fying GCBNs [18,19,22], computing rank correlations from exceedance probabilities has
limitations. For instance, this approach requires knowledge of the marginal distributions
by experts and is suitable when working exclusively with continuous variables. Therefore,
this research investigates the applicability of probabilities of concordance. A probability of
concordance (Pc) is defined as follows: given a bivariate population (X, Y), two independent
realizations (xA, yA) and (xB, yB) are considered. Then:

Pc = P((xA − xB)(yA − yB) > 0) = P(xA < xB|yA < yB) = P(xA > xB|yA > yB). (4)

To the best of the authors’ knowledge, no study has relied on probabilities of concor-
dance for the elicitation of rank correlations for (GC)BNs. While the use of probabilities of
concordance may be inadequate for investigating correlation of rare events [29], it is highly
relevant for problems that involve physically intelligible variables. For instance, take X as
the variable representing the weight of Dutch males between 18 and 50 years old, and Y
representing the height of the same population. Pc(X, Y) is then obtained by answering the
following question:

“Two individuals A and B are randomly selected among Dutch males between 18
and 50 years old. Given that B is taller than A (yA ≤ yB), what is the probability
that B weighs more than A (xA ≤ xB) ?”

If a respondent believes that X and Y are completely positively (resp. negatively)
correlated, then they should provide a value of Pc = 1 (resp. Pc = 0), while Pc = 0.5
indicates independence between X and Y.
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As outlined in Section 2.1, relations exist to retrieve rank correlations from Pc. First,
note that Kendall’s τ is a re-scaled version of the probability of concordance [31–33]:

τ = 2Pc − 1. (5)

Given the Gaussian copula assumption, closed-form relations also exist between Kendall’s
τ, Pearson’s ρ and Spearman’s r [26,34]:

ρ = sin
(πτ

2

)
, (6)

r =
6
π

arcsin
(ρ

2

)
. (7)

Figure 1 illustrates the non-linear relationship between Pc and r, along with the
relationship between P(FX1 ≥ q = 0.5|FX2 ≥ q = 0.5) and the rank correlation for the
Gaussian, Clayton, and Gumbel copulas. The rotated Clayton and Gumbel copulas were
used to capture negative dependence. One observes that under the Gaussian copula
assumption, Pc and P(FX1 ≥ 0.5|FX2 ≥ 0.5) are equivalent. In contrast, slight differences
can be appreciated between exceedance probabilities for values of r below 0.30 and above
0.70 between the Clayton copula and the others. Conducting similar experiments with
different values of q reveals a greater variability in values of r based on the copula chosen,
as illustrated in Figure A1 with q = {0.25, 0.75}. For instance, P(FX1 ≥ 0.75|FX2 ≥ 0.75)
may take any value in the interval [0,1] for all three copulas (see Figure A1a), while this is
not the case for P(FX1 ≥ 0.25|FX2 ≥ 0.25), where the conditional probability is constrained
to the interval [0.66, 1] (see Figure A1b).

Clearly then, eliciting rank correlations in the form of conditional probabilities such
as P(FX1 ≥ q|FX2 ≥ q) for q ̸= 0.5 and for copulas other than the Gaussian bears several
limitations. Moreover, eliciting rank correlations in the form of concordance probabilities is
arguably more intuitive than through exceedance probabilities. Building on the example of
the Dutch male population, obtaining P(FX1 ≥ 0.75|FX2 ≥ 0.75) requires experts to answer
the question: “Suppose that individual A is taller than 75% of the Dutch males between 18
and 50 years old, what is the probability that he also weighs more than 75% of the same
population ?”—which is all but intuitive. As a result, probabilities of concordance may
represent an alternative in similarly practical situations.

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

rX,Y

0.0

0.2

0.4

0.6

0.8

1.0

P
(F

X
1
≥

0.
5|F

X
2
≥

0.
5)

0.7 0.8 0.9 1.0

0.75

0.80

0.85

0.90

0.95

1.00

Pc
Gaussian Copula

Clayton Copula

Gumbel Copula

Figure 1. Probability of concordance and conditional exceedance probabilities as functions of the
rank correlation.
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After retrieving unconditional rank correlations with Equations (5)–(7), conditional rank
correlations can be computed recursively using partial correlations and the ordering of each
variable’s parents. Indeed, under the normal copula assumption, partial and conditional
correlations are equal, the former being defined in Equation (8) [35]. If X1, . . . , Xn are
random variables, the partial correlation of X1, X2 given X3, . . . , Xn is

ρ12;3,...,n =
ρ12;4,...,n − ρ13;4,...,n ρ23;4,...,n√
((1 − ρ2

13;4,...,n)(1 − ρ2
23;4,...,n))

. (8)

As stated in Theorem 2, the (conditional) rank correlations linked to the arcs of a GCBN
are algebraically independent and guarantee the construction of a valid correlation matrix.
Because the elicitation of rank correlations is carried out sequentially, the range in which
an unconditional rank correlation—and thus a concordance probability—can take values
is not necessarily [−1, 1]. Let us consider the graph in Figure 2. The first rank correlation
to be quantified by a particular expert would be r1,2; the second one r1,3; and finally, r2,3|1.
For instance, if r1,2 = 0.5 and r1,3 = 0.7, one can easily verify using Equation (8) that r2,3
must be in [−0.27, 0.97] for r2,3|1 to remain within [−1, 1].

1
r1,2 //

r1,3

%%
2

r2,3|1 // 3

Figure 2. Simple Gaussian copula-based Bayesian network (GCBN) with 3 nodes.

To facilitate the computation of the conditional rank correlations, the software Matlatz-
inca (v.1.0.0) was used [36]. In addition to automating the required operations, Matlatzinca
indicates for each edge the range of mathematically acceptable unconditional rank correla-
tions, as discussed in the previous paragraph. An in-depth presentation of the software
and its features is laid in the next section.

The protocol implemented to retrieve individual experts’ opinions can be summarized
in a set of elementary steps as follows:

1. The expert assesses the probability of concordance Pc ∈ [0, 1];
2. Pc is converted to an unconditional rank correlation using Equations (5)–(7);
3. The correlation coefficient is logged into Matlatzinca. If the respondent’s answer is

mathematically acceptable, move to the next question and go back to step 1;
4. Else, the expert is given the mathematically valid range for Pc. Because this range is

directly affected by their answers to the previous questions, the experts may review
and modify previous answers accordingly.

2.2.2. Software

As stated in the previous section, Matlatzinca (v.1.0.0) was used to retrieve the condi-
tional rank correlations. The software was developed by researchers of the TU Delft, The
Netherlands, and is strongly based on PyBANSHEE (v.1.0), a Python-based open-source
implementation of the MATLAB toolbox BANSHEE (v.1.3) [37–39]. Matlatzinca is used to
schematize and quantify a dependence model, specifically the GCBN, and is accessible
on https://github.com/grongen/Matlatzinca (accessed on 26 April 2023). Noteworthily,
two methods absent in PyBANSHEE were added: (i) the option to enter an unconditional
correlation and get the associated rank correlation, and (ii) the computation of the range of
mathematically acceptable or valid unconditional correlations.

The current version of Matlatzinca’s graphical user interface (GUI), shown in Figure 3,
consists of three main panels:

• The drawing panel. This is where the DAG representing the dependence structure of
the BN is drawn. Notice that, as discussed in Section 2.1, the arcs provide information
regarding the ordering of parents in the DAG.

https://github.com/grongen/Matlatzinca
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• The input panel. It contains, on the left-hand side, the labels of the Nodes displayed in
the drawing panel, which can be edited by the user. On the right-hand side, it presents
the Edges and related measures of dependence. For the quantification of the arcs, users
have two input options: Spearman’s conditional rank correlations (Conditional rank
corr.) as well as unconditional rank correlations (Non-conditional rank corr.).
The last column indicates the range of acceptable unconditional rank correlations,
briefly discussed at the end of the previous section, which depends on the structure
of the DAG and other values of the correlations. This column is updated as users
provide values of (un)conditional rank correlations.

• The correlation matrix panel. In addition to their numerical value, each correlation
coefficient is displayed with a circle whose diameter is proportional to its absolute
value, and a colormap indicating the position of the coefficient on the [−1, 1] scale.

For a comprehensive presentation of the functionalities of the Matlatzinca software,
the reader is referred to [36] and the references therein.

Figure 3. Matlatzinca graphical user interface (GUI) for the elicitation of GCBNs from experts. On the
left the drawing panel, on the top-right the correlation matrix panel, and on the bottom-right the
input panel.

Given the software’s current design, Matlatzinca is exclusively suitable for the quantifi-
cation of expert-based networks. For data-based models, a wide range of software for the im-
plementation of Bayesian networks (e.g., Netica, Hugin) exist. However, only a few are com-
patible with GCBNs; we thus opted for a combination of UniNet Academic (LightTwist Soft-
ware, Brunswick, 3065 Australia) (software in closed-access; see https://www.tudelft.nl/
en/eemcs/the-faculty/departments/applied-mathematics/applied-probability/research/
research-themes/risk/software/uninet/ (accessed on 28 March 2023).) and PyBANSHEE.
Whereas the former’s GUI is practical when interacting with external stakeholders, Py-
BANSHEE offers more flexibility when performing analyses, as highlighted by the recent
applications of the software [40,41].

2.3. Dependence Calibration

After collecting the individual assessments, these must be aggregated in a unique
correlation matrix. Two types of methods are found in the literature: behavioral and
mathematical [42]. On the one hand, behavioral methods aim to reach consensus between

https://www.tudelft.nl/en/eemcs/the-faculty/departments/applied-mathematics/applied-probability/research/research-themes/risk/software/uninet/
https://www.tudelft.nl/en/eemcs/the-faculty/departments/applied-mathematics/applied-probability/research/research-themes/risk/software/uninet/
https://www.tudelft.nl/en/eemcs/the-faculty/departments/applied-mathematics/applied-probability/research/research-themes/risk/software/uninet/
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the experts [42]. However, these approaches may result in a situation where agreement
between experts is either impossible, or leads to compromises that reflect none of the
experts’ opinions [42,43]. On the other hand, mathematical methods attempt to overcome
behavioral biases by combining individual assessments through a mathematical process
subject to empirical control. Although most mathematical aggregation approaches consist in
weighing together the experts’ judgments, their complexity varies greatly: from arithmetic
and geometric means, to methods which account for experts’ performance, such as the
classical model (or Cooke’s method, after [44]) [28,43].

Because Cooke’s method was not designed for scoring dependence assessments,
another performance-based method was investigated: the dependence calibration (or
d-calibration [19]). The latter has already been applied to a handful of real-life prob-
lems [20,45,46]. For the Gaussian copula, this quantity measures the “distance” between
two correlation matrices. In the context of experts’ judgments, let Rm be the empirically
observed correlation matrix and Re an expert’s estimation of that correlation matrix. The d-
calibration score dCale is then defined as

dCale = 1 − dH(Rm, Re) = 1 −

√√√√1 − |Rm|
1
4 |Re|

1
4

| 1
2 Rm + 1

2 Re|
1
2

, (9)

where dH is the Hellinger distance. The d-calibration score hence takes values between
0 and 1 (for Rm = Re). In the context of this study, Rm is a correlation matrix used for
calibration purposes and therefore contains information on the seed variables chosen by
the authors.

The d-calibration score has the following properties: (a) an expert will receive the
maximum score if and only if she/he captures the observed dependence structure exactly;
(b) an expert may receive a low score if, for instance, a high correlation between a pair of
variables was expressed by the expert while this was not reflected in the true dependence
structure (or vice-versa); and (c) a necessary condition for an expert to be highly calibrated
is to sufficiently approximate the dependence structure of interest element-wise [46].

It is worth noting that, similarly to Cooke’s method, the identification of relevant seed
variables to evaluate experts’ calibration can be a significant challenge to the elicitation
process. Because of the limited resources available in this study regarding time, empirical
data, and experts’ availability, the quantification of a network that encompasses all MEP
systems based solely on experts’ judgments is practically unrealistic. Therefore, the follow-
ing paragraphs introduce the case study adopted in this paper, for which this elicitation
method is applied and commented.

3. Case Study

A wide array of air handling units (AHUs) are available on the market, all designed
with a shared purpose: maintaining acceptable indoor air quality. Except for single-family
housing, central air handling units are commonly used and placed on a building’s roof.
Figure 4 illustrates the process by which indoor air quality is preserved: outdoor air is
filtered, conditioned by coils for heating or cooling, and distributed in the room(s) through
ducts. Simultaneously, polluted indoor air is extracted and (partially) evacuated from
the building.

This section describes the process of building a GCBN to estimate the condition of air
handling units’ components. In particular, Section 3.1 presents the design of the network’s
graph structure, while Section 3.2 focuses on the implementation of the elicitation method
to the case study.
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Figure 4. Air handling unit (AHU) with air recirculation (adapted from [47]).

3.1. Graph Structure

The first step in the construction of the GCBN is the definition of its graph. In order to
estimate the condition of air handling units’ components, a set of factors influencing their
deterioration ought to be identified. An exhaustive literature review was conducted in [48]
and resulted in the selection of the variables: (i) the AHU age (in years), (ii) the maintenance
interval between two consecutive interventions (in years) and (iii) the Design & Construction
quality of the installation, defined by the scale shown in Table 1.

Table 1. Design & Construction quality of the installation scale.

Very Poor Poor Medium Good Excellent

1 2 3 4 5

Then, the main elements composing an AHU must be identified, which clearly stand
out from Figure 4: (v) plumbing supply, (vi) electrical supply, (vi) exhaust fans, (vii) heating
and cooling coils, and (vii) the filters. In their study on gradual fault prediction, Ref. [49]
limited their effort to defects related to the supply fan and the cooling coil, obtaining
satisfactory results. However, the present research also investigates the relation between
components. Consequently, all the aforementioned elements are included and grouped
in the following variables: coils, fans, and filters. The decision to group components is
knowingly oversimplistic and reflects the exploratory dimension of the research, whose
focus is on the elicitation of experts’ judgments rather than the creation of a complex
and accurate model. For practical purposes, the condition of these components—and the
associated variables—is defined in accordance with the 1–6 scale of NEN 2767, the Dutch
standard for building condition assessment, where 1 represents an ‘excellent’ condition
and 6 a ‘very bad’ one; see [9,50].

Finally, a set of assumptions was formulated to define dependencies (parent → child)
between variables of the graph:

• Because of their comparatively short lifespan, the condition of the filters and the coils
are exclusively affected by the maintenance interval, i.e., Maintenance interval → Filters
and Maintenance interval → Coils.

• The condition of the plumbing supply system (boiler, chiller) affects the coils as these
elements are functionally interdependent: the warm or chilled water (or other fluid)
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from the plumbing system supplies the coils, i.e., Plumbing supply → Coils. Likewise,
the electrical supply system exclusively interacts with the fans, i.e., Electrical supply
→ Fans.

• Since the filters are responsible for reducing the number of particles entering the AHU,
their failure allows for the accumulation of particles on the coils and thus speeds up
their deterioration by corrosion, i.e., Filters → Coils.

• The condition of the fans can be impacted by the filters in at least two ways. First,
polluted filters oblige the fans to exert more power to maintain the same perceived
airflow. Secondly, particles that enter the AHU partially flow through the ducts where
they accumulate, thus leading to reduced airflow and additional stress on the fans.
Clearly, then, these components are interdependent, i.e., Filters → Fans.

• The AHU’s age and the Design & Construction quality of the installation both directly
affect the coils and fans, i.e., AHU Age → Coils, AHU Age → Fans, Design & Construction
quality → Coils, and Design & Construction quality → Fans.

The resulting graph is shown in Figure 5.

Maintenance 

interval

Maintenance 

interval

Design & 

Construction 

quality

Design & 

Construction 

quality

AHU AgeAHU Age

FiltersFilters

CoilsCoils FansFans

Electrical

supply

Electrical

supply

Pumbling 

supply

Pumbling 

supply

Figure 5. Graph structure for AHUs.

3.2. Quantification: Experts’ Judgments

Section 2 introduced the framework for the elicitation of rank correlations in GCBNs.
In this section, the application of these methods to the case study is presented, including the
list of participants, the questionnaire, and the seed variables used for dependence calibration.

3.2.1. Individual Assessments

Similarly to the case of Dutch males’ weight, height, and age discussed in Section 2.2,
the study of air handling units (and MEP systems as a whole) is based on physical quan-
tities. Let X be the condition of the fans and Y the age of the AHU as defined previously.
To retrieve the probability of concordance Pc(X, Y), one needs the answer to the follow-
ing question:

“Two buildings A and B are randomly selected among all non-residential build-
ings in the Netherlands. Given that the air handling unit in building A is more
recent than in building B (xA ≤ xB), what is the probability that the fans are in
better condition in building A than in building B (yA ≤ yB) ?”

Because the graph in Figure 5 contains ten edges, the first and main section of the
questionnaire included ten questions similar to the one formulated above.

Given the nature of the questions and the topic of the research, the experts contacted
must be familiar with heating, ventilation, and air conditioning (HVAC) systems and their
deterioration. Forming a diverse group, for instance, with regards to experience and pri-
vate/public employment, is believed to result in more representative elicited quantities [51].
Therefore, practitioners and scholars from the TU Delft as well as industry participants
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were welcomed to participate, regardless of their level of experience. Moreover, participants
were required to have basic comprehension and expression skills in English given that
the questionnaire/interviews were conducted in that language, a criterion that proved
constraining for some (potential) respondents. The panel of participants consulted for the
assessment of probabilities included five experts, whose details are laid out in Appendix B.
In the remainder of the paper, the experts are referred as ‘Expert A’, ‘Expert B’, and so forth
to ensure the unbiased interpretation of the results.

3.2.2. Aggregation

The formulation of relevant seed questions is a challenging task when empirical data
is scarce or simply absent [52]. As outlined previously, condition assessment data for MEP
systems is not widely available. Consequently, a seed variable familiar to the experts,
although unrelated to the topic of this paper, was selected: precipitation (with over 100 rain
days per year, rain is rooted in the Dutch culture. Source: https://www.statista.com/
statistics/1012831/number-of-rain-days-in-the-netherlands/ (accessed on 20 June 2023)).

Empirical data of hourly precipitation (Dutch: uur som van de neerslag), measured at
three weather stations between the 1 January 2023 and 18 June 2023, were retrieved from
the online database of the Koninklijk Nederlands Meteorologisch Instituut (Dutch Royal
Institute of Meteorology—KNMI). For reference, the location of the stations is illustrated in
Figure 6 (left). Because of their geographical proximity, precipitations at these locations are
likely to be correlated, an assumption supported by historical data. The empirical (rank)
correlation matrix of variables ‘Gilze-Rijen’, ‘Rotterdam’ and ‘Eindhoven’ is retrieved and
shown in Section 4. The second part of the questionnaire included the seed questions
related to the graph in Figure 6 (right) and were formulated as follows:

53°54.0′N

53°12.0′N

52°30.0′N

51°48.0′N

51°6.0′N

3°30.0′E 4°12.0′E 4°54.0′E 5°36.0′E 6°18.0′E 7°0.0′E

Weather stations 

11

RotterdamRotterdam

Gilze-RijenGilze-Rijen EindhovenEindhoven

22 33

Figure 6. Location of the weather stations (left) and associated graph (right) used for the assessment
of seed probabilities.

“Two moments H1 and H2 (defined by the hour) are taken randomly between
the 1 January 2023 and the 18 June 2023. Given that the hourly precipitation is
higher at H2 than at H1 in Gilze-Rijen, what is the probability that the hourly
precipitation is also higher at H2 than at H1 in Rotterdam?”

The questions presented to the experts were answered following the same protocol
as the ‘main’ questions, presented in Section 2.2. The resulting correlation matrices were

https://www.statista.com/statistics/1012831/number-of-rain-days-in-the-netherlands/
https://www.statista.com/statistics/1012831/number-of-rain-days-in-the-netherlands/
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then used to compute individual experts’ d-calibration scores and are discussed in the
next section.

3.2.3. Marginal Distributions

Having dedicated extensive time and effort to the elicitation of the network’s depen-
dence structure, a less scientifically sound approach was adopted to determine the marginal
distributions necessary to the completion of the model. Two of the questionnaire respon-
dents accepted to contribute by attempting to convert their experience into probability
distributions. A simple behavioural aggregation approach was adopted, in which the
second expert was presented the assessments of first expert and asked to review them. Due
to the simplicity of the method implemented for the elicitation of the marginal distributions,
future attempts to implement the GCBN in different settings would certainly require the
definition of new marginals.

4. Results

This section presents the outcomes of the elicitation process conducted with the expert
panel introduced earlier. After discussing the findings of the framework developed for
the elicitation of dependence (Section 4.1), the marginal distributions are defined and
incorporated into the model (Section 4.2).

4.1. Dependence Structure
4.1.1. Individual Assessments

Five correlation matrices were obtained based on each expert’s responses to the
‘main’ section of the questionnaire. As illustrated in Figure 7 (for numerical values, see
Appendix C), experts A, D and E indicated the prevalence of specific relationships within
the network. For instance, expert D suggested the existence of one or two main predictors of
each component’s condition, such as ‘Age’/‘Fans’ (r1,7 = 0.882). However, the evaluation
of high correlations raised problems during the elicitation and these experts were asked
to review their responses multiple times to make them valid (cf. Section 2.2). As a matter
of fact, and despite understanding the mathematical concepts underlying the ‘validity’ of
his answers, expert A claimed that the bounds limited his ability to reflect his experience
numerically. Moreover, as observed in the next section, the lack of nuance in some of the
experts’ assessments strongly penalized them in the d-calibration.

Figure 7. Correlation matrices retrieved from the ‘main section’ of the questionnaire.

In the next section, the experts’ answers to the seed questions and their respective
d-calibration scores are introduced.
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4.1.2. Dependence Calibration

To obtain a unique set of rank correlations suitable for implementation in the Bayesian
network, the individual correlation matrices presented earlier were aggregated. In this
research, the d-calibration method was employed, which involved the definition of a
weighted average of each expert’s responses based on their performance on a predefined
set of seed variables. As illustrated in Figure 8, the results elicited from all five experts
reinforce the previous observations regarding the inclination of experts D and E to assess
high correlations. As outlined previously, expert D’s good understanding of probabilistic
reasoning (ρ1,2 ≃ ρ2,3 ≫ ρ1,3) was penalized by his excessively large estimates. In contrast,
experts B and C demonstrated their ability to provide moderate judgments, an impor-
tant feature given the sensitivity of the rank correlations for values of Pc around 0.5 (cf.
Section 2.2), hence resulting in higher calibration scores.

Figure 8. Correlation matrices retrieved from the seed questions and empirical correlation matrix.

Table 2 contains the d-calibration scores computed from the correlation matrices.
Clearly, two groups of experts arose: whereas experts B and C obtained high d-calibration
scores (≥0.85), experts A, D, and E obtained lower scores (dCal < 0.66). Interestingly, all
experts were ‘better’ calibrated than in other studies implementing dependence calibration
(e.g., [20,46]). This observation should be taken cautiously due to the relatively small
number of seed variables used, as well as the fact that they are not related to the problem at
hand [20,53].

Table 2. Experts’ dependence calibration scores and perceived degree of comfort during the elicitation.

Decision Maker D-Calibration Perceived Comfort

Expert A 0.639 4
Expert B 0.907 4
Expert C 0.85 4
Expert D 0.516 2
Expert E 0.657 2

EWDM 0.869 -
GWDM 0.897 -
optDM 0.968 -

Experts were asked to evaluate the degree of comfort perceived in the assessment
of probabilities. To that end, the 1–5 Likert scale shown in Table 3 was used for the
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statement: I felt comfortable assessing probabilities, whose answers are shown in Table 2.
In line with the d-calibration scores, experts B and C demonstrated confidence in their
assessments, whereas experts D and E encountered difficulties translating their opinions
into numerical values. While expert A appeared to express confidence in his estimates,
he also expressed his discomfort during the session and (indirectly) regretted the use of
unconditional probabilities. Both experts A and D perceived the questions as ‘vague’ and the
use of unconditional probabilities of concordance inappropriate, since information about
one variable does not allow one to draw general conclusions about the state of others.

Table 3. Likert scale used to measure questionnaire respondents’ perceived comfort.

Strongly Disagree Neither Agree
or Disagree Agree Strongly

Agree

1 2 3 4 5

4.1.3. Decision Makers

Expanding upon the previous analysis of d-calibration scores, this subsection aims
to design and assess various combinations of the experts’ judgments, or decision makers
(DMs). Two distinct DMs were subjected to evaluation: the equal weights decision maker
(EWDM), defined as the average of the experts’ correlation matrices, and the global weights
decision maker (GWDM), determined by a weighted average of the matrices. In the
GWDM, each expert’s weight corresponds to its respective (normalized) d-calibration scores.
To effectively compare the performance of these decision-makers with the respondents’,
their calibration scores were computed and included in Table 2. Encouragingly, both
decision makers outperformed all but the highest scoring expert (C), whose score slightly
surpassed that of the global weights decision maker. Notably, the comparison between the
GWDM and the EWDM did not exhibit a significant difference in performance, in line with
the findings in [46]. This results from the fairly high scores obtained by all experts and the
absence of an outlier.

To observe whether the gap between equal and global weights decision makers widens
in the presence of an outlier, a poorly calibrated expert was added to the actual experts
panel. This dummy expert’s correlation matrix for the seed variables was as follows:

Routlier =

 1 0.95 0.95
0.95 1 0.95
0.95 0.95 1


which is definite positive and performs significantly worse than the lowest-scoring expert
(D): dCaloutlier = 0.311. The d-calibration scores of both decision makers, computed using
the new pool of experts, can be found in Table 4. The addition of an outlier notably affected
the performance scores of both DMs; the EWDMs’, however, decreased more than twice as
much as the GWDMs’. In the former, a minor weight is attributed to the new expert while
the best performing experts (B and C) still predominantly defined the correlation matrix,
whereas in the latter, the dummy’s (poor) assessment highly influenced the outcome.

Next, the existence of a ‘best’ decision maker was investigated, i.e., a combination
of the experts that maximizes the calibration score. Given the gap between experts B, C,
and the rest, it came with no surprise that the optimized DM (optDM in Tables 2 and 4)
is merely a weighted average of the former’s correlation matrices. This new decision
maker was significantly better calibrated than the GWDM, with dCalGWDM = 0.897 and
dCaloptDM = 0.968. Nonetheless, we recall the limitations of the aggregation approach: the
seed variables are completely unrelated to the research’s topic. Therefore, the d-calibration
scores hereby assess the experts’ familiarity with probability (normative expertise), but do
not provide evidence on their substantive expertise [52]. Defining the optimal DM based
solely on this criterion could therefore decrease the performance of the decision maker,
unveiling an opportunity for future work enhancing the method.
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Table 4. Equal and global weights decision makers’ scores with and without outlier.

Decision Maker Without Outlier With Outlier

Expert D 0.516 -
Outlier - 0.311

EW DM 0.869 0.818
GW DM 0.897 0.873
optDM 0.968 -

Previous applications of dependence calibration in academia indicated that a larger
weighing pool results in the definition of more consistent decision-makers [46]. To evaluate
the robustness of the DMs constructed previously, we were interested in the spread in
calibration scores across the different combinations of a given size, similarly to the analysis
in [46]. For an expert group of five individuals, this experiment consists of computing the
d-calibration scores of all the possible combinations of experts of sizes ∈ {1; 2; 3; 4; 5}.

Figure 9 illustrates the results of that experiment, where the x-axis represents the size
of a given combination. For instance, let us consider x = 4. The possible combinations of
four experts are {A, B, C, D}, {A, B, C, E}, {A, B, D, E}, {A, C, D, E}, and {B, C, D, E}. Each
of those are represented by a dot, with the y-value representing the d-calibration scores
obtained by the said combination. The experiment was conducted in a similar manner
after adding our dummy expert (outlier) to the panel, hence increasing the panel size
to 6. Figure 9 depicts a convergence of the d-calibration scores towards higher average
values for a larger experts pool, a phenomenon accentuated by the presence of an outlier.
In the study’s context, where the seed variables provide little information on the expert’s
substantive expertise, the risk and impact of including outliers when using the optimized
DM are significant. Because the GWDM does not perform significantly worse than the
optimised DM, the former was used to define the dependence structure of the GCBN.
The network’s final dependence structure is shown in Figure 10.

1 2 3 4 5 6

Combination size

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

dC
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 s
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Figure 9. Dependence calibration scores of the global weights decision maker (GWDM) for all
combinations of experts, with and without outlier.
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Figure 10. Correlation matrix implemented in the GCBN.

4.2. Marginal Distributions

To complete the development of the network, the marginal distributions associated
with each variable were defined. We recall that the model contains eight variables, presented
in Section 3:

• ‘AHU Age’: continuous. Defined on R∗
+.

• ‘Maintenance interval’: continuous. Defined on R∗
+.

• ‘Design & Construction quality’: discrete. Takes values between 1 (very poor) and
5 (excellent).

• ‘Filters’, ‘Fans’, ‘Coils’, ‘Plumbing supply elements’ and ‘Electrical supply elements’:
discrete. Assessed on the 1–6 scale defined in NEN 2767 [9].

In accordance with Section 3, the marginal distributions, presented in Table 5, were
determined by consulting individually two of the five questionnaire respondents.

Table 5. Marginal distributions of the GCBN’s variables. * std: standard deviation.

Variable Distribution (Mean, std *)

Age LN(µ = 3.191, σ = 0.237) (24.98, 6.00)
Maintenance interval LN(µ = 0.102, σ = 0.40) (1.20, 0.50)
D&C quality P(X = i)i∈[1,5] = [0.01, 0.05, 0.44, 0.3, 0.2] (3.63, 0.89)
Filters P(X = i)i∈[1,6] = [0.15, 0.44, 0.25, 0.1, 0.05, 0.01] (2.49, 1.08)
Fans P(X = i)i∈[1,6] = [0.05, 0.15, 0.35, 0.39, 0.04, 0.02] (3.28, 1.00)
Coils P(X = i)i∈[1,6] = [0.1, 0.25, 0.5, 0.1, 0.05, 0] (2.75, 0.94)
Plumbing supply elts P(X = i)i∈[1,6] = [0.12, 0.2, 0.24, 0.4, 0.03, 0.01] (3.05, 1.14)
Electrical supply elts P(X = i)i∈[1,6] = [0.12, 0.2, 0.24, 0.4, 0.03, 0.01] (3.05, 1.14)

All in all, the completed GCBN was built in UniNet for illustrative purposes and is
displayed in Figure 11. The final model, however, was implemented in PyBANSHEE.
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Figure 11. Visualization of the quantified GCBN in UniNet.

5. Discussion

In the literature, one of two approaches are often adopted to validate a Bayesian net-
work: the model’s predictions are compared to empirical data (when available); or experts,
who contributed or not to the model creation, are asked to assess the model’s output when
subjected to a set of scenarios [54–56]. Clearly, the use of data was excluded in this research,
simply because they were unavailable. Therefore, the current model was subjected to three
hypothetical scenarios to assess the model output’s logic:

• Scenario 1: old AHU, frequent maintenance;
• Scenarios 2/3: excellent Design & Construction quality, recent/old AHU.

Scenario 1: old AHU, frequent maintenance.
The first scenario consisted in the following configuration:

• ‘AHU age’: 40 years,
• ‘Maintenance interval’: 6 months,
• ‘Design & Construction quality’: 3.63 (mean value),
⇒ X1 = (X0 = 40, X1 = 0.5, X2 = 3.63).

The dependence structure elicited from experts indicates that the age of the unit and
the frequency at which it is maintained overwhelmingly affect its condition. The outcome
of Scenario 1 is shown in Figure 12. Unsurprisingly, the filters’ condition has significantly
improved due to its connection with maintenance. However, this outcome, while consistent
with our earlier assumptions, appears to be somewhat unrealistic from a physical stand-
point. Expert D illustrated the relationship between ‘Filters’ and ‘Maintenance’ with the
example of Schiphol airport, the Netherlands’ main international airport, where filters are
replaced three to four times a year due to air pollution. In fact, experts almost unanimously
(4/5) indicated that variables describing environmental conditions should be included in
the model because of their impact on the filters’ deterioration. Clearly then, this scenario
showcases the model’s disproportionate response as the probabilities associated to states 3
and above (for ’Filters’) should not be null, as demonstrated by the example of Schiphol.

Similarly, the distribution of the variable ‘Coils’ shifted to the left, reflecting an im-
provement from the unconditional case. This finds explanation in the dependence structure
of the BN, where the correlation between ‘Coils’ and ‘Maintenance interval’ is substantially
higher than between ‘Coils’ and ‘Age’ (0.686 and 0.275, respectively). Because the main
mode of deterioration of the coils is by corrosion, accelerated by frost and the accumulation
of particles, consistently cleaning them allows one to temper the phenomenon. Moreover,
the shift in the distribution of ‘Filters’ also influences the one of ‘Coils’ since these variables
are positively correlated. Interestingly, the probabilities of states 3, 4 and 5 are relatively
low (0.15, 0 and 0, respectively) given the advanced age of the unit and the theoretical
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lifespan of the coils (∼20–25 years). For the same reason, the probability that the coils are
in condition 1 (0.26) is abnormally high, indicating that the model’s capacity to handle
extreme cases is limited.
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Figure 12. Unconditional and conditional distributions of the output variables. (a) Distribution of
‘Coils’. (b) Distribution of ‘Fans’. (c) Distribution of ‘Filters’.

Finally, the fans’ condition was inversely impacted by the input values: the probability
that the component is in condition 4 has dramatically increased (from 0.39 to 0.65), again in
accordance with the correlation of ‘Fans’ with ‘Age’ being higher than with ‘Maintenance
interval’ (0.52 and 0.219, respectively). Failure in the fans mainly involves mechanical
malfunctions such as exhaustion of the motor or failure of the bearings, whose maintenance
has limited impact on their lifespan. The conditional probability that the component is in
reasonable condition or better seems high (0.31) but most of this density is in state 3, which
is conform with the previous comments.

Scenarios 2/3: old AHU, very poor/excellent Design & Construction quality.
The second and third scenarios consisted in the following configurations:

• ‘AHU age’: 40 years,
• ‘Maintenance interval’: 1.20 (mean value),
• ‘Design & Construction quality’: 1 (very poor, Scen. 2)/5 (excellent, Scen. 3),
⇒ X2 = (X0 = 10, X1 = 1.2, X2 = 5); X3 = (X0 = 40, X1 = 1.2, X2 = 5).

Scenarios 2 and 3 aim to determine whether an investment in an excellent quality in-
stallation significantly affects the long-term condition of the air handling unit, and whether
that is reflected by the model’s outputs. The latter are displayed in Figure 13.

For old systems, an increase in ‘D&C quality’ evidently results in a slower deteriora-
tion for both ‘Coils’ and ‘Fans’, with a substantial share of the distributions being below
the threshold values: P(Coils ≤ 3|X3) = 0.999 and P(Fans ≤ 3|X3) = 0.903, against
P(Coils ≤ 3|X2) = 0.164 and P(Fans ≤ 3|X2) = 0.0 in Scenario 2. In alignment with the
observations for Scenario 5, the impact of an excellent quality on the components is too high.
While it is logical to witness an improvement from Scenario 2, the unit’s age (40 years) must
translate in medium-to-high likelihoods for states 4 and 5. Conversely, the probabilities
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of states 1 and 2 are too high as both components (almost) have reached their theoretical
lifespan. Clearly then, Scenario 2 indicates that the rank correlations associated to the edges
‘D&C quality’ → ‘Coils’ (−0.324) and ‘D&C quality’ → ‘Fans’ (−0.443) are possibly too
high (in absolute values), which may partly stem from expert C’s strong assessment for
D&C quality’ → ‘Fans’ (−0.795). His assessment, which is substantially higher than the
rest of the experts’, strongly contributes to the final decision maker because of his excellent
dependence calibration score.
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Figure 13. Unconditional and conditional distributions of the output variables. (a) Distribution of
‘Coils’ under Scenario 2. (b) Distribution of ‘Coils’ under Scenario 3. (c) Distribution of ‘Fans’ under
Scenario 2. (d) Distribution of ‘Fans’ under Scenario 3.

All in all, the influence of the basic quality of the air handling unit’s components is
correctly translated, even though some adjustments to the model’s parameters are still
needed to obtain more realistic outputs. We notably observe that high-quality materials,
design and construction can significantly extend the components’ lifespan.

As mentioned in Section 2, the addition of new variables is facilitated by the modular
nature of GCBNs. Because Scenario 1 underpinned the necessity to include the node
’Environmental conditions’ as an input, and to illustrate the effect of the addition of that
variable, let us consider a hypothetical network, which includes the variable ’Environmental
conditions’ defined on the following scale (Table 6):

Table 6. ’Environmental conditions’ scale.

Very
Unfavorable Unfavorable Medium Favorable Very

Favorable

1 2 3 4 5
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For illustration purposes, we assigned equal probabilities to each state (i.e., ‘Envi-
ronmental conditions’ ∼ U[[1,5]]). Then, consultations with the experts indicated that this
factor mainly influences the deterioration of the filters, hence the creation of the edge
‘Environmental conditions’ → ‘Filters’. Although this relationship is weaker than that be-
tween ‘Maintenance interval’ and ‘Filters’, the conditional correlation associated to the new
edge will be high since for two units maintained at the same frequency, the environmental
conditions are a strong predictor for the conditions of the filters. Resultingly, we considered
r(Env, Filt|Main) = −0.8. The resulting model, used in the next scenario, is illustrated in
Figure 14.

Figure 14. Hypothetical GCBN including the variable ‘Environmental conditions’.

Scenario 4: old AHU, frequent maintenance and very unfavorable environmental
conditions.

The fourth scenario consisted in the following configuration:

• ‘AHU age’: 40 years,
• ‘Maintenance interval’: 6 months,
• ‘Design & Construction quality’: 3.63 (mean value),
• ‘Environmental conditions’: 1 (very unfavorable),
⇒ X4 = (X0 = 40, X1 = 0.5, X2 = 3.63, X8 = 1).

Figure 15 illustrates the conditional distributions of ‘Filters’ obtained in Scenarios 1
and 4. First, there is an evident change in the distribution. The discussion on Scenario
1 underlined that the probabilities of states 3, 4, and 5 could not realistically be null
without information on the environmental conditions. Here, evidence of very unfavorable
climatic conditions clearly resulted in a concentration of the distribution around states
3 and 4, with probabilities of 0.646 and 0.268, respectively, aligning with the example
of Schiphol airport presented previously. This brief discussion demonstrates that the
addition of ‘Environmental conditions’, although not rigorous, was a fairly straightforward
endeavor that yielded encouraging results. Still, the previous paragraphs underlined that
the developed model is not ready for practical applications.
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Figure 15. Unconditional and conditional distributions of ‘Filters’ under Scenario 1 (left) and Scenario
4 (right).

6. Conclusions

To the authors knowledge, this article presents to date the first application of probabil-
ities of concordance for the assessment of dependence in expert-based GCBNs. While the
experts’ feedback indicates that this method is relevant and accessible, two elements may
have influenced the validity of the elicited values. First, the closed-form equations used
to compute the rank correlations from the concordance probabilities require the normal
copula assumption, which often fails to reflect the behaviour of real-life systems. Second,
some experts expressed difficulty assessing unconditional concordance probabilities, i.e., ac-
counting for the uncertainty given that evidence on only one (parent) variable is available.
Instead, the use of conditional concordance probabilities may help reduce the ‘vagueness’
perceived by some of the respondents.

Let Z be a vector of covariates; then, for each z ∈ Rp, the concordance probability
between two random variables X and Y given Z = z is:

Pc(X, Y|Z = z) = P(x1 ≤ x2|y1 ≤ y2, Z = z).

with (x1, y1) and (x2, y2) two random draws of variables X and Y. To illustrate the practi-
cal impact of this modification, let us consider the edge between ‘Maintenance interval’
and ‘Coils’ (Figure 11). To assess P(Maint, Coils|Age), an expert would be presented the
following question:

“Two buildings A and B are randomly selected among all non-residential build-
ings in the Netherlands. Given that the AHUs in buildings A and B are both z
years old, and that the AHU in building A is maintained more regularly than in
building B (yA ≤ yB), what is the probability that the coils are in better condition
in building A than building B (xA ≤ xB)?”

However, for conditional concordance probabilities to be relevant, additional research
should investigate the extent to which their use facilitates the elicitation and whether
the protocol used to retrieve rank correlations from unconditional concordance probabili-
ties still applies. The latter is crucial as the validity of the closed-form formulas used to
retrieve rank correlations (Section 2.2.1) is not trivial in the conditional case, and is demon-
strated in Appendix D. Moreover, the dependence in z can be eliminated by assuming
that Pc(X, Y|Z = z) is constant in z, similarly to assumptions formulated for conditional
exceedance probabilities. All in all, the use of conditional probabilities of concordance could
enhance the interpretability of the questionnaire presented to the experts, and therefore the
quality of the collected assessments.

Furthermore, the application of dependence calibration in this research highlighted
the challenge of selecting appropriate seed variables when few to no empirical data are
available. Past studies relied on the wide availability of data in their field (e.g., [20],
with traffic data) or knowledge of the ‘true’ dependence structure (e.g., [46]). However,
due to the emerging nature of the method, there is no guideline for its application in
data-sparse environments, sometimes constraining assessors to use equal weights decision-
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makers [57] or unrelated seed variables as was the case in this study. Therefore, future
research should focus on assessing the potential loss of accuracy between a BN quantified
with field data and another with ‘common knowledge’ information, such as precipitation
or physiological data.
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GCBN Gaussian Copula-based Bayesian Network
GUI Graphical User Interface
MEP Mechanical, Electrical, and Plumbing
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Appendix A. Probability of Concordance, Probability of Exceedance and
Rank Correlation

Figure A1 displays the relation between the rank correlation rX,Y, the concordance
probability Pc, (a) the conditional exceedance probability for the 75th percentile and (b) the
conditional exceedance probability for the 25th percentile. Additionally, this relationship is
illustrated for three copula families: Gaussian, Clayton, and Gumbel.
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Figure A1. Cont.
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Figure A1. Probability of concordance and conditional probability of exceedance as a function of
rank correlations. (a) q = 0.75 and (b) q = 0.25.

Appendix B. List of Questionnaire Respondents

Table A1 presents the roles, organizations, and years of experience of the five profes-
sionals who accepted to participate in the expert consultation.

Table A1. List of respondents to the questionnaire and details.

Name Role Organization Experience (Years)

Boris Hadzisejdic Maintenance specialist TU Delft 1.5
Marcel Klok Maintenance engineer TU Delft 43
Frans Strik Installations advisor Van Dorp 25
Arie Taal Lecturer (indoor climate, energy transition) De Haagse Hogeschool 40

Ziao Wang PhD candidate TU Delft 3

Appendix C. Correlation Matrices

This appendix contains the correlation matrices obtained from the assessments of
expert A (Appendix C.1), expert B (Appendix C.2), expert C (Appendix C.3), expert D
(Appendix C.4), and expert E (Appendix C.5). In particular, each figure includes the
matrices retrieved from the participants’ responses to the (a) main and (b) seed questions.
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Appendix C.1. Expert A

(a)

(b)

Figure A2. Correlation matrices retrieved from expert A for (a) the main variables and (b) the
seed variables.
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Appendix C.2. Expert B

(a)

(b)

Figure A3. Correlation matrices retrieved from expert B for (a) the main variables and (b) the
seed variables.
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Appendix C.3. Expert C

(a)

(b)

Figure A4. Correlation matrices retrieved from expert C for (a) the main variables and (b) the
seed variables.
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Appendix C.4. Expert D

(a)

(b)

Figure A5. Correlation matrices retrieved from expert D for (a) the main variables and (b) the
seed variables.
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Appendix C.5. Expert E

(a)

(b)

Figure A6. Correlation matrices retrieved from expert E for (a) the main variables and (b) the
seed variables.

Appendix D. Demonstration of the Relations to Compute Spearman’s Rank Correlation
from a Probability of Concordance

Let us first recall the set of equations used to retrieve an unconditional rank correlation
(r) from an unconditional probability of concordance Pc:
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τ = 2Pc − 1 (A1)

ρ = sin
(πτ

2

)
(A2)

r =
6
π

arcsin
(ρ

2

)
. (A3)

where Equation (A2) and Equation (A3) are identical to Equation (6) and Equation (7),
respectively, introduced in the main body of this paper.

This section aims to demonstrate the applicability of the formulas above in the event
a conditional concordance probability is elicited. Let X, Y be two random variables with
undetermined marginal distributions, (x1, x2) and (y1, y2) two random realizations of X
and Y, Z a vector of covariates and z ∈ Rp any realization of Z. Then, the conditional
concordance probability Pc|z is defined as follows:

Pc|z = P(x1 ≤ x2|y1 ≤ y2, Z = z).

For the remainder of the demonstration, the normal copula is applied, i.e., all (con-
ditional) bivariate copulas are considered normal. Pc|z is associated with the conditional
Kendall’s τ by [33]:

τ(X, Y|Z = z) = 2Pc|z − 1.

Then, we know by Theorem 3.1 in [34] that Equation (A2) is true for all pairs of random
variables with a meta-elliptical distribution. Let X̃ = (X|Z = z) and Ỹ = (Y|Z = z).
Resulting from the normal copula assumption, the copula C(FX , FY|FZ(z)) = C(FX̃ , FỸ) is
also normal and (X̃, Ỹ) follows a meta-elliptical distribution. That implies the following:

ρ(X̃, Ỹ) = sin
(

πτ(X̃, Ỹ)
2

)
.

⇔ ρ(X, Y|Z = z) = sin
(

πτ(X, Y|Z = z)
2

)
.

Lastly, Equation (A3) still applies under the normal copula assumption as the copula
of X̃ and Ỹ is normal. Therefore [35],

r(X, Y|Z = z) =
6
π

arcsin
(

ρ(X, Y|Z = z)
2

)
.

For more information on meta-elliptical distributions, the reader is referred to [34]; for
more information on conditional concordance probabilities and conditional Kendall’s τ,
see [33].
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