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Abstract 
Introduction  

Traumatic brain injury is a leading cause of mortality in children worldwide. Defining optimal treatment 

targets for pediatric severe traumatic brain injury (sTBI) is challenging because of scarce scientific 

research on the disease in children. Cerebral autoregulation, quantified using the pressure reactivity index 

(PRx), may enable personalized treatment targets. The aims of this thesis are i. to investigate whether the 

relationship between PRx and outcome in the Erasmus MC Sophia pediatric intensive care unit (PICU) 

cohort is similar as to what is described in the literature ii. to develop an algorithm which utilizes PRx to 

determine dynamic and personalized cerebral perfusion pressure (CPP) targets iii. to assess if there is a 

correlation between these personalized CPP targets and outcome. 

Method 

The PRx was retrospectively generated for sTBI patients admitted to the PICU of the Erasmus MC 

Sophia Children’s Hospital between 2016 and September 2023. An algorithm was written which utilizes 

PRx to generate a personalized optimal CPP value and CPP range every minute. Outcome was determined  

1 year after the injury using the pediatric cerebral performance category (PCPC) and was dichotomized as 

favorable (PCPC 1-2) or unfavorable (PCPC 3-6). Secondary analyses were done for mortality and 

outcome in survivors (good outcome PCPC 1-2 vs. poor outcome PCPC 3-5). 

Results 

Fifty patients were included. Increased mean PRx was significantly associated with unfavorable outcome 

(OR 1.54; 95% CI 1.14 – 2.08) and mortality (OR 2.49;  95% CI 1.39 – 4.45). When determining the 

percentage of time that PRx was increased, a threshold of 0.3 had the strongest association with outcome 

(OR 1.05; 95% CI 1.01 – 1.09 for unfavorable outcome and OR 1.06; 95% CI 1.02 – 1.11 for mortality). 

There was no significant association between PRx and outcome in survivors. A CPPopt algorithm was 

developed which generates an personalized optimal CPP value and optimal CPP range every minute. A 

decreased percentage of time that CPP is within the optimal range was significantly associated with 

unfavorable outcome (OR 0.97; 95% CI 0.95 – 1.00) and  mortality (OR 0.96; 95% CI 0.93 – 0.99). The 

percentage of time that CPP was within the optimal range was not significantly associated with outcome 

in survivors.  

Conclusion  

In the Erasmus MC Sophia PICU cohort increased PRx is a significant predictor of unfavorable outcome 

and mortality. A decreased percentage of time that CPP is within the optimal range is significantly 

associated with unfavorable outcome and mortality. Prospective multi-center research is needed to 

evaluate if outcome can be improved by autoregulation guided therapy. 
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Introduction  
 

 

Traumatic Brain Injury (TBI) is a type of acquired brain injury caused by an external force. Globally, TBI 

is a main cause of mortality in children. TBI is classified based on the level of consciousness assessed 

through the Glasgow Coma Scale (GCS). The classifications include mild (GCS 13-15), moderate (GCS 

9-12) and severe (GCS 3-8) TBI. [1] The incidence of moderate and severe TBI in children in the 

Netherlands is 14 per 100.000 person years. [1] To limit secondary injury patients with severe TBI (sTBI) 

are admitted to the intensive care unit for neuromonitoring and supportive measures. Treating pediatric 

sTBI is challenging, as there is a paucity of high level evidence on neuromonitoring and treatment. 

Subsequently, recommendations used in pediatric sTBI are mostly based on research in adults, although it 

is known that the anatomy and physiology of the pediatric brain is significantly different. [2] Cerebral 

autoregulation can play a crucial role in a better understanding of the sTBI disease process and enable 

personalized treatment. 

 

Cerebral autoregulation is the physiological neuroprotective process in which cerebral blood vessels 

ensure a constant cerebral blood flow over a range of arterial blood pressures by vasodilation and 

vasoconstriction. This mechanism can become impaired after trauma. In the current clinical practice, 

cerebral autoregulation is not regularly monitored. The most widely studied parameter regarding cerebral 

autoregulation in both children and adults is the pressure reactivity index (PRx), which quantifies the 

correlation between intracranial pressure (ICP) and mean arterial pressure (MAP). An increased PRx 

represents impaired autoregulation and is associated with unfavorable outcomes in both adults and 

children.  [3-14] PRx is especially clinically relevant as it can be used to determine personalized cerebral 

perfusion pressure (CPP) targets. [4, 15-19]  
 

The pediatric intensive care unit (PICU) of the Erasmus MC Sophia Children’s Hospital has started a 

research project in which retrospective data analysis is performed to identify appropriate thresholds for 

neuromonitoring of pediatric sTBI. While the current ICP and CPP thresholds are static and either the 

same for all patients or based on age categories this research aims to develop personalized, dynamic 

thresholds. The long term goal is to develop a dashboard on which the neuromonitoring parameters, 

derived parameters and personalized thresholds can be visualized. The aims of this thesis are i. to 

investigate whether the relationship between PRx and outcome in the Erasmus MC Sophia PICU cohort is 

similar as to what is described in the literature ii. to develop an algorithm which utilizes PRx to determine 

dynamic and personalized cerebral perfusion pressure (CPP) targets iii. to assess if there is a correlation 

between these personalized CPP targets and outcome. 
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Background 
 

As described previously, sTBI is an acquired brain injury caused by external force. The primary injury is 

irreversible and caused by the impact of this external physical force. After the primary injury a cascade of 

cellular, biochemical and metabolic reactions take place which can lead to further damage to the brain 

tissue causing secondary injury. In this process, cerebral edema can occur. Because there is limited space 

in the skull swelling can cause compression of brain tissue. The swelling can result in brain herniation, 

leading to compression of the brain stem, which is fatal if left untreated. [2] To limit secondary injury and 

to support vital functions, patients with sTBI are admitted to the intensive care unit. In addition to vital 

function monitoring, continuous neuromonitoring is performed by measuring the intracranial pressure 

(ICP) and the cerebral perfusion pressure (CPP). The treatment is titrated based on the monitored values 

whereby if the parameters are not in the desired range, interventions such as hyperventilation, the 

administration of hypertonic saline, the administration of barbiturates and surgical interventions can be 

performed. 

Intracranial pressure (ICP) 

The pressure inside the skull is determined by the volume of three constituents : brain parenchyma, blood 

and cerebrospinal fluid. In the physiological setting the ICP is fairly constant because a small increase in 

volume of one constituent can be compensated by a decrease in volume of another and vice versa. [20] In 

the case of trauma the ICP can increase as an effect of rapid changes in volume due to edema or bleeding. 

A quick rise in ICP is a medical emergency as it can cause brain tissue to herniate with compression of 

the brain stem as a result. The threshold used for pathological ICP in children is based on research in 

adults and is set at 20 mmHg. [2] 

Cerebral perfusion pressure (CPP)  

CPP is the driving force behind perfusion of the brain, and is defined as  

CPP = MAP - ICP 

where MAP is the mean arterial pressure. The sTBI protocol focuses on maintaining the CPP above the 

age appropriate value as insufficient perfusion causes ischemia. [2]  The thresholds used on the Sophia 

PICU are shown in table 1. There is also evidence that a high CPP causes unfavorable outcome, as 

increased blood flow can lead to additional cerebral edema. [21, 22]  

Table 1 Age appropriate CPP used in current clinical practice 

Age CPP 

0 – 1 month 40 mmHg 

Through 6 months 45 mmHg 

Through  4 years 50 mmHg 

Through 10 years 55 mmHg 

10 years and older 60 mmHg  

 

Pressure regulation index (PRx) 

In a physiological state cerebral blood vessels ensure stable blood flow amongst a range of arterial blood 

pressures through vasoconstriction and vasodilatation (see figure 1). This process is called autoregulation 

and contributes to maintaining a nearly constant volume and therefore constant pressure in the skull. [2] If 

the arterial blood pressure is outside of the range where cerebral blood vessels are reactive to changing 
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pressures, cerebral blood flow is entirely dependent on the blood pressure. Autoregulation can become 

impaired after sTBI. [2] In 1997 PRx was introduced as a way to quantify autoregulation. PRx is calculated 

by determining the Pearson correlation between 5 minute windows of ICP and MAP. When 

autoregulation is intact, the PRx is either zero or negative. In theory when autoregulation is impaired, 

there is a positive correlation between ICP and MAP, and PRx is a positive number. [23]  

 

 

Figure 1 Cerebral autoregulation: There is a range of arterial blood pressures amongst which cerebral 

vessels can ensure a constant blood flow through vasodilatation of vasoconstriction. This range is the 

horizontal part of the curve. At both extremes of this curve cerebral blood flow is dependent on blood 

pressure, which can lead to inadequate blood flow. The grey circles above the curve represent the 

changing diameter of the cerebral blood vessels. Figure adapted from Rhee et al. (2018) [24] 

CPPopt  

In 2002 CPP was plotted against PRx by Steiner et al.  [25] They described a U-shaped curve like the 

example in figure 2. Given that, theoretically, the lowest possible PRx is the most desirable, the 

personalized optimal CPP can be determined by finding the lowest point in this curve. [16, 25] Since this 

proposition researchers have been developing a CPPopt algorithm, which can be used clinically to 

determine personalized CPPopt target values. [16, 17, 19] 
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Figure 2 The relationship between CPP and PRx: Increased PRx values, in the red shaded are of the 

curve, represent impaired autoregulation. In the green shaded are of the curve autoregulation is intact. The 

vertex, or lowest point, of the curve is the optimal CPP.  
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Methods 
 

Patient population  

Retrospective data analysis was conducted in patients with sTBI admitted to the PICU for intracranial 

pressure monitoring from January 2016 until September 2023. Patients admitted to the PICU of the 

Erasmus MC Sophia Children’s Hospital range in age from 0 to 18 years. All patients with at least 3 

hours of continuous ICP and MAP data, as well as outcome data 1 year post-injury were eligible for 

inclusion in data analysis. There were no exclusion criteria.  

Data collection  

ICP was measured using an intraparenchymal probe (Codman Microsensor® ICP Transducer, Integra, 

Princeton, US; Pressio® Catheter, Sophysa, Orsay, France; Camino® Catheter, Nautus Medical Inc., 

Middleton, US). Arterial blood pressure was measured through an arterial line (Becton and Dickinson, 

Franklin Lakes, US). The Dräger monitor (Dräger, Lübeck, Germany) generates the MAP from the 

arterial blood pressure and sends the monitoring data to a secure Erasmus MC server. Patient 

characteristics such as age, gender and trauma mechanism were retrieved from the electronic health 

record (HiX, Chipsoft, Amsterdam, the Netherlands).  

Patients receive follow up care at a specialized outpatient clinic which also provides the opportunity to 

collect long term outcome data. Outcome was determined 1 year after the injury and was classified using 

the Pediatric Cerebral Performance Category (PCPC). [26] An elaboration on the PCPC score is given in 

appendix A. All patients were assigned a PCPC score by the same clinical expert. For the primary 

analysis outcome was dichotomized as favorable (PCPC 1-2) or unfavorable (PCPC 3-6). Secondary 

analyses were done for mortality and outcome in survivors (good outcome PCPC 1-2 vs. poor outcome 

PCPC 3-5).  

Data analysis 

The code used for data pre-processing was written by preceding researchers. Artefacts are automatically 

removed after which the data is averaged over 10-second intervals to mitigate high frequency noise from 

respiration and pulse rate. Artefacts are defined as sudden increases or decreases (± 25 % for MAP and ± 

10 mmHg for ICP) and values outside the pathophysiological range (30 mmHg - 160 mmHg for MAP and 

0.01 mmHg – 60 mmHg for ICP). Artefacts are replaced by the mean of  the surrounding 100 samples. If 

the artefacts included the surrounding 100 samples, the artefact is replaced by the values measured before 

the onset of the artefact. The raw data has a sampling frequency of 1 Hz and the cleaned and filtered data 

has a sampling frequency of 0.1 Hz.  

PRx was generated by determining the Pearson correlation between ICP and MAP using a moving 

window of 300 seconds as described by Czosnyka et al. [23] As the objective was to compare the results in 

the Erasmus MC Sophia PICU cohort to the literature PRx metrics were chosen based on the literature. 

Mean PRx, median PRx and percentage of time that PRx was increased were determined for each patient. 

Both mean and median PRx are used in previous studies. [3-5, 7, 14] Multiple thresholds were used to define 

increased PRx to evaluate which threshold has the strongest association with outcome in the Erasmus MC 

Sophia PICU cohort. The thresholds 0, 0.2, 0.25 and 0.3 were chosen based on the results of recent PRx 

research in a large pediatric cohort. [14] 
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A CPPopt algorithm was written which determines the optimal CPP every minute. The optimal CPP was 

defined as the CPP value where the lowest PRx is expected. The algorithm was written based on 

descriptions in the literature and developed in close collaboration with clinicians.  [15-17, 27]  In previous 

adult and pediatric studies the difference between measured CPP and CPPopt (∆CPP) is calculated to 

analyze the relationship with outcome. [4, 15-19, 27-29] However, as the width of the CPP range in which 

autoregulation is intact is different in every patient, ∆CPP was not deemed a desirable metric to compare 

patients. Therefore, an optimal CPP range was calculated for each patient. The optimal range is 

determined every minute and is defined as the CPP values where the optimal PRx values are expected 

based on the patient’s individual CPP-PRx curve (see figure 3). The  percentage of time that CPP is 

within the optimal range was calculated per monitoring day. This was done for days 1-4 as the median 

monitoring time in the Sophia PICU is 5 days. [30] Because the algorithm needs at least 8 hours of 

monitoring data there is a delay and day 4 of CPPopt monitoring can actually be day 5 of the 

hospitalization. 

 

Figure 3 CPPopt and CPP range: The black dot in the vertex of the curve is the single value which is 

the optimal CPP. The green bar on the CPP-axis represent the optimal CPP range. 

Statistical analysis  

Data analysis and subsequent statistical analysis were performed using Matlab 2021b (Mathworks, 

Natick, US). Descriptive statistics were reported as count (percentage) and mean. Statistical significance 

was set at a two-sided p value of less than 0.05. Histograms were made to inspect the distribution of the 

data. Scatter plots were made to inspect the relationship between PRx parameters and outcome. 

Univariable logistic regression was performed to evaluate the relationship between PRx and outcome. For 

accurate interpretation of the odds ratio’s mean and median PRx were multiplied by 10. In doing so, this 

the odds ratio reflect the change in odds as PRx transitions from 0 to 0.1 instead of 0 to 1.This was also 

done in previous research. [4, 14] As the percentage of time that CPP is within the optimal range was 

calculated per day it is a multi-level parameter. Therefore, to analyze the relationship with outcome an 

univariable mixed-effects model was used.  
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Results  
 

Between January 2016 and September 2023, 67 children were admitted to the PICU with sTBI. Of these 

patients 50 were eligible for inclusion (figure 4). Patient characteristics are shown in table 2. 

 

Figure 4 Flowchart of patient inclusion 

Table 2 Patient characteristics. Note that patients with PCPC scores 1 and 2 are survivors with good 

outcome, patients with PCPC scores 3-5 are survivors with poor outcome and patients with PCPC score 6 

are non-survivors. 

 

 

 

 

 

 

 

  

 

 

 

 Favorable outcome Unfavorable  outcome 

 Survivors with a good 

outcome 

Survivors with a 

poor outcome 

Non-Survivors 

N Patients 

Patient 

characteristics 

31 10 9 

Mean age 10.17 9.60 11.42 

Female 35.48% 50% 44.44% 

Trauma 

mechanism 

   

Bicycle rider 35.48 % 30 % 33.33 % 

Fall 16.13 % 30 % 22.22 % 

Car passenger 9.68 % 20 % 11.11 % 

Pedestrian 29.03 % 10 % 11.11 % 

Other 9.68 % 10 % 22.22 % 
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Pressure reactivity index  

PRx was retrospectively generated for all included patients. The average percentage of time per day that 

PRx could not be generated was 3.65% (53 minutes) and was mainly caused by either missing ICP or 

MAP values. Examples of the PRx waveform for individual patients can be found in appendix B. Figures 

5-7 show the mean PRx, median PRx and percentage of time that PRx is greater than 0.3 for all patients 

with each dot representing a patient and the color representing the outcome.  The figures for percentage of 

time that PRx is increased using different thresholds can be found in appendix C.  

Univariable logistic regression analysis was performed to analyze the relationship between PRx and 

outcome (tables 3-5). Increased mean and median PRx are significant predictors of both unfavorable 

outcome and mortality with odds ratios of respectively 1.54 (95% CI 1.14 – 2.08) and 1.44 (95% CI 1.22 

– 1.85) for unfavorable outcome and 2.49 (95% CI 1.39 – 4.45) and 2.35 (95% CI 1.35 – 4.06) for 

mortality. The percentage of time that PRx is increased is also a significant predictor of outcome. The 

PRx threshold 0.3 has the strongest association with unfavorable outcome. The PRx thresholds 0.2, 0.25 

and 0.3 have identical odds ratios of 1.06 when predicting for mortality. None of the PRx metrics 

researched are significantly associated with outcome in survivors. Histograms of the metrics used in the 

logistic regression analysis can be found in appendix D.  

In figure 5 it is visible that all but one patient with a mean PRx greater than 0.3 have an unfavorable 

outcome. It is worth noting that this outlier with a high mean and median PRx, but a surprisingly 

favorable outcome had a complicated disease course for which a second ICP monitoring period was 

necessary. Only the first ICP monitoring period was included for this research. In figure 6 it is noticeable 

that all patients with a mean or median PRx less than 0.2 survive. 

 

Figure 5 The mean PRx, median PRx and percentage time that PRx is greater than 0.3 for each patient. 

Green dots represent patients with a favorable outcome, red dots represent patients with an unfavorable 

outcome. PCPC = Pediatric Cerebral Performance Category 
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Table 3 Logistic regression analysis for different PRx metrics as predictors and dichotomized outcome as 

response (favorable outcome vs. unfavorable outcome) 

 OR 95%  CI p-value 
Mean PRx 1.54 1.14 – 2.08 < 0.01 

Median PRx 1.44 1.22 – 1.85 < 0.01 

% time PRx > 0.3 1.05 1.01 – 1.09 0.014 

% time PRx > 0.25 1.04 1.01 – 1.08 0.016 

% time PRx > 0.2 1.04 1.01 – 1.08 0.019 

% time PRx > 0 1.03 1.00 – 1.06 0.074 

OR = odd’s ratio, 95% CI = 95% confidence interval 

 

Figure 6 The mean PRx, median PRx and percentage of time that PRx is greater than 0.3 for each patient. 

Green dots represent patients who survived, red dots represent patients who did not survive.  

 

Table 4 Logistic regression analysis for different PRx metrics as predictors and mortality as response 

 OR 95%  CI p-value 

Mean PRx 2.49 1.39 – 4.45 < 0.01 

Median PRx 2.35 1.36 – 4.06 < 0.01 

% time PRx > 0.3 1.06 1.02 – 1.11 < 0.01 

% time PRx > 0.25 1.06 1.02 – 1.11 < 0.01 

% time PRx > 0.2 1.06 1.02 – 1.10 < 0.01 

% time PRx > 0 1.05 1.00 – 1.09 0.03 

OR = odd’s ratio, 95% CI = 95% confidence interval 
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Figure 7 The mean PRx, median PRx and percentage of time that PRx is greater than 0.3 for each patient. 

Green dots represent survivors with a good outcome, red dots represent survivors with a poor outcome.  

PCPC = Pediatric Cerebral Performance Category 

 

Table 5 Logistic regression analysis for different PRx metrics as predictors and outcome in survivors as 

response 

  OR 95%  CI   p-value 

Mean PRx 1.12 0.78 – 1.62 0.54 

Median PRx 1.10  0.80 – 1.50  0.56 

% time PRx > 0.3 1.02  0.98 – 1.06  0.36 

% time PRx > 0.25 1.02  0.98 – 1.07  0.38 

% time PRx > 0.2 1.02  0.98 – 1.06  0.39 

% time PRx > 0 1.01 0.97 – 1.05  0.55 
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CPPopt  

The resulting CPPopt algorithm generates a CPP target every minute using the following steps 

1. Mean CPP is calculated using a 5 minute window, resulting in a parameter containing one 

average CPP value per minute. This parameter is used for further calculations.  

2. Mean PRx is calculated using a 1 minute window, resulting in a parameter containing one 

average PRx value per minute. This parameter is used for further calculations. 

3. CPP and PRx data of the previous hour is extracted.  

4. CPP bins with a binwidth of 5 mmHg are made. For each CPP data point the corresponding PRx 

value is collected after which the mean and standard deviation of PRx can be determined for 

every CPP bin.  

5. An error bar chart is plotted of the mean and standard deviation of PRx for each CPP bin. A 

second order polynomial curve is fitted over the CPP bins that contain at least 1% of the data. The 

lowest point of this curve is the CPPopt. See figure 8 for an illustration of this step.  

6. Steps 3-6 are repeated for different time windows: 2 hours, 4 hours, 6 hours, 8 hours. 

7. The result of each time window is evaluated. If autoregulation is not intact (PRx > = 0.2) the 

CPPopt value is rejected and replaced by NaN. 

8. The weighted average of the results is used to determine the CPPopt.  In this approach, the CPP 

with the lowest PRx (and thus the best autoregulation) weighs heavier compared to the results of 

the other time windows. To achieve this, first, the average of all results is determined  

(CPPaverage of all results). Then, the weighted average is calculated by determining the average between 

the CPPaverage of all results and the CPPwith the lowest PRx. An illustration of the trend of the resulting 

CPPopt is given in figure 9. 

In the development of this algorithm deviations from the descriptions in the literature were made. 

Donnelly et al. used 36 time windows to determine CPPopt every minute (from 2 hours to 8 hours in 10 

minute increments), which uses significant computational power resulting in a long run time of the code. 
[31] As this is considered undesirable for real time bedside use, larger increments inspired by Depreitere et 

al. were used (1 hour, 2 hours, 4 hours, 6 hours and 8 hours). [17] This did not have a large effect on the 

resulting CPPopt trend, as can be seen in appendix E. While Depreitere et al. also included 12 hour and 24 

hour windows, these were not used, as data from 12 or 24 hours ago were deemed not representative of 

the current clinical condition given the dynamic nature of the disease. In the algorithm described by Beqiri 

et al. more recent time windows had a stronger weight in step 8.[27] This was not applied, because if 

cerebral autoregulation becomes impaired, it is undesirable that these windows have a stronger weight in 

determining the CPPopt. In the algorithm described in the literature a CPPopt chosen from a flat curve 

(PRx variation less than 0.2) was rejected. [27] This condition was not adopted because, as a result, curves 

in which a patient has a stable low PRx amongst all CPP values (indicating intact autoregulation) would 

be rejected. If there is little PRx variation in the curve because autoregulation is impaired amongst all 

CPP values, this curve is already rejected in step 7 of the algorithm. The PRx cutoff of 0.2 used in step 7 

of the CPPopt algorithm was chosen based on the prominent cut off in figure 5 where it stands out that all 

patients with a mean PRx lower than 0.2 survive the hospitalization. In adults studies, a PRx cutoff is also 

used, with one study using a range from -0.3 to 0.6 and another using a threshold of 0.3. [27, 31] 

To evaluate the relationship between a personalized CPP target and outcome an optimal CPP range was 

determined every minute using the following steps:  

1. The error bar chart of the 8-hour time window is used.  
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2. An optimal PRx range is generated: the lowest mean PRx is the lower limit, the upper limit is the 

lower limit + 0.2. If this calculation results in a range with increased PRx values (PRx > 0.25) 

calculations are discarded and no range can be determined.  

3. The measured CPP is considered in range if it belongs to a CPP bin in which the mean PRx is 

between the lower limit and upper limit of the optimal PRx range. If no range could be 

determined the measured CPP is automatically out of range.  

For the calculation of the CPP range a threshold of 0.25 was used to define increased PRx. This differs 

from the threshold of 0.2 used in the determination of the single value CPPopt, because using 0.2 would 

mean that a range can only be determined when the lowest PRx is negative. Figure 10 visualizes the 

determination of the CPP range.  

CPPopt was retrospectively generated for 49 patients (n=49/50, 98%). One patient was excluded because 

their autoregulation was completely impaired. Consequently, the algorithm could not determine a single 

CPPopt value and returned an empty array as a result. The algorithm is unable to generate a result 100% 

of the time as at least 8 hours of data and intact cerebral autoregulation are necessary to determine a 

CPPopt. The algorithm produced a result 62.37% of the time in patients with an unfavorable outcome and 

89.78% of the time in patients with a favorable outcome. In non-survivors the algorithm produced a result 

35.96% of the time, while in survivors a result was produced 88.26% of the time.  

The average percentage of time that CPP was within the optimal range was calculated per day for each 

patient. Average values of each outcome group were calculated (figures 11-13). A mixed model analysis 

was performed to evaluate the relationship between the percentage of time that PRx is within the optimal 

range and outcome (table 6). A decreased percentage of time that CPP is within the optimal range is 

significantly associated with for both unfavorable outcome (OR 0.97; 95% CI 0.95 – 1.00) and mortality 

(OR 0.96; 95% CI 0.93 – 0.99). The percentage of time that CPP is within the optimal range decreases 

between day 1 and 2 in patients with an unfavorable outcome, while it increases in patients with a 

favorable outcome (figure 12). In non-survivors  the percentage of time that CPP is within the optimal 

range decreases over the course of the hospitalization, while it increases for survivors (figure 13). The 

percentage of time that CPP is within the optimal range is not a significantly associated with outcome in 

survivors.  
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 (a) 

 (b) 

(c) 

 

Figure 8 The CPP – PRx curve fitting step of the CPPopt algorithm: Note that for the illustrative 

purposes of this figure the data of the entire monitoring period of three different patients is used. The 

three patients have similar ages and were all treated with a CPP target of 60 mmHg. The fitted curve does 

not cover all data bins as the curve is only fitted over bins containing more than 1% of the data.  (a) data 

from a survivor with a good outcome (b) data from a survivor with a poor outcome (c) data from a non-

survivor, the resulting CPPopt of this curve would be rejected as the corresponding PRx is greater than 

0.2 
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Figure 9 CPPopt trend. An example of the CPPopt trend (blue line) plotted against the measured CPP 

 

Figure 10 Determination of the optimal CPP range. First, the PRx limits of the range are determined; 

the lowest mean PRx is the lower limit, 0.2 is added to the lower limit to find the upper limit. The optimal 

CPP range (between the green vertical lines) consists of CPP values belonging to a CPP bin of which the 

mean PRx is within the visualized PRx range. For the illustrative purposes of this figure data of an entire 

hospitalization is used.  
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Figure 11 Percentage of time that CPP is within the optimal range. The average and standard 

deviation of the percentage of time that measured CPP is within the optimal range for days 1 through 4. 

The green line represents patients with a favorable outcome and the red line represents patients with an 

unfavorable outcome. 

 

Figure 12 Percentage of time that CPP is within the optimal range. The average and standard 

deviation of the percentage of time that measured CPP is within the optimal range for days 1 through 4. 

The green line represents survivors and the red line represents non-survivors. 
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Figure 13 Percentage of time that CPP is within the optimal range. The average and standard 

deviation of the percentage of time that measured CPP is within the optimal range for days 1 through 4. 

The green line represents survivors with a good outcome and the red line represents survivors with a poor 

outcome. 

 

Table 6 Results of the mixed model analysis with the percentage of time that CPP is within the optimal 

range as a predictor for outcome 

 OR 95%  CI p-value 

Favorable vs. unfavorable outcome 0.97 0.95 – 1.00 0.03 

Mortality 0.96 0.93 – 0.99 0.02 

Survivors with a good outcome vs. 

survivors with a poor outcome 

0.98 0.95 – 1.01 0.25 

OR = odd’s ratio, 95% CI = 95% confidence interval 
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Discussion  
 

This thesis studied cerebral autoregulation in children admitted to the PICU with sTBI, with the goal to 

gain insight in the pathophysiology of the disease and to explore the possibility of personalized dynamic 

CPP thresholds. The results of this study support the existing hypothesis that increased PRx as a measure 

of impaired cerebral autoregulation correlates with unfavorable outcome and mortality. The results in this 

cohort suggest that the association between PRx and unfavorable outcome is due to the association with 

mortality, as PRx is not significantly associated with outcome in survivors. This study further suggests 

that deviations from dynamic personalized  CPP thresholds are associated with unfavorable outcome and 

mortality.  

Pressure reactivity (PRx)  

The association found between increased PRx and both unfavorable outcome and mortality is the same as 

in previous research. [3-7, 14] In both pediatric and adult research a PRx threshold of 0.25 is described to 

have the best discrimination for mortality.[8, 14] This is consistent with the results of the Sophia PICU 

cohort. Unfortunately, due to the small sample size, it was not possible to analyze the relationship 

between PRx and outcome adjusted for possible confounders. Although previous pediatric research has 

shown that the relationship between PRx and outcome is independent of age, post resuscitation Glasgow 

Coma Scale, median ICP and median CPP, we cannot confirm these results in this cohort. [14] It is reported 

in both adult and pediatric research that PRx  is not related to the GCS on admission. [14, 16, 25] It is 

suggested that this could be because PRx is not influenced by the primary injury, but that it is a marker 

for secondary injury. [14] This hypothesis could explain why PRx is not associated to outcome in survivors 

in the Erasmus MC Sophia PICU cohort. In survivors secondary injury could be limited by the medical 

interventions, with the long term outcome being mainly dependent on the primary injury. An argument 

against this hypothesis that PRx is not related to GCS, because the GCS on admission is influenced by 

medical interventions in the pre-hospital setting. [25] In previous research the relationship between PRx 

and outcome in survivors is not studied. 

During visual inspection of the PRx waveform it was noticed that PRx has a pulsating waveform in all 

patients. The almost 1 point increase in short time frames which is seen in the figures in appendix B was 

not expected. However, this is similar to exemplary figures in both adult and pediatric studies.[4, 25] There 

are multiple possible explanations for this. It may be possible that in the acute phase after a trauma no 

patient has perfect cerebral autoregulation. Alternatively, the correlation between ICP and MAP may 

show a similar waveform in healthy persons. It is also possible that noise from the respiratory and 

cardiovascular systems disturb the ICP signal. For future clinical use, it is valuable to know that the 

clinically relevant information seems to lie in the mean or median value.   

CPPopt  

The results of this research suggest that a decreased percentage of time that CPP is within the optimal 

range correlates with unfavorable outcome and mortality. Similarly to PRx, the percentage of time that 

CPP is within the optimal range is not a predictor of outcome in survivors. This is as expected given that 

the CPPopt range is based on PRx. These findings should be considered in light of the study's limited 

cohort size and the scarcity of similar research in the pediatric population. The development of the 

CPPopt algorithm was done in close collaboration with clinicians using data of the retrospective cohort to 

ensure clinical relevance. While there is careful consideration behind each adjustment made in the 
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development of the algorithm it is desirable that multiple iterations are tried to further optimize the 

algorithm.  

The calculation of the CPP range is a first exploration for the analysis of the relationship with outcome. 

There is no similar research on determining a CPP range based on PRx values. There has been research in 

both adults and children on determining the CPP belonging to the lower limit of autoregulation (the 

lowest CPP in which PRx is lower than a set threshold). [6, 31, 32] While the CPP range used is this research 

is also based on PRx values, instead of  a single threshold an dynamic range is used based on the lowest 

PRx for the individual patient. In this calculation additional iterations are needed as well to optimize the 

parameter, especially due to the clinical relevance of knowing the margin around the calculated CPPopt. 

CPPopt is challenging to compare with the current clinical practice of an age appropriate CPP as it is a 

dynamic target. Determining the percentage of time that CPPopt is lower than the age appropriate CPP or 

the percentage of time that the age appropriate CPP is not within the optimal personal range could be 

methods for comparison in future research.  

In addition to the resulting CPPopt there is more clinically relevant information that can be extracted from 

the CPPopt algorithm. There are notable differences between the different CPP-PRx curves shown in 

figure 8.  Comparing figures 8a and 8b it is noticeable that the first curve is less steep as there is a broad 

range of CPP values where PRx is negative. This illustrates that ∆CPP is not a suitable parameter to 

compare patients. With a ∆CPP of, for example 10 mmHg, some patients will stave have intact cerebral 

autoregulation based on the slope of the CPP-PRx curve, while in other patients this change can mean 

autoregulation becomes impaired. In figure 8c, the flat curve with increased PRx values for each CPP bin 

illustrates a complete impairment of cerebral autoregulation. This visualization may be helpful in clinical 

practice. Additionally, it may be insightful to compare the curve from the same patient over different time 

periods to visualize the disease course.  

In the cohort of patients with unfavorable outcomes, it occurred more frequently that the algorithm is 

unable to generate a CPPopt. Although this difference was not statistically evaluated, it aligns with 

clinical expectations. It also supports the hypothesis that impaired autoregulation correlates with 

unfavorable outcomes as the algorithm does not yield results when the PRx expected with the calculated 

CPPopt is 0.2 or greater. This suggests that the absence of a CPPopt value could serve as a potential 

prognostic marker in future clinical applications. More importantly, this underscores that the CPPopt 

algorithm does not replace clinical decision making by the medical team as the algorithm cannot produce 

a result 100% of the time.  

Strengths and limitations  

The Erasmus MC Sophia cohort is unique as both continuous monitoring data and long term outcome 

data is available. The availability of high quality outcome data 1 year after the injury sets this research 

apart from other studies where outcome is mostly determined at 6 months post injury. It is described in 

previous research and also observed in the Sophia cohort that recovery after sTBI takes more than 6 

months. [33] The development of a local CPPopt algorithm has the advantages that there is full insight in 

the calculations and future adjustments are easy to facilitate.   

The main limitation in this study is the small sample size of the cohort. In addition, sTBI is a 

heterogeneous disease in which trauma mechanism, additional injuries and complications vary. Due to the 

small sample size of the cohort, subgroup analysis and adjustment for confounders was not possible. An 

inherent limitation of retrospective research is the potential confounding bias. In all patients, medical 

interventions that influence ICP and CPP such as mechanical ventilation, inotropic medication, deep 
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sedation and the administration of hypertonic saline and in some cases surgical intervention were 

performed.  

Clinical recommendation and future research  

The clinical relevance of both PRx and CPPopt are closely linked to the need of additional research. 

Prospective research in a large cohort of children is necessary to gain high level evidence to support 

autoregulation monitoring and the use of personalized thresholds. Due to small patient volumes in 

individual centers like the Erasmus MC Sophia PICU, multicenter research is the only way to 

comprehensively research cerebral autoregulation in children. A prospective multicenter observational 

study is currently being conducted in the United Kingdom to study the relationship between PRx, CPPopt 

and outcome in children. [34] In adults, cerebral autoregulation research is more advanced with studies 

demonstrating that CPPopt targeted therapy is safe and associated with better outcome. [35, 36] Determining 

when to implement cerebral autoregulation monitoring in clinical practice is complex as on one hand high 

level evidence is desirable, but on the other hand it will most likely take years for trials with a large 

pediatric cohort to be completed. Hereby, it is important to realize that in the current pediatric sTBI 

guidelines there is no recommendation with level I evidence. Taking this all into consideration, the 

recommendation is to continue with the development of the local sTBI dashboard and especially focus on 

the technical steps needed to enable PRx and CPPopt use in real-time while awaiting the results of the 

large studies currently being conducted.  

 

Development of an sTBI dashboard  

From a technical standpoint, the code necessary to pre-process neuromonitoring data, create figures and 

generate PRx and CPPopt is fully automated. To be able to use the code in clinical practice the main 

adjustment necessary is the continuous loading of new data. This requires changes in the code, but also a 

new data pipeline in which data is transferred from the monitor to the software used for the dashboard in 

real time. Depending on the software used to create the dashboard it might be necessary to translate the 

code from Matlab to another programming language. While a preliminary design of the dashboard has 

been made in preceding research the end-users have to be consulted to co-create a final design.  

If a dashboard becomes available at the bedside it is important to consider adding safety thresholds to the 

CPPopt algorithm so that CPP values that the medical team deems unsafe are not presented on the 

dashboard. The age based CPP values from the current protocol could be used as a lower limit for 

example. However, if the algorithm suggests a CPPopt lower than the age based target and this requires 

less medical intervention it may also lower the risk of iatrogenic injury. Because such considerations 

should be made clinically no limits were integrated in the current algorithm. Additionally, it is expected 

that the algorithm will be used in a research setting first and will not be available directly at the bedside.  

Pathophysiology of pediatric sTBI  

Cerebral autoregulation is just one of the puzzle pieces to deepen the understanding of sTBI. To further 

unravel pediatric sTBI, other promising advanced neuromonitoring parameters such as cumulative ICP, 

intracranial compliance, compensatory reserve weighted ICP and parameters in conjunction have to be 

studied.  

Cerebral autoregulation 

Cerebral autoregulation is a promising research topic beyond sTBI. Especially as it can also be monitored 

non-invasively. A recent publication used diffuse correlation spectroscopy to measure cerebral 
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autoregulation and demonstrated that impaired autoregulation is associated with higher radiographic 

neurologic injury in children on extracorporeal membrane oxygenation (ECMO). [37] Joram et al. used 

near-infrared spectroscopy (NIRS) to study cerebral autoregulation in children on ECMO and similarly 

found that impaired autoregulation is associated with neurological complications. They also demonstrated 

that it is feasible to determine personalized MAP targets (MAPopt) based on autoregulation. [38] 

Calculating MAPopt using autoregulation indexes determined through the NIRS signal has also been 

studied in children after cardiac arrest.[39] Furthermore, cerebral autoregulation has been studied in 

preterm neonates and neonates with hypoxic-ischemic encephalopathy, intraventricular hemorrhage and 

during surgery for congenital heart disease. [24, 40] 
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Conclusion 
 

Impaired autoregulation indicated by an increased PRx is associated with unfavorable outcome and 

mortality in children with sTBI from the Erasmus MC Sophia PICU cohort. In an initial exploratory 

analysis of CPPopt in our cohort a decreased percentage of time that CPP is within the optimal range is 

associated with unfavorable outcome and mortality. Both PRx and the percentage of the time that CPP is 

within the optimal range are not associated with outcome in survivors. These results call for prospective 

research to evaluate if outcome can be improved by implementing autoregulation guided therapy.  
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Appendix A – Pediatric Cerebral 

Performance Category  
 

The Pediatric Cerebral Performance Category (PCPC) is a score which can be used to categorize children 

based on level of morbidity. A child functioning at an age appropriate level is scored PCPC 1. Each step 

represents increasing morbidity and the highest score, PCPC 6, represents death. [26] 

 

 

Table adapted from Fiser et al. (2000) [26] 

 

 

 

 

 



28 
 

Appendix B – PRx waveform 

 

Figure 1a. Pressure reactivity index (PRx) waveform 

The PRX waveform from a patient with a favorable outcome 

 

Figure 1b. Pressure reactivity index (PRx) waveform  

The PRx waveform from a patient with an unfavorable outcome 
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Appendix C – PRx thresholds 

 

Figure 1a: Pressure reactivity index (PRx) thresholds The % time that PRx is greater than 0, 0.2, 0.25 

and 0.3 for each patient. Each dot represents a patient with the color representing the outcome (favorable 

outcome vs. unfavorable outcome). 

 

Figure 1b: Pressure reactivity index (PRx) The % time that PRx is greater than 0, 0.2, 0.25 and 0.3 for 

each patient. Each dot represents a patient with the color representing the outcome (survivors vs. non 

survivors). 
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Figure 1c: Pressure reactivity index (PRx) The % time that PRx is greater than 0, 0.2, 0.25 and 0.3 for 

each patient. Each dot represents a patient with the color representing the outcome (survivors with good 

outcome vs. survivors with poor outcome). 
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Appendix D   - Histograms of data 

distribution  
 

 

Figure 1: Histograms of used metrics in logistic regression analysis From left to right: mean PRx, 

median PRx, % time that PRx is greater than 0, % time that PRx is greater than 0.2, % time that PRx is 

greater than 0.25, % time that PRx is greater than 0.3 and outcome 1 year after the injury. 
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Appendix E – CPPopt time windows 
 

 

Figure 1. Time windows used in the CPPopt algorithm. An example of the CPPopt trend over the 

entire hospitalization, on the top image when using 36 time windows in the algorithm and on the bottom 

when using 5 time windows. Note that for the first hours of the hospitalization no CPPopt is generated as 

the algorithm needs 8 hours of data. 

 


