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Summary

The recent advancements in inertial sensors technology and its promising results in motion
tracking, catch the expert’s eyes to these new horizons in sports engineering. In baseball, which is
the interest of this study, almost 90% of the pitchers got injured once a year due to wrong
training and pitching techniques. Screening and real-time feedback to players would help them to
improve their training procedures and safely increase their pitching performance.

In the last decades many researches have been carried out on employing this new tool in
field measurements, instead of the common marker-based motion tracking with their complexity
for the in field measurements. Although it is promising that inertial sensors are the future of
motion tracking systems in this area, there are still many technical issues like, IMU sensors
measurement limit, drift and bias. Besides in human motion tracking which involves multiple
IMU sensors, coinciding the sensors and defining a global coordinate system requires substantial
concerns.

This study focuses on developing a valid motion tracking method for the baseball pitchers,
having a marker-based motion capture measurement as the reference. In order to be able to do
this first of all the two systems was needed to be synchronized and at the same time be able to
record the same motion. Secondly, the measurements should be defined in the same coordinate
system. For this purpose, a simple functional calibration method has been developed and applied
on both systems. This method is validated against a previous method (Seel, Schauer et al. 2012).
Finally, The kinematic results are estimated at joint and segment’s angles, velocities and
accelerations levels. The joint and segment’s angles computed by IMU sensors are validated
based on marker-based measurements. The sensitivity of IMU-based measurements in
estimating the angular velocity and acceleration of movements with different rate of movements
(slow vs. fast) is investigated. It has been observed that for baseball pitching applications, [IUM
sensors with less mass and wider range of measurements are required.

In order to compare the dynamics of the human body, a scalable anthropometric model from
the literature is used to define the mass and inertia properties of the segments. An inverse
dynamics method is used to compute the kinetics energy and finally the power flow in the
segments and joints. Again, all these results from the IMU measurements are compared with the
Marker-based method. The advantages and disadvantages of the IMU according to these results
are discussed to establish a practical protocol for future measurements and data analysis. One of
the major issues in the dynamic analysis is that for translating the velocity from IMU to human
body, the measurement protocol needs to provide a known starting and ending velocity. This is
done by starting and ending the measurements from a standing position.

The method of this project can be used in baseball pitching motion tracking using the
suggested protocol improvements and more advanced IMU sensors.
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Angular velocity
Linear acceleration
Angular acceleration
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Inertia matrix
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Rotation matrix

q Quaternion

q 4_, g Quaternion represents rotation from coordinate system A to coordinate system B

q Complex conjugate of quaternion
H : H Euclidean norm

® Quaternion multiplication
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ROM  Range of the movement (We did not used ROM as the range of motion)
RMSD Root mean square deviation
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Chapter 1

Introduction

1.1 Motivation

Fast and accurate pitches are critically important for the performance of a baseball team. For
this purpose, the players should be strong enough, remain injury free and perform a good
technique. The process of training a good baseball pitcher costs years of strength and technical
training. The instructions for these trainings are mainly based on empirical knowledge.

It has been stated that there is a trade off between fast pitching and being injured. Recently,
almost all pitchers complain about arm related injuries once a year and above 90% of them did
undergo elbow or shoulder surgeries (Arthur 2015). Over use, muscle fatigue, joint flexibility
and poor mechanics are the main causes of injuries. An arm injury is usually a cause of lowering
the pitching velocity. After surgeries the chance of healing and regaining the original velocity
depends on injury. Besides, most of the players who gain high records of fast pitching would
usually later become on disabled players list.

However, fast pitching is not a predictor of a pitcher getting injured, since there are also
injuries free pitchers with above twenty years of fast pitching career, like Randy Johnson. What
makes these players superior to the others is more likely to be their pitching technique,
frequency and resting time between pitches.

Theoretical analysis and screening of the fast pitcher movements would help the other
players to improve their pitching techniques and training methods in order to perform better
pitches. Besides screening in giving real-time feedback to players on key mechanical parameters
like joint angles and velocity, would help the players to improve their training procedures and
finally safely increase their pitching velocity.

Fastball pitching is the fastest pitch in baseball. It is a very fast movement in three-
dimensional space comprising of a sequence of complex movements with large range of motions.
Simplification of the kinematic analysis of pitching motion in two-dimensional space results in
underestimating of the player profile (Knudson 2007). Therefore, the kinematic analysis of
pitching motion is not a conventional analysis based on the standard human range of motion and
cannot be evaluated in two-dimensional space.
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1- Introduction Maryam Sharify

Various complex methods and devices are available to measure the motion for
biomechanical analysis. There are a number of different technologies used to either directly
“capture” the motion based on anthropometric data, like position, or indirectly “track” the
motion based on different kinematics data, like orientation, distance, velocity and acceleration.

The direct motion capture is usually recorded with imaging methods (Leardini, Chiari et al.
2005). These methods are generally based on construction of a three-dimensional model, having
the positions of anatomical landmarks in several different photos. This method is the standard
motion captures system in which the anatomical landmarks are tagged with markers known as
marker-based method.

The most accurate version of marker-based methods is the use of intra-cortical pins to avoid
the marker inaccuracy due to skin motion (Lafortune, Cavanagh et al. 1992). Yet, the pins may
buckle or wobble and this method is highly invasive and has ethically concerns. Other medical
imaging devices has been used for joint motion measurements, like high accuracy X-ray (Ackland,
Keynejad et al. 2011). However, these methods have a narrow field of view since the motion is
limited to the size of the imaging device and therefore only one or two joints can be imaged.
Besides, these methods are too slow and expensive and have side effects due to radioactivity of
X-ray imaging.

The marker-based motion capture methods are the current standard method to measure the
baseball pitchers motion. However, the marker-based motion capture systems are very
impractical to be used in the baseball field to measure the motions and provide online feedback
to the players. The reason is that it is difficult and too time consuming to place many cameras in
baseball field and the markers on player’s body and tracking the data online. Besides, the
markers fall down easily since players are sweating. Also the sunlight introduces noises to
measurements and the pitcher needs to be in underwear.

The indirect tracking of motion is done with: ultrasonic receivers and transmitters to
measure distance (Kim and Kim 2013), magnetic field measurements to measure orientation
(Song, Li et al. 2014), or with the Inertial measurement units to measure orientation, angular
velocity and acceleration (Wang, Zhang et al. 2015). The magnetic and ultrasonic systems are
subjected to environmental noise and have limited range of measurements. The inertial
measurement units (IMU’s) are more practical to investigate kinematics of players in field.

IMU’s contains accelerometer, gyroscope and magnetometer sensors. Each of these sensors
or preferably a combination of them is used for motion tracking. IMU-based motion tracking
algorithms are the latest advancement in motion tracking systems and did attract numerous
researches due to its high reliability and independence. One of the main advantages of using IMU
sensors is the fact that they are light and wearable. Thus the measurements can be done out of
laboratories, on the field for sports and during daily life for clinical applications.

This technology is an adaptation of aerospace and military attitude heading reference system
(AHRS), which was later used in sport engineering and medical rehabilitation for the estimation
of the human body performance. However, as most new technologies, which are not yet explored
in every aspect, IMU’s motion tracking systems are also still subjected to several limitations and
imperfections which needs to be improved.

There are a number of recent researches on developing IMU-based algorithms and
techniques to estimate human body movement kinematics based on inertial sensor system (van
den Noort, Ferrari et al. 2013, Li and Zhang 2014). There are full body IMU packages
commercially available, like the Xsens suit. However, these packages are quite expensive and the
accuracy of those commercially available packages for academic measurements is not
established. For example, it is stated that the new Xsens suit in dynamic measurements has 1°
RMS (Appendix 5). But it is not clear this error is estimated over which velocities of motions.
Besides this error is based on repeated trials within the same system not in comparison with
another motion tracking system. Also, the available pre-programed IMU’s instructions and
software algorithms for position and orientation tracking are difficult to reproduce and adapt for
the subsequent application fields (Roetenberg, Luinge et al. 2009).

There are a few researches done on tracking the motion of baseball players using an IMU-
based method comparing with a marker-based method. Lapinski et al. 2013 reported the IMU-
based method angular velocity measurement on shoulder joint rotation during pitching asses 6%
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STD, being better than the standard marker-based method with 15% STD. However, this seems
more to be due to filtering of data than a reason to validate the data. Because the magnitude of
the same measurements shows the marker-based method recorded an average angular velocity
of 5080°/s, while the IMU-based method observed an averaged velocity of 4431°/s (which is
around 13% lower than the marker-based one). In this study, the comparison between the
maximum angular velocity of the two methods, which is the most important part for the baseball
measurement, has not even been reported (Lapinski, Berkson et al. 2009, Lapinski 2013). There
is not yet a validated tracking motion of fastball pitchers in baseball using IMU-based method
compared to the standard motion tracking measurement established.

1.2 Research objective

The main purpose of this project is to develop a practical but also accurate experimental
setup to measure the kinematics of the pitcher inside the baseball field and outline an IMU-based
method to analyse the pitching motion. Since there is many researches available with the
marker-based motion capture methods, we can use a marker-based measurement as reference to
validate and analyse our IMU-based measurement. However, it is also important to keep in mind
that having the marker-based motion capture system as a reference does not mean that the
marker-based motion capture provides us the real accurate motion, but it is the standard method
in motion capture method.

The main goal of this project can be formulated as:

“Development and validation of an IMU’s motion tracking system
for measurements of baseball pitcher kinematics,

having the marker-based motion capture data as the reference.”

In order to accomplish this research goal, in chapter 2, we will review shortly the main
structures and limitations of marker and IMU-based methods that we need to know before
developing a new method and measurements. Knowing this initial knowledge, at the end of
chapter 2 the achievement to the above main goal would be formulated in smaller steps.
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Chapter 2

Previous works and challenges

In this chapter, we briefly review the important characters of marker-based tracking
methods. Then we would look into the important characters of presented IMU-based tracking
methods and their limitations and imperfections. Beside we would also explore the available
solutions to these problems and the ways to obtain best result, which we chose to use in our
method.

2.1 Marker-based motion tracking method

Motion capture with marker-based methods is a technique to record the three-dimensional
(3D) positioning of a subject in a global coordinate system (GCS). Several different technologies
have been developed, like active and passive markers.

Passive markers are simple markers reflect infrared (IR) light. Such markers can be flat or
spherical. Spherical markers may reflect light at each possible angle where the flat markers only
reflect lights between 0 and 60° with respect to cameras. Passive markers have simple and
flexible setup and are used for most of the applications.

Active markers are infrared (IR) light emitting diodes (LEDs), which requires wire or battery
to operate. The advantaged of this kind of marker is that they do not rely on reflecting lights but
they emit light themselves. Thus there can be tracked from larger distance and after
measurements the markers are already identified. But the measurement preparation is complex
and too time consuming with placements of al weird LED markers and cameras.

Vicon, Motion Analysis Corp, Qualysis and OptiTrack are the major commercial available
systems, which are used in different areas like; medical researches, film industry and video
games. In a motion capture measurement, markers are place on anatomical landmarks on body.
The data taken by cameras are reconstructed to build the 3D path of markers positions. The path
of several markers can be used to represent body segments and the local coordinate system of
each segment (LCS).
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Figure 2-1 right: markers position in a global reference frame (GCS) are captured, middle: segments
are defined based on markers position, left: segments local coordinate system (LCS) can be defined
based on markers position (Lapinski 2013)

2.1.1 Marker-based motion tracking limitation

2.1.1.1 Markers occlusions

Markers are very susceptible to data occlusion. Each marker needs to be seen at least by two
cameras at each recording frame in order to estimate the 3D position of the marker. If a marker is
not seen by at least 2 cameras, occlusions occur and it is not possible to compute the global 3D
position. Occlusions are a bigger problem in passive markers than in active markers. Active
marker would be identified after collision as the same marker, but passive markers would be
misidentified as a new marker. These paths can be reunited and gaps can be filled in by
interpolation.

Passive marker Active marker Corrected

3D trajectory

Missing Data t Interpolated Data t

/\

3D trajectory 3D trajectory 3D trajectory

Mis-ldentified Data

Figure 2-2 when occlusions occur some data are missing. Occlusion is more problematic in passive
markers than active. Active marker would be identified after collision as the same marker, but
passive markers would be misidentified as a new marker. Marker paths can be reunited and gaps can
be filled in by interpolation, modified from (Cherveny 2015)

The gap filling simplifies the differentiation and integration steps. However, gap filling is a
source of error and the produced data needs to be removed from the results before data analysis.
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2.2IMU-based motion tracking method

An IMU is a Micro-Electro-Mechanical module typically comprised of accelerometer,
gyroscope and optionally magnetometer sensors.

Magnetometer Gyroscope Accelerometer

Figure 2-3 IMU comprised a combination of gyroscope, accelerometer and magnetometer, recording
velocity, orientation, accelerations and gravitational forces.

Looking into literature on IMU-based motion tracking techniques, we can find application of
this technique in aerospace, biomedical engineering, robotics, virtual reality, sport engineering
(Seel 2016). However, the structure of all IMU-based motion tracking techniques is based on a
common concept, which is called strap-down-integration algorithm. This concept comes
originally from aerospace, where it is difficult to capture the motion of a spaceship, the problem
can be simplified using strap-down integration of an IMU data placed on the spaceship (and in
other applications on any moving object in 3D space and thus also on human body).

Since the IMU records the data regarded to its own coordinate system and as the IMU moves
and rotates this coordinate system is also moves and rotates. Using strap-down-integration
algorithm, it is possible to compute the position and orientation of the IMU with respect to its
initial position and orientation. Having these kinematics data for the IMU positioned on the
object, kinematics of the object with respect to its initial condition can be estimated.

2.2.1 Strap-down-integration algorithm
The gyroscope records the angular velocity (w ). The integration of the gyroscope angular
velocity provides us the rotation with respect to the previous orientation (¢, ). By definition the

rotation (¥ ) of an object is to be computed by numerical integration of its angular velocity:

o) = [wlt) -dt + g, (1)

This derivation is given slightly different in literatures by different expressions and
assumptions like constant angular velocity or rotation around specific axis, but mathematically
they are all corresponding to the above concept.

Each rotation transforms a vector from the local coordinate system of IMU sensor (MCS) at
one moment in time to MCS at a previous moment in time (hint: this coordinate system is
moving). These changes in rotation and positions can be expressed by rotation matrix. As in

Figure 2-4 denoted for each time step by: R, , R, , R, and ....

The question is: “How to express this rotations in a fixed global coordinate system?”

The solution is the strap-down-integration, in which the initial orientation of IMU can be
taken as the fixed reference coordinate system and we can transform the orientation at each
moment in time to this reference coordinate system. As in Figure 2-4 expressed by:

R,R, and R,.(R,R,).
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Time:

Angular velocities recorded
by gyroscope in MCS

Rotation (R) with respect
to previous orientation (¢)

Transform orientation
from MCS to ¢,

R3.(R;.Ry)

Figure 2-4 Strap-down-integration: angular velocity recorded by gyroscope can be integrated to
obtain the rotation with respect to the previous orientation in time. The problem is that IMU is to
attach to a moving object and therefore IMU records data in its moving coordinate system (MCS). The
initial orientation of IMU can be assumed to be the fixed coordinate system and we can transform the
orientation at each moment in time to this fixed coordinate system.

Having the rotation matrices to transform the coordinate system of IMU at each moment of
time to the fixed coordinate system, the acceleration data recorded by IMU sensor can also be
transformed to the fixed coordinate system. Subsequently we need to subtract gravity from
acceleration data. Afterwards by integration of acceleration with respect to time, the changes of
velocity and position can also be computed (Seel 2016).

a(t) = f f 2(t) .di* + x, @)

Figure 2-5 shows a schematic view of the above procedure to compute orientation and
position from the IMU data using strap-down-integration.

Gyroscope Orientation

(¢) (¢)

Transform Remove f

A p——
coordinate system gravity Velocity Position
Accelerometer >
I ®) T (x)

Magnetometer Initial velocity Initial position

(vo) (x0)

Figure 2-5 Schematic view of the Strap down integration routine for orientation, acceleration,
velocity and position computation from IMU data. An inertial measurement unit contains gyroscope,
accelerometer and magnetometer sensors, which measure respectively angular velocity and linear
acceleration and magnetic field. The angular velocity is integrated in time to obtain the orientation.
This orientation then is used to transform the acceleration vector from the local coordinate system of
the IMU to a global coordinate System. This can then be integrated to get velocity and position.
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2.2.2 IMU’s data considerations
2.2.2.1 Data clipping

When using IMU for motion tracking, an important issue is choosing an appropriate IMU
with sufficient range of measurement. Inadequate range of measurement of sensors may results
in a form of distortion called “data clipping”. Data clipping happens when the magnitude of the
data to be measured exceeds the threshold. The result is that the sensor is unable to record those
data and thereby the data would be underestimated.

Lo

IMU’s range of measurement

U

Figure 2-6 the real data in grey and the clipped data in red

A number of the previous studies did consider data clipping phenomena, as the reason that
the IMU-based systems are not appropriate for the sport engineering fields measurements,
where it is desired to record fast movements like fast ball pitching with high velocity and
accelerations. For example, Ahmadi et al. 2010 states there does not exists a gyroscope which
can records movements of faster than +300°/sec, which disqualifies the applications of IMU
sensors for sports measurements (Ahmadi, Rowlands et al. 2010).

However, it is possible to build and program an IMU suitable for special range of motion
measurement (to record only fast movements). Furthermore, the technology is improving fast
and as the technology is growing, it seems this limitation is vanishing, and there are several pre-
programmed, small and light-weighted IMU sensors available which claim to cover up the whole
range of players motions. The recent Xsens (fabricated in the Netherlands) and Shimmer
(fabricated in the United Kingdom) sensors claim to be able to record much faster movements in
the range of £2000°/sec (Appendix 4 and 5). Even the Analog devices sensors (fabricated in the
U.S.A)) are entitled to be capable to record much faster movements in the range of +20000°/sec
(Appendix 6).

2.2.2.2 Error characteristics of gyroscope and accelerometer

As it is mentioned in 2.2.1, IMU-based kinematic computation uses numerical integration.
Mathematical integration of a set of data with a constant bias, results in that the bias grows non-
linearly in time. This phenomenon is called “drift”. Overall, errors in the IMU recorded data
results drift in orientation and position estimation after integration.

When an IMU is not moving, the measurements of gyroscope should be zero and the
accelerometer output should show only the gravity (9.8 ms2 in vertical direction). However, in
practice usually the measured data by the IMU sensor contain an offset from these values. The
average of these offsets is known as the constant bias of the IMU. Initial calibration steps are
suggested to remove this offsets. However, the calibration steps are also subjected to scaling and
axis alignments errors. Any error in calibration of gyroscope sensor after integration results in an
orientation drift proportional to the angular velocity. And any error in calibration of
accelerometer sensor after integration results in an orientation drift proportional to the squared
rate of acceleration.

The bias of IMU is an accumulation of different sources of errors, not only calibration error.
IMU sensors measurements are subjected to thermo-mechanical disturbances of environment
and thereby not only the measurements are affected but also the calibration. Further, when IMU
is turned on, its temperature is increasing. As the temperature is increasing the bias is also
increasing non-linearly in time. This bias is to be simulated as a white noise. This bias after
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integration results in a linear growth of residual bias in orientation estimation and a quadratic
growth of residual bias in position estimation.

Furthermore, an IMU is an electronic module with its electrical flicker noise which exposure
in random time. This error is to be simulated as random bias of instability (Woodman 2007, Seel
2016).

Altogether, both gyroscope and acceleration recordings are subjected to several sources of
biases. Woodman 2007 did a systematic study on the above sources and characteristics of errors
and simulated the significant errors as the sum of these errors (Woodman 2007).

The simulated logarithmic plot of this estimation in Figure 2-7 shows that the drift grows
exponentially in time. The accelerometer bias is the significant cause of drift at the initial few
milliseconds (until 0.3 seconds), after this time the gyroscope bias becomes the significant cause
of drift. Practically, it is the gyroscope orientation estimation bias and not the accelerometer,
which limit the overall accuracy of the most IMU-based motion tracking methods. An error in the
orientation estimated by gyroscope may cause incorrect acceleration coordinate system
transformation. Subsequent integration of the signals, results in a rapid accumulating of this
€error.
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Figure 2-7 simulation of the metric and logarithmic propagation of the roll of gyroscope and
accelerometer in drift arising (Woodman 2007).

Some of the commercially available IMU sensors, like Shimmer and Xsens, have an internal
automatic compensation for these biases, which removes the drift from their output. For
example, they have used the temperature bias, based on battery rate of reduction index (i.e.
Voltage charge level).

2.2.2.3 Drift compensation

As it is shown in previous section, the drift is to be estimated quite well by an exponential
function. Yet this estimation is subjected to initial calibration inaccuracy and varying
environmental disturbances. These biases have different characters regarded to the varying
recording duration and type of movement. This makes the bias reduction a necessary but not
sufficient step, whereby any small bias in signals growth by integration. There is usually needed
to apply additional drift compensation procedure on the specific part of the calculation which the
bias comes from. Looking into the strap-down integration procedure, the major problem of
position estimation inaccuracy is caused mainly by errors in orientation computation. The
solutions to compensate for orientation drift in literatures are generally fall into two groups: the
commonly used “data fusion” approaches and some studies used “specific assumptions”.
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2.2.2.3.1 Data fusion approaches

The algorithms which use the data of two or more sensor types (gyroscope, accelerometer
and magnetometer) measuring the same motion to “predict” and “update” the state of the system
(orientation, acceleration, velocity and position), are known as data fusion algorithms. The
prediction would be followed by an updating step, which specify how good it is the state
predicted and continuously repeat this process for each time step or periodically over a span of
data set to maintain a better estimation of current state of the system.

Data fusion does not need to be applied only on data of sensors from the same IMU. It is also
possible to use data fusion of an IMU with the data of another system or another IMU. For
example fusion of a set of marker-based with IMU-based position tracking data measured at the
same time. The periodic position drift compensation approach is also commonly used for
updating position estimation in navigation devices, whereas the position measured by GPS is to
be combined with the high sampling frequency estimated position from gyroscope and
accelerometer of an IMU (Woodman 2007).

Here a basic explanation is given to have an idea about what is happening is such filters. In a
simple case consider from the angular velocity integration, the orientation is computed. This
computation contains drift. The same motion is also measured by another sensor i.e.
accelerometer. The orientation may also be computed from the accelerometer measurements.
The fusion of these two set of data, coming from two different sensors and since they are
measuring the same motion, this can be used to correct for the drift.

In this process, typically one of the data sets, which is more trustable and would be weighted
more. The weighting between data sets usually denotes as the filter gain. The choice of weighting
gain between IMU’s sensors is based on the following remarks:

The orientation of an IMU can be defined by three angles: Pitch, Roll, and Yaw. These angles
can be computed from the direction of gravity and the North Pole. The main concept behind this
is that; the linear acceleration forces acting on an object are the sum of gravity, and the
accelerations elicited by the movement. The accelerometer of a static IMU shows only the value
of the gravity field. Because the only force applied to the static (not moving) IMU is the gravity,
and since it is always pointing to the centre of earth, the pith and roll angles can be computed
from accelerometer data (but not the Yaw, since the Yaw is not the matter of inclination).
Similarly, The Yaw angle (heading towards Earth's magnetic North Pole) can computed using
magnetometer data.

’

\\
<
Pitch/ Y
_____ \UPIRIE AL 7. I

Figure 2-8 Orientation of IMU can be defined by Pitch, Roll and Yaw angles. These angles can be
computed from the direction of gravity and the North Pole.

Accordingly, the drift in the inclination part of the IMU’s orientation can be eliminated using
the measured acceleration data (Fusion of gyroscope and accelerometer data). Besides, the drift
in Yaw angle can be eliminated using magnetometer data (Figure 2-9).

Note that, the magnetometer data are sensitive to magnetic fields which is hard to prevent in
presents of ferromagnetic materials in the indoor environments of experimental marker-based
motion tracking lab (electronic devices, computers, cameras setup and the structure of the
building).
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IMU Data Fusion
Gyroscope > Orientation >| Corrected Orientation
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Accelerometer > Pitch , Roll
2
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Figure 2-9- Orientation correction based on data fusion. Orientation (pitch, roll and yaw angles) can
be computed from gyroscope. Accelerometer data can also be used to estimate pitch and roll.
Magnetometer data can be used to estimate yaw angle. Different combination of errors estimated
from gyroscope, accelerometer, magnetometer or other known sources of environmental errors (as
explained in 0) can be used to compensate for drift.

There are many data fusion algorithms where as the most important of them are the
complementary filter, the Kalman filter (with constant matrices), and the Mahony and Madgwick
filter (Madgwick 2010). An experimental comparison (Cavallo, Cirillo et al. 2014) on these
algorithms show that the dynamic Root-Mean-Square error (RMSE) of these algorithms are
similar (smaller than 1°) and the computational time of EKF algorithm is much longer than the
Mahony and Madgwick (Table 2-1).

Table 2-1 - Experimental comparison of Fusion algorithms for attitude estimation. Hint, embedded
system’s computation time is longer than the academic experiments, i.e. with Matlab.

Euler angles RMSE [] o Embedded
. Matlab/Simulink
Algorithm system
Roll Pitch Yaw [ms]
[ms]
EKF 5.05 3.24 5.93 0.1 2.7
Madgwick 5.54 3.93 6.27 0.017 0.15
Mahony 5.87 4.53 6.66 0.014 0.11

Extensive discussion and implementation of these algorithms is beyond the scope of this
project. Here it is only sufficient to know that due to the above mentioned privileges of the
Mahony and Madgwick filter, it is commonly used for human motion applications, and therefore
we also used this filter (Madgwick 2010).

2.2.2.3.2 Specific assumptions

In order to accommodate the drift compensation procedure, some studies used specific
assumptions. A simple example of this approach is that a walking foot velocity or distance to the
ground is zero at the moment that foot contacts with the ground and an IMU placed on foot needs
to measure zero velocity.

Therefore, the drift in the IMU velocity data measurements can be periodically corrected by
the zero-velocity (or no distance to the ground) updates at the moments of the contact with
ground. The weakness of the specific assumptions approach is that results would not be valid if
the assumptions do not hold.

Figure 2-10 shows drift in position estimation (distance to the ground) during walking in
IMU-based motion tracking comparing with the drift free marker-based approach.
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Figure 2-10 Drift in IMU-based motion tracking of foot during slow walking compared to
measurement of the same motion using marker-based method (Lai, Charry et al. 2008)

2.2.3 Human body motion tracking with IMU
2.2.3.1 Choice of coordinate system

In IMU-based human motion tracking, the orientation and position of each segment would be
determined by an IMU attached to it. As it is mentioned above, for kinematic analysis based on
the IMU’s recorded data, we need to choose a fixed coordinate system and it is convenient to
choose the initial local coordinate system of the IMU.

When there are a number of IMU presented in the measurement, the question is how to
define a unique global coordinate system (GCS)? If we choose the GCS to be the initial position of
one of the IMU sensors, then the next question is what is the relative initial orientation of the
other IMU sensors with respect to that IMU?

Figure 2-11 the data measured by IMU sensors are expressed in the IMU’s coordinate systems. When
tracking human motion using multiple IMU sensors, there is an issue that relative orientation of IMU
sensors with respect to each other is not known.

It is good to mention here that the standard marker-based measurements did also face the
problem of choosing a GCS. As it is explained in chapter 3, this problem for the maker-based

systems is solved in an early stage before the measurements, when a GCS is defined via camera’s
calibration using a reference object.

Some commercial IMU sensors like Xsens suit, automatically converted the data to a global
coordinate system through a pre-experimental calibration step (Roetenberg, Luinge et al. 2009).

Different methods can be used to find this relation. In chapter 4, it is explained that we take
the initial relation between segments from the markers based method. Nevertheless, later in

chapter 6 a convenient method is suggested to align the IMU sensors at the beginning of the
measurement.
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2.2.3.2 Functional calibration

A main problem in IMU-based motion tracking methods is that neither the direction nor the
positions of the IMU sensors with respect to the body segments are known. As it was mentioned
in previous section (2.2.3.3), some studies assumed IMU is precisely mounted on body segment
the way that IMU’s coordinate system is aligned with a meaningful physiological axis. There are
also studies which did use the measurement data of predefined positions and/or motions, called
functional calibration to find the orientation of IMU regarding to body segment mounted on it
(Luinge, Veltink et al. 2007, O’Donovan, Kamnik et al. 2007, Cloete and Scheffer 2008, Favre,
Jolles et al. 2008, Favre, Aissaoui et al. 2009, Roetenberg, Luinge et al. 2009, Takeda, Tadano et al.
2009, Lin and Kulic 2012, Li and Zhang 2014, Rogowski, Creveaux et al. 2014, Seel, Raisch et al.
2014, Schauer and Seel 2016).

An example for functional calibration with predefined static position is that in standing
position with vertical and straight legs, the accelerations recordings have been used to determine
the orientation of IMU with respect to the longitudinal axis of thigh and shank (Favre, Aissaoui et
al. 2009, Takeda, Tadano et al. 2009).

Other studies determined the same relation using predefined functional calibration motion.
They used the gyroscope recordings during lateral rotations of leg to determine the orientation
of the IMU mounted on thigh with respect to the longitudinal axis of thigh (Takeda, Tadano et al.
2009). Figure 2-12 shows some examples of functional calibrations movements.

Figure 2-12 Calibration motions to determine orientation of IMU regarding to body segment (Seel,
Raisch et al. 2014)

Among these studies, Rogowski et al. 2014 for upper limbs and the Seel et al. 2014 for lower
limb gave comprehensive outlines of functional calibration movements (Rogowski, Creveaux et
al. 2014, Seel, Raisch et al. 2014).

shoulder adduction /
abduction

shoulder flexion /
extension

shoulder internal / =
external rotation ,

elbow flexion/
extension

elbow varus /
valgus

elbow pronation /
supination
wristinternal /
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wrist flexion / d

extension
wristradial/

ulnar deviation

Figure 2-13 Functional calibration of upper limb (Rogowski, Creveaux et al. 2014)
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Functional calibration allows defining the orientation of the IMU with respect to the segment,
which defines the joints axes. Most likely the estimated axes would not be perpendicular to each
other. This means that the computed coordinate system would not be Cartesian. The routine to
convert these computed axes to a Cartesian coordinate system is as follow:

1- The first axis is to be defined by the calibration movement, which we trust the most.

2-  Another calibration movement can define the second axis as the temporary axis, which
would be corrected later.

3- The third axis would be defined to be perpendicular two the plane pass through these
the first and second axis.

4- Subsequently the second axis would be corrected to be perpendicular two the plane
passes through the first and third axis (Figure 2-14).

Figure 2-14 Functional calibration routine to define the orientation of the IMU mounted on the trunk
with respect to trunk. A rotation of trunk is more truthful to be allows defining the orientation of IMU
with respect to the first axis (1). Lateral flexion/extension allows defining the second axis (2), which
needs to be corrected. The third axis (3) can be computed by cross product to be perpendicular to the
plane pass through 1 and 2. Subsequently 2 would be corrected to be perpendicular to the plane
passes through 1 and 3.

2.2.3.3 Simplifications assumptions

When we look into the previous literatures approaches, we realize many of the researches
for simplifications of the problem took a number of assumptions, as:

1- The placement of IMU on body is assumed to be the way that one of the local coordinate
axes of the IMU is aligned with a physiological meaningful axis (like the longitudinal axis of
segment or the joint axis).

This results in inaccuracy of the results. An example of this is the study of Farve 2006 et al.
where it is assumed the knee flexion/extension axis to be aligned with one of the axis of each IMU
on tight and shank. This study noticed the integration of this misalignment introduces a drift in
joint angle estimation and they suggested to remove the drift by a high-pass filter (Favre, Luthi et
al. 2006).

Functional calibration routine is a method which is used in a number of recent studies to
compute the IMU to segment coordinate system rotation, which practically reduce this
misalignment error (Li and Zhang 2014). This routine is explained better in following section
(2.2.3.2).

We would use Functional calibration routine to define the segments coordinate system. In
chapter 3 and 4 you can find a comprehensive explanation of how did we used this method.

2- The body segments are usually assumed to be rigid and their attitude is measured
usually only by one IMU attached to each segment.

3- The biological joint is often considered to be a perfect hinge, saddle or spherical joint.

An example of this is the studies of Seel et al. where he assumed the knee joint behaves like a
hinge and shoulder joint as a spherical joint. Such mechanical joint defines kinematic constraints.
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Like, in a hinge joint case, the angular velocities projections of two adjacent segments onto the
joint plane (The plane which joint axis is the normal vector.) must be identical. Or for a spherical
joint, the acceleration of joint centre in both local coordinate systems of the two segments must
be identical (Seel, Schauer et al. 2012, Seel, Raisch et al. 2014, Schauer and Seel 2016, Seel 2016)

4- The skin movement is neglected and the IMU position and orientation with respect to
the body segment is assumed to be constant.

The non-ridged, deformable human body joints and segments affect a human body
measurement, which makes the measurements ambiguous. Subsequently it is needed to take
some assumptions to define the parameters.

In this project we would also take these last three assumptions, to simplify the problem.

2.2.3.4 Choice of variables

In this project we aim to validate the results of IMU-based tracking method against a marker-
based method. To do this, it is very important to choose the variables to be validated. We can
analyse motion on different levels, from “orientation” to “angular velocity” or “angular
acceleration”. This is a relatively trivial mathematical computational issue that the amount of
bias in the results depends on the choice of variables.

From orientation (¢ ) by one and two steps differentiations, the angular velocity (w ) and

angular acceleration («) can be computed respectively. However, the downside is that the
numerical differentiation works as a high pass filter, which means any errors in the 3D positions
will be amplified with each differentiation step.

Similarly, from angular acceleration («) by one and two steps integration, the angular
velocity (w ) and orientation (¢ ) can be computed respectively. However, the downside is that

each integration step introduces a drift, which is proportionally increasing in time. Besides,
integration is more challenging than differentiation, since we need to know a global reference
points or initial condition for integration.

Table 2-2 differentiation and integration forms of variable levels

Derivation form Integration form
Orientation 2 p = fw dt + ¢,
Angular velocity w = CZ—(‘: w = fa dt + w,
: dv d%
Angular acceleration O = — = —= le”
dt  dt?

The power generation during pitching starts mainly from stance foot and goes through body
to the pitching hand and at the end the power transfers to the ball. In the fastball pitcher’s
application, we are more interested in angular velocity of body segments which eventually is
needed to compute this energy generation flow and which results in magnitude of the velocity of
ball. To do this, we need the angular velocities and inertial data of body segments.

The marker-based method provides us the positions of the markers and subsequently the
body segments orientation. For computing angular velocity, one-step differentiation is to be
done. The IMU-based measurements by gyroscope, accelerometer and magnetometer provide the
angular velocity, linear acceleration and magnetic field. Integration of the angular velocity of
IMU’s gyroscope provides orientation. This orientation may be differentiated once to compute
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angular velocity of body segment. But, it is desired to compute the angular velocity of segments
directly from the IMU data.

Nevertheless, it is also interesting to compare the two methods at different kinematic level of
variables to validate the method (segment orientation or joint angle, angular velocity and
acceleration of joint and segments). This would be interesting, not only for baseball application,
but for the overall validation of the method.

2.3 Project overview

In this project we aim to validate the results of IMU-based tracking method against a marker-
based method. In order to validate the data, the deviation between IMU-based and marker-based
measurements under different test conditions needs to be smaller - or in the range - of the
natural variance observed in human motion. For fastball pitching studies the maximum velocities
(not the average) need to be validated. Therefore, to validate the IMU-based method we set the
allowable threshold at 10% for the maximum angular velocity.

Having this done, we can answer the main question of this research that whether we can get
the same results from IMU and marker-based methods. If yes, how similar are the results. And if
not, what are the differences and what is the source of these differences. It is also interesting to
know, how does the IMU’s functional calibration procedure affect the accuracy of measurements,
by reproducing the same routine on the marker-based data.

As it was mentioned above the orientation and acceleration may also be computed and
compare between the two methods. We need to keep in mind that differentiations introduce
noise and integration introduces drift to data.

Further, the segment length can be calculated from the IMU data and having the segment
length the kinematic data is complete to fill in a scalable rigid body model and compute the
power generation flow. The inverse dynamic of the pitcher arm (from the pitching hand to the
shoulder) is made to compute the joint forces and moments. For the whole body power flow
calculation, the ground reaction force is needed and could not be measured in this experiment.
The measurement of power flow can be used to estimate the best pitching configuration and real
time feedback for each individual player. Figure 2-15 shows a schematic overview of the steps we
would like to make. The yellow variables are to be compared as the index for validation of the
IMU-based method.
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Figure 2-15 Overview of this project progress
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The contents of this thesis is organized as follows:

Chapter 3 describes the experimental method for synchronized tracking of the same motion
with IMU and markers to evaluate the IMU-based measurements against marker-based one.

Chapter 4 represents the kinematic analysis methods (estimation of joint angles, angular
velocities and accelerations of body segments) for both IMU- and marker-based methods. This
includes the functional calibration method to estimate IMU’s orientation with respect to body
segment (Transformation of IMU data to the joint centres). Then the method to compute segment
lengths from IMU data is introduced. Afterwards the scalable anthropometric model is presented
to estimate the masses and inertia properties of body segments using the body length as the
scaling factor. Finally the method to compute body segments energy and power is explained to
present the power flow in body segments.

Chapter 5 presents the kinematic and kinetics results and analysis. By identification of the
sources of dissimilarities between IMU-based measurement against the marker-based reference,
quantification of the error and evaluate the IMU-based measurement method.

Chapter 6 discuses the results and validate the IMU-based motion tracking against the
marker-based measurements. Here the important achievements of this project are presented
which can be used as a practical guideline for the IMU-based kinematic measurement in future.
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Chapter 3

Experimental method

In this chapter, the experimental setup and measurement method is explained. The
experimental setup consists of two separated but synchronized measurement systems measuring
the same motion: 1) Marker-based motion capture and 2) IMU-based motion tracking system.

3.1 Experimental setup

3.1.1 Marker-based motion capture system

An OptiTrack motions capture system consisted of 16 cameras, 3 HUBs, a desktop PC and
passive spherical markers are used in this project. Each HUB can be connected to maximum 6
cameras, thus 3 HUB are used to keep the cameras recordings synchronized and transfer data to
the PC. The OptiTrack system is installed in a 6x6x3 meter area, where 16 cameras (OptiTrack
flex 13) are mounted on 8 vertical pales. The “Motive” software is used to reconstruct marker
trajectories from the skin markers tracking data. The markers can be tracked in when they are
seen by at least two cameras. This results in that a part of the measurements area is lost and the
real measurement area would be 4x4x3 meter (Schrauwen 2015). This volume is enough to test
the pitching motion.

i
i
i
|
+ LostArea

Figure 3-1 a) Measurement area is 6x6x3 meter with 16 cameras, b) The Lost area (Schrauwen 2015)
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3.1.1.1 OptiTrack system calibration

In advance to experiments, in order to be able later to reconstruct the markers trajectories in
3D, it is needed to know the position of cameras with respect to each other and setup the
accuracy of system to track a moving object (dynamic and static calibration). The dynamic
calibration of cameras would be done by a wand with known rigid body defined by 3 markers,
moving around in the whole measurement area and the captured frames of cameras would be
corrected for the error in the known length measured of the rod. The static calibration is done by
the L-form reference object (with three markers on it and a known geometry). By placing the L-
form reference object in the experimental area the coordinate system axis on the ground would
be defined. After the calibration of the cameras, the subject and experimenter do not have any
contact with cameras. This guarantees a reliable measurement.

(@) (b)

Figure 3-2- a) dynamic calibration wand, b) static calibration reference object (Schrauwen 2015)

3.1.2 IMU-based motion tracking system

IMU-based motion tracking system set-up consists of 8 IMU sensors (Shimmer3, see
appendix 4) with its Base15 kit (Figure 3-4). The data is registered on SD cards of each IMU and
after the measurements via the Base15 we bring the data to laptop. The “Consensys” software is
used for between IMU sensors synchronization. It is also possible to send the data directly via
Bluetooth to the laptop. However, since in this experiment we plan to do the analysis offline, in
order to develop the method, there is no need to use the Bluetooth. We did a set of experiment
with Bluetooth. It is difficult and takes time to connect the IMU sensors with computer to record
data directly on computer. The most annoying problem was that when the an IMU disconnected
(due to distance or being beside a part of body), eventually it remains disconnected till we bring
the IMU near to computer and wait a few minutes till it connects again. Therefore, for the future
experiments if it is aimed to use Bluetooth, it is suggested to support the system with a Bluetooth
amplifier.

3.1.2.1 IMU system calibration

Preliminarily to measurement, we need to install a firmware on each IMU, setup the data
acquisition format (frequency and limits) and calibrate each IMU separately to align the axis of
the orthonormal coordinate system of each IMU with its outer sides (MCS).
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z

Figure 3-3- Coordinate system of IMU (MCS), Figure modified from (Shimmer 2014)
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3.1.3 Connection between the two measurement devices

The Simmer IMU sensors have an external port (A6) in which a current signal up to 3 volts is
allowed. Besides, the OptiTrack system exposure a trigger signal which goes through the HUBs
and return to PC during each recording, to synchronize the cameras together. We reduce this
trigger signal to 3 volts (important for not damaging the IMU) and record this on one IMU (we
call it from now on the trigger IMU). The trigger IMU is only used for synchronization not for
motion tracking. Each time we start recording by OptiTrack system, a trigger signal assert to the
trigger IMU, and de-asserted when recording is stopped (Figure 3-4).
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Figure 3-4- Schematic view of the synchronization of IMU system with OptiTrack system

3.2 Method of measurement

We did 4 pilot measurements to develop the experimental setup and solve hardware and
synchronization problems. For example, placement of markers directly on the skin and on the
special motion-tracking suite was done. Placement of markers with double-sided tape on skin
was chosen to minimise inaccuracy. Data recording via Bluetooth and on SD cards was used and
we chose to use SD card data recording. The results presented in this thesis are from the final
working setup with one test subject; A 26 years old male with 71 kg weight and 183 cm height.
The subject had no history of right upper limb complaints and gave their informed consent for
this experiment.
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3.2.1 Marker and IMU placements

It is common to place markers on bony parts of segments to reduce the inaccuracy due to the
muscle contraction. However, some studies did mention that the skin is gliding on the bony parts
and it is better to place the markers on the muscles which has smaller cross section and
accordingly less volume changing due to the contraction (van der Helm and Pronk 1995, Lapinski
2013).

The placement of IMU’s on the skin is not a standardized positioning. There is no reference
protocol to place the IMU’s. There are even studies that claim the IMU placement on different
area on the same body segments does not result in a significant discrepancy in the results
(Palermo, Rossi et al. 2014). Besides, position of IMU and markers should have some distance
that they would not push each other due to skin motion. Also we put on each IMU a marker to
have the position of IMU sensors in OptiTrack data. The markers are attached to the body on
bony parts of body and IMU’s on the muscles, which has smaller cross section and accordingly
less volume changing due to muscle contractions.

Since we are interested in pitching motion, we choose to track only the pitching upper limb
(Right hand, forearm and upper arm), the trunk (thorax and pelvis) and the stride leg (Left leg).

For the IMU-based system one IMU per each body segment is used to measure the
orientation and velocity of each segment. Figure 3-5 shows the guideline of positioning the
markers and IMU sensors that we used in this project. The name and position of the 20
Anatomical landmarks and the 7 IMU sensors, which are used to define the desired body
segments, are shown.

1) Incisura Jugularis (I])
2) Right Acromion (RA) 4) 7th Cervicale (C7)

3) Processus Xiphoideus (PX) 5) 8th Thoracic Vertebra (T8)

10) Right Lateral Humeral Epicondyle (RLHE)

—— 11) Right Medial Humeral Epicondyle (RMHE)
9) Right Posterior Superior Iliac Spine (RPSIS)
8) Left Posterior Superior Iliac Spine (LPSIS)
13) Right Radial Styloids (RRS)
12) Right Ulnar Styloid (RUS)

7) Left Anterior Superior Iliac Spine (LASIS)

14) Rigth hand 2nd Metacarpal (RMH2)

6) Right Anterior Superior Iliac Spine (RASIS) 15) Right Hand 5th Metacarpal (RMHS)

16) Left Lateral Femoral Epicondyles (LLFE)
17) Left Medial Femoral Epicondyles (LMFE)

18) Left Fibula Head (LFH)

19) Left Medial Malleous (LMM)
20) Left Lateral Malleous (LLM)

Figure 3-5 Placement of Anatomical landmarks (red circles) and IMU sensors (yellow rectangle) on
body segments
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In total, 20 anatomical markers and 7 extra markers on IMU sensors and 7 IMU sensors were
placed on skin, to define the 7 body segments. The markers and IMU sensors are attached to the
body by strong double-sided adhesive tape on bony parts of body (Figure 3-6).

Figure 3-6- Markers and IMU placement; subject is equipped with markers and IMU sensors,
identifying 7 body segments.

3.2.2 Experimental protocol

Once all the IMU’s are placed on body segments, before starting pitching measurements, the
subject needs to perform at least two functional calibration movements per body segment to
compute the orientation of each IMU regarding to the segment, which it is mounted on (as it was
explained in section 2.2.3.2). Thus for each joint it is sufficient that the subject would perform
two (not three) functional calibration movements. This routine needs to be done for the 7 body
segments to reveal the orientation of the IMU sensors with respect to the segments, which is
mounted on.

The subject is asked to perform more (than two) different possible functional calibration
movements. The movements are also performed with different velocities. These are done to
reveal the consequences of different calibration movements on results and establish a better
measurement protocol for following measurements, which would be more discussed in results
and conclusions (chapter 5-7).

In total, the subject did perform the following functional calibrations and experimental
movements in 49 recording sessions:

® Static position section: Consisted of two static relaxed postures with body upright:
o N-posture: neutral with arms beside the body and palm forward.
o T-posture: with arms horizontal and thumbs forward
® Joints rotations section: Each preforms five times at three different speed (slow, normal
and fast)
o Rightshoulder
¢ Flexion/Extension: with the arm parallel to the sagittal plane until maximal
humeral elevation is reached, then return to starting position. With palm in 3
positions; to the left, forwards and backwards
¢ Abduction/Adduction: Abduct the arm parallel to the frontal plane until maximal
humeral elevation is reached, then return to starting position.
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¢ Horizontal Abduction/Adduction: Abduct the horizontal arm parallel to the
horizontal plane with palm downwards.
¢ Internal/External Rotation: with elbow trunked 90"
+ Upper arm horizontal and shoulder joint rotates so that the hand moves
forwards and the palm faces the floor, then return to starting position.
+ Upper arm vertical and shoulder joint rotates so that the hand moves parallel
to the horizontal plane with palm to the left, then return to starting position.
Right Elbow
¢ Supination/Pronation: Elbow trunked 90° and lower arm rotates around its
longitudinal axis, then return to starting position.
¢ Flexion/Extension: with the lower arm parallel to the sagittal plane until
maximal lower arm elevation is reached, then return to starting position. With
palm in 3 positions; to the left, forwards and backwards.
o Right Wrist
¢ Flexion/Extension: Hand bends with palm down, towards the wrist, then return
to starting position.
¢ Radial/Ulnar deviation: hand bends towards the little finger, and then return to
starting position.

(@)

o Trunk
¢ Rotation: subject sits on a chair and chain hands in front and rotates the trunk to
left and right.
¢ Flexion/Extension: subject stand and trunk bends forwards and backwards
o LeftKnee
¢ Flexion/Extension: subject sit on a chair and flex and extend shank.
o LeftHip

¢ Flexion/Extension: stand on right foot, left leg is flexing and extending parallel to
the sagittal plane. Left foot does not touch the ground.
¢ Abduction/Adduction: stand on right foot, left leg is adducting and abducting
parallel to the frontal plane. Left foot does not touch the ground.
¢ Lateral rotation: stand on right foot, left leg is rotating from hip joint. Left foot
does not touch the ground.
® Extra selected motions
o Walking
o Lunge: with (right and left) leg in front
o Squat with trunk upwards and hands on the sides
® Pitching motions
o Pitching while whole body moves
o Pitching while only right arm moves

In order to prevent the subject to stare at cameras (there is a small hazard of IR exposure the
subject eyes), the subject is instructed to look forward and no cameras is placed in front of the
subject at eye level in the direction that the ball would be pitched.

The Madgwick’s orientation computation algorithm that we are using has a single parameter
beta, which controls the amount of trade-off between information from accelerometer, gyroscope
and magnetometer. For better drift compensation and converge faster to the true state, it is
advised that the subject remains still for at least few seconds upon start of recording set large
beta (3 to 8) and for the rest of the recording set smaller beta (3 = 0.01 to 0.1). If not, then the

orientation estimation fails.

Note that for our measurement, due to the environment condition inside lab (electronic
devices, computers, cameras setup and the structure of the building), we needed to use a smaller
beta ( 3 = 0.0001), which means less trust the magnetometer and accelerometer and more trust
gyroscope. Larger beta could not compensate for drift. Besides, both Shimmer’s Matlab code
(updatequaternion.m) and Madgwick’s algorithm give the same results, since Shimmer’s
Matlab code use the same algorithm as the Madgwick’s inside it. It means using 3 = 0.0001 in
both Madgwick’s algorithm and Shimmer’s matlab code (updatequaternion.m), we could
compensate for drift and produce a reliable orientation computation.
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3.2.3 Data acquisition

After measurement, the following steps are taken to make the acquired data ready for
analyses:

- For the OptiTrack data, the trajectories (markers positions) are reconstructed from the skin
markers tracking data by the motive software. These markers positions are defined in a global
reference frame (GCS) whereas the centre of this centre frame is somewhere on the ground. The
position data in OptiTrack system are registered in separated trials whereas the starting time of
each trial is at zero (sampling time is 0.0083s, 120Hz). The data for the first two time steps are
exactly the same for all of the trials, this is due to the fact that trajectories at time zero is not
known. The skin makers position (in “.c3d” format) are labelled in MOKKA software. And saved
again in “.c3d” format (note that one of the trials when opened in MOKA had one time step less
than the data at the end). The “.c3d” format files are imported in MATLAB. Some of the markers
were tracked in a few separated data file, which were needed to identify (by “find(isnan)”), and
reunited. Due to the occlusion of some markers in time, there were some gaps in data. The gaps
have been filled in MATLAB by “fillgaps” function. A low pass filter with cut off frequency 3 Hz
has been used to smooth the data and get rid of noise. The Nan data time vector is used to
remove the unreal data.

- For IMU’s data, Filtering of the IMU sensor output is carried out inside of the IMU. Filter
output is modelled at a frequency of 500 Hz or lower, as desired. After the measurements all of
the IMU’s are set into the basel5 ports and the registered data on the SD cards of IMU sensors
are synchronized and exported via CONSENSYS software into “.mat ” files. In this MATLAB
structure format file, the following data are recorded: wide range accelerometer [m/s?], low
range [m/s2], gyroscope [°/s], magnetometer, trigger signal [mV] and time.

3.2.3.1 Limits and concerns

Each marker is trackable by OptiTrack system, as long as it could be seen by at least two of
the cameras. However, there exist some concerns that lead to occlusions in the markers position.
Some times for example when the arm comes up, one of the marker points on the head or hand
might be hidden between head and arm, and the cameras might not be able to track the marker
point for less than a second but a lot of frames. Those occlusions gaps can be filled by
interpolation. However, this would not be real data captured by OptiTrack system. Therefore, we
don’t use this option of OptiTrack system. However, we did interpolate the data for simplifying
the differentiation but at the end of calculations we removed the frame data, which were
produced by interpolation.

The high speed of a player delivering a pitch holds for high velocity of segments accelerating
and vanishing in a very short span in time and therefore tracking the segment with camera
tracking requires high frame rate of video recording and with IMU requires fast and sensitive
IMU sensors. The maximum resolution of the Optitrack system cameras is 120Hz, which provides
a high level of motion capture resolution (There exist motion tracking systems with higher
sampling frequency up to 300 Hz).

Pitches of professional baseball players are recorded to reach a ball velocity of around 170
[km/h], which is 1 meter per 44ms. Besides, we know that the ball velocity is roughly matching
the maximum velocity of hand. This means OptiTrack system registers only 5 frames when the
pitcher hand moves 1 meter and whatever happens in between those 5 fames is not recorded.
The sampling frequency of 120 Hz is adequate for method development but too slow for
capturing the pitches of professional baseball players, where we are specifically interested to
explore the kinematic of the player at a few milliseconds when the power build in body reach to
its maximum and to present the fastball.

Therefore, the used Optitrack device for tracking baseball pitchers may not be appropriated.
The IMU sensors with sampling frequency of 500 Hz would register 22 frames per meter, which
is a frame for each 4.5 cm. Therefore, the used IMU sensors setup for tracking baseball pitchers
might be appropriated.
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3.2.4 Synchronization

The data of the IMU sensors has been acquired for each IMU for around 1 hour. The trigger
IMU data has been used to separate the trials related to the acquired data by the OptiTrack
system. The trigger signal is registered in external port A6 of the extra IMU connected to the
OptiTrack HUB. Figure 3-7 shows the trigger signal.

Trigger signal recorded in port A6 of the trigger IMU
T T T T

3 Trials records in OptiTrack system
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Figure 3-7 Trigger signal recorded on the trigger IMU is used to synchronize OptiTrack system with
IMU sensors

The trigger is identifying as each recording by OptiTrack is registered by constant value of
3000 mV (3 volt). Each time that the magnitude of the trigger signal is above 2750 mV (a
magnitude under 3000) the data has been set as the new trial. The new trial ends when the
magnitude of the trigger signal drops and became smaller than 2750 mV. The data between the
trials are not needed, since we do not have their correspondent measurement by OptiTrack
system.

3.2.4.1 Limits and concerns

IMU’s acquisition data is at 500Hz (sampling time of 2ms), while the OptiTrack record the
motion at 120Hz (sampling time of 8.3ms). This may result in an error of synchronization that
can exceed up to the 8.3ms. Further, the 16 cameras are also synchronised with each other,
which can results in tracking error. The IMU’s also needs to synchronize with each other that
means the synchronization between IMU’s also may introduce a shift in their recordings of up to
2ms (since sampling time is 2ms).

The acquisition frequency was set to 500 Hz. However, each IMU has its own internal clock
and use computer clock for between IMU sensors synchronization. Consequently, acquisition
frequencies between IMU sensors slightly differ from the 500 Hz. In order to solve this problem
all the IMU’s data have been interpolated into the time vector of the trigger IMU.
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Chapter 4

Analysis method

In this chapter, the method used to compute the kinematics, kinetics and power flow of the
subject from the measurement data is explained.

4.1 Kinematics analysis

The kinematics computation includes estimation of joint angles, angular velocities and
angular accelerations for both IMU- and marker-based methods. To perform the computation,
first we need to choose a kinematic representation:

Kinematics of segments is represented by the translation and rotation of LCS with respect to
GCS. The translations of each segment are defined by the position of the origin of its LCS, this
origin being the proximal joint centre. The most common method to represent rotation is Euler
angles defined as angles of the three axes of LCS with respect to the three axes of the GCS (Wu,
Van Der Helm et al. 2005). To choose the order of rotations, we refer to Wu's recommendations
for standardization in the reporting of kinematic data. According to this standard order of
rotation for reporting the joints rotation of this project we have the followings: shoulder rotation
order is Y-X-Y and the other joints (elbow, wrist, hip, knee, ankle and lumbar joint) rotation
order is Z-X-Y. (Wu and Cavanagh 1995).

Yh Yh

Plane of elevation Negative elevation Axial rotation

Figure 4-1 A rotation angles definition for upper arm (“h” stands for humours). The figure is modified
from: (Wu, Van Der Helm et al. 2005), h: humours
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Euler angle representation is a three-parameter kinematic representation, which is the
minimal representation of the kinematic expressing only the rotation. The disadvantage of using
Euler angles is that singularity may occur when transforming from one coordinate system to
another (Gimbal-lock). When the movement is known, we can change the rotation order
definition to prevent the singularity. The disadvantage of this approach is that we need to use
different sequence for different motions and that the joint angle depends on the sequence (Wu,
Van Der Helm et al. 2005).

Hence, no three-parameters set can be both global and non-singular. A different way to avoid
singularity is to use an alternative representation called quaternion. A quaternion is a set of four
parameters expressing rotation. Any rotation in 3D can be represented as a combination of an
axis vector and a rotation angle, as Figure 4-2 shows. Quaternion gives a simple way to represent
this axis-angle representation with four parameters and apply the corresponding rotation to a
position vector representing a point relative to the origin in 3D.

Figure 4-2 Quaternion rotations representation

Quaternion (q) is a vector quantity of the form:

q={ a, 4, 9, 4. 3)

IMU records the orientation of a segment with respect to its initial orientation. Hence, a
single segment in space has three degree of freedom in rotations. However since four parameters
are used to define a state with three degree of freedom, they are not independent (Dirkx 2011).
This dependency (which is defined by ||¢|| = 1), results in preforming very smooth resampling

and gap fillings, when interpolating between two rotations in 3D space (Thalmann and Thalmann
1993). This property is very useful to deal with the occlusion that occurs very often in in motion
capture in 3D space (see appendix 1 for more equations of quaternion).

Nevertheless, the disadvantage of quaternion is that the parameters do not have a clear
physical interpretation, like Euler angles do. Therefore, in order to represent every possible
configuration and also prevent singularities we choose to use quaternions representation for
computation and Euler angles for data presentation and analysis of results.

4.1.1 Kinematic estimation for marker-based method

As it was mentioned in chapter 3, the marker positions are defined in a global coordinate
system (GCS). Based on the marker positions, the segments and their local coordinate system of
in the global coordinate systems (LCS in GCS) can be defined. The local coordinate system of each
segment in the global coordinate system defines the orientation of the segments with respect to

the global coordinate system ( R,.q_, ;¢ )- These steps are explained in 4.1.1.1. Having these for

every two adjacent segment, joint angles can be computed. This step is explained in 4.1.1.2.
Having these all the angular velocity and accelerations for joints and segments can be computed.
This step is explained in 4.1.1.2.
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4.1.1.1 Segments local coordinate system
4.1.1.1.1 Joint centre

The origin of each segments local coordinate system (LCS) is at the proximal joint centre
apart from the thorax. The joint centres (JC) are estimated with regression equations that model
the relation between markers positions on the skin and the joint centres. The accuracy of joint
centres is dependent on the accuracy of positioning the markers on anatomical landmarks and
the morphology of the subject (Wu and Cavanagh 1995, Wu, Siegler et al. 2002, Wu, Van Der
Helm et al. 2005).

In this study, the locations of joints are estimated based on position of markers and
measurements of previous studies collected by Reed and McConville and modified approach of
Dumas et al. 2007 on Reed et al 1999 data (McConville, Clauser et al. 1980, Reed, Manary et al.
1999, Dumas, Aissaoui et al. 2005, Dumas, Chéze et al. 2007, Dumas, Cheze et al. 2007).

Distal positions are computed using the position of the proximal joint centre and the
segment orientation in an iterative way.

4.1.1.1.1.1 Cervical joint centre (CJC) and right Shoulder joint centre (RSJC)

The location of cervical joint centre (CJC) and right shoulder joint centre (RS]JC) are
estimated based on positions of following markers: 7th Cervicale (C7), the Incisura Jugularis (I]),
8th Thoracic Vertebra (T8), Processus Xiphoideus (PX), right Acromion (RA).

The computation of CJC and RSJC are similar. The distance between marker positions and

these two joint centres are scaled by the thorax width (1 = 17 - €7).

For an average size male, CJC and RSJC are estimated by regression as follows:

® (JC is to be defined by a vector in the sagittal plane from C7 with an angle of 8° (above
the line through C7 and IJ) and the vector length is 55% of | .

® RSJC is to be defined by a vector in a plane parallel to the sagittal plane from RA with an
angle of -11° (under the RA) and 43% of |. Whereas, the sagittal plane goes through C7, IJ,
T8 and PX.

4.1.1.1.1.2 Lumbar joint centre (LJC) and left hip joint centres (LHJC)

The location of the lumbar joint centre (L]JC) and left hip joint centres (LH]JC) are estimated
based on the location of Anterior Superior Iliac Spines (RASIS and LASIS), posterior Superior Iliac
Spines (RPSIS and LPSIS) and their middle points (MASIS and MPSIS).

The computation of LJC and LHJC are similar. The distance between marker positions and

these two joint centres are scaled by the pelvis width (1 = RASIS - LASIS).

® According to Dumas et al 2007 based on McConville et al data, for an average size male,
LJC is estimated by regression using a vector from MASIS with the length of vector being

- 26.8%, 0% and 12.8% of lp , respectively on the X, Y, and Z-axes of the pelvis LCS (The

Z-axis runs from LASIS to RASIS. The Y-axis is normal to the plane containing LASIS,
RASIS and MPSIS. The X-axis is the cross product of Y and Z-axes).

However, we used a slightly different routine, to minimise the soft tissue artefacts. lp has
been normalized by previous data (r, = mean(|RASIS - LASIS|) /| RASIS, - LASIS, |)). Where
RASISW and LASIS

e are the Anterior Superior Iliac Spines data from McConville et al. 1999

used as reference geometry. The data from McConville contain the four iliac spines and hip joint
centre. Thus, the position of the hip joint centre from RASIS, LASIS and MASIS by using T, asa

scaling factor can be determined in a local coordinate system linked to the pelvis. The position of
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LJC is computed as the mean of the positions estimated from the three anatomical landmarks
(RASIS, LASIS and MPSIS) by:

[(RrastS - 7 .RASIS, ) + (LASIS - r.LASIS, ) + (MPSIS - r.MPSIS, )]

4

LIC =
3

® According to Dumas et al 2007 based on McConville et al data, for an average size male,
LHJC is estimated by regression using a vector from MASIS with the length of vector
being - 20.8%, - 36.1% and - 28.3% of lp, respectively on the X, Y, and Z-axes of the

pelvis LCS (The Z-axis runs from LASIS to RASIS. The Y-axis is normal to the plane
containing LASIS, RASIS and MPSIS. The X-axis is the cross product of Y and Z-axes).

Similar to the LJC in order to minimise the soft tissue artefacts, the position of LH]C is
computed as the mean of the distance estimated from three anatomical landmarks (RASIS, LASIS
and LJC) and the McConville ones, using T, as the scaling factor by:

[(rasts +r.(LaiC, - RAsIS, )+ (rasts +r.(LHIC, - LASIS, )+ (LJC + v .LHIC, )]

5)

LHJC =

3

4.1.1.1.1.3 Elbow, Wrist, Knee and Ankle Joint Centres (REJC, RWJC, LKJC, LAJC)

The computation of the right elbow, right wrist, left knee and left ankle joint centres (RE]C,
RW]JC, LK]JC and LAJC) are similar:

e Right wrist joint centre (RW]C) is estimated as the midpoint between the right Radial
and Ulnar Styloid Process (RRS and RUS).

e Right elbow joint centre (RE]C) is estimated as the midpoint between right Lateral and
Medial Humeral Epicondyle (RLHE and RMHE).

e Left knee joint centre (LKJC) is estimated as the midpoint between left Lateral and
Medial Femoral Epicondyles (LLFE and LMFE).

e Left ankle joint centre (LAJC) are estimated as midpoint between left medial (LMM) and
Lateral Malleous (LLM)

4.1.1.1.2 Segments LCS
4.1.1.1.2.1 Thorax

The thorax coordinate system is defined based on the position of the following markers: 7th
cervicale (C7), incisura jugularis (I]), 8t Thoracic vertebra (T8), processus xiphoideus (PX).

The origin of the thorax coordinate system is CJC and its axes are defined as follow: The Y-
axis runs from middle point of PX and T8 to the middle point of C7 and IJ. The Zemp-axis is
computed as the cross product of two vectors from middle point of PX and T8 to 1] and to C7. The
X-axis is defined as the cross product of Y and Zemp-axis. Subsequently, the Z-axis is defined as
cross product of the X and Y-axis.

Yoo =((1J+CT7)/2—(PX+T8)/2) || 1J+CT)/2—( PX+T8)/2]|
Zyemy=(1J—(PX+T8)/2)x(C7T—(PX+T8)/2)
Xthorax :< Yithorax themp )/| |ythnra T XZ?Fmp |

Zthoraz =X thoraz XY thoraz

LCS,

thoraz *

(6)

4.1.1.1.2.2 Right upper arm

The right upper arm coordinate system is defined based on the position of the following
markers: right shoulder joint centre (RSJC), right medial humeral epicondyle (RMHE), right
lateral humeral epicondyle (RLHE) and their middle point which is the right elbow joint centre
(REJC).
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The origin of right upper arm coordinate system is RSJC and its axes are defined as follows:
The Y-axis runs from RE]JC to RSJC. The Zemp-axis runs from RMHE to RLHE. The X-axis is to find
as the cross product of the Y- and Ziemp-axis. The Z-axis is to find as the cross product of the X-
and Y-axis.

Yuperam =(RSJC—REJC)/||RSIC—~REJC||

LS .| #un,=RLHE—RMHE |

upperarm

()

X upperarm = Yupperurm XZL«mp /| |YMpp<~‘rarm X Zl,rzmp

Z X

upperarm — S-upperarm Xy upperarm

4.1.1.1.2.3 Right lower arm

The right lower arm LCS is defined based on the position of the following markers: Right
Ulnar Styloid (RUS), Right Radial Styloid (RRS) their middle point which is the Right Wrist and
Elbow Joint Centre (RW]C and RE]C).

The origin of right lower arm LCS is RE]C and its axes are defined as follows: The Y-axis runs
from RW]C to RE]JC. The Ztemp-axis runs from RUS to RRS. The X-axis is to find as the cross product
of the Y- and Zemp-axis. The Z-axis is to find as the cross product of the X- and Y-axis.

Yiowram=(REIC—=RWJC)/|REJC-RW.JC||

LCS ) Zyery=HRS—RUS (8)
lowerarm * .
Xjowerarm =¥ lowerarm X Btemp / | Yiowerarm X Ziemp |
Zigwerarm = Xiowerarm <Y lowerarm

4.1.1.1.2.4 Right hand

The right hand coordinate system is defined based on the position of the following markers:
right hand 2»d and 5% metacarpal (RMH2 and RMHS5), right ulnar styloid (RUS), right radial
styloid (RRS) and the middle point of RUS and RRS which is the wrist joint centre (RW]C).

The origin of right hand coordinate system is RW]C and its axes are defined as follows: The
Y-axis runs from the middle point of RMH2 and RMHS5 to RE]JC. Similar to the lower arm, Zemp-
axis runs from RUS to RRS. The X-axis is to find as the cross product of the Y- and Zemp-axis. The
Z-axis is to find as the cross product of the X- and Y-axis.

Yiaa=(RWJC—( RMH2+RMH5)/2) /||RW.JC—( RMH2+RMH5)/2||
Zyomy=RRS—RUS
|

LCS,
X hand =Y hand X Ltemp / | |y/mmt XZjemy

hand *

)

Zhand =X hand XY hand

4.1.1.1.2.5 Pelvis

The pelvis coordinate system is defined based on the position of the following markers: right
and left anterior superior iliac spines (RASIS and LASIS), right and left posterior superior iliac
spines (RPSIS and LPSIS) and their middle points (MASIS and MPSIS).

The origin of pelvis coordinate system is LJC and its axes are defined as follows: The Z-axis
runs from RASIS and LASIS. The Yeemp-axis is defined as the cross product of two vectors that run
from RASIS and LASIS to the middle point of RPSIS and LPSIS (MPSIS). The X-axis is the cross
product of the Y- and Z-axis. The Y-axis is the cross product of the Z- and X-axis.

Zys=(RASIS—LASIS) /|| RASIS—LASIS||
Viomy =((RASIS—MPSIS)x(LASIS—MPSIS))
xpelwﬂs :ymnp szrzlms / ylemp XZ;)&lms | |

Ypelms = Zp.»luzs Xxpslw.s

LCS

pelvis

(10)
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4.1.1.1.2.6 Left thigh

The left thigh coordinate system is defined based on the position of the following markers:
left hip and knee joint centres (LHJC and LK]C), left medial femoral epicondyle (LMFE), left
lateral femoral epicondyle (LLFE).

The origin of left thigh coordinate system is LHJC and its axes are defined as follows: The Y-
axis runs from RKJC to RHJC. The Ziemp-axis runs from LLFE to LMFE. The X-axis is to find as the
cross product of the Y- and Zemp-axis. The Z-axis is to find as the cross product of the X- and Y-
axis.

Yuig=(LHJC-LKJC)/||LHJC-LKJC||
LGSy, o] e —LLFE-LMFE
’ X/hzyh :y/hujh XZ[("‘NL]} /| |YI/ugh lemnpl |

Z(/uyh :thz'gh XY igh

(11)

4.1.1.1.2.7 Left shank

The left shank coordinate system is based on the position of the following markers: left knee
and ankle joint centre (LKJC and LAJC), left fibula head (LFH), left medial malleolus (LMM), left
lateral malleolus (LLM).

The origin of left shank coordinate system is LK]JC and its axes are defined as follows: The Y-
axis runs from LAJC to LK]JC. The Xemp-axis is normal to plane containing the LK]C, LAJC and LFH
pointing anteriorly. The Z-axis is the cross product of the Xcemp and Y-axis. The X-axis is to find as
the cross product of the Y- and Z-axis.

Yot =(LKJC—LAJC)/||LKJC—LAJC||
Koy =(LFH—LAJC)x(LKJC—LAJC)

LCS
Zgank =X temp XY shan: | | |anp XY shank |

shank *

(12)

X shank =¥ shank ¥ Zshank

Figure 4-3 shows an overview of the approach of this project as explained in section 4.1.1 to
estimate joints positions and coordinate system of body segments.
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Figure 4-3 Estimating coordinate system of segments and joint centres based on regression
(Dumas, Cheze et al. 2007)
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4.1.1.2 Joints rotation

Wu defines the joint rotation as: “The rotation of a distal body segment with respect to the
proximal segment” (Wu and Cavanagh 1995). This definition is usually used in human motion
analysis. Based on this definition and having the LCS of segments (section 4.1.1.1), joint angles
can be denoted as the rotation from the LCS of each proximal segment to its distal segment (

RLCS —LCS )

pro dis
di

Joint rotation

LCSpyro

Proximal
Segment

Distal
Segment

Joint

Figure 4-4 Representation of joint rotations by local coordinate system of proximal to distal segment

Mathematically the joint rotations can be computed as follow:

—_ p-1 *
RLCSWHLCSM - RGOSHLCSW RGCSHLOSdlS (13)

Whereas R, cs,, 18 the rotation matrix from the global coordinate system to the local

coordinate system of the distal segment ( LCS,, ). RaéSHLCS is the inverse of the rotation matrix
pro

from the global coordinate system to the local coordinate system of the proximal segment which

is equivalent to B, .. This estimated rotation between the proximal to distal segments,

* pro

can be converted to Euler angles and quaternions (¢, ., ;. )-
v — 9 jis

pro

4.1.1.3 Joints angular velocity and acceleration

The rate of change of each joint angle (angular velocity @ of each joint), can be computed by
differentiating the quaternions of the joint (¢, ., ., ), according to:
) IJ”’H S i

0

w

=2007 (14)

Where: ® is the quaternion product (appendix1), :[ o, W, w, " and 7 is the conjugate

of the quaternion and ¢ is the first derivative of ¢ with respect to time. The complex conjugate of
quaternion (represent rotation from A to B) defines the inverse of the rotation (represent

rotation from Bto A): @4 .5 = qp_ 4

Subsequently, the rate of change of the angular velocity (angular acceleration @ of each
joint), can be computed by double differentiation of the joint quaternions, as follow:
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=2(§®7+¢®7) (15)

4.1.1.4 Segments angular velocity and acceleration

The same routine (using equation 14 and 15) can also be used to compute the segment’s
angular velocity and acceleration in GCS by differentiating the quaternions of the segments. The
angular velocity and accelerations of the segments in global coordinate system, were
transformed into the local coordinate system of the segments via:

_— * _ -1 ES
Wres = RBros_cos ™ Woos = Baes—nos ™ Yecs (16)

. o * . _ 71 * .
Wres = Broscos ™ Yoos = Baos—res ™ Yacs

4.1.1.5 Overview

Figure 4-5 shows the routine to compute the segment and joint kinematics from markers
positions.
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The marker positions are measured by Optitrack system in the global coordinate system
(GCS). Based on the marker positions, the segment’s local coordinate system of in the global
coordinate systems (LCS in GCS) can be defined. The local coordinate system of each segment in

the global coordinate system defines the rotation ( R ;) and orientation (q;.g_,;g) of the

segments with respect to the global coordinate system. Having R ;¢ for every two adjacent

segment (proximal and distal), their relative orientation and the joint angle can be computed.
Having orientation changes ¢ and its derivatives, the angular velocity and accelerations of

segments and joints (w, s 0 and aj) have been estimated.

e 2
Measurement Kinematics
i . )
Segments Orientation Relative segment orientation -
. Joint Angle
Marker-based tracking > Reessics (distal w.r.t. proximal) -
]
RLCS —LCS4i
Markers Position l decs-Les pro dis
ALCSpro—LCSgis
d/dt | Segment Angular Velocity d/dt | Joint Angular Velocity
Wg L (Uj
d?/dt* | Segment Angular Acceleration | | d?/dt? _| Joint Angular Acceleration
a .
S L a]
\. J

Figure 4-5 Schematic view of kinematic computation routine from the markers positions data.

In order to make the marker-based kinematic comparable with the IMU-based method, the
kinematic computed with respect to the LCS of the segments are transformed to the FCS of the
segments.

( N\ A
Measurement Kinematics
Marker-based tracking )
Segments Relative segment orientation Joint Angle Joint Angle Relative segment orientation
Markers Position Oentatcy (distal w.r.t. proximal) inLCS in FCS (distal w.r.t. proximal)
in FCS
Functional
Calibration —
> Segments
Orientation
in FCS
[ ————
d/dt Segment d/dt Joint Segment & joint
Angular Velocity Angular Velocity H Transform from Angular Velocity in FCS
H LCS to FCS
2/4¢2 2/4¢2 -
a2/ S d*/de Joint Segment & joint
Angular Acceleration Angular Acceleration | Angular Acceleration in FCS
\ J A\ - J

Figure 4-6 Joint rotation calculation routine Marker-based data with functional calibration

4.1.2 Kinematic estimation for IMU-based method

As it was mentioned in chapter 2 (section 2.2.3.2), the orientation of each segment is
computed by combining measured the angular velocity, linear accelerations and magnetic field
by an IMU. These data are measured in the local coordinate systems of each IMU itself (MCS).
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Movements soliciting only one degree of freedom of a joint at a time are used to reveal the joint
functional axis and to define a functional coordinate system (FCS). Note that ideally the LCS
computed with the markers is aligned with the FCS computed by functional calibration. However,
since most likely it is not the case, they are entitled with different names.

The transformation of IMU data (measured in MCS) to the FCS is represented by R;;¢_, ycg-

This relative orientation of the FCS with respect to the MCS is assumed to be constant due to the
hypothesis of rigid segment. This step is explained in 4.1.2.1.

Having this transformation matrix, the angular velocity recorded by the IMU in the MCS can
be transformed to the FCS, which would be the angular velocity of the segment. This step is
explained in 4.1.2.2.

Further, the orientation of the IMU with respect to its initial orientation can be computed
using a strap-down integration algorithm. Having these and the initial orientation, we can
compute the joint angle. This step is explained in 4.1.2.3.

4.1.2.1 Segments local coordinate system
4.1.2.1.1 Joint centres and segment length

The segment length in the marker data is the mean of the distance between the joint centres
during the measurement. However, computing the segments length from the IMU data is not such
a trivial problem as from the marker based data as the IMU only measure orientation and not
position.

The studies of Seel et al. introduced a method to estimate the distance from IMU to the joint
centres (Seel, Schauer et al. 2012, Seel, Raisch et al. 2014, Schauer and Seel 2016, Seel 2016). In
this method the IMU sensors are attached to body segments and the skin movement are
neglected. Accordingly, it is assumed that the distance of the IMU to the adjacent joints remains
constant during motion.

Voo G

Yoro= Ydis

Spher\c;r'
Joint

Figure 4-7 Distance between joint centre and IMU sensors on two adjacent segments (O/W

and Om\ )

0

Considering a spherical joint, the acceleration of each IMU sensor can be defined as the sum
of the joint centre acceleration and radial and tangential accelerations due to the rotation of each
IMU around the joint centre:

/YPTO (t) = ,VPTO (t) + w]”'(’ (t) X [w]”'() (t) X OI”") ] + wl”“o (t) X Opm Yt
. 0 ' 0, w @7
Vdis(t) = W’dis(t> + wdis(t>x[wdis(t)>< dis] + wdis(t)x dis
Recorded Joint Centrifugal Tangential
segments center acceleration acceleration
acceleration acceleration
by IMU

Accordingly, the joint’s acceleration may be defined by shifting the measured accelerations
into the joint centre:
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Yo (1) = (@ ()% [0 (8) X Oy |+ 03 (8300 )
ﬁdib‘(t) = 7flz'ff(t) B (wdi5<t>x[wdi5<t)xodis}+wdi5<t>XOdiS) A

Note that in these equations the IMU data are expressed in the IMU’s coordinate systems of

~
=

3

=]
—

=~

—_
|

(18)

the proximal and distal (MCSW and MCS, ). Since ,r, and 7, represent the same quantity

(acceleration of the joint) estimated based on data measured by two IMU’s, these two equations
should be equal. So, it can be written as the following constraint:

Vpro(t) = Vgis(t) =0 Vi (19)

Having accelerations (v, and 7, ) measured by accelerometers and angular velocities (

pro

a,, and @),,;) measured by gyroscopes of the IMU sensors attached to the proximal and distal

segments, we can implement an optimization algorithm for the in time varying recordings and
solve for the two O oro and Odis vectors.

Some other literatures like Salehi et al. 2015 suggested to use an automatic optimization
containing a model built up all the segments and all of the segments lengths would be computed
at once with a constraint that the IMU needs to remains in a plane going through the two adjacent
joints. It is suggested that this would help to compute a more accurate segment length (Salehi,
Bleser et al. 2015).

It is also possible to use a trick to compute this vector indirectly. Like, Chen et al. 2013, which
suggested a method to compute the upper and lower arm by two functional calibration
movements of shoulder and elbow flexion and extension. As you can see in Figure 4-8, using
shoulder flexion/ extension the distance between the IMU on the lower arm and shoulder can be
defined and by subtracting this distance from the distance between the IMU and the elbow
(found from the elbow flexion/extension) the upper arm length could be estimated (Chen 2013).

Figure 4-8 length estimation of upper and lower arm by two functional calibration movements of shoulder and
elbow flexion and extension (Chen 2013)

Attempts to use this method have not been successful. The distance between shoulder joint
and the IMU on the lower arm, which is around 55 cm according to the Optitrack reference, was
estimated to be 45 cm in this case. The thorax was not moving in this trial and this can be the
reason that the optimization did not work properly. Another possibility is that these
dissimilarities might be due to the complex nature of shoulder joint.
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Since the gyroscope and angular velocity data are measured in the two separated coordinate
systems of the proximal and distal IMU sensors, (Salehi, Bleser et al. 2015) modified the previous
equation by incorporating the relative orientations of these IMU sensors:

’?Pro(t) - qp7‘0~>dis ® f?dis(t) =0 \ (20)

We also attempted to use this method and the results are consistent with and without this
adaptation. It only results in longer optimization duration. Thus, we did not use this adaptation.

This optimization problem was implemented in MATLAB using single global solution solver,
equipped with fmincon algorithm to find local solutions. Any other optimization method might
also be employed as well. Gauss-Newton algorithm was used by (Seel, Raisch et al. 2014),
Isqnonlin algorithm with Levenberg-Marquardt used by (Salehi, Bleser et al. 2015) and the
results are similar. The global optimization with generic algorithm and multi-start search has a
better performance in avoiding local minimum. When employing other algorithm, however the
results were similar with the global algorithm, yet the output note the “possible local minimum”,
which means the global optimization make authentic results.

Using two series of such optimizations, each segment length can be computed. For example,
Figure 4-9 shows the computation of lower arm length using elbow and wrist flexion/extension.

Figure 4-9 Segment length estimation having two vectors from the IMU on the lower arm w.r.t. to
elbow and wrist.

4.1.2.1.2 Functional calibration

Movements with one degree of freedom of the joints are used to define the joint axes in the
MCS and find the orientation of each IMU with respect to the segment’s coordinate system (MCS
w.r.t. FCS). This means that actually functional calibration defines the transformation of IMU data
to the joint. Functional calibration will be used to compare the measurements of the Optitrack
system with the IMU’s one. Besides it gives also a better insight into the motion of the segments
by reducing the cross talk of the axes.

Here as an example, the method of this study to find the coordinate system of forearm will be
explained in detail in 4.1.1.1.1. This method is also verified with another method from literature
(Seel, Schauer et al. 2012) which is shortly explained in 4.1.1.1.1.1. Using this this axes the
rotation matrix from IMU to segment can be set up as explained in 4.1.1.1.1.2. This is followed by
a suggested routine for all of the other segments.

4.1.2.1.2.1 Method1: Optimization

Another method to identify the joint axis is based on a physical fact that: “The projections of
angular velocities measured by the IMU sensors on the two adjacent segments into the joint
plane have the same length for each instant in time.” In this study, the results have been also
compared with this method. For a more detail description of this method refer to (Seel, Schauer
etal. 2012).
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4.1.2.1.2.2 Method2: 50% Wmax

The IMU mounted on the forearm records data with respect to MCS. Neither position nor
orientation of MCS with respect to the forearm is known. The elbow joint is able to provides two
movements: “pronation/supination” and “flexion/extension”. The direction of the longitudinal
axis of the forearm (Y-axis) can be found using the direction of the angular velocity during
pronation and the opposite direction of angular velocity during supination.

~ (lel), = = (A
yf orearm ( pronation

This method need prior knowledge of the orientation of the MCS on the segment, since when
we are only looking into the IMU recordings offline, we do not know when is supination and
when is pronation. In order to distinguish between these motions, you can look into the
accelerations recordings to recognize the initial orientation of IMU regarding the gravity (which
axis shows around 9.8 m/s2). From that initial orientation you can find out if the following
movement is supination or pronation (Figure 4-10).

)supination (2 1)

Functional Calibration of lower arm

15 Pronation/Supination 6 Flexion/Extension
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< “ | | [\
3 | “z | | I
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o G
3y e ey Bt 0 o P e
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37 | | I
g | |
<< -10 1 -4 +
15 . . . . . 6
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/,/
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o [mis?]

10 1 10
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Y i 0 W At 0 1 W
A
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Figure 4-10 Distinguishing movements by identifying the initial orientation of IMU.

Since the subject preforms movements repeated after each other, when switching between
rotation in two different directions (in this case pronation/supination), the angular velocity
vector switch from one direction to another in a continuous way so at some point it is pointing in
a direction that is not the functional axis. Therefore, it is needed to remove the switching parts in
data. For this purpose, the pronation axis is computed as the mean of the angular velocities (@)
that are greater than 50% of the maximum angular velocity (w > <wmax/2)) during pronation and

the supination axis is defined in the opposite direction based on all the angular velocities, which

are smaller than 50% of the minimum angular velocity (v < (wmm/Q) )-

)snpmatvﬁonl w<( w"m./2) )/2 (2 2)

58 oo = | (/][] = (/]
pronation— supination pronationl w>( w2 )
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The Y-axis direction is the normalised mean of these two directions.

= axlIs

y forearm pronation—supination / || axis pronation—supination

(23)

In Figure 4-11, five repeated pronation and supination is used to define the Y-axis as follow:

Elbow Pronation/Supination

15 T T T T T
Switching parts
wX
10 w
y
7 “
2. 5t
o 3
2 >
85
w O 0 = o T T e e e A T =
g9
> L
(O
>
2 5
<
-10 i
_15 Il Il Il Il Il
0 2 4 6 8 10 12

Time [s]
Figure 4-11 Removing switching parts from the angular velocity data for defining functional axis.
Accordingly, the direction of the Z-axis can be found using the direction of the angular

velocity during elbow flexion and the opposite direction of angular velocity during elbow
extension. Figure 4-12 represents this computation.

28 s = (Do M)z @9

Zforcarm = a'Xlsﬂm',on—cmtcnsmn / || a‘Xlsflezion—exlension
Lower arm Y-axis Lower arm Z-axis
Pronation/Supination Flexion / Extension
1.5 1.5

-1.5
1.5

Pronation

Flexion

—= Supination 1.5 —= Extention
= Y-axis 05 —7-axis

0 0.5 0 0.5
45 15 15 15

Figure 4-12 in functional calibration a joint is rotating in two directions (one direction is defined
with green and the opposite direction with red). The mean of theses directions is used to define the
axis.
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4.1.2.1.3 Orientation of IMU with respect to the segment

As it was explained in 4.1.2.1.2.1, the Y forearm and Zy,,,y AXES are defined. The direction of X-
axis can be determined as the direction of the vector perpendicular to the plane of Y and Z-axis.
This could be found as the cross product of Y and Z-axis.

X Z where x, y and z are unit vectors. (25)

Xforea'rm = yjbrearm temp

However, since the Y and Z-axis are found via measurements and anatomy, they would not
be exactly orthogonal. The direction of Z-axis is the flexion axis, which defines the elbow joint as
a hinge. Particularly, it is difficult to keep the forearm horizontal. Therefore, in order to obtain an
orthogonal coordinate system a new Z-axis would be found as the vector perpendicular to the Y
and X-axis.

(26)

z forearm =X forearm xy forearm

A rotation matrix is constructed for each segment to transform the IMU coordinate system
(MCS) to the forearm coordinate system defined by functional calibration (RMCS_)FCS). This

rotation matrix is assumed constant and constructed based on the above functional axes as:

R 27)

MCS—FCS = |: X Sforearm y forearm z Sforearm :|

For a better estimation of some joint angles, for example the elbow angle, during elbow
flexion/ extension, the Z-axis of lower arm is transformed to the upper arm. That is done since
when using ZXY order, the Z is the Z of the proximal axis and since the upper arm is not that
much moving and we are interested in the rotation of the lower arm.

It is assumed in this project that IMU sensors are mounted to segments and the skin
movements are neglected. According to this assumption, each IMU position and orientation with

respect to its regarded segment during measurements remains constant (R, .. . .cis assumed

to be constant).

The same routine as explained in 4.1.2.1.3 can be used to compute the FCS for all the 7
segments used in this project (hand, forearm, upper arm, thorax, pelvis, thigh and shank). This
section gives details of this computation and the selected functional movements. According to the
following procedures the coordinate system of segments can be defined using angular velocities
recorded by the IMU sensors mounted on the segments regardless the orientation or position of
the IMU sensors on the segments.

4.1.2.1.3.1 Thorax

The IMU mounted on thorax between IJ and PX is used to define the coordinate system of
thorax is defined based on angular velocities recorded by this IMU during trunk axial rotations
and squat.

The Y-axis is pointing upward and is defined using the IMU angular velocities, which points
the positive Y-direction when trunk is rotating to the left and negative Y-direction when trunk is
rotating to the right.

The Y-axis of thorax may also be defined using the direction of gravity recorded in the linear
acceleration data of the IMU. However, such definition would not be probably aligned with the
functional axis of the Thorax. But this kind of definition would results in a connection between
the segments, which have used gravity as the Y-axis. Besides, it is easier definition of thorax
coordinate system.

The Ziemp-axis is pointing to the right side and is computed using the IMU angular velocities
which represents the positive Z-direction as trunk is flexing forward during the squat motion
when the subject goes down and negative Z-direction as trunk is extending backward when the
subject is standing up during squat.
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The X-axis, pointing forward, is defined as the cross product of Y and Ziemp-axis.
Subsequently, Z-axis is defined as cross product of X and Y-axis.

= axis

trunk rotation to left—trunk rotation to rigth or yfhomm = ( 7/‘ ‘ v )5tand

yﬂmmr

FCS . Ztemp = aXlStV'lmk flexion to down—trunk flezion to up (2 8)

thoraz *
xt/zm‘(m - <ythomz X Ztemp) / ‘
=X

ythomz Xz temp

Zﬂmra:r thoraz x yﬂmr(n

4.1.2.1.3.2 Right upper arm

The IMU mounted on the right upper arm distally to the deltoid insertion, where there are
less muscle contractions is used. The upper arm coordinate system is defined based on the
angular velocities recorded by this IMU during external/internal rotation at 90° elevation and
shoulder flexion/extension with the elbow extended.

The Y-axis is defined using the IMU angular velocities, which points the positive Y-direction
during shoulder internal rotation and negative Y-direction during shoulder external rotation. The
Ziemp-axis is pointing to the lateral side and is computed using the IMU angular velocities, which
represents the positive Z-direction as the shoulder is flexing (when the arm moves upward) and
negative Z-direction as the shoulder is extending (when the arm moves downward).

The X-axis is pointing forward and is defined as the cross product of Y and Ziemp-axis.
Subsequently, the Z-axis is defined as the cross product of X and Y-axis.

yuppelur'm = Xmbshoulder internal rotation—shoulder external rotation
zZ = axis ) )
temp shoulder extension—shoulder extension
FCS . (29)
upperarm
Xuppemmn - yup[m'r’m'm X Ztemp / yup[m'r’m'm X Ztemp ||
=x Xy
upperarm upperarm upperarm

4.1.2.1.3.3 Right lower arm

The IMU mounted on the right lower arm proximally to the wrist on the distal part of the
radius, where there are less muscle contractions. As it was explained in details in 4.1.2.1.2, the
lower arm coordinate system is defined based on angular velocities recorded by this IMU during
pronation/supination and flexion/extension of the lower arm.

The Y-axis is pointing from distal to proximal and is defined to the IMU angular velocities,
which points to the positive Y-direction during pronation and negative Y-direction during
supination of the lower arm. The Zmp-axis is pointing from the medial side to the lateral side and
is computed using the IMU angular velocities, which represents the positive Z-direction as the
elbow is flexing (when arm moves upside) and the negative Z-direction as elbow is extending
(when arm moves downside). The X-axis is defined as the cross product of Y and Ztemp-axis.
Subsequently, the Z-axis is defined as the cross product of X and Y-axis.

ylawerur"m = aXiSpwnatian7s'upmutwn
= axis

Z . .
tem; elbow flexion—elbow extension
FCS : ’ * (30)

lowerarm

xlowemrm = ylow@ra,rm x Zfemp /| ylowﬁmrm x Zt(zmp

Z =X Xy
lowerarm lowerarm lowerarm

4.1.2.1.3.4 Right hand

The IMU mounted on the dorsal part of the right hand is used to define the coordinate system
of the right hand based on the angular velocities recorded by this IMU during radial/ulnar
deviation and flexion/extension of the right hand.

Since the wrist has no axial rotation, for the hand we used a different order in the axis
computation than the other segments. The Z-axis, pointing from medial to lateral, is defined using
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the IMU angular velocities, which points the positive Z-direction during flexion and negative Z-
direction during extension of the right hand. The Xcemp-axis, pointing forward, is computed using
the IMU angular velocities, which represents the positive X-direction during ulnar deviation and
the negative X-direction during radial deviation. The Y-axis is defined as the cross product of the
Z and Xemp-axis. Subsequently, the X-axis is defined as the cross product of the Y and Z-axis.

Zh(md = Xmbhand flexion—hand extension

X = axis

FCS . temp ulnar deviation—radial deviation (3 1)

hand

yhand = Zh(md X Xlemp /" Zh(md X X[emp

Xhan(l = yhan(l X zhand

4.1.2.1.3.5 Pelvis

The IMU mounted on the thorax between RPSIS and LPSIS (which would be almost on
MPSIS) is used to define the coordinate system of the pelvis based on angular velocities and
linear accelerations recorded by this IMU during trunk lateral rotations and squat.

The Y-axis is defined using the IMU acceleration, which points the positive Y-direction when
standing (i.e. gravity).

The Ztemp-axis is computed using the IMU angular velocities, which represents the positive Z-
direction during squat motion when the subject goes down and negative Z-direction when the
subject is standing up during squat. The X-axis is defined as the cross product of Y and Zemp-axis.
Subsequently, the Z-axis is defined as cross product of X and Y-axis.

e = (V1]

Z = axlIs . s . .
temp trunk flexion to down (sitting down)-trunk flezion to up (standing up)
FCS . (32)

>st(md

pelvis *

Xp(’lm's = ytnmp X Zp(’,lm?s /‘ ytcm[) X Zp(:lm's

ypelw‘s = Zpelm's X pr’lvis

4.1.2.1.3.6 Left thigh

An IMU is mounted on the distal and lateral part of the thigh on the tendon part of the
iliotibial band. The thigh coordinate system is defined based on angular velocities recorded by
this IMU during hip internal external rotation and hip flexion/extension with extended knee
(heel does not touch the ground).

The Y-axis is pointing from distal to proximal and is defined using the IMU angular velocities,
which points to the positive Y-direction during external rotation of the hip and negative Y-
direction during the hip internal rotation. The Ziemp-axis is pointing from lateral to medial and is
computed using the IMU angular velocities, which represents the positive Z-direction when the
hip is flexing and negative Z-direction when the hip is extending. The X-axis is pointing forward
and is defined as the cross product of Y and Zimp-axis. Subsequently, Z-axis is defined as cross
product of X and Y-axis.

ythzgh = aXlsewte'r"nal rotation-internal rotation
zZ =axis, . . )
temp hip flexion—hip extension
FCS, (33)
thigh
xthigh - ythigh x Ztsmp / ythigh x Ztemp
Zthiyh = Xthiyh B ythz'yh

4.1.2.1.3.7 Left shank

An IMU is mounted on the medial and proximal part of the tibia. The shank coordinate
system is defined based on angular velocities recorded by this IMU during hip internal/external
rotation when the subject is standing with extended knee (the same motion as was used for
thigh) and during knee flexion/extension when the subject is sitting.
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The Y-axis is defined using the IMU angular velocities, which points to the positive Y-
direction during hip external rotation and negative Y-direction during the hip internal rotation.
The Ziemp-axis is computed using the IMU angular velocities, which represents the positive Z-
direction as the knee is flexing and negative Z-direction when the knee is extending. The X-axis is
defined as the cross product of Y and Zemp-axis. Subsequently, the Z-axis is defined as the cross
product of the X and Y-axis.

yshank = a‘lelatcml rotation to left—lateral rotation to rigth

zZ = axis

F C S . temp flexion—eaxtension (3 4)

shank
xshank - yshank X Ztﬂmp

zshank = Xshzmk X ysh(mk

4.1.2.2 Segment angular velocity and acceleration

One of the important goals of this project was to compute accurately (against marker-based
as reference) the angular velocity of segments with an IMU-based method.

In the previous section, the constant transformation between the IMU and the segment

mounted on it was estimated. Having this transformation ( R;;,q_, s ), the angular velocities

recorded by each IMU (w,,s) can be transformed into its segment’s coordinate system (wpg ).

The angular acceleration can be computed then by one step differentiation of the angular
velocity.

_ * _ p-1 *
wros = Bresmes ™ Waes = Byes—ros ™ Wies (35)

Arcs = Wres

4.1.2.3 Joints rotation

The orientation of IMU with respect to its initial orientation (qM('SU , ) can be estimated

—MCS
using strap-down integration as it was explained in chapter 2. The Consensys Software is the
embodied software of the Shimmer IMU sensors which computes quaternion based on Madgwick
and Mahony algorithm (Madgwick, Harrison et al. 2011). This quaternion can be transformed to

their equivalent rotation matrix (R, « /e )-

From the functional calibrations, we computed in 4.1.2.1 the transformations from the

coordinate system of each IMU to the segment mounted on it ( R ). As it was mentioned

MCS—FCS
in Error! Reference source not found. in order to relate two IMU’s data, the initial
orientation of the IMU sensors with respect to each other needs to be known. Since there is no
global reference frame definition in IMU data, we have to define a connection between each
proximal and distal segment coordinates to compute the joint angle. For this purpose, it is
sufficient to know this relation one frame, like the initial condition. That is to be determining by a
known configuration in which orientations of the segments with respect to each other is known.
A static known anatomical position (like standing) with assumed joint angles can be used to
define this relation. In order to make the IMU and marker joint angles comparable we can also
take the initial angle from one system and put it to the other system. We did set the initial
orientation of the IMU with the orientation computed at the same time from the markers (Figure
4-13).
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Figure 4-13 Schematic view of the known data of two adjacent segments

In order to do this, first of all, the quaternions of each IMU has been initialized to start from
the zero position by multiplication of it by its initial conjugate taken at the starts of the motion.

= Rl:end ® R;1 (36)

starting from zero

Subsequent problem is that the marker-based the angle representations were done in the
LCS of the segment, while the IMU-based data are in FCS of the segment. Therefore, it is needed
to get the initial angle in a similar coordinate system from marker-based data. We computed the
functional axis using the same routine as it was explained for the IMU-based data in section
4.1.2.1. We used the segments angular velocities computed by marker-based data instead of the
angular velocity measured by gyroscope.

Having these all, we can define the joint rotation from the proximal to the distal segment by:

— p-1 -1
FCS! —FCS;. ~— Ry HFCSIJ';,_U'RMCS“ —MCS!

pro dis pro pro pro

R .R

MCS)), —MCS;.” RMCS ) —MCS) RMOS* —FCS}

dis dis

(37)

The initial orientations of the IMU sensors with respect to each other can be rewrite to be
defined as a function of orientations of segments with respect to each other:

— -1
Ryreso —aese. = ueso _pesp -Bpeso HFCS[;:S'RMCSISWHFCSPUM

pro dis pro dis pro

(38)

And the orientation of IMU sensors with respect to the segments are assumed to remain
constant in time, thus:

R
MCS,),—FCS,),

=R ¢ ¢
MCS, ,—FCS,, (39)

MCS . —FCS),

dis

Ryos0 poso = 1

dis dis

4.1.2.4]Joints angular velocity and acceleration

The angular velocity and accelerations of joints are computed with the same routine as it was
explained in 4.1.1.2 for the marker-based kinematic computations.

A non-orthogonal projection (Desroches, Dumas et al. 2010) of the joint angular velocity is
used to compute the angular velocity on the Joint Coordinate Systems (JCS, as defined in (Wu,
Van Der Helm et al. 2005).
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Table 4-1- JCS of the shoulder, elbow and wrist

Shoulder Elbow Wrist
— g J— _ la
€ =VYies €, =7 €, =7
J—) _a ok
€= Vie €= Viee €= Vie
e, =e,Xe, e, =e,Xe, e, =e,Xe,

o %%r;ker

Figure 4-14 Representation of the local coordinate systems and joint coordinates systems of the
linked chain model. The joint coordinate systems are used to get an anatomical interpretation of the
mechanical parameters computed by the models.

This step is not needed for power computation, and it is only used for analysis of joint’s
angular velocities and accelerations.

4.1.2.5 Overview

Using functional calibration, the transformation between the IMU data (measured in MCS) to

the coordinate system of segment is estimated by g, .- This relative orientation of the FCS

with respect to the MCS is assumed to be constant in time due to the hypothesis of rigid segment.
Having this transformation matrix, the angular velocity recorded by the IMU in the MCS can be

transformed to the FCS, which would be the angular velocity of the segment (w,) and by one

step differentiation the angular accelerations (a,). Further, the orientation of the IMU in time can

be computed using a strap-down integration algorithm (R ). Using these filled in the

MCS"—MCS'
equation 37, the joint angle can be estimated. Figure 4-15 shows these routine steps as explained
in detail in section 4.1.2 to compute the joint angles from the IMU’s recorded data.

( N\ ( - - A
Measurement Kinematics
3 Functional \
Marker-based tracking q Segment Angular Velocity | Calibration | |nitial Relative IMU orientation
Markers Position Wg (distal w.r.t. proximal)
B Rucsyro-MCSais
Ve > Madgwick & Mahony - - 2 Relative segment orientation
. IMU Orientation chan
IMU-based tracking strapdown integration | D@i=E T EETE (distal w.r.t. proximal) "
R o . oint Angle
MCS"->MCS
= Rrpcsyro-FCSais ®;

IMU to Segment Coordinate
system transformation

RMCS—>FCS

Accelerometer (@pcs) :
Segientinouigeiecty d/dt _ [Joint Angular Velocity
Ws
wj
Magnetometer l d/dt

d?/dt?

Functional Calibration

Gyroscope (Wpscs)

L ) Segment Angular Acceleration
as

Joint Angular Acceleration

&

-~

Figure 4-15 Joint rotation calculation routine IMU-based data

Note that for this study, the relative IMU sensors orientation is taken from an initial frame in
marker-based measurement (---> in Figure 4-15, comes from angular velocity (w, ) containing

one step differentiation). In discussion another method for future studies is suggested.
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4.2 Anthropometric model & Power flow

In this section, the Anthropometric model and a method to compute kinetic energy
generation in body segments and power flow is explained. The necessary velocities of joints and
segments for this computation were calculated as it was explained in section 4.1. Furthermore a
scalable anthropometric model from literature is used to set up the mass and inertias properties.
For the scaling process, the segments length is needed which is easy to calculate from the joint
positions of the Optitrack data. The segments length computation from the IMU data is not trivial.
A method to compute the segments length from the IMU data is described.

4.2.1 Full body anthropometric model

We used the scalable anthropometric model established by (Wu and Cavanagh 1995, Wu,
Siegler et al. 2002, Wu, Van Der Helm et al. 2005), based on the positions and inertia data from
(Dumas, Cheze et al. 2007) which is in its turn an adjustment of the measurements of McConville
et al. (McConville, Clauser et al. 1980). Appendix 2 describes in detail the antropometric model
and the scaling of the mass and inertia parameters of the segments.

The kinematic constraints keep the motion of the independent defined positions in the local
coordinates of the segments together by bonding the joints together. Having 14 joints in the
model requires 14 kinematic constrains to keep the 15 segments together. The kinematic
constraints could be defined by equality of two definitions of the same joint positions in two
adjacent segments. For example, the shoulder joint in global coordinate system may be defined
according to the equation 9, both from the thorax and from the upper arm segments in the GCS:

0 0 0
= +4q horax ® ® q orax
|: SJCG CS ‘| l: OIlwrax 1 ! |: SJCthorax } “ ( 4 0)

0 0 0
= + q rarm ® ® q rari
|: S‘]CGCS ‘| I: Oupperarm :l upperanm [ SJCupperarm :l vpperarm

Whereas, SJC; s the global position of the shoulder joint centre, cjc, is the global position

of origin of the thorax coordinate system, SJC

4ore 1S the position of shoulder joint centre with

respect to the thorax coordinate system. We assume that the SJ/C; is fixed. ¢, and ¢,,,,,,,are

respectively the quaternions of the thorax and the upper arm and ¢y, and Dupperarm 3T€

respectively the conjugate of the quaternions of the thorax and the upper arm. The left hand side
of the equations 37 are identical. Accordingly, the kinematic constraint, which keeps the upper
arm attached to the thorax in the shoulder joint, is defined by:

0 0 0 0
+ q lorax ® ® q orax - + ql{ erarm ® ® qu erarm = 0 (4 1)
[{ Othomx :l § [ SJCthorax ‘| 4 Oupperarm v SJCupperarm P

One extra constraint is defined to introduce the initial position of the human body. This has

been defined by the equality of the measured position of the Incisura Jugularis (1, ), and the
global position of Incisura Jugularis ( J,.,)- 1] is leading the motion.
]JGCS - IJmeasured =0 (42)

Note that, this was possible due to the use of skin markers measurements and should be
modified for a method using only IMU sensors. As it was explaind extensively in chapter 3, the
IMU sensors do not measure translations and position of segments. Thus some adjustments needs to be
done in the IMU based methods to measure the position. This is probably a limitation to track with
IMU in future project. In this project since we used an initial frame from marker-based method,
we did not faced this problem.
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The transformation is defined as the sum of translation and rotation (Bajd, Mihelj et al.
2010). Where the translation (o, ) shifts the origin of coordinate system from the global frame

to the local frame. It is the position of the origin of segment coordinate system (the joint centre)
in the global coordinate system.

Focs = OGCS + Rz‘yz‘P LCS (43)
Transformation Translation Rotation

Subsequently from the equality of the equation 9 and 19, we have:

0 0 _
= dpes @ ®qcg (44)
Rzyz 'PLCS PLCS

The model is tested with pitching data measured with skin markers method. The
quaternion’s of segments has been calculated from the skin markers tracking measurements. The
model was able to represent pitching.

Figure 4-16 Matlab implemented model with quaternions during pitching. Quaternion data from real
player pitching is used.

This model is capable to work for both measurement data from IMU’s and Optitrack markers.
The model input can be either the IMU’s acceleration, velocity and orientation data or the
positions data of the OptiTrack system. Using this model the computed data can be verified by
comparing the 3D illustration of the two methods.

4.2.1.1 Mass and Inertial Parameters

The mass properties and joint centres are defined using regression equations based on the mass of
the pitcher and the dimension of his segments (Dumas et al. 2007). As an example, the mass of the
thorax will represent 26.8% of the pitcher’s mass and the position of the centre of mass in the thorax
will be defined as percentage of the length between the cervical joint and the thoracic joint.

Mass and Inertial Parameters are computed based on regression from Dumas et al 2007:

The inertia matrix of Segment centre of mass (CoM) and in its LCS are computed following
Dumas et al. (2007):

r, scaling vector for the body segment inertial parameters from Dumas et al. 2007
(45)

1= (rij.ls)z.ms with: </ the lenght of the segment

m_ the mass of the segment
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Inertia matrix at CoM in the global coordinate system is computed as follow:

s = s
IG(:cs N RGGSHLCS 'IGLCS‘RLCSHGOS (46)

In Dumas et al. the element of the matrix of inertia for each body segment is computed as:

12

2 ]z‘j 1
Ly =(rd) m thus: = ; T (47)

The Position of centre of masses (CoM) in the global coordinate system is computed as:

0

GG cs

0
Gpes

®7 (48)

0
0, +4¢®

The velocity of CoMs in the global coordinate system is computed as:

0 . 0 _ -
=| = +q® ®q+q® ®q (49)
Os GLCS

G

UG5 LCS

The accelerations of CoMs in the global coordinate system is computed as:

0
Ta

GCS

0| . 0 _ 0 . .
= 2 [+{® RT+q® RT+2(® ®7  (50)
Os GLCS GLCS GLCS

4.2.2 Inverse dynamics

The kinematics is estimated for the IMU-based method as well as for the Optitrack-based
method; segment’s coordinate system from functional calibration and joint centres, segment
lengths, joint angles and velocities. The SCS, joint centres, segment length are used in the
anthropometric human body model for estimating the segment masses, inertias and centre of
mass position in SCS.

Once the kinematic and inertial properties are defined and the external forces are known, and the
inverse dynamics method is used on limbs to determine the joint actions. In this study, due to the
lack of measurement of ground reaction force (external force), only the upper arm power flow is
estimated. The power flow in the other joint cannot be estimated since we did not measure the
reaction force of the ground (Figure 4-17).

Foot Max Exo- Ball Max Endo-
Contact Rotation Release Rotation

18
16 [ E—
14 |
121

1 J
08 \
08
04 /
02 ( \

0 \ \

Figure 4-17 the main phases of pitching represented with the linked chain model. The red arrows
represent the ground reaction forces, the green arrow represent the ball velocity at the time of ball
release.
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Then an inverse dynamic model is used only for the arm’s segments. The inverse dynamics
goes from distal to proximal segment in a recursive way from hand through lower and upper arm
to the shoulder. Note that we did not have the ball and glove in our study thereby for the hand
segment the external forces are equal to zero. So for the dynamic of hand segment can be
estimated from which the forces and moments at wrist can be estimated. Afterward the dynamic
of lower arm and from that the forces and moments at elbow and then the dynamics of upper
arm and moments and forces at shoulder can be estimated. For two segment i and i-1, where i is
the proximal segment and i-1 the distal segment (in Figure 4-18 is indicated each the number for
each segment).

M\m—)m

Fua%th
Mth%ua
= i=1
Fext =0
Mua%ha Fth%ua
Jid Tha
Fua%ha Mhd‘)ud
i=2
F Mua%\a
ha->ua

. Mia>ua
S T

F\a—)ua

Fua—)la

Figure 4-18 Inverse dynamic model of Arm. In this figure, M is the moment, F is the force, T is the
derivative of linear momentum, § is the derivative of angular momentum, th is the thorax, ua is the
upper arm, /a is the lower arm, ha is the hand. Where the Fuam is the force that upper arm apply on

the thorax and Fex is the external force.

Since the mass of a segment being assumed to be rigid is constant, the translational motion of
the centre of mass can be defined by:

Foeg = MG where the Ve is the linear acceleration of the centre of mass D

For the IMU method the linear velocity of segment (at CoM) can be computed by integration
of the linear acceleration (at CoM). Here it is also important to pay attention to that in
computation of IMU’s orientation we used a very small beta ( 3 = 0.0001), as it was mentioned in
3.2.2. This means less trust the magnetometer and accelerometer and more trust gyroscope. The
reason to this was that the existence of gravity in the recorded data of IMU. So actually we
ignored the acceleration data and estimate the orientation of IMU. Now using this orientation (

R

viosdcs: )» the gravity can be removed from the acceleration data (

corrected for gravity )
Yeorrected for gravity = Tmeos — (RMCSO—>MCS[ “Imes ) (52)

The g,,.¢is the gravity direction in coordinate system of the IMU, which is simply to be

defined at f (when the subject is standing upright and not moving), using the recorded

acceleration. Knowing the fact that the IMU is not moving so the only acceleration presented in
the data recorded by the IMU is the gravity and the direction of gravity with respect to the
coordinate system of IMU is simply to be defining by the recorded acceleration.

Iuos = 981(7/]7]) (53)

Note, the 7,,-¢ has been taken as the mean of a short run measurement (Figure 4-19).
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Figure 4-19 Gravity removing from accelerations recorded data in IMU. This figure if filtered
acceleration of thorax in standing condition.

The linear acceleration recorded by the IMU needs to be transformed to the centre of mass of
the segments. This is done by:

P)/GCS = (RMCSAFCS ',‘YIMU ) + ((rprozimaljointto[MU - 7iiormcimaljointtoCoM) X wFCS) (54)

TCoM toIMU

Subsequently the linear velocities (v;) of each segment i, is to be computed by one step

integration. However this step is known to be inaccurate according to many previous studies,
since the computation of velocity via the numerical integration would results in a drift in it
(Deblonde 2011). If the drift is linear, we can compensate it.

Similarly, the equations describing angular motion can be derived considering the rotational
motion of each segment about a joint centre:

_ G
bacs = Ly, Vocs + Waos (I gGGS'wGCS) + (RGCS—>LCS Tros )% Lacs (55)

Where the r{¢ is the lever arm

The segments dynamic are defined by Newton-Euler equations:

1- The Newton equation for each segment ¢ (as defined in Figure 4-18) is computed as:

GCS_F

i—1—1

bgos = Fipmi T F

i—1—1

+mg = F

1+1—1

—mg = 8ges + F

i—i—1

—-m.g (56)

If 7 is the first segment (most distal which is hand) then F

i—1—1

is the force applied by the

environment on the distal segment, thus F,_, , is the force applied by the segment on the

environment.

2- The Euler equation for each segment ¢ (as defined in Figure 4-18) is computed as:
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= Ghs + MO, —M

o' o'
M7, i+ M; i1 Wi

) _ o'
6GCS IR R ) i—1—i + MWi = M,

i+1—1
(57)

OZ _ O'/—] Oi—] 0/
M7, =M+ (TGCS - TGCS) XF_

whereas: _
_ G'
My, = (RGCS—>LCS Tros )X m;g

4.2.3 Segment power

For estimating the segment power, the linear and angular velocity of the centre of mass of
each segment ¢ are used align with the derivatives of the linear and angular momentum as
follows:

. I _
Translational power: P, = F..v, , the total power is: P = P]l + P (58)

Angular power: PY =M, w,

3

4.2.4 Joint power

For estimating the joint power, the joint angular velocity is computed as:

w (59)

wjoint = wdz’s—mro = wdis — Yoo

Using this definition, the joints power is computed as follow:

PY =M w (60)

joint jJoint © 77 joint
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Chapter 5

Results & Discussion

In this chapter, in order to validate the IMU-based functional calibration method introduced
in this study (the 50% of the maximum angular velocity (50% @ max ) explained in 4.1.2.1.2.2), we

did compare the results with the optimization method of Seel et al. explained in 4.1.2.1.2.1. The
similarity of the results of these two functional calibration methods may confirm the correctness
of the method.

The kinematic and kinetic results of Marker-based and IMU-based methods are presented.
The error of the IMU-based measurement against the marker-based reference is quantified. The
sources of these dissimilarities are identified at different levels of segments and joints rotation
angle, angular velocities and accelerations.
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5.1 Rotation angle

5.1.1 Segment angle

The segment rotation is computed based on the two functional calibration methods
(50% @ max and the Optimization) applied on both Optitrack and IMU data. Figure 5-1 shows, as

an example, the computed lower and upper arm rotations represented by Euler angles (ZXY
order) during elbow flexion/extension. As you can see the upper arm is almost not moving and
the lower arm is flexing and extending.

50% Wmax optimization
140 T 140 :
120 b Flexion + / Extension -| | 120 | Reference (Marker)
Abduction + / Adduction - -———1IMU
100 F Pronation + / Supination -| A 100 F
E _ 80 1 80
5
e o 60r 1 60
)
g 40r 1 40t
=
20 + 1 20
0 e S e OS] 0 e A5 ot O |
20+ i ' - 1 20} ' R
0 5 10 15 20 0 5 10 15 20
140 i T — 140
120 | N N ‘ 120 |
100 100
E 80 80
oo 60f 60|
(=]
2 & 40t a0}
-
20 | 20 b
0 0-
-20 -20 F
0 5 10 15 20 0 5 10 15 20
Time [s] Time [s]

Figure 5-1 Lower and upper arm rotation is represented by Euler angles (with ZXY order) during
elbow flexion and extension. The computation is done with both 50%w,,,, and Optimization methods.

In Figure 5-1, the patterns of the angles are similar between both methods with a similar
range difference (a peak difference of around 10°). Only the abduction/adduction angle of lower
arm is not similar in both methods.

5.1.2 Joint angle

Similarly the joint rotation is computed based on the two (50% ® max and the Optimization)

methods applied on both Optitrack and IMU data. As it was explained in section 4.1, we use a ZXY
Euler angle rotation sequence which means Z of the proximal segment, Y of the distal segment
and X is the cross Product of these two. For the shoulder a YXY Euler angle rotation sequence is
used which means Y of the proximal segment, Y of the distal segment and X is the cross Product
of these two (Wu, Van Der Helm et al. 2005).

Figure 5-2 shows, the elbow joint rotation represented by Euler angles (with ZXY order). As
you can see Figure 5-1 and Figure 5-2 show similar pattern for flexion/extension angle. This

Page 56 of 114



5- Results & discussion Maryam Sharify

similarity was expected since the proximal segment is not moving much and the joint angle
would only present the motion of the distal segment (lower arm). As it was mentioned in
4.1.2.1.3, to make the angle estimation is this motion more accurate, the Z-axis of distal segment
is transformed to the proximal segment.

The 50% @ max method joint flexion/extension angle estimation patterns are similar between

all angles with a peak difference of less than 10°. But, the abduction/adduction and
pronation/supination are significantly different. Still the axis angles are very similar. The
computation is done based on both 50% @ max and Optimization methods. The 50% @ max method

during elbow flexion showed smaller amplitude of the adduction/abduction and pronation
angles and similar estimation of flexion angle. The minimization of the adduction/abduction
shows that the estimation of the flexion axis was more accurate with the 50% @ max method. This

method reduced the cross talk when compared to the Optimization method (Figure 5-2).
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Figure 5-2 Elbow joint angle is represented by Euler angles (with ZXY order). The computation is

done based on both 50%w,,,, and Optimization methods. The ROM, MD and RMSD of the 50%w,, 4
method are smaller than the optimization method.

Further to quantify the differences, in Figure 5-2, ROM is the range of the movement (note: in
this study ROM is not the joint range of motion), the maximum deviations (MD) and the average
deviation (RMSD) between joint rotations by Optitrack and IMU measurements are computed
and presented. The ROM, MD and RMSD are to be computed as follows:

ROM = |g0max - SDmin|

2
MD = [\/max<¢0pn’mck ~Pmw ) ]

, Where @ is the rotation (61)

2
RMSD = \/mean (gDOplirack - SOIMU)
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As it can be seen in Figure 5-2, the RMSD and MD of the flexion/extension angle is very
similar to the axis angle RMSD and MD. This indicates that the flexion/extension axis is defined
well. Besides ROM, RMSD and MD of the two methods are also similar, which is also again
evidence of the correct estimation of axis and angles. The MD and RMSD of the 50% ® max method

are a bit smaller than the optimization method, which indicate that the 50% ® max method did
estimate the axis and angles more accurately.

The rotation of joints during different movements have been computed and compared with
the Optitrack reference ones.

Elbow Supination / Pronation
T T

250 - Flexion  +/ Extension - | |

Abduction +/ Abdduction -
Supination +/ Pronation -

200 - o b

150 - b

Angle [°]

100 R R D B = s W s T

50 - b

Time [s]

Figure 5-3 The IMU tracking method is able to track the motion and the computed angles are similar
to the Optitrack reference method. The two functional calibration methods are roughly identical.

The worse segment to track (the largest RMSD) was the hand due to the error in its
orientation. Although the tracking is not fitted with the reference, both IMU motion tracking
methods estimated almost the same results presenting about twice bigger angle than the
Optitrack reference one (Figure 5-4).
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Figure 5-4 Lower arm and hand rotation during elbow flexion/extension. The computation is done
with both the 50%w,,,, and Optimization methods. IMU estimated bigger rotations with both methods.
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This indicates a technical weakness of the IMU sensor on hand that was not able to fit the
optitrack reference. It is possible that this is due to technical limitation of the IMU, like some
mistake in the IMU calibration. It can also be due to the positioning of the IMU on the hand, which
was too close to the wrist joint or the skin motion. Another possibility is that the hand is a small
segment and the proportion of the hand mass and length with respect to its IMU is much larger
than the proportion of the other body segments with respect to their IMU.

Table 5-1 Joint’s rotation comparison of the two IMU-based methods (50% wmax and Optimization)
with the Optitrack reference measurements

ROM MD RMSD
. . Motion L
Joint Motion 50% (max Optimization 50%
Type Optimization | 50% (Mmax | Optimization
Optitrack MU Optitrack MU Omax
. slow 1180 | 1140 | 119.0 | 1009 | 23.6 24.6 13.2 12.9
Flexion /
Shoulder Extension
‘ fast 1180 | 1043 | 1188 | 90.7 | 256 26.7 15.0 14.1
. slow 109.1 | 1205 | 1092 | 1208 | 9.6 9.5 3.0 3.1
Flexion /
Extension fast 1078 | 1266 | 1079 | 1269 | 139 14.3 53 55
Elbow
o slow 1484 | 1648 | 1497 | 1647 | 143 13.0 7.0 6.4
Supination /
Pronation fast 1511 | 1588 | 1522 | 1595 | 222 22.1 8.3 8.2
. slow 61.8 1232 | 633 118.1 | 549 50.6 243 21.6
Flexion /
Extension fast 66.2 127.1 | 678 1264 | 59.5 56.8 28.6 27.1
Wrist
Radial | Ulnar slow 42.6 67.5 42.6 657 | 39.1 48.4 11.6 19.0
Deviation fast 74.6 94.0 72.4 935 | 723 64.2 20.5 17.5
Abdaction/ slow 415 40.0 415 412 73 7.4 2.7 3.4
Adduction fast 44.5 472 44.5 50.0 8.0 7.4 4.0 2.6
Hip
Internal / slow 72.7 60.6 72.7 600 | 14.0 14.2 93 9.5
External
Rotation fast 61.7 55.1 61.7 544 | 103 10.3 3.6 37
. slow 81.3 100.9 | 80.1 1043 | 189 21.0 79 8.6
Flexion /
Knee Extension
‘ fast 82.3 1273 | 814 | 1423 | 552 67.5 92 12.0
Internal / slow 395 412 39.0 41.1 4.7 8.7 2.4 4.1
Lumb External
‘J,‘;,‘nt“r Rotation fast 492 50.3 48.6 51.0 6.9 7.0 26 44
Flexion /
/ slow 24.7 14.3 24.6 125 | 225 17.2 9.9 7.0
Extension

Table 5-1 shows an overview of computed range of movements (ROM), Maximum deviations
(MD) and average deviation (RMSD) between joint rotations by Optitrack and IMU
measurements.

As it can be seen in Table 5-1 the rotations tracked by IMU sensors are consistent with the
Optitrack reference motion tracking. Both 50% @ max and the Optimization results fit the reference

measurements (RMSD<20°) for most trials. The largest dissimilarities are shown by RMSD =
27,1° of the wrist joint, which is due to the error in hand’s orientation. The shoulder joint also
shows RMSD=14,1°, which was also expected since in this study the complex movements of the
scapula was neglected (Hint: in this study we had only one IMU for tracking the motion of thorax
and one IMU for tracking the motion of the upper arm). However this simplification is done on
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both IMU and marker-based method, still the multiple degree of freedom of the scapula cannot be
neglected and might have resulted in this differences.

Another finding from this table is that the faster movements have the larger RMSD and thus
they are less similar to the optitrack reference. This can indicate the effect of inertia, which might
be prevented by using lighter IMU’s. However, the hip joint motions presents a smaller RMSD for
the faster movements, which means the joint angle is estimated better in the faster movements.
The reason to this can be the method for definition of coordinate system of pelvis and thigh or
the calibrations of the pelvis and thigh’s IMU. This can also be due to the positioning of IMU on
the muscles of thigh. Furthermore, since the Y-axis of pelvis was estimated as the mean of the
direction of gravity recorded by accelerometer and the other axis was estimated using the
gyroscope data, the error might be due to misalignment of gyroscope and accelerometer sensors.
However, in static situation the IMU noise did affect the measurement. As a not moving IMU
records noise rather than useful data.

Further more the results show that the 50% @ max method has a RMSD of equal or smaller

than the optimization method, and reduces the effect of cross talk between the axes. Moreover,
the computation with the 50% ® max method takes around 10s, while the optimization method

takes around 500s (for 10s of data recordings with a sampling frequency of 500 Hz). Therefore,
the 50% @ max method is superior to the optimization method.

5.2 Angular velocity and acceleration

5.2.1 Segment’s angular velocity and acceleration

Segments angular velocities and accelerations are also compared. For a motion like shoulder
flexion/extension, with elbow extended and wrist at 0° flexion, it is expected that the lower and
upper arm and the hand would have almost the same angular velocities. As it was mentioned in
section 5.1, the hand’s IMU results do not seem reliable. This issue is also appearing on the
velocities and accelerations level. Figure 5-5 shows how the upper and lower arm angular
velocity is fitted with the Optitrack reference, and the hands velocity is overestimated.
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Figure 5-5 Arm segments have almost the same angular velocities during shoulder flexion/extension.
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Figure 5-6 shows as an example the angular velocity and accelerations of the lower arm
during flexion and extension. Patterns and signs are similar with difference in peaks of 10 to
50°/s in velocity level and 50 to 1500°/s2 in acceleration level. The differences are smaller in
velocity but can reach around 30% for the accelerations.
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Figure 5-6 lower arm’s angular velocity and accelerations during flexion and extension

5.2.2 Joint’s angular velocity and acceleration

Joint’s angular velocity and accelerations are also compared. This comparison is done in the
joints coordinate system.

It is also interesting that the joint’s angular velocities and accelerations (Figure 5-6) which is
computed from the differentiations of quaternions (wq =2G®g and a, = 2(51'®q_|_ g ®¢7) )

is similar to segments angular velocity and accelerations (Figure 5-7) which is computed by
multiplications of the gyroscope data and the rotation matrix from IMU to the segment

_ * _ %
(Wpes = Rresmes ™ Wies a0d apog = Rpogyes ™ Wages )-

The similarities of, Figure 5-6 and Figure 5-7 confirms the correctness of the results either
via differentiation or direct from the recorded data.
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Figure 5-7 shows the angular velocity and accelerations of elbow during flexion and
extension. In this trial, since the upper arm was kept still and only the lower arm was flexing and
extending and therefore the elbow joint velocity and accelerations is almost equal to the elbow’s

velocity and accelerations (Figure 5-6).
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Figure 5-7 Elbow joint’s angular velocity and accelerations during flexion and extension

Figure 5-7 shows similarly to the segment velocities and accelerations, the marker and IMU
also have tracked the joint angular velocity and accelerations of the lower arm during flexion and

extension with the same signs and pattern. However the

peaks are different. The difference in

peaks are around 10 to 50°/s in velocity level and 50 to 1500°/s2 in acceleration level. The
differences are smaller in velocity but can reach around 30% for the accelerations.
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The velocities and accelerations of joints during different movements have been computed
and compared with the Optitrack reference ones.

Table 5-2 Comparison of the angular velocity and accelerations computed by the IMU-based method

(50% Wmax) with the Optitrack reference measurements

Angular velocity I:o / s] Angular acceleration [°/S2}
. . Motion
Joint Motion ROV MAX ROA MAX
Type
MD |RMSD b |Rassp
Optitrack | IMU |Optitrack| IMU Optitrack IMU  |Optitrack| IMU
. slow| 276 | 208 | 170 | 122 | 49 | 17 | 892 | 1093 | 506 | 383 | 708 | 66
Flexion /
Shoulder Extension
5 fast | 391 | 201 | 231 | 161 | 83 | 26 | 1616 | 1201 | 780 | 614 | 558 | 144
. slow| 234 | 261 | 123 | 137 | 25| 8 | 1015 | 981 | 470 | 378 | 240 | 72
Flexion /
Extension | o | 438 | a83 | 231 | 268 |154| 25 | 1999 | 2272 | 932 | 850 | 478 | 148
Elbow
o slow| 408 | 411 | 195 | 204 | 33| 7 | 1462 | 1642 | 860 | 870 | 311 | 76
Supination /
Pronation | v | 1012 |1171] 471 | 533 | 98 | 27 | 6309 | 8303 | 3361 | 4454 | 1248 | 301
. slow| 105 | 184 | 51 | 77 |81 | 22 | 517 | 1259 | 298 | 690 | 907 | 202
Flexion /
Extension | o | 191 | 208 | 89 | 127 | 73 | 25 | 1228 | 2024 | 707 | 1298 | 674 | 223
Wrist
Radial ) Uinar | 1w | 172|351 | 89 | 199 |121| 28 | 784 | 2071 | 343 | 706 | 924 | 136
Deviation | o | 364 | 723 | 198 | 410 |279| 65 | 2514 | 4693 | 1519 | 2511 | 1946 | 552
. slow| 209 | 223 | 104 | 114 | 38 | 10 | 1123 | 1126 | 599 | 589 | 254 | 83
Abdaction/
Adduction | oo | 300 | 300 | 144 | 154 | 23| 8 | 4174 | 1750 | 1457 | 871 | 2648 | 136
Hip
Internal/ | slow | 312 | 265 | 169 | 144 | 34 | 13 | 1784 | 1481 | 859 | 811 | 278 | 101
External
Rotation | fast | 453 | 417 | 236 | 216 | 29 | 13 | 3293 | 3190 | 1594 | 1642 | 1109 | 168
. slow| 260 | 271 | 154 | 161 | 69 | 20 | 1053 | 1320 | 599 | 555 | 561 | 146
Knee Flexion /
Extension | i | 357 | 362 | 202 | 204 |124| 25 | 1759 | 1779 | 849 | 710 | 803 | 174
Internal/ |slow| 13 |22 | 7 |11 | 10| 4 135 | 226 | 77 | 62 | 164 | 29
5 External
L;f(::fm‘” Rotation fast | 22 58 9 28 |27 | 12 165 449 85 | 261 | 231 | 87
Flexion /| ol 92 | 55 | 54 | 28 | 35| 15 | 556 | 1586 | 295 |1334 | 1333 | 87
Extension

Table 5-2 shows an overview of computed ROM, MD and RMSD between joint rotations by
Optitrack and IMU measurements. ROV is the range of the velocities changing and MAX presents
the absolute maximum velocity or acceleration.

As you can see in Table 5-2, faster trials have larger RMSD than the slower ones. This means,
in slower joint rotations, the angular velocities and accelerations better fit the Optitrack
reference data.

The numerical differentiation works as a high pass filter, which means any errors in the 3D
positions will be amplified with each differentiation step. Indeed, the IMU measures the angular
velocity and need one differentiation step to compute the angular acceleration. Where the
marker data needs respectively one and two differentiation steps to compute the angular velocity
and acceleration. Thus, the IMU results are expected to be more accurate at velocity and
accelerations level. This fact makes it difficult to analyses of the results presented in Table 5-2.
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5.3Segment length estimation

Figure 5-8 shows the computation of the distance between the two adjacent IMU (of lower
and upper arm) and the elbow joint during five flexion/extension of the elbow. The mean of
these results is the position of joint with respect to the elbow joint.

The computation of the position of IMU with respect to the joint is based on the angular
velocity and linear accelerations measurements. Indeed, if the segment is almost not moving, the
noise from the IMU sensor will have more influence. When the upper arm is not moving, the
recordings of IMU are mostly noises, and thus the computation of the distance of joint and IMU
would not be accurate. This is presented in Figure 5-8, by uncertainty in the results of the
optimization search for the position of the joint with respect to the IMU.

Optimization results for 10 runs: 5 elbow flexion and extension

Vector from elbow joint to IMU-Upperarm
O Elbow joint estimation
Vector from elbow joint to IMU-Lowerarm
O Elbow joint estimation

0.1

IMU-upperarm
B 0.05

0
-0.05

01 IMU-lowerarm

0.05

Figure 5-8 Computing the distance between the two adjacent IMU (of lower and upper arm) and the
elbow joint during 5 flexion and 5 extension. The mean of these results is the position of the joint
with respect to the IMU sensor. Here the upper arm has low speed and lower arm has high speed.

Figure 5-9 shows the distribution of this optimization. Here it is better visible that the
distribution is narrow in x and z direction of the IMU axis and the wide distribution is presented
along the y-axis. This is an evidence that the optimization process works and is able to find the
position of joint to be on an line through the IMU but the distance of the joint with respect to the
IMU on this line was not found perfectly, since the IMU was not moving (and recording) enough
acceleration and velocity data.

Distribution of optimization results for 10 runs: 5 elbow flexion and extension
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Vector from elbow joint to IMU-upperarm
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Figure 5-9 Distribution of optimization results of the IMU with respect to the joint of a not moving
segment is not adequate (10 runs= 5 flexion + 5 extension).
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Besides, Figure 5-9 shows, although the distribution of upper arm IMU to the elbow joint is
wide, the mean value of it (17.23 c¢m) is similar to the one from Optitrack data (16.1 cm) in slow
flexion/extension of elbow trial. But this is a matter of having enough repetition of the motions in
the measurements. For a better computation of joint position with respect to the IMU, it is better
to choose the data from the trials in which the joint is moving.

Using two series of such optimizations, each segment length can be computed. Table 5-3
shows the segments length computed from IMU measurements against the Optitrack one.

Table 5-3 Segments length [cm]

Optitrack IMU
Hand IMU to W]C 7.5 1 Wrist flexion/extension
Lower arm EJC to WJC 26.7 24.5 Squat
Upper arm SJC to EJC 31 31.3 Squat
Trunk SJC to Sagittal plane 22.8 18 Shoulder flexion/extension
Stand
HJC to Sagittal plane 13.1 13.3
Pelvis Hip adduction / abduction
HJC to IMU 22 17.2
Thigh HJC to KJC 43 37.3 Lunge + Knee flexion/extension
Shank IMU to KJC 11 12.2 Knee flexion/extension

The segment lengths are estimated with small difference from the Optitrack reference
measurements. The largest difference is on the hand IMU, which was expected since all the
measurements on the hand IMU indicate that this IMU probably had a technical issue. The other
large difference is the thigh length, with an error of 7% of its length, which is reasonable. It was
not possible to estimate the total length of shank and hand, where as there is no other segments
attached with an IMU at their distal end.

Note that the IMU’s segment lengths are estimated during calibration movements using the
above optimization process when both segments are moving around each joint. The segment
lengths from the Optitrack measurements are based on the joint distances during standing
position when the segments are not moving. For trunk and pelvis the position of SJC and H]JC to
the sagittal plane is estimated by regression equations (Dumas, Cheze et al. 2007) which are
prone to errors that can be up to 3 cm (Fiorentino, Kutschke et al. 2016). Thus, the estimation
from the IMU functional calibration could lead to a more accurate value than the regression.
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5.4 Pitching and Power flow

In this section we want to analyse the power estimated by IMU-based measurements. This
analysis needs to be done on the pitching measurements. Although, the subject of this project
was not a real baseball pitcher, we measured two kind of pitching motions; first a pitch with the
whole body moving, second a pitching motion where only the arm is moving. Analysing these
motions will help to understand if our method is valid to track a baseball pitcher motion.

Since the ultimate goal of this project is tracking the pitching motion in baseball, it is
interesting to look at the internal rotation of shoulder when the arm is flexed and the lower arm
is horizontal. If the method is able to track this motion, it is evidence that the pitch could also be
tracked.

5.4.1 Kinematic results

Figure 5-10 shows the internal rotation of shoulder estimated by both 509 o, and
Optimization methods fit the Optitrack reference.

Shoulder internal rotation
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Figure 5-10 Small shoulder internal rotation estimated by IMU, using both 50%w,,,, and the
Optimization fits the Optitrack reference

Figure 5-10 shows that the internal/external rotation of the shoulder is tracked using both
IMU methods are similar (RMSD = 1.7°). The maximum deviation is smaller using the 50% ® max

method (MD=3.7°) than the optimization method (MD=4.4°). This is logic since the 50% ® max
method uses the frames with larger velocities than the optimization method for estimation the

orientation of the axis. The range of the movement (ROM) is tracker better by the 50% @ max
method.
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The next step is looking into the pitch motion. Note that the subject was not a real baseball
pitcher and the results are a proof of concept. Figure 5-11 shows that the changes of Euler angles
align with the axis angle for the shoulder, elbow and wrist during 5 repeated pitching motions
where the subject stands still and only tries to pitch the ball with his arm.
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Figure 5-11 shoulder, elbow and wrist rotation angles during 5 pitches

Figure 5-11 shows that the IMU based measurement resulted in an overestimated elbow
flexion (above 180°). In general we would expect under 180° elbow flexion/extension. The
angular velocities and accelerations measured by IMU did encounter data clipping. This should
be the reason for this angle overestimation. However, it is interesting that the axis angle changes
are between 40 and 160°which is reasonable. The elbow joint has mainly 2 degree of rotation;
flexion/extension and pronation/supination and a small abduction/adduction. It is possible that
this problem is due to miscalculation of segment coordinate system. In that case the question is
how did we then acquire a low RMSD = 3 to 8° for the elbow flexion/extension and
pronation/supination? This is evidence that this error is most likely related to the high speed of
motion during pitching movement and subsequently the data clipping.
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The shoulder and elbow joint rotation estimated by IMU sensors, using both methods fits the
Optitrack reference (RMSD = 11.7 and 11°). Again, this result confirms the maximum deviation
is smaller using the 509% __ method (MD=25.9 and 37.4°) than using the optimization method

(MD=26.2 and 37.6°). Although the difference is not large, the 50% _, method does better than
the optimization method.

The IMU shows some peaks, which can be related to the fast angle changes an data clipping
close to the pitch moment. The Optitrack did not record these peaks, which can be due to lower
frame rate in Optitrack (Optitrack measurement with 120Hz vs. IMU measurement with 500Hz).

The wrist Joint rotation dose not fit the reference, which was expected since it looks as if this
IMU had some technical problem. Besides, the motion is so fast that the IMU reaches the
threshold of gyroscope and accelerometer (data clipping).

Figure 5-12 shows the data clipping in the linear acceleration recording of IMU on the lower arm
during pitching.

Data Clipping
P

50 - % T T

low noise acceleration
--- Wide range acceleration
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Figure 5-12 data clipping of accelerometer during pitching.
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5.4.2 Kinetic results
5.4.2.1 Kinetic energy

The segments kinetic energy estimated based on Optitrack a measurement is depicted in
Figure 5-13.
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Figure 5-13 Segment’s kinetic energy based on Optitrack measurements.

In Figure 5-13, the left graph is a pitching motion where only the arm is moving. Here it is
visible that the pelvis energy is almost zero since it is not moving. The thorax energy is a bit
larger due to the heavy mass of thorax, which is appeared more in the translation component.
Upper arm velocity is larger but its mass is smaller than thorax. The lower arm builds up more
energy due to its rotational and translational speed and this speed is transformed to the hand
too. The hand has the largest energy at the moment of ball release. The right graph shows a pitch
with the whole body moving. The increase of kinetic energy is significant, compared with when
the whole body is not moving in the left graph. Thorax gains the highest energy due to its large
mass. The peak in hand shows the ball release moment. After the ball release the energy is
decreasing to the static condition of around zero.

The total kinetic energy of each segment is the sum of translational and rotational kinetic
energy of the segment. Since the linear velocity of centre of mass was not estimated adequately
using IMU measurements, we attempt to compare only the rotational part of kinetic energy in
Figure 5-14.

This attempt is not presenting the expected results. The rotational part of kinetic energy of
thorax is around 17% underestimated. The upper arm is around 50% overestimated. The lower
arm and hand present two consecutive peaks, which should be due to data clipping. From the
magnitude of the peaks, it is predictable that the lower arm and hands rotational kinetic energy
was overestimated if there was no data clipping. Indeed it is also possible that the marker-based
measurement did underestimate the energy.
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Figure 5-14 Rotational component of the segment’s kinetic energy based on Optitrack and IMU
measurements.

5.4.2.2 Power

The segments power estimated based on Optitrack measurements is depicted in Figure 5-15.
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Figure 5-15 Segment’s power based on Optitrack measurements.
Since the pitches were not preform by a real pitcher, the results are not exactly depicting the

event sequences and the magnitude of power during pitching. Yet it is visible the power is
building up in segments from pelvis to hand to preform the pitch.
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The total power of each segment is the sum of translational and rotational power of the
segment. Since the linear velocity of centre of mass was not estimated adequately using IMU
measurements, we compare only the rotational part of power in Figure 5-16.
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Figure 5-16 Rotational component of the segment’s power based on Optitrack and IMU measurements.

The rotational component of the hand, lower arm and upper arm’s power computed by the
IMU based measurements are reasonably fitted with the marker-based reference. This is not the
case for thorax. For thorax the sign and pattern of changes are similar but the magnitude
difference is large. This should be due to the position of the thorax and the scapula movements.

The joints power estimated based on Optitrack and IMU measurements are depicted in

Figure 5-17.
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Figure 5-17 shows the difference in the peak timing and magnitude difference between the
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IMU and marker based estimated joint powers. The reason to this is the errors in computation of
forces and moments applied at joints and the linear velocity of the CoM of the segments from the
integration of the linear acceleration recorded by the IMU. The data clipping can also be a source
of error. The following sections present a short overview of this miscalculation.

5.4.2.3 Velocity

The linear velocities of the segments are computed by one step integration, which results a
drift in the computed velocity. The drift can be linear, and we can compensate it having some
workaround. For example, knowing that at the beginning and end of the measurement the
segment is not moving and the velocity is zero (Figure 5-18).
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Figure 5-18 Drift in velocity due to computation of velocity by integration of acceleration (norm of
the velocity of upper arm centre of mass)

However, even though this drift is linear, we face another problem especially for the lower
arm and hand. The reason to this should be the data clipping due to the limit of accelerometer;
we are not able to compensate for the integration drift. The problem existed on both low noise
and wide range accelerometer sensors. Figure 5-16 shows the data clipping results the error in
linear velocity computation.
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Figure 5-19 Drift in velocity due to computation of velocity by integration of acceleration of lower
arm due to data clipping of accelerometer during pitching.
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5.4.2.4Joint force and moment

Joints forces and moments are estimated for both IMU and Optitrack measurements. The
results show the forces at the wrist with IMU are similar to the Optitrack measurements,
however its moments are much lower. This could be due to underestimating of the hand length
by IMU as it was presented in table 5-3. As the forces and moments are computed respectively
starting from hand and then elbow and shoulder, this error would also effect the estimation of

forces and moments at elbow and shoulder. Also all the errors in accelerations affect this
computation.
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Figure 5-20 joints forces and moments during 5 pitches
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Chapter 6

Conclusion &
Recommendations

The aim of this study was development and validation of an IMU’s motion tracking system for
measurements of baseball pitcher kinematics, having the marker-based motion capture data as
the reference. The method development and evaluation are discussed in the previous chapters.
This chapter presents gives an overview of the achievements of this study and the concluded
outcomes from the discussed results in the previous chapters and recommendations for future
studies.

M A comprehensive validation of IMU-based motion tracking is done.

The most interesting thing about this project is that for the first time to our knowledge the
measurements has been done and validated at the same time on upper and lower extremities and
trunk on many joints and segments. The kinematic analysis has been validated at different levels
of segments and joints rotation angle, angular velocities and accelerations. The results are
verified with the marker-based measurements and with another well-known method from
literature (Seel, Schauer et al. 2012).

M The segment lengths are estimated.

For the first time, the kinematic analysis of the human body is followed by the segment
lengths estimation using both IMU sensor data method for kinetic computation. These estimated
segment lengths are validated against the marker-based measurements. Subsequently the
segment lengths have been used as the scaling factors in an anthropometric human body model,
to estimate the mass and inertia of the segments.

M A convenient functional calibration protocol was established.

An IMU-based human motion tracking system has been developed. A practical measurement
protocol for placement of the IMU sensors and calibration procedure has been established in
which there was no need of specific placements and orientation of the IMU sensors with respect
to the anatomical axes of the segments, as needed in most of previous studies. Specific tips are
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introduced to find the orientation of the IMU regarding known standard static positions, like
looking into the gravity direction presented in the accelerometer data or comparing the changes
of gyroscope angular velocity against the direction of the movement. This information could
potentially provide us the necessary knowledge to get the axis direction. The functional
calibration motions are specified to define the coordinate system of each body segment. This area
still needs more work and functional calibration protocol could be improved further to minimal
set of movement (such as a squat with upper limb extension as has been shown in Figure 6-1,
where ankle, knee, hip, shoulder and elbow are rotating together).

B
L

—~——
/\,\
e
7 LS~
A

D ,‘
°<g 07( o‘\&

Figure 6-1suggested squat motion with upper limb extending as calibration motion

M A fast and convenient method is introduced to compute the joint axis.

Functional calibration method used in previous studies was performed by different routines
to rotate the joint in a way to minimize the out of plane rotations. For example, by passive
controlled rotation (van den Noort, Ferrari et al. 2013), or by narrowing the rotation angle (Seel,
Raisch et al. 2014) or randomly choosing a few (4 to 10) frames which the accuracy of the results
would be random (Seel, Schauer et al. 2012). In this study we presented a novel method to find
the functional coordinate system of joint, which exclusively use the frames with higher angular
velocity during a number of repeating large joint rotation preforming actively by subject (see
Figure 4-11).

M The 50% (Wmax method has been verified.

The results show that the 50% (Dmax functional calibration method is verified for joint axis

computation. The 50% (Wmax method is even more reliable than a time-consuming optimization
routine, in reducing the effect of cross talk between the axes (as you can see in Figure 5-2) and
matching with the marker-based measurements.

It was noticed that the slower the joint rotation, the more noise in the measured data by the
IMU sensor and that could results in less accurate functional calibration. In the case of using
optimization method with a random frame selection over repeated joint rotations, it is suggested
to select the data from higher angular velocities in which the joint is rotating smoothly. However,
the comparison of the RMSD of slow and fast joint rotation in Table 5-1 indicates that the faster
movements are less successful in tracking the movement. Therefore the conclusion is that a
smooth joint rotation is desired not a fast one. And the purpose of removing frames with lower

velocities is to discard the not smooth parts. The advantage of the 50% (Wmax method is that the
method comprises simple and fast calibration movements. The method could compute joint axis
based on repeated movements in two directions and remove the frames, in which the joint
rotation direction is changing.

Moreover, the computation for the WOmax method over a 10 s data of 500 Hz, takes around 12
ms while the optimization method takes around 500 s. Comparing the results of the IMU-based
measurements against the marker-based measurements shows that the root-mean-square
deviation (RMSD) of the joint angles has been 2 to 27°, angular velocities 4 to 180°/s and angular
acceleration 29 to 599 m/s2. The only joint angle with an error of larger than 20° was the wrist,
which was due to the hand’s IMU calibration error.
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M The results of the 50% (MWmax method have been validated.

In order to validate the kinematic measurements, the method is verified with Seel et al. 2012
to 2016 optimization methods. The results of our method are similar to the optimization method
of Seel and in some cases it is even better in tracking the joint angles. Table 5-1 shows that the

difference between the 50% (Wmax method and the optimization method is in most of the cases
smaller that 2°. Besides, it is noticeable that the 50% (Wmax method has in most of the cases a
smaller RMSD than the optimization method. Therefore, the 50% (Wmax method is validated

based on the similarities of the results of these two functional calibration methods.

At velocity and accelerations level the IMU measurements are more trustable not only due to
avoiding differentiation amplification inaccuracy but also due to the higher sampling frequency
of the used IMU sensors. Therefore, the fact that the results show a smaller RMSD for tracking the
slower motions, where the marker data are more reliable than the faster motion is also validating
the results.

M A dual synchronized measurements method was developed.

The human motion has been captured using two systems; IMU and Optitrack. The analysis
confirmed that the measurements are accurately synchronized. A method has been developed to
assess the kinematics and kinetics of the joints and segments based on both measurement
systems. Furthermore, the synchronization method can be used in following studies.

M Some suggestions are given to improve the quality of following studies.

The largest dissimilarities are at wrist joint, which is due to miscomputation of the hand’s
orientation. It is suggested to use a better IMU on hand (wider range of sensor detection and
lighter). The shoulder joint’s rotation was not fitted also very satisfactory (RMSD=14°). This was
expected since the shoulder and scapula have complex movements and in this study we had only
one IMU tracking motion of thorax and one IMU tracking the motion of upper arm. It is suggested
to also track the clavicle and scapula (one IMU can get either clavicle or scapula).

M The distance between IMU and the joints are estimated.

The distance between IMU and segments where computed based on the physical fact that:
“when a joint is moving, the acceleration of the joint centre is identical in both IMU’s coordinate
systems”. Based on this statement, the distance between the joint and the two IMU on two
adjacent segments is computed using optimization of the recorded data.

This method is used by Seel et al. studies on the functional calibration movements where the
joint is kept still. Since when one IMU sensor is kept almost still, the IMU records zero angular
velocity and the optimization results are random and the results shows that the joint can be
anywhere with respect to a not moving IMU and the estimation is based on noise from IMU. For
solving this problem Seel suggest to find the shortest distance and salehi suggest to project the
point to the joint plane. Our experiments show, this optimization searching for a global minimum
works optimal when both IMU sensors are moving.

M An IMU-based motion capture system has been developed to measure the kinematic of
baseball pitcher and compute the dynamics of the full body.

We developed and validated an IMU-based motion tracking system for kinematics and
kinetics measurements of human body, with a marker-based motion capture data as the
reference. The method is verified and gives encouraging results. By slight improvement of some
technical limitations, the method could be applicable to measure baseball pitcher motion in field.
These are one step forward to the final goal of screening and direct feedback to the pitchers in
baseball field for injury prevention and improving pitching performance.
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This study allowed us to define a method of functional calibration with the aim of measuring
baseball pitching on the field. During this research we faced various issues and problems that
depends on understanding of the method and technology. Here are our recommendations for the
future study:

1  More advanced IMU are needed for tracking the motion of baseball pitchers.

Using the IMU that we have used in this project we were not able to track the motion of real
baseball pitchers. During baseball pitching the upper limb internally rotates with an angular
velocity of 4000 to 9000°/s and the hand can reach acceleration of 60G or above. The IMU that
we used were able to track angular velocities up to 2000°/s and accelerations of under 16G.
Therefore, to track the pitcher upper limb in the following studies there is a need to use IMU
sensors with wider range of measurements.

[1 The error in tracking the faster motion is overall larger than the slower motions.

The fact that the results show a larger RMSD for tracking the faster motions, indicate the
inertia effect. Therefore we suggest selecting a lighter IMU in the following studies.

1 The method used in this project can be easily used in future studies.

IMU sensors do not measure translations and position of segments. Thus new methods need to be
developed to measure the motion. Note that this project used the initial orientation of the segments
from the Optitrack data. An initial calibration base can be used to set the initial orientation of IMU
sensors to zero. This plate would allow the definition of a single initial coordinate system for all
IMU sensors and make it possible to determine the relative orientation of the IMU sensors with
respect to each other in a simple way. Using such a base the method of this project can be used
easily in future studies, as follow:

RMcspm —
IMUproximal Functional
calibration R
MCSpro=FCSpro [
R J R joint angle
MCSpro—MCSgy; > Bpee  pes.
pro dis pro dis ((P])
RMCSdiS ]
IMU gistar Functional
calibration

4 RMCSdiSﬁFCSdiS [

_ p—1 -1
R,evcsp,_ﬁ,evcsdis - RMcswﬁch, ,U'RMCSP,_O'RMCSﬁ,_ﬁMcs Ry

pr dis dis

: RMCS

dis — FCS iy

Figure 6-2 an initial calibration base to start IMU recordings and then attach the IMU sensors to the
body segments. As the algorithm show, having this initial rotation known, make it possible to
compute joint angle. Where, the Rycs,pomcsys 18 the orientation of the IMU on the distal with respect
to the IMU on the proximal segment. The Ry s rcs is the orientation of the IMU with respect to the
segment, which is defined via functional calibration, and the Ry is the orientations of the IMU
sensor recorded by IMU. Having these rotation of distal segment with respect to the proximal segment
Rpcs,,,~fcsqy, €an be defined and subsequently from that the joint angle is to be estimated.
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O Further method development is needed for estimation of linear velocities and translations.

The linear velocities and translations computed by the IMU-based method using the
integration of linear acceleration recorded by the accelerometer needs to be improved.

O Kinetic energy computation and the power flow estimation method need to be validated.

In this study only a proof on concept for kinetic computation using the IMU-based method is
done. Further validation of the results of this method is needed.

A full body power analysis in the future works is needed.

The optimal pitching mechanism needs to be yet quantified using real pitcher measurements. For
the whole body power analysis, the ground reaction force and the ball and gloves masses are also need
to be measured and added to the model. By quantifying the interactions between the segments of the
full body model through a power analysis, the significant mechanical parameters associated to high
pitching velocity can be identified.
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Appendices

Appendix 1: Quaternion formulas

For a rotation matrix R, there exist a unit vector € that is unchanged by R:

Re=e (62)

The rotation angle ¢ can be expressed in terms of unit vector € and the rotation matrix R:

€, €, = (R23 - R32) / (2 sin 90)
e= €y - €, = (R31 - R13) / (2sinp) (63)
¢, e = (RH - R21) / (2sinyp)

In terms of a rotation about axis € and an angle ¢, the quaternion is defined by

q, q, = cos(¢/2)
=e_sin 2
=] = L L= (¢/2) (64)
q, q, = ¢€,sin(yp / 2)
q, q, = e,sin(p /2)
Conjugate of quaternion is defined as:
T _ T
9= 4, 49 49, 4, - =49, -9 -9 4 (65)

Quaternion multiplication is preformed in the same manner of the multiplication of complex
numbers.

Page 81 of 114



Appendix Maryam Sharify

q, D, b, =P, —pP, —P, q,

qop=| % |g| P 2| P Pe B THQG (66)
4, b, b, —p, D, Dy q,
qz pz b, py b, b, z

Going from a quaternion (q) to a rotation matrix (R) is straightforward. Rotation of a vector
P=[xy z]’ with the quaternion q is done by the following operation (Markley 1980):

0 T e T A A A
¢ 4, ¢ 4 | -9 ¢ -¢ q

q ® xz ® q _ QPQ _ T z y T z y X

y 9, —¢. 4, 4 || -9 ¢ 9 -4 | ¥

‘ . 4 -4, 4, || ¢ -9 49 4 |'°

(67)
0 0 0
_ CHe—a -4 244 +499,) 2-64,+94)

QPQ =

g9, +9,9,) ¢ —¢+d - 2A-q.49,+94,)

o o O
N e 8 O

A-q,9, +4,9.) g9, +94) ¢ -4 ¢+

Further we used the Shepherd algorithm described in (Markley 2008) with a condition to
avoid jumps in the quaternion signal (introduced by R. Dumas) due to a sign ambiguity in the
quaternion computation.

The first derivative of the quaternion is estimated with a centred finite difference method.
However, for the first frame a forward method is used and for the last frame a backward method
is used:

dq. . —q.
Forward method: 4, 4~
dt 2.At
dq. _—q.
Centered method: TR I (5 (68)
dt 2.At
dq. —q.
Bacward method: 44, =~ =9
dt 2.At

The 2rd derivative is also computed via a centred finite difference method as follows:

2
dy, 4~ 29,4,

dar’ AL
Forward and backward method for the 1st and last frames lead to singularity, thus, a mirror
condition is used for those frames. This condition consist in using a symmetry around the

first/last frame of the signal to extrapolate i.e. q(1) will be the symmetry of q(3) around q(2)
and q(n) is the symmetry of q(n-2) around q(n-1):

(69)

d’ d’ d’
First frame: q;]) =2. qu) - qf)
dt at (70)
2 2 2
G,y 49

Last frame: ;") =2. 5 5
dt dt dt

with n the number of frames.
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Appendix 2: Anthropometric model

In this study, first we made a model from 15 segments as it is shown in Figure 7-1. To
simplify the model, the non-throwing lower arm and hand that wears a glove, are assumed to be
one segment.

1)  Neckand head

2)  Thorax

3)  Abdomen

4)  Pelvis

5)  Right upperarm

6)  Rightlowerarm

7)  Right hand

8)  Leftupperarm

9) Left lower arm and left hand

10)  Right thigh

11)  Right shank

12)  Rightfoot

13)  Left thigh
14)  Left shank

15)  Left foot

Figure 7-1 Left: Body segmentation outline (McConville, Clauser et al. 1980), middle: The model of
this study body segmentation, right: measured body segments in this study.

The head is quite heavy and have some influence, but the head and neck exact movement has
less effect on motion. Besides in baseball pitching, the power flow generation during pitching
starts mainly from left foot and goes through body to the right hand. Therefore, for further
simplification of the model we neglected the head and neck, right foot, shank, thigh and left upper
arm, lower arm and hand.

Here under is the anthropometric model of Dumas et al 2007. This model is scalable and can
be used to extract the mass and inertia parameters. In the original article there was a few
mistakes that was corrected in contact with the writer. Therefore here I bring the whole correct
parameters that could be used in the following studies.

Head Vertex (HV)
Sellion (SEL)
Occiput (0CC)

Tth Cervicale (C;)
Suprasternale (SUP)
Right and Left
Acromion
(RA and LA)

Right and Left 10" Rib

& " (RRuwand LR
Lateral and Medial
Humeral Epicondyles Right and Left
7 2 7) lliocristale
(LHE and MHE) [y
Right and Left Antero-
Olecranion (OLE) Superior liac Spines
(RASIS and LASIS)
Ulnar and Radial Symphision (SYM)

Styloids (US and RS)

Midspine at 10"
Rib level (MSR;)

2nd and 5th Meta-
carpal Heads (MH,
and MHs)

3rd Finger Tip (FT;)

Y

X

Greater Trochanter (GT)
Lateral and Medial
Femoral Epicondyles
(LFE and MFE)

Tibiale Head (TH)
Fibula Head (FH)
Sphyrion (SPH)

Lateral Malleolus (LM)
Calcaneous (CAL)

Ist and 5th Meta-

tarsal Heads (MH,
and MH,)

2nd Toe Tip (TTy)

Figure 7-2 Locations of selected anatomical landmarks and orientations of the segment coordinate
system (SCSs) built from these landmarks (Dumas, Chéze et al. 2007, Dumas, Cheze et al. 2007)
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Table 7-1 Anatomical landmarks and centre of masses positions

Mass
Segment Anatomical landmarks X [m] Y [m] Z [m] Le_n_gt_h Length scaling
definition [m] £
actor (%)
Head and neck 1) Head Vertex (HV) 0 0.277 0
2)  Sellion (SEL) 0.105 0.173 0
3)  Occiput (0CC) -0.073 0.1 0 CJCtoHY 0.277 6.7
¢ Centre of mass (COM) -0.006 0.149 0
Thorax 4)  Suprasternale (SUP) 0.051 -0.039 0
5)  Right Acromion (RA) -0.027 -0.045 0.206
6) Left Acromion (LA) -0.027 -0.045 -0.206
7)  7th Cervicale (C7 -0.072 0.026 0
i‘) Thoracic joint(cegtre (TJC) 0 -0.334 0 CGcroljc 0.334 304
<  Right Shoulder joint centre (RS]C) 0.019 0.083 0.206
«  Left Shoulder joint centre (LS]JC) 0.019 0.083 -0.206
¢ Centre of mass (COM) 0 0.185 0.001
Abdomen «  Lumbar joint centre (LJC) 0 -0.151 0
¢ Centre of mass (COM) 0.026 -0.055 0 TCtoLJC 0.151 29
Pelvis 8) Right Anterior Superior Iliac Spine (RASIS) 0.078 0.007 0.112 Length: L]C
9) Left Anterior Superior Iliac Spine (LASIS) 0.078 0.007 -0.112 to projection Length:
% Right Hip joint centre (RHJC) 0.056 -0.075 0.81 of HIC in 0.0936
«  Left Hip joint centre (LHJC) 0.056 -0.075 -0.81 sagittal plane 14.6
10,11) Middle of Right and left Posterior Superior -0.102 0.007 0 Width:
Iliac Spine (RPSIS and LPSIS) Width: RASIS 0.224
¢ Centre of mass (COM) 0.003 -0.026 0 to LASIS
Right upper 5) Right Acromion (RA) -0.025 0.054 0.003
arm 12) Right Lateral Humeral Epicondyle (RLHE) 0 -0.258 0.041
13) Right Medial Humeral Epicondyle (RMHE) 0 -0.264 -0.041 SJC to EJC 0.261 2.4
< Right Elbow joint centre (RE]C) 0 -0.261 0
¢ Centre of mass (COM) 0.005 -0.118 -0.007
Right lower 14) Right Ulnar Styloid Process (RUS) 0 -0.284 -0.033
arm 15) Right Radial Styloid Process (RRS) 0 -0.284 0.033
<  Right Wrist joint centre (RWJC) 0 -0.284 0 EjCtowjC 0.284 L7
¢ Centre of mass (COM) 0.003 -0.118 0.004
Right hand 14) Right Ulnar Styloid Process (RUS) -0.007 0 -0.032
15) Right Radial Styloid Process (RRS) 0.007 0 0.032
16) Right Hand 2nd Metacarpal Head (RMH2) 0 -0.086 0.046
17) Right Hand 5t Metacarpal Head (RMHS5) 0 -0.075 -0.046 | WJCtoFT3 0.1891 0.6
18) Right Hand 3rd finger middle phalanges
(RFMP3) 0.007 -0.189 0.001
¢ Centre of mass (COM) 0.007 -0.068 0.006
Left upper arm 6) Left Acromion (LA) -0.025 0.054 -0.003
19) Left Lateral Humeral Epicondyle (LLHE) 0 -0.258 -0.041
20) Left Medial Humeral Epicondyle (LMHE) 0 -0.264 0.041 SJC to EJC 0.261 2.4
<  Left EIbow joint centre (LE]C) 0 -0.261 0
¢ Centre of mass (COM) 0.005 -0.118 0.007
Left lower arm 21) Left Ulnar Styloid Process (LUS) 0 -0.284 0.033
& left hand 22) Left Radial Styloid Process (LRS) 0 -0.284 -0.033
23 %fg\?;;)d 3rd finger middle phalanges 0.007 | -0473 -0.001 EJCto FT3 0.4731 23
<  Right Wrist joint centre (RWJC) 0 -0.284 0
¢ Centre of mass (COM) 0.004 -0.179 -0.0045
Right thigh 24) Right Greater Trochanter (RGT) -0.040 0.006 0.101
25) Right Lateral Femoral Epicondyles (RLFE) 0 -0.431 0.057
26) Right Medial Femoral Epicondyles (RMFE) 0 -0.432 -0.057 HJC to KJC 0.4315 12.3
< Right Knee joint centre (RK]JC) 0 -0.4315 0
¢ Centre of mass (COM) -0.018 -0.185 0.0142
Right shank | 27) Right Fibula Head (RFH) 0 20.023 0.047
28) Right Shyrion (RSPH) 0.021 -0.434 -0.033
29) Right Lateral Malleous (RLM) -0.021 -0.433 0.033 KJC to AJC 0.4335 48
< Right Ankle Joint Centre (RAJC) 0 -0.4335 0
¢ Centre of mass (COM) -0.021 -0.178 0.003
Right foot 30) Right Calcaneous (RCAL) -0.046 -0.021 0.007 AJCto
31) Right Foot 1th Metatarsal Head (RMH1) 0.146 -0.021 -0.047 midpoint 0.1388 12
MHI and . )
32) Right Foot 5th Metatarsal Head (RMH5) 0.128 -0.021 0.060 MHV
Left thigh 33) Left Greater Trochanter (LGT) -0.040 0.006 -0.101
34) Left Lateral Femoral Epicondyles (LLFE) 0 -0.431 -0.057
35) Left Medial Femoral Epicondyles (LMFE) 0 -0.432 0.057 HJC to KJC 0.4315 12.3
<  Left Knee joint centre (LK]C) 0 -0.4315 0
¢ Centre of mass (COM) -0.018 -0.185 -0.0142
Left shank 36) Left Fibula Head (LFH) 0 -0.023 -0.047
37) Left Shyrion (LSPH) 0.021 -0.434 0.033
38) Left Lateral Malleous (LLM) -0.021 -0.433 -0.033 KJC to AJC 0.4335 48
< Right Ankle Joint Centre (RAJC) 0 -0.4335 0
¢ Centre of mass (COM) -0.021 -0.178 -0.003
Left foot 39) Left Calcaneous (LCAL) -0.046 -0.021 -0.007 AJCto
40) Left Foot 1th Metatarsal Head (LMH1) 0.146 -0.021 0.047 midpoint 0.1388 12
MHI and . )
41) Left Foot 5th Metatarsal Head (LMH5) 0.128 -0.021 -0.060 MHV

K3

« Joint centres are estimated based on the location of specific markers
¢  Centre of masses are estimated based on scaling vector of position of centre of masses
From (Dumas, Cheze et al. 2007)
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Appendix 3: Description of the Optitrack system

1. Specifications

USB Modes Supported

USB2.0: High-Speed (480Mbps), Full-Speed (12Mbps),
Low-Speed (1.5Mbps)

USB Ports

Uplink: 1
Downlink: 6

Power Input

OptiHub 1 : 12V @ 3.0A
OptiHub 2 : 12V @ 3.8A

Power Output OptiHub 1 : 3.5W (700mA @ 5V) max per port
OptiHub 2 : 5.0W (1000mA @ 5V) max per port
Status LEDs e Power

e Uplink Port Status
e Downlink Port Status
e Sync Activity

Sync Input Sources

Internally Generated

Cascaded OptiHub Output

External Digital Input

Software Trigger (from PC via USB)

BN

External Sync Input

Opto-isolated Input, (LV)TTL compatible
Vi(max) : 0.8V

Vip(min) : 2.5V

Vin(max) : 13V

Max Freq : 10kHz

External Sync Output

LV-TTL Digital Output

External Sync Output Types

1. Exposure Pulse
2. External Sync Input Pass-Through

Recording Active — Level Output
Recording Active — Frame Pulse

bl

External Sync Output Polarity

Normal or Reverse

External Sync Input Divider

1:1-1:15

External Sync Input Trigger Modes

1. Rising-Edge

2. Falling-Edge

3. Either-Edge

4. High-Level Gated
5. Low-Level Gated

External Sync Input Trigger Delay

0—65ms

Internally Generated Trigger Rate

8-100 Hz

OptiTrack™ Camera Sync Modes

1. OptiSync (sync signaling is carried using out-of-band
signaling on the power conductors of standard USB
cables)

2. WiredSync (dedicated camera-to-camera daisy-chain
cables provided by NaturalPoint)

Compatible Stereo-Vision Systems

1. Stereographics CrystalEyes ™
2. NuVision 60GX
3. NuVision APG6000

Refresh Rates: 60/90/96/100/120/200 FPS
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or Flex 13 Cameras OPTISY

Hub to Hub Sync

I .
Gi) DpTi-ﬁ'aCK Hi Speed USB
OPTIHUB External Sync

OptiSync Mode. No RCA Sync Cables Y38 Uplink OptiHub

Required | X
|
[Wired Sync is Optionally Available) (Master Hub)

6 x Cameras

All Optional Features Shown

- External Sync IN'OUT

- Active USB Extension /
* OptiSync Not Vald with Mixed /
Camera or Hub Configurations. Wired
Sync Only.

Flex 13 cameras require an OptiHub

v2 and may not be mixed with 4 o
V100:R2 cameras in the same system A 4

Upto 2 Active

USB Extensions )

5m 6 x Cameras
(optional)
v
s -

OptiHub

apryvight © 201 NatauslPoine nc Pateats Pending
v aptrech core

OptiSync Mode
(No RCA Cables
Required)

Hub to Hub 6 x Cameras
Sync
Hub USB Uplinks should PC Back Panel
be divided among both
Enhanced Host Controller
Interfaces (EHQO) in your PC. Its

best to use the USB ports on the v

back of your system. There OptiHub
should be two separate groups of

USB ports, which could identify

each EMCI. Plug two hubs into

one EHCl and one hub into the

other. See diagram to the right

EHCI

EHCI12

USB Uplink //
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FLEX 13

CAMERA BODY

Width: 212 inches (53.8 mm)
« Height: 319 inches (81 mm)
Depth: 1.67 inches (42.4 mm)
Weight: 6.60 ounces (187 g)
« Mounting: 1/4”-20 tripod thread
- Status Indicators:

— 2digit numeric LEDs

— 1bicolor status LED

IMAGE SENSOR

« Pixel Size:4.8 ym x 4.8 ym
« Imager Size: 6144 mm x 4.9152 mm
« Imager Resolution : 1280 x 1024
(1.3 MP)
-+ Frame Rate: 30-120 FPS
(adjustable)
« Accuracy: Sub-millimeter
+ Latency:8.3ms
- Shutter Type: Global
« Shutter Speed:
— Default: 500 ps
— Minimum: 20 ps
— Maximum: 7.5 ms (at 120 FPS)

1.728

P: +1-888-865-5535 « www.optitrack.com «

oo
o
Oprilrack

IMAGE PROCESSING TYPES

« Object (Centroids)

- Precision (Grayscale)
« Segment (Thresholded)
« MJPEG Grayscale

- Raw Grayscale

LENS & FILTER

« Default Lens: 5.5mm F#1.8
— Horizontal FOV: 56°
— Vertical FOV: 46°
« Optional Lens: 8 mm F#1.8
— Horizontal FOV: 42°
— Vertical FOV: 34°
+ M12Lens Mount
« Adjustable focus w/ spring assist
+ 800 nm IR pass filter
« Optional: 800nm IR pass filter w/
Filter Switcher

1.672

|

583 (x2)

175 (x2)

support@naturalpoint.com «

TECHNICAL SPECIFICATIONS

LED RING

+ 28LEDs

- 850nmIR

Adjustable brightness

Strobe or Continuous lllumination
Removable

INPUT/OUTPUT & POWER

+ Data:USB 2.0

« Camera Sync: USB 2.0 (via
OptiSync)

« Power:USB 2.0 @ 1A

SYSTEM REQUIREMENTS

Windows XP/Vista/7

1GHz processor

1GB of RAM

» 50MB of available disk space

- USB 2.0 Hi-speed port

« OptiHub 2 (required for IR LED
power)

IN THE BOX

» 1Flex13 camera (part number
FL-13)

+ 1Quick Start guide

0
0

o

88—
2
375
6

sales@naturalpoint.com
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Appendix 4: Description of the Shimmer3

Shimmer3

Wireless Sensor Platform

INTRODUCTION >

Shimmer3 is the smallest, simmest and most robust
wearable wireless sensor created by Shimmer to date. The
module boasts a 24MHz CPU with a precision clock
subsystem, making it three times faster than its predecessor,
Shimmer2r

—CPRODUCT OVERVIEW )

In developing Shimmer3, we have focussed on creating a
powerful and elegant wearable wireless sensor which will
provide superior data quality, adding value to your data
collection process. We've created a smarter enclosure
which allows for straps to be quickly clicked into place for a
range of wearable applications.

Shimmer3 offers best data quality with integrated 9 DoF
inertial sensing via accel, gyro, mag and altimeter, each
with selectable range. Shimmer3 also boasts an integrated
motion processor for on-board 3D orientation estimation. 5
coloured LEDs indicate device status and operating mode,
as well as indicating Bluetooth streaming functionality.

For existing customers, Shimmer3 modules are backward
compatible with the Shimmer2r Dock and Multi Charger. All
current development tools and enabling applications are
compatible with the Shimmer3 platform.

www.ShimmerSensing.com

o

]

o

o

o

o

o

o

A 1
shimmer

DISCOVERY IN MOTION

( KEY FEATURES >

Very low power consumption, light weight, and small form
factor

Slide-switch for powering on/off

Readily connects via Bluetooth or local storage via a
microSD card

SD data bypass

24MHz MSP430 CPU

Internal and External connectors for expansion (Expansion
modules include ECG, EMG, GSR+, and others)

Best data quadlity - Integrated 10 DoF inertial sensing via
accelerometer, gyroscope, magnetometer, and altimeter,
each with selectable range

Two accelerometers give choice between ulira-low noise
or wide range

o Integrated motion processor for on-board 3D orientation

o

o

estimation

5 coloured LEDs across 2 locations to indicate device
status and operating mode

Integrated Li-ion battery management

> JTAG debugging mode available

(]

o

o

o

o

o

o

o

Expansion header for alternative radio

APPLICATIONS )

Shimmer is designed for wearable and remote sensing
applications. The Shimmer unit is designed to be highly
flexible and adaptable, easily integrating into existing
systems and technologies. Shimmer is frequently used in
activity monitoring, sport science, and intelligent building
applications to name but a small few. Due to is flexibility,
the Shimmer platform is generally application agnostic.
Shimmer is currently used in the following areas:

Human Health Monitoring

Activities of Daily Living

Connected Health Solutions

Sports Science

Structural Monitoring

Intelligent Buildings

Environmental and Habitat Monitoring

info@ShimmerSensing.com
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Shimmer3

Wireless Sensor Platform

TECHNICAL SPECIFICATIONS

Microcontfroller
A/D Resolution
RAM
Flash
Frequency
Wide Range Accel.
Range
Sensitivity
Numeric Resolution
Typical Operating Current
RMS Noise*
Low Noise Accel.
Range
Sensitivity
Typical Operating Current
RMS Noise*
Digital Mag
Range
Sensitivity
Numeric Resolution
RMS Noise*
Gyro
Range
Sensitivity
Numeric Resolution
Typical Operating Current
RMS Noise*
Pressure Sensor
Range
Numeric Resolution
Typical Operating Current

RMS Noise (Standard mode)
*@ 100Hz Bandwidth

Tl MSP430

11 Channels of 12-bit A/D: 7 free for expansion

16KB

256KB

24MHz

STMicro LSM303DLHC
129, +4g, #8g, +16g
1000 LSB/g at +/-2g
16-bit

110 A (Running Mag @ 7.5 Hz & Accel @ 50 Hz)

27.5x10°m/s*

Kionix KXRB5-2042

29

60018 mV/g

500 pA

5.09 x 10°m/s*

STMicro LSM303DLHC
£1.3;+1.9;22.5, £4.0; +4.7; £5.6; 8.1 Ga
1100 LSB/Ga at £1.3

16-bit

0.0081 normalised local flux
Invensense MPU?150

+250; +500; +1000; +2000 dps
131 LSB/dps at +250

16-bit

3.5mA

0.0481 dps
Bosch BMP180
300 - 1100 hPa
16-bit
1pAat1Hz

0.4 m (from Datasheet)

A |
shimmer

DISCOVERY IN MOTION

4 )

N i

SHIMMER3 ROADMAP

Shimmer3 Platform Now Available

\_

Biophysical ECG, EMG, &

GSR + Heart Rate: Now Available
Expansions PROTO3 Mini Expansion board and PROTO3

Deluxe Expansion board: Now Available

Strain Guage Amplifier: Now Available

Weight 23.6 Grams

SUPPORTING SOFTWARE

Shimmer ConsensysPRO & ConsensysBASIC Software
ShimmerCapture for Android

Shimmer 9DoF Calibration for Android

Shimmer LabVIEW Instrument Driver

Shimmer MATLAB Instrument Driver

Shimmer Java/Android API

Shimmer C# API

Multi Shimmer Sync for Android

CLASS LEADING WEARABLE WIRELESS SENSING

Dimensions: 51mm x 34mm x 14mm
Improved straps and quick snap clips provide full mobility,
unrestricted movement and comfort for the wearer

Highly flexible and adaptable sensor platform can be

applied to specific end user requirements CO NT, ACT US

Highly accurate and scientifically reliable raw or calibrated data

offers complete control over capture and interpretation of signals in Shimmer

reaHtime Dublin, Ireland

Boston, USA

© Copyright 2016 Shimmer
Specifcations are subject to change without notice E: info@ShimmerSensing.com
S-5/S3-v1.6 W: www.ShimmerSensing.com

Page 89 of 114



Appendix Maryam Sharify

Appendix 5: Description of Xsens suit

Xsens

XSENS MVN BIOMECH IS THE NUMBER ONE CHOICE FOR MEASURING 3D KINEMATICS
EVERYWHERE, UNDER ANY CIRCUMSTANCE. THE MINIATURE MOTION TRACKERS DEVELOPED
BY XSENS ARE ABLE TO CAPTURE FROM THE SLIGHTEST TWITCHES TO HIGH DYNAMICS.
XSENS’ PROVEN BIOMECHANICAL MODEL AND SENSOR FUSION ALGORITHMS ENSURE THE
HIGHEST QUALITY MOTION ANALYSIS, EVEN IN CHALLENGING ENVIRONMENTS.

MVN BIOMECH HIGHLIGHTS

Robust and reliable

e Superior algorithms ensure
measurements in any condition, including
magnetic disturbances

e < 10ps inter-tracker time synchronization
essential for accurate joint angles

Ease of use

e Small robust trackers
e Quick and easy setup
e [ntuitive software :
o Miniature trackers worn over or under _§
" clothing

Integration

e Easy sync with 3rd party devices

e Data streamed or imported to many
digital environments

e Works with Siemens PLM Software,
Dassault Delmia & Catia, Unity3D,
Autodesk

Accurate real-time data. Effortlessly
e 3D character visualization

e 3D kinematic graphs

e Patented signal pipelines

e No post processing, instant export

MVN STUDIO BIOMECH SOFTWARE (MVN STUDIO BIOMECH)

Features MVN Studio BIOMECH graphs

e |ntuitive software interface

e Calibration routines

e Scalable biomechanical model

e Record and playback

e Sync setup

e Supports up to 4 hardware setups

e Real-time 3D view, graphs and video

Output

e Joint angles

e Segment kinematics

e Segment global positions
e Body center of mass

e Sensor data

Export formats
e ASCII (XML)

e C3D

e BVH, FBX

° Movie (AVI, M4V)
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: MVN BIOMECH Hardware

MVN BIOMECH Awinda

MVN BIOMECH Link

Completely wireless, extremely
lightweight. Ideal for subject
interchangeability

High update rate. Ideal for high
dynamic movement tracking

System contents

o MVN Studio BIOMECH license
e 17 wireless motion trackers (MTw)
e 1 spare/prop MTw
e Full-body set of straps
(incl. M/L/XL T-shirt)
o Awinda Station (for data
transmission, docking and sync)
o Awinda Dongle
o MVN Ethernet Camera
e Transport backpack

o MVN Studio BIOMECH license
e 17 motion trackers (MTx)
o 1 spare/prop MTx
o 1 Lycra suit (incl. shorts)
(size options: S/M/L/XL/XXL)
e Body Pack
o WiFi Access Point
e Sync Station
o MVN Ethernet Camera
e Transport suitcase

Trackers Wireless motion trackers Wired motion trackers

Tracker placement Easy fastening with Velcro straps Tight and secure fastening in
Lycra suit

Internal update rate 1000 Hz 1000 Hz

Update rate 60 Hz 240 Hz

Latency 30 ms 20 ms

Buffer time 10s 120 s

(retransmissions)

Battery life 6 Hours 10 Hours

Dimensions

Motion trackers

47 x 30 x 13 mm (20 g)

36 x 24.5 x 10mm (10 g)

Body pack N/A 160 x 72.5 x 256 mm (150 g)
Battery N/A 94.7 x 58.5 x 25 mm (70 g)
Communication

Range open space Up to 50 m Up to 150 m

Range office space Upto20m Up to 50 m

Wireless protocol

Xsens patented Awinda protocol

WiFi 2 and 5 GHz (subject to PC)

Receiver

Awinda Station / Awinda Dongle

WiFi Access Point

MVN BIOMECH Motion Tracker Performance
Orientation

Static accuracy (Roll/Pitch) 0.2 deg
Static Accuracy (Heading) 0.5 deg
Dynamic Accuracy 1 deg RMS

Tracker components

Angular velocity

Acceleration

Magnetic field

Dimensions

3 axes

3 axes

3 axes

Full scale

)

+ 2000 deg/s

+ 160 m/s2

+ 1.9 Gauss
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Appendix 6: Description of Analog devices IMU

ANALOG
DEVICES

Fast Starting, £20,000°/sec
Vibration Rejecting Rate Gyro

ADXRS649

FEATURES

High vibration rejection over wide frequency
Ultrafast startup: 3 ms

Measurement range extendable to +50,000°/sec
10,000 g powered shock survivability
Ratiometric to referenced supply

5V single-supply operation

Z-axis (yaw rate) response

—40°C to +105°C operation

Self-test on digital command

Ultrasmall and light (<0.15 cc, <0.5 gram)
Temperature sensor output

RoHS compliant

APPLICATIONS

Sports equipment
Industrial applications
Platform stabilization
High speed tachometry

GENERAL DESCRIPTION

The ADXRS649 is a complete angular rate sensor (gyroscope)
that uses the Analog Devices, Inc., patented high volume BiMOS
surface-micromachining process to make a complete gyro on
one chip. An advanced, differential, quad sensor design rejects
the influence of linear acceleration, enabling the ADXRS649
to offer rate sensing in harsh environments where shock and
vibration are present.

The output signal, RATEOUT (B1, A2), is a voltage proportional
to the angular rate about the axis normal to the top surface of
the package. The output is ratiometric with respect to a provided
reference supply. An external capacitor is used to set the band-
width. The measurement range is extendable to +50,000°/sec
by adding an external resistor.

Low power consumption (3.5 mA) enables very low power
consumption, and ultrafast startup (3 ms) allows for quick
power cycling of the gyro. At 10 samples per second, a pair of
CR2032 coin cells can power the ADXRS649 for three months.

A temperature output is provided for compensation techniques.
Two digital self-test inputs electromechanically excite the sensor
to test proper operation of both the sensor and the signal condi-
tioning circuits. The ADXRS649 is available in a 7 mm x 7 mm x

3 mm CBGA chip scale package.

FUNCTIONAL BLOCK DIAGRAM

(ADC REF)
100nF
TEMP T Veato|  ADXRS649
vZSkQ <7
AT 25°C

MECHANICAL
SENSOR

CHARGE PUMP
AND VOLTAGE
REGULATOR

Rour
180kQ 1%

100nF

09573-001

2.2nF
g Cout

22nF 22nF
Figure 1.
Rev.B Document Feedback
Information fumished by Analog Devices is believed to be ac:urate and reliable. However, no
responsibil Anal nor f ther
sibiityis assumed by Analog Devices fot ts use, nor for ’ roth No One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

nguuu-u' parties that may
granted by implication or

ise under any patentorpmm"gmsofmbg Devices. Tel: 781.329.4700 ©2010-2012 Analog Devices, Inc. All rights reserved.
their Technical Support www.analog.com
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ADXRS649

NIYXRSGAS

FBSELONCAMIONMUM RATINGS

"Pdbleinimum and maximum specifications are guaranteed. Typical specifiBMEE: SENSITIMEAXLS

ParametPC to +105°C, Vo= AV = Vi =

Bating V, angular rate = 0°/sEBLARNRSHS BOHEAL, fate-ocmsiag)drYice (s called gyaw

Aadelsration (fisy Axisd).5 ms) rate-sensing device). It produces a positive going output voltage
Unpowered 10,000 g for clockwise rotation about the axis normal to the package top,
dred 10,000g that is, clockwise when looking down at the package lid.
\Parameter TestCopdifignsiGpments Min Typ Max Unit
\ﬁg{\‘{JSITIVITY‘ Clockvgjge rotation is positive output
, o RATE RATEOU],
sTVigpsurement Range Full-scalgrange over specifications range Axis ¢30,929 sec
outpisialReR exeLFmpsIBRe 40 el ' 8™ 0277 [ WU/ /sec
(Ferp PRTabLCeMrifbh) LONGITUDINAL ¢ +2 DAG 475V
L A AXIS
Opbeniingfeinperature Range Best fitgsa@ty ines°C - ;0.1 %,0f FS
%wnglPéhperature Range —65°C to +150°C RATE IN
g 4f)°C +1.05°C ", 2.5 Fy-0.25v
Strb) Wl aonelthose hsted under the Abso uté Maximum a1~ _ABCDE] o1 ossec/a B
Rafi rrlt;gesar L ccegrat IoQrmaenent damage to W& Svice. This isa LATERAL AXIS GND I ¢ gz g
crvv rap ?Reqtlf atlon nal operatio 49‘:?\ M3 20 H; 192 27 kHZ Figtre-2-RATEOL IT(‘ignan'0006 with-Cloek /seclg
NOlsﬁl%E%o%ﬁ'\{‘%’;‘lgabove those indig ated 151 the operational ) o H
sectig DO specﬁa{catlon is not imp) ied. EZpsure to absolute 0.25 /sec/VHz
ESD CAUTION 04 °/sec/VHz

maximum ratmg condltlons for exteng
_Resolytion Flo
vicd re

e-El“perlods may affect
25°C, 1 minute to 1 hour in-run

ES

lnlnrtrn?t%(}ic discharge) Sansl.énLdﬂl& i

FREQUENCY RE@PONSE

Dregs gifadpard surfaces can cause shogks g6 85%?@&%‘&%% up to speciﬁcati‘

10,§Qﬂ%p§gmﬁ¥@qgﬁﬁhﬁﬂpsolute maximum rating of the

%@f_lﬁ_q—és?]‘e should be exercised 1n haj

pdling to avoid damage‘

Arad

rged devices and circuit boards |can discharge
hout detecggpq Although this prJq.l'Et features
ented or proz‘%ietary protection cirtf nddy damage

r on ces subfétted to high'dAergy ESD.
refore, proper ESD precautions shoyld be taken to

ST1 RATEOUT Response ST1 pin from Logic 0 to Logic 1 avaid performaﬂﬁ%eﬁgradation or loss of,;ygé:tionality.

ST2 RATEOUT Response ST2 pin from Logic 0 to Logic 1 1300 °/sec

ST1 to ST2 Mismatch® +2 %

Logic 1 Input Voltage 33 Y

Logic 0 Input Voltage 1.7 \Y

Input Impedance To common 40 50 100 kQ
TEMPERATURE SENSOR'

Vour at 25°C Load =10 MQ 23 24 25 '

Scale Factor® To=25C, Vearo =5V 9 mVv/°C

Load to V 25 kQ

Load to Common 25 kQ
TURN-ON TIME’ Power on to +£90% of final output, CP5 = 2.2 nF 3 ms
OUTPUT DRIVE CAPABILITY

Current Drive For rated specifications 200 HA

Capacitive Load Drive 1000 pF
POWER SUPPLY

Operating Voltage (V) 4.75 5.00 5.25 Vv

Quiescent Supply Current 35 mA
TEMPERATURE RANGE

Specified Performance —-40 +105 °C

' Parameter is linearly ratiometric with Vgaro.

2 Measurement range is the maximum range possible, including output swing range, initial offset, sensitivity, offset drift, and sensitivity drift at 5V supplies.

* From +25°C to —40°C or +25°C to +105°C.

* Adjusted by external capacitor, Cy;. Reducing bandwidth below 0.01 Hz does not result in further noise improvement.
® Self-test mismatch is described as (ST2 + ST1)/((ST2 — ST1)/2).
% Scale factor for a change in temperature from 25°C to 26°C. Vygy, is ratiometric to Vgaro. See the Temperature Output and Calibration section for more information.

7 Based on characterization.

Rev.B | Page 3 of 12
Rev.B | Page 4 of 12
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