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Summary 
 
The recent advancements in inertial sensors technology and its promising results in motion 

tracking, catch the expert’s eyes to these new horizons in sports engineering. In baseball, which is 
the interest of this study, almost 90% of the pitchers got injured once a year due to wrong 
training and pitching techniques. Screening and real-time feedback to players would help them to 
improve their training procedures and safely increase their pitching performance.  

In the last decades many researches have been carried out on employing this new tool in 
field measurements, instead of the common marker-based motion tracking with their complexity 
for the in field measurements. Although it is promising that inertial sensors are the future of 
motion tracking systems in this area, there are still many technical issues like, IMU sensors 
measurement limit, drift and bias. Besides in human motion tracking which involves multiple 
IMU sensors, coinciding the sensors and defining a global coordinate system requires substantial 
concerns.      

This study focuses on developing a valid motion tracking method for the baseball pitchers, 
having a marker-based motion capture measurement as the reference. In order to be able to do 
this first of all the two systems was needed to be synchronized and at the same time be able to 
record the same motion. Secondly, the measurements should be defined in the same coordinate 
system. For this purpose, a simple functional calibration method has been developed and applied 
on both systems.  This method is validated against a previous method (Seel, Schauer et al. 2012). 
Finally, The kinematic results are estimated at joint and segment’s angles, velocities and 
accelerations levels. The joint and segment’s angles computed by IMU sensors are validated 
based on marker-based measurements. The sensitivity of IMU-based measurements in 
estimating the angular velocity and acceleration of movements with different rate of movements 
(slow vs. fast) is investigated.  It has been observed that for baseball pitching applications, IUM 
sensors with less mass and wider range of measurements are required.  

In order to compare the dynamics of the human body, a scalable anthropometric model from 
the literature is used to define the mass and inertia properties of the segments. An inverse 
dynamics method is used to compute the kinetics energy and finally the power flow in the 
segments and joints. Again, all these results from the IMU measurements are compared with the 
Marker-based method. The advantages and disadvantages of the IMU according to these results 
are discussed to establish a practical protocol for future measurements and data analysis. One of 
the major issues in the dynamic analysis is that for translating the velocity from IMU to human 
body, the measurement protocol needs to provide a known starting and ending velocity. This is 
done by starting and ending the measurements from a standing position.    

The method of this project can be used in baseball pitching motion tracking using the 
suggested protocol improvements and more advanced IMU sensors.   
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 ϕ    Orientation 

 v    Linear velocity 

 ω   Angular velocity  

 γ   Linear acceleration 

 α   Angular acceleration 

 m   Mass 

 I   Inertia matrix 
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 r   Vector 

 t   Time 

 M  Torque 
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LCS  Local coordinate system  

GCS  Global coordinate system 

MCS IMU coordinate system 

FCS  Functional coordinate system 

 

 R   Rotation matrix 

 q   Quaternion 

 qA→B  Quaternion represents rotation from coordinate system A to coordinate system B 

q    Complex conjugate of quaternion 

 

⋅   Euclidean norm 

⊗    Quaternion multiplication 

 ×    Vector cross product 

 

 ROM   Range of the movement (We did not used ROM as the range of motion) 

 RMSD   Root mean square deviation  

 MD    Maximum deviation 
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Chapter 1 
1  Introduction 

 

 

 

1 .1  Motivation  
Fast and accurate pitches are critically important for the performance of a baseball team. For 

this purpose, the players should be strong enough, remain injury free and perform a good 
technique. The process of training a good baseball pitcher costs years of strength and technical 
training. The instructions for these trainings are mainly based on empirical knowledge.  

It has been stated that there is a trade off between fast pitching and being injured. Recently, 
almost all pitchers complain about arm related injuries once a year and above 90% of them did 
undergo elbow or shoulder surgeries (Arthur 2015). Over use, muscle fatigue, joint flexibility 
and poor mechanics are the main causes of injuries. An arm injury is usually a cause of lowering 
the pitching velocity. After surgeries the chance of healing and regaining the original velocity 
depends on injury. Besides, most of the players who gain high records of fast pitching would 
usually later become on disabled players list.  

However, fast pitching is not a predictor of a pitcher getting injured, since there are also 
injuries free pitchers with above twenty years of fast pitching career, like Randy Johnson. What 
makes these players superior to the others is more likely to be their pitching technique, 
frequency and resting time between pitches.  

Theoretical analysis and screening of the fast pitcher movements would help the other 
players to improve their pitching techniques and training methods in order to perform better 
pitches. Besides screening in giving real-time feedback to players on key mechanical parameters 
like joint angles and velocity, would help the players to improve their training procedures and 
finally safely increase their pitching velocity.  

Fastball pitching is the fastest pitch in baseball. It is a very fast movement in three-
dimensional space comprising of a sequence of complex movements with large range of motions. 
Simplification of the kinematic analysis of pitching motion in two-dimensional space results in 
underestimating of the player profile (Knudson 2007). Therefore, the kinematic analysis of 
pitching motion is not a conventional analysis based on the standard human range of motion and 
cannot be evaluated in two-dimensional space.  
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Various complex methods and devices are available to measure the motion for 
biomechanical analysis. There are a number of different technologies used to either directly 
“capture” the motion based on anthropometric data, like position, or indirectly “track” the 
motion based on different kinematics data, like orientation, distance, velocity and acceleration.  

The direct motion capture is usually recorded with imaging methods (Leardini, Chiari et al. 
2005). These methods are generally based on construction of a three-dimensional model, having 
the positions of anatomical landmarks in several different photos. This method is the standard 
motion captures system in which the anatomical landmarks are tagged with markers known as 
marker-based method.  

The most accurate version of marker-based methods is the use of intra-cortical pins to avoid 
the marker inaccuracy due to skin motion (Lafortune, Cavanagh et al. 1992). Yet, the pins may 
buckle or wobble and this method is highly invasive and has ethically concerns. Other medical 
imaging devices has been used for joint motion measurements, like high accuracy X-ray (Ackland, 
Keynejad et al. 2011). However, these methods have a narrow field of view since the motion is 
limited to the size of the imaging device and therefore only one or two joints can be imaged. 
Besides, these methods are too slow and expensive and have side effects due to radioactivity of 
X-ray imaging.  

The marker-based motion capture methods are the current standard method to measure the 
baseball pitchers motion. However, the marker-based motion capture systems are very 
impractical to be used in the baseball field to measure the motions and provide online feedback 
to the players. The reason is that it is difficult and too time consuming to place many cameras in 
baseball field and the markers on player’s body and tracking the data online. Besides, the 
markers fall down easily since players are sweating. Also the sunlight introduces noises to 
measurements and the pitcher needs to be in underwear.  

The indirect tracking of motion is done with: ultrasonic receivers and transmitters to 
measure distance (Kim and Kim 2013), magnetic field measurements to measure orientation 
(Song, Li et al. 2014), or with the Inertial measurement units to measure orientation, angular 
velocity and acceleration (Wang, Zhang et al. 2015). The magnetic and ultrasonic systems are 
subjected to environmental noise and have limited range of measurements. The inertial 
measurement units (IMU’s) are more practical to investigate kinematics of players in field.  

IMU’s contains accelerometer, gyroscope and magnetometer sensors. Each of these sensors 
or preferably a combination of them is used for motion tracking. IMU-based motion tracking 
algorithms are the latest advancement in motion tracking systems and did attract numerous 
researches due to its high reliability and independence. One of the main advantages of using IMU 
sensors is the fact that they are light and wearable. Thus the measurements can be done out of 
laboratories, on the field for sports and during daily life for clinical applications.  

This technology is an adaptation of aerospace and military attitude heading reference system 
(AHRS), which was later used in sport engineering and medical rehabilitation for the estimation 
of the human body performance. However, as most new technologies, which are not yet explored 
in every aspect, IMU’s motion tracking systems are also still subjected to several limitations and 
imperfections which needs to be improved.  

There are a number of recent researches on developing IMU-based algorithms and 
techniques to estimate human body movement kinematics based on inertial sensor system (van 
den Noort, Ferrari et al. 2013, Li and Zhang 2014). There are full body IMU packages 
commercially available, like the Xsens suit.  However, these packages are quite expensive and the 
accuracy of those commercially available packages for academic measurements is not 
established. For example, it is stated that the new Xsens suit in dynamic measurements has 1˚ 
RMS (Appendix 5).  But it is not clear this error is estimated over which velocities of motions. 
Besides this error is based on repeated trials within the same system not in comparison with 
another motion tracking system. Also, the available pre-programed IMU’s instructions and 
software algorithms for position and orientation tracking are difficult to reproduce and adapt for 
the subsequent application fields (Roetenberg, Luinge et al. 2009).  

There are a few researches done on tracking the motion of baseball players using an IMU-
based method comparing with a marker-based method. Lapinski et al. 2013 reported the IMU-
based method angular velocity measurement on shoulder joint rotation during pitching asses 6% 
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STD, being better than the standard marker-based method with 15% STD. However, this seems 
more to be due to filtering of data than a reason to validate the data. Because the magnitude of 
the same measurements shows the marker-based method recorded an average angular velocity 
of 5080˚/s, while the IMU-based method observed an averaged velocity of 4431˚/s (which is 
around 13% lower than the marker-based one). In this study, the comparison between the 
maximum angular velocity of the two methods, which is the most important part for the baseball 
measurement, has not even been reported (Lapinski, Berkson et al. 2009, Lapinski 2013). There 
is not yet a validated tracking motion of fastball pitchers in baseball using IMU-based method 
compared to the standard motion tracking measurement established.  

1 .2  Research objective 
The main purpose of this project is to develop a practical but also accurate experimental 

setup to measure the kinematics of the pitcher inside the baseball field and outline an IMU-based 
method to analyse the pitching motion. Since there is many researches available with the 
marker-based motion capture methods, we can use a marker-based measurement as reference to 
validate and analyse our IMU-based measurement. However, it is also important to keep in mind 
that having the marker-based motion capture system as a reference does not mean that the 
marker-based motion capture provides us the real accurate motion, but it is the standard method 
in motion capture method.  

The main goal of this project can be formulated as: 

 

“Development and validation of an IMU’s motion tracking system  
for measurements of baseball pitcher kinematics,  
having the marker-based motion capture data as the reference.” 
 

In order to accomplish this research goal, in chapter 2, we will review shortly the main 
structures and limitations of marker and IMU-based methods that we need to know before 
developing a new method and measurements. Knowing this initial knowledge, at the end of 
chapter 2 the achievement to the above main goal would be formulated in smaller steps.  
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Chapter 2 
2  Previous works and challenges   

In this chapter, we briefly review the important characters of marker-based tracking 
methods. Then we would look into the important characters of presented IMU-based tracking 
methods and their limitations and imperfections. Beside we would also explore the available 
solutions to these problems and the ways to obtain best result, which we chose to use in our 
method.    

 

 

 

2 .1  Marker-based motion tracking method 
Motion capture with marker-based methods is a technique to record the three-dimensional 

(3D) positioning of a subject in a global coordinate system (GCS). Several different technologies 
have been developed, like active and passive markers.  

Passive markers are simple markers reflect infrared (IR) light. Such markers can be flat or 
spherical. Spherical markers may reflect light at each possible angle where the flat markers only 
reflect lights between 0 and 60° with respect to cameras. Passive markers have simple and 
flexible setup and are used for most of the applications.  

Active markers are infrared (IR) light emitting diodes (LEDs), which requires wire or battery 
to operate. The advantaged of this kind of marker is that they do not rely on reflecting lights but 
they emit light themselves. Thus there can be tracked from larger distance and after 
measurements the markers are already identified. But the measurement preparation is complex 
and too time consuming with placements of al weird LED markers and cameras. 

Vicon, Motion Analysis Corp, Qualysis and OptiTrack are the major commercial available 
systems, which are used in different areas like; medical researches, film industry and video 
games. In a motion capture measurement, markers are place on anatomical landmarks on body. 
The data taken by cameras are reconstructed to build the 3D path of markers positions. The path 
of several markers can be used to represent body segments and the local coordinate system of 
each segment (LCS). 
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Figure 2-1 right:  markers position in a global reference frame (GCS) are captured, middle:  segments 
are defined based on markers position,  left:  segments local coordinate system (LCS) can be defined 

based on markers position (Lapinski 2013) 

2.1.1  Marker-based motion tracking limitation 
2.1.1.1  Markers occlusions 

Markers are very susceptible to data occlusion.  Each marker needs to be seen at least by two 
cameras at each recording frame in order to estimate the 3D position of the marker. If a marker is 
not seen by at least 2 cameras, occlusions occur and it is not possible to compute the global 3D 
position. Occlusions are a bigger problem in passive markers than in active markers. Active 
marker would be identified after collision as the same marker, but passive markers would be 
misidentified as a new marker. These paths can be reunited and gaps can be filled in by 
interpolation. 

 

Figure 2-2 when occlusions occur some data are missing.  Occlusion is more problematic in passive 
markers than active.  Active marker would be identified after collision as the same marker,  but 

passive markers would be misidentified as a new marker.  Marker paths can be reunited and gaps can 
be fi l led in by interpolation,  modified from (Cherveny 2015) 

The gap filling simplifies the differentiation and integration steps. However, gap filling is a 
source of error and the produced data needs to be removed from the results before data analysis.  
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2 .2  IMU-based motion tracking method 
An IMU is a Micro-Electro-Mechanical module typically comprised of accelerometer, 

gyroscope and optionally magnetometer sensors.  

      

 

Figure 2-3 IMU comprised a combination of gyroscope,  accelerometer and magnetometer,  recording 
velocity,  orientation,  accelerations and gravitational forces.   

Looking into literature on IMU-based motion tracking techniques, we can find application of 
this technique in aerospace, biomedical engineering, robotics, virtual reality, sport engineering 
(Seel 2016). However, the structure of all IMU-based motion tracking techniques is based on a 
common concept, which is called strap-down-integration algorithm. This concept comes 
originally from aerospace, where it is difficult to capture the motion of a spaceship, the problem 
can be simplified using strap-down integration of an IMU data placed on the spaceship (and in 
other applications on any moving object in 3D space and thus also on human body).  

Since the IMU records the data regarded to its own coordinate system and as the IMU moves 
and rotates this coordinate system is also moves and rotates. Using strap-down-integration 
algorithm, it is possible to compute the position and orientation of the IMU with respect to its 
initial position and orientation. Having these kinematics data for the IMU positioned on the 
object, kinematics of the object with respect to its initial condition can be estimated.  

 

2.2.1  Strap-down-integration algorithm  
The gyroscope records the angular velocity ( ω ). The integration of the gyroscope angular 

velocity provides us the rotation with respect to the previous orientation (
  ϕ0 ). By definition the 

rotation ( ϕ ) of an object is to be computed by numerical integration of its angular velocity:  

 
    
ϕ(t) = ω(t) .dt∫ + ϕ0    (1) 

This derivation is given slightly different in literatures by different expressions and 
assumptions like constant angular velocity or rotation around specific axis, but mathematically 
they are all corresponding to the above concept.  

Each rotation transforms a vector from the local coordinate system of IMU sensor (MCS) at 
one moment in time to MCS at a previous moment in time (hint: this coordinate system is 
moving). These changes in rotation and positions can be expressed by rotation matrix. As in 
Figure 2-4 denoted for each time step by: R1

, R
2
, R

3
and ... .  

The question is: “How to express this rotations in a fixed global coordinate system?”  

The solution is the strap-down-integration, in which the initial orientation of IMU can be 
taken as the fixed reference coordinate system and we can transform the orientation at each 
moment in time to this reference coordinate system. As in Figure 2-4 expressed by: 

  R2
.R

1
and R

3
. R

2
.R

1( ) .  
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Figure 2-4 Strap-down-integration: angular velocity recorded by gyroscope can be integrated to 
obtain the rotation with respect to the previous orientation in time. The problem is that IMU is to 

attach to a moving object and therefore IMU records data in its moving coordinate system (MCS).  The 
initial  orientation of IMU can be assumed to be the fixed coordinate system and we can transform the 

orientation at each moment in time to this fixed coordinate system.  

Having the rotation matrices to transform the coordinate system of IMU at each moment of 
time to the fixed coordinate system, the acceleration data recorded by IMU sensor can also be 
transformed to the fixed coordinate system. Subsequently we need to subtract gravity from 
acceleration data. Afterwards by integration of acceleration with respect to time, the changes of 
velocity and position can also be computed (Seel 2016).  

 
    
x(t) = γ(t) .dt2∫∫ + xo    (2) 

Figure 2-5 shows a schematic view of the above procedure to compute orientation and 
position from the IMU data using strap-down-integration. 

 

 
 

Figure 2-5 Schematic view of the Strap down integration routine for orientation,  acceleration,  
velocity and position computation from IMU data.  An inertial  measurement unit  contains gyroscope,  

accelerometer and magnetometer sensors,  which measure respectively angular velocity and linear 
acceleration and magnetic field.  The angular velocity is  integrated in time to obtain the orientation.  

This orientation then is used to transform the acceleration vector from the local coordinate system of 
the IMU to a global coordinate System. This can then be integrated to get velocity and position.  
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2.2.2  IMU’s data considerations 
2.2.2.1  Data clipping 

When using IMU for motion tracking, an important issue is choosing an appropriate IMU 
with sufficient range of measurement. Inadequate range of measurement of sensors may results 
in a form of distortion called “data clipping”. Data clipping happens when the magnitude of the 
data to be measured exceeds the threshold. The result is that the sensor is unable to record those 
data and thereby the data would be underestimated.  

 

Figure 2-6 the real data in grey and the clipped data in red 

A number of the previous studies did consider data clipping phenomena, as the reason that 
the IMU-based systems are not appropriate for the sport engineering fields measurements, 
where it is desired to record fast movements like fast ball pitching with high velocity and 
accelerations.  For example, Ahmadi et al. 2010 states there does not exists a gyroscope which 
can records movements of faster than ±300˚/sec, which disqualifies the applications of IMU 
sensors for sports measurements (Ahmadi, Rowlands et al. 2010).  

However, it is possible to build and program an IMU suitable for special range of motion 
measurement (to record only fast movements). Furthermore, the technology is improving fast 
and as the technology is growing, it seems this limitation is vanishing, and there are several pre-
programmed, small and light-weighted IMU sensors available which claim to cover up the whole 
range of players motions. The recent Xsens (fabricated in the Netherlands) and Shimmer 
(fabricated in the United Kingdom) sensors claim to be able to record much faster movements in 
the range of ±2000˚/sec  (Appendix 4 and 5). Even the Analog devices sensors (fabricated in the 
U.S.A.) are entitled to be capable to record much faster movements in the range of ±20000˚/sec 
(Appendix 6). 

 

2.2.2.2  Error characteristics of gyroscope and accelerometer   
As it is mentioned in 2.2.1, IMU-based kinematic computation uses numerical integration. 

Mathematical integration of a set of data with a constant bias, results in that the bias grows non-
linearly in time. This phenomenon is called “drift”. Overall, errors in the IMU recorded data 
results drift in orientation and position estimation after integration.     

When an IMU is not moving, the measurements of gyroscope should be zero and the 
accelerometer output should show only the gravity (9.8 ms-2 in vertical direction). However, in 
practice usually the measured data by the IMU sensor contain an offset from these values. The 
average of these offsets is known as the constant bias of the IMU. Initial calibration steps are 
suggested to remove this offsets. However, the calibration steps are also subjected to scaling and 
axis alignments errors. Any error in calibration of gyroscope sensor after integration results in an 
orientation drift proportional to the angular velocity. And any error in calibration of 
accelerometer sensor after integration results in an orientation drift proportional to the squared 
rate of acceleration.  

The bias of IMU is an accumulation of different sources of errors, not only calibration error. 
IMU sensors measurements are subjected to thermo-mechanical disturbances of environment 
and thereby not only the measurements are affected but also the calibration. Further, when IMU 
is turned on, its temperature is increasing. As the temperature is increasing the bias is also 
increasing non-linearly in time. This bias is to be simulated as a white noise. This bias after 
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integration results in a linear growth of residual bias in orientation estimation and a quadratic 
growth of residual bias in position estimation.  

Furthermore, an IMU is an electronic module with its electrical flicker noise which exposure 
in random time. This error is to be simulated as random bias of instability (Woodman 2007, Seel 
2016).  

Altogether, both gyroscope and acceleration recordings are subjected to several sources of 
biases. Woodman 2007 did a systematic study on the above sources and characteristics of errors 
and simulated the significant errors as the sum of these errors (Woodman 2007).  

The simulated logarithmic plot of this estimation in Figure 2-7 shows that the drift grows 
exponentially in time. The accelerometer bias is the significant cause of drift at the initial few 
milliseconds (until 0.3 seconds), after this time the gyroscope bias becomes the significant cause 
of drift. Practically, it is the gyroscope orientation estimation bias and not the accelerometer, 
which limit the overall accuracy of the most IMU-based motion tracking methods. An error in the 
orientation estimated by gyroscope may cause incorrect acceleration coordinate system 
transformation. Subsequent integration of the signals, results in a rapid accumulating of this 
error.  

 

 

Figure 2-7 simulation of the metric and logarithmic propagation of the roll  of  gyroscope and 
accelerometer in drift  arising (Woodman 2007).  

 

Some of the commercially available IMU sensors, like Shimmer and Xsens, have an internal 
automatic compensation for these biases, which removes the drift from their output. For 
example, they have used the temperature bias, based on battery rate of reduction index (i.e. 
Voltage charge level).  

 

2.2.2.3  Drift compensation  
As it is shown in previous section, the drift is to be estimated quite well by an exponential 

function. Yet this estimation is subjected to initial calibration inaccuracy and varying 
environmental disturbances. These biases have different characters regarded to the varying 
recording duration and type of movement. This makes the bias reduction a necessary but not 
sufficient step, whereby any small bias in signals growth by integration. There is usually needed 
to apply additional drift compensation procedure on the specific part of the calculation which the 
bias comes from. Looking into the strap-down integration procedure, the major problem of 
position estimation inaccuracy is caused mainly by errors in orientation computation. The 
solutions to compensate for orientation drift in literatures are generally fall into two groups: the 
commonly used “data fusion” approaches and some studies used “specific assumptions”.  
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2 .2.2.3.1  Data fusion approaches 
The algorithms which use the data of two or more sensor types (gyroscope, accelerometer 

and magnetometer) measuring the same motion to “predict” and “update” the state of the system 
(orientation, acceleration, velocity and position), are known as data fusion algorithms. The 
prediction would be followed by an updating step, which specify how good it is the state 
predicted and continuously repeat this process for each time step or periodically over a span of 
data set to maintain a better estimation of current state of the system.  

Data fusion does not need to be applied only on data of sensors from the same IMU. It is also 
possible to use data fusion of an IMU with the data of another system or another IMU. For 
example fusion of a set of marker-based with IMU-based position tracking data measured at the 
same time. The periodic position drift compensation approach is also commonly used for 
updating position estimation in navigation devices, whereas the position measured by GPS is to 
be combined with the high sampling frequency estimated position from gyroscope and 
accelerometer of an IMU (Woodman 2007).  

Here a basic explanation is given to have an idea about what is happening is such filters.  In a 
simple case consider from the angular velocity integration, the orientation is computed. This 
computation contains drift. The same motion is also measured by another sensor i.e. 
accelerometer. The orientation may also be computed from the accelerometer measurements. 
The fusion of these two set of data, coming from two different sensors and since they are 
measuring the same motion, this can be used to correct for the drift.  

In this process, typically one of the data sets, which is more trustable and would be weighted 
more. The weighting between data sets usually denotes as the filter gain. The choice of weighting 
gain between IMU’s sensors is based on the following remarks: 

The orientation of an IMU can be defined by three angles: Pitch, Roll, and Yaw. These angles 
can be computed from the direction of gravity and the North Pole. The main concept behind this 
is that; the linear acceleration forces acting on an object are the sum of gravity, and the 
accelerations elicited by the movement. The accelerometer of a static IMU shows only the value 
of the gravity field. Because the only force applied to the static (not moving) IMU is the gravity, 
and since it is always pointing to the centre of earth, the pith and roll angles can be computed 
from accelerometer data (but not the Yaw, since the Yaw is not the matter of inclination). 
Similarly, The Yaw angle (heading towards Earth's magnetic North Pole) can computed using 
magnetometer data.  

 

 

Figure 2-8 Orientation of IMU can be defined by Pitch,  Roll  and Yaw angles.  These angles can be 
computed from the direction of gravity and the North Pole.  

Accordingly, the drift in the inclination part of the IMU’s orientation can be eliminated using 
the measured acceleration data (Fusion of gyroscope and accelerometer data). Besides, the drift 
in Yaw angle can be eliminated using magnetometer data (Figure 2-9).  

Note that, the magnetometer data are sensitive to magnetic fields which is hard to prevent in 
presents of ferromagnetic materials in the indoor environments of experimental marker-based 
motion tracking lab (electronic devices, computers, cameras setup and the structure of the 
building).  
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Figure 2-9- Orientation correction based on data fusion.  Orientation (pitch,  roll  and yaw angles) can 
be computed from gyroscope. Accelerometer data can also be used to estimate pitch and roll .  

Magnetometer data can be used to estimate yaw angle.  Different combination of errors estimated 
from gyroscope,  accelerometer,  magnetometer or other known sources of environmental errors (as 

explained in 0) can be used to compensate for drift .   

There are many data fusion algorithms where as the most important of them are the 
complementary filter, the Kalman filter (with constant matrices), and the Mahony and Madgwick 
filter (Madgwick 2010). An experimental comparison (Cavallo, Cirillo et al. 2014) on these 
algorithms show that the dynamic Root-Mean-Square error (RMSE) of these algorithms are 
similar (smaller than 1◦) and the computational time of EKF algorithm is much longer than the 
Mahony and Madgwick (Table 2-1). 

Table 2-1 – Experimental comparison of Fusion algorithms for attitude estimation.  Hint,  embedded 
system’s computation time is longer than the academic experiments,  i .e .  with Matlab.  

Algorithm 
Euler angles RMSE [◦] 

Matlab/Simulink 
[ms] 

Embedded 
system 

[ms] 
Roll  Pitch Yaw 

EKF 5.05 3.24 5.93 0.1 2.7 

Madgwick 5.54 3.93 6.27 0.017 0.15 

Mahony 5.87 4.53 6.66 0.014 0.11 

 

Extensive discussion and implementation of these algorithms is beyond the scope of this 
project. Here it is only sufficient to know that due to the above mentioned privileges of the 
Mahony and Madgwick filter, it is commonly used for human motion applications, and therefore 
we also used this filter (Madgwick 2010). 

 

2 .2 .2.3.2  Specific  assumptions 
In order to accommodate the drift compensation procedure, some studies used specific 

assumptions. A simple example of this approach is that a walking foot velocity or distance to the 
ground is zero at the moment that foot contacts with the ground and an IMU placed on foot needs 
to measure zero velocity.  

Therefore, the drift in the IMU velocity data measurements can be periodically corrected by 
the zero-velocity (or no distance to the ground) updates at the moments of the contact with 
ground. The weakness of the specific assumptions approach is that results would not be valid if 
the assumptions do not hold. 

Figure 2-10 shows drift in position estimation (distance to the ground) during walking in 
IMU-based motion tracking comparing with the drift free marker-based approach.   
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Figure 2-10 Drift  in IMU-based motion tracking of foot during slow walking compared to 
measurement of the same motion using marker-based method (Lai ,  Charry et al .  2008)  

 

2 .2.3  Human body motion tracking with IMU 
2.2.3.1  Choice of coordinate system 

In IMU-based human motion tracking, the orientation and position of each segment would be 
determined by an IMU attached to it. As it is mentioned above, for kinematic analysis based on 
the IMU’s recorded data, we need to choose a fixed coordinate system and it is convenient to 
choose the initial local coordinate system of the IMU.  

When there are a number of IMU presented in the measurement, the question is how to 
define a unique global coordinate system (GCS)? If we choose the GCS to be the initial position of 
one of the IMU sensors, then the next question is what is the relative initial orientation of the 
other IMU sensors with respect to that IMU? 

 

Figure 2-11 the data measured by IMU sensors are expressed in the IMU’s coordinate systems. When 
tracking human motion using multiple IMU sensors,  there is an issue that relative orientation of IMU 

sensors with respect to each other is  not known. 

It is good to mention here that the standard marker-based measurements did also face the 
problem of choosing a GCS. As it is explained in chapter 3, this problem for the maker-based 
systems is solved in an early stage before the measurements, when a GCS is defined via camera’s 
calibration using a reference object.  

Some commercial IMU sensors like Xsens suit, automatically converted the data to a global 
coordinate system through a pre-experimental calibration step (Roetenberg, Luinge et al. 2009).  

Different methods can be used to find this relation. In chapter 4, it is explained that we take 
the initial relation between segments from the markers based method. Nevertheless, later in 
chapter 6 a convenient method is suggested to align the IMU sensors at the beginning of the 
measurement.  
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2.2.3.2  Functional calibration  
A main problem in IMU-based motion tracking methods is that neither the direction nor the 

positions of the IMU sensors with respect to the body segments are known. As it was mentioned 
in previous section (2.2.3.3), some studies assumed IMU is precisely mounted on body segment 
the way that IMU’s coordinate system is aligned with a meaningful physiological axis. There are 
also studies which did use the measurement data of predefined positions and/or motions, called 
functional calibration to find the orientation of IMU regarding to body segment mounted on it 
(Luinge, Veltink et al. 2007, O’Donovan, Kamnik et al. 2007, Cloete and Scheffer 2008, Favre, 
Jolles et al. 2008, Favre, Aissaoui et al. 2009, Roetenberg, Luinge et al. 2009, Takeda, Tadano et al. 
2009, Lin and Kulic 2012, Li and Zhang 2014, Rogowski, Creveaux et al. 2014, Seel, Raisch et al. 
2014, Schauer and Seel 2016).  

An example for functional calibration with predefined static position is that in standing 
position with vertical and straight legs, the accelerations recordings have been used to determine 
the orientation of IMU with respect to the longitudinal axis of thigh and shank (Favre, Aissaoui et 
al. 2009, Takeda, Tadano et al. 2009).  

Other studies determined the same relation using predefined functional calibration motion.  
They used the gyroscope recordings during lateral rotations of leg to determine the orientation 
of the IMU mounted on thigh with respect to the longitudinal axis of thigh (Takeda, Tadano et al. 
2009).  Figure 2-12 shows some examples of functional calibrations movements. 

 

Figure 2-12 Calibration motions to determine orientation of IMU regarding to body segment (Seel ,  
Raisch et al .  2014) 

Among these studies, Rogowski et al. 2014 for upper limbs and the Seel et al. 2014 for lower 
limb gave comprehensive outlines of functional calibration movements (Rogowski, Creveaux et 
al. 2014, Seel, Raisch et al. 2014).   

 

Figure 2-13 Functional calibration of upper limb (Rogowski,  Creveaux et al .  2014) 
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Functional calibration allows defining the orientation of the IMU with respect to the segment, 
which defines the joints axes. Most likely the estimated axes would not be perpendicular to each 
other. This means that the computed coordinate system would not be Cartesian. The routine to 
convert these computed axes to a Cartesian coordinate system is as follow: 

1- The first axis is to be defined by the calibration movement, which we trust the most.  

2- Another calibration movement can define the second axis as the temporary axis, which 
would be corrected later.  

3- The third axis would be defined to be perpendicular two the plane pass through these 
the first and second axis.  

4- Subsequently the second axis would be corrected to be perpendicular two the plane 
passes through the first and third axis (Figure 2-14).  

 

Figure 2-14 Functional calibration routine to define the orientation of the IMU mounted on the trunk 
with respect to trunk. A rotation of trunk is more truthful to be allows defining the orientation of IMU 
with respect to the first axis (1).  Lateral f lexion/extension allows defining the second axis (2),  which 
needs to be corrected.  The third axis (3) can be computed by cross product to be perpendicular to the 

plane pass through 1 and 2.  Subsequently 2 would be corrected to be perpendicular to the plane 
passes through 1 and 3.     

 

2.2.3.3  Simplifications assumptions 
When we look into the previous literatures approaches, we realize many of the researches 

for simplifications of the problem took a number of assumptions, as:  

1-  The placement of IMU on body is assumed to be the way that one of the local coordinate 
axes of the IMU is aligned with a physiological meaningful axis (like the longitudinal axis of 
segment or the joint axis).  

This results in inaccuracy of the results. An example of this is the study of Farve 2006 et al. 
where it is assumed the knee flexion/extension axis to be aligned with one of the axis of each IMU 
on tight and shank. This study noticed the integration of this misalignment introduces a drift in 
joint angle estimation and they suggested to remove the drift by a high-pass filter (Favre, Luthi et 
al. 2006). 

Functional calibration routine is a method which is used in a number of recent studies to 
compute the IMU to segment coordinate system rotation, which practically reduce this 
misalignment error (Li and Zhang 2014). This routine is explained better in following section 
(2.2.3.2).  

We would use Functional calibration routine to define the segments coordinate system. In 
chapter 3 and 4 you can find a comprehensive explanation of how did we used this method. 

2-  The body segments are usually assumed to be rigid and their attitude is measured 
usually only by one IMU attached to each segment. 

3-  The biological joint is often considered to be a perfect hinge, saddle or spherical joint.  

An example of this is the studies of Seel et al. where he assumed the knee joint behaves like a 
hinge and shoulder joint as a spherical joint. Such mechanical joint defines kinematic constraints. 
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Like, in a hinge joint case, the angular velocities projections of two adjacent segments onto the 
joint plane (The plane which joint axis is the normal vector.) must be identical. Or for a spherical 
joint, the acceleration of joint centre in both local coordinate systems of the two segments must 
be identical (Seel, Schauer et al. 2012, Seel, Raisch et al. 2014, Schauer and Seel 2016, Seel 2016) 

4-  The skin movement is neglected and the IMU position and orientation with respect to 
the body segment is assumed to be constant. 

The non-ridged, deformable human body joints and segments affect a human body 
measurement, which makes the measurements ambiguous. Subsequently it is needed to take 
some assumptions to define the parameters.  

In this project we would also take these last three assumptions, to simplify the problem. 

 

2.2.3.4  Choice of variables 
In this project we aim to validate the results of IMU-based tracking method against a marker-

based method. To do this, it is very important to choose the variables to be validated.  We can 
analyse motion on different levels, from “orientation” to “angular velocity” or “angular 
acceleration”. This is a relatively trivial mathematical computational issue that the amount of 
bias in the results depends on the choice of variables.  

From orientation ( ϕ ) by one and two steps differentiations, the angular velocity ( ω ) and 
angular acceleration ( α ) can be computed respectively. However, the downside is that the 
numerical differentiation works as a high pass filter, which means any errors in the 3D positions 
will be amplified with each differentiation step.  

Similarly, from angular acceleration ( α ) by one and two steps integration, the angular 
velocity ( ω ) and orientation ( ϕ ) can be computed respectively. However, the downside is that 
each integration step introduces a drift, which is proportionally increasing in time. Besides, 
integration is more challenging than differentiation, since we need to know a global reference 
points or initial condition for integration.       

Table 2-2 differentiation and integration forms of variable levels  

 Derivation form Integration form 

Orientation  ϕ  
    
ϕ = ωdt∫ + ϕ0  

Angular velocity 
   
ω =

dϕ
dt

 
    
ω = αdt∫ + ω0  

Angular acceleration 

    
α =

dω
dt

=
d2ϕ

dt2
  α  

 

The power generation during pitching starts mainly from stance foot and goes through body 
to the pitching hand and at the end the power transfers to the ball. In the fastball pitcher’s 
application, we are more interested in angular velocity of body segments which eventually is 
needed to compute this energy generation flow and which results in magnitude of the velocity of 
ball. To do this, we need the angular velocities and inertial data of body segments.   

 The marker-based method provides us the positions of the markers and subsequently the 
body segments orientation. For computing angular velocity, one-step differentiation is to be 
done. The IMU-based measurements by gyroscope, accelerometer and magnetometer provide the 
angular velocity, linear acceleration and magnetic field. Integration of the angular velocity of 
IMU’s gyroscope provides orientation. This orientation may be differentiated once to compute 
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angular velocity of body segment. But, it is desired to compute the angular velocity of segments 
directly from the IMU data.  

Nevertheless, it is also interesting to compare the two methods at different kinematic level of 
variables to validate the method (segment orientation or joint angle, angular velocity and 
acceleration of joint and segments). This would be interesting, not only for baseball application, 
but for the overall validation of the method.  

 

2 .3  Project overview 
In this project we aim to validate the results of IMU-based tracking method against a marker-

based method. In order to validate the data, the deviation between IMU-based and marker-based 
measurements under different test conditions needs to be smaller - or in the range - of the 
natural variance observed in human motion. For fastball pitching studies the maximum velocities 
(not the average) need to be validated. Therefore, to validate the IMU-based method we set the 
allowable threshold at 10% for the maximum angular velocity.  

Having this done, we can answer the main question of this research that whether we can get 
the same results from IMU and marker-based methods. If yes, how similar are the results. And if 
not, what are the differences and what is the source of these differences. It is also interesting to 
know, how does the IMU’s functional calibration procedure affect the accuracy of measurements, 
by reproducing the same routine on the marker-based data.  

As it was mentioned above the orientation and acceleration may also be computed and 
compare between the two methods. We need to keep in mind that differentiations introduce 
noise and integration introduces drift to data.    

Further, the segment length can be calculated from the IMU data and having the segment 
length the kinematic data is complete to fill in a scalable rigid body model and compute the 
power generation flow. The inverse dynamic of the pitcher arm (from the pitching hand to the 
shoulder) is made to compute the joint forces and moments. For the whole body power flow 
calculation, the ground reaction force is needed and could not be measured in this experiment. 
The measurement of power flow can be used to estimate the best pitching configuration and real 
time feedback for each individual player. Figure 2-15 shows a schematic overview of the steps we 
would like to make. The yellow variables are to be compared as the index for validation of the 
IMU-based method.  

 

 

Figure 2-15 Overview of this project progress 
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The contents of this thesis is organized as follows:  

Chapter 3 describes the experimental method for synchronized tracking of the same motion 
with IMU and markers to evaluate the IMU-based measurements against marker-based one.  

Chapter 4 represents the kinematic analysis methods (estimation of joint angles, angular 
velocities and accelerations of body segments) for both IMU- and marker-based methods. This 
includes the functional calibration method to estimate IMU’s orientation with respect to body 
segment (Transformation of IMU data to the joint centres). Then the method to compute segment 
lengths from IMU data is introduced. Afterwards the scalable anthropometric model is presented 
to estimate the masses and inertia properties of body segments using the body length as the 
scaling factor. Finally the method to compute body segments energy and power is explained to 
present the power flow in body segments.  

Chapter 5 presents the kinematic and kinetics results and analysis. By identification of the 
sources of dissimilarities between IMU-based measurement against the marker-based reference, 
quantification of the error and evaluate the IMU-based measurement method. 

Chapter 6 discuses the results and validate the IMU-based motion tracking against the 
marker-based measurements. Here the important achievements of this project are presented 
which can be used as a practical guideline for the IMU-based kinematic measurement in future. 
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Chapter 3 
3  Experimental method 

In this chapter, the experimental setup and measurement method is explained. The 
experimental setup consists of two separated but synchronized measurement systems measuring 
the same motion: 1) Marker-based motion capture and 2) IMU-based motion tracking system.  

 

 

 

3 .1  Experimental  setup 

3.1.1  Marker-based motion capture system 
An OptiTrack motions capture system consisted of 16 cameras, 3 HUBs, a desktop PC and 

passive spherical markers are used in this project. Each HUB can be connected to maximum 6 
cameras, thus 3 HUB are used to keep the cameras recordings synchronized and transfer data to 
the PC. The OptiTrack system is installed in a 6x6x3 meter area, where 16 cameras (OptiTrack 
flex 13) are mounted on 8 vertical pales. The “Motive” software is used to reconstruct marker 
trajectories from the skin markers tracking data.  The markers can be tracked in when they are 
seen by at least two cameras. This results in that a part of the measurements area is lost and the 
real measurement area would be 4x4x3 meter (Schrauwen 2015). This volume is enough to test 
the pitching motion. 

 

Figure 3-1 a) Measurement area is 6x6x3 meter with 16 cameras,  b) The Lost area (Schrauwen 2015) 
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3.1.1.1  OptiTrack system calibration 
In advance to experiments, in order to be able later to reconstruct the markers trajectories in 

3D, it is needed to know the position of cameras with respect to each other and setup the 
accuracy of system to track a moving object (dynamic and static calibration). The dynamic 
calibration of cameras would be done by a wand with known rigid body defined by 3 markers, 
moving around in the whole measurement area and the captured frames of cameras would be 
corrected for the error in the known length measured of the rod. The static calibration is done by 
the L-form reference object (with three markers on it and a known geometry). By placing the L-
form reference object in the experimental area the coordinate system axis on the ground would 
be defined. After the calibration of the cameras, the subject and experimenter do not have any 
contact with cameras. This guarantees a reliable measurement.  

 

Figure 3-2- a) dynamic calibration wand, b) static calibration reference object (Schrauwen 2015) 

 

3.1.2  IMU-based motion tracking system 
IMU-based motion tracking system set-up consists of 8 IMU sensors (Shimmer3, see 

appendix 4) with its Base15 kit (Figure 3-4). The data is registered on SD cards of each IMU and 
after the measurements via the Base15 we bring the data to laptop. The “Consensys” software is 
used for between IMU sensors synchronization. It is also possible to send the data directly via 
Bluetooth to the laptop. However, since in this experiment we plan to do the analysis offline, in 
order to develop the method, there is no need to use the Bluetooth. We did a set of experiment 
with Bluetooth. It is difficult and takes time to connect the IMU sensors with computer to record 
data directly on computer. The most annoying problem was that when the an IMU disconnected 
(due to distance or being beside a part of body), eventually it remains disconnected till we bring 
the IMU near to computer and wait a few minutes till it connects again. Therefore, for the future 
experiments if it is aimed to use Bluetooth, it is suggested to support the system with a Bluetooth 
amplifier.    

 

3.1.2.1  IMU system calibration 
Preliminarily to measurement, we need to install a firmware on each IMU, setup the data 

acquisition format (frequency and limits) and calibrate each IMU separately to align the axis of 
the orthonormal coordinate system of each IMU with its outer sides (MCS).  

 

Figure 3-3- Coordinate system of IMU (MCS),  Figure modified from (Shimmer 2014) 
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3.1.3  Connection between the two measurement devices 
The Simmer IMU sensors have an external port (A6) in which a current signal up to 3 volts is 

allowed. Besides, the OptiTrack system exposure a trigger signal which goes through the HUBs 
and return to PC during each recording, to synchronize the cameras together. We reduce this 
trigger signal to 3 volts (important for not damaging the IMU) and record this on one IMU (we 
call it from now on the trigger IMU). The trigger IMU is only used for synchronization not for 
motion tracking. Each time we start recording by OptiTrack system, a trigger signal assert to the 
trigger IMU, and de-asserted when recording is stopped (Figure 3-4).  

 

 

Figure 3-4- Schematic view of the synchronization of IMU system with OptiTrack system 

 

 

 

3 .2   Method of measurement 
We did 4 pilot measurements to develop the experimental setup and solve hardware and 

synchronization problems. For example, placement of markers directly on the skin and on the 
special motion-tracking suite was done. Placement of markers with double-sided tape on skin 
was chosen to minimise inaccuracy. Data recording via Bluetooth and on SD cards was used and 
we chose to use SD card data recording. The results presented in this thesis are from the final 
working setup with one test subject; A 26 years old male with 71 kg weight and 183 cm height. 
The subject had no history of right upper limb complaints and gave their informed consent for 
this experiment. 
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3.2.1  Marker and IMU placements 
It is common to place markers on bony parts of segments to reduce the inaccuracy due to the 

muscle contraction. However, some studies did mention that the skin is gliding on the bony parts 
and it is better to place the markers on the muscles which has smaller cross section and 
accordingly less volume changing due to the contraction (van der Helm and Pronk 1995, Lapinski 
2013).  

The placement of IMU’s on the skin is not a standardized positioning. There is no reference 
protocol to place the IMU’s. There are even studies that claim the IMU placement on different 
area on the same body segments does not result in a significant discrepancy in the results 
(Palermo, Rossi et al. 2014). Besides, position of IMU and markers should have some distance 
that they would not push each other due to skin motion. Also we put on each IMU a marker to 
have the position of IMU sensors in OptiTrack data. The markers are attached to the body on 
bony parts of body and IMU’s on the muscles, which has smaller cross section and accordingly 
less volume changing due to muscle contractions. 

Since we are interested in pitching motion, we choose to track only the pitching upper limb 
(Right hand, forearm and upper arm), the trunk (thorax and pelvis) and the stride leg (Left leg).  

For the IMU-based system one IMU per each body segment is used to measure the 
orientation and velocity of each segment. Figure 3-5 shows the guideline of positioning the 
markers and IMU sensors that we used in this project. The name and position of the 20 
Anatomical landmarks and the 7 IMU sensors, which are used to define the desired body 
segments, are shown.  

 

 

Figure 3-5 Placement of Anatomical landmarks (red circles) and IMU sensors (yellow rectangle) on 
body segments 
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In total, 20 anatomical markers and 7 extra markers on IMU sensors and 7 IMU sensors were 
placed on skin, to define the 7 body segments. The markers and IMU sensors are attached to the 
body by strong double-sided adhesive tape on bony parts of body (Figure 3-6).  

 

 

Figure 3-6- Markers and IMU placement;  subject is  equipped with markers and IMU sensors,  
identifying 7 body segments.  

 

3 .2.2  Experimental protocol 
Once all the IMU’s are placed on body segments, before starting pitching measurements, the 

subject needs to perform at least two functional calibration movements per body segment to 
compute the orientation of each IMU regarding to the segment, which it is mounted on (as it was 
explained in section 2.2.3.2). Thus for each joint it is sufficient that the subject would perform 
two (not three) functional calibration movements. This routine needs to be done for the 7 body 
segments to reveal the orientation of the IMU sensors with respect to the segments, which is 
mounted on.  

The subject is asked to perform more (than two) different possible functional calibration 
movements. The movements are also performed with different velocities. These are done to 
reveal the consequences of different calibration movements on results and establish a better 
measurement protocol for following measurements, which would be more discussed in results 
and conclusions (chapter 5-7).  

In total, the subject did perform the following functional calibrations and experimental 
movements in 49 recording sessions:  

l Static position section: Consisted of two static relaxed postures with body upright:  
o N-posture: neutral with arms beside the body and palm forward.   
o T-posture: with arms horizontal and thumbs forward 

l Joints rotations section:  Each preforms five times at three different speed (slow, normal 
and fast)  
o Right shoulder  

♦ Flexion/Extension: with the arm parallel to the sagittal plane until maximal 
humeral elevation is reached, then return to starting position. With palm in 3 
positions; to the left, forwards and backwards 

♦ Abduction/Adduction: Abduct the arm parallel to the frontal plane until maximal 
humeral elevation is reached, then return to starting position.	 
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♦ Horizontal Abduction/Adduction: Abduct the horizontal arm parallel to the 
horizontal plane with palm downwards.	 

♦ Internal/External Rotation: with elbow trunked 90˚: 
v Upper arm horizontal and shoulder joint rotates so that the hand moves 

forwards and the palm faces the floor, then return to starting position.	 
v Upper arm vertical and shoulder joint rotates so that the hand moves parallel 

to the horizontal plane with palm to the left, then return to starting position.	 
o Right Elbow 

♦ Supination/Pronation: Elbow trunked 90˚ and lower arm rotates around its 
longitudinal axis, then return to starting position. 

♦ Flexion/Extension: with the lower arm parallel to the sagittal plane until 
maximal lower arm elevation is reached, then return to starting position. With 
palm in 3 positions; to the left, forwards and backwards. 

o Right Wrist 
♦ Flexion/Extension: Hand bends with palm down, towards the wrist, then return 

to starting position.	 
♦ Radial/Ulnar deviation: hand bends towards the little finger, and then return to 

starting position.	  
o Trunk 

♦ Rotation: subject sits on a chair and chain hands in front and rotates the trunk to 
left and right.   

♦ Flexion/Extension: subject stand and trunk bends forwards and backwards 
o Left Knee 

♦ Flexion/Extension: subject sit on a chair and flex and extend shank.    
o Left Hip 

♦ Flexion/Extension: stand on right foot, left leg is flexing and extending parallel to 
the sagittal plane. Left foot does not touch the ground. 

♦ Abduction/Adduction: stand on right foot, left leg is adducting and abducting 
parallel to the frontal plane. Left foot does not touch the ground. 

♦ Lateral rotation: stand on right foot, left leg is rotating from hip joint. Left foot 
does not touch the ground.  

l Extra selected motions 
o Walking 
o Lunge: with (right and left) leg in front   
o Squat with trunk upwards and hands on the sides  

l Pitching motions  
o Pitching while whole body moves 
o Pitching while only right arm moves 

 

In order to prevent the subject to stare at cameras (there is a small hazard of IR exposure the 
subject eyes), the subject is instructed to look forward and no cameras is placed in front of the 
subject at eye level in the direction that the ball would be pitched.  

The Madgwick’s orientation computation algorithm that we are using has a single parameter 
beta, which controls the amount of trade-off between information from accelerometer, gyroscope 
and magnetometer. For better drift compensation and converge faster to the true state, it is 
advised that the subject remains still for at least few seconds upon start of recording set large 
beta (3 to 8) and for the rest of the recording set smaller beta (    β = 0.01 to 0.1 ). If not, then the 
orientation estimation fails.   

Note that for our measurement, due to the environment condition inside lab (electronic 
devices, computers, cameras setup and the structure of the building), we needed to use a smaller 
beta (   β = 0.0001 ), which means less trust the magnetometer and accelerometer and more trust 
gyroscope. Larger beta could not compensate for drift. Besides, both Shimmer’s Matlab code  
(updatequaternion.m) and Madgwick’s algorithm give the same results, since Shimmer’s 
Matlab code use the same algorithm as the Madgwick’s inside it. It means using    β = 0.0001  in 
both Madgwick’s algorithm and Shimmer’s matlab code (updatequaternion.m), we could 
compensate for drift and produce a reliable orientation computation.  
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3.2.3  Data acquisition  
After measurement, the following steps are taken to make the acquired data ready for 

analyses:  

- For the OptiTrack data, the trajectories (markers positions) are reconstructed from the skin 
markers tracking data by the motive software. These markers positions are defined in a global 
reference frame (GCS) whereas the centre of this centre frame is somewhere on the ground. The 
position data in OptiTrack system are registered in separated trials whereas the starting time of 
each trial is at zero (sampling time is 0.0083s, 120Hz). The data for the first two time steps are 
exactly the same for all of the trials, this is due to the fact that trajectories at time zero is not 
known. The skin makers position (in “.c3d” format) are labelled in MOKKA software. And saved 
again in “.c3d” format (note that one of the trials when opened in MOKA had one time step less 
than the data at the end). The “.c3d” format files are imported in MATLAB. Some of the markers 
were tracked in a few separated data file, which were needed to identify (by “find(isnan)”), and 
reunited. Due to the occlusion of some markers in time, there were some gaps in data. The gaps 
have been filled in MATLAB by “fillgaps” function. A low pass filter with cut off frequency 3 Hz 
has been used to smooth the data and get rid of noise. The Nan data time vector is used to 
remove the unreal data.  

- For IMU’s data, Filtering of the IMU sensor output is carried out inside of the IMU. Filter 
output is modelled at a frequency of 500 Hz or lower, as desired.  After the measurements all of 
the IMU’s are set into the base15 ports and the registered data on the SD cards of IMU sensors 
are synchronized and exported via CONSENSYS software into “ .mat  ” files. In this MATLAB 
structure format file, the following data are recorded: wide range accelerometer [m/s2], low 
range [m/s2], gyroscope [°/s], magnetometer, trigger signal [mV] and time.  

 

3.2.3.1  Limits and concerns 
Each marker is trackable by OptiTrack system, as long as it could be seen by at least two of 

the cameras. However, there exist some concerns that lead to occlusions in the markers position. 
Some times for example when the arm comes up, one of the marker points on the head or hand 
might be hidden between head and arm, and the cameras might not be able to track the marker 
point for less than a second but a lot of frames. Those occlusions gaps can be filled by 
interpolation. However, this would not be real data captured by OptiTrack system. Therefore, we 
don’t use this option of OptiTrack system. However, we did interpolate the data for simplifying 
the differentiation but at the end of calculations we removed the frame data, which were 
produced by interpolation.  

The high speed of a player delivering a pitch holds for high velocity of segments accelerating 
and vanishing in a very short span in time and therefore tracking the segment with camera 
tracking requires high frame rate of video recording and with IMU requires fast and sensitive 
IMU sensors. The maximum resolution of the Optitrack system cameras is 120Hz, which provides 
a high level of motion capture resolution (There exist motion tracking systems with higher 
sampling frequency up to 300 Hz).   

Pitches of professional baseball players are recorded to reach a ball velocity of around 170 
[km/h], which is 1 meter per 44ms. Besides, we know that the ball velocity is roughly matching 
the maximum velocity of hand. This means OptiTrack system registers only 5 frames when the 
pitcher hand moves 1 meter and whatever happens in between those 5 fames is not recorded. 
The sampling frequency of 120 Hz is adequate for method development but too slow for 
capturing the pitches of professional baseball players, where we are specifically interested to 
explore the kinematic of the player at a few milliseconds when the power build in body reach to 
its maximum and to present the fastball. 

Therefore, the used Optitrack device for tracking baseball pitchers may not be appropriated. 
The IMU sensors with sampling frequency of 500 Hz would register 22 frames per meter, which 
is a frame for each 4.5 cm. Therefore, the used IMU sensors setup for tracking baseball pitchers 
might be appropriated.  
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3.2.4  Synchronization 
The data of the IMU sensors has been acquired for each IMU for around 1 hour. The trigger 

IMU data has been used to separate the trials related to the acquired data by the OptiTrack 
system. The trigger signal is registered in external port A6 of the extra IMU connected to the 
OptiTrack HUB. Figure 3-7 shows the trigger signal.   

 

Figure 3-7 Trigger signal recorded on the trigger IMU is used to synchronize OptiTrack system with 
IMU sensors 

The trigger is identifying as each recording by OptiTrack is registered by constant value of 
3000 mV (3 volt). Each time that the magnitude of the trigger signal is above 2750 mV (a 
magnitude under 3000) the data has been set as the new trial. The new trial ends when the 
magnitude of the trigger signal drops and became smaller than 2750 mV. The data between the 
trials are not needed, since we do not have their correspondent measurement by OptiTrack 
system.   

 

3.2.4.1  Limits and concerns 
IMU’s acquisition data is at 500Hz (sampling time of 2ms), while the OptiTrack record the 

motion at 120Hz (sampling time of 8.3ms). This may result in an error of synchronization that 
can exceed up to the 8.3ms.  Further, the 16 cameras are also synchronised with each other, 
which can results in tracking error.  The IMU’s also needs to synchronize with each other that 
means the synchronization between IMU’s also may introduce a shift in their recordings of up to 
2ms (since sampling time is 2ms).   

The acquisition frequency was set to 500 Hz. However, each IMU has its own internal clock 
and use computer clock for between IMU sensors synchronization. Consequently, acquisition 
frequencies between IMU sensors slightly differ from the 500 Hz. In order to solve this problem 
all the IMU’s data have been interpolated into the time vector of the trigger IMU.  



 

Page 27 of 114 
 

Chapter 4 
4  Analysis method 

In this chapter, the method used to compute the kinematics, kinetics and power flow of the 
subject from the measurement data is explained.  

 

4 .1  Kinematics analysis 
The kinematics computation includes estimation of joint angles, angular velocities and 

angular accelerations for both IMU- and marker-based methods. To perform the computation, 
first we need to choose a kinematic representation: 

Kinematics of segments is represented by the translation and rotation of LCS with respect to 
GCS. The translations of each segment are defined by the position of the origin of its LCS, this 
origin being the proximal joint centre. The most common method to represent rotation is Euler 
angles defined as angles of the three axes of LCS with respect to the three axes of the GCS (Wu, 
Van Der Helm et al. 2005). To choose the order of rotations, we refer to Wu’s recommendations 
for standardization in the reporting of kinematic data. According to this standard order of 
rotation for reporting the joints rotation of this project we have the followings: shoulder rotation 
order is Y-X-Y and the other joints (elbow, wrist, hip, knee, ankle and lumbar joint) rotation 
order is Z-X-Y. (Wu and Cavanagh 1995).  

 

Figure 4-1 A rotation angles definition for upper arm (“h” stands for humours).  The figure is modified 
from: (Wu, Van Der Helm et al .  2005),  h:  humours  
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Euler angle representation is a three-parameter kinematic representation, which is the 
minimal representation of the kinematic expressing only the rotation. The disadvantage of using 
Euler angles is that singularity may occur when transforming from one coordinate system to 
another (Gimbal-lock). When the movement is known, we can change the rotation order 
definition to prevent the singularity. The disadvantage of this approach is that we need to use 
different sequence for different motions and that the joint angle depends on the sequence (Wu, 
Van Der Helm et al. 2005).  

Hence, no three-parameters set can be both global and non-singular. A different way to avoid 
singularity is to use an alternative representation called quaternion. A quaternion is a set of four 
parameters expressing rotation. Any rotation in 3D can be represented as a combination of an 
axis vector and a rotation angle, as Figure 4-2 shows. Quaternion gives a simple way to represent 
this axis-angle representation with four parameters and apply the corresponding rotation to a 
position vector representing a point relative to the origin in 3D. 

 

 

Figure 4-2 Quaternion rotations representation 

Quaternion (q) is a vector quantity of the form:  

 
   
q = qω qx qy qz
⎡
⎣⎢

⎤
⎦⎥
T

  (3) 

IMU records the orientation of a segment with respect to its initial orientation. Hence, a 
single segment in space has three degree of freedom in rotations. However since four parameters 
are used to define a state with three degree of freedom, they are not independent (Dirkx 2011). 
This dependency (which is defined by 

   
q = 1 ), results in preforming very smooth resampling 

and gap fillings, when interpolating between two rotations in 3D space (Thalmann and Thalmann 
1993). This property is very useful to deal with the occlusion that occurs very often in in motion 
capture in 3D space (see appendix 1 for more equations of quaternion). 

Nevertheless, the disadvantage of quaternion is that the parameters do not have a clear 
physical interpretation, like Euler angles do. Therefore, in order to represent every possible 
configuration and also prevent singularities we choose to use quaternions representation for 
computation and Euler angles for data presentation and analysis of results.  

 

4.1.1  Kinematic estimation for marker-based method  
As it was mentioned in chapter 3, the marker positions are defined in a global coordinate 

system (GCS). Based on the marker positions, the segments and their local coordinate system of 
in the global coordinate systems (LCS in GCS) can be defined. The local coordinate system of each 
segment in the global coordinate system defines the orientation of the segments with respect to 
the global coordinate system (RGCS→LCS ). These steps are explained in 4.1.1.1. Having these for 
every two adjacent segment, joint angles can be computed. This step is explained in 4.1.1.2. 
Having these all the angular velocity and accelerations for joints and segments can be computed. 
This step is explained in 4.1.1.2. 
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4.1.1.1  Segments local coordinate system 
4.1.1.1.1  Joint centre 

The origin of each segments local coordinate system (LCS) is at the proximal joint centre 
apart from the thorax. The joint centres (JC) are estimated with regression equations that model 
the relation between markers positions on the skin and the joint centres. The accuracy of joint 
centres is dependent on the accuracy of positioning the markers on anatomical landmarks and 
the morphology of the subject (Wu and Cavanagh 1995, Wu, Siegler et al. 2002, Wu, Van Der 
Helm et al. 2005).  

In this study, the locations of joints are estimated based on position of markers and 
measurements of previous studies collected by Reed and McConville and modified approach of 
Dumas et al. 2007 on Reed et al 1999 data (McConville, Clauser et al. 1980, Reed, Manary et al. 
1999, Dumas, Aissaoui et al. 2005, Dumas, Chèze et al. 2007, Dumas, Cheze et al. 2007). 

Distal positions are computed using the position of the proximal joint centre and the 
segment orientation in an iterative way.  

 

4 .1.1.1.1.1  Cervical  joint centre (CJC) and right Shoulder joint centre (RSJC) 

The location of cervical joint centre (CJC) and right shoulder joint centre (RSJC) are 
estimated based on positions of following markers: 7th Cervicale (C7), the Incisura Jugularis (IJ), 
8th Thoracic Vertebra (T8), Processus Xiphoideus (PX), right Acromion (RA).  

The computation of CJC and RSJC are similar. The distance between marker positions and 
these two joint centres are scaled by the thorax width ( 7cl IJ C= - ).  

For an average size male, CJC and RSJC are estimated by regression as follows: 

l CJC is to be defined by a vector in the sagittal plane from C7 with an angle of 8° (above 
the line through C7 and IJ) and the vector length is 55% of cl . 

l RSJC is to be defined by a vector in a plane parallel to the sagittal plane from RA with an 
angle of -11° (under the RA) and 43%  of cl . Whereas, the sagittal plane goes through C7, IJ, 
T8 and PX. 

4.1.1.1.1.2  Lumbar joint centre (LJC) and left  hip joint centres (LHJC) 

The location of the lumbar joint centre (LJC) and left hip joint centres (LHJC) are estimated 
based on the location of Anterior Superior Iliac Spines (RASIS and LASIS), posterior Superior Iliac 
Spines (RPSIS and LPSIS) and their middle points (MASIS and MPSIS).  

The computation of LJC and LHJC are similar. The distance between marker positions and 
these two joint centres are scaled by the pelvis width (

pl RASIS LASIS= - ). 

l According to Dumas et al 2007 based on McConville et al data, for an average size male, 
LJC is estimated by regression using a vector from MASIS with the length of vector being 
26.8%- , 0% and 12.8% of pl , respectively on the X, Y, and Z-axes of the pelvis LCS (The 

Z-axis runs from LASIS to RASIS. The Y-axis is normal to the plane containing LASIS, 
RASIS and MPSIS. The X-axis is the cross product of Y and Z-axes).  

However, we used a slightly different routine, to minimise the soft tissue artefacts. pl  has 

been normalized by previous data ( ( ) /p mc mcr mean RASIS LASIS RASIS LASIS= - - ). Where 

mcRASIS  and mcLASIS are the Anterior Superior Iliac Spines data from McConville et al. 1999 
used as reference geometry. The data from McConville contain the four iliac spines and hip joint 
centre. Thus, the position of the hip joint centre from RASIS, LASIS and MASIS by using pr  as a 
scaling factor can be determined in a local coordinate system linked to the pelvis. The position of 
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LJC is computed as the mean of the positions estimated from the three anatomical landmarks 
(RASIS, LASIS and MPSIS) by: 

( ) ( ) ( )[ ]. . .

3

p mc p mc p mc
RASIS r RASIS LASIS r LASIS MPSIS r MPSIS

LJC
- + - + -

=   (4) 

l According to Dumas et al 2007 based on McConville et al data, for an average size male, 
LHJC is estimated by regression using a vector from MASIS with the length of vector 
being 20.8%- , 36.1%- and 28.3%- of pl , respectively on the X, Y, and Z-axes of the 
pelvis LCS (The Z-axis runs from LASIS to RASIS. The Y-axis is normal to the plane 
containing LASIS, RASIS and MPSIS. The X-axis is the cross product of Y and Z-axes). 

Similar to the LJC in order to minimise the soft tissue artefacts, the position of LHJC is 
computed as the mean of the distance estimated from three anatomical landmarks (RASIS, LASIS 
and LJC) and the McConville ones, using pr  as the scaling factor by: 

( )( ) ( )( ) ( )[ ]. . .

3

p mc mc p mc mc p mc
RASIS r LHJC RASIS LASIS r LHJC LASIS LJC r LHJC

LHJC
+ - + + - + +

=   (5) 

4.1.1.1.1.3  Elbow, Wrist ,  Knee and Ankle Joint Centres (REJC,  RWJC,  LKJC,  LAJC) 

The computation of the right elbow, right wrist, left knee and left ankle joint centres (REJC, 
RWJC, LKJC and LAJC) are similar:  

• Right wrist joint centre (RWJC) is estimated as the midpoint between the right Radial 
and Ulnar Styloid Process (RRS and RUS).  

• Right elbow joint centre (REJC) is estimated as the midpoint between right Lateral and 
Medial Humeral Epicondyle (RLHE and RMHE).  

• Left knee joint centre (LKJC) is estimated as the midpoint between left Lateral and 
Medial Femoral Epicondyles (LLFE and LMFE).  

• Left ankle joint centre (LAJC) are estimated as midpoint between left medial (LMM) and 
Lateral Malleous (LLM) 

 

4 .1.1.1.2  Segments LCS  
4.1.1.1.2.1  Thorax  

The thorax coordinate system is defined based on the position of the following markers: 7th 
cervicale (C7), incisura jugularis (IJ), 8th Thoracic vertebra (T8), processus xiphoideus (PX). 

The origin of the thorax coordinate system is CJC and its axes are defined as follow: The Y-
axis runs from middle point of PX and T8 to the middle point of C7 and IJ.  The Ztemp-axis is 
computed as the cross product of two vectors from middle point of PX and T8 to IJ and to C7. The 
X-axis is defined as the cross product of Y and Ztemp-axis. Subsequently, the Z-axis is defined as 
cross product of the X and Y-axis. 

    

LCSthorax :

ythorax = IJ +C7( )/2− PX+T 8( )/2( ) IJ +C7( )/2− PX+T 8( )/2

   ztemp = IJ− PX+T 8( )/2( )× C7− PX+T 8( )/2( )
xthorax = ythorax×ztemp( )/ ythorax×ztemp

zthorax =xthorax×ythorax

⎧

⎨

⎪⎪⎪⎪⎪

⎩
⎪⎪⎪⎪⎪

  (6) 

4.1.1.1.2.2  Right upper arm  

The right upper arm coordinate system is defined based on the position of the following 
markers: right shoulder joint centre (RSJC), right medial humeral epicondyle (RMHE), right 
lateral humeral epicondyle (RLHE) and their middle point which is the right elbow joint centre 
(REJC).  
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The origin of right upper arm coordinate system is RSJC and its axes are defined as follows: 
The Y-axis runs from REJC to RSJC. The Ztemp-axis runs from RMHE to RLHE. The X-axis is to find 
as the cross product of the Y- and Ztemp-axis. The Z-axis is to find as the cross product of the X- 
and Y-axis.  

    

LCS
upperarm

:

yupperarm = RSJC−REJC( )/ RSJC−REJC

    ztemp =RLHE−RMHE

xupperarm =yupperarm×ztemp/ yupperarm×ztemp

zupperarm =xupperarm×yupperarm

⎧

⎨

⎪⎪⎪⎪⎪

⎩
⎪⎪⎪⎪⎪

   (7) 

4.1.1.1.2.3  Right lower arm 

The right lower arm LCS is defined based on the position of the following markers: Right 
Ulnar Styloid (RUS), Right Radial Styloid (RRS) their middle point which is the Right Wrist and 
Elbow Joint Centre (RWJC and REJC).  

The origin of right lower arm LCS is REJC and its axes are defined as follows: The Y-axis runs 
from RWJC to REJC. The Ztemp-axis runs from RUS to RRS. The X-axis is to find as the cross product 
of the Y- and Ztemp-axis. The Z-axis is to find as the cross product of the X- and Y-axis. 

    

LCSlowerarm :

ylowerarm = REJC−RWJC( )/ REJC−RWJC

    ztemp =RRS−RUS
xlowerarm =ylowerarm×ztemp/ ylowerarm×ztemp

zlowerarm =xlowerarm×ylowerarm

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

  (8) 

4.1.1.1.2.4  Right hand 

The right hand coordinate system is defined based on the position of the following markers: 
right hand 2nd and 5th metacarpal (RMH2 and RMH5), right ulnar styloid (RUS), right radial 
styloid (RRS) and the middle point of RUS and RRS which is the wrist joint centre (RWJC).  

The origin of right hand coordinate system is RWJC and its axes are defined as follows: The 
Y-axis runs from the middle point of RMH2 and RMH5 to REJC. Similar to the lower arm, Ztemp-
axis runs from RUS to RRS. The X-axis is to find as the cross product of the Y- and Ztemp-axis. The 
Z-axis is to find as the cross product of the X- and Y-axis. 

    

LCS
hand

:

yhand = RWJC− RMH 2+RMH5( )/2( )/ RWJC− RMH 2+RMH5( )/2

     ztemp =RRS−RUS

xhand =yhand×ztemp/ yhand×ztemp

zhand =xhand×yhand

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

  (9) 

4.1.1.1.2.5  Pelvis  

The pelvis coordinate system is defined based on the position of the following markers: right 
and left anterior superior iliac spines (RASIS and LASIS), right and left posterior superior iliac 
spines (RPSIS and LPSIS) and their middle points (MASIS and MPSIS).  

The origin of pelvis coordinate system is LJC and its axes are defined as follows: The Z-axis 
runs from RASIS and LASIS. The Ytemp-axis is defined as the cross product of two vectors that run 
from RASIS and LASIS to the middle point of RPSIS and LPSIS (MPSIS). The X-axis is the cross 
product of the Y- and Z-axis. The Y-axis is the cross product of the Z- and X-axis.  

    

LCSpelvis :

zpelvis =(RASIS−LASIS) RASIS−LASIS

    ytemp =((RASIS−MPSIS)×(LASIS−MPSIS))
xpelvis =ytemp×zpelvis / ytemp×zpelvis

ypelvis =zpelvis×xpelvis

⎧

⎨

⎪⎪⎪⎪⎪

⎩
⎪⎪⎪⎪⎪

  (10) 
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4.1.1.1.2.6  Left  thigh 

The left thigh coordinate system is defined based on the position of the following markers: 
left hip and knee joint centres (LHJC and LKJC), left medial femoral epicondyle (LMFE), left 
lateral femoral epicondyle (LLFE).  

The origin of left thigh coordinate system is LHJC and its axes are defined as follows: The Y-
axis runs from RKJC to RHJC. The Ztemp-axis runs from LLFE to LMFE. The X-axis is to find as the 
cross product of the Y- and Ztemp-axis. The Z-axis is to find as the cross product of the X- and Y-
axis. 

     

LCS
thigh

:

ythigh =(LHJC -LKJC )/ LHJC -LKJC

     ztemp =LLFE -LMFE

xthigh =ythigh×ztemp/ ythigh×ztemp

zthigh =xthigh×ythigh

⎧

⎨

⎪⎪⎪⎪⎪

⎩
⎪⎪⎪⎪⎪

   (11) 

4.1.1.1.2.7  Left  shank 

The left shank coordinate system is based on the position of the following markers: left knee 
and ankle joint centre (LKJC and LAJC), left fibula head (LFH), left medial malleolus (LMM), left 
lateral malleolus (LLM).  

The origin of left shank coordinate system is LKJC and its axes are defined as follows: The Y-
axis runs from LAJC to LKJC. The Xtemp-axis is normal to plane containing the LKJC, LAJC and LFH 
pointing anteriorly. The Z-axis is the cross product of the Xtemp and Y-axis. The X-axis is to find as 
the cross product of the Y- and Z-axis.  

    

LCS
shank

:

yshank =(LKJC−LAJC )/ LKJC−LAJC

     xtemp =(LFH−LAJC )×(LKJC−LAJC )
zshank =xtemp×yshank / xtemp×yshank

xshank =yshank×zshank

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

   (12) 

Figure 4-3 shows an overview of the approach of this project as explained in section 4.1.1 to 
estimate joints positions and coordinate system of body segments. 
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Figure 4-3 Estimating coordinate system of segments and joint centres based on regression 

(Dumas,  Cheze et al .  2007)    
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4.1.1.2  Joints rotation 
Wu defines the joint rotation as: “The rotation of a distal body segment with respect to the 

proximal segment” (Wu and Cavanagh 1995). This definition is usually used in human motion 
analysis. Based on this definition and having the LCS of segments (section 4.1.1.1), joint angles 
can be denoted as the rotation from the LCS of each proximal segment to its distal segment (
RLCSpro→LCSdis

). 

 

 

Figure 4-4 Representation of joint rotations by local coordinate system of proximal to distal  segment 

Mathematically the joint rotations can be computed as follow:    

 
   
RLCSpro→LCSdis

= RGCS→LCSpro

−1 * RGCS→LCSdis
  (13) 

Whereas RGCS→LCSdis is the rotation matrix from the global coordinate system to the local 

coordinate system of the distal segment ( LCSdis ). RGCS→LCSpro
−1 is the inverse of the rotation matrix 

from the global coordinate system to the local coordinate system of the proximal segment which 
is equivalent to RLCSpro→GCS . This estimated rotation between the proximal to distal segments, 

can be converted to Euler angles and quaternions (qLCSpro→LCSdis ).  

 

4.1.1.3  Joints angular velocity and acceleration  
The rate of change of each joint angle (angular velocity ω  of each joint), can be computed by 

differentiating the quaternions of the joint (qLCSpro→LCSdis ), according to:  

     
ωq = 0

ω

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ = 2 !q ⊗ q           (14) 

Where: is the quaternion product (appendix1),
   
ω = ωx ωy ωz

⎡
⎣⎢

⎤
⎦⎥
T  and  q is the conjugate 

of the quaternion and   !q  is the first derivative of  q  with respect to time. The complex conjugate of 
quaternion (represent rotation from A to B) defines the inverse of the rotation (represent 

rotation from B to A):  

Subsequently, the rate of change of the angular velocity (angular acceleration of each 
joint), can be computed by double differentiation of the joint quaternions, as follow:  

⊗

qA→B = qB→A

!ω
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!ωq = 0

!ω

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ = 2 !!q ⊗ q + !q ⊗ !q( )   (15) 

 

4.1.1.4  Segments angular velocity and acceleration 
The same routine (using equation 14 and 15) can also be used to compute the segment’s 

angular velocity and acceleration in GCS by differentiating the quaternions of the segments. The 
angular velocity and accelerations of the segments in global coordinate system, were 
transformed into the local coordinate system of the segments via: 

 
ωLCS = RLCS→GCS * ωGCS = RGCS→LCS

−1 * ωGCS
!ωLCS = RLCS→GCS * !ωGCS = RGCS→LCS

−1 * !ωGCS
  (16) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1.1.5  Overview 
Figure 4-5 shows the routine to compute the segment and joint kinematics from markers 

positions.  
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The marker positions are measured by Optitrack system in the global coordinate system 
(GCS). Based on the marker positions, the segment’s local coordinate system of in the global 
coordinate systems (LCS in GCS) can be defined. The local coordinate system of each segment in 
the global coordinate system defines the rotation (RGCS→LCS ) and orientation (  qGCS→LCS ) of the 

segments with respect to the global coordinate system. Having RGCS→LCS  for every two adjacent 
segment (proximal and distal), their relative orientation and the joint angle can be computed. 
Having orientation changes q  and its derivatives, the angular velocity and accelerations of 

segments and joints (
   
ωs ,ωj ,αs andαj ) have been estimated.  

 

Figure 4-5 Schematic view of kinematic computation routine from the markers positions data.   

In order to make the marker-based kinematic comparable with the IMU-based method, the 
kinematic computed with respect to the LCS of the segments are transformed to the FCS of the 
segments.  

 

Figure 4-6 Joint rotation calculation routine Marker-based data with functional calibration 

 

4.1.2  Kinematic estimation for IMU-based method 
As it was mentioned in chapter 2 (section 2.2.3.2), the orientation of each segment is 

computed by combining measured the angular velocity, linear accelerations and magnetic field 
by an IMU. These data are measured in the local coordinate systems of each IMU itself (MCS). 
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Movements soliciting only one degree of freedom of a joint at a time are used to reveal the joint 
functional axis and to define a functional coordinate system (FCS). Note that ideally the LCS 
computed with the markers is aligned with the FCS computed by functional calibration. However, 
since most likely it is not the case, they are entitled with different names.  

The transformation of IMU data (measured in MCS) to the FCS is represented by   RMCS→FCS . 
This relative orientation of the FCS with respect to the MCS is assumed to be constant due to the 
hypothesis of rigid segment. This step is explained in 4.1.2.1. 

Having this transformation matrix, the angular velocity recorded by the IMU in the MCS can 
be transformed to the FCS, which would be the angular velocity of the segment. This step is 
explained in 4.1.2.2.  

Further, the orientation of the IMU with respect to its initial orientation can be computed 
using a strap-down integration algorithm. Having these and the initial orientation, we can 
compute the joint angle. This step is explained in 4.1.2.3.  

4.1.2.1  Segments local coordinate system  
4.1.2.1.1  Joint centres and segment length 

The segment length in the marker data is the mean of the distance between the joint centres 
during the measurement. However, computing the segments length from the IMU data is not such 
a trivial problem as from the marker based data as the IMU only measure orientation and not 
position.  

 The studies of Seel et al. introduced a method to estimate the distance from IMU to the joint 
centres (Seel, Schauer et al. 2012, Seel, Raisch et al. 2014, Schauer and Seel 2016, Seel 2016). In 
this method the IMU sensors are attached to body segments and the skin movement are 
neglected. Accordingly, it is assumed that the distance of the IMU to the adjacent joints remains 
constant during motion.  

 

Figure 4-7 Distance between joint  centre and IMU sensors on two adjacent segments (
proO  and    Odis

) 

Considering a spherical joint, the acceleration of each IMU sensor can be defined as the sum 
of the joint centre acceleration and radial and tangential accelerations due to the rotation of each 
IMU around the joint centre:  

    

γ
pro

t( )
γ

dis
t( )

Recorded

segments

acceleration

by IMU

! "#### $####

=
=

%γ
pro

t( )
%γ
dis

t( )
Joint

center

acceleration

! "#### $####

+
+

ω
pro

t( )× ωpro
t( )×O

pro
⎡
⎣⎢

⎤
⎦⎥

ω
dis

t( )× ωdis
t( )×O

dis
⎡
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⎤
⎦

Centrifugal
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! "############# $#############

+
+

&ω
pro

t( )×O
pro

&ω
dis

t( )×O
dis

Tangential
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∀t
∀t

          

(17) 

Accordingly, the joint’s acceleration may be defined by shifting the measured accelerations 
into the joint centre:  
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!γ
pro

t( )
!γ
dis

t( )
=
=

γ
pro

t( )
γ

dis
t( )

−
−

ω
pro

t( )× ωpro
t( )×O

pro
⎡
⎣⎢

⎤
⎦⎥ + "ωpro

t( )×O
pro( )

ω
dis

t( ) × ωdis
t( )×O

dis
⎡
⎣

⎤
⎦ + "ωdis

t( ) ×O
dis( )

∀t
∀t

              (18) 

Note that in these equations the IMU data are expressed in the IMU’s coordinate systems of 

the proximal and distal ( 
MCS

pro and  
MCSdis ). Since 

   
!γpro  and    !γdis  represent the same quantity 

(acceleration of the joint) estimated based on data measured by two IMU’s, these two equations 
should be equal. So, it can be written as the following constraint:  

 
     
!γpro(t)− !γdis(t) = 0 ∀t   (19) 

Having accelerations (
  
γpro  and   γdis ) measured by accelerometers and angular velocities (

proω  and disω ) measured by gyroscopes of the IMU sensors attached to the proximal and distal 

segments, we can implement an optimization algorithm for the in time varying recordings and 
solve for the two proO  and disO vectors.  

Some other literatures like Salehi et al. 2015 suggested to use an automatic optimization 
containing a model built up all the segments and all of the segments lengths would be computed 
at once with a constraint that the IMU needs to remains in a plane going through the two adjacent 
joints. It is suggested that this would help to compute a more accurate segment length (Salehi, 
Bleser et al. 2015).  

It is also possible to use a trick to compute this vector indirectly. Like, Chen et al. 2013, which 
suggested a method to compute the upper and lower arm by two functional calibration 
movements of shoulder and elbow flexion and extension. As you can see in Figure 4-8, using 
shoulder flexion/ extension the distance between the IMU on the lower arm and shoulder can be 
defined and by subtracting this distance from the distance between the IMU and the elbow 
(found from the elbow flexion/extension) the upper arm length could be estimated (Chen 2013). 

 

Figure 4-8 length estimation of upper and lower arm by two functional calibration movements of shoulder and 
elbow flexion and extension (Chen 2013) 

Attempts to use this method have not been successful. The distance between shoulder joint 
and the IMU on the lower arm, which is around 55 cm according to the Optitrack reference, was 
estimated to be 45 cm in this case. The thorax was not moving in this trial and this can be the 
reason that the optimization did not work properly.  Another possibility is that these 
dissimilarities might be due to the complex nature of shoulder joint.  
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Since the gyroscope and angular velocity data are measured in the two separated coordinate 
systems of the proximal and distal IMU sensors, (Salehi, Bleser et al. 2015) modified the previous 
equation by incorporating the relative orientations of these IMU sensors:   

 
     
!γpro(t)−qpro→dis ⊗ !γdis(t) = 0 ∀t   (20) 

We also attempted to use this method and the results are consistent with and without this 
adaptation. It only results in longer optimization duration. Thus, we did not use this adaptation.  

This optimization problem was implemented in MATLAB using single global solution solver, 
equipped with fmincon algorithm to find local solutions. Any other optimization method might 
also be employed as well. Gauss-Newton algorithm was used by (Seel, Raisch et al. 2014), 
Isqnonlin algorithm with Levenberg-Marquardt used by (Salehi, Bleser et al. 2015) and the 
results are similar. The global optimization with generic algorithm and multi-start search has a 
better performance in avoiding local minimum. When employing other algorithm, however the 
results were similar with the global algorithm, yet the output note the “possible local minimum”, 
which means the global optimization make authentic results.    

Using two series of such optimizations, each segment length can be computed. For example, 
Figure 4-9 shows the computation of lower arm length using elbow and wrist flexion/extension. 

O
pro1

Odis1

Odis2

O
pro2

joint1

joint2  

Figure 4-9 Segment length estimation having two vectors from the IMU on the lower arm w.r.t .  to 
elbow and wrist .   

 

4 .1 .2.1.2   Functional  calibration 
Movements with one degree of freedom of the joints are used to define the joint axes in the 

MCS and find the orientation of each IMU with respect to the segment’s coordinate system (MCS 
w.r.t. FCS). This means that actually functional calibration defines the transformation of IMU data 
to the joint. Functional calibration will be used to compare the measurements of the Optitrack 
system with the IMU’s one. Besides it gives also a better insight into the motion of the segments 
by reducing the cross talk of the axes.  

Here as an example, the method of this study to find the coordinate system of forearm will be 
explained in detail in 4.1.1.1.1. This method is also verified with another method from literature 
(Seel, Schauer et al. 2012) which is shortly explained in 4.1.1.1.1.1. Using this this axes the 
rotation matrix from IMU to segment can be set up as explained in 4.1.1.1.1.2. This is followed by 
a suggested routine for all of the other segments.  

 

4 .1.2.1.2.1  Method1: Optimization 

Another method to identify the joint axis is based on a physical fact that: “The projections of 
angular velocities measured by the IMU sensors on the two adjacent segments into the joint 
plane have the same length for each instant in time.” In this study, the results have been also 
compared with this method. For a more detail description of this method refer to (Seel, Schauer 
et al. 2012).  
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4.1.2.1.2.2  Method2: 50% ωmax   

The IMU mounted on the forearm records data with respect to MCS. Neither position nor 
orientation of MCS with respect to the forearm is known.  The elbow joint is able to provides two 
movements: “pronation/supination” and “flexion/extension”. The direction of the longitudinal 
axis of the forearm (Y-axis) can be found using the direction of the angular velocity during 
pronation and the opposite direction of angular velocity during supination.  

 
     
yforearm ≈ ω ω( )

pronation
≈  − ω ω( )

supination   (21) 

This method need prior knowledge of the orientation of the MCS on the segment, since when 
we are only looking into the IMU recordings offline, we do not know when is supination and 
when is pronation. In order to distinguish between these motions, you can look into the 
accelerations recordings to recognize the initial orientation of IMU regarding the gravity (which 
axis shows around 9.8 m/s2). From that initial orientation you can find out if the following 
movement is supination or pronation (Figure 4-10). 

 

Figure 4-10 Distinguishing movements by identifying the initial  orientation of IMU. 

Since the subject preforms movements repeated after each other, when switching between 
rotation in two different directions (in this case pronation/supination), the angular velocity 
vector switch from one direction to another in a continuous way so at some point it is pointing in 
a direction that is not the functional axis. Therefore, it is needed to remove the switching parts in 
data. For this purpose, the pronation axis is computed as the mean of the angular velocities (ω ) 

that are greater than 50% of the maximum angular velocity ( ω > ωmax/2( ) ) during pronation and 
the supination axis is defined in the opposite direction based on all the angular velocities, which 
are smaller than 50% of the minimum angular velocity  ( ω < ωmin/2( ) ).  

    
axispronation−supination = ω ω( )

pronation ω> ωmax /2( ) − ω ω( )
supination ω< ωmin /2( )( ) 2   (22) 
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The Y-axis direction is the normalised mean of these two directions. 

y forearm = axispronation−supination / axispronation−supination                              
(23)

 
In Figure 4-11, five repeated pronation and supination is used to define the Y-axis as follow: 

 

Figure 4-11 Removing switching parts from the angular velocity data for defining functional axis.  

Accordingly, the direction of the Z-axis can be found using the direction of the angular 
velocity during elbow flexion and the opposite direction of angular velocity during elbow 
extension. Figure 4-12 represents this computation.  

 axisflexion−extension = ω ω( )
flexion ω> ωmax /2( )

− ω ω( )
extension ω< ωmin /2( )( ) 2   (24) 

zforearm = axisflexion−extension / axisflexion−extension  

 

Figure 4-12 in functional calibration a joint is  rotating in two directions (one direction is defined 
with green and the opposite direction with red).  The mean of theses directions is  used to define the 

axis.  
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4 .1.2.1.3  Orientation of  IMU with respect to the segment  

As it was explained in 4.1.2.1.2.1, the 
  
yforearm and 

  
ztemp axes are defined. The direction of X-

axis can be determined as the direction of the vector perpendicular to the plane of Y and Z-axis. 
This could be found as the cross product of Y and Z-axis. 

 
   
x forearm = yforearm × ztemp  ,  where x, y and z are unit vectors.  (25) 

However, since the Y and Z-axis are found via measurements and anatomy, they would not 
be exactly orthogonal. The direction of Z-axis is the flexion axis, which defines the elbow joint as 
a hinge. Particularly, it is difficult to keep the forearm horizontal. Therefore, in order to obtain an 
orthogonal coordinate system a new Z-axis would be found as the vector perpendicular to the Y 
and X-axis. 

 zforearm = x forearm × yforearm   (26) 

A rotation matrix is constructed for each segment to transform the IMU coordinate system 
(MCS) to the forearm coordinate system defined by functional calibration ( MCS FCSR → ). This 
rotation matrix is assumed constant and constructed based on the above functional axes as: 

 
  
R

MCS→FCS
= x forearm y forearm z forearm
⎡
⎣

⎤
⎦   (27) 

For a better estimation of some joint angles, for example the elbow angle, during elbow 
flexion/ extension, the Z-axis of lower arm is transformed to the upper arm. That is done since 
when using ZXY order, the Z is the Z of the proximal axis and since the upper arm is not that 
much moving and we are interested in the rotation of the lower arm. 

It is assumed in this project that IMU sensors are mounted to segments and the skin 
movements are neglected. According to this assumption, each IMU position and orientation with 
respect to its regarded segment during measurements remains constant ( RMCS→FCS is assumed 
to be constant).  

The same routine as explained in 4.1.2.1.3 can be used to compute the FCS for all the 7 
segments used in this project (hand, forearm, upper arm, thorax, pelvis, thigh and shank). This 
section gives details of this computation and the selected functional movements. According to the 
following procedures the coordinate system of segments can be defined using angular velocities 
recorded by the IMU sensors mounted on the segments regardless the orientation or position of 
the IMU sensors on the segments.  

4 .1.2.1.3.1  Thorax  

The IMU mounted on thorax between IJ and PX is used to define the coordinate system of 
thorax is defined based on angular velocities recorded by this IMU during trunk axial rotations 
and squat.  

The Y-axis is pointing upward and is defined using the IMU angular velocities, which points 
the positive Y-direction when trunk is rotating to the left and negative Y-direction when trunk is 
rotating to the right.  

The Y-axis of thorax may also be defined using the direction of gravity recorded in the linear 
acceleration data of the IMU. However, such definition would not be probably aligned with the 
functional axis of the Thorax. But this kind of definition would results in a connection between 
the segments, which have used gravity as the Y-axis. Besides, it is easier definition of thorax 
coordinate system. 

The Ztemp-axis is pointing to the right side and is computed using the IMU angular velocities 
which represents the positive Z-direction as trunk is flexing forward during the squat motion 
when the subject goes down and negative Z-direction as trunk is extending backward when the 
subject is standing up during squat.  
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The X-axis, pointing forward, is defined as the cross product of Y and Ztemp-axis. 
Subsequently, Z-axis is defined as cross product of X and Y-axis. 

     

FCSthorax :

ythorax = axistrunk rotation to left−trunk rotation to rigth or ythorax = γ γ( )
stand

   ztemp = axistrunk flexion to down−trunk flexion to up

xthorax = ythorax × ztemp( ) / ythorax × ztemp

zthorax = xthorax × ythorax

⎧

⎨

⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪

  (28) 

4.1.2.1.3.2  Right upper arm  

The IMU mounted on the right upper arm distally to the deltoid insertion, where there are 
less muscle contractions is used. The upper arm coordinate system is defined based on the 
angular velocities recorded by this IMU during external/internal rotation at 90° elevation and 
shoulder flexion/extension with the elbow extended.   

The Y-axis is defined using the IMU angular velocities, which points the positive Y-direction 
during shoulder internal rotation and negative Y-direction during shoulder external rotation. The 
Ztemp-axis is pointing to the lateral side and is computed using the IMU angular velocities, which 
represents the positive Z-direction as the shoulder is flexing (when the arm moves upward) and 
negative Z-direction as the shoulder is extending (when the arm moves downward).  

The X-axis is pointing forward and is defined as the cross product of Y and Ztemp-axis. 
Subsequently, the Z-axis is defined as the cross product of X and Y-axis. 

FCSupperarm :

yupperarm = axisshoulder internal rotation−shoulder external rotation
   ztemp = axisshoulder extension−shoulder extension
xupperarm = yupperarm × ztemp / yupperarm × ztemp
zupperarm = xupperarm × yupperarm

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪

  (29) 

4.1.2.1.3.3  Right lower arm 

The IMU mounted on the right lower arm proximally to the wrist on the distal part of the 
radius, where there are less muscle contractions. As it was explained in details in 4.1.2.1.2, the 
lower arm coordinate system is defined based on angular velocities recorded by this IMU during 
pronation/supination and flexion/extension of the lower arm.   

The Y-axis is pointing from distal to proximal and is defined to the IMU angular velocities, 
which points to the positive Y-direction during pronation and negative Y-direction during 
supination of the lower arm. The Ztemp-axis is pointing from the medial side to the lateral side and 
is computed using the IMU angular velocities, which represents the positive Z-direction as the 
elbow is flexing (when arm moves upside) and the negative Z-direction as elbow is extending 
(when arm moves downside). The X-axis is defined as the cross product of Y and Ztemp-axis. 
Subsequently, the Z-axis is defined as the cross product of X and Y-axis. 

FCSlowerarm :

ylowerarm = axispronation−supination
    ztemp = axiselbow flexion−elbow extension
xlowerarm = ylowerarm × ztemp / ylowerarm × ztemp
zlowerarm = xlowerarm × ylowerarm

⎧

⎨

⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪

  (30) 

4.1.2.1.3.4  Right hand 

The IMU mounted on the dorsal part of the right hand is used to define the coordinate system 
of the right hand based on the angular velocities recorded by this IMU during radial/ulnar 
deviation and flexion/extension of the right hand.   

Since the wrist has no axial rotation, for the hand we used a different order in the axis 
computation than the other segments. The Z-axis, pointing from medial to lateral, is defined using 
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the IMU angular velocities, which points the positive Z-direction during flexion and negative Z-
direction during extension of the right hand. The Xtemp-axis, pointing forward, is computed using 
the IMU angular velocities, which represents the positive X-direction during ulnar deviation and 
the negative X-direction during radial deviation. The Y-axis is defined as the cross product of the 
Z and Xtemp-axis. Subsequently, the X-axis is defined as the cross product of the Y and Z-axis. 

FCShand :

zhand = axishand flexionhand flexion−hand extension

    xtemp = axisulnar deviation−radial deviation
yhand = zhand × xtemp / zhand × xtemp
xhand = yhand × zhand

⎧

⎨

⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪

   (31) 

4.1.2.1.3.5  Pelvis  

The IMU mounted on the thorax between RPSIS and LPSIS (which would be almost on 
MPSIS) is used to define the coordinate system of the pelvis based on angular velocities and 
linear accelerations recorded by this IMU during trunk lateral rotations and squat.  

The Y-axis is defined using the IMU acceleration, which points the positive Y-direction when 
standing (i.e. gravity).  

The Ztemp-axis is computed using the IMU angular velocities, which represents the positive Z-
direction during squat motion when the subject goes down and negative Z-direction when the 
subject is standing up during squat. The X-axis is defined as the cross product of Y and Ztemp-axis. 
Subsequently, the Z-axis is defined as cross product of X and Y-axis. 

     

FCSpelvis :

ypelvis = γ γ( )
stand

   ztemp = axistrunk flexion to down (sitting down)-trunk flexion to up (standing up)

xpelvis = ytemp × zpelvis / ytemp × zpelvis

ypelvis = zpelvis × xpelvis

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪

  (32) 

4.1.2.1.3.6  Left  thigh 

An IMU is mounted on the distal and lateral part of the thigh on the tendon part of the 
iliotibial band. The thigh coordinate system is defined based on angular velocities recorded by 
this IMU during hip internal external rotation and hip flexion/extension with extended knee 
(heel does not touch the ground).   

The Y-axis is pointing from distal to proximal and is defined using the IMU angular velocities, 
which points to the positive Y-direction during external rotation of the hip and negative Y-
direction during the hip internal rotation. The Ztemp-axis is pointing from lateral to medial and is 
computed using the IMU angular velocities, which represents the positive Z-direction when the 
hip is flexing and negative Z-direction when the hip is extending. The X-axis is pointing forward 
and is defined as the cross product of Y and Ztemp-axis. Subsequently, Z-axis is defined as cross 
product of X and Y-axis. 

FCSthigh :

ythigh = axisexternal rotation-internal rotation
   ztemp = axiship flexion−hip extension
xthigh = ythigh × ztemp / ythigh × ztemp
zthigh = xthigh × ythigh

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪

   (33) 

4.1.2.1.3.7  Left  shank 

An IMU is mounted on the medial and proximal part of the tibia. The shank coordinate 
system is defined based on angular velocities recorded by this IMU during hip internal/external 
rotation when the subject is standing with extended knee (the same motion as was used for 
thigh) and during knee flexion/extension when the subject is sitting. 
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The Y-axis is defined using the IMU angular velocities, which points to the positive Y-
direction during hip external rotation and negative Y-direction during the hip internal rotation. 
The Ztemp-axis is computed using the IMU angular velocities, which represents the positive Z-
direction as the knee is flexing and negative Z-direction when the knee is extending. The X-axis is 
defined as the cross product of Y and Ztemp-axis. Subsequently, the Z-axis is defined as the cross 
product of the X and Y-axis. 

     

FCSshank :

yshank = axislateral rotation to left−lateral rotation to rigth

     ztemp = axisflexion−extension

xshank = yshank × ztemp

zshank = xshank × yshank

⎧

⎨

⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪

  (34) 

 

4.1.2.2  Segment angular velocity and acceleration 
One of the important goals of this project was to compute accurately (against marker-based 

as reference) the angular velocity of segments with an IMU-based method.  

In the previous section, the constant transformation between the IMU and the segment 
mounted on it was estimated. Having this transformation (  RMCS→FCS ), the angular velocities 

recorded by each IMU (  ωMCS ) can be transformed into its segment’s coordinate system (  ωFCS ). 
The angular acceleration can be computed then by one step differentiation of the angular 
velocity.  

 
     

ωFCS = RFCS→MCS * ωMCS = RMCS→FCS
−1 * ωMCS

αFCS = !ωFCS

   (35) 

 

4.1.2.3  Joints rotation 

The orientation of IMU with respect to its initial orientation (q
MCS 0→MCSt

) can be estimated 
using strap-down integration as it was explained in chapter 2. The Consensys Software is the 
embodied software of the Shimmer IMU sensors which computes quaternion based on Madgwick 
and Mahony algorithm (Madgwick, Harrison et al. 2011). This quaternion can be transformed to 
their equivalent rotation matrix (R

MCS 0→MCSt
).  

From the functional calibrations, we computed in 4.1.2.1 the transformations from the 
coordinate system of each IMU to the segment mounted on it ( RMCS→FCS ). As it was mentioned 
in Error!  Reference source not found. in order to relate two IMU’s data, the initial 
orientation of the IMU sensors with respect to each other needs to be known. Since there is no 
global reference frame definition in IMU data, we have to define a connection between each 
proximal and distal segment coordinates to compute the joint angle. For this purpose, it is 
sufficient to know this relation one frame, like the initial condition. That is to be determining by a 
known configuration in which orientations of the segments with respect to each other is known. 
A static known anatomical position (like standing) with assumed joint angles can be used to 
define this relation. In order to make the IMU and marker joint angles comparable we can also 
take the initial angle from one system and put it to the other system. We did set the initial 
orientation of the IMU with the orientation computed at the same time from the markers (Figure 
4-13).  
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Figure 4-13 Schematic view of the known data of two adjacent segments   

In order to do this, first of all, the quaternions of each IMU has been initialized to start from 
the zero position by multiplication of it by its initial conjugate taken at the starts of the motion.  

 
   
Rstarting from zero = R1:end ⊗R1

−1   (36) 

Subsequent problem is that the marker-based the angle representations were done in the 
LCS of the segment, while the IMU-based data are in FCS of the segment. Therefore, it is needed 
to get the initial angle in a similar coordinate system from marker-based data. We computed the 
functional axis using the same routine as it was explained for the IMU-based data in section 
4.1.2.1. We used the segments angular velocities computed by marker-based data instead of the 
angular velocity measured by gyroscope.  

Having these all, we can define the joint rotation from the proximal to the distal segment by: 

   
R

FCSpro
t →FCSdis

t = R
MCSpro

t →FCSpro
t

−1 .R
MCSpro

0 →MCSpro
t

−1 .R
MCSpro

0 →MCSdis
0 .R

MCSdis
0 →MCSdis

t .R
MCSdis

t →FCSdis
t  (37) 

The initial orientations of the IMU sensors with respect to each other can be rewrite to be 
defined as a function of orientations of segments with respect to each other: 

 R
MCSpro

0 →MCSdis
0 = RMCSpro0 →FCSdis0

.R
FCSpro

0 →FCSdis
0 .RMCSpro0 →FCSpro0

−1   (38) 

And the orientation of IMU sensors with respect to the segments are assumed to remain 
constant in time, thus: 

 
R
MCSpro

0 →FCSpro
0 = RMCSprot →FCSprot

R
MCSdis

0 →FCSdis
0 = RMCSdist →FCSdist

  (39) 

4.1.2.4  Joints angular velocity and acceleration  
The angular velocity and accelerations of joints are computed with the same routine as it was 

explained in 4.1.1.2 for the marker-based kinematic computations. 

A non-orthogonal projection (Desroches, Dumas et al. 2010) of the joint angular velocity is 
used to compute the angular velocity on the Joint Coordinate Systems (JCS, as defined in (Wu, 
Van Der Helm et al. 2005).  
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Table 4-1- JCS of the shoulder,  elbow and wrist 

Shoulder Elbow Wrist 
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2 3 1
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⎧ =
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⎪ = ×⎩

e y
e y
e e e

 1

3

2 3 1
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ics
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ics

⎧ =
⎪

=⎨
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e z
e y
e e e

 1

3

2 3 1
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ics
h
ics

⎧ =
⎪

=⎨
⎪ = ×⎩

e z
e y
e e e

 

 

Figure 4-14 Representation of the local coordinate systems and joint coordinates systems of the 
l inked chain model.  The joint coordinate systems are used to get an anatomical interpretation of the 

mechanical  parameters computed by the models.  

This step is not needed for power computation, and it is only used for analysis of joint’s 
angular velocities and accelerations. 

4.1.2.5  Overview 
Using functional calibration, the transformation between the IMU data (measured in MCS) to 

the coordinate system of segment is estimated by 
  RMCS→FCS

. This relative orientation of the FCS 
with respect to the MCS is assumed to be constant in time due to the hypothesis of rigid segment. 
Having this transformation matrix, the angular velocity recorded by the IMU in the MCS can be 
transformed to the FCS, which would be the angular velocity of the segment (  ωs ) and by one 

step differentiation the angular accelerations (  αs ). Further, the orientation of the IMU in time can 
be computed using a strap-down integration algorithm (

   
R

MCS 0→MCSt ). Using these filled in the 
equation 37, the joint angle can be estimated. Figure 4-15 shows these routine steps as explained 
in detail in section 4.1.2 to compute the joint angles from the IMU’s recorded data.  

 

Figure 4-15 Joint rotation calculation routine IMU-based data 

Note that for this study, the relative IMU sensors orientation is taken from an initial frame in 
marker-based measurement ( - - ->  in Figure 4-15, comes from angular velocity (  ωs ) containing 
one step differentiation). In discussion another method for future studies is suggested. 
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4 .2  Anthropometric model & Power f low 
In this section, the Anthropometric model and a method to compute kinetic energy 

generation in body segments and power flow is explained. The necessary velocities of joints and 
segments for this computation were calculated as it was explained in section 4.1. Furthermore a 
scalable anthropometric model from literature is used to set up the mass and inertias properties. 
For the scaling process, the segments length is needed which is easy to calculate from the joint 
positions of the Optitrack data. The segments length computation from the IMU data is not trivial. 
A method to compute the segments length from the IMU data is described.   

 

4.2.1  Full  body anthropometric model  
We used the scalable anthropometric model established by (Wu and Cavanagh 1995, Wu, 

Siegler et al. 2002, Wu, Van Der Helm et al. 2005), based on the positions and inertia data from 
(Dumas, Cheze et al. 2007) which is in its turn an adjustment of the measurements of McConville 
et al. (McConville, Clauser et al. 1980). Appendix 2 describes in detail the antropometric model 
and the scaling of the mass and inertia parameters of the segments. 

The kinematic constraints keep the motion of the independent defined positions in the local 
coordinates of the segments together by bonding the joints together. Having 14 joints in the 
model requires 14 kinematic constrains to keep the 15 segments together. The kinematic 
constraints could be defined by equality of two definitions of the same joint positions in two 
adjacent segments. For example, the shoulder joint in global coordinate system may be defined 
according to the equation 9, both from the thorax and from the upper arm segments in the GCS: 

 

  

0
SJCGCS

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

0
Othorax

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ qthorax ⊗

0
SJCthorax

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⊗ qthorax

0
SJCGCS

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

0
Oupperarm

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ qupperarm ⊗

0
SJCupperarm

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⊗ qupperarm

  (40) 

Whereas,  SJCGCS is the global position of the shoulder joint centre, GCSCJC  is the global position 

of origin of the thorax coordinate system,  SJCthorax is the position of shoulder joint centre with 

respect to the thorax coordinate system. We assume that the  SJCGCS  is fixed.  qthorax  and upperarmq are 

respectively the quaternions of the thorax and the upper arm and  qthorax and 
 
qupperarm are 

respectively the conjugate of the quaternions of the thorax and the upper arm. The left hand side 
of the equations 37 are identical. Accordingly, the kinematic constraint, which keeps the upper 
arm attached to the thorax in the shoulder joint, is defined by:  

  

0
Othorax

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ qthorax ⊗

0
SJCthorax

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⊗ qthorax

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
−

0
Oupperarm

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ qupperarm ⊗

0
SJCupperarm

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⊗ qupperarm

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 0  (41) 

One extra constraint is defined to introduce the initial position of the human body. This has 
been defined by the equality of the measured position of the Incisura Jugularis ( measuredIJ ), and the 
global position of Incisura Jugularis ( GCSIJ ). IJ is leading the motion.  

   IJGCS − IJmeasured = 0   (42) 

Note that, this was possible due to the use of skin markers measurements and should be 
modified for a method using only IMU sensors. As it was explaind extensively in chapter 3, the 
IMU sensors do not measure translations and position of segments. Thus some adjustments needs to be 
done in the IMU based methods to measure the position. This is probably a limitation to track with 
IMU in future project. In this project since we used an initial frame from marker-based method, 
we did not faced this problem. 
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The transformation is defined as the sum of translation and rotation (Bajd, Mihelj et al. 
2010). Where the translation (

 
O

GCS
) shifts the origin of coordinate system from the global frame 

to the local frame. It is the position of the origin of segment coordinate system (the joint centre) 
in the global coordinate system. 

 PGCS
Transformation
!

= O
GCS

Translation

!
+ Rxyz .PLCS

Rotation
! "### $###

    (43) 

Subsequently from the equality of the equation 9 and 19, we have:  

 
   

0
Rxyz  .PLCS

 

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= qLCS  ⊗
0

PLCS
 

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⊗ qLCS   (44) 

The model is tested with pitching data measured with skin markers method. The 
quaternion’s of segments has been calculated from the skin markers tracking measurements. The 
model was able to represent pitching.  

 

 
Figure 4-16 Matlab implemented model with quaternions during pitching.  Quaternion data from real 

player pitching is used.  

This model is capable to work for both measurement data from IMU’s and Optitrack markers. 
The model input can be either the IMU’s acceleration, velocity and orientation data or the 
positions data of the OptiTrack system. Using this model the computed data can be verified by 
comparing the 3D illustration of the two methods.  

 

4.2.1.1  Mass and Inertial Parameters 
The mass properties and joint centres are defined using regression equations based on the mass of 

the pitcher and the dimension of his segments (Dumas et al. 2007). As an example, the mass of the 
thorax will represent 26.8% of the pitcher’s mass and the position of the centre of mass in the thorax 
will be defined as percentage of the length between the cervical joint and the thoracic joint.  

Mass and Inertial Parameters are computed based on regression from Dumas et al 2007: 

The inertia matrix of Segment centre of mass (CoM) and in its LCS are computed following 
Dumas et al. (2007):   

  

Iij = (rij .ls )
2.m s   with: 

rij  scaling vector for the body segment inertial parameters from Dumas et al. 2007

ls  the lenght of the segment

ms  the mass of the segment

⎧

⎨
⎪

⎩
⎪

(45) 
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Inertia matrix at CoM in the global coordinate system is computed as follow: 

 
   
I
GGCS

s = RGCS→LCS .I
GLCS

s .RLCS→GCS      (46) 

In Dumas et al. the element of the matrix of inertia for each body segment is computed as: 

 

  
Iij = (rij .ls )

2.m s   thus:  rij =
Iij

ms

⎛

⎝
⎜

⎞

⎠
⎟

1/2

. 1
ls

  (47) 

The Position of centre of masses (CoM) in the global coordinate system is computed as: 

   

0
G

GCS

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= 0
O

s

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
+ q ⊗ 0

G
LCS

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⊗ q  (48) 

The velocity of CoMs in the global coordinate system is computed as: 

 
    

0
v
G
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⎥
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G
LCS

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
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G
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⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⊗ !q   (49) 

The accelerations of CoMs in the global coordinate system is computed as: 
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G
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G
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⎡

⎣

⎢
⎢
⎢

⎤

⎦
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⎥
⊗ !!q + 2 !q ⊗ 0

G
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⎡

⎣

⎢
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⎢

⎤

⎦
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⎥
⎥
⊗ !q   (50) 

 

 
4.2.2  Inverse dynamics 

The kinematics is estimated for the IMU-based method as well as for the Optitrack-based 
method; segment’s coordinate system from functional calibration and joint centres, segment 
lengths, joint angles and velocities. The SCS, joint centres, segment length are used in the 
anthropometric human body model for estimating the segment masses, inertias and centre of 
mass position in SCS. 

Once the kinematic and inertial properties are defined and the external forces are known, and the 
inverse dynamics method is used on limbs to determine the joint actions. In this study, due to the 
lack of measurement of ground reaction force (external force), only the upper arm power flow is 
estimated. The power flow in the other joint cannot be estimated since we did not measure the 
reaction force of the ground (Figure 4-17). 

 

Figure 4-17  the main phases of pitching represented with the linked chain model.  The red arrows 
represent the ground reaction forces,  the green arrow represent the ball  velocity at the time of ball  

release.  
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Then an inverse dynamic model is used only for the arm’s segments. The inverse dynamics 
goes from distal to proximal segment in a recursive way from hand through lower and upper arm 
to the shoulder.  Note that we did not have the ball and glove in our study thereby for the hand 
segment the external forces are equal to zero. So for the dynamic of hand segment can be 
estimated from which the forces and moments at wrist can be estimated. Afterward the dynamic 
of lower arm and from that the forces and moments at elbow and then the dynamics of upper 
arm and moments and forces at shoulder can be estimated. For two segment i and i-1, where i is 
the proximal segment and i-1 the distal segment (in Figure 4-18 is indicated each the number for 
each segment).  

 

 

Figure 4-18 Inverse dynamic model of Arm. In this figure,  M  is  the moment,  F  is  the force,  Γ is  the 
derivative of l inear momentum, δ is  the derivative of angular momentum, th  is  the thorax,  ua  is  the 
upper arm,  la  is  the lower arm, ha is the hand. Where the Fu aà th is  the force that upper arm apply on 

the thorax and Fext is  the external force.   

Since the mass of a segment being assumed to be rigid is constant, the translational motion of 
the centre of mass can be defined by:  

 
    
ΓGCS = m .γGGCS

, where the 
  
γGGCS

 is the linear acceleration of the centre of mass                (51) 

For the IMU method the linear velocity of segment (at CoM) can be computed by integration 
of the linear acceleration (at CoM). Here it is also important to pay attention to that in 
computation of IMU’s orientation we used a very small beta (   β = 0.0001 ), as it was mentioned in 
3.2.2. This means less trust the magnetometer and accelerometer and more trust gyroscope. The 
reason to this was that the existence of gravity in the recorded data of IMU. So actually we 
ignored the acceleration data and estimate the orientation of IMU. Now using this orientation (

   
R

MCS 0→MCSt ), the gravity can be removed from the acceleration data (
  
γcorrected for gravity ).  

                                         
γcorrected for gravity = γMCS − R

MCS 0→MCSt .gMCS( )                                        (52) 

The  gMCS is the gravity direction in coordinate system of the IMU, which is simply to be 

defined at   t0 (when the subject is standing upright and not moving), using the recorded 
acceleration. Knowing the fact that the IMU is not moving so the only acceleration presented in 
the data recorded by the IMU is the gravity and the direction of gravity with respect to the 
coordinate system of IMU is simply to be defining by the recorded acceleration.  

                                                             
gMCS = 9.81 γ γ( )

  
                                         (53) 

Note, the   γMCS has been taken as the mean of a short run measurement (Figure 4-19). 
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Figure 4-19 Gravity removing from accelerations recorded data in IMU. This figure if  f i ltered 
acceleration of thorax in standing condition.    

The linear acceleration recorded by the IMU needs to be transformed to the centre of mass of 
the segments. This is done by:  

     

γGCS = RMCS→FCS .γIMU( ) + ((rproximal jo intto IMU − rproximal jo inttoCoM

rCoM to IMU

! "################ $################
)× %ωFCS )            (54) 

Subsequently the linear velocities ( vi ) of each segment  i , is to be computed by one step 
integration. However this step is known to be inaccurate according to many previous studies, 
since the computation of velocity via the numerical integration would results in a drift in it 
(Deblonde 2011). If the drift is linear, we can compensate it.  

Similarly, the equations describing angular motion can be derived considering the rotational 
motion of each segment about a joint centre:  

    
δGCS = IgGCS

.γGCS + ωGCS × IgGCS
.ωGCS( ) + RGCS→LCS .rLCS

G( )×ΓGCS  
(55)

 

Where the 
 rLCS

G  is the lever arm  

 

The segments dynamic are defined by Newton-Euler equations:  

1- The Newton equation for each segment  i  (as defined in Figure 4-18) is computed as: 

   δGCS
i = Fi+1→i + Fi−1→i + mig ⇒ Fi+1→i = δGCS

i −Fi−1→i −mig = δGCS
i + Fi→i−1 −mig        

(56) 

If  i  is the first segment (most distal which is hand) then   Fi−1→i  is the force applied by the 

environment on the distal segment, thus   Fi→i−1  is the force applied by the segment on the 
environment. 

 

2- The Euler equation for each segment  i  (as defined in Figure 4-18) is computed as:  
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δGCS
i = Mi+1→i

oi
+ Mi−1→i

oi
+ MWi ⇒ Mi+1→i

oi
= δGCS

i + Mi−1→i
oi

−MWi

whereas:
Mi−1→i

oi
= Mi→i−1

oi-1
+ rGCS

oi-1i
− rGCS

oi( )×Fi→i−1

MWi = RGCS→LCS .r
LCSi
Gi( )×mig

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

            (57) 

 

4.2.3  Segment power  
For estimating the segment power, the linear and angular velocity of the centre of mass of 

each segment  i  are used align with the derivatives of the linear and angular momentum as 
follows:  

    

Translational power:

Angular power:

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

Pi
l = Fi .vi

Pi
ω = Mi .ωi

, the total power is: 
   P = Pi

l + Pi
ω                            (58) 

 

4.2.4  Joint power  
For estimating the joint power, the joint angular velocity is computed as: 

   
ωjoint = ωdis→pro = ωdis − ωpro    (59) 

Using this definition, the joints power is computed as follow:  

    
Pjoint
ω = Mjoint . ωjoint                                             (60) 
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Chapter 5 
5  Results & Discussion   

In this chapter, in order to validate the IMU-based functional calibration method introduced 
in this study (the 50% of the maximum angular velocity ( 50%ω max ) explained in 4.1.2.1.2.2), we 
did compare the results with the optimization method of Seel et al. explained in 4.1.2.1.2.1. The 
similarity of the results of these two functional calibration methods may confirm the correctness 
of the method.  

The kinematic and kinetic results of Marker-based and IMU-based methods are presented. 
The error of the IMU-based measurement against the marker-based reference is quantified. The 
sources of these dissimilarities are identified at different levels of segments and joints rotation 
angle, angular velocities and accelerations. 
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5 .1  Rotation angle 

5.1.1  Segment angle 
The segment rotation is computed based on the two functional calibration methods                  

( 50%ω max and the Optimization) applied on both Optitrack and IMU data. Figure 5-1 shows, as 
an example, the computed lower and upper arm rotations represented by Euler angles (ZXY 
order) during elbow flexion/extension. As you can see the upper arm is almost not moving and 
the lower arm is flexing and extending.  

 

Figure 5-1 Lower and upper arm rotation is represented by Euler angles (with ZXY order) during 
elbow flexion and extension. The computation is done with both 𝟓𝟎%𝝎𝒎𝒂𝒙 and Optimization methods.  

In Figure 5-1, the patterns of the angles are similar between both methods with a similar 
range difference (a peak difference of around 10°). Only the abduction/adduction angle of lower 
arm is not similar in both methods.    

5.1.2  Joint angle 
Similarly the joint rotation is computed based on the two ( 50%ω max and the Optimization) 

methods applied on both Optitrack and IMU data. As it was explained in section 4.1, we use a ZXY 
Euler angle rotation sequence which means Z of the proximal segment, Y of the distal segment 
and X is the cross Product of these two. For the shoulder a YXY Euler angle rotation sequence is 
used which means Y of the proximal segment, Y of the distal segment and X is the cross Product 
of these two (Wu, Van Der Helm et al. 2005).  

Figure 5-2 shows, the elbow joint rotation represented by Euler angles (with ZXY order). As 
you can see Figure 5-1 and Figure 5-2 show similar pattern for flexion/extension angle. This 



5- Results & discussion                                                                  Maryam Sharify 

Page 57 of 114 
 

similarity was expected since the proximal segment is not moving much and the joint angle 
would only present the motion of the distal segment (lower arm).  As it was mentioned in 
4.1.2.1.3, to make the angle estimation is this motion more accurate, the Z-axis of distal segment 
is transformed to the proximal segment.  

The 50%ω max method joint flexion/extension angle estimation patterns are similar between 
all angles with a peak difference of less than 10°. But, the abduction/adduction and 
pronation/supination are significantly different. Still the axis angles are very similar. The 
computation is done based on both 50%ω max and Optimization methods. The 50%ω max method 
during elbow flexion showed smaller amplitude of the adduction/abduction and pronation 
angles and similar estimation of flexion angle. The minimization of the adduction/abduction 
shows that the estimation of the flexion axis was more accurate with the 50%ω max method. This 
method reduced the cross talk when compared to the Optimization method (Figure 5-2).  

 

Figure 5-2 Elbow joint angle is  represented by Euler angles (with ZXY order).  The computation is 
done based on both 𝟓𝟎%𝝎𝒎𝒂𝒙 and Optimization methods.  The ROM, MD and RMSD of the 𝟓𝟎%𝝎𝒎𝒂𝒙 

method are smaller than the optimization method.  

Further to quantify the differences, in Figure 5-2, ROM is the range of the movement (note: in 
this study ROM is not the joint range of motion), the maximum deviations (MD) and the average 
deviation (RMSD) between joint rotations by Optitrack and IMU measurements are computed 
and presented. The ROM, MD and RMSD are to be computed as follows:  

  

ROM = ϕmax−ϕmin

MD= max ϕOptirack−ϕIMU( )2⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

RMSD= mean ϕOptirack−ϕIMU( )2

, Where  ϕ  is the rotation (61) 
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As it can be seen in Figure 5-2, the RMSD and MD of the flexion/extension angle is very 
similar to the axis angle RMSD and MD. This indicates that the flexion/extension axis is defined 
well. Besides ROM, RMSD and MD of the two methods are also similar, which is also again 
evidence of the correct estimation of axis and angles. The MD and RMSD of the 50%ω max  method 
are a bit smaller than the optimization method, which indicate that the 50%ω max  method did 
estimate the axis and angles more accurately. 

The rotation of joints during different movements have been computed and compared with 
the Optitrack reference ones.  

  

Figure 5-3 The IMU tracking method is able to track the motion and the computed angles are similar 
to the Optitrack reference method. The two functional calibration methods are roughly identical .  

 

The worse segment to track (the largest RMSD) was the hand due to the error in its 
orientation. Although the tracking is not fitted with the reference, both IMU motion tracking 
methods estimated almost the same results presenting about twice bigger angle than the 
Optitrack reference one (Figure 5-4).  

 
Figure 5-4 Lower arm and hand rotation during elbow flexion/extension.  The computation is done 
with both the 𝟓𝟎%𝝎𝒎𝒂𝒙 and Optimization methods.  IMU estimated bigger rotations with both methods.   
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This indicates a technical weakness of the IMU sensor on hand that was not able to fit the 
optitrack reference. It is possible that this is due to technical limitation of the IMU, like some 
mistake in the IMU calibration. It can also be due to the positioning of the IMU on the hand, which 
was too close to the wrist joint or the skin motion. Another possibility is that the hand is a small 
segment and the proportion of the hand mass and length with respect to its IMU is much larger 
than the proportion of the other body segments with respect to their IMU.  

 

Table 5-1 Joint’s rotation comparison of the two IMU-based methods (50% ωmax and Optimization) 
with the Optitrack reference measurements  

Joint Motion Motion 
Type 

ROM MD RMSD 

50% ωmax Optimization 50% 
ωmax 

Optimization 50% ωmax Optimization 
Optitrack IMU Optitrack IMU 

Shoulder Flexion / 
Extension 

slow 118.0 114.0 119.0 100.9 23.6 24.6 13.2 12.9 

fast 118.0 104.3 118.8 90.7 25.6 26.7 15.0 14.1 

Elbow 

Flexion /  
Extension 

slow 109.1 120.5 109.2 120.8 9.6 9.5 3.0 3.1 

fast 107.8 126.6 107.9 126.9 13.9 14.3 5.3 5.5 

Supination / 
Pronation 

slow 148.4 164.8 149.7 164.7 14.3 13.0 7.0 6.4 

fast 151.1 158.8 152.2 159.5 22.2 22.1 8.3 8.2 

Wrist 

Flexion / 
Extension 

slow 61.8 123.2 63.3 118.1 54.9 50.6 24.3 21.6 

fast 66.2 127.1 67.8 126.4 59.5 56.8 28.6 27.1 

Radial / Ulnar 
Deviation 

slow 42.6 67.5 42.6 65.7 39.1 48.4 11.6 19.0 

fast 74.6 94.0 72.4 93.5 72.3 64.2 20.5 17.5 

Hip 

Abdaction/ 
Adduction 

slow 41.5 40.0 41.5 41.2 7.3 7.4 2.7 3.4 

fast 44.5 47.2 44.5 50.0 8.0 7.4 4.0 2.6 

Internal / 
External 
Rotation 

slow 72.7 60.6 72.7 60.0 14.0 14.2 9.3 9.5 

fast 61.7 55.1 61.7 54.4 10.3 10.3 3.6 3.7 

Knee Flexion / 
Extension 

slow 81.3 100.9 80.1 104.3 18.9 21.0 7.9 8.6 

fast 82.3 127.3 81.4 142.3 55.2 67.5 9.2 12.0 

Lumbar 
joint 

Internal / 
External 
Rotation 

slow 39.5 41.2 39.0 41.1 4.7 8.7 2.4 4.1 

fast 49.2 50.3 48.6 51.0 6.9 7.0 2.6 4.4 

Flexion / 
Extension slow 24.7 14.3 24.6 12.5 22.5 17.2 9.9 7.0 

 

Table 5-1 shows an overview of computed range of movements (ROM), Maximum deviations 
(MD) and average deviation (RMSD) between joint rotations by Optitrack and IMU 
measurements.  

As it can be seen in Table 5-1 the rotations tracked by IMU sensors are consistent with the 
Optitrack reference motion tracking. Both 50%ω max and the Optimization results fit the reference 
measurements (RMSD<20°) for most trials. The largest dissimilarities are shown by RMSD = 
27,1° of the wrist joint, which is due to the error in hand’s orientation. The shoulder joint also 
shows RMSD=14,1°, which was also expected since in this study the complex movements of the 
scapula was neglected (Hint: in this study we had only one IMU for tracking the motion of thorax 
and one IMU for tracking the motion of the upper arm). However this simplification is done on 
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both IMU and marker-based method, still the multiple degree of freedom of the scapula cannot be 
neglected and might have resulted in this differences.  

Another finding from this table is that the faster movements have the larger RMSD and thus 
they are less similar to the optitrack reference. This can indicate the effect of inertia, which might 
be prevented by using lighter IMU’s. However, the hip joint motions presents a smaller RMSD for 
the faster movements, which means the joint angle is estimated better in the faster movements.  
The reason to this can be the method for definition of coordinate system of pelvis and thigh or 
the calibrations of the pelvis and thigh’s IMU. This can also be due to the positioning of IMU on 
the muscles of thigh. Furthermore, since the Y-axis of pelvis was estimated as the mean of the 
direction of gravity recorded by accelerometer and the other axis was estimated using the 
gyroscope data, the error might be due to misalignment of gyroscope and accelerometer sensors. 
However, in static situation the IMU noise did affect the measurement. As a not moving IMU 
records noise rather than useful data.  

Further more the results show that the 50%ω max method has a RMSD of equal or smaller 
than the optimization method, and reduces the effect of cross talk between the axes. Moreover, 
the computation with the 50%ω max method takes around 10s, while the optimization method 
takes around 500s (for 10s of data recordings with a sampling frequency of 500 Hz). Therefore, 
the 50%ω max method is superior to the optimization method.  

 

 

5 .2  Angular velocity and acceleration  

5.2.1  Segment’s angular velocity and acceleration  
Segments angular velocities and accelerations are also compared. For a motion like shoulder 

flexion/extension, with elbow extended and wrist at 0° flexion, it is expected that the lower and 
upper arm and the hand would have almost the same angular velocities. As it was mentioned in 
section 5.1, the hand’s IMU results do not seem reliable. This issue is also appearing on the 
velocities and accelerations level. Figure 5-5 shows how the upper and lower arm angular 
velocity is fitted with the Optitrack reference, and the hands velocity is overestimated.  

 

Figure 5-5 Arm segments have almost the same angular velocities during shoulder flexion/extension.  
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 Figure 5-6 shows as an example the angular velocity and accelerations of the lower arm 
during flexion and extension. Patterns and signs are similar with difference in peaks of 10 to 
50°/s in velocity level and 50 to 1500°/s2 in acceleration level. The differences are smaller in 
velocity but can reach around 30% for the accelerations.  

 

 

Figure 5-6 lower arm’s angular velocity and accelerations during flexion and extension 

 

5.2.2  Joint’s angular velocity and acceleration  
Joint’s angular velocity and accelerations are also compared. This comparison is done in the 

joints coordinate system.  

It is also interesting that the joint’s angular velocities and accelerations (Figure 5-6) which is 
computed from the differentiations of quaternions (

     
ωq = 2 !q⊗q and αq = 2 !!q⊗q + !q⊗ !q( ) ), 

is similar to segments angular velocity and accelerations (Figure 5-7) which is computed by 
multiplications of the gyroscope data and the rotation matrix from IMU to the segment                                                   
(     ωFCS = RFCS→MCS * ωMCS and αFCS = RFCS→MCS * !ωMCS ).  

The similarities of, Figure 5-6 and Figure 5-7 confirms the correctness of the results either 
via differentiation or direct from the recorded data.  
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Figure 5-7 shows the angular velocity and accelerations of elbow during flexion and 
extension. In this trial, since the upper arm was kept still and only the lower arm was flexing and 
extending and therefore the elbow joint velocity and accelerations is almost equal to the elbow’s 
velocity and accelerations (Figure 5-6). 

 

Figure 5-7 Elbow joint’s angular velocity and accelerations during flexion and extension 

 

Figure 5-7 shows similarly to the segment velocities and accelerations, the marker and IMU 
also have tracked the joint angular velocity and accelerations of the lower arm during flexion and 
extension with the same signs and pattern. However the peaks are different. The difference in 
peaks are around 10 to 50°/s in velocity level and 50 to 1500°/s2 in acceleration level. The 
differences are smaller in velocity but can reach around 30% for the accelerations. 
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The velocities and accelerations of joints during different movements have been computed 
and compared with the Optitrack reference ones.  

Table 5-2 Comparison of the angular velocity and accelerations computed by the IMU-based method 
(50% ωmax) with the Optitrack reference measurements 

Joint Motion Motion 
Type 

Angular velocity 
  ° / s⎡⎣ ⎤⎦  Angular acceleration 

  
° / s2⎡⎣ ⎤⎦  

ROV MAX 
MD RMSD 

ROA MAX 
MD RMSD 

Optitrack IMU Optitrack IMU Optitrack IMU Optitrack IMU 

Shoulder Flexion / 
Extension 

slow 276 208 170 122 49 17 892 1093 506 383 708 66 

fast 391 291 231 161 83 26 1616 1201 780 614 558 144 

Elbow 

Flexion /  
Extension 

slow 234 261 123 137 25 8 1015 981 470 378 240 72 

fast 438 483 231 268 154 25 1999 2272 932 850 478 148 

Supination / 
Pronation 

slow 408 411 195 204 33 7 1462 1642 860 870 311 76 

fast 1012 1171 471 533 98 27 6309 8303 3361 4454 1248 391 

Wrist 

Flexion / 
Extension 

slow 105 184 51 77 81 22 517 1259 298 690 907 202 

fast 191 294 89 127 73 25 1228 2024 707 1298 674 223 

Radial / Ulnar 
Deviation 

slow 172 351 89 199 121 28 784 2071 343 706 924 136 

fast 364 723 198 410 279 65 2514 4693 1519 2511 1946 552 

Hip 

Abdaction/ 
Adduction 

slow 209 223 104 114 38 10 1123 1126 599 589 254 83 

fast 300 300 144 154 23 8 4174 1750 1457 871 2648 136 

Internal / 
External 
Rotation 

slow 312 265 169 144 34 13 1784 1481 859 811 278 101 

fast 453 417 236 216 29 13 3293 3190 1594 1642 1109 168 

Knee Flexion / 
Extension 

slow 260 271 154 161 69 20 1053 1320 599 555 561 146 

fast 357 362 202 204 124 25 1759 1779 849 710 803 174 

Lumbar 
joint 

Internal / 
External 
Rotation 

slow 13 22 7 11 10 4 135 226 77 62 164 29 

fast 22 58 9 28 27 12 165 449 85 261 231 87 

Flexion / 
Extension slow 92 55 54 28 35 15 556 1586 295 1334 1333 87 

 

Table 5-2 shows an overview of computed ROM, MD and RMSD between joint rotations by 
Optitrack and IMU measurements. ROV is the range of the velocities changing and MAX presents 
the absolute maximum velocity or acceleration. 

As you can see in Table 5-2, faster trials have larger RMSD than the slower ones. This means, 
in slower joint rotations, the angular velocities and accelerations better fit the Optitrack 
reference data.  

The numerical differentiation works as a high pass filter, which means any errors in the 3D 
positions will be amplified with each differentiation step. Indeed, the IMU measures the angular 
velocity and need one differentiation step to compute the angular acceleration. Where the 
marker data needs respectively one and two differentiation steps to compute the angular velocity 
and acceleration. Thus, the IMU results are expected to be more accurate at velocity and 
accelerations level. This fact makes it difficult to analyses of the results presented in Table 5-2.  
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5 .3  Segment length estimation 
Figure 5-8 shows the computation of the distance between the two adjacent IMU (of lower 

and upper arm) and the elbow joint during five flexion/extension of the elbow. The mean of 
these results is the position of joint with respect to the elbow joint.  

The computation of the position of IMU with respect to the joint is based on the angular 
velocity and linear accelerations measurements. Indeed, if the segment is almost not moving, the 
noise from the IMU sensor will have more influence. When the upper arm is not moving, the 
recordings of IMU are mostly noises, and thus the computation of the distance of joint and IMU 
would not be accurate. This is presented in Figure 5-8, by uncertainty in the results of the 
optimization search for the position of the joint with respect to the IMU.  

 

Figure 5-8 Computing the distance between the two adjacent IMU (of lower and upper arm) and the 
elbow joint during 5 flexion and 5 extension.  The mean of these results is  the position of the joint 
with respect to the IMU sensor.  Here the upper arm has low speed and lower arm has high speed.  

Figure 5-9 shows the distribution of this optimization. Here it is better visible that the 
distribution is narrow in x and z direction of the IMU axis and the wide distribution is presented 
along the y-axis. This is an evidence that the optimization process works and is able to find the 
position of joint to be on an line through the IMU but the distance of the joint with respect to the 
IMU on this line was not found perfectly, since the IMU was not moving (and recording) enough 
acceleration and velocity data. 

 

Figure 5-9 Distribution of optimization results of the IMU with respect to the joint of a not moving 
segment is  not adequate (10 runs= 5 flexion + 5 extension).  
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Besides, Figure 5-9 shows, although the distribution of upper arm IMU to the elbow joint is 
wide, the mean value of it (17.23 cm) is similar to the one from Optitrack data (16.1 cm) in slow 
flexion/extension of elbow trial. But this is a matter of having enough repetition of the motions in 
the measurements. For a better computation of joint position with respect to the IMU, it is better 
to choose the data from the trials in which the joint is moving. 

 

Using two series of such optimizations, each segment length can be computed. Table 5-3 
shows the segments length computed from IMU measurements against the Optitrack one.  

Table 5-3 Segments length [cm] 

  Optitrack IMU 

Hand IMU to WJC 7.5 

Stand 

1 Wrist flexion/extension 

Lower arm EJC to WJC 26.7 24.5 Squat 

Upper arm SJC to EJC 31 31.3 Squat 

Trunk SJC to Sagittal plane 22.8 18 Shoulder flexion/extension 

Pelvis 
HJC to Sagittal plane 13.1 13.3 

Hip adduction / abduction 
HJC to IMU 22 17.2 

Thigh HJC to KJC 43 37.3 Lunge + Knee flexion/extension 

Shank IMU to KJC 11 12.2 Knee flexion/extension 

 

The segment lengths are estimated with small difference from the Optitrack reference 
measurements. The largest difference is on the hand IMU, which was expected since all the 
measurements on the hand IMU indicate that this IMU probably had a technical issue. The other 
large difference is the thigh length, with an error of 7% of its length, which is reasonable. It was 
not possible to estimate the total length of shank and hand, where as there is no other segments 
attached with an IMU at their distal end.    

Note that the IMU’s segment lengths are estimated during calibration movements using the 
above optimization process when both segments are moving around each joint. The segment 
lengths from the Optitrack measurements are based on the joint distances during standing 
position when the segments are not moving. For trunk and pelvis the position of SJC and HJC to 
the sagittal plane is estimated by regression equations (Dumas, Cheze et al. 2007) which are 
prone to errors that can be up to 3 cm (Fiorentino, Kutschke et al. 2016). Thus, the estimation 
from the IMU functional calibration could lead to a more accurate value than the regression.   
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5 .4  Pitching and Power flow 
In this section we want to analyse the power estimated by IMU-based measurements. This 

analysis needs to be done on the pitching measurements. Although, the subject of this project 
was not a real baseball pitcher, we measured two kind of pitching motions; first a pitch with the 
whole body moving, second a pitching motion where only the arm is moving. Analysing these 
motions will help to understand if our method is valid to track a baseball pitcher motion.  

Since the ultimate goal of this project is tracking the pitching motion in baseball, it is 
interesting to look at the internal rotation of shoulder when the arm is flexed and the lower arm 
is horizontal. If the method is able to track this motion, it is evidence that the pitch could also be 
tracked.  

5.4.1  Kinematic results 
Figure 5-10 shows the internal rotation of shoulder estimated by both and 

Optimization methods fit the Optitrack reference.  

 

Figure 5-10 Small  shoulder internal rotation estimated by IMU, using both 𝟓𝟎%𝝎𝒎𝒂𝒙 and the 
Optimization fits the Optitrack reference 

 

Figure 5-10 shows that the internal/external rotation of the shoulder is tracked using both 
IMU methods are similar (RMSD = 1.7°). The maximum deviation is smaller using the 50%ω max

method (MD=3.7°) than the optimization method (MD=4.4°). This is logic since the 50%ω max

method uses the frames with larger velocities than the optimization method for estimation the 
orientation of the axis. The range of the movement (ROM) is tracker better by the 50%ω max

method.  
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The next step is looking into the pitch motion. Note that the subject was not a real baseball 
pitcher and the results are a proof of concept. Figure 5-11 shows that the changes of Euler angles 
align with the axis angle for the shoulder, elbow and wrist during 5 repeated pitching motions 
where the subject stands still and only tries to pitch the ball with his arm.  

 

                               

Figure 5-11 shoulder,  elbow and wrist rotation angles during 5 pitches 

Figure 5-11 shows that the IMU based measurement resulted in an overestimated elbow 
flexion (above 180°). In general we would expect under 180° elbow flexion/extension. The 
angular velocities and accelerations measured by IMU did encounter data clipping. This should 
be the reason for this angle overestimation. However, it is interesting that the axis angle changes 
are between 40 and 160°which is reasonable. The elbow joint has mainly 2 degree of rotation; 
flexion/extension and pronation/supination and a small abduction/adduction. It is possible that 
this problem is due to miscalculation of segment coordinate system. In that case the question is 
how did we then acquire a low RMSD = 3 to 8° for the elbow flexion/extension and 
pronation/supination? This is evidence that this error is most likely related to the high speed of 
motion during pitching movement and subsequently the data clipping.  
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The shoulder and elbow joint rotation estimated by IMU sensors, using both methods fits the 
Optitrack reference (RMSD = 11.7 and 11°).  Again, this result confirms the maximum deviation 
is smaller using the 50%ωmax

method (MD=25.9 and 37.4°) than using the optimization method 
(MD=26.2 and 37.6°). Although the difference is not large, the50%ωmax

method does better than 
the optimization method.  

The IMU shows some peaks, which can be related to the fast angle changes an data clipping 
close to the pitch moment. The Optitrack did not record these peaks, which can be due to lower 
frame rate in Optitrack (Optitrack measurement with 120Hz vs. IMU measurement with 500Hz).  

The wrist Joint rotation dose not fit the reference, which was expected since it looks as if this 
IMU had some technical problem. Besides, the motion is so fast that the IMU reaches the 
threshold of gyroscope and accelerometer (data clipping). 

Figure 5-12 shows the data clipping in the linear acceleration recording of IMU on the lower arm 
during pitching.    

 

Figure 5-12 data clipping of accelerometer during pitching.  
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5.4.2  Kinetic results 
5.4.2.1  Kinetic energy 

The segments kinetic energy estimated based on Optitrack a measurement is depicted in 
Figure 5-13.  

 

Figure 5-13 Segment’s kinetic energy based on Optitrack measurements.  

In Figure 5-13, the left graph is a pitching motion where only the arm is moving. Here it is 
visible that the pelvis energy is almost zero since it is not moving. The thorax energy is a bit 
larger due to the heavy mass of thorax, which is appeared more in the translation component. 
Upper arm velocity is larger but its mass is smaller than thorax. The lower arm builds up more 
energy due to its rotational and translational speed and this speed is transformed to the hand 
too. The hand has the largest energy at the moment of ball release. The right graph shows a pitch 
with the whole body moving. The increase of kinetic energy is significant, compared with when 
the whole body is not moving in the left graph. Thorax gains the highest energy due to its large 
mass. The peak in hand shows the ball release moment. After the ball release the energy is 
decreasing to the static condition of around zero. 

 

The total kinetic energy of each segment is the sum of translational and rotational kinetic 
energy of the segment. Since the linear velocity of centre of mass was not estimated adequately 
using IMU measurements, we attempt to compare only the rotational part of kinetic energy in 
Figure 5-14.  

This attempt is not presenting the expected results. The rotational part of kinetic energy of 
thorax is around 17% underestimated. The upper arm is around 50% overestimated. The lower 
arm and hand present two consecutive peaks, which should be due to data clipping. From the 
magnitude of the peaks, it is predictable that the lower arm and hands rotational kinetic energy 
was overestimated if there was no data clipping. Indeed it is also possible that the marker-based 
measurement did underestimate the energy.  
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Figure 5-14 Rotational component of the segment’s kinetic energy based on Optitrack and IMU 
measurements.  

 

5.4.2.2  Power 
The segments power estimated based on Optitrack measurements is depicted in Figure 5-15.  

 

Figure 5-15 Segment’s power based on Optitrack measurements.  

Since the pitches were not preform by a real pitcher, the results are not exactly depicting the 
event sequences and the magnitude of power during pitching. Yet it is visible the power is 
building up in segments from pelvis to hand to preform the pitch. 
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The total power of each segment is the sum of translational and rotational power of the 
segment. Since the linear velocity of centre of mass was not estimated adequately using IMU 
measurements, we compare only the rotational part of power in Figure 5-16.  

 

Figure 5-16 Rotational component of the segment’s power based on Optitrack and IMU measurements.  

The rotational component of the hand, lower arm and upper arm’s power computed by the 
IMU based measurements are reasonably fitted with the marker-based reference. This is not the 
case for thorax. For thorax the sign and pattern of changes are similar but the magnitude 
difference is large. This should be due to the position of the thorax and the scapula movements.  

The joints power estimated based on Optitrack and IMU measurements are depicted in 
Figure 5-17. 

 
Figure 5-17 joints power 
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IMU and marker based estimated joint powers. The reason to this is the errors in computation of 
forces and moments applied at joints and the linear velocity of the CoM of the segments from the 
integration of the linear acceleration recorded by the IMU.  The data clipping can also be a source 
of error. The following sections present a short overview of this miscalculation. 

5.4.2.3  Velocity 
The linear velocities of the segments are computed by one step integration, which results a 

drift in the computed velocity. The drift can be linear, and we can compensate it having some 
workaround. For example, knowing that at the beginning and end of the measurement the 
segment is not moving and the velocity is zero (Figure 5-18). 

 

Figure 5-18 Drift  in velocity due to computation of velocity by integration of acceleration (norm of 
the velocity of upper arm centre of mass) 

However, even though this drift is linear, we face another problem especially for the lower 
arm and hand. The reason to this should be the data clipping due to the limit of accelerometer; 
we are not able to compensate for the integration drift. The problem existed on both low noise 
and wide range accelerometer sensors. Figure 5-16 shows the data clipping results the error in 
linear velocity computation.   

 

Figure 5-19 Drift  in velocity due to computation of velocity by integration of acceleration of lower 
arm due to data clipping of accelerometer during pitching.  
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5.4.2.4  Joint force and moment 
Joints forces and moments are estimated for both IMU and Optitrack measurements. The 

results show the forces at the wrist with IMU are similar to the Optitrack measurements, 
however its moments are much lower. This could be due to underestimating of the hand length 
by IMU as it was presented in table 5-3. As the forces and moments are computed respectively 
starting from hand and then elbow and shoulder, this error would also effect the estimation of 
forces and moments at elbow and shoulder. Also all the errors in accelerations affect this 
computation.   

 

Figure 5-20 joints forces and moments during 5 pitches 
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Chapter 6 
6  Conclusion & 

Recommendations 

The aim of this study was development and validation of an IMU’s motion tracking system for 
measurements of baseball pitcher kinematics, having the marker-based motion capture data as 
the reference. The method development and evaluation are discussed in the previous chapters. 
This chapter presents gives an overview of the achievements of this study and the concluded 
outcomes from the discussed results in the previous chapters and recommendations for future 
studies. 

 

 

 

þ A comprehensive validation of IMU-based motion tracking is done. 

The most interesting thing about this project is that for the first time to our knowledge the 
measurements has been done and validated at the same time on upper and lower extremities and 
trunk on many joints and segments. The kinematic analysis has been validated at different levels 
of segments and joints rotation angle, angular velocities and accelerations. The results are 
verified with the marker-based measurements and with another well-known method from 
literature (Seel, Schauer et al. 2012). 

þ The segment lengths are estimated.     

For the first time, the kinematic analysis of the human body is followed by the segment 
lengths estimation using both IMU sensor data method for kinetic computation. These estimated 
segment lengths are validated against the marker-based measurements. Subsequently the 
segment lengths have been used as the scaling factors in an anthropometric human body model, 
to estimate the mass and inertia of the segments.  

þ A convenient functional calibration protocol was established. 

An IMU-based human motion tracking system has been developed. A practical measurement 
protocol for placement of the IMU sensors and calibration procedure has been established in 
which there was no need of specific placements and orientation of the IMU sensors with respect 
to the anatomical axes of the segments, as needed in most of previous studies. Specific tips are 
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introduced to find the orientation of the IMU regarding known standard static positions, like 
looking into the gravity direction presented in the accelerometer data or comparing the changes 
of gyroscope angular velocity against the direction of the movement. This information could 
potentially provide us the necessary knowledge to get the axis direction. The functional 
calibration motions are specified to define the coordinate system of each body segment. This area 
still needs more work and functional calibration protocol could be improved further to minimal 
set of movement (such as a squat with upper limb extension as has been shown in Figure 6-1, 
where ankle, knee, hip, shoulder and elbow are rotating together).  

 

Figure 6-1suggested squat motion with upper limb extending as calibration motion  

þ A fast and convenient method is introduced to compute the joint axis. 

Functional calibration method used in previous studies was performed by different routines 
to rotate the joint in a way to minimize the out of plane rotations. For example, by passive 
controlled rotation (van den Noort, Ferrari et al. 2013), or by narrowing the rotation angle (Seel, 
Raisch et al. 2014) or randomly choosing a few (4 to 10) frames which the accuracy of the results 
would be random (Seel, Schauer et al. 2012). In this study we presented a novel method to find 
the functional coordinate system of joint, which exclusively use the frames with higher angular 
velocity during a number of repeating large joint rotation preforming actively by subject (see 
Figure 4-11).  

þ The 50% ωmax method has been verified. 

The results show that the 50% ωmax functional calibration method is verified for joint axis 

computation. The 50% ωmax method is even more reliable than a time-consuming optimization 
routine, in reducing the effect of cross talk between the axes (as you can see in Figure 5-2) and 
matching with the marker-based measurements.  

It was noticed that the slower the joint rotation, the more noise in the measured data by the 
IMU sensor and that could results in less accurate functional calibration. In the case of using 
optimization method with a random frame selection over repeated joint rotations, it is suggested 
to select the data from higher angular velocities in which the joint is rotating smoothly. However, 
the comparison of the RMSD of slow and fast joint rotation in Table 5-1 indicates that the faster 
movements are less successful in tracking the movement. Therefore the conclusion is that a 
smooth joint rotation is desired not a fast one. And the purpose of removing frames with lower 
velocities is to discard the not smooth parts. The advantage of the 50% ωmax method is that the 
method comprises simple and fast calibration movements. The method could compute joint axis 
based on repeated movements in two directions and remove the frames, in which the joint 
rotation direction is changing.  

Moreover, the computation for the ωmax method over a 10 s data of 500 Hz, takes around 12 
ms while the optimization method takes around 500 s. Comparing the results of the IMU-based 
measurements against the marker-based measurements shows that the root-mean-square 
deviation (RMSD) of the joint angles has been 2 to 27°, angular velocities 4 to 180°/s and angular 
acceleration 29 to 599 m/s2. The only joint angle with an error of larger than 20° was the wrist, 
which was due to the hand’s IMU calibration error. 
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þ The results of the 50% ωmax method have been validated. 

In order to validate the kinematic measurements, the method is verified with Seel et al. 2012 
to 2016 optimization methods. The results of our method are similar to the optimization method 
of Seel and in some cases it is even better in tracking the joint angles. Table 5-1 shows that the 
difference between the 50% ωmax method and the optimization method is in most of the cases 
smaller that 2°. Besides, it is noticeable that the 50% ωmax method has in most of the cases a 
smaller RMSD than the optimization method. Therefore, the 50% ωmax method is validated 
based on the similarities of the results of these two functional calibration methods. 

At velocity and accelerations level the IMU measurements are more trustable not only due to 
avoiding differentiation amplification inaccuracy but also due to the higher sampling frequency 
of the used IMU sensors. Therefore, the fact that the results show a smaller RMSD for tracking the 
slower motions, where the marker data are more reliable than the faster motion is also validating 
the results.  

þ A dual synchronized measurements method was developed. 

The human motion has been captured using two systems; IMU and Optitrack. The analysis 
confirmed that the measurements are accurately synchronized. A method has been developed to 
assess the kinematics and kinetics of the joints and segments based on both measurement 
systems. Furthermore, the synchronization method can be used in following studies.  

þ Some suggestions are given to improve the quality of following studies. 

The largest dissimilarities are at wrist joint, which is due to miscomputation of the hand’s 
orientation. It is suggested to use a better IMU on hand (wider range of sensor detection and 
lighter). The shoulder joint’s rotation was not fitted also very satisfactory (RMSD=14°). This was 
expected since the shoulder and scapula have complex movements and in this study we had only 
one IMU tracking motion of thorax and one IMU tracking the motion of upper arm. It is suggested 
to also track the clavicle and scapula (one IMU can get either clavicle or scapula).  

þ The distance between IMU and the joints are estimated. 

The distance between IMU and segments where computed based on the physical fact that:  
“when a joint is moving, the acceleration of the joint centre is identical in both IMU’s coordinate 
systems”. Based on this statement, the distance between the joint and the two IMU on two 
adjacent segments is computed using optimization of the recorded data.  

This method is used by Seel et al. studies on the functional calibration movements where the 
joint is kept still. Since when one IMU sensor is kept almost still, the IMU records zero angular 
velocity and the optimization results are random and the results shows that the joint can be 
anywhere with respect to a not moving IMU and the estimation is based on noise from IMU. For 
solving this problem Seel suggest to find the shortest distance and salehi suggest to project the 
point to the joint plane. Our experiments show, this optimization searching for a global minimum 
works optimal when both IMU sensors are moving. 

þ An IMU-based motion capture system has been developed to measure the kinematic of 
baseball pitcher and compute the dynamics of the full body.  

We developed and validated an IMU-based motion tracking system for kinematics and 
kinetics measurements of human body, with a marker-based motion capture data as the 
reference. The method is verified and gives encouraging results. By slight improvement of some 
technical limitations, the method could be applicable to measure baseball pitcher motion in field. 
These are one step forward to the final goal of screening and direct feedback to the pitchers in 
baseball field for injury prevention and improving pitching performance.  
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This study allowed us to define a method of functional calibration with the aim of measuring 
baseball pitching on the field. During this research we faced various issues and problems that 
depends on understanding of the method and technology. Here are our recommendations for the 
future study: 

� More advanced IMU are needed for tracking the motion of baseball pitchers.  

Using the IMU that we have used in this project we were not able to track the motion of real 
baseball pitchers. During baseball pitching the upper limb internally rotates with an angular 
velocity of 4000 to 9000°/s and the hand can reach acceleration of 60G or above. The IMU that 
we used were able to track angular velocities up to 2000°/s and accelerations of under 16G. 
Therefore, to track the pitcher upper limb in the following studies there is a need to use IMU 
sensors with wider range of measurements.  

� The error in tracking the faster motion is overall larger than the slower motions.   

The fact that the results show a larger RMSD for tracking the faster motions, indicate the 
inertia effect. Therefore we suggest selecting a lighter IMU in the following studies.  

� The method used in this project can be easily used in future studies.  

IMU sensors do not measure translations and position of segments. Thus new methods need to be 
developed to measure the motion. Note that this project used the initial orientation of the segments 
from the Optitrack data. An initial calibration base can be used to set the initial orientation of IMU 
sensors to zero. This plate would allow the definition of a single initial coordinate system for all 
IMU sensors and make it possible to determine the relative orientation of the IMU sensors with 
respect to each other in a simple way. Using such a base the method of this project can be used 
easily in future studies, as follow:  

 

   
R

FCSpro→FCSdis
= R

MCSpro→FCSpro

−1 .R
MCSpro

−1 .R
MCSpro→MCSdis

.R
MCSdis

.R
MCSdis→FCSdis

 

Figure 6-2 an initial  calibration base to start IMU recordings and then attach the IMU sensors to the 
body segments.  As the algorithm show, having this initial  rotation known, make it  possible to 

compute joint angle.   Where,  the 𝑹𝑴𝑪𝑺𝒑𝒓𝒐→𝑴𝑪𝑺𝒅𝒊𝒔  is  the orientation of the IMU on the distal  with respect 
to the IMU on the proximal segment.  The 𝑹𝑴𝑪𝑺→𝑭𝑪𝑺 is  the orientation of the IMU with respect to the 

segment,  which is defined via functional calibration,  and the 𝑹𝑴𝑪𝑺 is  the orientations of the IMU 
sensor recorded by IMU. Having these rotation of distal  segment with respect to the proximal segment 

𝑹𝑭𝑪𝑺𝒑𝒓𝒐→𝒇𝑪𝑺𝒅𝒊𝒔  can be defined and subsequently from that the joint angle is  to be estimated.    
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☐  Further method development is needed for estimation of linear velocities and translations.  

The linear velocities and translations computed by the IMU-based method using the 
integration of linear acceleration recorded by the accelerometer needs to be improved.  

☐   Kinetic energy computation and the power flow estimation method need to be validated. 

In this study only a proof on concept for kinetic computation using the IMU-based method is 
done. Further validation of the results of this method is needed.  

� A full body power analysis in the future works is needed.  

The optimal pitching mechanism needs to be yet quantified using real pitcher measurements. For 
the whole body power analysis, the ground reaction force and the ball and gloves masses are also need 
to be measured and added to the model. By quantifying the interactions between the segments of the 
full body model through a power analysis, the significant mechanical parameters associated to high 
pitching velocity can be identified. 



 

Page 80 of 114 
 



 

Page 81 of 114 
 

 

7  Appendices 

 

Appendix 1: Quaternion formulas 
For a rotation matrix R, there exist a unit vector   ê  that is unchanged by R:  

   Rê = ê                (62) 

The rotation angle  ϕ can be expressed in terms of unit vector   ê  and the rotation matrix R: 

    

ê =

ex

ey

ez

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

→

ex = (R23 −R32) / (2sinϕ)

ey = (R31 −R13) / (2sinϕ)

ez = (R12 −R21) / (2sinϕ)
           (63) 

 In terms of a rotation about axis   ê  and an angle  ϕ , the quaternion is defined by 

    

q =

qω
qx

qy

qz

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

→

qω = cos(ϕ / 2)

qx = ex sin(ϕ / 2)

qy = ey sin(ϕ / 2)

qz = ez sin(ϕ / 2)

          (64) 

Conjugate of quaternion is defined as: 

   
q = qω qx qy qz
⎡
⎣⎢

⎤
⎦⎥
T

→ q = qω −qx −qy −qz
⎡
⎣⎢

⎤
⎦⎥
T

                     (65) 

Quaternion multiplication is preformed in the same manner of the multiplication of complex 
numbers.  
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q ⊗ p =

qω
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⎥

                 (66) 

Going from a quaternion (q) to a rotation matrix (R) is straightforward. Rotation of a vector 
P=[x y z]’ with the quaternion q is done by the following operation (Markley 1980): 

    

q ⊗

0
x
y
z

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

⊗ q = QPQ =

qω −qx −qy −qz

qx qω qz −qy

qy −qz qω qx

qz qy −qx qω

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥

qω qx qy qz

−qx qω −qz qy

−qy qz qω −qx

−qz −qy qx qω

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥

0
x
y
z

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

QPQ =

1 0 0 0
0 qω

2 + qx
2 −qy

2 −qz
2 2(−qωqz + qxqy ) 2(−qωqy + qxqz )

0 2(qωqz + qxqy ) qω
2 −qx

2 + qy
2 −qz

2 2(−qωqx + qyqz )

0 2(−qωqy + qxqz ) 2(qωqx + qyqz ) qω
2 −qx

2 −qy
2 + qz

2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

0
x
y
z

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

         (67) 

 

Further we used the Shepherd algorithm described in (Markley 2008) with a condition to 
avoid jumps in the quaternion signal (introduced by R. Dumas) due to a sign ambiguity in the 
quaternion computation. 

  
The first derivative of the quaternion is estimated with a centred finite difference method. 

However, for the first frame a forward method is used and for the last frame a backward method 
is used: 

 

  

Forward method:  
dqi

dt
≈

qi+1 − qi

2.Δt

Centered method: 
dqi

dt
≈

qi+1 − qi−1

2.Δt

Bacward method: 
dqi

dt
≈

qi − qi−1

2.Δt
 

  (68) 

 

The 2nd derivative is also computed via a centred finite difference method as follows: 

 
  

d 2qi

dt2 ≈
qi+1 − 2qi + qi−1

Δt2   (69) 

 Forward and backward method for the 1st and last frames lead to singularity, thus, a mirror 
condition is used for those frames. This condition consist in using a symmetry around the 
first/last frame of the signal to extrapolate i.e. q(1) will be the symmetry of q(3) around q(2) 
and q(n) is the symmetry of q(n-2) around q(n-1): 

 

  

First frame:
d 2q(1)

dt2 = 2.
d 2q(2)

dt2 −
d 2q(3)

dt2

Last frame:
d 2q(n)

dt2 = 2.
d 2q(n−1)

dt2 −
d 2q(n−2)

dt2

  (70) 

with n the number of frames.  
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Appendix 2: Anthropometric model  
In this study, first we made a model from 15 segments as it is shown in Figure 7-1. To 

simplify the model, the non-throwing lower arm and hand that wears a glove, are assumed to be 
one segment.  

1) Neck and head 

2) Thorax 

3) Abdomen 

4) Pelvis 

5) Right upper arm 

6) Right lower arm  

7) Right hand 

8) Left upper arm 

9) Left lower arm and left hand  

10) Right thigh 

11) Right shank 

12) Right foot 

13) Left thigh 

14) Left shank 

15) Left foot 

Figure 7-1 Left:  Body segmentation outline (McConville,  Clauser et al .  1980),  middle:  The model of 
this study body segmentation,  right:  measured body segments in this study. 

The head is quite heavy and have some influence, but the head and neck exact movement has 
less effect on motion. Besides in baseball pitching, the power flow generation during pitching 
starts mainly from left foot and goes through body to the right hand. Therefore, for further 
simplification of the model we neglected the head and neck, right foot, shank, thigh and left upper 
arm, lower arm and hand.  

Here under is the anthropometric model of Dumas et al 2007. This model is scalable and can 
be used to extract the mass and inertia parameters. In the original article there was a few 
mistakes that was corrected in contact with the writer. Therefore here I bring the whole correct 
parameters that could be used in the following studies.   

 

   

Figure 7-2 Locations of selected anatomical landmarks and orientations of the segment coordinate 
system (SCSs) built  from these landmarks (Dumas,  Chèze et al .  2007, Dumas,  Cheze et al .  2007) 
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Table 7-1 Anatomical landmarks and centre of masses positions 

 Segment 
 Anatomical landmarks X [m] Y [m] Z [m] Length 

definition 
Length 

[m] 

Mass 
scaling 

factor (%) 
Head and neck 1) Head Vertex (HV) 0 0.277 0 

CJC to HV 0.277 6.7 
2) Sellion (SEL) 0.105 0.173 0 
3) Occiput (OCC) -0.073 0.1 0 
♦ Centre of mass (COM) -0.006 0.149 0 

Thorax 4) Suprasternale (SUP) 0.051 -0.039 0 

CJC to LJC 0.334 30.4 

5) Right Acromion (RA) -0.027 -0.045 0.206 
6) Left Acromion (LA) -0.027 -0.045 -0.206 
7) 7th Cervicale (C7) -0.072 0.026 0 
v Thoracic joint centre (TJC) 0 -0.334 0 
v Right Shoulder joint centre (RSJC) 0.019 0.083 0.206 
v Left Shoulder joint centre (LSJC) 0.019 0.083 -0.206 
♦ Centre of mass (COM) 0 0.185 0.001 

Abdomen v Lumbar joint centre (LJC) 0 -0.151 0 
TJC to LJC 0.151 2.9 ♦ Centre of mass (COM) 0.026 -0.055 0 

Pelvis 8) Right Anterior Superior Iliac Spine (RASIS) 0.078 0.007 0.112 Length: LJC 
to projection 

of HJC in 
sagittal plane 

 
Width: RASIS 

to LASIS 

Length: 
0.0936 

 
Width: 
0.224 

14.6 

9) Left Anterior Superior Iliac Spine (LASIS) 0.078 0.007 -0.112 
v Right Hip joint centre (RHJC) 0.056 -0.075 0.81 
v Left Hip joint centre (LHJC) 0.056 -0.075 -0.81 
10,11) Middle of Right and left Posterior Superior 

Iliac Spine (RPSIS and LPSIS) 
-0.102 0.007 0 

♦ Centre of mass (COM) 0.003 -0.026 0 
Right upper 

arm 
5) Right Acromion (RA) -0.025 0.054 0.003 

SJC to EJC 0.261 2.4 
12) Right Lateral Humeral Epicondyle (RLHE) 0 -0.258 0.041 
13) Right Medial Humeral Epicondyle (RMHE) 0 -0.264 -0.041 
v Right Elbow joint centre (REJC) 0 -0.261 0 
♦ Centre of mass (COM) 0.005 -0.118 -0.007 

Right lower 
arm 

14) Right Ulnar Styloid Process (RUS) 0 -0.284 -0.033 

EJC to WJC 0.284 1.7 
15) Right Radial Styloid Process (RRS) 0 -0.284 0.033 
v Right Wrist joint centre (RWJC) 0 -0.284 0 
♦ Centre of mass (COM) 0.003 -0.118 0.004 

Right hand 14) Right Ulnar Styloid Process (RUS) -0.007 0 -0.032 

WJC to FT3 0.1891 0.6 

15) Right Radial Styloid Process (RRS) 0.007 0 0.032 
16) Right Hand 2nd Metacarpal Head (RMH2) 0 -0.086 0.046 
17) Right Hand 5th Metacarpal Head (RMH5) 0 -0.075 -0.046 
18) Right Hand 3rd finger middle phalanges 

(RFMP3) 0.007 -0.189 0.001 

♦ Centre of mass (COM) 0.007 -0.068 0.006 
Left upper arm 6) Left Acromion (LA) -0.025 0.054 -0.003 

SJC to EJC 0.261 2.4 
19) Left Lateral Humeral Epicondyle (LLHE) 0 -0.258 -0.041 
20) Left Medial Humeral Epicondyle (LMHE) 0 -0.264 0.041 
v Left Elbow joint centre (LEJC) 0 -0.261 0 
♦ Centre of mass (COM) 0.005 -0.118 0.007 

Left lower arm 
& left hand 

21) Left Ulnar Styloid Process (LUS) 0 -0.284 0.033 

EJC to FT3 0.4731 2.3 

22) Left Radial Styloid Process (LRS) 0 -0.284 -0.033 
23) Left Hand 3rd finger middle phalanges 

(LFMP3) 0.007 -0.473 -0.001 

v Right Wrist joint centre (RWJC) 0 -0.284 0 
♦ Centre of mass (COM) 0.004 -0.179 -0.0045 

Right thigh 24) Right Greater Trochanter (RGT) -0.040 0.006 0.101 

HJC to KJC 0.4315 12.3 
25) Right Lateral Femoral Epicondyles (RLFE) 0 -0.431 0.057 
26) Right Medial Femoral Epicondyles (RMFE) 0 -0.432 -0.057 
v Right Knee joint centre (RKJC) 0 -0.4315 0 
♦ Centre of mass (COM) -0.018 -0.185 0.0142 

Right shank 27) Right Fibula Head (RFH) 0 -0.023 0.047 

KJC to AJC 0.4335 4.8 
28) Right Shyrion (RSPH) 0.021 -0.434 -0.033 
29) Right Lateral Malleous (RLM) -0.021 -0.433 0.033 
v Right Ankle Joint Centre (RAJC) 0 -0.4335 0 
♦ Centre of mass (COM) -0.021 -0.178 0.003 

Right foot 30) Right Calcaneous (RCAL) -0.046 -0.021 0.007 AJC to 
midpoint 
MHI and 

MHV 

0.1388 1.2 31) Right Foot 1th Metatarsal Head (RMH1) 0.146 -0.021 -0.047 

32) Right Foot 5th Metatarsal Head (RMH5) 0.128 -0.021 0.060 

Left thigh 33) Left Greater Trochanter (LGT) -0.040 0.006 -0.101 

HJC to KJC 0.4315 12.3 
34) Left Lateral Femoral Epicondyles (LLFE) 0 -0.431 -0.057 
35) Left Medial Femoral Epicondyles (LMFE) 0 -0.432 0.057 
v Left Knee joint centre (LKJC) 0 -0.4315 0 
♦ Centre of mass (COM) -0.018 -0.185 -0.0142 

Left shank 36) Left Fibula Head (LFH) 0 -0.023 -0.047 

KJC to AJC 0.4335 4.8 
37) Left Shyrion (LSPH) 0.021 -0.434 0.033 
38) Left Lateral Malleous (LLM) -0.021 -0.433 -0.033 
v Right Ankle Joint Centre (RAJC) 0 -0.4335 0 
♦ Centre of mass (COM) -0.021 -0.178 -0.003 

Left foot 39) Left Calcaneous (LCAL) -0.046 -0.021 -0.007 AJC to 
midpoint 
MHI and 

MHV 

0.1388 1.2 40) Left Foot 1th Metatarsal Head (LMH1) 0.146 -0.021 0.047 

41) Left Foot 5th Metatarsal Head (LMH5) 0.128 -0.021 -0.060 

v Joint centres are estimated based on the location of specific markers  
♦ Centre of masses are estimated based on scaling vector of position of centre of masses  

From (Dumas, Cheze et al. 2007) 
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Appendix 3: Description of the Optitrack system 

 
 

OptiHub User Manual 
Rev 0.9.4 

 

0. Introduction 
 
The OptiHub, part of the OptiTrack family of optical motion capture solutions, allows advanced users to 
reap the benefits of a bigger capture volume and the ability to integrate their motion capture system with 
other hardware acquisition or control systems. 
 

1. Specifications 
 
USB Modes Supported USB2.0: High-Speed (480Mbps), Full-Speed (12Mbps), 

Low-Speed (1.5Mbps) 

USB Ports Uplink: 1 
Downlink: 6 

Power Input OptiHub 1 : 12V @ 3.0A 
OptiHub 2 : 12V @ 3.8A 

Power Output OptiHub 1 : 3.5W (700mA @ 5V) max per port 
OptiHub 2 : 5.0W (1000mA @ 5V) max per port 

Status LEDs x Power 
x Uplink Port Status 
x Downlink Port Status 
x Sync Activity 

Sync Input Sources 1. Internally Generated 
2. Cascaded OptiHub Output 
3. External Digital Input 
4. Software Trigger (from PC via USB) 

External Sync Input Opto-isolated Input, (LV)TTL compatible 
Vil(max) : 0.8V 
Vih(min) : 2.5V 
Vih(max) : 13V 
Max Freq : 10kHz 

External Sync Output LV-TTL Digital Output 

External Sync Output Types 1. Exposure Pulse 
2. External Sync Input Pass-Through 

3. Recording Active – Level Output 
4. Recording Active – Frame Pulse 

External Sync Output Polarity Normal or Reverse 

External Sync Input Divider 1:1 – 1:15 

External Sync Input Trigger Modes 1. Rising-Edge 
2. Falling-Edge 
3. Either-Edge 
4. High-Level Gated 
5. Low-Level Gated 

External Sync Input Trigger Delay 0 – 65ms 

Internally Generated Trigger Rate 8 – 100 Hz 

OptiTrack™ Camera Sync Modes 1. OptiSync (sync signaling is carried using out-of-band 
signaling on the power conductors of standard USB 
cables) 

2. WiredSync (dedicated camera-to-camera daisy-chain 
cables provided by NaturalPoint) 

Compatible Stereo-Vision Systems 1. Stereographics CrystalEyes ™ 
2. NuVision 60GX 
3. NuVision APG6000 
 
Refresh Rates: 60/90/96/100/120/200 FPS 
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P: +1-888-865-5535  •  www.optitrack.com  •  support@naturalpoint.com  •  sales@naturalpoint.com

TECHNICAL SPECIFICATIONS

CAMERA BODY
• Width: 2.12 inches (53.8 mm)
• Height: 3.19 inches (81 mm)
• Depth: 1.67 inches (42.4 mm)
• Weight: 6.60 ounces (187 g)
• Mounting: 1/4”-20 tripod thread
• Status Indicators:

– 2 digit numeric LEDs
– 1 bicolor status LED

IMAGE SENSOR
• Pixel Size : 4.8 µm ×  4.8 µm
• Imager Size : 6.144 mm ×  4.9152 mm
• Imager Resolution : 1280 ×  1024 

(1.3 MP)
• Frame Rate: 30-120 FPS 

(adjustable)
• Accuracy: Sub-millimeter
• Latency: 8.3 ms
• Shutter Type: Global
• Shutter Speed:

– Default: 500 µs
– Minimum: 20 µs
– Maximum: 7.5 ms (at 120 FPS)

IMAGE PROCESSING TYPES
• Object (Centroids)
• Precision (Grayscale)
• Segment (Thresholded)
• MJPEG Grayscale
• Raw Grayscale

LENS & FILTER
• Default Lens: 5.5mm F#1.8

– Horizontal FOV: 56°
– Vertical FOV: 46°

• Optional Lens: 8 mm F#1.8
– Horizontal FOV: 42°
– Vertical FOV: 34°

• M12 Lens Mount
• Adjustable focus w/ spring assist
• 800 nm IR pass filter
• Optional: 800nm IR pass filter w/ 

Filter Switcher

LED RING
• 28 LEDs
• 850 nm IR
• Adjustable brightness
• Strobe or Continuous Illumination
• Removable

INPUT/OUTPUT & POWER
• Data: USB 2.0
• Camera Sync: USB 2.0 (via 

OptiSync)
• Power: USB 2.0 @ 1A

SYSTEM REQUIREMENTS
• Windows XP/Vista/7
• 1GHz processor
• 1GB of RAM
• 50MB of available disk space
• USB 2.0 Hi-speed port
• OptiHub 2 (required for IR LED 

power)

IN THE BOX
• 1 Flex 13 camera  (part number: 

FL-13)
• 1 Quick Start guide

© 2012 NaturalPoint Inc. All rights reserved. NaturalPoint, OptiTrack, ARENA, Expression, Tracking Tools, trademarked slogans and logos are the property of NaturalPoint. P-OT-402.1207
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Appendix 4: Description of the Shimmer3  
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Appendix 5: Description of Xsens suit 
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Appendix 6: Description of Analog devices IMU 
 

 

 

 

 

  

 

Fast Starting, ±20,000°/sec   
Vibration Rejecting Rate Gyro 

Data Sheet ADXRS649 
 

 

Rev. B Document Feedback 
Information furnished by Analog Devices is believed to be accurate and reliable. However, no 
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other 
rights of third parties that may result from its use. Specifications subject to change without notice. No 
license is granted by implication or otherwise under any patent or patent rights of Analog Devices. 
Trademarks and registered trademarks are the property of their respective owners. 

  
 
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. 
Tel: 781.329.4700 ©2010–2012 Analog Devices, Inc. All rights reserved. 
Technical Support www.analog.com  

FEATURES 
High vibration rejection over wide frequency 
Ultrafast startup: 3 ms 
Measurement range extendable to ±50,000°/sec  
10,000 g powered shock survivability 
Ratiometric to referenced supply 
5 V single-supply operation 
Z-axis (yaw rate) response 
−40°C to +105°C operation 
Self-test on digital command 
Ultrasmall and light (<0.15 cc, <0.5 gram) 
Temperature sensor output 
RoHS compliant 

APPLICATIONS 
Sports equipment 
Industrial applications 
Platform stabilization 
High speed tachometry 

GENERAL DESCRIPTION 
The ADXRS649 is a complete angular rate sensor (gyroscope) 
that uses the Analog Devices, Inc., patented high volume BiMOS 
surface-micromachining process to make a complete gyro on 
one chip. An advanced, differential, quad sensor design rejects 
the influence of linear acceleration, enabling the ADXRS649  
to offer rate sensing in harsh environments where shock and 
vibration are present. 

The output signal, RATEOUT (B1, A2), is a voltage proportional 
to the angular rate about the axis normal to the top surface of 
the package. The output is ratiometric with respect to a provided 
reference supply. An external capacitor is used to set the band-
width. The measurement range is extendable to ±50,000°/sec  
by adding an external resistor.  

Low power consumption (3.5 mA) enables very low power 
consumption, and ultrafast startup (3 ms) allows for quick 
power cycling of the gyro. At 10 samples per second, a pair of  
CR2032 coin cells can power the ADXRS649 for three months. 

A temperature output is provided for compensation techniques. 
Two digital self-test inputs electromechanically excite the sensor 
to test proper operation of both the sensor and the signal condi-
tioning circuits. The ADXRS649 is available in a 7 mm × 7 mm × 
3 mm CBGA chip scale package.
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Figure 1.  
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Data Sheet ADXRS649 
 

Rev. B | Page 3 of 12 

SPECIFICATIONS 
All minimum and maximum specifications are guaranteed. Typical specifications are not guaranteed.  

TA = −40°C to +105°C, VS = AVCC = VDD = VRATIO = 5 V, angular rate = 0°/sec, bandwidth = 80 Hz (COUT = 0.01 µF), IOUT = 100 µA, ±1 g, 
unless otherwise noted. 

Table 1. 
Parameter Test Conditions/Comments Min Typ Max Unit 
SENSITIVITY1 Clockwise rotation is positive output     

Measurement Range2 Full-scale range over specifications range  ±20,000  °/sec 
Initial and over Temperature −40°C to +105°C 0.08 0.1 0.12 mV/°/sec 
Temperature Drift3   ±2  % 
Nonlinearity Best fit straight line  0.1  % of FS 

NULL BIAS1      
Null Bias −40°C to +105°C 2.4 2.5 2.6 V 
Linear Acceleration Effect Any axis  0.1  °/sec/g 
Vibration Rectification 40 g rms, 50 Hz to 27 kHz  0.0006  °/sec/g2 

NOISE PERFORMANCE      
Rate Noise Density TA = 25°C  0.25  °/sec/√Hz 
 TA = 105°C  0.4  °/sec/√Hz 
Resolution Floor TA = 25°C, 1 minute to 1 hour in-run   200  °/hr 

FREQUENCY RESPONSE      
Bandwidth4 ±3 dB user adjustable up to specification  2000  Hz 
Sensor Resonant Frequency  15.5 17.5 20 kHz 

SELF-TEST1      
ST1 RATEOUT Response ST1 pin from Logic 0 to Logic 1   −1300  °/sec 
ST2 RATEOUT Response ST2 pin from Logic 0 to Logic 1   1300  °/sec 
ST1 to ST2 Mismatch5   ±2  % 
Logic 1 Input Voltage  3.3   V 
Logic 0 Input Voltage    1.7 V 
Input Impedance To common 40 50 100 kΩ 

TEMPERATURE SENSOR1      
VOUT at 25°C Load = 10 MΩ 2.3 2.4 2.5 V 
Scale Factor6 TA = 25°C, VRATIO = 5 V  9  mV/°C 
Load to VS   25  kΩ 
Load to Common   25  kΩ 

TURN-ON TIME7 Power on to ±90% of final output, CP5 = 2.2 nF  3  ms 
OUTPUT DRIVE CAPABILITY      

Current Drive For rated specifications   200 µA 
Capacitive Load Drive    1000 pF 

POWER SUPPLY      
Operating Voltage (VS)  4.75 5.00 5.25 V 
Quiescent Supply Current   3.5  mA 

TEMPERATURE RANGE      
Specified Performance  −40  +105 °C 

 
1 Parameter is linearly ratiometric with VRATIO. 
2 Measurement range is the maximum range possible, including output swing range, initial offset, sensitivity, offset drift, and sensitivity drift at 5 V supplies.  
3 From +25°C to −40°C or +25°C to +105°C. 
4 Adjusted by external capacitor, COUT. Reducing bandwidth below 0.01 Hz does not result in further noise improvement. 
5 Self-test mismatch is described as (ST2 + ST1)/((ST2 − ST1)/2). 
6 Scale factor for a change in temperature from 25°C to 26°C. VTEMP is ratiometric to VRATIO. See the Temperature Output and Calibration section for more information. 
7 Based on characterization. 
 

ADXRS649 Data Sheet
 

Rev. B | Page 4 of 12 

ABSOLUTE MAXIMUM RATINGS 
Table 2.  
Parameter Rating 
Acceleration (Any Axis, 0.5 ms)  

Unpowered 10,000 g 
Powered 10,000 g 

VDD, AVCC −0.3 V to +6.0 V 
VRATIO AVCC 
ST1, ST2 AVCC 
Output Short-Circuit Duration  

(Any Pin to Common) 
Indefinite 

Operating Temperature Range −55°C to +125°C 
Storage Temperature Range −65°C to +150°C 

Stresses above those listed under the Absolute Maximum 
Ratings may cause permanent damage to the device. This is a 
stress rating only; functional operation of the device at these or 
any other conditions above those indicated in the operational 
section of this specification is not implied. Exposure to absolute 
maximum rating conditions for extended periods may affect 
device reliability. 

Drops onto hard surfaces can cause shocks of greater than  
10,000 g and can exceed the absolute maximum rating of the 
device. Care should be exercised in handling to avoid damage. 

RATE SENSITIVE AXIS 
The ADXRS649 is a z-axis rate-sensing device (also called a yaw 
rate-sensing device). It produces a positive going output voltage 
for clockwise rotation about the axis normal to the package top, 
that is, clockwise when looking down at the package lid. 
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Figure 2. RATEOUT Signal Increases with Clockwise Rotation 
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