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Summary 
 
The stationary-phase method applied to migration with a time-shift extension in a 2-D constant-velocity 

model with a dipped reflector produces two solutions in the domain of the extended image: one a straight 
line and the other a curve. If the velocity differs from the true one, the depth error follows from the 

depth and apparent dip of the reflector as well as the depth of the amplitude peak at a non-zero time 

shift, where the two solutions meet and the extended image focuses. The results are compared to finite-
frequency results from a finite-difference code. A 2-D synthetic example with a salt diapir illustrates 

how depth errors can be estimated in an inhomogeneous model after inverting the seismic data for the 

velocity model. 
 



Time-shift extended imaging for estimating depth errors

Introduction

Among the several methods for velocity model building, migration velocity analysis (MVA) with extended
images based on subsurface offsets or time shifts exploits the move-out information in the data, unlike
full-waveform inversion (FWI) in its original form without emphasis on phase. A disadvantage of MVA
is the pre-processing required to extract the primaries from the data, because the result is highly sensitive
to the presence of multiples (Mulder and van Leeuwen, 2008; Weibull and Arntsen, 2013).

Here, the stationary-phase method is applied to migration with a time-shift extension (Faye and Jeannot,
1986; MacKay and Abma, 1992; Sava and Fomel, 2006; Higginbotham et al., 2008), to find the depth
error for a dipped interface in a 2-D constant-velocity model. The result is used to estimate the depth
errors of a partially converged velocity model obtained for 2-D synthetic Born data for a salt diapir model,
using a focusing method (Mulder, 2008, 2014) with time shifts instead of subsurface offsets.

Stationary-phase method for a constant velocity

Consider an interface with dip angle U0 in a 2-D homogeneous model with constant velocity E0. The
interface is defined by a depth I(G) = I0 + (G − G0) tanU0 for a reference point (G0, I0). The source
is located at (GB, IB) and the receiver at (GA , IA ), with IB = IA = 0 at the surface. The half-offset is
ℎ = (GA − GB)/2 and the midpoint G< = (GA + GB)/2. Assume ℎ ≥ 0 and |U0 | < c/2. The travel time

to a subsurface point (G, I) is g = gB + gA , with gB,A = E−1
0

√

I2 + (G− GB,A )2. The reflection point on
the dipped interface in the high-frequency limit can be found by requiring mg/mG = 0, using I(G) on
the interface. For the derivation, it may be more convenient to replace G by I, assuming non-zero
dip, U0 ≠ 0, and positive depth, I > 0. The solution for the scatter point (G, I) is represented by
G − G< = −sin(U0) cos(U0) (I

2
< + ℎ2)/I< and I− I< = (G − G<) tanU0, where the midpoint G< is related

to I< by I< = I0 + (G< − G0) tanU0. The two-way travel time becomes g = 2E−1
0

√

ℎ2 + I2
< cosU0 if

I< > ℎ tan |U0 |, that is, if the interface does not cut the surface between source and receiver. Geometrical
arguments and Snell’s law produce the same result.

The extended migration image in a model with velocity E of data obtained with velocity E0 and an
additional time shift ΔC is given by

A (G, I;ΔC) =

∫ ℎmax

ℎmin

dℎ

∫ ∞

−∞

dG< �(GB, IB;G, I)�(GA , IA ;G, I)4
ilk, (1)

where the phase k = g(ℎ,G<;E0) − gB (G, I;E) − gA (G, I;E) − 2ΔC. The amplitudes �(GB,A , IB,A ;G, I) from
source or receiver to depth point (G, I) are not important in what follows. For now, an infinite offset
range is assumed, with ℎmin →−∞ and ℎmax →∞. Stationarity involves the equations k = 0, mk/mℎ = 0
and mk/mG< = 0 for ΔC, ℎ and G<. The first equation directly provides the stationary ΔC. The remaining
two have two solutions. The first solution is given by ℎ = 0, G< = G + I tanU with apparent dip angle
U, where sinU = V sinU0 and V = E/E0, requiring V | sinU0 | < 1. If I0 = I0 + (G0 − G0) tanU0 is the true
depth at a given G = G0, the stationary time shift ΔC (I) = E−1(I0VcosU0 − I cosU) = E−1(Imig − I) cosU,
where the depth at zero time shift is Imig = I0VcosU0/cosU = I0 tanU/tanU0 for an apparent interface
I(G) = (G − G0 + I0/tanU0) tanU = Imig + (G − G0) tanU0. In the correct model, V = E/E0 = 1, U = U0, and
the stationary ΔC = 0.

The amplitude along the straight line ΔC (I) at fixed G and ℎ = 0 is inverse proportional to the square root
of the absolute value of the determinant of the Hessian w.r.t. ℎ and G<. This absolute value is given by

4cos3U

E2I2I<

�

� I< cos3U− IVcosU0

�

� . (2)

Substitution of I< = I0 + (G< − G0) tanU0, G< = G + I tanU and I0 = Imig tanU0/tanU from above results
in an equation for I for which the determinant in equation (2) is zero and the amplitude infinite, at
I = Ipeak = Imig/[{1/(tanU0 cosU)2 −1} tan2U]. At finite frequencies, the amplitude will become finite.
In the correct model with V = 1, Ipeak = I0 and ΔCpeak = 0.
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The second solution of the stationary phase equations with ℎ ≠ 0 could not be obtained in closed form
and will be computed numerically. A series expansion in ℎ shows that it starts at I = Ipeak, on the line of
the first solution with ℎ = 0. When ℎ increases, it moves away from the line, with decreasing I ≤ Ipeak if
V > 1, or increasing I ≥ Ipeak if V < 1.

For zero dip angle U0 = 0, the first solution becomes ΔC = E−1(VI0 − I). The second has G< = G,
ℎ = [(I2

0
− V2I2)/(V2 − 1)]1/2 and ΔC = E−1(V2 − 1) [(I2

0
− I2)/(V2 − 1)]1/2 (Sava and Fomel, 2006). In

addition, Ipeak = I0/V and Imig = I0V, implying I0 = (ImigIpeak)
1/2 (Faye and Jeannot, 1986).

With a finite acquisition, the endpoint in stationary phase integral has to be included. Given a maximum
half-offset ℎmax and a ΔC following from k = 0, this leaves the equation mk/mG< = 0. Solving this
numerically for G< leads to ΔC as a function of I at fixed G. In the absence of a proper acquisition taper,
the solution at zero time shift shows up as an additional apparent interface in the migration image. For
certain interface and acquisition parameters, not considered here, there may be more than one solution.

The apparent dip angle at ℎ = 0 and ΔC = 0 can be estimated from mI/mΔC = −E/cosU or mI/mG = tanU,
where the second expression avoids a sign ambiguity. With that and the migration depth Imig at zero

time shift, Ipeak can be located along the line ΔC = E−1(Imig − I) cosU. The depth error follows from

Imig − I0 = Imig

(

1−
tanU0

tanU

)

,
tanU0

tanU
=
[

1+ (Imig/Ipeak −1) cos2U
]−1/2

. (3)

For small dip, Imig − I0 ≃ Imig(1−
√

Ipeak/Imig) (Faye and Jeannot, 1986).

If the velocity is not constant, the straight-line solution becomes curved (Duveneck, 2021). To estimate
Ipeak at a given G and I = Imig, determine the apparent dip angle U, rotate the extended image by
arctan(−E(G, I)/cosU), track along the nearly horizontal event to find the peak amplitude and its position,
and then rotate back to find Ipeak.

Comparison to finite-frequency results

To illustrate the result, Born scattering data were generated with a finite-difference code for a velocity
model with E0 = 1500m/s and two reflectors. The first had a depth of 400m at G = 0m and 700m at
G = 3000m, the second a depth of 1200m at G = 0m and 1000m at G = 3000m, resulting in dip angles
of 5.71 and −3.81 degrees. Shots at zero depth ranged from GB = 0 to 3000m with a 50-m spacing
and a 15-Hz Ricker wavelet. Receivers had offsets GA − GB from 100 to 2000m at a 25-m interval in a
marine-type acquisition.

Figure 1(a) shows the extended image in the correct velocity model, obtained with the same 2-D
frequency-domain finite-difference code. Figure 1(b) corresponds to a velocity that is 10% smaller and
Figures 1(c) and 1(d) for 10% larger. In the finite-frequency case, the peak value along the straight-line
solution does not occur at the predicted location. This is mainly caused by the interference with the
curved second solution that starts at the predicted peak location and, to a lesser extent, with the curve for
the maximum offset. The net effect will be an over-estimate of the depth error.

An application

To examine the potential use of the derived depth-error estimate, the 2-D velocity model of Figure 2(a),
taken from (Mulder, 2001), was considered. Born scattering data for the reflectivity shown in Figure 2(b)
were generated for a land-type acquisition with shots between −950 and 6950m at a 50-m interval with
a 15-Hz Ricker wavelet and receivers between −962.5 and 6962.5m at a 25-m interval.

Figure 2(d) displays a reconstructed velocity model represented by cubic B-splines and obtained by
optimizing a focusing functional based on time-shift extended imaging, similar to (Mulder, 2008, 2014)
but with subsurface shifts replaced by time shifts. Note that this method does not explicitly include depth
errors but only tries to move energy in the image to zero shift. The shown model corresponds to an
intermediate result, starting from the best linear-in-depth velocity with given surface velocity. Figure 2(e)
shows the corresponding depth-weighted migration image. The data were differentiated in time to change
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(a) (b)

(c) (d)

Figure 1 (a) Extended image at fixed G = 2000m and a function of time shift ΔC and depth I for the true

velocity. The drawn line represents the first solution of the stationary phase equations and the circle

denotes the expected position of the maximum amplitude. The dashed lines correspond to the maximum

offset. (b) As (a) but for too low a velocity of 1350m/s. The drawn yellow curves represent the second

solution, with the green part corresponding to offsets larger than the maximum offset in the data. The

true depth of the reflector is marked by a small horizontal line segment at zero time shift. (c) As (a) but

for too high a velocity of 1650m/s. (d) Detail of (c).

the zero-crossing of the reflectivity in Figure 2(b) at the position of an interface into a peak in Figure 2(e)
(Østmo et al., 2002). Figure 2(c) displays the depth errors, expected to be over-estimated. The impact
of the salt diapir is obvious, as is the increase in error with depth. For comparison, Figure 2(f) shows
a crude estimate of the depth error obtained from

∫ I

0
dI′ [1− E(G, I′)/E0(G, I

′)], which ignores strong
lateral variations. This shows that, although the focusing of energy in an extended image can be fairly
effective for the construction of an initial velocity model from primaries-only data, this appears to be
less so for the more delicate depth-error estimation outlined here, at least for its present implementation,
although the overall trend is more or less correct.

Conclusions

The stationary-phase method applied to migration with a time-shift extension in a 2-D constant-velocity
model with a dipped reflector produces two solutions, one a straight line and the other a curve, similar
to the case of a horizontal reflector (Sava and Fomel, 2006). The depth error follows from the apparent
reflector dip and depth as well as the depth of the amplitude peak along the first solution in the time-shift
extended image, where the second solution meets. The method was applied to estimate the depth errors
in a 2-D example with a salt diapir.
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Figure 2 Velocity model (a) and reflectivity (b) for the true model and the estimated error (c), clipped

at ±200m, for the recovered model (d), the related depth-weighted migration image (e), and a crude

estimate of the depth error obtained by comparing the recovered and exact velocity model (f).

References

Duveneck, E. [2021] Angle gathers from time-shift extended least-squares reverse-time migration. In:
Conference Proceedings, 82nd EAGE Annual Conference & Exhibition. European Association of
Geoscientists & Engineers, 1–5.

Faye, J.P. and Jeannot, J.P. [1986] Prestack migration velocities from focusing depth analysis. In: SEG

Technical Program Expanded Abstracts 1986. Society of Exploration Geophysicists, 438–440.
Higginbotham, J.H., Brown, M.P. and Clapp, R.G. [2008] Wave equation migration velocity focusing

analysis. In: SEG Technical Program Expanded Abstracts 2008. Society of Exploration Geophysicists,
3083–3087.

MacKay, S. and Abma, R. [1992] Imaging and velocity estimation with depth-focusing analysis. Geo-

physics, 57(12), 1608–1622.
Mulder, W.A. [2001] Higher-order mass-lumped finite elements for the wave equation. Journal of

Computational Acoustics, 9(2), 671–680.
Mulder, W.A. [2008] Automatic velocity analysis with the two-way wave equation. In: Conference

Proceedings, 70th EAGE Conference and Exhibition incorporating SPE EUROPEC 2008. European
Association of Geoscientists & Engineers, 1–5.

Mulder, W.A. [2014] Subsurface offset behaviour in velocity analysis with extended reflectivity images.
Geophysical Prospecting, 62(1), 17–33.

Mulder, W.A. and van Leeuwen, T. [2008] Automatic migration velocity analysis and multiples. In: SEG

Technical Program Expanded Abstracts 2008. Society of Exploration Geophysicists, 3128–3132.
Østmo, S., Mulder, W.A. and Plessix, R. [2002] Finite-difference iterative migration by linearized

waveform inversion in the frequency domain. In: SEG Technical Program Expanded Abstracts 2002.
Society of Exploration Geophysicists, 1384–1387.

Sava, P. and Fomel, S. [2006] Time-shift imaging condition in seismic migration. Geophysics, 71(6),
S209–S217.

Weibull, W.W. and Arntsen, B. [2013] Automatic velocity analysis with reverse-time migration. Geo-

physics, 78(4), S179–S192.

84th EAGE Annual Conference & Exhibition


