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a b s t r a c t 

A multiscale fracture model is developed to study the influence of defects appearing at a microscale in 

a fiber-reinforced composite laminate. The model establishes a link between the geometrical characteris- 

tics of sub-ply imperfections that may be created during manufacturing and the overall fracture strength 

and fracture energy of the composite. In particular, a recently-developed multiscale theory is expanded 

to account for microvoids inside the matrix and gaps between closely-spaced fibers that prevent filling. 

These defects are explicitly incorporated in finite element simulations to study their influence on the on- 

set and propagation of cracks at the sub-ply level. To connect these microcracks to the effective fracture 

behavior at a ply-level, a computational homogenization technique is applied to extract the energetically- 

equivalent macroscopic fracture properties. Through a parametric analysis of configurations, the influence 

of the void content (porosity), void type and void shape on the effective fracture strength and the ef- 

fective fracture energy of a composite are quantified. Results show that the porosity is the main param- 

eter influencing fracture properties while the shape of the defects and their type (matrix or interfiber) 

only play a secondary role. Furthermore, the influence of voids on the fracture properties appears to be 

strongly dependent on the loading conditions. In particular, for the range of porosity analyzed (up to 8%), 

the influence of voids in mode I on the transverse fracture strength is not significant but the transverse 

fracture energy decreases approximately linearly down to about 50% of its original value. In contrast, in 

mode II, the transverse fracture strength is significantly affected with increasing porosity. Furthermore, 

the transverse fracture energy depends nonlinearly on the porosity and the reduction is relatively more 

pronounced than for mode I. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Defects that appear during manufacturing of composite materi-

ls may affect their effective (macroscopic) mechanical properties,

n particular their fracture properties such as fracture strength

nd fracture energy during quasi-static, fatigue and impact loading

 Bowles and Frimpong, 1992; Jeong, 1997; Summerscales, 1998;

osta et al., 2001; Hamidi et al., 2004; Scott et al., 2014; Maragoni

t al., 2017 ). These defects can range from relatively large dry spots

panning a ply thickness to matrix microvoids smaller than the

iameter of the fibers. Experimentally quantifying the influence

f defects on the effective mechanical properties is a challenging

ask since, by their own nature, it is difficult to generate defects in

 controlled fashion (i.e., changing defects while keeping all other

arameters fixed Costa et al. (2001) ). Due to this large experi-

ental variability, it is usually not possible to uniquely ascribe an
∗ Corresponding author. 
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ffect to specific features in defects. However, recently-developed

ultiscale numerical techniques can assist in providing insight

nto the influence of defects through computational simulations.

hese techniques have the advantage of being able to control the

ypes of defects included in the simulations and, thus, being able

o establish a direct link between specific types of defects and

heir influence on the observable (macroscopic) properties. 

The multiscale approach couples the macro and micro re-

ponses using a homogenization technique, which relies on the be-

avior of the fine scale to determine the response of the larger

cale. This concept also enables the development of a failure cri-

erion based on the micromechanical behavior of the composite,

oth in terms of initiation and evolution, and has been exten-

ively used for composite materials (see, e.g., Xia et al., 2001;

ettich et al., 2008; Canal et al., 2009; Arteiro et al., 2015 ).

n the present work, attention is given to two distinct types

f microscopic defects, namely (i) microvoids inside the matrix

nd (ii) interfiber voids, which are gaps between closely-spaced

bers that appear when the resin is unable to flow between the

bers. These types of defects have been studied numerically using

https://doi.org/10.1016/j.ijsolstr.2019.01.031
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijsolstr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2019.01.031&domain=pdf
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micromechanical models in Vajari et al. (2013, 2014) ; Vajari (2015) ;

Maragoni et al. (2016) where it was found that the microscopic

voids have a large influence on both the macroscopic strength and

propagation of damage. The present study investigates a similar

situation to provide further insight on the influence of the micro-

scopic characteristics of voids on the fracture properties. In par-

ticular, two novel aspects are included here: Firstly, from the the-

oretical point of view, a recently-developed multiscale technique

( Turteltaub et al., 2018 ) is expanded to account for sub-ply (mi-

croscopic) defects and a new averaging technique is proposed to

satisfy the scale transition requirements (crack-based Hill-Mandel

condition). Secondly, a systematic parametric analysis is carried out

until complete failure of the (numerical) specimens and, through a

post-processing technique, the detailed results are condensed into

effective material properties for that microstructure. Through para-

metric analyses it is possible to establish a relation between ge-

ometrical parameters such as void volume fraction and void size

distribution and the fracture strength and fracture energy of the

composite under distinct loading modes. 

The work is organized into two parts: the first part in

Section 2 refers to an extension of the model developed in

( Turteltaub et al., 2018 ) to explicitly take voids into account. This

includes an extension of the strain and stress power decomposi-

tions to identify void-related terms. A new version of a crack-based

Hill-Mandel condition is subsequently developed and verified. The

second part in Section 3 contains a series of parametric analyses

designed to study the influence of distinct geometrical features of

the voids. The main findings are summarized in Section 4 . 

2. Microscale formulation with voids 

2.1. Preliminaries 

A typical cross section of a ply in a fiber-reinforced composite

consists of carbon or glass fibers embedded in an epoxy matrix as

shown in Fig. 1 . In a hierarchical multiscale formulation, a mate-

rial point at a macroscale corresponds to the collective behavior

of all microscale material points inside a volume element such as

the periodic volume element highlighted in the figure. The volume

element can be subjected to distinct loading conditions (such as

nominal mode I, II or mixed mode) based on the chosen values of

an average (macroscopic) strain tensor ε̄ imposed on the element.

For problems without fracture, periodic boundary conditions are

generally preferred since they conform more closely to the actual

material behavior and allow faster convergence in terms of the size

of a representative volume element compared to linear displace-

ment conditions or uniform traction. For problems involving frac-

ture, periodic boundary conditions can also be applied since this

allows modelling of a macroscopic crack without the need to spec-

ify a priori the crack orientation (see e.g., ( Turteltaub et al., 2018 )

for details). Alternative boundary conditions may be used (see, e.g.,

( Coenen et al., 2012a; 2012b; Bosco et al., 2015; Svenning et al.,

2016a; 2016b ), but pointwise periodic boundary conditions have

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

div σ( x , t) = 0 

t + ( x + , t) = −t −( x −, t) 

t ( x , t) = t v ( x , t) 

u ( x + l 1 e 1 , t) − u ( x , t) = l 1 ̄ε(t) e 1 t ( x +
u ( x + l 2 e 2 , t) − u ( x , t) = l 2 ̄ε(t) e 2 t ( x +
u 

±( x ± + l 1 e 1 , t) − u 

±( x ±, t) = l 1 ̄ε(t) e 1 

u 

±( x ± + l 2 e 2 , t) − u 

±( x ±, t) = l 2 ̄ε(t) e 2 
he advantage of being relatively simple to implement and provide

ufficient flexibility for the simulations. 

A typical microscopic volume element with a periodic crack is

hown in Fig. 2 . The volume element also shows voids, some of

hich may end up in the path of a crack (or may in fact be a lo-

ation where a crack originates). The bold line indicates segments

f a crack (including possible disconnected segments), all of which

ave a net contribution to the macroscopic fracture properties, par-

icularly the effective fracture energy. 

In order to determine the effective fracture properties of a com-

osite, the microscopic volume element is loaded with a given

verage strain ε̄ until complete failure of the specimen. Denote

s V = ∪ 

n v 
k =1 

V (k ) the collection of all voids V 

( k ) , k = 1 , . . . , n v , in-

ide the volume element � and denote as � the collection of all

racked segments at the end of a quasi-static process that leads to

omplete failure. Using the nomenclature indicated in Fig. 2 , the

eriodic boundary-value problem that simulates the cracking pro-

ess is, in the absence of body forces, formulated as 

x in � \ ( � ∪ V ) 

x on �

x on ∂V 

 

, t) = −t ( x , t) x on ∂ �3 \ ( � ∪ ∂ V ) 

 

, t) = −t ( x , t) x on ∂ �4 \ ( � ∪ ∂ V ) 

 x ± + l 1 e 1 , t) = −t ±( x ±, t) x on ∂ �3 ∩ ( � ∪ ∂ V ) 

 x ± + l 2 e 2 , t) = −t ±( x ±, t) x on ∂ �4 ∩ ( � ∪ ∂ V ) 

(1)

here σ is the stress tensor, div is the divergence operator, t is the

raction vector acting on the corresponding surface ( �, ∂ � or ∂ V ),

 is the displacement vector and ε̄ = ε̄(t) corresponds to a pre-

cribed macroscopic strain tensor applied on the volume element

hat drives the deformation process at different times t . The trac-

ion on the pores is given by a prescribed function t v , which is

ypically zero unless the pores are filled with a fluid under pres-

ure. The set �b := � \ ( � ∪ V ) refers to points in the bulk and

he superscripts + and - refer to values on opposites sides of the

urface � as illustrated in the figure. 

The microscopic fracture process is solved numerically using in-

rinsic cohesive elements embedded within the bulk elements. This

echnique allows to model each material phase separately as well

s the interfaces between the fibers and the matrix. The behavior

f the matrix and the fibers can be specified with a constitutive

odel for the corresponding bulk elements, while the fracture be-

avior is modeled with traction-separation relations (i.e., cohesive

elations see, e.g., Park and Paulino, 2011 ) which depend on the

ndividual fracture strength and fracture energy of each phase or

nterface. 

Care must be exercised during the post-processing of results

o guarantee that the micro and macro scales quantities are

nergetically-consistent. In practice this means that one has to ei-

her guarantee a priori or to check a posteriori that the product of

he effective macroscopic quantities (such as stress and strain rate)

s equal to the volume average of the product of the corresponding

icroscopic quantities. This prerequisite in hierarchical multiscale

odelling, known as the scale transition condition, the macro-

omogeneity condition or, more commonly, as the Hill-Mandel

ondition, is an essential requirement that needs to be satis-

ed in an energetically-consistent multiscale formulation (see, e.g.,

aeb et al., 2016 and the references therein). For problems involv-

ng fracture, the Hill-Mandel condition requires special treatment

ince damage localizes in interfaces ( Gitman et al., 2007; Nguyen

t al., 2010; Unger, 2013 ). In the present work, a crack-based Hill-

andel condition developed in Turteltaub et al. (2018) is further

xtended to include the presence of voids. In many cases of prac-

ical interest the voids may be assumed to be traction-free from
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Periodic volume elements

One exit/entrance point

Two exit/entrance points

mf

mf

One exit/
entrance point

One exit/
entrance point

Two parallel cracks

Three parallel cracks

crack element

crack element

Fig. 1. Periodic volume element in a cross-section of a fiber-reinforced composite. The type of loading is specified through the chosen values ε̄ of the average (macroscopic) 

strain tensor. As shown in Turteltaub et al. (2018) , the corresponding localized crack repeats itself periodically but its effective orientation is not geometrically constrained 

by periodicity and can be interpreted as a single (isolated) crack while parallel periodic cracks may be ignored. 

Fig. 2. Nomenclature used in a microstructural volume element �. The dashed lines indicate a partition of the domain used to compute integrals in subdomains. 
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he outset, so they do not directly contribute to the fracture en-

rgy (i.e., t v = 0 in (1) ). However, even in the traction-free case, the

resence of voids needs to be taken into account when comparing

uantities such as the average stress power per unit volume and

he stress power rate from the product of the average stress and

he average strain rate. To this end, the strain is decomposed into

ulk, crack and void contributions in order to separate the effective

uantities associated to the fracture process from those related to

he bulk process. 
s  
.2. Strain decomposition 

The applied strain ε̄ acting on a volume element � is by defi-

ition given as 

¯ := 

1 

| �| 
∫ 
∂�

[ u � n ] sym 

d s 

ith the notation [ ·] sym 

indicating the symmetric part of the ten-

or, n representing the outward normal unit vector as indicated in
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Fig. 2 , � corresponding to the tensor product and | �| the volume

(area per unit depth) of the volume element �. In order to iden-

tify the part of the deformation in the volume element associated

to the fracture process, consider a partition of � into subdomains

as indicated by dashed lines in Fig. 2 . The partition is such that

the subdomains contain all cracked surfaces � and all void sur-

faces ∂V . To cover the whole domain using simply-connected sub-

domains, the partition can be complemented by divisions across

uncraked bulk material where the displacement field is continuous.

As indicated in Fig. 2 , if the displacement field is continuous, the

corresponding jump is zero, (i.e., [[ u ]] = 0 , with [[(·)]] = (·) + − (·) −
denoting the jump of a quantity ( · ) across a surface and with the

superscripts + and - referring to the values of the quantity on op-

posites sides of the surface.) Making use of the divergence theorem

in each subdomain separately and collecting all integrals it follows

that the applied strain ε̄ can be decomposed as follows: 

ε̄ = εb + εf + εv (2)

where the bulk strain εb , the fracture strain εf and the “void

strain” εv are defined as 

εb := 

1 

| �| 
∫ 
�b 

εd v ε = 

1 

2 

(∇ u + ( ∇ u ) 
T 
)

εf := 

1 

| �| 
∫ 
�

[ [[ u ]] � m ] sym 

d s 

εv := − 1 

| �| 
∫ 
∂V 

[ u � m ] sym 

d s (3)

with the superscript T referring to the transpose. Observe that in

the definition of the void strain there is a negative sign that re-

flects the sign convention indicated in the inset in Fig. 2 whereby

the normal vector m = m 

v on the void surface ∂V is defined in the

outward direction from the bulk and hence inwards with respect

to the void. In this way an increase in the volume of the void, for

example with u and m oriented in the same normal direction but

pointing in opposite senses, results in a positive normal void strain.

2.3. Stress power decomposition 

The stress power P ext (power per unit volume) applied on the

external boundary of the volume element can be decomposed in

terms of the stress power in the bulk, P b , the rate of work on the

crack surface, P f , and a power term related to the voids, denoted

as P v . The main ingredient required for the stress power decompo-

sition is the balance of linear momentum for a quasi-static process

(without body force, as indicated in (1) ), which is then multiplied

by the velocity field 

˙ u and integrated by parts in the volume el-

ement. Similar to the strain decomposition, the stress power de-

composition requires repeated use of the divergence theorem, for

which one can partition the volume element � into subdomains as

indicated in Fig. 2 . As before, the divergence theorem is used sep-

arately in each sub-domain and the integrals are then added using

the sign conventions indicated in Fig. 2 , which yields 

P ext = P b + P f − P v (4)

where 

P ext := 

1 

| �| 
∫ 
∂�

t · ˙ u d s 

P b := 

1 

| �| 
∫ 
�b 

σ · ˙ εd v 

P f := 

1 

| �| 
∫ 
�

t · [[ ̇ u ]] d s 

P v := 

1 

| �| 
∫ 
∂V 

t v · ˙ u d s. (5)

It is in principle possible to formally view the boundaries of the

pores, ∂V , as an “external” surface with a prescribed “external”
raction but, since it is more natural to view it as an internal

urface with a known traction, the term P v is accounted for on

he right hand side of the decomposition (4) . Correspondingly, the

erm “external” stress power, P ext , is reserved for the rate of work

one on ∂�. Hence, if a pore intersects the boundary ∂�, it may

e still interpreted as an internal boundary. The term P b accounts

or the stress power in the uncracked material (bulk) that occupies

he region �b as indicated above. For the fracture process, the rel-

vant term is the rate of work on the cracked surface, P f , which

oes not include the pores. Finally, the term P v , which accounts

or the rate of work done by an imposed traction t = t v acting on

he surfaces of the pores, may be relevant for situations when the

ores are filled with, for example, a pressurized fluid. In that case

 separate model is required to determine the applied traction on

he pores. However, for many structural applications of interest, it

ay be assumed that this term is negligible compared to other

oads applied to the structure. 

.4. Identification of crack, solid and pores contributions 

In the framework of hierarchical multiscale analysis, the effec-

ive (macroscopic) quantities are often defined from the outset as

olume or surface averages of their microscopic counterparts. If

he deformation does not localize inside a volume element (e.g.,

o localized plasticity or cracks appear), then the volume-based

ill-Mandel condition can be satisfied using, for example, peri-

dic boundary conditions in order to guarantee a priori consistency

cross length scales. In that case the product of the averages is

qual to the average of the products. 

In the context of localized failure, however, the situation is

ore complex in the sense that the effective quantities in local-

zed models may not expressed directly as a surface or volume av-

rage of their microscopic counterparts. Consequently, in that case

he Hill-Mandel condition may not be satisfied a priori. A simple

olution to this issue is to invert the role of the Hill-Mandel condi-

ion. Using this approach, the effective macroscopic quantities are

n fact defined (or calibrated) from the Hill-Mandel condition. In

hat fashion, the traditional volume (or surface) average definition

f a quantity is replaced by an energy-based definition that auto-

atically guarantees consistency across scales. Periodic boundary

onditions may still be used to satisfy the corresponding volume-

ased Hill-Mandel condition and definitions of effective quantities

or fields associated to the bulk material in the neighborhood of a

ocalized crack. 

A crack-based Hill-Mandel condition, in a domain containing

oids, can be established from the decomposition of the strain and

he stress power as developed in Sections 2.2 and 2.3 . The guid-

ng principle in the foregoing analysis is the need to establish a

elation between the rate of work associated to the fracture pro-

ess, i.e., P f as defined in (5) , and the product between an effective

ohesive traction t f and an effective crack opening rate [[ ̇ u ]] f for

 homogenized traction-separation relation that may be used at a

acroscale. Simultaneously, a separate requirement is to preserve

he volume-based definitions of effective fields commonly used in

ultiscale analysis in the absence of localization, particularly for

he rate of work P b as indicated in (5) . 

It is convenient to introduce the following notation for bulk-

veraged and crack-averaged quantities: 

 ( ·) 〉 � := 

1 

| �| 
∫ 
�b 

( ·) d v 〈 ( ·) 〉 � := 

1 

| �| 
∫ 
�

( ·) d s. 

sing periodic boundary conditions, it can be shown that the ex-

ernal stress power P ext defined in (5) satisfies the following rela-

ion: 

 

ext = 〈 σ〉 � · ˙ ε̄
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Fig. 3. Illustration of a sub-ply volume element with a microscopic crack (right) 

and equivalent macroscale crack (left) with effective normal vector m 

f , effective co- 

hesive traction t f and effective crack opening [[ u ]] f . Observe that here the notion 

of macroscale refers to a larger scale compared to the microscale but still within a 

single ply in a laminate. 
hat corresponds to the classical (volume-based) Hill-Mandel

acrohomogeneity condition. Consequently, the effective (macro-

copic) stress tensor corresponds to the volume average of its mi-

roscopic counterpart. However, upon the formation of a localized

rack, the traction vector on planes other than the crack itself may

ecome discontinuous, hence the stress tensor is discontinuous.

he traction across the crack surface during the cracking process

emains continuous. The purpose of the foregoing analysis is to

stablish a relation for the traction on the cracked surface during

ecohesion. Using the decompositions (2) (in time-rate form) and

4) in the relation above yields 

 

b + P f − P v = 〈 σ〉 � · 〈 ̇ ε〉 � + 〈 σ〉 � · ˙ εf + 〈 σ〉 � · ˙ εv 
. 

onsequently, from the strain and power decompositions, it is nat-

ral to identify three separate relations associated to scale transi-

ions as follows: 

Rate of work in / on Microscale term Proposed macroscale

Bulk P b 〈 σ〉 � · 〈 ̇ ε〉 �
Crack surfaces P 

f 〈 σ〉 � · ˙ εf 

Void / pore surfaces P 

v −〈 σ〉 � · ˙ εv

bserve that the negative sign in the expression for the voids is

 consequence of the sign convention whereby the normal vector

oints outwards from the solid and into the void. It should be em-

hasized that the aforementioned identifications are assumptions

hat need to be verified a posteriori. 

.5. A crack-based Hill-Mandel condition 

From a modelling point of view, pores may be handled in two

ossible ways: (i) treat the pores as entities separate from the bulk

nd the crack or (ii) combine pores with the effective behavior

f the bulk and/or the crack. For example, pores that are in the

ath of a crack may be combined with the crack itself while iso-

ated pores may be combined with the bulk material. However, if

he traction prescribed on the pore surfaces is not zero, combin-

ng the pores with the crack may cause modelling problems in

he form of a residual cohesive traction that is connected to the

oading and does not represent the actual fracture behavior of the

aterial. To resolve this issue, a more robust approach is to com-

ine all the pores with the bulk behavior regardless of their loca-

ion (i.e., whether they are on the crack path or not). Pores induce

tress concentrations and further facilitate cracking, which gener-

lly affects the fracture strength and energy. Hence, although the

ores are formally not considered as part of the crack, their pres-

nce has a strong influence on the effective traction-separation re-

ations. In line with this consideration, unless explicitly indicated,

he “bulk” refers henceforth to the combined solid and porous

arts while the “crack” refers to the surfaces created during the

racking process but excluding pre-exisiting pores. Consequently,

he crack-based Hill-Mandel condition is treated separately from

he combined solid and porous parts. 

As discussed in Nguyen et al. (2010) and Turteltaub et al. (2018) ,

o prevent RVE convergence problems related to non-constant

urface-to-volume ratios for volume elements of distinct size, it is

mportant to average fracture properties on the crack surface in-

tead than on the volume element. To this end, multiply the crack-

ased stress power P f in (3) and the corresponding term 〈 σ〉 � · ˙ εf 

as shown in (6) ) by the factor | �|/| �| to get, in view of (5) , the

ollowing correspondence relation: 

 

t · [[ ̇ u ]] 〉 � ↔ 〈 σ〉 � ·
〈
[ [[ ̇ u ]] � m ] sym 

〉
�
. (7) 

he symbol ↔ is used in (7) to emphasize that equality is not a

riori guaranteed but, rather, it is a proposed scale transition re-

uirement. 
ivalent 

(6) 

.6. Effective fracture behavior 

For a cohesive-zone modelling approach at the macroscopic

evel, the model should involve two ingredients: (i) a nucleation

riterion (i.e., under what loading conditions and in which orienta-

ion a crack is first detected at the macroscopic length scale) and

ii) an evolution model (i.e., how does the cohesive traction evolves

ith crack opening). Although an inelastic process should normally

e expressed in rate form to account for path-dependency, it is

ustomary in the cohesive zone framework to model the cracking

rocess using directly a relation between an (effective) cohesive

raction t f and an effective crack opening [[ u ]] f . In addition, due to

he scale transition, the macroscopic description requires an effec-

ive crack length | �f | associated with a macroscopic crack within a

olume element as illustrated in Fig. 3 . 

An important issue is the definition of the effective quantities

 �f |, t f and [[ u ]] f . Observe that, in combination with (3) , the right

and side of relation (7) , which should refer to the effective prop-

rties, involves tensorial quantities (i.e., 〈 σ〉 � and εf ) and not vec-

ors (i.e., t f and [[ u ]] f ) as commonly-used in a traction-separation

elation. The relation between these quantities is not trivial since it

nvolves itself a scale transition (e.g., 〈 t 〉 = 〈 σn 〉 is generally differ-

nt than 〈 σ〉〈 n 〉 and a similar observation applies for the fracture

train tensor and crack opening vector). 

From a geometrical point of view it is natural to define the

ffective crack opening rate as the surface average of its micro-

copic counterpart, scaled with the ratio of effective to actual crack

ength, i.e., 

[ u ]] f := 

| �| ∣∣�f 
∣∣ 〈 [[ u ]] 〉 � (8) 

here the effective crack length | �f | is obtained from the ge-

metry of a volume element using the approach proposed in

urteltaub et al. (2018) , i.e., 

�f 
∣∣ := 

⎧ ⎨ 

⎩ 

∣∣�f 
min 

∣∣ if r ≥ r max ∣∣�f 
max 

∣∣ if r < r max 

(9) 
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where, using the notation shown in Fig. 2 , 

∣∣�f 
min 

∣∣ := min 

( 

l 1 ∣∣n 2 · m 

f 
∣∣ , 

l 2 ∣∣n 1 · m 

f 
∣∣
) 

∣∣�f 
max 

∣∣ := max 

( 

l 1 ∣∣n 2 · m 

f 
∣∣ , 

l 2 ∣∣n 1 · m 

f 
∣∣
) 

r := 

∣∣�f 
max 

∣∣∣∣�f 
min 

∣∣ (10)

and with the effective crack normal being defined as 

m 

f := 〈 m 〉 �. (11)

The previous expression is based on the notion that the effective

crack length | �f | should correspond to the length of a straight seg-

ment crossing periodically the volume element in a direction per-

pendicular to m 

f . The value r represents the number of crossings

of a straight periodic crack along a periodic l 1 × l 2 rectangular do-

main (either bottom to top or left to right). In general, however, it

is not possible to construct a straight periodic crack with the given

vector m 

f (i.e., r is not an integer unless the orientation of m 

f sat-

isfies a specific geometrical relation with l 1 and l 2 ). Consequently,

| �f | is interpreted as an approximation. Further, the cut-off value

r max is introduced to handle near vertical (or near horizontal) pe-

riodic cracks. In practice a maximum value of r max = 5 has proven

to be sufficient to distinguish between vertical (or horizontal) and

near vertical (or near horizontal) cracks. It is observed that, since

the microscale crack may contain multiple branches (bifurcations)

and/or isolated segments, care must be exercised to preserve con-

sistency in the sign conventions of �+ and �− when perform-

ing the integration on �. Further, this also implies that the ratio

| �|/| �f | may deviate from unity, with values smaller than 1 also

being possible for cracks that contain voids in their paths. 

As indicated above, it is convenient to tie the definition of the

effective cohesive traction to the relation (7) , i.e., t f can be implic-

itly defined such that ∣∣�f 
∣∣t f · [[ ̇ u ]] f := | �| 〈 σ〉 � ·

〈
[ [[ ̇ u ]] � m ] sym 

〉
�
. (12)

Correspondingly, in view of (7), (8) and (12) , t f is defined such

that the macroscopic description of the rate of work coincides with

the microscopic one. One limitation with the previous definition

is that the part of the traction that is perpendicular to the crack

opening rate remains undetermined (i.e., the formula would only

specify the projection of t f into [[ u ]] f ). Furthermore, from an im-

plementation point of view, the calculation of t f from (12) may be

prone to errors due to inaccuracies in the computation of the in-

stantaneous values of the local crack opening rates. As indicated

in Turteltaub et al. (2018) , an alternative approach is to propose a

general form for t f with a calibration parameter that is then ad-

justed to satisfy relation (12) . Adopting that approach, the pro-

posed approximation for the effective cohesive traction is as fol-

lows: 

 

f ≈ αt f � + (1 − α) t f � (13)

where α is a calibration parameter and the crack-based cohesive

traction t f � and volume-based cohesive traction t f � are defined as

 

f 
� := 〈 t 〉 � t f � := 〈 σ〉 �m 

f . (14)

The (phenomenological) parameter α is taken here as a time-

independent quantity that is meant to approximately enforce

(12) in a time-averaged fashion (i.e., throughout the entire crack-

ing process), thus it should not be used to enforce the scale tran-

sition relation at each time separately, which would require a vari-

able parameter. To emphasize the rationale of this approach, in the

present work (12) is viewed as a definition of the effective traction

whereas (13) is taken as an approximation used to enforce the def-

inition. In view of (8), (11), (12), (13) , and (14) , the parameter α
an be obtained through the post-processing of simulation data of

 fracture process from t = 0 (initial state) to t = T (fully-damaged

tate), from the following relation: 

= 

∫ T 
0 ( 〈 t 〉 � − 〈 σ〉 �〈 m 〉 �) · 〈 [[ ̇ u ]] 〉 �d t ∫ T 

0 〈 σ〉 � · ( 〈 [[ ̇ u ]] � m 〉 � − 〈 [[ ̇ u ]] 〉 � � 〈 m 〉 �) d t 
. 

After establishing consistency in energy between micro and

acroscales, the next step is to determine the actual effective

roperties (i.e., converged quantities with respect to sample size).

o this end, microscopic volume elements of increasing size are

ubjected to the same nominal load to determine (numerically) the

inimum size of the representative volume element (RVE), which

orresponds to the smallest one for which the fracture properties

re no longer dependent upon the size of the volume element to

ithin a prescribed tolerance (see e.g. Kanit et al. (2003) ). In the

ontext of localization, one may refer to the equivalent crack as

 representative surface element (RSE) embedded in an RVE. This

nalysis requires multiple samples of volume elements of the same

ize to compute the mean of all realizations, although in practice

t may be required to use a relatively large convergence tolerance

nd/or to limit the number of samples due to the overall com-

utational cost. This is because in each convergence analysis for

he volume element size, the numerical results must also converge,

hus a separate mesh refinement convergence test must be carried

ut for each volume element. This convergence test is particularly

mportant in the context of fracture since there is a process of

ocalization (i.e., the formation of a crack) which requires a non-

raditional convergence analysis (see e.g. Turteltaub et al., 2018 for

etails). Once the minimum acceptable size of the RVE has been

stablished, parametric analyses can be conducted to study the in-

uence of physical and geometrical parameters associated to de-

ects as explained in the next section. 

. Simulations with volume elements containing voids 

.1. Overview of simulation cases 

In order to study the effect of sub-ply porosities, several cases

re analyzed using distinct types of samples as illustrated in Fig. 4 .

or simplicity, a plane strain framework is adopted assuming that

n the out-of-plane direction (longitudinal direction of the fibers)

he dimensions of the sample are large compared to the size of the

omputational domain (cross-section in the interior of a sample).

orosities of 0%, 1%, 2%, 4%, 6% and 8% were considered (measured

er unit cross-sectional area). For each porosity, two distinct types

f voids are analyzed, namely matrix voids and interfiber voids.

n addition, for the matrix voids, two types of cases are consid-

red separately, namely one where all voids have the same char-

cteristic size and one with variable size and aspect ratio using

andomly-oriented ellipses. The setup consisting of matrix voids of

onstant size is seen as a baseline for a given porosity (with the

ase of no porosity being the overall benchmark to study the ef-

ect of porosity). Cases with interfiber voids (with interfiber voids

p making up about 1/4 of the voids and the rest being matrix

oids), are used to gage the effect of the type of microscopic void.

ther effects are studied by varying the size of the individual pores

nd their aspect ratio while keeping the porosity fixed, as indicated

bove. 

Since the effect of defects is expected to depend on the load-

ng conditions, two representative loading cases were considered

or each configuration as indicated in Table 1 . The two cases, ex-

ressed in terms of the applied macroscopic strain tensor ε̄, with

> 0 acting as a strain parameter, induce cracking in a cross-

ection perpendicular to the fiber direction (i.e., lateral cracking). 

To account for statistical variations in the microstructure, eight

andom realizations are considered for each porosity, for each void
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Fig. 4. Illustration of parametric study for defects: for porosities from 0 to 8% distinct configurations are analyzed in terms of void type, shape and size. 

Table 1 

Load cases expressed in terms of the applied macroscopic in-plane strain ten- 

sor ε̄, with γ > 0 a strain parameter. Observe that the pure shear is applied 

at an angle of 45 ° with respect to the coordinate system shown in Fig. 2 . 

Load cases Applied in-plane strain 

1. Laterally-constrained uniaxial extension 

[
ε̄11 ε̄12 

ε̄21 ε̄22 

]
= 

[
γ 0 

0 0 

]

2. Pure Shear 

[
ε̄11 ε̄12 

ε̄21 ε̄22 

]
= 

[
γ 0 

0 −γ

]
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ype and shape and for each load case. To achieve the target poros-

ty in a sample, a discrete number of pores were used ranging from

ypically 6 pores for 1% porosity to about 50 pores at 8% porosity,

ith an average characteristic size of about 1.7 μm. In general more

ealizations are required to establish accurate statistical data, how-

ver the number is limited due to the overall computational cost.

o further control the overall computational cost and in view of

he large number of cases considered above, the material proper-

ies were kept fixed in all simulations and all samples had a fixed

ber volume fraction of (approximately) 50%, with the rest (ma-

rix and voids) adding up to the remaining 50%. The material prop-

rties shown in Table 2 are representative of composite materials
Table 2 

Material properties of a typical composite system us

are taken from HexTow IM7 fibers and CYCOM 5230-

but are assumed to be representative (observe that th

otherwise indicated and where applicable, the elastic

fiber are associated to (transversely-)isotropic models.

Property Units Fiber 

Modulus of elasticity GPa 19 (Tran

Poisson’s ratio - 0.23 (Tr

Fracture strength MPa 100 

Fracture energy kJ/m 

2 ( = N/mm) 0.1 
ypically encountered in the aerospace industry, and it is expected

hat the findings regarding the effect of microvoids would be sim-

lar for other composites with comparable properties. 

Due to the large number of simulations, a dedicated python

cript was developed to generate the samples, generate the

eshes, create the input files for the finite element analyses, run

he simulations in parallel, execute the post-processing and gener-

te the results. The simulations were carried out using the Finite

lement package Abaqus (2018) using linear plane strain elements

or the bulk (matrix and fiber) and cohesive elements with lin-

ar softening to capture the fracture process. Unstructured meshes

ere produced using the mesh generator Gmsh (2018) with the

oal to minimize the mesh dependency of the crack pattern. The

ohesive elements were embedded between all edges of the bulk

lements (including fibers). Mesh refinement analysis was sys-

ematically carried out for all samples of all sizes until a con-

erged mesh was identified within a given tolerance. The conver-

ence analysis to identify the size of the representative volume el-

ment (or, more specifically, the representative surface element for

n equivalent crack) was done with the corresponding converged

esh for each sample size. It was established that for a volume

lement of 75 μm × 75 μm the mean response was within the

olerance of a (discrete) deviation of the previous size volume ele-
ed in aerospace applications. Elastic properties 

2 matrix. Fracture properties are not measured 

e fiber-matrix interface is the weakest). Unless 

 and fracture properties for the matrix and the 

 

Matrix Fiber-matrix interface 

sverse) 3.52 - 

ansverse) 0.35 - 

50 25 

0.05 0.025 
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Laterally-constrained extension (Mode I) Pure shear (Mode II)

Fig. 5. Typical simulations for the case of 8% porosity under loading case 1 (laterally-constrained uniaxial extension shown on the left) and loading case 2 (pure shear shown 

on the right). Blue segments indicate crack opening in the matrix, red in the fiber-matrix interface and the rest in the matrix voids and interfiber voids. The effective cracks 

for loading cases 1 and 2 appeared (on average) as opening modes I and II, i.e., as normal and tangential openings, respectively. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 
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ment size 62.5 μm × 62.5 μm with a nominal mesh size param-

eter of 1 μm, although a locally refined mesh was used to capture

the details of the voids. Typical simulations for loading cases 1 and

2 are shown in Fig. 5 for one realization of 8% porosity with matrix

voids and interfiber voids. 

In most cases the crack path contains portions through the ma-

trix (shown as blue segments in color version), through the rel-

atively weak matrix-fiber interface (shown as red segments) and

through matrix and interfiber voids. 

Due to its higher fracture strength and energy, no cracks were

observed in the fibers. Further, since the fibers did not completely

restrict the path of the cracks, an effective crack opening mode

type I (normal) was observed in the simulations for loading case

1 while an effective crack opening mode type II (tangential) was

triggered in the simulations for loading case 2. Correspondingly,

the loading cases 1 and may be nominally interpreted as fracture

modes I and II, respectively, when referred to a cross section per-

pendicular to the fiber direction. In general, the mode I simulations

typically required the least computational effort, whereas mode II

required small time steps to converge and hence a larger compu-

tational time. For conciseness, results of the convergence analysis

are omitted here but some details can be found in de Jong (2018) . 

3.2. Matrix voids of constant size 

The first set of simulations is carried out for matrix voids of

constant size, which will be used subsequently as a benchmark
Fig. 6. Effective traction-separation relation for porosities varying from 0 to 8% for the ca

mode I) and (b) pure shear (nominal mode II). See text for further details. 
or a fixed porosity. The effective traction-separation relations for

orosities ranging from 0% to 8% are shown in Fig. 6 a under con-

trained uniaxial extension (nominal mode I) in terms of the nor-

al component t f n of the cohesive traction vector t f as a function

f the normal component [[ u n ]] 
f of the effective crack opening vec-

or [[ u ]] f . Similarly, the effective traction-separation relations under

ure shear (nominal mode II) are shown in Fig. 6 b in terms of the

angential cohesive traction component t f s as a function of the tan-

ential effective crack opening component [[ u s ]] 
f . The lines plotted

n the figures represent the average of eight realizations for each

orosity, while the shaded regions in the graphics correspond to

he (discrete) standard deviation. For clarity the standard deviation

s only shown only for the porosity of 8%. For loading case 1 (nom-

nal mode I), the tangential component was relatively small com-

ared to the normal one and, conversely, for loading case 2 (nomi-

al mode II), the normal component was relatively small compared

o the tangential component. 

Microscale failure, measured by monitoring individual cohesive

lements, initiated in places intrinsically weak and prone to stress

oncentrations for both loading cases. However, microscale damage

oes not immediately translate into macroscopic failure. Indeed, as

t is common in multiscale analysis of fracture, the onset of frac-

ure at the microscale typically occurs during the early stages of

he loading but can only be detected at the macroscale once suf-

cient damage has accumulated (see, e.g., Suiker and Turteltaub,

007a; Suiker and Turteltaub, 2007b; Farle et al., 2018; Hille et al.,

011 for examples in distinct material systems). In the current
se of matrix pores of constant size for (a) constrained uniaxial extension (nominal 
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Fig. 7. Effective traction-separation relation for porosities varying from 0 to 8% for the case of matrix pores of variable size for (a) constrained uniaxial extension (mode I) 

and (b) pure shear (nominal mode II). See text for further details. 
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ontext, the first detectable onset of fracture at the macroscale

s, by definition, measured by the peak value in the traction-

eparation relation, which is the (transverse) macroscale fracture

trength of the ply under the corresponding loading case. 

Once the representative volume element is completely damaged

t can no longer transmit loads, in which case the energy dissi-

ated due to fracture in the representative surface element cor-

esponds to the macroscopic fracture energy. As may be observed

rom Fig. 6 a, the fracture strength for mode I remains relatively

onstant for distinct porosities while the fracture energy (visually

orresponding to the area under the traction-separation curve), de-

reases for increasing porosity. For mode II, as may be seen in

ig. 6 b, both the fracture strength and the fracture energy decrease

s a function of porosity. Observe that in Fig. 6 b some curves do

ot terminate at zero traction; this is due to the fact that some

f the realizations had convergence issues in shear when the crack

as almost fully-formed. The curves in Fig. 6 b, which are obtained

s an average of multiple realizations, only reflect the portion for

hich all realizations converged. For the purpose of computing the

ffective fracture energy, which requires a response until complete

amage, an interpolation to zero traction was used for the non-

onverged curves and averaged with the converged curves of the

ame porosity. The effective properties obtained through postpro-

essing of the simulations, particularly the fracture strength, are

lso strongly influenced by the fiber-matrix interface properties

ince this is the weakest component in the system (see Table 2 ).

 quantitative analysis of the dependency on porosity is presented

elow in combination with the results from two other sets of sim-

lations, namely matrix voids of variable size and voids of distinct

ypes. 

.3. Matrix voids of variable size and aspect ratio 

The second set of simulations is carried out for matrix voids of

ariable size and aspect ratio. The aspect ratios varied from 1 to

.4 and the characterisitc sizes were derived from a normal dis-

ribution around the average characterisitic size. Due to the lim-

ted numbers of pores, however, only a few representative sizes

ere considered in each simulations ranging from 0.17 to 1.83

imes the average characteristic size. As in the previous bench-

ark case of constant size, results are shown in this section for the

wo loading cases and various porosities in Fig. 7 , ranging from 0%

o 8%. In particular, Fig. 7 a corresponds to the normal component

 

f 
n of the cohesive traction vector t f as a function of the normal
omponent [[ u n ]] 
f of the effective crack opening vector [[ u ]] f un-

er constrained uniaxial extension (nominal mode I), while Fig. 7 b

hows the effective tangential cohesive traction component t f s as a

unction of the tangential effective crack opening component [[ u s ]] 
f 

nder pure shear (nominal mode II). As before, the lines indi-

ate the average response, over eight random realizations for each

orosity, while the shaded areas illustrate the standard deviation

shown only for the porosity of 8%). 

Similar qualitative observations can be drawn in this case com-

ared to the previous set of simulations, namely a weak depen-

ency of the fracture strength on porosity under constrained uni-

xial extension, a decrease of the effective strength under pure

hear with increasing porosity and, for both loading cases, a de-

rease in fracture energy with increasing porosity. 

.4. Matrix and interfiber voids 

The third set of simulations is carried out for interfiber voids

ogether with matrix voids of fixed size. As before, results are

hown in Fig. 8 for the two loading cases and various porosities

0% to 8%). For constrained uniaxial extension the normal compo-

ent t f n of the cohesive traction is shown in Fig. 8 a as a function

f the normal component of the effective crack opening, [[ u n ]] 
f ,

hereas for pure shear the tangential cohesive traction component

 

f 
s is shown as a function of the tangential effective crack opening

omponent [[ u s ]] 
f in Fig. 8 b. Similar to the previous sets of sim-

lations, the solid lines are obtained from the average of eight

ealizations while the shaded regions indicate the discrete stan-

ard deviation. In this case it is worth noting that, due to com-

utational and geometrical limitations, only a limited amount of

oids correspond to interfiber voids since these regions are formed

y groups of three or four fibers that are in close proximity (see,

.g., Fig. 9 ). Although the net average distance between fibers is

ot greatly affected (i.e., negligible fiber clustering), these factors

eed to be taken into account in order to gage the net effect of

nterfiber voids. A comparative analysis of the simulation results of

igs. 6–8 is presented in the next section. 

.5. Comparative analysis 

In order to quantify the influence of the geometrical features of

he microstructure on the effective fracture properties, it is conve-

ient to summarize all the results for each loading case separately.
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Fig. 8. Effective traction-separation relation for porosities varying from 0 to 8% for the case of interfiber voids and matrix pores of fixed size for (a) constrained uniaxial 

extension (mode I) and (b) pure shear (nominal mode II). See text for further details. 

Fig. 9. Normal component of the effective fracture strength under uniaxial exten- 

sion (mode I) as a function of porosity for different types and distributions of de- 

fects. The tangential component of the effective strength is negligible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Effective fracture energy G f I under uniaxial extension (mode I) as a function 

of porosity for different types and distributions of defects. 
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3.5.1. Comparative analysis for constrained uniaxial extension (mode 

I) 

The normal component t f,cr 
n of the effective (macroscopic) frac-

ture strength under uniaxial extension is shown in Fig. 9 as a func-

tion of porosity for the three sets of voids analyzed (matrix voids

of constant size, matrix voids of variable size and a mixture of

interfiber voids and matrix voids). In all simulations, the cracks

in the numerical samples open in a nominal mode I. The error

bars at each porosity analyzed indicate the discrete standard de-

viation from the mean. To visualize the dependency of the fracture

strength on porosity, the shaded regions indicate the upper and

lower values of the standard deviation while the means for each

set are connected with dashed lines. In addition, a linear fit for

the means is shown as a solid line. 

From Fig. 9 , it may be observed that the effective fracture

strength is dominated by the weakest component in the system,

namely the fiber-matrix interfaces, with an effective value slightly

above 25 MPa (see Table 2 ). This value, interestingly, remains rel-

atively constant as a function of porosity. Although the interfiber

voids case has a slightly lower effective strength, the differences

are not significant compared to the matrix voids (with either con-

stant or variable void size). It is relevant to recall that the amount

of voids directly connected to interfiber voids is about 1/4 of the

porosity, while the rest is composed of matrix voids, hence the ef-

fect due to interfiber voids is coupled to the effect of matrix voids.
 direct comparison of pure interfibers voids versus pure matrix

oids was not carried out due to the limited range of porosity

chievable with pure interfiber voids (up to 2%). For the 0% case

no voids), all three cases should in principle start from a common

oint. However, the deviations shown in the results at zero poros-

ty between the three types of voids analyzed can be ascribed to

he fact that these were obtained from distinct sets of realizations,

ence the distinct values reflect the influence of the fiber distribu-

ions and not of the voids. In general, the simulation results indi-

ate that, contrary to expectations, the fracture strength in mode

 is relatively insensitive to defects up to the range of values ana-

yzed. 

The effective fracture energy G 

f 
I 

for the nominal mode I is

hown in Fig. 10 as a function of porosity for the three sets of

oids analyzed. From this figure, it can be seen that the fracture

nergy decreases significantly with increasing porosity. The value

or zero porosity is strongly influenced by the weakest component,

amely the fiber-matrix interfaces (see Table 2 ). The fracture en-

rgy decreases by about 50% (based on mean values) as the poros-

ty increases to 8%, hence it has a strong dependency on defects.

he mean values of the fracture energy for the three cases con-

idered are similar and so is the rate of decrease as shown in the

olid lines (linear fit). These results indicate that the main param-

ter affecting the decrease in fracture energy is the porosity, while

he size and type of the voids only play a secondary role. 
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Fig. 11. Tangential component of the effective fracture strength under shear defor- 

mation (mode II) as a function of porosity for different types and distributions of 

defects. The normal component of the effective strength is negligible. 
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.5.2. Comparative analysis for pure shear loading (mode II) 

For a pure shear deformation, the tangential component t f,cr 
s of

he effective (macroscopic) fracture strength is shown in Fig. 11 as

 function of porosity for the three sets of voids analyzed. The er-

or bars at each porosity analyzed indicate the discrete standard

eviation from the mean of the fracture strength. In all simula-

ions, the cracks in the numerical samples open in a nominal mode

I. Similar to the mode I case, the fracture strength for the mode II

ase at zero porosity (no voids) is influenced by the weakest phase

fiber-matrix interface). The strength is about 20% to 30% higher

han in mode I for the distinct realizations. The simulations at zero

orosity were carried out from distinct sets of microstructures for

ach void configuration, hence the distinct values reflect the influ-

nce of the fiber distribution. From the results in Fig. 11 it can be

bserved that the mode II strength decreases approximately lin-

arly by about 15% to 30% as the porosity varies from 0% to 8%.

he rate of decrease appears slightly larger for the interfiber case,

lthough the difference is marginally significant. 

The effective fracture energy G 

c 
II 

under mode II is shown in

ig. 12 as a function of the porosity for the different types and

istributions of voids. Similar to the mode I case, the mode II frac-

ure energy for the zero porosity case is dependent upon the fiber-

atrix interface properties (weakest phase). The mean value for

ero porosity is about 50% higher than the zero porosity mode I

racture energy. The fracture energy in mode II decreases signifi-

antly by about 60% as the porosity increases to 8%, a somewhat

arger drop compared to the mode I behavior. Further, the data

uggests that the decrease is better approximated with a quadratic

unction that starts to saturate at the end (i.e., at 8% porosity).
ig. 12. Effective fracture energy G f II under shear deformation (mode II) as a func- 

ion of porosity for different types and distributions of defects. 
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bserve that the interfiber case appears to have an anomaly at 1%

ith a slightly higher mean value compared to the no void case,

ut this difference is not sufficiently significant. It may also be

nterpreted as a relatively constant mode II fracture strength for

mall values of the porosity, but the overall trend is that the frac-

ure energy decreases with porosity in all cases. As in the case of

ode I, the differences between the types and sizes of voids only

ppear to play a secondary role while the main significant param-

ter is the porosity. 

Experimental results for transverse fracture strength as a func-

ion of porosity with the same set-up as the ones analyzed here

o not appear to be readily available in the literature. Neverthe-

ess, it is worth pointing out that experimental measurements for

ut-of-plane tensile strength of a laminate as well as interlaminar

hear strength are qualitatively similar, with reductions of about

0% when the porosity increases from zero to 7% as reported by

owles and Frimpong (1992) ; Gurdal et al. (1991) ; Jeong (1997) ;

osta et al. (2001) . Although comparisons between the aforemen-

ioned experiments and the present results should not be done in

 one-to-one fashion, the experimental data provides indirect ev-

dence that the order of magnitude of the present simulation re-

ults is representative for the actual material system analyzed. 

. Concluding remarks 

A new multiscale averaging method has been developed to ex-

licitly study the influence of microvoids in the ply-level behavior

f a unidirectional laminate. The method can be readily used for

ore general composite materials or for micromechanical analysis

f fracture in other materials (metals, concrete, etc.). The key ingre-

ient in the method is the separation of the contribution of voids,

racks and bulk and the enforcement of the Hill-mandel condition

or a representative surface element (effective crack). The method

as applied to study the influence of voids on the transverse frac-

ure strength and fracture energy of fiber-reinfoced unidirectional

omposites. The main conclusions from the analysis of microvoids

n a fiber-reinforced composite are as follows: 

• The effective mode I fracture strength remains nearly constant

with increasing porosity while there is a large linear decrease

in the effective mode I fracture energy. 

• There is a significant decrease in both the effective mode II

fracture strength (linearly) and energy (quadratically) for in-

creasing porosity 

• The porosity is the main parameter influencing the effective

fracture properties. 

• Microscopic void size and type only play a secondary role in

affecting the fracture properties. 

The findings in the present study are limited to transverse

roperties due to computational issues, but the methodology may

e extended to coupled three-dimensional cases. Nevertheless, it

s expected that simulations involving fiber and matrix cracks may

ose computational challenges due to the large differences in frac-

ure properties. Further, other loading cases, in particular com-

ressive loading, may require special treatment due to the unsta-

le fracture mechanisms involved such as kink bands. Neverthe-

ess, these are technologically relevant cases that require attention

articularly since defects play a critical role in compressive load-

ng ( Kosmann et al., 2015 ), and the present methodology may be

sed to study these cases as well. 
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