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A B S T R A C T

Disruptions such as rolling stock breakdown, signal failures, and accidents are recurrent events
during daily railway operation. Such events disrupt the deployment of resources and cause delay
to passengers. Obtaining a reliable disruption length estimation can potentially reduce the ne-
gative impact caused by the disruption. Different factors such as the location, cause of disruption,
traffic density, etc. can determine the disruption length. The uncertainty inherent to the varia-
bility of each factor and the unavailability of sufficient data results in a wide distribution of
disruption lengths from which a certain value should be selected as the length prediction. The
rescheduling measure considered in this research is short-turning the trains that are heading to
the disrupted area. To investigate the impact of the disruption length estimates on the re-
scheduling strategy and the resulting passengers delays, this research presents a framework
consisting of three models: a disruption length model, short-turning model and passenger as-
signment model. The framework is applied to a part of the Dutch railway network. The results
show the effects of short (optimistic) and long (pessimistic) estimates on the number of affected
passengers, generalized travel time and number of passengers rerouting and transferring.

1. Introduction

Railway operations are repeatedly disrupted by events such as technical and mechanical failures of infrastructure and rolling
stock, traffic accidents and malicious attacks. Railway timetables are usually designed to compensate for some delays by including
time allowances. However in case of long disruptions and infrastructure unavailability, these time allowances are ineffective and a
new timetable should be designed with adjusted train services. Before making any decision regarding the traffic, the relevant in-
formation about the disruption should be collected. Upon occurrence of a disruption, there is usually a high level of uncertainty
regarding the situation. It takes some time before the exact location and the nature of the disruption is known to the traffic con-
trollers. Once the cause of disruption and the location is known, the traffic controllers are able to proceed with handling the disrupted
traffic. An essential piece of information that has a crucial role in their decisions regarding the traffic is the predicted disruption
length. Since any change in the timetable is costly, if the predicted length is shorter than a specific threshold then they might decide
not to implement major changes to the timetable. In case the length is larger than the threshold, the prediction is used for re-
scheduling the timetable. Moreover the disruption length and the changes of the timetable should be communicated to the passengers
so they can make informed decisions about their trips when they are disturbed. Thus a reliable disruption length prediction is key
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information in designing a new timetable that can limit the negative impact on the passengers.
The length of a disruption depends on many factors like the type of failure, the component that failed, the repair needed, and the

spare parts that a repair crew has with them. However, data on most of these factors are not available, which leaves much uncertainty
in any prediction of the disruption length. Zilko et al. (2016) developed a probabilistic Bayesian Network model to predict the
disruption length using conditioning on information that becomes available about a disruption. However, most factors included are
indirect, like accessibility of the disruption location. Hence, the obtained distributions of disruption lengths still exhibit a wide range.
Then the next question is how to get a point estimate from this distribution that can be used by traffic controllers as a prediction of the
disruption length and take actions accordingly. Simply taking the mean (expected value) may not be effective. On one hand, a point
estimate could be optimistic and underestimate the disruption by which traffic controllers have to rethink their decisions and pas-
sengers may have taken the wrong decisions about their travel compared with the optimal choice if they would have known the exact
disruption duration. On the other hand, a point estimate could also be pessimistic and overestimate the disruption which might lead
to unnecessary train cancellations and long travel times for passengers.

In this paper a framework is proposed to investigate the effects of different choices of predictions on the rescheduling solution and
consequently the passenger delay. The contribution of the framework is the unique integration of three components (see Fig. 1):

• Estimating the disruption length as a point estimate from a conditional distribution based on available data.

• Rescheduling the timetable given the estimated disruption length.

• Measuring the passenger delays based on the computed adjusted schedule.

The framework provides the possibility of reproducing different disruption scenarios, where the information about the disruption
is gradually updated and accordingly the timetable is rescheduled and finally the impact on the passengers is measured. This allows
testing the consequences of different disruption lengths and their over- or underestimation with the corresponding mitigation
measures on passenger flows and travel time losses.

In the remaining of the paper, the process of handling disruption and the relevant literature is presented in Section 2. The three
components are described in more details in Section 3. The modeling framework is then demonstrated using an application to part of
the Dutch railway network in Section 4. In this Section the impacts of the optimistic and pessimistic estimates are modeled and
assessed. Section 5 concludes with practical implications and directions for future studies.

2. Disruption management

The decisions regarding the rescheduling of resources need to be carefully communicated between the railway infrastructure
manager, the train operators and other involved actors to ensure the feasibility of the plan. To facilitate the challenging task of the
traffic controllers in such cases, many countries use contingency plans designed specifically for disruption scenarios (Chu and Oetting
(2013)). In The Netherlands these plans are manually designed by expert traffic controllers and are specific for each location and
disruption case regardless of disruption length.

The proposed solution in the contingency plans is based on the timetable (basic hourly pattern) and the remaining capacity of the
disrupted location. The solution instructs the traffic controllers how to deal with the disrupted traffic by determining cancelled
services, short-turned or rerouted services and services that are allowed to operate as in the original timetable. Short-turnings are
particularly beneficial for isolating the disrupted area, while maintaining services on both sides of the disruption. This implies short-
turning the arriving trains at a station before the disruption (on both sides) and continue service in the opposite direction. In case of
short-turning, the stations where the short-turning should occur as well as the platforms and departure times also need to be

Fig. 1. The interaction between the models.
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determined. By means of simulating the short-turning Coor (1997) concluded that this measure is most efficient in case of large
disruptions.

The traffic level during a disruption can be conceptualized as a process that resembles a bathtub (Ghaemi et al. (2017b)). As
shown in Fig. 2 some services need to be cancelled due to the disruption. This reduction in train traffic starts immediately after the
disruption occurs. Three phases can be identified within the disruption period. In the first phase the traffic controllers are facing lots
of uncertainty regarding the disruption location, cause and most importantly the estimation of disruption length. In Dutch railway
practice, rough estimates exist for the length of different kinds of disruptions. These estimates are used to inform the passengers about
the expected disruption length. Once the location is known, the traffic controllers retrieve the relevant contingency plan designed for
that specific location. In case there is a need for repairing the disrupted infra, the repairmen are sent to the field to deal with the cause
of disruption. The repairmen estimate the required time for resolving the problem and report it to the traffic controllers. If the cause
of disruption is resolved earlier than the informed disruption length, the operation is not resumed before the communicated time. In
case the disruption takes longer than the initially estimated length, the passengers are updated with a new disruption length.
Throughout this paper the estimates that are longer than the actual disruption length are referred to as pessimistic and those that are
shorter than the real length are referred to as optimistic estimates.

Once the communicated length has passed and the cause of the disruption has been removed, the traffic can resume and recover
back to the original level. The first and third phases are called transition phases where the operation has a transition from the original
timetable to the disruption timetable and vice versa. The contingency plan corresponds to the second phase of the bathtub model
where there is a steady though decreased level of traffic. Since there is no reliable disruption length estimation, the contingency plans
do not provide any insight regarding the third phase of the transition from the disruption timetable to the original timetable. In
practice, the effects of different disruption length estimations on the rescheduled timetable during the three phases of disruption, and
consequently the affected passengers, are unknown.

While the bathtub model is widely known and used to conceptualize traffic states during disruptions, only limited research efforts
have been devoted to analyzing and modeling railway disruption management. Ghaemi et al. (2017b) provide a review of re-
scheduling models for disruptions and conclude that only a few studies considered all three phases. Examples of such models were
developed by Veelenturf et al. (2016) and Nakamura et al. (2011). However, the disruption length is assumed to be known in advance
and passenger delays are not taken into consideration. Meng and Zhou (2011), Yang et al. (2013) and Yang et al. (2014) model the
third phase by taking into account the uncertainty of the disruption length. Besides the lack of a timetable for the first and second
phase, their approaches do not explicitly model the influencing factors on the disruption length. In particular, Yang et al. (2013) and
Yang et al. (2014) model the disruption length as a fuzzy variable that reflects the estimation by expert judgment. Hirai et al. (2009)
and Zhan et al. (2015) focus on the first phase where trains need to stop before the disruption area. However both approaches
disregard the uncertainty regarding the disruption length and the consequences for passenger delay. De-Los-Santos et al. (2012) and
Cats (2016) introduce indexes for measuring network robustness by measuring the effects of disruptions in terms of changes in
passengers travel times. Yet the defined indexes are not suitable for real-time application where the disruption length is not yet
known and might get updated frequently. Canca et al. (2016) propose a short-turning model to accommodate extra demand induced
by a disruption at the tactical level, but the disruption length is not taken into account. Zhan et al. (2016) and Nielsen et al. (2012)
incorporate the uncertainty of disruption length for rescheduling through a rolling horizon framework. Their approaches do not
include the impact factors on the disruption length. Moreover, the impact of the rescheduled timetable on the passengers is dis-
regarded. Kumazawa et al. (2008) develop a rescheduling model considering passenger inconvenience. They do not provide any
information regarding the length of the disruption. Cats and Jenelius (2014) analyze the impacts of disruptions on passenger welfare
using a non-equilibrium passenger loading model. They quantify the value of real-time information provision in case of disruption.

As mentioned above, the contingency plans do not provide any instructions regarding the transition phases and the proposed
solution is given independently of the disruption length estimation. The changes of the disruption lengths are discussed by Takeuchi
and Tomii (2005). In reality, the disruption length is very uncertain. Having a reliable disruption length prediction is instrumental in
devising the rescheduling measures and thus for achieving a smooth and fast transition to the original timetable in the third phase of
the bathtub model. To tackle this problem, Zilko et al. (2016) represent the disruption length as a probabilistic model. Several
determinants of disruption length are considered from which the joint distribution between disruption length and these factors is
constructed with a Copula Bayesian Network. Having the joint distribution enables the traffic controller to obtain a conditional

Fig. 2. The service level during disruptions.
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distribution of disruption length when a disruption occurs, by conditioning the model on the observed values of the influencing
factors.

A disruption length prediction is derived from this conditional distribution. Having a probability distribution enables the traffic
controller to choose different values of prediction corresponding to different quantiles of the distribution. If the controller is opti-
mistic about the disruption length, a lower quantile of the distribution can be chosen. Alternatively, a higher quantile of the dis-
tribution can be chosen. Without a reliable length estimation, there is no support for the traffic controllers for the third transition
phase.

3. Framework

The framework in a nutshell consists of three models; disruption length model, short-turning model and dynamic passenger
assignment model (see Fig. 1). The interaction between these models is designed in such a way that the real-time uncertainty of the
disruption is captured. During disruption the information about the problem becomes available to the traffic controllers gradually. To
model this gradual information update, an iterative approach is designed. With each information update, a disruption length is
predicted and then used for rescheduling. The new schedule is then used for evaluating the impact of the disruption on the pas-
sengers. Different causes of disruption would lead to different disruption length distributions. The short-turning model does not
consider severe weather conditions that would have altered the entire timetable. Each iteration starts with an information update.
The iterative process terminates once the disruption is over. Different performance indicators are defined to evaluate the impact of
different disruption length predictions on passenger-related metrics. The three components are explained in detail in sub-sections 3.1
to 3.3 and the interaction between these components and the passenger-related key performance indicators are described in sub-
section 3.4.

3.1. Disruption length model

We use the probabilistic distribution length model of Zilko et al. (2016) to compute conditional probability distribution of the
disruption length. The disruption length is divided into two sequential stages: the latency time and the repair time. The latency time is
the length of time the mechanics need to get to the disrupted site while the repair time is the length of time they need to repair the
problem.

The joint distribution between the latency time and repair time with the influencing factors is constructed using a Copula
Bayesian Network. As a prototype, a Copula Bayesian Network model has been constructed for disruptions caused by track circuit
failures in the Netherlands. These disruptions are affected by eight influencing factors: (1) contract type, (2) distance to the nearest
mechanics' workshop, (3) distance to the nearest level crossing, (4) whether or not the disruption is during the mechanics’ contractual
working time, (5) whether or not the temperature is above 25oC, (6) whether or not the disruption occurs during rush hour, (7)
whether or not there is another disruption going on at the same time, and (8) the cause of disruption (Zilko et al. (2016)). To give an
example, factor (5) is considered because the track circuits as part of the rail infrastructure are prone to failure for high temperatures.

The Copula Bayesian Network uses a Bayesian network to represent the dependence between the variables. A Bayesian network is
a directed acyclic graph consisting of nodes and arcs, representing the variables and flow of influence between the variables, re-
spectively. Fig. 3 (a) presents the track circuit disruption length model. The eleven nodes in the structure correspond to the ten
variables in the model and the variable “Disruption Length” which is the sum of the latency and repair times. The distribution of each
variable is shown in the box of each node. From these histograms it can be seen whether the variable is continuous or discrete. In the
header of each box, the variable name is shown. The footers show the mean value and (after ±) the standard deviation of each
distribution. The blue boxes represent the latency and repair time which are influenced by the other variables. Influences are re-
presented by arcs. Eventually, the variable disruption length shown in the orange box is the sum of the latency and repair times. The
arcs represent the flow of influence between the variables. The absence of an arc between two nodes indicates (conditional) in-
dependence between the variables the two nodes represent.

The joint distribution of the ten variables is constructed using copula. A copula is an n-dimensional joint distribution in the unit
hypercube of n uniform random variables. It is a popular tool to model the dependence between variables (see, e.g. Nelsen (2006) and
Joe (2014)). The theorem of Sklar states that any cumulative distribution function …X X( , , )n1 , denoted as …F n1, , , can be rewritten in
terms of the corresponding copula C as

… = ……F x x C F x F x( , , ) ( ( ), , ( ))n n n n1, , 1 1 1 (1)

where F X( )i i denotes the marginal distribution of the i-th variable. There are many different copula families. This approach used the
multivariate Normal, or Gaussian, copula CΣ to construct the TC disruption length model. This copula is defined as

… = …− −C u u u u( , , ) Φ (Φ ( ), ,Φ ( ))n nΣ 1 Σ
1

1
1 (2)

where −Φ 1 denotes the inverse cumulative distribution of a univariate standard normal distribution and ΦΣ denotes the cumulative
joint distribution of a multivariate normal distribution with a mean value of zero and correlation matrix Σ. The parameter Σ of the
track circuit disruption length model corresponds to the arcs in the Bayesian network structure in Fig. 3. This copula is of interest
because it allows conditionalization to be computed rapidly, a very useful feature in the real-time decision making environment of the
traffic control centers.

The copula parameter Σ is computed using the maximum likelihood approach to disruption data from the database provided by
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the rail infrastructure manager. The constructed model, as presented in Fig. 3, was validated using empirical data with the model
being able to obtain a good conditional distribution of disruption length (Zilko et al. (2016)). Fig. 3(a) presents the unconditional
Bayesian network, i.e., the track circuit Bayesian network model when no information is available. Fig. 3(b) presents a conditional
Bayesian network when information about the influencing factors is available. Notice that the distribution of disruption length
changes. The distribution now has a different shape with updated mean and standard deviation values presented in the footer of the
box.

However, conditionalization on the variable Cause can only be performed after the mechanics diagnose the problem and find the
cause. This time is called the “diagnosis time”. Unfortunately, the diagnosis time is not available in the data and is actually included
in the definition of repair time. The data does not provide any information to allow decoupling the diagnosis time from the actual
repair time. In practice, usually the mechanics are given 15min to diagnose the problem after they arrive at the site. Therefore, in this
model we assumed that diagnosis time always takes 15min and the cause is always found in this time.

This modeling component is adopted in this paper and integrated into the real-time prediction and mitigation framework. Its

Fig. 3. The track circuit Bayesian network.
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outcome is the conditional distribution of disruption length, i.e., the distribution of disruption length given actual information of the
influencing factors. Moreover, the computation of the conditional distribution is done very fast, and the model has been validated to
the Dutch railway disruption data.

The next section describes the short-turning model. The disruption period is used to compute the new schedule. Thus a quantile
needs to be selected from the conditional distribution of disruption length that will be used as a point estimate for the disruption
length to the short-turning model.

3.2. Short-turning model

The short-turning model is designed to cope with the disruption cases of complete blockages where no train can use the infra-
structure during the disruption period. In such cases, all the trains running towards the disruption location should short-turn before
the blockage or be cancelled. The short-turning model is the Mixed Integer Linear Program introduced in Ghaemi et al. (2016) that
computes the optimal short-turning time and station for each approaching train service. The rescheduling measures include short-
turning, partial cancellation, and platform track assignment while the original train orders are maintained. The notation is introduced
in Table 1.

We briefly discuss the optimal short-turning problem while focusing on the recovery plan. In this formulation a service is a trip
between a departure and arrival (either with or without dwell time). Thus, a train line that may have multiple stops, consists of an
ordered set of services performed by a train. Each service is denoted as vl n

i
, where i indicates the sequence order of the service within

the operational line, l is the line number that determines the stops and n determines the time of operation.
The short-turning model is an assignment model that allocates the arriving trains to scheduled departures in the opposite di-

rection. In the example illustrated in Figs. 4–6 there is a disruption between stations a and b. In this example service vl n
i
, , can either

short-turn in station ′a to serve vl m
j
, , vl o

j
, , or vl r

j
, or it can continue as service +vl n

i
,

1 and short-turn to serve −vl m
j
,

1, −vl o
j
,

1 or −vl r
j
,

1 in station a.
Obviously in case +vl n

i
,

1 short-turns to serve −vl m
j
,

1, this departure would be delayed. The reason is that the arrival time of train +vl n
i
,

1 is
scheduled after the departure of service −vl m

j
,

1 which is shown in grey. The short-turning possibilities are shown by the red arcs for the
arriving service vl n

i
, . The output of the model is the short-turning pattern which refers to the selected arc that determines the de-

parture time correlated to an arriving train.
If the short-turning of service vl n

i
, occurs in an earlier station ′a to serve vl m

j
, as shown in Fig. 5 then the service +vl n

i
,

1, all of the
associated short-turning patterns in station a, and −vl m

j
,

1 should be cancelled. The passengers travelling between these stations will be
affected by these cancellations. Notwithstanding, early short-turning can reduce the delay propagation to the opposite stations

Table 1
The notation of the input used in the short-turning model.

S The set of all stations s.
L The set of all lines l.
V The set of all scheduled services.

⊂V Vl n, The nth set of ordered services in line l.
⊂v Vl n

i l n, , The ith service in set Vl n, .
Ps vl n

i, ,
The set of platform tracks for service vl n

i
, in station s.

⊂S Svl n
i
, The departure and arrival stations ⎜ ⎟

⎛
⎝

⎞
⎠

s s,
vl n

i
d

vl n
i

a
, ,

of vl n
i
, .

⊂S S1 The first surrounding station (a) around the disrupted area x.
⊂S S2 The secondary surrounding station ( ′a ) around stations in S1.

⊂S Sl The set of possible short-turning stations for line l.

dl n
i
, The scheduled departure time of service vl n

i
, .

al n
i
, The scheduled arrival time of service vl n

i
, .

θ
vl n

i
min

,
The minimum short-turning time needed for service vl n

i
, .

τ
vl n

i
run

,
The running time of service vl n

i
, between two stations.

+τ
vl n

i vl n
i

dwell
, , ,

1 The dwell time between service vl n
i
, and service +vl n

i
,

1 in the station.

τ
vl n

i vw zu
h

, , ,
The minimum headway time between two train services vl n

i
, and vw z

u
, .

ω
vl n

i
c

,
The penalty for cancelling service vl n

i
, .

ω
vl n

i
z

,
The penalty for delaying the arrival of service vl n

i
, .

Out vl n
i
,

The possible scheduled departures for the arriving service vl n
i
, .

Invl m
j
,

The possible arriving services for the scheduled departure vl m
j
, .

⊂L LDist The set of lines that are affected by the disruption.
′ ⊂V Vs l, The arriving services from line l at station s.

‴ ⊂V Vs l, The scheduled departures in the opposite direction from line l at station s.
M A large constant.
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(Ghaemi et al. (2016)).
In the preprocessing phase, we define the services that operate in the disruption area during the disruption period. Those services

with both planned departure and arrival within the disruption area and period are cancelled. If there is a service towards the
disrupted location that departed before the start of the disruption, then it is assumed that this train service could continue its journey.
In case the departure of the approaching services towards the disrupted area is within the disruption period and the arrival is close to
the end of disruption, then it might be better to wait until the disruption is over and then depart on the original route. The main
decision for the final service is whether to continue short-turning or wait until the disruption is over and continue on the original
route. This decision concerns those trains that arrive close to the end of the disruption period. If there are more arriving services than
the number of scheduled departures in the opposite direction within the disruption period, then the extra train service (due to the
periodicity of the timetable, there is usually one extra train service) should wait until the disruption is over before using the recently
resolved blockage. If there are more scheduled departures in the opposite direction, then the final arriving train can either short-turn
or wait until the disruption is over and continue in the same direction. Based on this decision, there would be a cancellation either for
the scheduled departure in the opposite direction, or the scheduled departure in the same direction. The short-turning model
computes the disruption timetable for the second phase of disruption and the transitions. With a disruption length prediction we are
able to plan the recovery phase where trains are able to continue their original routes and start using the track after the blockage
ends.

A set of candidate transition services that might be cancelled needs to be defined. As shown in Fig. 6, service +vl n
i
,

2 is cancelled since
its departure and arrival is within the disruption period. The transition services ( +vl q

i
,

2 and −vl r
j
,

2 shown by dash-dotted arrows) are

Fig. 4. The possible short-turning patterns.

Fig. 5. The cancellation resulting from short-turning in station ′a .

Fig. 6. The transition services shown by dash-dotted arrows ( +vl q
i
,

2 in one direction and −vl r
j
,

2 in the other direction).
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planned to depart before the end of disruption and arrive after the disruption. These services are either cancelled or wait until the
disruption is over and continue on their original route. In other words, for transition services the possibility for operating on the
original route with a possible delay is considered.

In this example, in case service −vl r
j
,

2 is cancelled, the following service −vl r
j
,

1 is either performed by a short-turning in station a or
should also be cancelled. But if the service −vl r

j
,

2 is not cancelled, it should depart after the end of disruption and this would introduce a
delay to all of the following services performed by this train. For notation simplification, the approaching train services are shown as
′v and those services that are scheduled to depart in the opposite direction are denoted by ‴v . The model includes four continuous
variables; tv

a
l n
i
,
(arrival time of vl n

i
, ), tv

d
l n
i
,
(departure time of vl n

i
, ), dv

a
l n
i
,
(arrival delay of vl n

i
, ), and dv

d
l n
i
,
(departure delay of vl n

i
, ). In addition,

there are three binary variables; cl n
i
, (cancellation of service vl n

i
, ), ′ ‴λv v, (the short-turning pair ′ ‴v v( , )), and pv q,l n

i
,

(the assignment of

platform track q to vl n
i
, ).

The main objective of the short-turning model (3) is to minimize the departure and arrival delay (dv
d
l n
i
,
, dv

a
l n
i
,
) and the number of

cancelled services. The penalties assigned to departure or arrival delay and a cancelled service vl n
i
, are denoted by ωv

d
l n
i
d

,
, ωv

d
l n
i
a

,
and ωv

c
l n
i
,
,

respectively. The objective function is formulated as

∑ ⋅ + ⋅ + ⋅
∈

( )ω d ω d ω cmin .
v V

v
d

v
d

v
d

v
a

v
c

v
l n
i l n

i
d

l n
i

l n
i
a

l n
i

l n
i l n

i

,
, , , , , ,

(3)

In addition to the operational constraints that guarantee the feasibility of the operation such as running times, departures, etc.
short-turning constraints are also considered. For the complete MILP model we refer to Ghaemi et al. (2018). Ghaemi et al. (2017a)
extend the developed short-turning MILP with a microscopic rescheduling model. To describe the essence of the rescheduling model,
the short-turning constraints are explained here. The short-turning constraints ensure a feasible short-turning plan.
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Constraints (4) make sure that every approaching service should either short-turn at a station prior to the disruption area, which
leads to cancellation of one service (in the disrupted area) or continue, that only happens after the end of disruption. For every
scheduled departure in the opposite direction there should be only one matching approaching service in case of short-turning. This
relation is ensured by constraints (5). In case of early short-turning, there will be two cancelled services that are guaranteed by
constraints (6) and (7). If service +vl n

i
,

1 is cancelled due to an early short-turning, no short-turning couple can be selected for service
+vl n

i
,

1. This relation is represented by constraints (8). To ensure the minimum short-turning, constraints (9) are considered. If the
service vl n

i
, is not cancelled, a platform should be assigned to it. Constraints (10) represent this assignment.

3.3. Dynamic passenger assignment model under disruptions

A dynamic passenger assignment model is developed to represent how passengers are distributed over the network in the event of
a disruption. The dynamic passenger assignment model allows assessing the impact of alternative scenarios on passengers by cal-
culating passengers’ total travel delay, transfer times and the number of transfers compared to the scheduled timetable. Based on the
given rescheduled timetable, the dynamic passenger assignment model generates alternative travel routes for each pair of origin and
destination (OD) and assigns passengers to selected routes from the corresponding alternative routes. Data concerning the number of
daily passengers between all pairs of OD stations based on smart card transactions was obtained from the Netherlands Railways
(Nederlandse Spoorwegen/NS). The daily distribution of passenger demand was specified based on data made available by NS which
manifests the conventional morning and afternoon peaks. Passengers face different route choice conditions during the course of the
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disruption. In particular, three phases, as illustrated in Fig. 7. Under normal operations route choice is based on the planned
timetable. When a disruption occurs, a rescheduled timetable is generated based on the predicted disruption length and passengers
are informed of the new departure times after which they will choose their route based on the prevailing conditions. Hence, pas-
sengers choose from a new set of alternative routes based on the rescheduled timetable. Furthermore, passengers who have already
boarded a train might need to reroute as a consequence of the disruption and the rescheduling. Additional updates to the disruption
length predictions may result in additional rescheduling of train services and consequently the rerouting of passengers. Finally, when
the disruption has ended, delays might still occur as the service recovers back to the original timetable. For this reason, the simulation
time that is denoted by tsim ends after a certain simulation period denoted by tult . Here the simulation refers to the probabilistic and
dynamic passenger route choice model based on the new schedule. Note that the simulation period is longer than the disruption
period.

The dynamic passenger assignment model consists of three main steps. In the first step, alternative routes for each origin-des-
tination (OD) pair are generated, followed by a probabilistic route choice model based on the framework of discrete random utility
models. The latter determines the share of passengers that are assigned to each route. In the final step, the passenger travel time is
measured. The overall workflow is depicted in Fig. 8.

The dynamic passenger assignment model under a disruption is conducted as shown in Fig. 8 by performing the following
sequence of steps:

• Step 1: Alternative route generation: Given a passenger OD demand matrix and scheduled timetable, find alternative routes for
each pair of stations and calculate passenger's total in-vehicle time and transfer time for each route. This is an initialization phase.

• Step 2: Passenger route choice: Simulate passenger generation and train movements. Progress simulation clock from the be-
ginning of the disruption. Use a logit model to obtain the passenger proportion of each route.

• Step 3: Network load and passenger travel experience: Obtain the passenger load on each train route segment and calculate the
generalised cost for each passenger route departing on each minute.

• Step 4: Update: In case the simulation period is not over and the schedule is updated, then repeat from step 2.

• Step 5: Transition and normal operations: Repeat step 4 until the last prediction is made, then simulate the model until tult in order
to have a fair comparison among prediction scenarios. Passenger loading results are assessed by calculating the following outputs:
passenger total generalised travel time, total passenger nominal travel time, the number of passengers, average passenger transfer
time, the number of average transfer, average in-vehicle time, average waiting time, average train load and link load.

The core three steps are described in the following subsections.

3.3.1. Alternative route generation
Given a timetable, either the original or the outcome of the rescheduling model, the alternative route generation module com-

putes a set of alternatives from which individuals travelling between a given pair of OD will choose from. Note that for the ODs that
contain the blocked section, bus services are considered during the disruption. However the bus services are not considered during
the non-disrupted situation, as they are considerably slower than the train services. The choice-set is generated by iteratively
searching for routes with an increasing number of transfers. A forward search algorithm is applied where transfer alternatives further

Fig. 7. Transition points in the process of dynamic passenger loading.

Fig. 8. Passenger loading model under disruption.
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downstream are examined by considering all scheduled train trips and their corresponding stopping pattern and scheduled arrival
and departure times. For indirect alternatives, the transfer time must be within a user-defined acceptable range, γ γ[ , ]trans

min
trans
max , sa-

tisfying the minimum transfer time – to ensure a sufficient time between train arrival and the next train departure, and a maximum
transfer time – to avoid excessively long transfer times. In addition, indirect alternatives that induce a detour that exceeds a user-
defined ratio of γdetour

max are removed from the choice-set as well as alternatives that are dominated by other alternatives when con-
sidering the number of transfers, in-vehicle time, transfer time and service level (i.e. intercity vs. regional). For each of the alter-
natives obtained in this process, the following attributes are stored along with the route itinerary: total travel time, number of
transfers, total in-vehicle time and transfer time. These attributes are then used in the following choice step.

3.3.2. Passenger route choices
A multinomial logit (MNL) choice model is applied for route choice, to calculate the share of passengers travelling along each

route alternative, shown as

=
−
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Pijk is the share of passengers that choose route k when travelling between i to j and Rij is the set of alternative routes from i to j. Route
k consists of an ordered set of legs denoted by a sequence of stations, = …k s s s( , , , )k k k k,1 ,2 , and ∈s Sk m, where S is the set of stations in
the network, t͠ijk is the total generalized cost of route k for a given OD pair ij( ), and θ is the logit scale factor for route choice.

3.3.3. Network load and passenger travel experience
The passenger travel experience is measured by the generalized travel time that consists of waiting time, in-vehicle time, transfer

time and other fixed penalties as
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ts
w, ts s

in
,1 2 and ts

tr are the initial waiting time, in-vehicle time and transfer time, respectively, and βw, βin and −βtr time are the
corresponding weights. = −N k 1tr and N re stand for the number of transfer and rerouting decisions, and βtr and βre are penalty
terms for each transfer and rerouting respectively, represented in time equivalent units. The well-known “independence from irre-
levant alternatives” (IIA) property of the MNL model is partially counteracted by the filtering rules which result in a choice-set
comprising of distinct alternatives, where the most correlated paths are either eliminated due to dominance rules or merged into
hyper-paths as described in Cats et al. (2016). By calculating the choice model probabilities, the dynamic passenger assignment on
each diachronic time-dependent network link can be calculated by

= ⋅f d Pijk ij ijk (13)

where dij is the number of passengers from i to j. The actual nominal travel time can be obtained as
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Analysing the impacts in terms of changes in total generalized travel time allow the summation of several passenger-related costs
(e.g. transfer penalties, delays) using a compensatory function that is equivalent to total passenger welfare loss (Cats and Jenelius
(2014)). Furthermore, using passenger value of time, impacts can be monetarized to assess the value of total time losses.”.

3.4. Interaction between the models

The three models interact in a dynamic fashion, i.e., interaction occurs every time new information becomes available. New
information can be input concerning the observed influencing factors in the disruption length model or when we learn that the
previous disruption length prediction was too short. Fig. 9 shows an example of a disruption.

Fig. 9. The time diagram of a railway disruption.
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The crosses in this time diagram illustrate when during the disruption period the interaction might take place. When a disruption
occurs, only the influencing factors of the latency time are typically known. The unconditional Bayesian network is conditionalized
based on this information. Predictions made from this conditional Bayesian network model are called the P1 predictions where,
mainly, the latency time is predicted using the additional sources of information, potentially yielding more accurate predictions. P1
suggests that the disruption ends within a certain time period marked by P1a. The start and end time of the disruption period that are
predicted by P1 are communicated to the short-turning model. Based on the disruption location, the relevant timetable and the
disruption period, a disruption timetable is computed and passed on to the dynamic passenger assignment model.

When the predicted length P1 has elapsed, it might be realized that the disruption is not over yet. If the prediction is too short, the
disruption is still unresolved even after the predicted disruption ends. This situation occurs when the prediction is too “optimistic”,
i.e. the chosen quantile of the conditional distribution of disruption length is too low for the case. If this happens, the prediction is
updated by approximating a new conditional distribution of disruption length on the information that the disruption length is longer
than the last prediction. This is done via sampling the original conditional distribution on the quantiles higher than the prediction. In
this paper, these “revised” predictions are denoted alphabetically in orderly fashion. For instance, a P1 prediction is updated to P1a,
P1b, and so on. With each prediction update the cycle shown in Fig. 1 repeats and the mentioned statistics are computed and stored.

Fifteen minutes after the arrival of the mechanics to the disruption site, they report the diagnosis about the cause of disruption.
Knowing the cause of disruption, the Bayesian network is further conditionalized. The new conditional Bayesian network is used to
produce the P2 predictions. Similarly with each prediction update, the short-turning model computes the disruption timetable and
the passenger assignment model computes and stores the total number of affected passengers, generalized travel time, and total
number of reroutings and transfers.

To measure and compare the impact of alternative disruption management scenarios the following key performance indicators
(KPIs) are computed and stored:

1. The total number of passengers being affected during the disruption period.
2. The total experienced generalized travel time corresponding to equation (12) of all passengers considered in the experiment.
3. The total number of passenger reroutings and transfers.

4. Experiments

The framework that is applied on a part of the Dutch railway network is depicted in Fig. 10. The disruption length model is
constructed using the computationally-efficient software called UNINET, which was developed at Delft University of Technology and
is available at www.lighttwist.net/wp/uninet. The short-turning model is implemented in MATLAB, YALMIP (Löfberg (2012)) is used
to construct the MILP, and Gurobi is used as the solver. The dynamic passenger assignment model is constructed in MATLAB. In the
experiment, we consider a complete blockage in the railway segment between stations Utrecht and Houten. The blockage is caused by
a track circuit failure.

Fig. 10. The area the dynamic passenger assignment model considers in the experiment. The illustration is adapted from NS′main train service map.
Source: The Dutch railways (NS).
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Two local train lines are considered by the short-turning model: line 16000 between Utrecht (Ut) and ’s Hertogenbosch (Ht) and
line 6000 between Ut and Tiel (Tl). Due to the disruption, these trains have the possibility to short-turn either at station Geldermalsen
(Gdm) or the latest at station Houten (Htn).

To study the effect of different choices of quantiles of the conditional distribution of predicted disruption length, different dis-
ruption length predictions are examined. For each prediction, when a successive prediction is made, the new prediction is chosen to
be the value of the new conditional distribution corresponding to the same quantile as in the previous prediction. For instance, when
a prediction using the quantile 50% (median) is updated, the new prediction is also taken to be the median of the updated conditional
distribution. In principle, this does not necessarily have to be the case. This choice is made to narrow down the space of possible
“combinations” of prediction scenarios.

Note that the P1 predictions are only valid until new information regarding the cause is available from which the updated P2
predictions can be made. This means that the P1 predictions and the entailed disruption timetables are only used until at most 15min
after the mechanics arrive at the disrupted site.

The P2 predictions are updated until the actual disruption ends. When this happens, no new timetable is computed and the last P2
timetable is run until the P2 predicted end of disruption. This choice is made to penalize a prediction that is too “pessimistic”, i.e., a
prediction that surpasses the realized disruption length. In contrast, choosing a low quantile is undesirable because it is likely to be
too optimistic and thus results in many “revised” predictions. This is not attractive from the passengers’ point of view, who will
presumably perceive the communicated information as unreliable. Additionally, having many “revised” predictions is not practical
from a logistical point of view. In practice, every time a new prediction is made, aside from the train traffic, the traffic controllers
must also revise the rolling stock and crew assignments. Therefore, train operators are not inclined to choose the lower quantile
predictions. Therefore, in this experiment, we only consider the 25% quantile as the representative of these scenarios for comparison.
The remaining quantiles that are considered in the experiments are 50%, 75%, 85%, 90%, as well as the mean.

The short-turning model computes the disruption timetable for lines 16000 and 6000 through stations Ut, Htn, Houten Castellum
(Htnc), Culemborg (Cl), Gdm, Tiel Passewaaij (Tpsw), Tl, Zaltbommel (Zbm) and Ht. It is assumed that the new schedule is im-
mediately available and communicated to the passengers (e.g. journey planner information is populated with the new timetable). For
the rescheduling, the timetable of 2016 is considered. In the short-turning model, the main parameters are the penalties for arrival,
departure delays and cancelled services. Since the interval of the services in Houten is either 16 or 14min in both directions, and with
each cancelled service the travellers need to wait around a quarter of an hour for the next train, the cancellation penalty (ωv

c
l n
i
,
) is set

to 1000 s. Arrival and departure delays (ωv
d
l n
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,
and ωv
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d

,
) are equally penalized by 1. Moreover the minimum short-turning time is

assumed to be 7min (420 s). For the choice of minimum short-turning time we refer to the study by Chu and Oetting (2013). A norm
of 3min is considered for the minimum headway.

Given a disruption timetable, the dynamic passenger assignment model computes the passenger traffic. Due to data availability
limitations, the dynamic passenger assignment model considers in this case study only the passenger trips for which both origin and
destination are within the case study area, i.e. the loop shown in Fig. 10. The route choice model parameters are specified as follows:

=β 2w , =β 1in , =−β 2tr time , =β 5tr , =β 10re . For more details on the specification of the travel cost weights, see Cats et al. (2016).
The total demand in the case study network is considered inelastic, assuming that temporary service reductions do not have

implications on other trip decisions such as mode and destination choices, which may or may not be feasible responses in a real
situation. Empirical evidence from unplanned network disruptions shows that people are relatively reluctant to change travel mode
(see Zhu et al. (2010) and references therein).

Passengers travelling between Utrecht Centraal and Houten stations have two alternatives: to detour via Arnhem and Nijmegen or
to take the public bus service between the two stations. The travel time by bus between Utrecht Centraal station and Houten is about
35min while a regular train service would have taken only 9min. On the other hand, the detour via Arnhem and Nijmegen is also not
very attractive due to the tremendous detour it induces. For passengers travelling to Houten from Utrecht, this detour takes almost
2 h. To fairly compare the different choices of predictions, we monitor the train traffic and passengers flow for a fixed period of six
hours in all scenarios. Two actual disruption cases are chosen and examined. As already mentioned, different variables can impact the
disruption length. Here we are particularly interested in examining the impact of time. Thus the consequence of the same disruption
occurring on a different day or time-of-day is investigated. Since considering different parameters would have hamper the com-
parison and the ability to perform a comparison and draw conclusions, the same parameters were used in all cases. Due to the long
computation time needed for the dynamic passenger assignment distribution model we examine only four case studies; weekday
afternoon, weekday evening, Saturday evening and Saturday afternoon which are explained in detail in the following sections.

4.1. Case study 1: weekday afternoon

The first case study is based on an incident which occurred on Thursday, 10 July 2014. The incident started at 14:22 and had the
information listed in Table 2. Moreover, the real observed latency and repair time are 70 and 73min, respectively. This means the
total disruption length is + =70 73 143 minutes.

Table 3 presents the P1 predictions which are presented in terms of the length (in minutes) and the predicted end of disruption in
time. Notice that in the scenario corresponding to the 25% quantile, in total there are 8 predictions that are generated throughout the
disruption. The predictions in Table 3 are used by the short-turning model to produce the disruption timetable whose cyclic char-
acteristics are shown in Table 4. This Table contains the number of cancelled services ( C# ), the number of delayed services ( D# ), the
number of short-turned services ( ST# ), and the total train delay in minute (Del).
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Table 2
The initial information of the disruption case 1.

Contract type OPC
Working station distance 7.1620
Level Crossing distance 872.372
Working Time yes
Warm yes
Rush Hour no
Overlapping disruption no
Cause a setting problem caused by heat

Table 3
The P1 predictions for Case Study 1.

Qtl (%) P1 P1a P1b

Length Time Length Time Length Time

25 49 15:11 72 15:34 97 15:59
50 81 15:43 144 16:46
75 143 16:45
85 205 17:47
90 254 18:36
Mean 118 16:20

Table 4
The results of the short-turning model for P1 in Case Study 1.

Qtl (%) P1 P1a P1b

#C #D #ST Del. #C #D #ST Del. #C #D #ST Del.

25 12 2 3 6 20 0 5 0 28 0 7 0
50 20 9 5 24 40 0 10 0
75 40 0 10 0
85 56 0 14 0
90 68 0 17 0
Mean 32 0 8 0

Table 5
The P2 predictions for Case Study 1.

Qtl (%) P2 P2a P2b P2c P2d

Length Time Length Time Length Time Length Time Length Time

25 85 15:47 102 16:04 118 16:20 135 16:37 150 16:52
50 95 15:57 134 16:36 179 17:21
75 133 16:35 240 18:22
85 160 17:02
90 194 17:36
Mean 119 16:21 188 17:30

Table 6
The results of the short-turning model for P2 in Case Study 1.

Qtl (%) P2 P2a P2b

#C #D #ST Del. #C #D #ST Del. #C #D #ST Del.

25 24 0 6 0 28 0 7 0 32 0 8 0
50 24 9 6 24 36 0 9 0 48 0 12 0
75 36 0 9 0 64 0 16 0
85 44 0 11 0
90 52 0 13 0
Mean 32 0 8 0 52 0 13 0
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At 15:32, the mechanics arrive at the site. After 15min of diagnosis time, the cause of a track circuit failure is identified and at
15:47 the P1 predictions are updated to the P2 predictions. These P2 predictions are presented in Table 5. The results of the short-
turning model are shown in Tables 6 and 7.

Each timetable is used when the prediction is still “valid”, i.e., it has not changed. For instance, the disruption timetable generated
with the P1a prediction of the 50% quantile is used only for four minutes between 15:43 and 15:47 (15min after their arrival at the
disrupted location). At 15:47, the prediction is updated to P2 and a new disruption timetable is constructed.

These disruption timetables are used by the dynamic passenger assignment model to compute passenger route choice and the
resulting passenger distribution over train services for six hours between 14:22 and 20:22. In this period, there are 22163 passengers
who are travelling in the case study area. We measure the impact on the passengers for each choice of quantile. The results are
presented in Table 8.

The last row of Table 8 shows the benchmark case with the true disruption length. In this case, the true end time of disruption is
already known when the disruption starts at 14:221. Each scenario is compared to this case to measure the increase in the impact of
the prediction on the passengers with respect to the ideal situation.

The second column of Table 8 shows the difference (in minute) between the true end of disruption and the last P2 prediction when
the blocked railway section between Utrecht and Houten is opened for train operation. The third column presents the total number of
passengers travelling during the blockage of the section. The fourth and fifth column provide the increase (in %) in the total gen-
eralized travel time with respect to the normal situation without disruption and the benchmark, respectively. In the sixth and seventh
column, the total number of passengers who have to reroute once or twice in each scenario is provided. The number of transfers
performed by the passengers can be found in the last column.

The benchmark case represents the best possible situation. In this case, fewer passengers are affected and no passengers have to be
rerouted since the initially provisioned information is accurate. Unsurprisingly, the increase in the generalized travel time with
respect to the no disruption situation is also the lowest.

In general, the longer the difference between the true end of disruption and the last P2 prediction is, the more passengers are
affected. However, this does not necessarily translate to a higher total generalized travel time. Notice that the increase in the
generalized travel time is higher in the 25%-quantile scenario than in the 85%-quantile scenario even though the difference between
the prediction and the realized value is only 7min in the former and 17min in the latter. The eight predictions in the 25%-quantile
scenario cause many passengers to reroute due to the frequent updates of the disruption timetable. Consequently, the total gen-
eralized travel time is penalized severely. In the 85%-quantile scenario, much fewer passengers need to reroute due to the pessimistic
prediction.

Notice that the P2 predicted end time of the disruption of the 75%-quantile scenario (at 16:35, see Table 5) is 10min shorter than
the actual end time. Because of this slightly too optimistic prediction, the predicted end time is updated to P2a which is at 18:22. This
new prediction is dramatically too long and consequently disrupts the late afternoon peak demand period. As a result, this scenario is
the worst as indicated by the number of affected passengers and the increase of the total generalized travel time.

Table 7
The remaining results of the short-turning model for P2 for Case Study 1.

Qtl (%) P2c P2d

#C #D #ST Del. #C #D #ST Del.

25 36 0 9 0 40 0 10 0

Table 8
The impact of different predictions to the passengers in Case Study 1.

Qtl (%) Excess (minute) # Affected Passengers Inc. Orig (%) Inc. Bench (%) # Rerouting # Transfers

1 2

25 7 8948 17.71 0.26 595 4 3597
50 36 11469 20.53 2.67 466 1 4015
75 97 16560 24.33 5.90 247 0 4671
85 17 9791 17.56 0.13 5 0 3775
90 51 12854 20.16 2.35 0 0 4126
Mean 45 12299 20.33 2.49 282 0 4136

Real 0 8374 17.4026 0 0 0 3773

1 This is the best possible situation but, of course, is not realistic.
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4.2. Case study 1A: weekday evening

In order to investigate the effect of the disruption's time of occurrence on the choice of predictions, an artificial disruption is
considered in this case study. The exact same disruption as in Case Study 1 is assumed to occur later on the same day, at 19:24. The
realizations of the latency and repair time of this artificial disruption are taken from the values of the computed conditional dis-
tribution of latency and repair time which correspond to the same quantiles as the realizations of Case Study 1. In this case, the
latency and repair time are 89 and 73min, respectively. The total length is 162min and the disruption ends at 22:06.

The P1 predictions and the short-turning results are presented in Tables 9 and 10.
The P2 predictions are made at 21:08, 15min after the mechanics’ actual arrival time at 20:53. These predictions are presented in

Table 11. The corresponding results of the short-turning model are represented in Tables 12 and 13.

Table 9
The P1 predictions for Case Study 1A.

Qtl (%) P1 P1a P1b P1c

Length Time Length Time Length Time Length Time

25 54 20:18 77 20:41 102 21:06 127 21:31
50 86 20:50 149 21:53
75 149 21:53
85 209 22:53
90 258 23:42
Mean 122 21:26

Table 10
The results of the short-turning model for P1 in Case Study 1A.

Qtl (%) P1 P1a P1b P1c

#C #D #ST Del. #C #D #ST Del. #C #D #ST Del. #C #D #ST Del.

25 19 0 3 0 23 2 4 6 31 0 6 0 39 0 8 0
50 27 0 5 0 43 2 9 2
75 43 2 9 2
85 55 5 12 39
90 73 2 15 8
Mean 35 9 7 15

Table 11
The P2 predictions for Case Study 1A.

Qtl (%) P2 P2a P2b P2c P2d

Length Time Length Time Length Time Length Time Length Time

25 104 21:08 121 21:25 137 21:41 154 21:58 169 22:13
50 114 21:18 153 21:57 198 22:42
75 152 21:56 259 23:43
85 179 22:23
90 213 22:57
Mean 138 21:42 207 22:51

Table 12
The results of the short-turning model for P2 in Case Study 1A.

Qtl (%) P2 P2a P2b

#C #D #ST Del. #C #D #ST Del. #C #D #ST Del.

25 31 0 6 0 35 2 7 6 39 2 8 6
50 35 0 7 0 43 9 9 24 55 2 12 8
75 43 9 9 15 73 2 15 10
85 47 4 10 38
90 55 12 12 69
Mean 39 9 8 15 55 5 12 31
Real 47 0 10 0
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As before, the predictions are used by the short-turning model to produce the disruption timetables which are used by the
dynamic passenger assignment model to attain the distribution of passengers traffic. Between 19:24 and 01:24, 7102 passengers are
travelling in the case study area. Notice that there are fewer passengers in this set-up than the previous one due to the different time
of the day under consideration. Table 14 summarizes the impact on passengers for each quantile.

In comparison to Case Study 1, the increase in the total generalized travel time with respect to the normal situation is higher. This
is because the disruption is longer than in the previous case study due to the longer latency time.

The benchmark case still represents the best situation with fewer passengers being affected. The total generalized travel time is
the lowest in this scenario and no passengers are rerouted.

The longer the last P2 prediction is, the more passengers are affected by the disruption. For this reason, the 75%-quantile scenario
yields the highest total generalized travel time. Notice that as in Case Study 1, the P2 prediction of this scenario is 10min shorter than
the actual end time of the disruption. Consequently, the prediction is updated to P2a, which is then too long.

The nine predictions in the 25% quantile scenario cause many passengers to reroute. In this scenario, the simulation shows that
there are a total of 1487 rerouting activities, out of which 438 had to reroute once and 195 had to reroute twice in addition to a
considerable number of passengers who needed to reroute more than twice. As a result, the total generalized travel time of this
scenario is the second largest due to the heavy penalty associated with rerouting.

4.3. Case study 2: Saturday evening

In this case study, we consider another real track circuit disruption at the same location which occurred on Saturday, 18 October
2014 and started at 19:24. The incident had the information shown in Table 15. The observed latency and repair time are 47 and
88min, respectively, with a total length of 135min.

The P1 predictions and the short-turning results for this case study are presented in Tables 16 and 17. Fifteen minutes after the
mechanics’ actual arrival time at 20:11, the P2 predictions are made. Tables 18 and 19 presents these predictions and the short-
turning model. Table 20 summarizes the impact on passengers for each choice of quantile.

The benchmark case represents the best possible situation. With the least number of affected passengers with no need for re-
routing, the total generalized travel time is the lowest of all scenarios.

Notice that the final predicted end time of disruption of the 50%-quantile and 75%-quantile scenario are the same. Consequently,
the same number of passengers are affected in both cases. However, the 50%-quantile scenario has three predictions while the
75%-quantile scenario has only two. Consequently, many passengers need to be rerouted and more transfers need to be performed in
the former. This results with higher total generalized travel time in the case of the 50%-quantile scenario. The pessimistic 90%-quantile
scenario disturbs the most number of passengers because of a P2 prediction that is too long. Consequently, the total generalized travel
time is the largest, making this scenario the worst performing one in this case study.

4.4. Case study 2A: Saturday afternoon

Similarly to Case Study 1A, the incident in Case Study 2 is also considered to occur at a different time of the day. In this case study,
we assume this hypothetical incident to occur on the same day at 14:22. In this case, because the incident occurs during the weekend,
the prediction lengths do not change from Case Study 2; only the time-dependent passenger demand generation process is adjusted.

Table 13
The remaining results of the short-turning model for P2 in Case Study 1A.

Qtl (%) P2c P2d

#C #D #ST Del. #C #D #ST Del.

25 43 9 9 33 47 2 10 10

Table 14
The impact of different predictions to the passengers in Case Study 1A.

Qtl (%) Excess # Affected Inc. Orig Inc. Bench # Rerouting # Transfers

(minute) Passengers (%) (%) 1 2

25 7 4966 32.68 7.47 438 195 1353
50 36 5563 31.09 6.18 479 8 1430
75 97 6563 35.12 9.45 83 0 1512
85 17 5180 29.46 4.86 52 0 1379
90 51 5843 32.15 7.05 0 0 1461
Mean 45 5733 27.16 3.00 91 0 1306

Real 0 4812 23.4516 0 0 0 1291
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Table 15
The initial information of the disruption case 2.

Contract type OPC
Working station distance 7.1620
Level Crossing distance 872.372
Working Time no
Warm no
Rush Hour no
Overlapping disruption no
Cause a cable problem

Table 16
The P1 predictions for Case Study 2.

Qtl (%) P1 P1a

Length Time Length Time

25 54 20:18 77 20:41
50 86 20:50
75 149 21:53
85 209 22:53
90 258 23:42
Mean 122 21:26

Table 17
The results of short-turning model for P1 for Case Study 2.

Qtl (%) P1 P1a

#C #D #ST Del. #C #D #ST Del.

25 19 0 3 0 23 2 4 6
50 27 0 5 0
75 43 2 9 2
85 55 5 12 39
90 73 2 15 8
Mean 35 9 7 15

Table 18
The P2 predictions for Case Study 2.

Qtl (%) P2 P2a P2b P2c

Length Time Length Time Length Time Length Time

25 67 20:31 94 20:58 120 21:24 151 21:55
50 104 21:08 173 22:17
75 173 22:17
85 237 23:21
90 280 00:04
Mean 142 21:46

Table 19
The results of short-turning model for P2 for Case Study 2.

Qtl (%) P2 P2a P2b P2c

#C #D #ST Del. #C #D #ST Del. #C #D #ST Del. #C #D #ST Del.

25 23 0 4 0 27 9 5 33 35 2 7 4 43 2 9 6
50 31 0 6 0 47 2 10 18
75 47 2 10 18
85 65 7 13 102
90 77 8 16 79
Mean 43 0 9 0

Real 39 2 8 2
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Tables 21 and 22 present the P1 predictions and the corresponding short-turning results. The P2 predictions and the short-turning
results are presented in Tables 23 and 24.

The impact of different scenarios on the passengers is presented in Table 25. Notice that more passengers are affected by the
disruption in comparison to Case Study 2. This is due to the disruption occurring during the day time when more passengers are
travelling.

Like the previous three case studies, the scenario with the true disruption length is the best performing one in terms of the total
generalized travel time. The least number of passengers are affected and none of them have to change their travel plans.

As in Case Study 2, the difference between the predicted end of disruption and the truth is 38min in both the 50%-quantile and the
75%-quantile scenario. However, the increase in the generalized travel time is higher in the former case. This is due to the more
frequent prediction updates so many passengers have to reroute and slightly more transfers are needed. Consequently, the total

Table 20
The impact of different predictions to the passengers in Case Study 2.

Qtl Excess # Affected Inc. Orig Inc. Bench # Rerouting # Transfer

(%) (minute) Passengers (%) (%) 1 2

25 16 4562 14.43 0.64 426 32 1219
50 38 5052 17.11 2.99 252 32 1506
75 38 5052 16.11 2.11 0 0 1437
85 102 6246 19.30 4.92 0 0 1558
90 145 6792 21.43 6.79 0 0 1693
Mean 7 4351 14.89 1.04 2 0 1385
Real 0 4182 13.7099 0 0 0 1309

Table 21
The P1 predictions for Case Study 2A.

Qtl (%) P1 P1a

Length Time Length Time

25 54 15:16 77 15:39
50 86 15:48
75 149 16:51
85 209 17:51
90 258 18:40
Mean 122 16:24

Table 22
The results of the short-turning model for P1 in Case Study 2A.

Qtl (%) P1 P1a

#C #D #ST Del. #C #D #ST Del.

25 16 0 4 0 20 2 5 2
50 24 0 6 0
75 40 0 10 0
85 56 0 14 0
90 68 2 17 4
Mean 32 2 8 4

Table 23
The P2 predictions for Case Study 2A.

Qtl (%) P2 P2a P2b P2c

Length Time Length Time Length Time Length Time

25 67 15:29 94 15:56 120 16:22 151 16:53
50 104 16:06 173 17:15
75 173 17:15
85 237 18:19
90 280 19:02
Mean 142 16:44
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generalized travel time of this scenario is penalized more.
The very pessimistic 90% quantile scenario performs the worst in terms of the total generalized travel time. The dramatic dif-

ference between the predicted end of disruption and the truth means a lot of passengers are affected by the disruption. As a result, the
total generalized travel time becomes very high.

5. Conclusions and future work

In railway operation, different disruption length predictions can lead to different consequences for the passengers. In this paper a
framework is developed to investigate the impacts of disruption length prediction on the total passengers generalized travel time.

This framework integrates three models; a disruption length model using a Baysian network approach, a short-turning model
formulated as a MILP, and a dynamic passenger assignment model using a multi-stage passenger load approach. The integration of
these models has a unique iterative approach starting with a disruption length prediction, then rescheduling trains by short-turning
them based on the predicted length, and finally measuring the passengers generalized travel time. The new iteration takes place upon
receiving an update that leads to a new disruption prediction length, which results in an updated schedule and finally the new
passenger generalized travel time is computed. These iterations continue until the disruption ends. In the dynamic passenger as-
signment model, the generalized travel time consists of the weighted total travel time of all passengers which takes into the account
the waiting time, the in-vehicle time, the transfer time, the number of transfers, and the number of reroutings.

In a series of case studies, we have shown how different choices of predictions of disruption length will affect the passengers in
terms of the generalized travel time. Our finding is that on one hand, when the prediction is too optimistic, many passengers have to
be rerouted which increases the inconvenience and, hence, the total generalized travel cost. On the other hand, when the prediction is
too pessimistic, more passengers are affected which results in a higher total generalized travel cost. The result from the case study
corresponds to the current prediction practice which is using a pessimistic prediction that reduces the chance of further changes in
the plan. When the prediction is just slightly shorter than the realized value, more passengers are affected. This is evident especially
with pessimistic predictions which lead to keeping the track blocked much longer than necessary, significantly beyond the end of the
disruption. The experiments provide thus insights on the impact of the predictions on passengers delays.

A hypothesis that can be investigated further is that “starting with pessimistic predictions and thereafter gradually switching to
the optimistic predictions might result in a better overall prediction”. We cannot conclude based on a few case studies which value of
the conditional distribution of disruption length is the best for a prediction. To draw such a conclusion, many more case studies need
to be performed. However, we show that different quantiles led to the smallest generalized travel time of passengers under different
scenarios. The close-to-optimal solution can be found by testing a large number of points from the solution space, i.e., by generating
many different realizations of disruption length from the conditional distribution. For each realization, the short-turning model and
the dynamic passenger assignment model should then be run to compute the effect of different choices of disruption length pre-
dictions.

Table 24
The results of short-turning model for P2 for Case Study 2A.

Qtl (%) P2 P2a P2b P2c

#C #D #ST Del. #C #D #ST Del. #C #D #ST Del. #C #D #ST Del.

25 20 0 5 0 24 9 6 15 32 0 8 0 40 2 10 2
50 28 0 7 0 48 0 12 0
75 48 0 12 0
85 64 0 16 0
90 76 0 19 0
Mean 36 9 9 33

Real 36 0 9 0

Table 25
The impact of different predictions to the passengers in Case Study 2A.

Qtl (%) Excess # Affected Inc. Orig Inc. Bench # Rerouting # Transfers

(minute) Passengers (%) (%) 1 2

25 16 9031 12.31 1.22 723 120 3249
50 38 10928 15.87 4.43 491 46 3725
75 38 10928 14.60 3.28 0 0 3703
85 102 16359 19.95 8.11 0 0 4549
90 145 19044 23.25 11.08 0 0 5069
Mean 7 8294 11.10 0.13 4 0 3128

Real 0 7736 10.9567 0 0 0 3128
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Moreover when a prediction had to be updated we took the same quantile of the conditional distributions. For future research
direction the choice of quantile in the P2 prediction should be investigated to see whether there is a dependency on the quantile that
realizes the latency time in the P1 prediction. The realization of the latency time might indicate how fast/slow the mechanics work on
the specified incident which might be a useful information to produce a more accurate P2 prediction. Other possibilities could be
considered as well.

The function of the total generalized travel time specified in this study can be extended in future studies. During peak demand
periods and disruptions it is especially relevant to consider vehicle capacity constraints and the vehicle type. The bus service between
Utrecht and Houten provides significantly less seat capacity than the train service. Moreover, different vehicle types provide different
levels of comfort to the passengers. An Intercity train is generally more comfortable than a Sprinter train or a bus service. This can be
accommodated in equation (12) by adding a weight corresponding to the vehicle type to the second term.

Choosing generalized travel time as the primary evaluation/selection criterion means the impact of the uncertainty in disruption
length is only measured from the passengers’ point of view. With this cost function, an optimistic prediction is not attractive only
because it causes inconvenience to the passengers who would have to reroute. Note that we have not captured all costs associated
with an optimistic prediction that the traffic control faces. However, from an operational point of view, having a lot of timetable
updates is not practical due to the logistical issues that need to be carried out. For instance, the rolling stock and crew assignments
need to be reorganized accordingly with every update. Future studies may incorporate additional aspects into the cost function in
order to better reflect the aspects influencing real-time decision making in the context of disruption management.

Note that the effect of different predictions depends considerably on the location and the time of the incident. This is evident in
the results of the case studies investigated in this paper. This is presumably even more pronounced in denser areas where there is a
greater hierarchy among different locations, such as the Amsterdam area. Aside from the greater number of alternative rail services,
passengers may switch to other modes of public transport, consisting of metro, tram and bus, which contribute to network re-
dundancy.
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