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Abstract
Hydrologic model performance evaluation depends on streamflow observations that are accurately
positioned in the landscape. For distributed hydrologic models, this means that the streamflow obser­
vation need to be mapped to a location along the model streamflow network that represents the location
of the observation station in a hydrologic system. However, the gridded representation of the modelled
area causes a spatial mismatch between the hydrologic system and hydrologic model.
In this study we aimed to develop a Machine learning­based method to improve matching between
streamflow observations and streamflow simulations. The setup of this method was implemented in
two steps: (1) a dataset was created consisting of streamflow characteristics of simulations and and
observations and (2) a Machine learning algorithm was trained with the created dataset.
Three data sources were used for the creation of the dataset: (1) 595 streamflow observations were
retrieved from the Global Runoff Database Centre (GRDC), (2) streamflow simulations were extracted
from the European Flood Alert System (EFAS) and (3) we were provided with a manually created and
checked dataset by European Centre for Medium­Range Weather Forecasts linking each GRDC ob­
servation to the correct EFAS grid cell.
To link 60% of the observations in the dataset with the correct grid cells, the observations required
to be moved away from the cell corresponding to the geo­location of the observations. The method
developed in this study anticipated this by creating a search window around the initial location of each
observation. The streamflow simulations were extracted from the grid cells in the search window and
compared with the streamflow observation. The algorithm aimed to select the streamflow simulation
that best reflected the characteristics of the streamflow observation. The characteristics were described
with streamflow signatures.
Four Machine learning algorithms, a Logistic Regression, Random Forest, Support Vector Machine
and K­Nearest Neighbours algorithm, were trained with a K­fold Cross Validation procedure to match
streamflow simulations with streamflow observations based on streamflow signatures. Their perfor­
mance was compared with four benchmark algorithms: a Center Cell benchmark which places the
observations on their initial location, and the Root Mean Squared Error, Kling­Gupta Efficiency and
Nash­Sutcliffe Efficiency benchmarks that compare the streamflow observation with the streamflow
simulations.
We identified the Logistic Regression and Random Forest algorithms as the best performing algo­
rithms. However, neither outperformed all benchmarks. Despite these results, we show the potential
to automate matching between streamflow observations and streamflow simulations with a ML­based
approach in this study.
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phased LDD. The black part of the LDD matches with that of Case (a). The red parts
of the of the LDD follow the direction of a pre­existing streamflow network. All LDDs,
derived with different methods, show differences from one another. . . . . . . . . . . . . 3
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original fine resolution streamflow network. The upstream part of the smaller stream (at
the top part of the network) is merged into the stream at the lower part of the network.
The illustration was adapted from Yamazaki et al. (2014) . . . . . . . . . . . . . . . . . 4

2.1 Global overview of processing steps required to setup the algorithm developed in this
study. With steps a­d, the dataset is compiled: (a) each observation was placed in a cell
the model grid closest to the provided coordinates; (b) a search window was specified
around the initial location; (c) the streamflow simulations were extracted for each cell in
the search window and (d) streamflow signatures were calculated based on the obser­
vations and simulations. The simulated streamflow signatures were labelled and added
to a dataset with the observed streamflow signatures. With the created dataset, (e) an
algorithm was trained to match model output and observations. The three sources used
to compile the dataset are : Climate Data Store (CDS), Global Runoff Database Centre
(GRDC) and European Centre for Medium­Range Weather Forecasts (ECMWF). . . . . 6

2.2 Location of 595 selected gauging stations retrieved from a database provided by Euro­
pean Centre for Medium­Range Weather Forecasts (ECMWF). The gauges have been
placed within the EFAS model domain. The boundaries of the EFAS model domain cor­
respond to the edges of this figure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
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dataset is split into a training & validation set and a test set. The training & validation
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from the K parts. The pre­processing steps ­ consisting of sub­sampling (for the Single
Cell format), normalization, scaling and optional PCA transformation ­ are fitted onto the
training set and applied to the validation and test set. After training of an algorithm, the
performance is evaluated and the evaluation statistics are saved. After K iteration, the all
performance evaluation statistics are combined for overall performance evaluation. The
conclusion to adjust the algorithm is based on the average performance. If the perfor­
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that makes predictions on the pre­processed test set. The test performance can than be
evaluated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 This illustration shows how the search window is defined. (a) depicts the the initial place­
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corresponding to a search window of 1 by 1 cells, to a shift of 2 cells, corresponding with
a search window of 5 by 5 cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
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bar. The right Y­axis corresponds to the cumulative percentage of variance explained.
The first two PCs contribute to over 50% of the variance explained of the original dataset. 16

3.5 Precision scores with a 3 x 3 search window ­ On the left, the benchmark precision scores
are displayed in light gray. In dark gray, the performance with the original dataset is dis­
played. The black, navy and green green bars correspond to the strongest feature reduc­
tions, with PCA transformation preserving 60%, 70% and 80% of the original variance
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1
Introduction

Hydrology is the scientific discipline that studies
the movement and distribution of water. Monitor­
ing and understanding the terrestrial water cycle is
vital for society: it enables provision of safe drink­
ing water, flood predictions and sustainable wa­
ter resources management. Next to human in­
terventions in the water cycle (Montanari et al.,
2013), anthropologically­induced climate change
is expected to further alter the global water cy­
cle (Prudhomme et al., 2002, 2014). Hydrologi­
cal models help assess the impact of the changing
water cycle for society.

Hydrological models are a mathematical simplifi­
cation of hydrological systems that aim to mimic
the system’s streamflow response to inputs such
as precipitation, solar radiation and land use
changes (Döll and Lehner, 2002). The sim­
plest hydrological model represents a system as
a bucket. The bucket depicts the storage of the
system. The storage level in these buckets is in­
fluenced by input fluxes, such as precipitation and
evaporation. Streamflow, the model output, is de­
termined by the rate of flow out of the bucket. This
outgoing flux is determined by parameters linked
to geo­physical properties of the system, such as
elevation, slope, soil type, vegetation cover and
land use. By increasing the number of buckets in
the model and adapting the buckets, a more ac­
curate representation of different hydrological pro­
cesses can be represented (for more background
information, see Appendix A, p.36).

An additional element to modelling is achieved
through spatial representation. Lumped models
simulate a hydrological system as a single unit,
with uniform forcing and parameters, whereas dis­
tributed models divide the system in separate grid
cells that are interconnected. The hydrological
response in each cell is calculated separately.

This enables the model to capture the spatial vari­
ability of the hydrological system (Ajami et al.,
2004, Krysanova et al., 1999, Singh and Wool­
hiser, 2002) (for more background information,
see Appendix A, p.36). Linked to spatial repre­
sentation are the connections of the sub­systems
in distributed models. The most common method
of linking subsystems is performed with a Local
Drainage Direction (LDD) map derived from a Dig­
ital Elevation Model (DEM) (also see: Figure 1.1a,
p.3 and Appendix A, p.36). With the linking of
subsystems, the accumulated streamflow from up­
stream cells forms an additional incoming flux for
each cell besides forcing data. The output of each
cell is directed to another downstream cell by the
LDD until the outlet point is reached. Here the ac­
cumulated streamflow leaves the hydrological sys­
tem captured by the model. In some models the
direction towards an outlet point is done in two
phases by including a streamflow network (see:
Figure 1.1c, p.3). In this case, the LDD is used
to direct streamflow from cell to cell until a stream­
flow network is reached. From here, flow direction
is determined by a streamflow network.

Besides meteorological input and model structure,
the simulated runoff depends on model param­
eters. Model parameters can either be derived
from additional data sources (e.g., soil maps, land
cover maps) or determined by calibration against
observed (historical) states of the model. After
calibration, model performance is evaluated by
comparing simulated streamflow timeseries with
streamflow observations. The degree of similar­
ity determines to what extent the simulated out­
put of the model is able to match observations.
Model performance is quantified by objective func­
tions that numerically compare observations and
simulations, such as the Nash­Sutcliffe Efficiency
(NSE) (Nash and Sutcliffe, 1970), Kling­Gupta Ef­
ficiency (KGE) (Gupta et al., 2009) or (Root) Mean
Squared Error ((R)MSE). During the calibration
and evaluation procedure, a dataset with mete­
orological observations and streamflow observa­
tions is split into a calibration and evaluation set.
After determining model parameters with help of
the calibration set, the model performance is eval­
uated with the evaluation set. Alternatively, with
cross­calibration, the meteorological and stream­
flow dataset can be split into multiple parts. With
each iteration, a part is hold out as evaluation
dataset, while the remaining parts are used for the
model calibration.

The gridded representation of a hydrological sys­
tem in a distributed model introduces an additional

1
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source of uncertainty: it is a cause for spatial
mismatches between the physical system and the
model (Graham et al., 1999). This complicates
matching streamflow simulations at the locations
of observations in the hydrological system. Be­
cause of this, issues arise during model calibration
and evaluation. Without streamflow simulations at
the location of the observations in the hydrologi­
cal system, a structural uncertainty during model
calibration and evaluation is introduced. This un­
certainty cannot be reduced by improving the in­
put data, calibration data, model parameters nor
model structure.

Therefore, it is important that simulations come
from a location in the hydrological model that
matches with the location of the observations in
the hydrological system.

Methods have been developed to overcome the
spatial mismatch between the actual hydrological
system and hydrological model. An overview of
these methods can be found in Figure 1.1 (p.3).
In an attempt to force the correct location of the
streamflow network, a pre­existing and validated
streamflow network can be ”burned” into a DEM
(Figure 1.1b, p.3): the elevation difference be­
tween the streamflow network and surrounding
area is increased, so that the LDD is adjusted ac­
cordingly (Graham et al., 1999, Lehner et al., 2006,
2008, Renssen and Knoop, 2000). However, this
does not always yield adequate results (Renssen
and Knoop, 2000).
After streamflow network derivation, iterative and
manual correction procedures include editing
based on digitized high resolution maps and vec­
tor data such as the Digital Chart of the World
(Costa et al., 2002, Danko, 1991, Döll and Lehner,
2002, USGS, 2000, Vörösmarty et al., 2000) and
the comparison of upstream areas of observations
locations (Costa et al., 2002). Döll and Lehner
(2002) adjust the location of major confluences
in the network to structurally match with the real
life network. This implies that the location of the
representative cell of major confluences does not
have to be the cell corresponding to the actual geo­
graphical location. In case of multiple confluences
located in the same cell, one of the confluences
may be shifted to a neighbouring cell for correct
representation of sub­basins.
Another method to incorporate a pre­existing and
validated streamflow network in a hydrological
model, is to execute streamflow routing in two
phases (Figure 1.1c, p.3): streamflow is directed
based on a LDD until it reaches a pre­existing and
validated streamflow network that further guides

the streamflow through the model (Thielen et al.,
2009). An advantage of this method is that high
resolution and high quality streamflow networks
can be implemented. However, the spatial res­
olution of the streamflow network needs to be
adapted to match the model grid. The resampling
of the resolution of a streamflow network can in­
troduce additional spatial mismatches (Yamazaki
et al., 2014) as illustrated in Figure 1.2 (p.4).

Evaluation of the streamflow network location is
conducted by visual comparison against high res­
olution datasets (Döll and Lehner, 2002, USGS,
2000) and by comparing upstream area informa­
tion from the network with data from literature and
observations (Coe, 2000, Costa et al., 2002, David
et al., 2011, Döll and Lehner, 2002, Irving et al.,
2018, Lehner and Grill, 2013, Lehner et al., 2006,
2008, Li et al., 2015, Renssen and Knoop, 2000,
Sutanudjaja et al., 2018, Vörösmarty et al., 2000).
A common method to evaluate both the location
of the streamflow network and streamflow sim­
ulations in the model uses location information
and streamflow observations of gauging stations.
Based on the station coordinates, streamflow ob­
servations are placed in the model and snapped
to the nearest cell. The estimated upstream area,
provided with the station metadata, is compared
to the upstream area in the streamflow network. If
the discrepancy between the two values falls be­
low below 5% to 15% (Costa et al., 2002, Döll and
Lehner, 2002, Sutanudjaja et al., 2018), the ob­
servations are used for streamflow evaluation. In
case of a bigger difference in upstream area, either
the evaluation data is omitted from the study, or an
inspection and manual adjustment are required in
an attempt to find a cell representing the obser­
vations. It is often found that the evaluation data
is represented by a neighbouring cell belonging
to a tributary or neighbouring catchment (Döll and
Lehner, 2002, USGeological Survey, 2015) or that
uncertainties in evaluation data exists (Döll and
Lehner, 2002, Vörösmarty et al., 2000). In cases
where the observations were shifted from their ini­
tial position, shifts from 1 to 3 cells were needed
to find representative simulations (Coe, 2000, Irv­
ing et al., 2018, Kuentz et al., 2017, Li et al., 2015,
Sutanudjaja et al., 2018, Wu et al., 2014).

By improving the efficiency of matching model out­
put with observations, requiring a number of iter­
ations and manual corrections, time and energy
could be spent more efficiently and more data
would remain for the improvement of hydrologi­
cal modelling. As the representative simulations
for observations are selected, a source of error
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Figure 1.1: This figure depicts an overview of methods to determine flow direction in a spatially distributed model. At the top an
impression of a Digital Elevation Model (DEM) is given with high elevation on the left side and lower elevations on the right side,
as indicated by the colour of the grid cell. Case (a) depicts the derivation of a Local Drainage Direction (LDD) from the DEM:
flow in each cell is directed into one of the eight surrounding cells with the lowest elevation. Case (b) depicts the derivation of a
LDD after an existing streamflow network was ’burned’ into the DEM. The grid cells and network sections that have been altered
by this step are indicated in red. Case (c) shows the results of a two­phased LDD. The black part of the LDD matches with that
of Case (a). The red parts of the of the LDD follow the direction of a pre­existing streamflow network. All LDDs, derived with
different methods, show differences from one another.

would be eliminated and full focus can be directed
towards refining model structures and our under­
standing of hydrological processes. To date, an
approach for matching streamflow observations
with streamflow simulations that uses streamflow
characteristics of observations and simulations to
select a representative cell has not been explored.

Therefore, this study aims to find a widely applica­
ble algorithm that improves matching between dis­
tributed model output and observations for a range
of hydrological models with varying spatial resolu­
tions.
In contrast to previous studies that map stream­
flow observations based on proximity to the
streamflow network and upstream drainage area,
the algorithm developed in this study is designed

to compare streamflow observations with stream­
flow simulations. Since shifts of 1 to 3 cells from
the initial observation location in the model are of­
ten required to find representative simulations, this
study proposes to create a search window around
the initial grid cell. The characteristics of stream­
flow simulations, retrieved from grid cells in the
search window, are compared with characteristics
of the streamflow simulations. The algorithm is
trained to select a representative streamflow simu­
lation among all simulations in the search window.

For the development and evaluation of the algo­
rithm, the objective is defined asmatching stream­
flow observations and streamflow simulations with
high confidence. This implies a primary focus
on predicting true matches, followed by a focus
on maximizing the number of true matches while
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Figure 1.2: In this figure, issues that arise when a fine resolution streamflow network (indicated with red in (a) and (b)) is up­
scaled to a low or high resolution streamflow in network (b). The low resolution streamflow network is unable to capture the two
separate streams of the original fine resolution streamflow network. The upstream part of the smaller stream (at the top part of
the network) is merged into the stream at the lower part of the network. The illustration was adapted from Yamazaki et al. (2014)

maintaining a low number of false predictions.

Machine learning (ML) has proven to have the po­
tential to extract patterns from large datasets and
predict the response of complex and non­linear
processes as occur in the field of hydrology (Shen,
2018). Therefore, a ML­based approach is applied
in this study tomatch streamflow observations with
streamflow simulations.
As streamflow signatures are focused on captur­
ing hydrological behaviour, this study proposes to
research the potential of streamflow signatures as
features to match observations with model output.

The European Flood Alert System (EFAS) has
been developed for flood predictions and warnings
in European continental basins. The streamflow
simulations in EFAS are produced with a hydro­
logical model called LISFLOOD. The hydrological
model produces streamflow simulations in conti­
nental Europe in a 5 km grid (Thielen et al., 2009).
To calibrate and evaluate the model, a set of
streamflow observations from the Global Runoff
Database Centre (GRDC) (GRDC, 2015) have
been placed onto the streamflow network of the
model. The mapping of the total dataset of around
3200 gauge observations took a single person
nearly 2.5 months of full time work (Mazzetti,
2021).
A subset of around 1000 stations was used for cal­
ibration of the hydrological model. Since these
observations had to be mapped before the start
of the calibration procedure, thus before the ini­
tial model run, no streamflow simulations were yet
produced. This means that these stations were
placed in the model based on coordinates and sta­
tion information only, without information derived

from streamflow characteristics. The remaining
part of the dataset was used to evaluate the model
performance after calibration.

In this study, EFAS simulations in combination
with observations from the GRDC and a database
of matching streamflow observations and simula­
tions will be used to setup a dataset of streamflow
signatures.
With this dataset, four supervised classification
algorithms (Logistic Regression, Random Forest,
Support Vector Machine and K­Nearest Neigh­
bours) will be trained to match streamflow obser­
vations and streamflow simulations.
To find a most adequate algorithm setup, the
following sub­objectives are defined: (1) find
the most adequate supervised classification algo­
rithm; (2) find a set of metrics that can distinguish
differences in streamflow in a streamflow network;
(3) find the optimal database formatting for an al­
gorithm to train and predict with and (4) evalu­
ate the matching algorithm compared to existing
matching approaches.

After the problem definition in Chapter 1, the
method to address the problem are described in
Chapter 2 (p.5). Chapter 3 (p.14) reports the re­
sults obtained with the described approach. These
are discussed in Chapter 4 (p.27), followed by
drawn conclusions (Chapter 5, p.29) and recom­
mendations (Chapter 6, p.30). More background
information regarding hydrological modelling can
be found in Appendix A (p.36). Background infor­
mation on Machine learning can be found in Ap­
pendix B (p.40).
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Methodology

In this chapter the setup of the algorithm is de­
scribed (see Figure 2.1, p.6), starting with a de­
scription of data sources in section 2.1, that will be
used for the creation of the dataset in section 2.2
(p.6). After this, the setup of a Machine learning
(ML) algorithm in section 2.3 is described (p.9). In
section 2.4 (p.10), dataset formatting options are
discussed. Benchmark algorithms are described
in section 2.5 (p.12). At last, the performance eval­
uation metrics are defined in section 2.6 (p.12).

2.1. Data sources
The goal of this research is to find or design an
algorithm that optimally links streamflow observa­
tions to corresponding cells (pixels) of the stream­
flow simulations as calculated by the model. To
achieve this goal, we used three key datasets: (1)
gridded streamflow simulations from EFAS which
will be addressed as streamflow simulations in this
study; (2) streamflow observations from the Global
Runoff Database Centre (GRDC) including their
coordinates and upstream area. In this report,
these will be called streamflow observations; (3)
a manually created and checked dataset linking
eachGRDC streamflow observation location to the
correct EFAS grid cell. In the remainder of this
work, we will call these verified GRDC streamflow
locations representative locations.

We obtained streamflow simulations from the Eu­
ropean Flood Alert System (EFAS), developed
flood for flood predictions and warnings in Euro­
pean continental basins (Thielen et al., 2009). The
distribution of EFAS is managed by the Joint Re­
search Centre (JRC) and executed in four cen­
tres: (1) the European Centre for Medium­Range
Weather Forecasts (ECMWF) is the computa­
tional center, executing forecasts and hosting the
system’s platform; (2) the Swedish Meteorologi­
cal and Hydrological Institute, Rijkswaterstaat and

the Slovak Hydro­Meteorological Institute together
form the dissemination centre that analyses and
interprets the daily EFAS output; (3) the hydro­
logical data collection centre consists of the En­
vironment and Water Agency of the Regional Min­
istry for the Environment and Spatial Planning, and
Soologic. This centre is responsible for the collec­
tion of historic and real­time river discharge and
water level observations; (4) the meteorological
data collection centre, responsible for the collec­
tion of historic and real­time meteorological data,
is formed by KISTERS AG and Deutscher Wetter­
dienst (EFAS, 2012, Mazzetti et al., 2021).
In the latest version, the distributed model pro­
vides streamflow simulations on a 5 x 5 km grid
with a 6­hourly timestep (Mazzetti et al., 2020).
While the flood forecasts are only available to
EFAS partners, historical data is publicly avail­
able via the Climate Data Store (CDS). Historical
streamflow simulations are available from January
1st 1991 and are published with a 30­day delay.
In this study, we used EFAS historical streamflow
simulations from January 1st 1991 to the 31st of
December 2020 will to calculate simulated stream­
flow signatures.
EFAS simulations are obtained by forcing the LIS­
FLOOD model with meteorological data (Thielen
et al., 2009). Distributed data layers such as
land use, land cover and soil type determine cell
properties. The Local Drainage Direction (LDD)
map was derived by ”burning” the CCM River and
Catchment Database (version 2.1) (Vogt et al.,
2007) into a high resolution (100m) Digital Ele­
vation Model (DEM) (Mazzetti, 2021). Both the
CCM streamflow network and LDD were spatially
up­sampled with the tracing method ”Flexible Lo­
cation of Waterways” (FLOW) developed by Ya­
mazaki et al. (2009) (Arnal et al., 2019). Stream­
flow is routed along the river network using a
four­point implicit finite­difference solution of the
kinematic wave equations (Arnal et al., 2019, Van
Der Knijff et al., 2010).

We retrieved the streamflow observations used
for calculation of observed streamflow signatures
from the GRDC (Global Runoff Data Centre,
2020). The streamflow observations are provided
with a daily timestep. Additional station informa­
tion, such as station coordinates and an estimate
of the upstream area are included in the metadata.

We made one requirement for an observation to
be included in the study: stations were selected
if the location in the EFAS grid was available in
a database provided by ECMWF. This database
contains observations that have been used for
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Figure 2.1: Global overview of processing steps required to setup the algorithm developed in this study. With steps a­d, the
dataset is compiled: (a) each observation was placed in a cell the model grid closest to the provided coordinates; (b) a search
window was specified around the initial location; (c) the streamflow simulations were extracted for each cell in the search window
and (d) streamflow signatures were calculated based on the observations and simulations. The simulated streamflow signatures
were labelled and added to a dataset with the observed streamflow signatures. With the created dataset, (e) an algorithm was
trained to match model output and observations. The three sources used to compile the dataset are : Climate Data Store (CDS),
Global Runoff Database Centre (GRDC) and European Centre for Medium­Range Weather Forecasts (ECMWF).

model performance evaluation and therefore al­
ready have beenmatchedwith their representative
location in the EFAS model. The spatial distribu­
tion of the selected gauges in the model domain is
depicted in Figure 2.2 (p.7).

A potential limitation of the algorithm developed
in this study is the reliance on the availability
of streamflow simulations. The dataset in this
study was created with streamflow simulations
from a calibrated model. However, calibration re­
quires that a number of stations already have been
mapped in the model before streamflow simula­
tions have been produced. Matching un­calibrated
streamflow simulations with observations is out­
side the scope of this study.

2.2. Dataset creation
We compiled the dataset by combining streamflow
simulations, observations and representative loca­
tions with the steps depicted in Figure 2.1a (p.6):
(a) observations were placed within the model grid
based on their provided geo­location, and (b) a
search window was defined around the initial loca­
tion. All streamflow simulations within the search
window were considered as potential representa­
tive simulations to match with the observations.
Therefore, (c) the streamflow simulations were ex­
tracted and streamflow signatures were calculated
for both the observed and simulated streamflow
timeseries. The representative streamflow simu­
lation, i.e. the grid cell in which the observation ac­
tually is according to the representative locations
dataset, was identified in the search window. Rep­
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Figure 2.2: Location of 595 selected gauging stations retrieved from a database provided by European Centre for Medium­
Range Weather Forecasts (ECMWF). The gauges have been placed within the EFAS model domain. The boundaries of the
EFAS model domain correspond to the edges of this figure.

resentative streamflow simulations were labelled
as 1 and non­representative streamflow simula­
tions were labelled as 0. The streamflow signa­
tures of all simulations and the observations were
combined to (d) compile the dataset. In this study,
a 9 by 9 search window was specified around the
initial location of each observation for streamflow
simulation extraction.

The streamflow signatures in the dataset have
been selected to capture a wide range of stream­
flow characteristics. The selected signatures are
depicted in Table 2.1 (p.8). Due to uniqueness
of place (Beven, 2000), it is assumed that a
unique set of streamflow signatures will charac­
terize streamflow along a section in the stream­
flow network between confluences. By compar­
ing streamflow simulations with streamflow obser­
vations based on streamflow signatures, a match
of characteristic streamflow representation can be
sought for.

Given that streamflow response on spatial scales
of 10 to 15 km will vary little ­ given that no con­
fluences or other disturbances occur ­ streamflow
signatures will also be very similar. Therefore,
a maximum of two streamflow simulations in a
search window were labelled as additional accept­
able matches.
We accepted simulations if (1) the mean stream­
flow was within a 1% range of the mean stream­
flow of the initial matching simulation, and (2) if
the streamflow simulation was located directly up­

stream or downstream of the initial matching loca­
tion.

Before calculation of the streamflow signatures,
the 6­hourly EFAS simulations were resampled
to match the daily timestep of the observations.
Streamflow simulations in a search window were
cropped to match the length of the corresponding
streamflow observations.

Next, the streamflow signatures were calculated
based on the whole timeseries and with seasonal
time windows.

After calculation of the streamflow signatures was
completed, the dataset was checked for missing
values. For 1556 streamflow simulations that were
included in the search windows, no streamflow
signatures could be calculated as there was no
streamflow simulation data available. This was
attributed to the fact that the corresponding grid
cells were located outside of the modelling area,
so no streamflow simulations were produced for
these cells. For about 15% of the streamflow ob­
servations, elevation data was not provided in the
station’s metadata. Missing values were extracted
from the EU­DEM (Bashfield and Keim, 2011) and
ASTER GDEM (Abrams et al., 2020).
Before extraction of elevation data from the DEMs,
the RMSE between the available elevation data
and elevation of the DEM was calculated to evalu­
ate the quality of the additional DEM data sources.
Of the total set of available elevation data, 100
samples were randomly selected. Based on the
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Table 2.1: Overview of streamflow signatures used as features in Machine learning application in this study

Statistical distribution ID Description Formula Reference

Normal distribution
parameters [𝜇, 𝜎]

Nm,
Ns

𝑓𝑥(𝑥) =
1
√2𝜋

1
𝜎𝑒

[− (𝑥−𝜇)
2

2𝜎2 ],
𝜇 = 1

𝑛Σ
𝑛
𝑖=1𝑥𝑖,

𝜎 = √Σ𝑛𝑖=1(𝑥𝑖−𝜇)2
𝑛

Bennett et al. (2013),
Zhang et al. (2018)

Log­normal distribution
parameters [𝜇, 𝜎]

Lm,
Ls

𝑓𝑥(𝑥) =
1

𝑥√2𝜋
1
𝜎𝑌
𝑒
[− (𝑙𝑛(𝑥)−𝜇𝑌)

2
2𝜎2𝑌

]

for 𝑌 = 𝑙𝑛(𝑋) with:
𝜇 = 𝑒𝑥𝑝(𝜇𝑌) and 𝜎 = 𝜇𝜎𝑌

Gumbel distribution
parameters [𝑢, 𝑎]

Gu,
Ga

𝑓𝑥(𝑥) = 𝑎 ∗ 𝑒𝑥𝑝 [−𝑎(𝑥 − 𝑢) − 𝑒−𝑎(𝑥−𝑢)],
𝜇 = 𝑢 + 0.577

𝑎 →𝑢 = 𝜇 − 0.577
𝑎 ,

𝜎 = 𝜋
𝑎√6 →𝑎 =

𝜋
√6𝜎

Poisson distribution
parameters [𝜆] Pl 𝑓𝑥(𝑥) = 𝑒𝑥𝑝(−𝑥)

𝜆𝑥
𝑥!

for 𝑥 = 0, 1, 2, ..

Gamma distribution
parameters [𝑘, 𝜃]

Gk,
Gt

𝑓𝑥(𝑥) =
1

𝜃Γ(𝑘) (
𝑥
𝜃)

𝑘−1
𝑒(−

𝑥
𝜃 )

with Γ(𝑘) = ∫∞𝑧=0 𝑧𝑘−1𝑒−𝑧𝑑𝑧,
𝜇 = 𝑘𝜃 →𝑘 = (𝜇/𝜎)2,
𝜎 = 𝜃√𝑘 →𝜃 = 𝜎/(𝜇/𝜎)

Correlation

Pearson’s n­lag
auto­correlation alag­n Smoothness of

hydrograph
𝜌𝑎𝑢𝑡𝑜 =

𝑐𝑜𝑣(𝑋,𝑌)
𝜎𝑋𝜎𝑌

, with:

𝑐𝑜𝑣(𝑋, 𝑌) = Σ𝑛𝑖=1(𝑥𝑖−𝜇𝑥)(𝑦𝑖−𝜇𝑦)
𝑛−1

Winsemius et al. (2009),
Euser et al. (2013)

Pearson’s n­lag
cross­correlation clag­n

Cross­correlation
between observation
and simulation

𝜌𝑐𝑟𝑜𝑠𝑠 =
𝑐𝑜𝑣(𝑋,𝑌)
𝜎𝑋𝜎𝑌

Bennett et al. (2013)

Flow duration curve (FDC)

FDC n­th
percentile fdc­q­n Flow exceeded 𝑛%

of the time 𝐹𝐷𝐶(𝑄𝑛)
Yadav et al. (2007),
Smakhtin (2001),
Vogel and Fennessey (1994)

FDC Slope fdc­s
Slope of the FDC
between 33𝑟𝑑 and
66𝑡ℎ percentile

𝐹𝐷𝐶𝑠𝑙𝑜𝑝𝑒 =
𝑄33−𝑄66
0.33−0.66 Sawicz et al. (2011)

Peak Distribution pkd

Slope of FDC,
constructed from
peaks only, between
10𝑡ℎ and 50𝑡ℎ percentile

𝑝𝑘𝑑 = 𝐹𝐷𝐶(𝑄𝑝𝑒𝑎𝑘𝑠,10)−𝐹𝐷𝐶(𝑄𝑝𝑒𝑎𝑘𝑠,50)
0.9−0.5 Euser et al. (2013)

Low Flow Ratio lf Ratio of low flow
to median flow 𝐿𝐹 = 𝑄90/𝑄50 Nijzink et al. (2018)

Hydrological Inidices
Baseflow
Index bfi Ratio of long­term baseflow

to total streamflow 𝐵𝐼 = ∑𝑄𝐵/𝑄 Sawicz et al. (2011)

Rising Limb
Density rld

Number of peaks divided
by total duration of
rising limbs in hydrograph

𝑅𝐿𝐷 = 𝑁𝑝𝑒𝑎𝑘𝑠/𝑇𝑟𝑖𝑠𝑖𝑛𝑔𝑙𝑖𝑚𝑏𝑠 Morin et al. (2002)

Declining Limb
Density dld

Number of peaks divided
by total duration of
declining limbs in hydrograph

𝐷𝐿𝐷 = 𝑁𝑝𝑒𝑎𝑘𝑠/𝑇𝑑𝑒𝑐𝑙𝑖𝑛𝑖𝑛𝑔𝑙𝑖𝑚𝑏𝑠 Shamir et al. (2005)

Richard­Baker
Flashiness rbf

Sum of absolute values
of day­to­day changes
in mean daily flows divided
by sum of all daily flows

𝑅𝐵𝐹 = ∑ |𝑄 − 𝑄𝑚𝑒𝑎𝑛|/ ∑𝑄
Baker et al. (2004),
Holko et al. (2011),
Kuentz et al. (2017)

Recession Curve
Slope rcs 𝑙𝑛(−𝑑𝑄) = 𝑙𝑛(𝑎) + 𝑟𝑑𝑠 ∗ 𝑙𝑛(𝑄) Vogel and Kroll (1992),

Stoelzle et al. (2013)

High Flow Events hfe,
hfd

High flow event
frequency and duration 𝑄ℎ𝑓 ≥ 9𝑄𝑚𝑒𝑑𝑖𝑎𝑛 Westerberg and McMillan (2015)

Low Flow Events lfe,
lfd

Low flow spell
frequency and duration 𝑄𝑙𝑓 ≤ 0.2𝑄𝑚𝑒𝑎𝑛 Westerberg and McMillan (2015)

Elevation h
Elevation of streamflow
observation station or
simulation location

Upstream area upArea

Size of area contributing
to streamflow at
observation or
simulation location

Toth (2013)
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sample coordinates, the elevation was extracted
from the DEM and compared with the elevation
provided in the station’s metadata. The RMSE of
the EU­DEM was slightly lower than the ASTER
GDEM with RMSE values of 76.8m and 78.2m re­
spectively.
For some streamflow simulations the upstream
area was not retrieved during the initial timeseries
extraction from the EFAS model. The missing val­
ues were retrieved from the separate EFAS up­
stream area output layer (Mazzetti et al., 2020).

After data cleaning, the final step of the dataset
creation consisted of expressing similarity be­
tween the streamflow simulations and streamflow
observations. In this study, similarity was ex­
pressed by subtracting the observation signature
values from the simulation signature values. Only
the cross­correlation signatures were left out of
this procedure, as they already are an expression
for similarity between the streamflow observations
and streamflow simulations.

2.3. Algorithm setup
After combination of streamflow simulations,
streamflow observations and representative loca­
tions, we had created a dataset where streamflow
observations have been linked with representative
streamflow simulations. The similarities between
representative and non­representative streamflow
simulations and streamflow observations are de­
scribed with streamflow signatures. With this
dataset, a Machine learning (ML) algorithm can
be trained to link streamflow observations to corre­
sponding simulations. In ML terminology, an algo­
rithm makes predictions based on characteristics
called features. In this study, these features cor­
respond to the streamflow signature values that
express the similarity between streamflow simu­
lations and streamflow observations. The algo­
rithm is trained to predict a target value or label:
in this study, the algorithm is trained to predict
whether a streamflow simulation is representative
for a streamflow observation.
As the goal is to train an algorithm to predict la­
bels based on feature values, a supervised classi­
fication problem is defined. A subset of Machine
learning (ML) algorithms is suited to solve super­
vised classification problems.

We selected four ML algorithms for exploration of
their applicability to the supervised classification
problem: (1) a Logistic Regression (LR), (2) a Ran­
dom Forest (RF), (3) a Support Vector Machine
(SVM) and (4) a K­Nearest Neighbours (K­NN)

classifier. These algorithms have been selected
for their simplicity and quick setup with the Python
module Scikit­learn (Pedregosa et al., 2011). More
information about the algorithms can be found in
Appendix B.2.1 (p.41).
This study researches the potential to match
streamflow observations with streamflow simula­
tions and is, by the author’s best knowledge, the
first one to do so. Therefore, relatively simple al­
gorithms are deployed to evaluate the potential in
this exploratory phase.
Additionally, when comparing the size of the cur­
rent dataset, with 595 matches between stream­
flow observations and simulations, it becomes ap­
parent that the dataset size is relatively small (Aji­
boye et al., 2015, Prusa et al., 2015). Generally,
ML algorithm perform better than Deep learning
(e.g. neural networks) algorithms when trained
with small datasets. This is another argument
to deploy ML algorithms in this exploratory study.
Despite the limited dataset size, it is believed that
­ similar to other studies ­ the potential of this
method can be evaluated (Kratzert et al., 2018).

ML algorithms require training to generalize rela­
tions from a dataset and make predictions based
on unseen data. For performance evaluation, a
dataset is randomly split in three parts: a train­
ing set (60­80% of the total dataset), a valida­
tion set and a test set (both 20­10% of the total
dataset). After the algorithm is trained with the first
set, the performance is evaluated with a set of un­
seen data, the validation set. Then, after multiple
rounds of adjusting the algorithm based on training
and evaluation performance, the algorithm perfor­
mance is evaluated one final time with never be­
fore seen data, the test set.

Before features in the training, validation and test
set can be used as input for an algorithm, they
need to be preprocessed.
All features have been scaled and normalized be­
tween a range from zero to one. By scaling, each
feature is equally weighed by the algorithm and the
algorithm can converge faster during training. Ad­
ditionally, normalization can improve the numer­
ical stability of an algorithm (Kuhn et al., 2013).
The scaling and normalisation functions are fitted
on the training set and applied to the validation and
test set.

In this study, the training and performance evalua­
tion of each ML algorithm was conducted with a K­
fold Cross Validation procedure, with 𝐾 = 5. The
dataset is split in two parts instead of three: a train­
ing and validation set (80­90% of the total dataset)
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and a test set (20­10% of the total dataset). In this
study, the training and validation set consisted of
85% of the total dataset (503 observations). The
remaining 15% (92 observations) were assigned
to the test set.
Due to the imbalanced nature of the of the dis­
placements required to map streamflow obser­
vations on their representative location (see Fig­
ure 3.3), we conducted an intermediate sorting
step before splitting the training and validation set
and test set. The samples in the dataset were
sorted based on the absolute number of cell shifts
required to place observations on the representa­
tive location. Then, each sub­group was randomly
split into the training and validation set, and the
test set. We conducted this extra step to guaran­
tee an equal representation of different numbers
of cell shifts in both the training and validation and
test set.
To start the K­fold Cross Validation procedure (see
Figure 2.3, p.11), the training and validation set
was split into K parts. Then, K iterations followed
where the training set consists of K­1 parts. The
remaining part was hold out as validation set. With
each iteration, first the training and validation data
was preprocessed. Then, an instance of an algo­
rithm was trained with a unique combination of the
split dataset. After K iterations, an ensemble of K
algorithms have been trained and evaluated with
every part of the training and evaluation set.

Each algorithm produces an output of the proba­
bility of a simulation being a match with an obser­
vation. The simulation corresponding to the maxi­
mum probability is predicted to be a representative
for the observations by the algorithm.

Additionally, a minimum probability threshold can
be set to accept a prediction. In this study, we set
the probability threshold to exceed 0.5.

The K­fold Cross Validation procedure was re­
peated ten times. After ten repetitions, the perfor­
mance was averaged. We used the variation be­
tween different performances to evaluate the sta­
bility of each algorithm.

For the final performance evaluation each algo­
rithm in the ensemble made a prediction based on
the features in the test set. The predicted proba­
bilities of the ensemble were summed to obtain a
soft ensemble vote: the simulation with the highest
summed probability was predicted to be the rep­
resentative simulation for the observation by the
ensemble.

More details regarding Machine learning can be
found in Appendix B (p.40).

2.4. Dataset formatting

Besides searching for the most adequate ML al­
gorithm, we varied three factors that influence the
shape of the dataset to evaluate the impact on the
algorithm performance.
The first factor regards how spatial cohesion be­
tween streamflow simulations in a single search
window is reflected in the input and output of the
algorithm. Two options are considered.

The first option is the Single Cell format, where
all simulations in a search window are considered
individually ­ based on similarity between a single
simulation and observation the algorithm predicts
the probability of that simulation being represen­
tative for the observation, without comparison to
other simulations. The prediction for each simula­
tion consists of the probability that the simulation is
not a match and the probability that the simulation
is amatch. The sum of probabilities in each predic­
tion is equal to one. The simulation with the maxi­
mum probability of matching with the observation,
optionally exceeding a threshold, is returned as
representative for the observation.
The second option is the Window format, where
the simulations in a search window are consid­
ered as a single input ­ the similarity of all simula­
tions and the observations are interpreted at once
by the algorithm so that spatial relations are pre­
served. The algorithm returns predictions in the
shape of the search window. For each simulation
in the search window, the probability of being rep­
resentative for the observations is returned, so that
the simulation with the maximum probability, op­
tionally exceeding a threshold, is labelled as being
representative for the observation.
With the Window formatting a binary multi­label
classification problem is created. The RF and K­
NN algorithms could be implemented for this type
of problem without any alterations. The LR and
SVM algorithm were adapted for the binary multi­
class classification problem with a One­versus­
Rest method.
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Figure 2.3: This illustration presents an overview of the K­fold Cross Validation: the signatures dataset is split into a training &
validation set and a test set. The training & validation set if split into K parts. With K iterations, a training set and validation set
are created from the K parts. The pre­processing steps ­ consisting of sub­sampling (for the Single Cell format), normalization,
scaling and optional PCA transformation ­ are fitted onto the training set and applied to the validation and test set. After training
of an algorithm, the performance is evaluated and the evaluation statistics are saved. After K iteration, the all performance
evaluation statistics are combined for overall performance evaluation. The conclusion to adjust the algorithm is based on the
average performance. If the performance is sufficient, all K algorithms trained during the iterations can form an ensemble that
makes predictions on the pre­processed test set. The test performance can than be evaluated.

Figure 2.4: This illustration shows how the search window is
defined. (a) depicts the the initial placement of an observation
within the cell with the red edges. This cell becomes the origin
of the X and Y axis. (b) depicts how many cells are located
within a shift distance of 0, corresponding to a search window
of 1 by 1 cells, to a shift of 2 cells, corresponding with a search
window of 5 by 5 cells.

The second factor influencing the shape of the
dataset, in terms of the number of samples, is the
size of the search window (see Figure 2.4, p.11).
The search window is centered around the initial
location of the observation based on the station
coordinates. The size of the search window cor­
responds to the number of streamflow simulations
that are considered as potential matches for the
observation.
In other words, in each search window a sin­
gle representative streamflow simulation is sought
for while the remaining streamflow simulations
are labelled as non­representative. Dependent
on the size of the search window, in a three­by­
three window, one sample is labelled as repre­
sentative while eight samples are labelled as non­
representative. Increasing the search window with

one in each direction, in a five­by­five window, the
ratio of representative to non­representative simu­
lations will have changed to one to twenty­four.
This means that the dataset will be more imbal­
anced for larger search windows due to an in­
creasing number of non­representative samples.
In this study, the performance sensitivity of algo­
rithms for varying search window sizes was evalu­
ated with a minimum search window size of three
by three, and a maximum search window size of
nine by nine.

Since positive samples of matching simulations
are under­represented in the imbalanced dataset,
it will be difficult for an ML algorithm to equally gen­
eralize relations between features of representa­
tive and non­representative samples. Therefore,
in the Single Cell format, the training dataset is
sub­sampled to create a balanced dataset for an
algorithm to train with.

The final factor that influences the shape of the
dataset, in terms of the number of features, is the
application of a dimensionality reduction, specifi­
cally a Principal Component Analysis (PCA) (also
see Section B.3.2, p.44).
A PCA is re­projects feature values in the dataset
onto new axes, so that feature values lose their
physical meaning. Each axis or Principal Compo­
nent (PC) corresponds to a certain amount of in­
formation or variance of the original dataset. The
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first PC will contain the largest amount of vari­
ance, followed by the second PC, and third PC,
etc (Wold et al., 1987). Therefore, a certain per­
centage of the information stored by the features in
the original dataset can be captured by a number
of PCs that is less than the original number of fea­
tures. The reduction in features can remove noise
in the dataset, enhance relations between features
and labels, and speed up training of the algorithm
as simpler relations need to be established (Kuhn
et al., 2013).
However, a large feature reduction can result in
loss of essential information and negatively affect
the algorithm performance. Therefore, a range
of feature reduction levels, expressed as the per­
centage variance to be preserved, was applied to
the dataset and the effect of the feature reduction
on the algorithm performance is evaluated.

2.5. Benchmark performance
This study aims to find the most adequate ML al­
gorithm setup to match streamflow observations
with streamflow simulations by evaluating the per­
formance of four different supervised classifica­
tion algorithms ­ Logistic Regression (LR), Ran­
dom Forest (RF), Support Vector Machine (SVM),
K­Nearest Neighbours (K­NN) ­ with the dataset
formatting options described in section 2.4 (p.10).
Besides evaluating the different setups mutually,
the added value of the setup is evaluated by
checking if the setup can outperform benchmark
algorithms.

The Center Cell (CC) benchmark selects the rep­
resentative cell based on the provided observation
station coordinates. In other words: the stream­
flow simulations closest to the initial location based
on station coordinates, or the center of the search
window, are predicted to be representative of the
observations

Three benchmark algorithms are based on objec­
tive functions: the NSE benchmark calculates the
Nash­Sutcliffe Efficiency (NSE) for every stream­
flow simulation in the search window. The repre­
sentative simulation is selected as the simulation
with the highest NSE score (Nash and Sutcliffe,
1970).
Similarly, the KGE benchmark calculates the
Kling­Gupta Efficiency (KGE) for every streamflow
simulation in search window and predicts the rep­
resentative simulation based on the highest KGE
score (Gupta et al., 2009).
At last, the RMSE benchmark calculates the Root
Mean Squared Error (RMSE) for every streamflow

simulation in the search window and predicts the
streamflow simulation with the lowest RMSE as
the representative streamflow simulation for the
given streamflow observation.

2.6. Performance evaluation
An algorithm makes predictions based on features
in the validation and test set. The predictions from
algorithms can be compared with the labels of the
validation and test set to evaluate the quality of the
predictions. The focus of the performance evalu­
ation is determined by the objective of this study,
which is to match streamflow simulations and ob­
servations with high confidence.

The primary focus derived from this objective is
that an algorithm makes true predictions. This can
be measured by calculating the precision score of
the predictions (Equation 2.1):

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃 (2.1)

with 𝑇𝑃 the number of True Positives and 𝐹𝑃 the
number of False Positives. The number of True
Positives equals the number of correctly predicted
matches by an algorithm. In contrast, the num­
ber of False Positives is equal to the number of in­
correctly predicted matches by an algorithm. The
precision score is a metric to express how many
of matches predicted by the algorithm are correct
and helps establish confidence in the output. The
maximum precision score is equal to 1.

The secondary focus is to maximize the number
of true predictions while maintaining a high preci­
sion score. This can be measured using the recall
score (Equation 2.2):

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁 (2.2)

with 𝑇𝑃 the number of True Positives and 𝐹𝑁 the
number of False Negatives, which equals the num­
ber of matches that have not been identified by an
algorithm. A high recall score indicates that the
algorithm is able to classify a large portion of the
total matches in the dataset.

A metric that balances precision and recall is the
F1 score (Equation 2.3):

𝐹1 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 (2.3)

and can help find a setup with the best overall
trade­off between both metrics.
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A final metric to support the performance eval­
uation is the Balanced Accuracy score (Equa­
tion 2.4):

Balanced Accuracy =

0.5 ∗ ( 𝑇𝑃
𝑇𝑃 + 𝐹𝑁 +

𝑇𝑁
𝑇𝑁 + 𝐹𝑃) (2.4)

with 𝑇𝑃 the number of True Positives, 𝐹𝑃 the num­
ber of False Positives, 𝑇𝑁 the number of True
Negatives, equal to the number of correctly identi­
fied non­representative streamflow simulations by
an algorithm, and 𝐹𝑁 the number of False Neg­
atives, that equals the number of incorrectly pre­
dicted non­representative streamflow simulations.
This metric is developed to establish the accuracy
for imbalanced datasets, as used in this study.

2.7. Data and Code availability
Code to reproduce all steps described above
can be found in https://github.com/
mvanderven/matching_machine.

https://github.com/mvanderven/matching_machine
https://github.com/mvanderven/matching_machine


3
Results

First, the created dataset (section 2.2, p.6) is anal­
ysed to establish the problem the algorithm needs
to solve in section 3.1 (p.14). Second, the results
of a Principal Component Analysis (PCA) on the
training and validation set are presented in sec­
tion 3.2 (p.14). Third, the performance of differ­
ent test setups, based on the test and validation
set, is compared in terms of precision (section 3.3,
p.16), recall (section 3.4, p.18) and F1 scores
(section 3.5, p.20). The trade­off between preci­
sion and recall is further analysed in section 3.6
(p.20). After that, the most adequate algorithm se­
tups are evaluated in section 3.7 (p.22) and are
applied to the test set. The test performance is
analysed in section 3.8 (p.23).

3.1. Match analysis
The dataset created in this study contains the rep­
resentative locations of 595 observations (see (3)
in section 2.1, p.5). The displacements needed
from the initial location of the streamflow observa­
tions in the model to the representative streamflow
simulations were analysed.
Figure 3.1 (p.14) depicts an overview of displace­
ments of streamflow observations from the initial
location in the model to the representative stream­
flow simulations of the set of observations in the
training and validation dataset. This dataset con­
sists of 505 observations. In this dataset, 224 of
the observations matched with the initial location.
Figure 3.2 (p.15) shows the displacements in X
and Y directions. The peak for displacements in
X and Y direction were both located around zero.
The outliers were directed in both negative X and
Y direction.
Figure 3.3 (p.15) shows the absolute shifts in X
and Y direction. Here, can be seen that the num­
ber of observations requiring one cell displace­
ment was higher than the number of observations

that could be placed on the initial location in the
model.
It can be concluded that 40% of the observations
are located at the initial location in the model.
Nearly 50% of the observations require one cell
displacement, which can be a displacement in
the X­direction, Y­direction or both. 90% of the
matches are located within a 3 by 3 search window
around the initial location in the model which corre­
sponds to displacements observed in other studies
(Coe, 2000, Irving et al., 2018, Kuentz et al., 2017,
Li et al., 2015, Sutanudjaja et al., 2018, Wu et al.,
2014). The remaining 10% of the observations re­
quired larger displacements towards a representa­
tive location in the model and could be caused by
both uncertainties in the streamflow network of the
model or uncertainties in the observationmetadata
(Döll and Lehner, 2002).

Figure 3.1: Displacements in test and validation set in search
window view. The center, located at (0,0) represents the initial
placement of each observation. A major part of the streamflow
observations can be matched with representative streamflow
simulations at the initial location. Most of the observations are
located within one cell distance of the initial locations, or within
a 3 by 3 search window around the initial location.

3.2. PCA
The application of a Principal Component Analy­
sis (PCA) analysis is one of the variables in the
dataset setup (see Section 2.4, p.10). The output
of a PCA varies depends on the amount of vari­
ance that is preserved in the transformed dataset
and influences the number of Principal Compo­
nents (PC) in the transformed dataset.

Figure 3.4 (p.16) shows the results of a PCA trans­
formation on the training and validation dataset.
The bars show the percentage of variance ex­
plained per PC. The cumulative variance is indi­
cated by the red line.

After removal of missing data, 76 streamflow sig­
natures remained to be used as features for an

14
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Figure 3.2: Distribution of displacements from an initial location needed to match streamflow observations with streamflow sim­
ulations in the model in X and Y direction. The sub­graphs on the left display the distribution between ­10 and +10 cell shifts in
X and Y direction. The sub­graphs on the right display the total distribution, including outliers at the left side of the graphs. The
majority of required displacements fall between ­1 and +1.
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Figure 3.3: Distribution of absolute displacement from an initial location needed to match streamflow observations iwth stream­
flow simulations in combined X and Y direction. From the left sub­graph it can be observed that the number of observations
requiring at least a one cell displacement in any direction is larger than the number of observations that can be matched with an
initial location.
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Figure 3.4: Results of an Principal Component Analysis (PCA) transformation on the training and validation set. On the X­axis
the number of Principal Components (PCs) is displayed. The left Y­axis corresponds to the variance explained by each PC,
displayed by a blue bar. The right Y­axis corresponds to the cumulative percentage of variance explained. The first two PCs
contribute to over 50% of the variance explained of the original dataset.

algorithm. Following the PCA, the transformed
dataset still contained 76 features. However, the
76 features now corresponded to 76 PCs and can
no longer be interpreted as the signature values in
Table 2.1 (p.8).
Based on Figure 3.4, it could be estimated that 26
PCs are needed to capture the variance of 99% of
the original dataset with 76 features.
Over 50% of the variance can be captured by PC1
and PC2. These PCs are the main contributors,
contributing 28% and 24% variance respectively.
The variance explained from PC3 and other PCs
drops below 10%.

3.3. Precision
As defined in Chapter 1 (p.1) and section 2.6
(p.12), the primary objective for performance eval­
uation is to have high confidence in algorithm pre­
dictions. This can be expressed through the pre­
cision score, as a measure to express how many
of the predicted matches are true matches (see
Equation 2.1, p.12). Figures 3.5 and 3.6 (p.17)
display the precision scores of different algorithm
setups for a 3 by 3 and a 9 by 9 search window
respectively.

All figures display the benchmark scores on the left
side. To the right, the precision scores for the Lo­
gistic Regression (LR), Random Forest (RF), Sup­
port Vector Machine (SVM) and K­Nearest Neigh­
bours (K­NN) algorithms are shown. These scores
are the average performance after repeating K­
fold Cross Validation procedure (with 𝐾 = 5) ten
times. The vertical black lines indicate the mini­
mum and maximum performance of the ten repe­
titions. The experiment was repeated seven times

with different PCA settings on the training and
validation sets. The initial performance without
PCA transformation can be compared with perfor­
mances where a PCA transformation was applied
preserving 60% to 99% variance explained with re­
spect to the original dataset.

3.3.1. Minimum search window
Figure 3.5a (p.17) displays the precision scores for
the Window formatted algorithm setup (see sec­
tion 2.4, p.10) with a 3 by 3 search window.
The LR algorithm depicted the overall highest pre­
cision scores, varying around a precision score of
0.55. The LR algorithm showed the highest pre­
cision when trained and evaluated with a dataset
with a strong feature reduction, with 60% vari­
ance explained after application of a PCA. For ev­
ery experiment, the LR algorithm outperformed all
benchmarks in terms of precision (CC=0.47, KGE
= 0.42, NSE &RMSE = 0.346). The increased pre­
cision could be attributed to removal of noise after
the PCA transformation, highlighting relations be­
tween features and target values.
The second best performing algorithm was the K­
NN algorithm. The precision score for all experi­
ments varied between 0.2 and 0.3. This was not
high enough to exceed the benchmark scores.
The RF algorithm showed the lowest precision
scores together with the SVM algorithm. For nei­
ther, the precision exceeded over 0.10.
The largest difference between minimum and
maximum precision scores was observed for the
SVM algorithm. In all test setups but one, the
minimum andmaximum precision score varied be­
tween 0 and 1.
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(a) Precision scores of algorithm setups with Window format in a 3 by 3 search window

(b) Precision scores of algorithm setups with Single Cell format in a 3 by 3 search window

Figure 3.5: Precision scores with a 3 x 3 search window ­ On the left, the benchmark precision scores are displayed in light
gray. In dark gray, the performance with the original dataset is displayed. The black, navy and green green bars correspond to
the strongest feature reductions, with PCA transformation preserving 60%, 70% and 80% of the original variance respectively.
The lighter colored bars ­ in brown, pink and mint ­ display the performance of algorithms trained with datasets after a PCA
transformation with 90%, 95% and 99% of variance explained.

(a) Precision scores of algorithm setups with Window format in a 9 by 9 search window

(b) Precision scores of algorithm setups with Single Cell format in a 9 by 9 search window

Figure 3.6: Precision scores with a 9 x 9 search window ­ On the left, the benchmark precision scores are displayed in light
gray. In dark gray, the performance with the original dataset is displayed. The black, navy and green green bars correspond to
the strongest feature reductions, with PCA transformation preserving 60%, 70% and 80% of the original variance respectively.
The lighter colored bars ­ in brown, pink and mint ­ display the performance of algorithms trained with datasets after a PCA
transformation with 90%, 95% and 99% of variance explained.
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Figure 3.5b (p.17) displays the precision scores for
algorithms in a Single Cell format (see section 2.4,
p.10) with a 3 by 3 search window.
The LR algorithm in Single Cell format displayed
the lowest precision scores, varying between 0.1
and 0.18. A strong feature reduction improved the
performance of the LR algorithm with Window for­
matting. However, in the Single Cell format the
precision score was lowest (0.10) with a strong
feature reduction.
The RF algorithm displayed the overall highest re­
sults of all test setups. The maximum precision
score was obtained when the RF algorithm was
trained with the original dataset without feature re­
duction (0.45). In this setup, the algorithm out­
performed the NSE and RMSE benchmarks (0.35)
and competed with the performances of the CC
(0.47) and KGE (0.42) benchmarks.
The second best performing algorithm in Single
Cell formatting was the SVM algorithm, with preci­
sion scores between 0.32 and 0.37. The SVM al­
gorithm performed best when trained with the orig­
inal dataset, or with a PCA transformed dataset
with over 90% of the variance preserved.
The K­NN algorithm was the third best performing
algorithm. The lowest score was obtained when
the algorithm was trained with a PCA transformed
dataset with 60% of variance explained (0.25). All
other test setups showed precision scores varying
around 0.28.

3.3.2. Maximum search window
Figure 3.6a (p.17) depicts the precision scores for
algorithms in aWindow format with a 9 by 9 search
window.
The performance of the LR algorithm decreased
with respect to the performance in Figure 3.5a,
varying around 0.30. This score was high enough
to outperform the KGE (0.18), NSE (0.15) and
RMSE (0.15) benchmarks, but not enough to
outperform the CC benchmark with a score of
0.47. The highest LR algorithm performance was
obtained after training with a PCA transformed
dataset preserving 99% of the variance.
The average precision scores of the SVM had in­
creased with respect to the performance in the
smaller search window, but still showed a large
difference between the minimum and maximum
scores.
The RF algorithm precision scores were the high­
est scores among the different test setups, varying
around 0.20.
The K­NN algorithm performance varied around
0.16, which was enough to outperform the NSE
and RMSE benchmarks (0.15) and to compete

with the KGE benchmark (0.18). The CC bench­
mark was not outperformed in this setup.
Figure 3.6b (p.17) displays the precision scores for
algorithm setups in a Single Cell format and a 9 by
9 search window. None of the algorithm setups
were able to outperform all benchmarks. The RF
trained with the original dataset was able to out­
perform the KGE (0.18), NSE (0.15) and RMSE
(0.15) benchmarks with a precision score of 0.24.
This was not high enough to compete with the CC
benchmark (0.47).

3.4. Recall
As described in in Chapter 1 (p.1) and section 2.6
(p.12), the secondary objective is to maximize the
number of true predictions. Recall (Equation 2.2,
p.12) is a measure to express how many of the
matches have been found. Figures 3.7 and 3.8
(p.19) depict the recall scores of different algorithm
setups for a 3 by 3 and a 9 by 9 search window re­
spectively.

Each figure displays the benchmark recall scores
on the left. On the right side, the recall scores of
the algorithms ­ Logistic Regression (LR), Random
Forest (RF), Support Vector Machine (SVM), K­
Nearest Neighbours (K­NN) ­ are displayed. They
are the averaged results of experiments where a
K­fold Cross Validation procedure (with 𝐾 = 5)
was repeated ten times. The experiments were
conducted seven times with various PCA applica­
tions.

3.4.1. Minimum search window
Figure 3.7a (p.19) depicts the recall scores for the
algorithms with a Window format. None of the al­
gorithms outperformed all benchmarks. The LR
and K­NN algorithm were both able to outperform
the KGE (0.18), the NSE (0.14) and the RMSE
(0.14) benchmarks with recall scores around 0.22
and 0.25 respectively. The CC benchmark dis­
played the highest recall score equal to 0.51.
The recall scores of the SVM algorithm approxi­
mated 0. The recall scores of the RF algorithm
were higher, with recall scores around 0.06. This
was not high enough to outperform any of the
benchmarks.

Figure 3.7b (p.19) displays the recall scores for
the algorithms with a Single Cell format. The RF,
SVM and K­NN algorithms outperformed the KGE
(0.18), NSE (0.14) and RMSE (0.14) benchmarks.
The RF algorithm trained with the original dataset
had a competitive recall score (0.46) with respect
to the CC benchmark (0.47).
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(a) Recall scores of algorithm setups with Window format in a 3 by 3 search window

(b) Recall scores of algorithm setups with Single Cell format in a 3 by 3 search window

Figure 3.7: Recall scores with a 3 x 3 search window ­ On the left, the benchmark recall scores are displayed in light gray. In dark
gray, the performance with the original dataset is displayed. The black, navy and green green bars correspond to the strongest
feature reductions, with PCA transformation preserving 60%, 70% and 80% of the original variance respectively. The lighter
colored bars ­ in brown, pink and mint ­ display the performance of algorithms trained with datasets after a PCA transformation
with 90%, 95% and 99% of variance explained

(a) Recall scores of algorithm setups with Window format in a 9 by 9 search window

(b) Recall scores of algorithm setups with Single Cell format in a 9 by 9 search window

Figure 3.8: Recall scores with a 9 x 9 search window ­ On the left, the benchmark recall scores are displayed in light gray. In dark
gray, the performance with the original dataset is displayed. The black, navy and green green bars correspond to the strongest
feature reductions, with PCA transformation preserving 60%, 70% and 80% of the original variance respectively. The lighter
colored bars ­ in brown, pink and mint ­ display the performance of algorithms trained with datasets after a PCA transformation
with 90%, 95% and 99% of variance explained
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3.4.2. Maximum search window
Figure 3.8a (p.19) depicts the recall scores for the
algorithm with a Window format. The recall scores
of the LR and K­NN algorithms varied around 0.16.
Both algorithms showed competitive scores with
the NSE and RMSE benchmark (0.15), but were
not able to outperform the KGE (0.19) and CC
(0.48) benchmarks.

Figure 3.8b (p.19) displays the recall scores for
the algorithms with a Single Cell format. The RF
algorithm (0.24) was able to outperform the KGE
(0.19), NSE (0.15) and RMSE (0.15) benchmarks.

3.5. F1­score
To optimize the the balance between precision and
recall, the F1­score (Equation 2.3, p.12) can be
used since this is an expression based on both
scores. Figures 3.9 and 3.10 (p.21) display the
F1 scores for all test setups within a 3 by 3 and a
9 by 9 search grid.

At the left side of the figures, the F1 scores of the
benchmarks are displayed. To the right, the F1
scores of the algorithms in different test setups can
be compared.

3.5.1. Minimum search window
Figure 3.9a (p.21) displays the F1 scores of the al­
gorithms with a Window formatting. It can be ob­
served that both the LR (0.16) and K­NN (0.12)
algorithms showed competitive results when com­
pared with the KGE (0.12), the NSE (0.10) and the
RMSE (0.10) benchmarks. The CC benchmark
obtained the highest F1 score (0.24).

Figure 3.9b (p.21) shows the F1 scores of the al­
gorithms with a Single Cell format. With a F1 score
of 0.23, the RF algorithm showed competitive re­
sults compared with CC benchmark (0.24). The
RF algorithm, trained with the original dataset, out­
performed the KGE (0.12), NSE (0.10) and RMSE
(0.10) benchmarks. The SVM (0.17) and K­NN al­
gorithm (0.15) were able to outperform the KGE,
NSE and RMSE benchmarks as well.

3.5.2. Maximum search window
Figure 3.10a (p.21) depicts the F1 scores of the
algorithm setup with a Window format. None of
the algorithms competed with the CC benchmark
(0.24). The highest F1 scores among the algo­
rithm setups could be observed for the LR algo­
rithm (0.11) and K­NN algorithm (0.09). Both algo­
rithms competed with the KGE (0.09), NSE (0.07)
and RMSE (0.09) benchmarks. The F1 scores that

were obtained with the RF algorithm were the low­
est observed scores, varying around 0.01.
Figure 3.10b (p.21) displays the F1 scores of the
algorithm setup with a Single Cell format. The
RF showed the highest F1 scores of all algorithms
(0.12). This was not enough to outperform the CC
benchmark (0.24). This algorithm setup was the
only one able to outperform the KGE (0.09), NSE
(0.07) and RMSE (0.07) benchmarks.

3.6. Recall & precision trade­off
Besides finding a trade­off between precision and
recall with help of the F1 score, an optimum can
be found with a Pareto­dominance inspired anal­
ysis as displayed in Figure 3.11 and Figure 3.12
(p.22). In these figures, the precision scores of all
algorithms are plotted on the X­axis, with the recall
score plotted on the Y­axis.

Figure 3.11a (p.22) displays the trade­off between
precision and recall for all algorithm setups in a 3
by 3 (left) and 9 by 9 (right) search window with a
Window format respectively.
In the minimum search window, the the CC bench­
mark showed a combination of the highest perfor­
mance and recall. In terms of recall, this bench­
mark dominated all other test setups. A higher
precision score could be observed for the LR al­
gorithm, at the cost of a lower recall score.
Moving to a larger search window on the right side,
the KGE, RMSE and NSE benchmarks scored
lower recall and precision scores. The LR has
lost precision, but the recall score remained nearly
equal. The CC benchmark remained in place. The
SVM showed an increase in both precision and re­
call.

Figure 3.12 (p.23) depicts the trade­off between
precision and recall for all algorithm setups in a
3 by 3 (left) and a 9 by 9 (right) search window
with a Single Cell format. In both setups, the pre­
cision and recall scores had a linear relation. The
CC benchmark dominated in precision and recall,
closely followed by the RF and SVM algorithms.
In case of the smallest search window, the K­
NN algorithm was competitive with the SVM algo­
rithm. The difference between a smaller and larger
search window resulted in a decrease of both pre­
cision and recall scores for all algorithms. The CC
benchmark remained in place. The KGE, NSE and
RMSE performance reduced in both precision and
recall when applied in the maximum search win­
dow.
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(a) F1 scores of algorithm setups with Window format in a 3 by 3 search window

(b) F1 scores of algorithm setups with Single Cell format in a 3 by 3 search window

Figure 3.9: F1 scores with a 3 x 3 search window ­ On the left, the benchmark F1 scores are displayed in light gray. In dark
gray, the performance with the original dataset is displayed. The black, navy and green green bars correspond to the strongest
feature reductions, with PCA transformation preserving 60%, 70% and 80% of the original variance respectively. The lighter
colored bars ­ in brown, pink and mint ­ display the performance of algorithms trained with datasets after a PCA transformation
with 90%, 95% and 99% of variance explained.

(a) F1 scores of algorithm setups with Window format in a 9 by 9 search window

(b) F1 scores of algorithm setups with Single Cell format in a 9 by 9 search window

Figure 3.10: F1 scores with a 9 x 9 search window ­ On the left, the benchmark F1 scores are displayed in light gray. In dark
gray, the performance with the original dataset is displayed. The black, navy and green green bars correspond to the strongest
feature reductions, with PCA transformation preserving 60%, 70% and 80% of the original variance respectively. The lighter
colored bars ­ in brown, pink and mint ­ display the performance of algorithms trained with datasets after a PCA transformation
with 90%, 95% and 99% of variance explained.
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Figure 3.11: The illustration displays Pareto dominance inspired analysis for the relation between precision ­ displayed in the
X­axis ­ and recall ­ displayed on the Y­axis. On the left, the algorithm scores with Window format in the 3 by 3 search window
are displayed. On the right, the scores for the 9 by 9 search window are shown. The scores of each algorithm type is depicted
in a different colour. Different Principal Component Analysis (PCA) applications are indicated with different marker shapes.
The performance of the Logistic Regression (LR) and Support Vector Machine (SVM) algorithms are depicted in clusters. The
Random Forest (RF) and K­Nearest Neighbours (K­NN) performances are spread over the X­axis.

3.7. Evaluation
The results presented prior in this chapter are
based on the average performance of a ten times
repeated K­fold Cross Validation with the training
and validation set, where the formatting, search
window size and feature reduction were varied.
Here, the training and validation performances are
evaluated to find the most adequate algorithm se­
tups to match streamflow observations with simu­
lations. The performances are evaluated based on
the defined evaluation criteria: the primary evalu­
ation criterion being precision, and the secondary
objective being recall, or the best trade­off be­
tween precision and recall.

Observation of the trade­off between precision and
recall in Figure 3.12 (p.23) leads to the conclusion
that the LR algorithm is the least suited matching
algorithm with Single Cell formatting of the algo­
rithms considered in this study.
The SVM algorithm with Window formatting
showed high precision scores in the maximum
search window (Figure 3.6a, p.17), but also large

differences between the minimum and maximum
scores. In combination with low recall scores (Fig­
ures 3.7a & 3.6a, p.19), it can be concluded that
the SVM algorithm makes predictions that are ei­
ther correct, so that the precision is equal to 1, or
incorrect, with precision is 0, and that the predic­
tions have a low rate of True Positives. This leads
to the conclusion that the SVM algorithm with Win­
dow format returns unstable results and is there­
fore unable to meet the research objectives in this
study.

Generally, the performance of algorithms is high­
est in the 3 by 3 search window. Only the per­
formance of the CC benchmark is not impacted
with varying window sizes. The algorithm always
classifies the cell based on the coordinates of the
gauging station. This initial location is the center
of the search window and is therefore not affected
with varying search window sizes.
The average performance of the SVM algorithm
also increases with respect to the minimum and
maximum search window. This could be explained
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Figure 3.12: The illustration displays Pareto dominance inspired analysis for the relation between precision ­ displayed in the
X­axis ­ and recall ­ displayed on the Y­axis. On the left, the algorithm scores with Single Cell format in the 3 by 3 search window
are displayed. On the right, the scores for the 9 by 9 search window are shown. The scores of each algorithm type is depicted
in a different colour. Different Principal Component Analysis (PCA) applications are indicated with different marker shapes. A
linear relation between precision and recall is observed.

by the fact that the algorithm will either score very
high or very low in terms of precision and that this
has averaged to precision scores around 0.3.

Besides the size of the search window, the format­
ting of the dataset impacts the algorithm perfor­
mance as well. In the 3 by 3 search window, the
performance of the LR algorithm in Window format
is competitive with the performance of the RF al­
gorithm. However, when the search window was
increased to 9 by 9, the performance of the Single
Cell formatted algorithms showed a larger decline
than the Window formatted algorithms.

From all algorithms with Window formatting, the
LR algorithm is the most adequate. The perfor­
mance of the algorithm is stable for various lev­
els of feature reductions and search window sizes.
The best performance is observed when the algo­
rithm is trained with a dataset that has been trans­
formed with a PCA preserving 60% of the variance
of the original dataset. After the PCA transforma­
tion, the dataset is reduced to 3 PCs. This corre­
sponds to the level of cumulative variance in Fig­

ure 3.4 (p.16) for 3 PCs.
In the Single Cell format, the RF algorithm trained
with the original dataset shows the highest overall
performance. Neither algorithms are able to out­
perform the all benchmarks in terms of both pre­
cision and recall. The RF algorithm in the 3 by
3 search window is the only algorithm that comes
close to compete with the CC benchmark, as dis­
played in Figure 3.12 (p.23).

3.8. Test results
Based on the previous performance evaluation,
two algorithm setups were selected to be applied
on the test set: (1) the Logistic Regression algo­
rithm with Window format and a PCA transforma­
tion preserving 60% variance and (2) the RF al­
gorithm with Single Cell format and the original
dataset. Predictions with these algorithm setups
have been made with an ensemble of trained al­
gorithms with after a single cycle in a 3 by 3 and
a 9 by 9 search window.

The performance of all algorithm setups is dis­
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played in Table 3.1 (p.24). The test set consisted
of 92 observations. According to n in the table, in
a 3 by 3 search window 82 of the 92 observations
were located in the search window. In the 9 by 9
search window, 88 observations could be linked to
a grid cell.

The highest performing benchmark was the CC
model: nearly 47% of the matching simulations in
the test set were located in the initial location. In
both search windows, the second­best and iden­
tical performing benchmarks were the NSE and
RMSE algorithms, followed by the KGE bench­
mark.

In the 3 by 3 search window, the precision of the
RF algorithm was slightly higher than the precision
score obtained by the LR algorithm. The RF al­
gorithm was able to find a higher number of True
Positives (39 vs. 37) and identified less False Pos­
itives (43 vs. 55) and False Negatives (43 vs. 45).
In terms of precision, both algorithms were com­
petitive with the KGE score (0.4 and 0.42 vs. 0.4),
but were outperformed by the NSE (0.47), RMSE
(0.47) and CC (0.47) benchmarks.
In terms of recall, the RF (0.48) and LR (0.45) algo­
rithms outperformed the KGE (0.17), NSE (0.21)
and RMSE (0.21) benchmark, but not the CC
benchmark (0.52).
The precision and recall scores were balanced
with the F1 score. Based on this score, the algo­
rithms (RF: 0.22, LR: 0.21) were competitive with
the CC benchmark (0.25).

In the 9 by 9 search window, the Window format­
ted LR proved to be more robust for varying win­
dow sizes: the LR algorithm outperformed the RF
algorithm in terms of precision (0.38 vs. 0.24), re­
call (0.40 vs. 0.25) and F1 (0.19 vs 0.12) scores.

Both algorithms could outperform the KGE, NSE
and RMSE benchmarks. The LR algorithm is clos­
est to competing with the CC benchmark. By in­
creasing the size of the search window, the CC
benchmark performance is affected in terms of re­
call (0.52 vs 0.49) and F1 (0.25 vs 0.24) scores.

The precision scores of all algorithms and bench­
marks were below 0.5. Looking at Equation 2.1
(p.12), this implies that of the predicted matches,
less than half of the matches was correct. This
means that little confidence can be attributed to
the predicted matches of all algorithms and bench­
marks.
In terms of recall, it can be concluded that the CC
benchmark, with recall scores of 0.52 and 0.49 for
the 3 by 3 and 9 by 9 search windows, was able to
identify the highest number of True Positives (see
Equation 2.2, p.12). Neither the RF and LR could
compete with the CC benchmark in terms of recall,
though these algorithms were able to outperform
the KGE, NSE and RMSE benchmarks.

The classification results can be found in Appendix
D (p.52). Figure 3.13 (p.26) displays an overview
of classification results of the LR algorithm with
Window format. The top row of the image displays
the classification result indicated with an orange X.
The true location is indicated with a red dot. The
shade of blue in the background corresponds to
the level of average simulated streamflow in each
grid cell. On the second row, the shade of blue
corresponds to the probability of each grid cell to
matching with the observation.
From Figures D.3 and D.4 it can be concluded that
the LR algorithm had a tendency to predict the cen­
ter cell as matching cell. The probability distribu­
tions observed in the grid resemble the distribution

Table 3.1: Results test set with 3 by 3 and 9 by 9 search window

Search
Window Model Precision Recall F1 Balanced

Accuracy n TP TN FP FN

3 CC 0.467 0.524 0.247 0.729 82 43 697 49 39
KGE 0.400 0.171 0.120 0.571 82 14 725 21 68
NSE 0.472 0.207 0.144 0.591 82 17 727 19 65
RMSE 0.472 0.207 0.144 0.591 82 17 727 19 65
LR ­ Window 0.402 0.451 0.213 0.689 82 37 691 55 45
RF ­ Single cell 0.424 0.476 0.224 0.702 82 39 693 43 43

9 CC 0.467 0.489 0.239 0.741 88 43 7197 49 45
KGE 0.174 0.182 0.089 0.586 88 16 7170 76 72
NSE 0.196 0.205 0.1 0.597 88 18 7172 74 70
RMSE 0.196 0.205 0.1 0.597 88 18 7172 74 70
LR ­ Window 0.380 0.398 0.194 0.695 88 35 7307 57 53
RF ­ Single cell 0.239 0.250 0.122 0.620 88 22 7176 70 66
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displayed in Figure 3.1 (p.14).
The false classification results were assigned to
two classes: incorrect (Figure 3.13a) and close
(Figure 3.13c) classifications. Around 50% of the
incorrect classification could be assigned to the
close class, where the algorithm was able identify
the correct streamflow segment, but predicted the
matching grid cell to be too far upstream or down­
stream.
Figure 3.14 (p.26) displays a similar overview
of the classification results of the RF algorithm.
Again, correct, incorrect and close classes were
identified. Here it can be observed that for the cor­
rect and close classifications, the probability pat­
terns followed the average discharge patterns.

It can be concluded that the LR and RF algorithms
are currently the most adequate algorithm setups
that have been applied to the test set. Based on
the performances described in Table 3.1 (p.24),
and Figures 3.13 and 3.14 (p.26), the following
can be concluded: the most adequate algorithm
setups in this study (1) are not able to outperform
the CC benchmark in terms of precision and recall;
nor (2) meet the research objectives of predicting
matches with high confidence. However, the high
percentage of incorrect predictions that are close
to the target cells shows potential for the method
designed in this study.
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Figure 3.13: Summary of classification results of the LR classifier in Window format. The shade of blue in the plots corresponds
to the level of average discharge in each grid cell on the top row and the probability of matching with an observation on the
bottom row. The orange X indicates a cell marked as matching streamflow simulation for a set of streamflow observations. The
red circle indicates the streamflow simulation marked as match by the algorithm.

Figure 3.14: Summary of classification results of the RF classifier in Single Cell format. The shade of blue in the plots corre­
sponds to the level of average discharge in each grid cell on the top row. In the bottom row the probability of matching with an
observation on the bottom row. The orange X indicates a cell marked as matching streamflow simulation for a set of streamflow
observations. The red circle indicates the streamflow simulation marked as match by the algorithm.
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Discussion

The objective of this study was to improve the
matching between hydrological model output and
streamflow observations. To meet this objective,
we explored the following: (1) four different types
of Machine learning (ML) algorithms ­ Logistic Re­
gression (LR), Random Forest (RF), Support Vec­
tor Machine (SVM) and K­Nearest Neighbours (K­
NN) (see section 2.3, p.9) ­ have been fitted on
a dataset which varied in (2) two formatting types
(Single Cell or Window), (3) two search window
sizes (3 by 3 and 9 by 9) and (4) seven feature re­
duction approaches using a Principal Component
Analysis (PCA) (see section 2.4, p.10).

The dataset created in this study was composed of
streamflow observations, streamflow simulations
and matches between observations and represen­
tative simulations (see section 2.1, p.5). The algo­
rithm developed in this study was trained with this
dataset to match observations with simulations.
A dataset influences the performance of a ML al­
gorithm with both the quality of features in the
dataset and the size of the dataset (Banko and
Brill, 2001). Due to the relatively small number of
matching samples (n=595) (Ajiboye et al., 2015,
Prusa et al., 2015), the algorithm may have had
too limited opportunities to generalize how charac­
teristic similarities between observations and sim­
ulations determine whether a simulation is repre­
sentative for an observation. It is believed that this
limits the algorithm performance.
Just over half of the incorrect predictions made
by the RF and LR algorithm are considered to be
close errors (Figures 3.13 & 3.14, p.26). Here the
algorithm is able to identify the correct section of
the streamflow network, but makes a prediction
too far upstream or downstream to be accepted
as correct. This indicates that relations can be
generalized from the dataset, but they may be too

complicated for the algorithms that have been de­
ployed in this study.

The search window size determines the number
of non­matching samples and the degree of im­
balance in the dataset. In the Single Cell format,
the imbalance was mitigated by sub­sampling the
training dataset: a single non­matching sample is
randomly selected in every search window. Re­
gardless of search window size, a new dataset
is created where the number of non­matching
samples equals the number of matching samples
(n=595). This means that the size of the dataset
is reduced and that non­matching samples are dis­
carded, altering their representation in the result­
ing dataset.
An alternative approach could be to up­sample
the dataset by duplicating the number of positive
samples until a balanced dataset is created. In
case of a 3 by 3 search window, a single match­
ing sample is found in the search window together
with eight non­matching samples. To create a
balanced dataset, the number of positive sam­
ples should be multiplied by eight. With a 5 by
5 search window, a multiplication factor of twenty­
four is needed for a balanced dataset. So, with
up­sampling, all non­matching samples could be
preserved in the training dataset. Additionally, the
size of the dataset is at least increased by a factor
eight (minimum search window size is 3 by 3) by
duplicating matching samples.

Another option to make the Single Cell format­
ted algorithms more robust, could be by filtering
streamflow simulations in the search window. By
applying a filter, for example a threshold value
for the average streamflow based on the observa­
tions, the number of potential matches is reduced.
This could remove some of the noise in the set of
potential matching simulations and therefore ben­
efit the algorithm performance.
To prevent the Window formatted algorithms to
predict center cells only (Figure D.3, p.55 and Fig­
ure D.4, p.56), the dataset could be altered: by
removing the samples where the initial location of
the streamflow observations is the representative
simulation from the training dataset, the training is
forced towards the samples where adjustments in
location are necessary. This would also reduce
the size of the dataset by 40 % which could further
limit training opportunities for the algorithm.

Besides dataset size, the other factor influenc­
ing algorithm performance are the features. In
this study, the features are based on stream­
flow data and metadata from streamflow observa­
tions and streamflow simulations only, consisting
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of streamflow timeseries, elevation and upstream
area. From the streamflow timeseries, streamflow
signatures have been calculated (see Table 2.1,
p.8).
Uncertainties in the observations and metadata
of observations stations exist (Döll and Lehner,
2002, Vörösmarty et al., 2000). These uncertain­
ties have been transferred to the dataset, which
may limited the algorithm performance.
The algorithm’s dependency on the availability of
streamflow signatures limits the application of the
algorithm in situations where no simulations are
available. For example: prior to model calibra­
tion, no streamflow simulations have been gener­
ated. Therefore, mapping of observations used for
calibration lies beyond the algorithm’s capabilities.
Potentially, the observations could be mapped in
the model using the output from an initial pre­
calibration model run. However, in this study,
the performance of the algorithm is only evaluated
based on the output of a calibrated hydrological
model.
Another option to broaden the application of the
algorithm could be achieved by including features
derived from additional layers unrelated to stream­
flow timeseries. For example, information re­
trieved from the model’s streamflow network could
add valuable information to the dataset. As the
EFAS streamflow network was not publicly avail­
able at a spatial resolution matching the EFAS
model and constructing the streamflow network
from the upstream area map was beyond the
scope of this study, retrieving information from the
streamflow network was omitted from this study.

Feature reduction was implemented as result of
a PCA transformation. After PCA transformation,
feature values have been transformed onto new
axes and have lost physical meaning. Therefore,
relating the PCs and original streamflow signature
values is inconvenient.
An alternative method for feature reduction could
be Random Forest Feature Importance. Based on
the importance of features, the features with least
importance could be removed from the set of fea­
tures. As the feature values are not transformed,
the preserved features could more easily be inter­
preted from a hydrological point of view.

The performance of the algorithms have been
evaluated with data from a single hydrological
model. However, finding a widely applicable so­
lution for the matching problem could be further
complicated by varying resolutions of hydrological
models and streamflow networks. Contributing to
this issue is that with the development of high res­
olution models (grid size < 1 km), a larger range

of streamflow orders can be simulated, increasing
the number of stream sections that can match with
a single river station. Applying the algorithms on
streamflow simulations with varying spatial reso­
lutions remained outside the scope of this study.

Additionally, the algorithms in this study have been
trained make a match between streamflow obser­
vations and a set of streamflow simulations.
In the Single Cell format, the match between a
streamflow simulation and streamflow observa­
tions is evaluated for all individual streamflow sim­
ulations in a search window. With the indepen­
dent evaluation, spatial relations in the search win­
dow are discarded: the match is evaluated based
on features only. To preserve spatial cohesion,
Single Cell predictions could be transformed to a
Softmax classification, where the probabilities of
all predictions sum to one.
Predictions made with a Window formatted algo­
rithm could become more robust with a Softmax
classification approach as well.

It should also be noted that predictions made by
the algorithms during training and validation were
subject to a threshold. Only matches predicted
with a probability exceeding a threshold of 𝑝 ≥ 0.5
were accepted.
However, no threshold was enforced for the pre­
dictions made by the ensemble on the test set. By
establishing a confidence level for ensemble pre­
dictions, the ensemble performance could become
more robust.

Finally, in this study an algorithm was developed
to match streamflow observations with streamflow
simulations. An alternative approach to thematch­
ing problem could be to train models to predict
whether or not the initial location of the observa­
tion is representative for the model, or whether the
representative location for the observation is lo­
cated within a search window or not. Based on
algorithm predictions, part of the matching could
be automated and efforts could be focused on dif­
ficult to locate matches.



5
Conclusions

We trained and applied four different ML al­
gorithms to match streamflow observations with
streamflow simulations: the Logistic Regression
(LR), Random Forest (RF), Support Vector Ma­
chine (SVM) and K­Nearest Neighbours (K­NN)
algorithms. The algorithm performances were af­
fected by the dataset formatting, where three pa­
rameters were varied: (1) a Single Cell versus
Window formatting, (2) the size of the search win­
dow and (3) the application of a feature reduction
with a Principal Component Analysis (PCA) trans­
formation.
The performance of the algorithms have been
compared with the benchmark performance of ex­
isting matching approaches. These approaches
include matching based on geolocation and
on comparison of streamflow observations and
streamflow simulations.

In both the Window and Single Cell format, the
overall highest performance was attributed to the
SVM algorithm. In the Window format, the LR al­
gorithm had a similar performance to the SVM al­
gorithm. The RF algorithm scored the highest per­
formance in the Single Cell format.

However, in the Window format, the algorithm al­
ways marked the initial location of an observation
as matching simulation. An alternative applica­
tion of an algorithm in Window formatting could be
accomplished by establishing a probability thresh­
old. This could help indicate whether the match at
the initial location in the model should be rejected
or accepted. By being able to automatically ac­
cept the streamflow simulation at the initial loca­
tion in the model as a representative for a stream­
flow observation, the procedure to match obser­
vations with model output could become more ef­
ficient. This way, efforts can be focused to find the

matching location of the observations whose initial
location was rejected.

The performance of the Single Cell formatted al­
gorithms was lower than the Window formatted
algorithms. However, the matches predicted by
the Single Cell formatted SVM and RF algorithm
displayed a spatial variation where the Window
formatted algorithms did not. About 25% of the
matches predicted by the algorithms were correct.
Additionally, around 50% of the incorrect predic­
tions were located along the correct branch in the
streamflow network, indicating that the algorithms
have the potential to distinguish streamflow char­
acteristics based on streamflow signatures.

Most streamflow observations were matched with
streamflow simulations within a 3 by 3 search win­
dow around the initial location of the observations
in the model. This was also the size of the search
window that resulted in the highest performance
for algorithms withWindow and Single Cell format­
ting.

Based on the results of this study, we recommend
the SVM and RF algorithms in Single Cell format
as the most adequate algorithm setups to match
streamflow observations with streamflow simula­
tions. However, neither of these approaches was
able to outperform the benchmarks in terms of re­
call and precision. Nevertheless, due to the the
large number of near misses, it is believed that the
method developed in this study does have poten­
tial to serve as a first pass in matching streamflow
observations to ECMWF streamflow simulations,
ultimately, lessening the burden of this time con­
suming task on ECMWF staff working on press­
ing hydrologic applications. Recommendations for
further research are presented in the next section.
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6
Recommendations

The research objective in this study was to im­
prove matching between model output and obser­
vations. An algorithm has been developed, with
the objective to predict matches with high confi­
dence. The Logistic Regression (LR) and Random
Forest (RF) algorithms have displayed potential
to match streamflow observations with streamflow
simulations. However, the current performance
does not outperform benchmark performances.

It is believed that the performance of the al­
gorithms could be increased by an increase in
dataset size, the addition of features to the dataset
and application of more advanced algorithms.

The Machine learning (ML) algorithms deployed in
this study generalize relations from a dataset to
produce predictions on new data. The dataset in
this study consists of 595 matching samples. If
the dataset size could be increased by collecting
more matching samples, the algorithm would have
more opportunity to generalize how characteris­
tic similarities between streamflow simulations and
streamflow observations determine when a simu­
lations can be representative for an observation.
Also, the predictions of the algorithm are the inter­
pretation of ensemble predictions. For this predic­
tion, no confidence level is yet established. It is
believed that finding an optimum confidence level
could improve the robustness of the predictions.

The features in the dataset are based on stream­
flow timeseries. Streamflow signatures were cal­
culated from streamflow observations and stream­
flow simulations. The upstream area and eleva­
tion, extracted from the simulation and observation
metadata, were included as features as well.
Since the features mainly consist of streamflow
signatures, the application of the algorithm is lim­
ited to scenarios where streamflow simulations are

available. For example, in a situation before a
model has been calibrated, no streamflow sim­
ulations are available. This prevents observa­
tions that are to be used during calibration to be
mapped with use of the algorithm. It is there­
fore recommended to evaluate the performance of
the algorithm while deriving streamflow signatures
from streamflow simulations generated with an un­
calibrated model.
The dependency on the availability of streamflow
signatures could also be reduced by including fea­
tures from other data sources such as the model’s
streamflow network.

It is also recommended to evaluate the perfor­
mance of other ML algorithms, such as Boosted
trees. The application of Deep learning could also
prove to be beneficial for the algorithm perfor­
mance, as Deep learning algorithms (e.g., neural
networks) are generally able to capture more com­
plex relations than ML algorithms.

The method in this study has been applied on a
single hydrological model. For future research,
it is recommended to research the limitations of
the developed approach in terms of minimum and
maximum spatial resolution by applying the algo­
rithm on distributed models with varying spatial
resolutions.

A final adaptation for developed algorithm could be
to adjust the algorithm’s application. In this study,
the algorithm has shown potential to select rep­
resentative streamflow simulations for streamflow
observations.
Alternative approaches to improve matching be­
tween streamflow simulations and streamflow ob­
servations could increase the practical applicabil­
ity of the algorithm. For example, the algorithm
could be deployed to accept or reject the initial
placement of an observation. Another option could
be to determine whether a representative simula­
tion is located within a search window to narrow
down the manual matching procedure.

In this study a first exploration has been conducted
for the applicability of streamflow signatures to
match streamflow observations with streamflow
simulations with a ML­based approach. Though
the algorithm performances in this study do not
meet the research objectives, the potential of this
approach has been demonstrated. It is believed
that the performance could be improved by adapt­
ing advanced ML or Deep learning algorithms, or
by adjusting the application objective.
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A
Theoretical Background: Hydrology

Since this study aims to combine the disciplines of hydrology andmachine learning, this chapter intends
to provide a theoretical background for hydrologic modelling.

A.1. Hydrologic Modelling
Hydrologic models are a simplification of real­life hydrologic systems that describe the movement and
distribution of water within a predefined system or area.

A hydrologic system is defined as an area where, through various states and fluxes, all incoming and
stored water will eventually flow through a point where it leaves the system, defined as the outlet point,
which is often located in a stream. Water can enter the system as precipitation. Dependent on where it
lands, the precipitated water can enter various states and fluxes, but will eventually all pass the same
outlet point. Dependent on topography, land cover, temperature, e.g., the precipitated water could, for
example, be intercepted and leave the system through evaporation, infiltrate the ground and enter the
groundwater storage, infiltrate the ground and be transpired through vegetation, freeze, or directed into
a stream as runoff, or a combination of all of the above. The path through different states and fluxes
determine the time it takes for precipitation to reach the outlet point. For example, runoff that reaches
streamflow quickly, will leave the system much faster than precipitation that is infiltrated and reaches a
stream through subsurface flow. The combination of states and fluxes determine the response behavior
of the system, which is characterized as changes in discharge level at the outlet point as reaction to
precipitation or lack of it.

The model can be built with a bottom­up or top­down approach (Hrachowitz and Clark, 2017).
The micro­scale bottom­up approach applies the hydrologic community’s physical understanding of
small scale processes. However, spatial heterogeneity makes it difficult to describe all processes at a
global scale (Beven, 1989, Hut et al., 2018).
The large­scale top­down approach results in a conceptual model, describing the system as a set
of states and fluxes. With increasing model components, model complexity increases as well: not
only more input data is required, the set of parameters also increases. This introduces the problem
of equifinality, where different parameter sets result in the same model output that are not physically
correct, causing prediction uncertainty (Hrachowitz et al., 2013).
Roughly three types of hydrological models can be defined (Figure A.1): (1) a lumped model describes
a hydrologic system in a conceptual manner, as a single box with in­ and outputs and model properties
(states and fluxes) that are representative of the entire system; (2) a distributed model divides the
hydrologic system in grid cells, where each cell can have different properties (states and fluxes) and
different in­ and outputs as well; (3) a semi­distributed model splits a hydrologic system in smaller
sub­systems with in­ and outputs and model properties that are representative of the sub­system.

Since the water cycle is a global system, the need for hydrological models that span the globe has orig­
inated. This has resulted in the development of a number of distributed Global Hydrological Models
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Figure A.1: Schematic overview of the three types of hydrologic models: (a) represents a lumped model that generalizes an
entire catchment as one heterogeneous system; (b) depicts a semi­distributed model where the catchment is sub­divided in
sub­systems where each sub­system is generalized and (c) displays a distributed model that represents the catchment in a grid,
where each grid cell is generalized and connected with upstream and downstream cells.

(GHMs) at spatial resolutions varying from 10 to 100 km, as well as the need to further increase spatial
resolutions up to ”hyper­resolution” scale over 1 km (Bierkens et al., 2015, Wood et al., 2011).
Recent advances in computational capabilities, data storage capacity and open availability of high­
resolution global datasets have brought the realization of ”hyper­resolution” models closer to reality.
Still, challenges remain: whenmoving to higher spatial resolutions, parameterized sub­scale processes
now need to be resolved, introducing additional calculations and extra parameters; the increasing avail­
ability of global datasets contain inaccuracies introducing uncertainties; with increasing spatial resolu­
tion, calculation and storage needs increase exponentially, so model structures should be adapted for
parallel calculations to fully take advantage of new computational capabilities (Bierkens et al., 2015,
de Vos et al., 2020, Fatichi et al., 2016).
As this study focuses on matching observations with distributed hydrologic model output, the following
sections will go further into the details of distributed hydrologic models.

A.2. Distributed hydrologic models
Distributed hydrologic models are grid­based data structures, and thus built upon multiple spatially
distributed data layers. These types of layers vary from gridded meteorological input data to gridded
layers describing surface and soil properties for each grid cell. A unique property of distributed models
is that all fluxes and states are calculated in every cell, instead of simulating discharge at in single outlet
point only.
The output of a distributed model is not only dependent on what happens in each cell, it is also deter­
mined by how fluxes are directed between cells. Besides meteorological input, a grid cell will receive
runoff or discharge from an upstream cell and direct it to a downstream cell. A common method to
determine the direction of flow between cells is to derive a local drainage direction map from a DEM:
for each cell in the model the direction of flow is determined by finding the surrounding cell with the
lowest elevation.
After derivation of a drainage direction map, the number of upstream cells can be determined for each
cell, the flow accumulation. This is a measure of magnitude of flow in the cell and can be used for
derivation of a streamflow or river network. For the derivation of a river network, a threshold value of
flow accumulation determines which grid cells are part of the network.
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With this streamflow network, fluxes between cells can be divided into two phases of flow: (i) the sur­
face flow phase, where the grid cell is not part of the streamflow network; fluxes can consist of surface
runoff and subsurface flow, for example, and follow the drainage direction map with low flow velocities
compared to when flow has entered the (ii) streamflow phase, where the flow has reached the stream­
flow network and flow velocities have increased.
Since many distributed hydrologic models work with a spatial resolution varying from 1 to 100 km
(Bierkens et al., 2015, Wood et al., 2011), deriving streamflow networks with DEMs at those reso­
lutions result in coarse streamflow networks that may not match with the real world (Graham et al.,
1999). To improve the quality of the derived networks and the model’s spatial resolution, a pre­existing
streamflow network can be burned into the DEM before the drainage direction and streamflow network
derivation (Graham et al., 1999, Lehner et al., 2006, 2008, Renssen and Knoop, 2000).
Similarly, a pre­existing streamflow network can be combined with the drainage direction map two sim­
ulate fluxes between cells in the two phases mentioned above, as two separate elements: surface flow
is directed with the drainage direction map until it reaches the streamflow network, which is then used
to determine the direction of streamflow.

A.3. Performance evaluation
To evaluate the model performance, simulations are compared with observations. Hydrographs can
visually be compared, or, (preferably a set of) objective functions can be used to express the model
performance. Differences between simulations and observations are bound to occur in hydrologic mod­
elling as a result of uncertainties in input and calibration data, model parameters and imperfect model
structure that propagate into model output. Therefore, investigation in the source of errors between
observations and simulations can lead to improvement of the model and assessing the reliability of the
model. Commonly used objective functions are the Nash­Sutcliffe Efficiency (NSE) (Eq. A.1), Kling­
Gupta Efficiency (KGE) (Eq. A.2) and Root Mean Squared Error (RMSE) (Eq. A.3) (Gupta et al., 2009,
Nash and Sutcliffe, 1970)

𝑁𝑆𝐸 = 1 −
∑𝑇𝑡=0 (𝑄𝑡𝑠𝑖𝑚 − 𝑄𝑡𝑜𝑏𝑠)
∑𝑇𝑡=0 (𝑄𝑡𝑜𝑏𝑠 − 𝑄𝑜𝑏𝑠)

(A.1)

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (𝜎𝑠𝑖𝑚𝜎𝑜𝑏𝑠
− 1)

2
+ (𝜇𝑠𝑖𝑚𝜇𝑜𝑏𝑠

− 1)
2

(A.2)

with 𝑟 the correlation between observation and simulation, 𝜎 the standard deviation and 𝜇 the mean of
the streamflow timeseries.

𝑅𝑀𝑆𝐸 = √
𝑇

∑
𝑡=1

(𝑄𝑡𝑠𝑖𝑚 − 𝑄𝑡𝑜𝑏𝑠)
2

𝑇 (A.3)

Another calibration and evaluation approach is based on similarity of streamflow characteristics, or
streamflow signatures. Streamflow signatures are characteristics derived from streamflow time­series.
They quantify streamflow properties and can be linked to physical catchment functioning (Sawicz et al.,
2011). A reason to consider including streamflow signatures in the calibration and/or evaluation pro­
cedure, is that they offer another view to how well simulations approximate observations. They char­
acterize streamflow processes and responses by only looking at specific parts of the hydrograph of
time­series. They can tell how well simulations can imitate the observed streamflow behavior in high
and low flow regimes, in terms of response to high intensity precipitation events or baseflow contribu­
tion to the total streamflow. This also helps in identifying necessary elements in the model structure.
In Appendix Appendix C a description of various streamflow signatures can be found.

While comparing simulations and observations, one of the unique properties of the distributed hydro­
logic model can introduce another source of uncertainty: due to the spatially distributed information
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in the model, it is essential that observations are compared with simulations representative of the ob­
servation location in the model. Otherwise, another structural source of uncertainty is introduced, that
cannot be solved by improvement of the input or calibration data, or adaptation of the model structure.



B
Theoretical Background: Machine

Learning
Since this study aims to combine the disciplines of hydrology and machine learning, this chapter in­
tends to provide a theoretical background for Machine learning.
”Machine learning” (ML) is a term used to describe a range of algorithms that have the ability to learn
from experience and do not need to be explicitly programmed beforehand (Mitchell, 1997, Samuel,
1959). In the field of hydrology, ML applications have not only been used as predictors of model out­
puts ­ for example of flood forecasts (Dawson and Wilby, 1998), reference evaporation prediction (Shiri
et al., 2013), annual runoff forecasting (Wang et al., 2015) and rainfall­runoff forecasting (Kratzert et al.,
2018) ­ but also to estimate model uncertainty (Solomatine and Shrestha, 2009), to classify hystere­
ses (Hamshaw et al., 2018) and to predict runoff signatures (Zhang et al., 2018) among others. In
these studies, amongst many more, ML has proven to have the potential to extract patterns from large
datasets and predict the response of complex and non­linear processes as occur in the field of hydrol­
ogy (Shen, 2018).
The following sections give an overview about the types of algorithms and applications, data require­
ments, training algorithms, performance evaluation and common pitfalls that are often encountered
while working in the field of machine learning. Then, a link is made to the field of hydrology.

B.1. Setup
Two types of ML problems exist: (1) supervised learning problems and (2) unsupervised learning prob­
lems. ML algorithms learn with a dataset existing of samples and features. Each row consists of a
single sample, whose explanatory features (properties, descriptors or attribute) can be found in the
columns of the dataset. This table is referenced as X.
When solving a supervised learning problem, this dataset also contains labels or values belonging to
each sample, indicated with y. By training the algorithm, it generalizes the relations between X and y.
After training, the algorithm should be able to predict 𝑦̂ when given a new set of samples X.
Unsupervised learning problems work with an unlabelled dataset, only containing features X. Unsuper­
vised algorithms are trained to find structures in X.

B.2. Supervised learning
Supervised learning problems can be split up into classification and regression problems, where a
discrete label or continuous value is to be predicted.
To solve a supervised learning problem, a dataset is split into a set of features X and corresponding
target values y. A supervised learning algorithm is trained to find relations between X and y, so that
when it is given new values of X, it can predict the corresponding values of y, called 𝑦̂.

40



B.2. Supervised learning 41

Figure B.1: Example of sigmoid function being bound on the Y­axis between 0 and 1 and having a value of 0.5 at X = 0.

B.2.1. Classification
A classification problem sorts data into predefined classes. The simplest classification problem is a
binary classification, that distinguishes between two classes, 0 and 1. Examples of binary classification
are the prediction of an event occurrence, or whether a tumor is malign or benign.
For multiple classes, multiple binary classifiers can be combined with a one­versus­all approach. In
case of three classes (1,2,3), three algorithms are trained. Algorithm 1 calculates the probabilities of
samples belonging to either class 1, or class 2 & 3. Algorithm 2 calculates the probability of a sample
belonging to class 2, or class 1 & 3, and so on. A sample will eventually be assigned to the class with
the highest probability.
Below, a short overview of common classifiers is discussed:

• Logistic Regression
Logistic regression is a binary classifier that deploys a sigmoid function for predictions. A sigmoid
functions is an ’S’ shaped function bound on the y­axis between 0 and 1 (Figure B.5):

ℎ(𝑥) = 1
1 + 𝑒−𝑧 (B.1)

with 𝑧 being an activation function in the shape of 𝛽0 + 𝛽1𝑥 + .. + 𝛽𝑛𝑥. The output of ℎ(𝑥) can
be interpreted as sample having a probability of being 1 or 0, whether ℎ(𝑥) is above or below a
certain threshold. This determines the value of predicted label 𝑦̂:

𝑦̂ = {1, if ℎ(𝑥) ≥ 0.5
0, otherwise

(B.2)

with a threshold equal to 0.5. The weights of coefficients 𝛽0..𝛽𝑛 are estimated by looking for a best
fit between 𝑦 and 𝑦̂, usually with the help of maximum likelihood or a cost function. Parameter
fitting is discussed in Section B.5;

• K­Nearest Neighbours
The K­Nearest Neighbours (K­NN) algorithm classifies a sample based on distances to and label
values of their k nearest neighbouring samples. The class of each sample is determined by a
major vote of k nearest neighbours; the influence of each vote can be adjusted by weighing the
distance between sample and neighbour.

• Decision Trees
A decision tree is a flowchart­like structure consisting of decision nodes and leaf nodes (see
Figure B.2). In each decision node, a partition of samples is made based on a feature value, until
a leaf node is reached, which represents a class or label. A decision tree is optimized by finding
the best data split in each decision node, based on maximum information gain or split purity. The
complexity of a decision tree is determined by the depth of the three, how many decision nodes
it contains and the number of features considered. DTs are easy to setup and interpret, but a
single tree is prone to overfitting, where its classifies well on the data it is trained upon, but less
well on new data. Overfitting is further discussed in section B.5.4.
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Figure B.2: Visualisations of a Decision Tree and Random Forest. On the left a single Decision Tree is displayed. On the right,
a forest of Decision Trees is depicted. The decision nodes are displayed in blue, the leaf nodes, representing the output classes
or predictions, are displayed in green. In Random Forests the votes of all the Decision Trees are assembled to produce a robust
prediction.

• Random Forests
Random Forests are an ensemble of Decision Trees, aimed to tackle the problem of overfitting.
Instead of following the predictions of a single Decision Tree, multiple trees (e.g. a forest) are
trained on the same dataset (see Figure B.2). For the training of each tree, a subset of samples is
taken form the dataset, that may include doubles. This is called bootstrapping. Then, a random
subset of features is selected to be used in the tree. The predictions of all trees are aggregated
to for the classification of the whole forest.
Due to bootstrapping, a portion of the dataset is not used for training: the ”out­of­bag” set (OOB).
This set of samples can be used to evaluate the classification performance of the forest (OOB
error). By varying the depth of trees and number of features included, a minimum value for the
OOB error can be found to maximize the RF performance.
Another attempt to improve Decision Trees are the Boosted Trees. Here, a series of Decision
Trees are trained and tweaked to improve the predictive abilities. After training a Decision Tree,
the correctly classified samples are left and a new Tree is trained using only the mis­classified
samples. This results a series of classifiers that are focused on harder to classify features;

Figure B.3: Visualisation example of a neural network consisting of three layers: an input layer with three neurons, a hidden layer
and an output layer with two neurons. The hidden layer can consist of 1 or more layers of neurons. All neurons are connected
with activation functions and individual weights

• Neural Network (NN)
Neural Networks (NN) are Deep learning algorithms that have been designed to imitate neurons
in the brain. A NN is built with three elements: an input layer consisting of n nodes corresponding
to n features in X ; a hidden layer, whose properties depend on the type of neural network; and
an output layer which consists of one or more output nodes, depending on the application and
number of output classes(see Figure B.3). For a binary classification, the output layer consists of
one node, which can have a value of 0 or 1.
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Nodes or neurons in the network are connected through simple relations called activation func­
tions. These functions take various forms to be able to capture linear and non­linear relations. By
adding more hidden layers, more complex relations can be approximated. With more advanced
training techniques developed in recent years, the performance of NNs has strongly increased,
nearing human­level performances in fields of natural language translation, image recognition
and game play for example.

• Support Vector Machine (SVM)
SVMs make predictions based on the Large Margin intuition resulting in robust classifications.
Similar to K­means, an SVM is able to classify samples into clusters. The algorithm aims to find
boundaries between classes with a maximum distance between samples of different classes (see
Figure B.4). This margin ensures that new samples will be classified with large confidence.

Figure B.4: Example of SVM decision boundary. The black and green line display two different decision boundaries between
the red and blue clusters. The green line represents the Large Margin decision boundary fitted by an SVM algorithm: the
perpendicular distance between the decision boundary and nearest sample of each cluster is maximized for robust classification.

B.2.2. Regression
A regression problem will try to predict a continuous value based on given features.

• Linear Regression
A simple example of regression, is linear regression. A linear relation between X and y exists,
which is captured by fitting a straight line:

ℎ(𝑥) = 𝛽0 + 𝛽1𝑥1 + ...𝛽𝑛𝑥𝑛 (B.3)

By adjusting the bias 𝛽0 and coefficients 𝛽1 .. 𝛽𝑛, the fit can be adjusted and improved;

• Polynomial Regression
A form of regression where the relation between X and y can be described with a polynomial
relation:

ℎ(𝑥) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥21 + ...𝛽𝑛𝑥𝑚𝑛 (B.4)

• Non­linear Regression
A variation of regression where the relation between X and y cannot be described by a linear
function. The relation can instead be described by exponential or logarithmic functions e.g.

B.3. Unsupervised learning
Unsupervised learning problems extract relationships between parameters in and unlabelled dataset
X, without predicting an output value y. Instead, unsupervised learning problems can be broken down
into clustering and dimensionality reduction problems: the first one tries to discover clusters in a given
dataset; the second one tries to reduce the number of features in a dataset while preserving the vari­
ance.

B.3.1. Clustering
Clustering algorithms look for coherent subsets or a cluster structure a given dataset. A widely used
algorithm is the K­means algorithm that searches for k clusters in the data. The number k can be



B.3. Unsupervised learning 44

predefined (depending on the purpose of the classification), determined by a visualisation of the data,
or estimated with an optimisation algorithm. The k clusters centers are found by minimizing the total
distance of all samples to their respective cluster centers:

𝐼 =
𝑛

∑
𝑖=0
min
𝜇𝑗∈𝐾

(|𝑥𝑖 − 𝜇𝑗|2) (B.5)

The simplest shape of cluster is circular, but more advanced clustering algorithms can also organize
non­circular clusters.

B.3.2. Dimensionality reduction
A dimensionality reduction algorithm decreases the size of the dataset while keeping the data structure
intact and preserving a percentage of the total variance. The Principal Component Analysis (PCA)
is a widely used algorithm to reduce the number of features or samples of a dataset using Singular
Value Decomposition. The algorithm can enhance relations between features, but as the values are
transformed onto new axes, any physical meaning of parameter values is lost after the transformation.
Dimensionality reduction can be used to save data storage, help visualize data and to speed up ma­
chine learning algorithm by reducing the number of features.
The transformation is best calculated based onto normalized and standardized data. By calculating a
covariance matrix of all features, strongly correlated features can be identified as sources of redundant
information. Then, the eigenvectors and ­values of the covariance matrix are calculated to identify
the Principal Components of the data. Principal Components are variables calculated based on linear
transformation of the original dataset, summarizing information from the dataset. From a number of n
features, a number of n Principal Components can be calculated, where most information, or explained
variance, is put in the first principal component, then the maximum amount of remaining information is
put in the second principal component, and so on. When plotting the percentage of variance explained
per principal component, it will exponentially decrease, so that the main contributors to the total ex­
plained variance can be assigned to the first number of principal components, containing the same
information with less features (see Figure B.5).

Figure B.5: This skree plot displays the results of an Principal Component Analysis (PCA) transformation. On the X­axis the
number of Principal Components (PCs) is displayed. The left Y­axis corresponds to the variance explained by each PC, displayed
by a blue bar. The right Y­axis corresponds to the cumulative percentage of variance explained. The first two PCs contribute to
over 50% of the variance explained of the original dataset.

Another option for feature reduction can be achieved with recursive feature elimination using Random
Forests. After training, weights are assigned to features. By eliminating the features with the smallest
weights, having the smallest impact on the prediction, the robustness of the algorithm can be preserved
while using a reduced number of features.
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B.4. Data pre­processing
While it is important that that an appropriate algorithm and parameters are selected, the quality and
amount of data has an equally or even bigger impact on ML algorithm performance (Banko and Brill,
2001). While collecting data and determining the type of features use, a number of things should be
kept in mind which will be discussed in this section.

B.4.1. Data exploration
One of the first recommended actions to do when starting to work with a new dataset is exploration:
open the file and see what is in there. How is the data formatted? Are there only numerical values in
the dataset, or also labelled values? How are missing values indicated? By plotting some features, a
feeling for the data distribution can be obtained, or any inconsistencies or outliers in the data can be
noticed. After this initial exploration, an approach can be formulated to solve issues that may exist in
the dataset.

B.4.2. Missing data
One if these issues may be the occurrence of missing data. A quick and dirty way to get rid of missing
data is by removing the rows or column of data containing missing data, with the risk of losing valuable
information.
Instead, it can be useful to spend a little more time to try and fill in the missing data. To this end, it
can be helpful to try and guess why the data is missing: because it has not been included (failure of
measurement instrument), or because it does not exist (measurement is not applicable).
In the first case, if a feature was failed to be included, a value could be copied from the previous or
following observation for instance, this is called imputation.
In the second case, if the feature does not exist, it does not make sense to replace the value. The best
would be to either keep the missing value or choose another appropriate filler value. While selecting
an appropriate filler value, keep in mind that some ML algorithms are able to handle missing values,
while others are not.
Dependent on the portion of data missing in a column, a decision should be made on how to deal with
missing values. If less than 10% of the column is filled with missing values, it can be more advanta­
geous to impute the missing values than to either drop rows with missing data (reducing the number of
samples) or drop the entire column (reducing the number of features). However, if a larger portion is
missing, it might be better to either drop the column or rows with missing values instead. Otherwise,
too much uncertainty is introduced to the dataset which will limit an algorithm in its training.

B.4.3. Categorized data
As ML algorithms are equipped to work with numerical data, non­numerical categorical features should
be converted to numerical. An option is to replace all unique labels with integer: label encoding. The
downside is that this can unintentionally introduce a hierarchy in the specific feature. An approach to
avoid this could be to add a new column for each unique label and fill the feature column with 0’s and 1’
in the corresponding rows: one­hot encoding. However, this increases the number of features, which
could be unfavorable if a large number of categories exist.

B.4.4. Scaling & normalization
A final step of preprocessing the dataset for training is to adjust the scaling and distribution of values.
While exploring the data, a histogram plot of a feature can be a good indicator of the range of data
values and distribution.
It is not unusual for various features to have different ranges of data. To give each feature an equal
weight for the ML algorithm training, it is recommended to scale all features between values of 0 and
1 for example. This can be achieved by dividing all values by the range of values. This division does
not change the shape of the data, but the range of the data only.
Looking at the histogram plot, the distribution of the data becomes apparent as well. Since many ML
algorithms assume that the feature data is normally distributed, it is recommended to normalize the
data if the distribution appears to be skewed for instance.
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B.4.5. Feature selection
While selecting features to train the algorithm with, there are two things to keep in mind: (1) to evaluate
the results and make the working of the algorithm understandable, it is recommended to select features
with which an expert on the subject would be able to work with as well; and (2) to keep in mind what
features will be available in real life when deploying the algorithm in real time. Meaning that, if the
features contain foreknowledge, the algorithm may yield good evaluation results but poor results when
applied in practice, since some information is not yet available. This is called data leakage and should
be avoided. What features are good features will be determined by the algorithm: if the feature is
explanatory it will be assigned larger weights during training of the algorithm. Other options to help
feature selection is by analysing results of PCA or recursive feature elimination with RF.

B.4.6. Subsampling
For highly imbalanced datasets, the training dataset only can be subsampled to equal the percentage
of true en false samples. By doing this, the algorithm can equally learn about all classes. To this end,
all samples of the minority class are taken from the training dataset, together with an equal number of
randomly selected samples from the remaining majority classes. The number of features is reduced
but the number of labels are distributed equally over all classes.

B.4.7. Upsampling
Another option to deal with imbalanced datasets is through upsampling. Instead of removing samples
belonging to the majority classes, samples from the minority class(es) are duplicated until a balanced
dataset is created.

B.5. Algorithm training & evaluation
Training a Machine learning (ML) is an iterative process, since usually multiple tries are needed to find
the best parameter set. The goodness­of­fit, or quality of predictions, is quantified using a scoring func­
tion, such as a maximum likelihood or cost function, that scores the performance by penalizing correct
and incorrect predictions. Based on the score of this function, weights are adjusted with each iteration.
Below, training and evaluation is further discussed.
Best performance found with use of maximum likelihood or cost functions, which penalize correct and
incorrect predictions in the dataset. Training started with initial values (guesses of parameter values)
and with each iteration.
Training, evaluating and testing an algorithm is done using different datasets ­ the performance eval­
uation and testing of the algorithm should be done using never seen data, to really check if a trained
model has learned about relations in the data, or has learned about specific relation occurring in the
training dataset. A common practice is as follows:

• Randomly split data into a training, validation and test set with a ratio from 60­20­20 to 80­10­10
for training­validation­test set.

• Develop a number of models with the following steps:

– Preprocess training data (scale / normalize / subsample in case of imbalanced data)
– Optional: perform a feature reduction transformation (PCA)
– Train an algorithm of choice
– Pre­process the validation set with identical procedure used for the training data
– Evaluate the performance of the trained algorithm
– Adjust parameters of the algorithm until evaluation performance deemed acceptable

• After optimization, select a number of adequate algorithms

• Pre­process the test with the same procedure used for the training data and evaluation data

• Evaluate the model performances based on the never before seen data in the test set
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Special care should be taken to separate the test set from the training and evaluation set. While
training and evaluating the algorithm, it is likely that the algorithm is set to best fit particularities of those
datasets, introducing a bias. For fair evaluation of the model performance, all evaluations of the final
performance should be based on the never before seen test set, for which no bias is yet introduced,
as it has not been seen by the model. In the following sections, training and evaluation procedures are
discussed.

B.5.1. Training
During training, an algorithm tries to generalize relations between 𝑋𝑡𝑟𝑎𝑖𝑛 and 𝑦𝑡𝑟𝑎𝑖𝑛, so that is can make
a prediction 𝑦̂ for new instances of 𝑋. With 𝑦𝑡𝑟𝑎𝑖𝑛 and 𝑦̂𝑡𝑟𝑎𝑖𝑛, the progress of training the algorithm is
evaluated with a function that measures the error between 𝑦𝑡𝑟𝑎𝑖𝑛 and 𝑦̂𝑡𝑟𝑎𝑖𝑛. These functions are cost
functions 𝐽(𝜃), with 𝜃 corresponding to the weights in the algorithm for each feature in the dataset.
Ideally, 𝐽(𝜃) is a convex function with a single global minimum, but in practice, where 𝜃 has a length of
𝑗 ≥ 2, local minima occur. Equation B.6 is an example cost function for a binary classifier.

(𝜃) = −1𝑛[
𝑛

∑
𝑖=1
(𝑦𝑖𝑙𝑜𝑔(ℎ(𝑥𝑖 , 𝜃)) + (1 − 𝑦𝑖)𝑙𝑜𝑔(1 − ℎ(𝑥𝑖 , 𝜃)))] (B.6)

The aim is to minimize the 𝐽(𝜃) by finding to global minimum.
This is done by gradient descent: using the training dataset and an initial set of weights 𝜃, cost 𝐽(𝜃) is
calculated. With the derivative 𝑑

𝑑𝜃𝑗
𝐽(𝜃) (Equation B.7), all j weights are updated, creating a new set of

𝜃 (Equation B.8):

𝜕
𝜕𝜃𝑗

𝐽(𝜃) = 1
𝑚∑

𝑖=1
𝑛(ℎ(𝑥𝑖 , 𝜃) − 𝑦𝑖)𝑥𝑗𝑖 (B.7)

𝜃𝑗 = 𝜃𝑗 − 𝛼
𝜕
𝜕𝜃𝑗

𝐽(𝜃) (B.8)

for the next iteration where a new set of 𝜃 is used to calculate the updated cost 𝐽(𝜃). If after a number
of iterations the derivative of 𝑑𝐽(𝜃𝑛)𝑑𝜃 falls below a threshold level, meaning that the cost remains near
constant, it is assumed that a (global) minimum for 𝐽(𝜃) is found and training is completed. The rate
of convergence is influenced by learning rate 𝛼 in Equation B.8. If 𝛼 is too small, convergence will
take a long time, while a large value of 𝛼 may cause the cost function to overshoot minima, so no
convergence occurs. Different cost functions and solvers, to minimize 𝐽(𝜃) exist, each with other ap­
proaches for finding the global minima and ways to speed up convergence, by having a varying value
for 𝛼 example. Another solving method is stochastic gradient descent, which shuffles the training set
and only looks at a subset at every iteration, estimating or approximating the optimum. This can speed
up convergence for faster datasets, instead of looking for an exact solution.
To further stabilize convergence, a regularization term can be added to 𝐽(𝜃), with additional benefit of
reducing overfitting. The strength of regularization is determined by regularization term 𝜆, also repre­
sented as regularization factor 𝐶, which equals 1/𝜆.

An alternative approach for training and evaluation is K­fold Cross Validation. Here, the training and
validation set is combined and randomly split in K parts. With K iterations, a different set is held out
as validation set. The remaining K­1 sets are used combined into the training set. After K iterations, K
algorithms have been trained on all different parts of the training and validation set. This can be useful
for training algorithms with small datasets: an ensemble of algorithms is created that have been trained
with the whole training and validation set. Additionally, stability of the algorithm can be evaluated.

B.5.2. Evaluation
During training, the error of the model is calculated with cost functions. To assess the predictive quality
of the algorithm, a new set of features, that was not part of the training set but whose target values are
known as well, is given to the algorithm. With this evaluation set, the quality of predictions on never
before seen data is assessed. Likely, since during training the algorithm settings are adapted for better
training performance, the performance on the set will decrease, but if the algorithm was able to learn
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Table B.1: Explanation of a confusionmatrix. The number of correctly predicted labels is established on the diagonal, represented
by the number of true positives (TP) and true negatives (TN). The incorrectly classified samples can be classified as false positives
(FP) or false negatives (FN). With the help of a confusion matrix, the type of error and performance of classifier can be evaluated.

Predicted: 1 Predicted: 0
Actual: 1 TP FN
Actual: 0 FP TN

good generalized equations, the performance will not decrease drastically. Classification performance
can be expressed with, for example a confusion matrix (see Table B.1). The values found in this table
can belong to four classes:

• True Positives (TP): number of correctly predicted positives

• True Negatives (TN): number of correctly predicted negatives

• False Positives (FP): number of falsely predicted positives

• False Negatives (FN): number of falsely predicted negatives

Whose output can be used to calculate the following metrics:

• Accuracy = 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

Evaluates how much of the samples are correctly labelled

• Precision = 𝑇𝑃
𝑇𝑃+𝐹𝑃

How many predicted positives are actually positive

• Recall = 𝑇𝑃
𝑇𝑃+𝐹𝑁

How many positives are labelled as negatives

• F1­score = 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙

Balanced score

• Balanced = 0.5 ∗ ( 𝑇𝑃
𝑇𝑃+𝐹𝑁 +

𝑇𝑁
𝑇𝑁+𝐹𝑃)

Adapted accuracy metric for imbalanced datasets

B.5.3. Benchmarking
Besides evaluating the algorithm performance with the help of metrics, added value of the algorithms
can be assessed by comparing the performance with simple predictive algorithms: benchmarks. When
the ML algorithms is able to outperform the benchmark, it can be concluded that the trained ML has
truly been able to learn generalized relations from the dataset which can also be applied on new data.

B.5.4. Pitfalls
Despite best efforts while conducting the data pre­processing and algorithm training steps described
above, the performance of the algorithm can still be below minimal requirements. This can be due
to lack of a sufficient number of samples, need for more informative features, non­optimal algorithm
settings or an inadequate algorithm structures. Interpretation of the mentioned metrics and the classi­
fication matrix, and the occurrence of overfitting or underfitting, give away clues for actions needed to
improve the algorithm performance.

B.5.5. Underfitting
Underfitting occurs when the algorithm is not able to capture the complexity of the relations in the data.
This manifests in low training and evaluation performances. If even after many iterations, for both
the training and validation set, the model bias remains high while the variance is low, this can be an
indicator that underfitting occurs. If this is detected, it is recommended to choose a more advanced
algorithm as the current algorithm is not able to grasp the complexity of the data.
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B.5.6. Overfitting
Overfitting occurs when the algorithm is training too long and starts to develop training set specific
relations instead of generalized relations for the entire dataset. This becomes evident when the algo­
rithm performance for the training set keeps increasing while the evaluation performance decreases.
The bias for the training set is low, while the variance is high. By calculating and tracking the training
and evaluation cost at each learning iteration and stopping when the learning once the training cost is
stable, or once the evaluation cost starts increasing, it can be prevented that the algorithm overfits on
the training dataset. This is called early stopping.



C
Streamflow signatures

In this study, streamflow signatures are used to compare properties of streamflow observations with
streamflow simulations. The signatures used in this study, see Table 2.1, have been chosen to capture
a range of flow characteristics are illustrated below.

C.1. Statistical distribution
The first group of signatures can be described as descriptors of the distribution of streamflow. The
parameters and the goodness­of­fit of the Normal, Log­Normal, Gumbel, Poisson and Gamma distri­
butions are calculated based on streamflow simulations and streamflow observations and used as
features. The goodness­of­fit is calculated with the Kolmogorov­Smirnov test (Kolmogorov, 1933,
Marsaglia et al., 2003, Virtanen et al., 2020).

C.2. Correlation
The second group of features are signatures related to cross correlation. The first one is the Pearson’s
1­lag auto­correlation. Here, the correlation of a streamflow timeseries is calculated with the same
timeseries, with a lag of one timestep. In this study, this means that the streamflow of 1 day is compared
with the streamflow of the day before (Euser et al., 2013). The 1­lag auto­correlation signature is a
measure for the smoothness of the hydrograph and response time.
With the cross­correlation signature, the similarity between a streamflow observation and streamflow
simulation is calculated (Bennett et al., 2013). The cross­correlation feature is calculated with a lag of
0 and 1.

C.3. Flow duration curve
A Flow Duration Curve (FDC) depicts the relation between magnitude of streamflow and the frequency
of occurrence (Searcy, 1959, Vogel and Fennessey, 1994). To construct an FDC, all streamflow values
in a timeseries are sorted and ranked. The probability of exceedance can then be calculated by dividing
the rank by the length of the timeseries +1.
The streamflow values corresponding to several percentiles ([1, 2, 5, 10, 50, 90, 95, 99]) are calculated
as features. Also, the slope and low flow ratio are derived from the FDC (Nijzink et al., 2018, Sawicz
et al., 2011, Smakhtin, 2001, Yadav et al., 2007).
A secondary FDC is calculated based on peaks in the streamflow timeseries only. Peaks are defined
as a point in the hydrograph that is higher than the previous and next point. From this FDC, the slope
is calculated to find the peak distribution (Euser et al., 2013). The slope of the FDC functions as a
measure for the variability of flow response or variability of peaks.

C.4. Hydrological indices
The final group of features consists of streamflow signatures describing various aspects of streamflow.
The baseflow index is the ratio of baseflow to total flow. A high value of the baseflow index indicates
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that baseflow is a large contributor to the total streamflow. This implies that long flowpaths are used to
reach the streamflow network (Sawicz et al., 2011).
The Rising Limb Density is the ratio of total number of peaks to the total duration of rising limbs and
functions as a measure for the smoothness of the hydrograph (Morin et al., 2002). Similarly, the Declin­
ing Limb Density is the ratio of the total number of peaks versus the duration of declining limbs (Shamir
et al., 2005).
Another measure for the smoothness of the hydrograph is through the Richard­Baker Flashiness, as
the sum of absolute values of day­to­day changes divided by the sum of all daily flows.
Recession curve characteristics can be used to quantify the storage­outflow relationship of a catchment
(Stoelzle et al., 2013, Vogel and Kroll, 1992).
The duration and frequency of high and low flow events provide insights in the flow regimes observed
in the streamflow timeseries.
Finally, the elevation and upstream area are location descriptors. The upstream area is a commonly
used metric to accept or reject the location of a placed gauge. It also provides information about the
streamflow magnitude (Toth, 2013).



D
Results

D.1. LR ­ Window format
D.1.1. Classification
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3 by 3 search window

Figure D.1: This figure displays the classification of the test set with the LR algorithmwithWindow format. Each square is displays
a 3 by 3 search window around a station whose ID is shown at the top. Each grid cell in the search window is displayed with a
shade of blue that is related to the average streamflow: darker shades of blue indicate a higher level of average streamflow. The
matches from the dataset provided by ECMWF are displayed in orange. The matches predicted by the algorithm are depicted
in red.
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9 by 9 search window

Figure D.2: This figure displays the classification of the test set with the LR algorithmwithWindow format. Each square is displays
a 9 by 9 search window around a station whose ID is shown at the top. Each grid cell in the search window is displayed with a
shade of blue that is related to the average streamflow: darker shades of blue indicate a higher level of average streamflow. The
matches from the dataset provided by ECMWF are displayed in orange. The matches predicted by the algorithm are depicted
in red.
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D.1.2. Probability
3 by 3 search window

Figure D.3: This figure displays the probabilities levels that determine the classification of the test set with the LR algorithm with
Window format. Each square is displays a 3 by 3 search window around a station whose ID is shown at the top. Each grid
cell in the search window is displayed with a shade of blue that is related to the probability of each cell being representative of
the observation. Darker shades of blue indicate a higher probability. The matches from the dataset provided by ECMWF are
displayed in orange. The matches predicted by the algorithm are depicted in red.
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9 by 9 search window

Figure D.4: This figure displays the probabilities levels that determine the classification of the test set with the LR algorithm with
Window format. Each square is displays a 9 by 9 search window around a station whose ID is shown at the top. Each grid
cell in the search window is displayed with a shade of blue that is related to the probability of each cell being representative of
the observation. Darker shades of blue indicate a higher probability. The matches from the dataset provided by ECMWF are
displayed in orange. The matches predicted by the algorithm are depicted in red.
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D.2. RF ­ Single Cell format
D.2.1. Classification
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3 by 3 search window

Figure D.5: This figure displays the classification of the test set with the RF algorithm with Single Cell format. Each square
is displays a 3 by 3 search window around a station whose ID is shown at the top. Each grid cell in the search window is
displayed with a shade of blue that is related to the average streamflow: darker shades of blue indicate a higher level of average
streamflow. The matches from the dataset provided by ECMWF are displayed in orange. The matches predicted by the algorithm
are depicted in red.
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9 by 9 search window

Figure D.6: This figure displays the classification of the test set with the RF algorithm with Single Cell format. Each square
is displays a 9 by 9 search window around a station whose ID is shown at the top. Each grid cell in the search window is
displayed with a shade of blue that is related to the average streamflow: darker shades of blue indicate a higher level of average
streamflow. The matches from the dataset provided by ECMWF are displayed in orange. The matches predicted by the algorithm
are depicted in red.
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D.2.2. Probability
3 by 3 search window

Figure D.7: This figure displays the probabilities levels that determine the classification of the test set with the RF algorithm with
Single Cell format. Each square is displays a 3 by 3 search window around a station whose ID is shown at the top. Each grid
cell in the search window is displayed with a shade of blue that is related to the probability of each cell being representative of
the observation. Darker shades of blue indicate a higher probability. The matches from the dataset provided by ECMWF are
displayed in orange. The matches predicted by the algorithm are depicted in red.
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9 by 9 search window

Figure D.8: This figure displays the probabilities levels that determine the classification of the test set with the RF algorithm with
Single Cell format. Each square is displays a 9 by 9 search window around a station whose ID is shown at the top. Each grid
cell in the search window is displayed with a shade of blue that is related to the probability of each cell being representative of
the observation. Darker shades of blue indicate a higher probability. The matches from the dataset provided by ECMWF are
displayed in orange. The matches predicted by the algorithm are depicted in red.
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