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Abstract
In this thesis, we propose two mixed integer linear program formulations for an optimization
problem that incorporates annualized hours: an exact one and an approximation. The ob-
jective of our model consists of three weighted parts: a part which minimizes the difference
between working hours and contract hours for each employee per week, a part which mini-
mizes over and under staffing, and a part which minimizes the difference between contract
hours and working hours for each employee over the total planning period. Additionally, the
working hours need to be distributed over shifts of a fixed shift duration. We also consider
an extension where skills are introduced. In this case, employees can only work on a task
for which they are qualified.

To test the proposed formulations, a random data generator is provided by ORTEC. The model
should be solvable for a data set up to 100 employees and 52 weeks (and 5 skills). We have
tested it on several data sets of that size with varying weights in our objective function. We
have compared the run time of our exact model with the run time of the approximate model
for different weights. The approximate model gave a relatively quick approximation of the
optimal solution when we do not consider skills, and when we do consider skills and vary
the weight for the first part of the objective function. For varying the weight on the second
part, we used a time limited version of our exact model to approximate the optimal solution.
To be able to approximate the optimal solution when varying weight on the third part of the
objective function, the approximate model is used with extra weight on the first part, instead
of the third.

iii





Preface
This thesis is written to obtain the degree of Bachelor of Science in Applied Mathematics at
Delft University of Technology. The project was supervised by Theresia van Essen, who is an
assistant professor in the optimization group. The assignment originally came from ORTEC
which Egbert van der Veen was the contact person of during the project for answering ques-
tions and providing practical insights.

In this project, a multi-objective optimization problem is considered. A nonlinear model is
stated, after which a linear exact model is created to find optimal solutions of the problem.
Also an approximate model is made, to find approximate solutions for the problem. Their
computation time and objectives for multiple instances of a data set are compared. Feel free
to contact me about the specific data sets or the outcome of an individual instance.

I would like to take this moment to especially thank Theresia van Essen, for sharing her
knowledge, the always constructive meetings we had, her quick responses to any question
and her support. In addition, I would like to thank Egbert van der Veen, who welcomed us
several times at ORTEC to discuss this research. Also thank you for providing the assignment
and the data we used. I would like to thank Wouter Raateland for the mental and technolog-
ical support in getting used to Python (which I had never used before, but actually started
to appreciate pretty much). And last but not least, I would like to thank Johan Dubbeldam
and Emiel van Elderen for being part of my thesis committee.

M.E. Bouwmeester
Delft, June 2019

v





Contents

1 Introduction 1

2 Literature review 3

3 Background 5

4 Model formulation 7
4.1 Stating the sets, parameters and variables . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2 Initial model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.3 Exact linear model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.3.1 Reformulating the first part of the initial model . . . . . . . . . . . . . . . . . . . . 8
4.3.2 Full exact linear model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.4 Approximate linear model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5 Model extension 13
5.1 Stating the sets, parameters and variables . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 The extended initial model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.3 The extended exact model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.4 The extended approximate linear model . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6 Results MILP models 19
6.1 Data and parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.2 Results of the models that do not consider skills . . . . . . . . . . . . . . . . . . . . . . . 20
6.3 Results of the models that consider skills . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

7 Conclusion, discussion and recommendation 25

Bibliography 27

vii





1
Introduction

“Thought experiment: compare a hospital with Bol.com,” said Taco van der Vaart, Professor
of Supply Chain Management at the University of Groningen, recently in de Volkskrant [10].
He admits that this is a poor comparison, but makes the clear point that he believes that
hospitals can learn a lot from logistics champions like Bol.com. Van der Vaart discusses
the three components that, according to him, are the cause of long waiting times in hospi-
tals. The third part starts as follows: “What perhaps intrigues Van der Vaart most, given his
supply chain view of the world, is the enormous variability of what a hospital does. In plain
Dutch: the work schedules are a mess.”

Fortunately, more and more systems are being introduced to reduce this problem. These are
systems that make it easier to respond to the varying demand and absent employees. An
example of such a system is the use of annualized hours. In this system, working hours are
expressed in working hours per year instead of working hours per week. As a result, within
certain bounds, an employee may, for example, work 38 hours in one week, and 42 in the
next. The working hours in a contract are also shown in hours per year.

The company ORTEC deals with customers who are struggling with the same issues. ORTEC
specializes in developing optimization software with which it is their purpose to improve the
world using their passion for mathematics.1 The assignment for this thesis arose from a
request from ORTEC.

In this thesis, we make use of the annualized hours system. Our data consists of a weekly
varying demand, a fixed shift duration, and for each employee, the contract hours, minimum
and maximum working hours, set of skills and weeks in which the employee is absent. We
create a multi-objective optimization model which minimizes the difference between contract
hours and working hours for each employee per week, the over and under staffing, and the
difference between the contract and working hours over the whole planning period.

An overview of the literature on this topic can be found in Chapter 2. Chapter 3 of this thesis
contains the necessary background information, after which our first model is presented in
Chapter 4. In this chapter, the original model, a linear version of the exact model and an
approximation of that can be found. In Chapter 5, the models get extended. The results of
the models are shown and compared in Chapter 6. Finally, the conclusion, discussion and
recommendation can be found in Chapter 7.

1https://ortec.com/about-us
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2
Literature review

In this thesis, we consider the use of annualized hours which might be a great help when the
aim is to minimize differences between working hours and contract hours when matching
the demand. In this section, we review literature on models that consider annualized hours.
To get a clear overview, we look at multiple characteristics of such a model and discuss lit-
erature per characteristic.

Definition annualized hours
Before discussing some characteristics, we consider the definition of annualized hours. A for-
mal definition of the term is ‘Method of computing working time by year rather than by the
week. This method is used sometimes in industries or occupations where there are seasonal
variations in demand for services of employees.’1 This can be translated to our situation; we
look for a schedule for a longer planning period, while having a varying demand.

Objective function
One of the characteristics we consider is the focus of the objective function. Corominas et al.
[2, 3], Hasan et al. [7] and Van der Veen et al. [11] focus on minimizing the total costs of
staffing, while Corominas et al. [2, 3] also focus on minimizing over and under staffing. In
our model we focus on the minimization of over and under staffing as well, and next to that
our focus is on minimizing the difference between contract and working hours. Note that
while the focus seems to be different, the goals could be the same: minimizing the costs
induces minimizing overtime, which links to minimizing the difference between contract and
working hours. Keim [9] considers the same objective function as the one we consider.
There are researches that use overtime instead of working hours in their objective function,
like Azmat et al. [1]. A third way to regulate working hours is by measuring Working Time
Accounts (WTAs). In a system with WTAs, an employee is able to work more or less than their
contract hours, and thereby, collect working time credits or debits over a certain period in
an individual working time account. WTAs are used in e.g. García and Pastor [4], in which
the objective is to find a subscription for the hours where the WTA of the employees stays
between specified boundaries.

Parameters and constraints
Other characteristics in which an annualized hours model can distinguish itself from other
models lay in the way parameters are defined and the various constraints of the given prob-
lem.

Fixed flexibility for each employee
In our case, each employee has a specified flexibility. This flexibility is expressed in the fact
that the difference in working hours between different weeks for an employee is bounded

1www.businessdictionary.com
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4 2. Literature review

per week. The aim is that within this flexibility, the working hours over the whole planning
period are equal to or as close as possible to the contract hours over the whole period. This
characteristic is also used in Van der Veen et al. [11] and Keim [9].

Varying demand
One of the strongest effects of the annualized hours principle is that it helps responding to
a varying demand. In our case, the demand is deterministic, just like in Azmat et al. [1] and
Hung [8], who use shifts that need to be staffed as their demand, and Van der Veen et al.
[11] and Keim [9] whose demand is measured in hours. García et al. [5] consider a stochas-
tic demand by including multiple demand scenarios with a probability of occurrence per case.

Distinction between skills
When people’s working hours need to match demand, this demand can be divided over differ-
ent tasks which require different skills. In this case, every employee gets an extra attribute
which represents which skills they have and which they do not. Person X has for example
skills 1 and 3, but not skill 2, which makes him qualified to do tasks A and B, but lacks the
skill to do task C. In the studies of e.g. Van der Veen et al. [11], Corominas et al. [2] and
Grabot and Letouzey [6], the distinction between skills is made.

Usage of shifts
As stated before, some researches express their demand in shifts that need to be filled. In
our model, the employees work in shifts of a fixed number of hours, whereas in Keim [9] the
shift duration is flexible between minimum and maximum bounds, and constraints are given
for the amount of shifts over a week, two weeks, and four weeks.

Computing complexity
While Hung [8] uses special purpose algorithms to solve his annualized hours problem, using
mathematical programming is the most common approach. We use it in this thesis, and it
is used in e.g. Van der Veen et al. [11], Keim [9] and Azmat et al. [1].
To find an optimal solution to a mathematical program, various solvers can be used. In Keim
[9], Gurobi is used which took 6 seconds on average to solve the model with a data set of 100
employees and 52 weeks. Van der Veen et al. [11] use CPLEX. They note that their maxi-
mum observed computation time of 10 seconds leads them to not going into detail about this
time, since they consider it to be negligible for this kind of analysis and decision making. In
García et al. [5] also CPLEX is used, and in this paper finding out whether the model can
be solved in short times for instances of a realistic size is one of the two main objectives of
their computational experiment. Corominas et al. [2, 3] also use CPLEX, while Hasan et al.
[7] shows that it is also possible to use LINGO.

The contribution of this thesis is that, to our knowledge, literature does not consider modeling
annualized hours in combination with multi-skill and fixed shift duration, while minimizing
over and under staffing and the difference between working hours and contract hours per
week and per planning period.



3
Background

In this chapter, the background knowledge required to understand the models in upcoming
chapters is discussed.

Mixed Integer Linear Programming (MILP)
To model problems in the field of scheduling, production planning, telecommunication net-
works or cellular networks amathematical optimization program is often used. In this section
we introduce different forms of integer programming.

Integer programming is a feasibility problem in which the variables are restricted to be inte-
gers. Many problems have the addition that the objective function and the constraints are
linear, which makes integer programming a bit more specific: integer linear programming
(ILP). An ILP in standard form is expressed as:

maxc x (3.1)
s.t. Ax ≤ b (3.2)

x ≥ 0 (3.3)
x ∈ ℤ (3.4)

In this case c and b are vectors and A is a matrix, where all entries are integers.
An example of an ILP problem could look like the following:

max𝑦 (3.5)
s.t. − 𝑥 + 𝑦 ≤ 1 (3.6)

3𝑥 + 2𝑦 ≤ 12 (3.7)
2𝑥 + 3𝑦 ≤ 12 (3.8)
𝑥, 𝑦 ≥ 0 (3.9)
𝑥, 𝑦 ∈ ℤ (3.10)

For this problem, we can plot the feasible solutions, which are made visual in Figure 3.1.
The red line represents constraint (3.6), the blue line constraint (3.7) and the orange line
represents constraint (3.8). The black and purple lines represent constraint (3.9) and only
choosing solutions on the thick lines in the graph makes constraint (3.10) satisfied. So the
straight lines in the plot represent the constraints of the problem, while the red dots rep-
resent the feasible solutions. There are multiple feasible solutions, and out of all those, we
want to obtain the optimal one.

In our case the objective function is simple, max𝑦, so out of this plot we can now easily find
our optimum. The optimal solution of this example is 𝑦 = 2, which corresponds to the points
(1, 2) and (2, 2). Therefore, in this case, there are two optimal solutions.

5



6 3. Background

Figure 3.1: Feasible solutions of an ILP example

Mixed Integer Linear Programming (MILP)
has an extra characteristic next to the ones
of an ILP problem. In a MILP, the vari-
ables can be integer as well as non-integer.
To be more specific, it involves problems in
which only some of the variables, xi, are con-
strained to be integers, while others are al-
lowed to be non-integers.



4
Model formulation

We create a Mixed Integer Linear Programming (MILP) model which gives us the number
of hours an employee should work each week. That number of hours should represent an
outcome in which over and under staffing is minimized, while also minimizing the difference
between contract hours and working hours of each employee each week. Next to that, we
minimize the difference between contract hours and working hours for each employee over
the total planning horizon, for example a year.
We have data that provides us information on how long our planning period is in weeks,
the demand of working hours each week, absences of each employee and the minimum,
maximum and contract hours of each employee. Next to that, our model should provide a
solution which includes that an employee works in shifts of a fixed number of hours.

4.1. Stating the sets, parameters and variables
To formulate a model, we state the following sets, parameters and variables:

Sets
𝐼 Set of employees
𝑇 Set of time periods (which are weeks)
Parameters
𝑑 Demand (in hours) in week 𝑡 ∈ 𝑇
𝑐 Contract hours per week for employee 𝑖 ∈ 𝐼
𝑙 Minimum working hours per week for employee 𝑖 ∈ 𝐼
𝑢 Maximum working hours per week for employee 𝑖 ∈ 𝐼
|𝑇| Length planning horizon in weeks
𝑟 Fixed shift duration
𝑎 ∈ {0, 1} 0 if employee 𝑖 ∈ 𝐼 is absent in week 𝑡 ∈ 𝑇, 1 otherwise
Variables
𝑋 Number of working hours of employee 𝑖 ∈ 𝐼 in week 𝑡 ∈ 𝑇
𝑉 Number of shifts for employee 𝑖 ∈ 𝐼 in week 𝑡 ∈ 𝑇

The model in this thesis is based on the model formulated by Van der Veen et al. [11] and
on the bachelor thesis of Keim [9]. Just like in [9], the significant difference between the
model described in [11] and our model is the fact that we do not consider that our employees
have different skills. Also, our objective function does not focus on minimizing total costs.
The model in [9] and in this thesis are much alike. The biggest difference is that we do not
consider a varying duration per shift and a maximum/minimum number of working shifts.
What we do take into account is that employees work a fixed amount of hours each shift.
This means that when a shift is given to be four hours, an employee with 35 contract hours
each week will never get his/her exact contract hours assigned. However, our aim is to get
the working hours as close as possible to the contract hours for each employee.

7



8 4. Model formulation

4.2. Initial model
Now we have stated our sets, parameters and variables, we set up our model. Our model
consists of a part which is meant to minimize the difference between contract hours and
working hours, a part where the over and under staffing is minimized and a part which makes
sure that the working hours are as close as possible to the assigned contract hours over the
whole planning period. In some cases, it might be interesting to make one part dominant
over the other. This is why parameters 𝜆 , 𝜆 and 𝜆 are introduced, which determine the
importance of each component. A first version of our model is given by:

min (𝜆 ⋅∑
∈
(∑
∈
(𝑋 − 𝑐 𝑎 ) )

+ 𝜆 ⋅∑
∈
(∑

∈
𝑋 − 𝑑 )

+ 𝜆 ⋅∑
∈
(∑
∈
(𝑋 + 𝑐 (1 − 𝑎 )) − |𝑇|𝑐 ) ) (4.1)

s.t. 𝑙 𝑎 ≤ 𝑋 ≤ 𝑢 𝑎 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (4.2)
𝑋 = 𝑟 ⋅ 𝑉 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (4.3)
𝑋 , 𝑉 ∈ ℕ ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (4.4)

Our objective function (4.1) represents the main goal of our model, while (4.2), (4.3) and (4.4)
represent the constraints. Constraint (4.2) makes sure that the working hours of an em-
ployee are between his/her minimum and maximum hours, when that employee is present.
To implement that employees work in shifts of a fixed number of hours, constraint (4.3) is
introduced. Constraint (4.4) makes sure that the number of working hours 𝑋 and the num-
ber of shifts an employee works 𝑉 are non-negative integers.

4.3. Exact linear model
We aim to make a Mixed Integer Linear Programming (MILP) model. A MILP has as an ad-
vantage that there are a lot of solvers available, which can solve the problem relatively quick.
To reformulate our initial model (4.1)-(4.4) as a MILP, we need our model, as the name Mixed
Integer Linear Programming suggests, to be linear. That means we need to lose the squares
in our model.

For this reason, we create an alternative model, which makes use of binary variables. This
model gives the exact optimal solution to our initial model. To give a clear explanation on how
this model is set up, we start with considering only the first part of the objective function.

4.3.1. Reformulating the first part of the initial model
The first part of the objective function of our initial model is the part which minimizes the
difference between the working hours and contract hours of each employee per week. The
maximum deviation for an employee, 𝑏 , is obtained by subtracting the minimum working
hours from the maximum working hours: 𝑏 = (𝑢 − 𝑙 ), ∀𝑖 ∈ 𝐼. So we know that for each
week, this deviation lies between zero and max ∈ 𝑏 for each employee. We capture these
possibilities for deviations in 𝐽 = {0, 1, … ,max ∈ 𝑏 }. Furthermore, we define the difference
between working hours and contract hours of a certain employee in a certain week to be 𝑝 .
In other words, |𝑋 − 𝑐 𝑎 | = 𝑝 . We want our model to be linear, so we need to rewrite the
prior such that it does not contain an absolute value. For this, we use the following two
constraints:

𝑝 ≥ 𝑋 − 𝑐 𝑎 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (4.5)
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𝑝 ≥ 𝑐 𝑎 − 𝑋 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (4.6)

Minimizing these gives the deviation we are aiming for. We then connect that deviation with
a binary variable 𝑌 , which indicates whether there is a deviation of 𝑗 = 𝑝 for employee
𝑡 ∈ 𝑇 in week 𝑖 ∈ 𝐼:

𝑌 = {1, if 𝑗 = 𝑝 , where 𝑗, 𝑝 ∈ 𝐽
0, otherwise

(4.7)

Summing 𝑌 over 𝑗 ∈ 𝐽 should be equal to one, since only one deviation 𝑗 ∈ 𝐽 can be obtained
per week for each employee.

∑
∈
𝑌 = 1 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (4.8)

With this new way of looking at the problem, and also adding the constraints for the working
hours being between the minimum and maximum hours of an employee, and the working
hours being a multiple of the fixed shift duration, we get the following model when only
considering the first part of the objective function of our initial model:

min ∑
∈
∑
∈
𝑗 ⋅ 𝑌 (4.9)

s.t. 𝑙 𝑎 ≤ 𝑋 ≤ 𝑢 𝑎 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (4.10)
𝑋 = 𝑟 ⋅ 𝑉 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (4.11)
𝑝 ≥ 𝑋 − 𝑐 𝑎 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (4.12)
𝑝 ≥ 𝑐 𝑎 − 𝑋 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (4.13)

∑
∈
𝑗 ⋅ 𝑌 = 𝑝 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (4.14)

∑
∈
𝑌 = 1 ∀𝑖 ∈ ∀, 𝑡 ∈ 𝑇 (4.15)

𝑋 , 𝑉 ∈ ℕ ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (4.16)
𝑌 ∈ {0, 1} ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐵 , ∀𝑡 ∈ 𝑇 (4.17)

In this case, our objective function (4.9) contains a value 𝑗 and a binary variable 𝑌 . Con-
straints (4.10), (4.11) and (4.16) are the same as Constraints (4.2), (4.3) and (4.4) respectively.
Constraints (4.12) and (4.13) represent what is stated in Equations (4.5) and (4.6). Constraint
(4.14) makes the outcome of the sum over 𝑗 times the binary variable equal to the deviation
𝑝 . And Constraint (4.15) shows what is stated in Equation (4.8). To conclude, Constraint
(4.17) gives the binary restriction of 𝑌 .

4.3.2. Full exact linear model
The reformulation of our model can be repeated for the second part of the objective function
of the initial model, which minimizes the difference between demand and working hours, and
the third part whichminimizes the difference between contract hours and working hours of an
employee over the total planning period. The maximum deviation for the second part is 𝑑 for
each week. We capture the possible deviations for this part in the set 𝐻 = {0, 1, … ,max ∈ 𝑑 }.
For the third part, the maximum deviation is 𝑡𝑐 = |𝑇| ⋅max(𝑢 − 𝑐 , 𝑐 − 𝑙 ) for each employee.
That leads to the set 𝐾 = {0, 1, … ,max ∈ 𝑡𝑐 } for the third part. Now, we add weights 𝜆 , 𝜆 and
𝜆 and obtain the following model:



10 4. Model formulation

min 𝜆 ⋅∑
∈
∑
∈
𝑗 ⋅ 𝑌 + 𝜆 ⋅∑

∈
ℎ ⋅ 𝑍 + 𝜆 ⋅∑

∈
𝑘 ⋅ 𝑊 (4.18)

s.t. 𝑙 𝑎 ≤ 𝑋 ≤ 𝑢 𝑎 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (4.19)
𝑋 = 𝑟 ⋅ 𝑉 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (4.20)
𝑝 ≥ 𝑋 − 𝑐 𝑎 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (4.21)
𝑝 ≥ 𝑐 𝑎 − 𝑋 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (4.22)

∑
∈
𝑗 ⋅ 𝑌 = 𝑝 ∀𝑖 ∈ ∀, 𝑡 ∈ 𝑇 (4.23)

∑
∈
𝑌 = 1 ∀𝑖 ∈ ∀, 𝑡 ∈ 𝑇 (4.24)

𝑞 ≥∑
∈
𝑋 − 𝑑 ∀𝑡 ∈ 𝑇 (4.25)

𝑞 ≥ 𝑑 −∑
∈
𝑋 ∀𝑡 ∈ 𝑇 (4.26)

∑
∈
ℎ ⋅ 𝑍 = 𝑞 ∀𝑡 ∈ 𝑇 (4.27)

∑
∈
𝑍 = 1 ∀𝑡 ∈ 𝑇 (4.28)

𝜏 ≥ (∑
∈
𝑋 + 𝑐 (1 − 𝑎 )) − |𝑇|𝑐 ∀𝑖 ∈ 𝐼 (4.29)

𝜏 ≥ |𝑇|𝑐 − (∑
∈
𝑋 + 𝑐 (1 − 𝑎 )) ∀𝑖 ∈ 𝐼 (4.30)

∑
∈
𝑘 ⋅ 𝑊 = 𝜏 ∀𝑖 ∈ 𝐼 (4.31)

∑
∈
𝑊 = 1 ∀𝑖 ∈ 𝐼 (4.32)

𝑋 , 𝑉 ∈ ℕ ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (4.33)
𝑌 , 𝑍 ,𝑊 ∈ {0, 1} ∀ℎ ∈ 𝐻, ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇 (4.34)

4.4. Approximate linear model
Next to the reformulation stated in Section 4.3, we could think of other ways to make our
initial model linear. In this section, we make a linear model which approximates the solution
of our problem.

To reformulate the squares in the objective function of the initial model stated in Section 4.2,
we minimize the maximum absolute value of the difference between contract and working
hours, the maximum of over and under staffing, and the maximum absolute value of the
difference between working hours and contract hours over the entire planning horizon. The
objective function turns into the following:

min 𝜆 ⋅∑
∈
max
∈
(|𝑋 − 𝑐 ⋅ 𝑎 |) + 𝜆 ⋅max

∈
(|∑

∈
𝑋 − 𝑑 |)

+ 𝜆 ⋅max
∈
(|∑

∈
(𝑋 + 𝑐 ⋅ (1 − 𝑎 )) − |𝑇| ⋅ 𝑐 |) (4.35)
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Our objective function has now lost its quadratic formulation. However, the new maximum
functions and absolute values lead still to a non-linear model.
To lose those terms, we reformulate the objective function by using substitute values 𝑚 , 𝜈
and 𝜎 and the following constraints:

𝑚 ≥ 𝑋 − 𝑐 𝑎 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (4.36)
𝑚 ≥ 𝑐 𝑎 − 𝑋 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (4.37)

𝜈 ≥∑
∈
𝑋 − 𝑑 ∀𝑡 ∈ 𝑇 (4.38)

𝜈 ≥ 𝑑 −∑
∈
𝑋 ∀𝑡 ∈ 𝑇 (4.39)

𝜎 ≥∑
∈
(𝑋 + 𝑐 (1 − 𝑎 )) − |𝑇|𝑐 ∀𝑖 ∈ 𝐼 (4.40)

𝜎 ≥ |𝑇|𝑐 −∑
∈
(𝑋 + 𝑐 (1 − 𝑎 )) ∀𝑖 ∈ 𝐼 (4.41)

Constraints (4.36) and (4.37) make minimizing the maximum difference between contract
hours and working hours possible for each employee. Constraint (4.38) and (4.39) are used
for minimizing the maximum difference between demand and working hours. Minimizing the
maximum difference between total working hours and contract hours is possible because of
constraints (4.40) and (4.41). This makes our objective function look like the following:

min 𝜆 ⋅∑
∈
𝑚 + 𝜆 ⋅ 𝜈 + 𝜆 ⋅ 𝜎 (4.42)

Now we have these linear parts of the objective function, we are not finished yet. The reason
for this is that if we remove the squares from the objective function, we lose grip on the
values below the maximum. A quadratic function has the advantage that it distributes the
deviations of the differences as well as possible. Through the squares, an option in which
two employees deviate by one hour is chosen over an option in which one employee deviates
by two hours, and the other by zero. In an attempt to partially copy that characteristic of
the squares, we add more substitute values. We add 𝑝 with Constraints (4.43) and (4.44)
to minimize the total difference between contract and working hours for each week and each
employee:

𝑝 ≥ 𝑋 − 𝑐 𝑎 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (4.43)
𝑝 ≥ 𝑐 𝑎 − 𝑋 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (4.44)

We repeat this for the second and third part of our objective function. We add a part where
the weekly over and under staffing is minimized by adding 𝑞 with Constraints (4.45) and
(4.46).

𝑞 ≥∑
∈
𝑋 − 𝑑 ∀𝑡 ∈ 𝑇 (4.45)

𝑞 ≥ 𝑑 −∑
∈
𝑋 ∀𝑡 ∈ 𝑇 (4.46)

To obtain the minimum total difference between the total working hours and contract hours
for each employee, 𝜏 is introduced with constraints (4.47) and (4.48).

𝜏 ≥∑
∈
(𝑋 + 𝑐 (1 − 𝑎 )) − |𝑇|𝑐 ∀𝑖 ∈ 𝐼 (4.47)

𝜏 ≥ |𝑇|𝑐 −∑
∈
(𝑋 + 𝑐 (1 − 𝑎 )) ∀𝑖 ∈ 𝐼 (4.48)
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When adding all these to the objective function, we need to give each term weights. Instead
of 𝜆 -𝜆 , we know use 𝜅 -𝜅 which do have the same ratio. Adding these and combining the
introduced variables and constraints, gives the following full model:

min 𝜅 ⋅∑
∈
𝑚 + 𝜅 ⋅ 𝜈 + 𝜅 ⋅ 𝜎 + 𝜅 ⋅∑

∈
∑
∈
𝑝

+ 𝜅 ⋅∑
∈
𝑞 + 𝜅 ⋅∑

∈
𝜏 (4.49)

s.t. 𝑙 ⋅ 𝑎 ≤ 𝑋 ≤ 𝑢 ⋅ 𝑎 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (4.50)
𝑋 = 𝑟 ⋅ 𝑉 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (4.51)
𝑚 ≥ 𝑋 − 𝑐 ⋅ 𝑎 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (4.52)
𝑚 ≥ 𝑐 ⋅ 𝑎 − 𝑋 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (4.53)

𝜈 ≥∑
∈
𝑋 − 𝑑 ∀𝑡 ∈ 𝑇 (4.54)

𝜈 ≥ 𝑑 −∑
∈
𝑋 ∀𝑡 ∈ 𝑇 (4.55)

𝜎 ≥∑
∈
(𝑋 + 𝑐 ⋅ (1 − 𝑎 )) − |𝑇| ⋅ 𝑐 ∀𝑖 ∈ 𝐼 (4.56)

𝜎 ≥ |𝑇| ⋅ 𝑐 −∑
∈
(𝑋 + 𝑐 ⋅ (1 − 𝑎 )) ∀𝑖 ∈ 𝐼 (4.57)

𝑝 ≥ 𝑋 − 𝑐 ⋅ 𝑎 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (4.58)
𝑝 ≥ 𝑐 ⋅ 𝑎 − 𝑋 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (4.59)

𝑞 ≥∑
∈
𝑋 − 𝑑 ∀𝑡 ∈ 𝑇 (4.60)

𝑞 ≥ 𝑑 −∑
∈
𝑋 ∀𝑡 ∈ 𝑇 (4.61)

𝜏 ≥∑
∈
(𝑋 + 𝑐 ⋅ (1 − 𝑎 )) − |𝑇| ⋅ 𝑐 ∀𝑖 ∈ 𝐼 (4.62)

𝜏 ≥ |𝑇| ⋅ 𝑐 −∑
∈
(𝑋 + 𝑐 ⋅ (1 − 𝑎 )) ∀𝑖 ∈ 𝐼 (4.63)

𝑋 , 𝑉 ∈ ℕ ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (4.64)



5
Model extension

Now we have formulated our model, we make it more interesting to consider the computation
time by also considering skills. We start with extending our initial model.

Until this point we assumed that all of the demand needed one skill and that all employees
possessed that skill. We now add the distinction between skills to our model. We define 𝑆
to be the set of skills, and 𝑆 ⊂ 𝑆 the set of skills employee 𝑖 possesses. When extending our
model with the presence of skills, the working hours variable gets an additional index: 𝑋 .
That variable represents the hours employee 𝑖 ∈ 𝐼 works in week 𝑡 ∈ 𝑇 with skill 𝑠 ∈ 𝑆 . So
when we want to know the working hours of a certain employee in a certain week, we use
the summation over 𝑠, ∑ ∈ 𝑋 . Also our demand 𝑑 gets an additional index, because the
demand is now specified in hours per week per skill.

5.1. Stating the sets, parameters and variables
With this, the sets, parameters and variables in Section 4.1 get some additions. All together
we state the following:
Sets
𝐼 Set of employees
𝑇 Set of time periods (which are weeks)
𝑆 Set of skills
𝑆 ⊂ 𝑆 Set of skills of employee 𝑖 ∈ 𝐼
Parameters
𝑑 Demand (in hours) in week 𝑡 ∈ 𝑇 for skill 𝑠 ∈ 𝑆
𝑐 Contract hours per week for employee 𝑖 ∈ 𝐼
𝑙 Minimum working hours per week for employee 𝑖 ∈ 𝐼
𝑢 Maximum working hours per week for employee 𝑖 ∈ 𝐼
|𝑇| Length planning horizon in weeks
𝑟 Duration of one shift in hours
𝑎 ∈ {0, 1} 0 if employee 𝑖 ∈ 𝐼 is absent in week 𝑡 ∈ 𝑇, 1 otherwise
Variables
𝑋 Number of working hours of employee 𝑖 ∈ 𝐼 in week 𝑡 ∈ 𝑇 on skill 𝑠 ∈ 𝑆
𝑉 Number of shifts for employee 𝑖 ∈ 𝐼 in week 𝑡 ∈ 𝑇

While some of the input has changed, note that a lot stays the same as in Section 4.1.

13
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5.2. The extended initial model
Now we have these sets, parameters and variables, we can extend our initial model with the
distinction between skills. This gives the following model:

min 𝜆 ⋅∑
∈
(∑

∈
(∑
∈
𝑋 − 𝑐 𝑎 ) ) + 𝜆 ⋅∑

∈
∑
∈
(∑

∈
𝑋 − 𝑑 )

+ 𝜆 ⋅∑
∈
(∑
∈
(∑
∈
𝑋 + 𝑐 (1 − 𝑎 )) − |𝑇|𝑐 ) (5.1)

s.t. 𝑙 𝑎 ≤ ∑
∈
𝑋 ≤ 𝑢 𝑎 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (5.2)

𝑋 = 0 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇, ∀𝑠 ∉ 𝑆 (5.3)

∑
∈
𝑋 = 𝑟 ⋅ 𝑉 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (5.4)

𝑋 , 𝑉 ∈ ℕ ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (5.5)

Objective function (5.1) represents the main goal of our model with the addition of skills.
Again, the first part minimizes the difference between contract hours and working hours for
each employee each week, the second part minimizes over and under staffing and the third
part makes sure that the working hours over the whole planning period are as close to the
total assigned contract hours as possible.
Constraint (5.2) makes sure that the working hours of an employee, which is the sum of
the working hours over all possessed skills, are between his/her minimum and maximum
hours, each week the employee is present. Constraint (5.3) is needed to make sure that an
employee does not get hours assigned to work on a skill that the employee does not have; if
an employee does not have a certain skill, that employee cannot work on a task that requires
that skill. To implement that employees work in shifts of a fixed number of hours, constraint
(5.4) is introduced. Note that an employee can work on multiple skills during one shift. That
is the reason for requiring the sum of the working hours over all skills to be a multiple of the
chosen shift duration 𝑟, and not 𝑋 itself. Constraint (5.5) makes sure that the number of
working hours 𝑋 and the number of shifts an employee works 𝑉 are non-negative integers.



5.3. The extended exact model 15

5.3. The extended exact model
Now we extend the exact model from Section 4.3. Like before, we use sets for the possible
deviations per part of the objective function. We use 𝐽 = {0, 1, … ,max ∈ (𝑢 − 𝑙 )} for the first
part, and 𝐾 = {0, 1, … ,max ∈ (|𝑇|⋅max(𝑢 −𝑐 , 𝑐 −𝑙 ))} for the third part of the objective function.
For the second part, we need to take into account that the demand is now divided in demand
per skill per week. This leads us to using 𝐻 = {0, 1, … , (max ∈ (max ∈ 𝑑 ))} for the second
part. We get the following extended model:

min 𝜆 ⋅∑
∈
∑
∈
𝑗 ⋅ 𝑌 + 𝜆 ⋅∑

∈
∑
∈
ℎ ⋅ 𝑍 + 𝜆 ⋅∑

∈
𝑘 ⋅ 𝑊 (5.6)

s.t. 𝑙 𝑎 ≤ ∑
∈
𝑋 ≤ 𝑢 𝑎 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (5.7)

𝑋 = 0 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇, ∀𝑠 ∉ 𝑆 (5.8)

∑
∈
𝑋 = 𝑟 ⋅ 𝑉 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (5.9)

𝑝 ≥ ∑
∈
𝑋 − 𝑐 𝑎 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (5.10)

𝑝 ≥ 𝑐 𝑎 − ∑
∈
𝑋 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (5.11)

∑
∈
𝑗 ⋅ 𝑌 = 𝑝 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (5.12)

∑
∈
𝑌 = 1 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (5.13)

𝜌 ≥∑
∈
𝑋 − 𝑑 ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 (5.14)

𝜌 ≥ 𝑑 −∑
∈
𝑋 ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 (5.15)

∑
∈
ℎ ⋅ 𝑍 = 𝜌 ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 (5.16)

∑
∈
𝑍 = 1 ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 (5.17)

𝜏 ≥∑
∈
(∑
∈
𝑋 + 𝑐 (1 − 𝑎 )) − |𝑇|𝑐 ∀𝑖 ∈ 𝐼 (5.18)

𝜏 ≥ |𝑇|𝑐 −∑
∈
(∑
∈
𝑋 + 𝑐 (1 − 𝑎 )) ∀𝑖 ∈ 𝐼 (5.19)

∑
∈
𝑘 ⋅ 𝑊 = 𝜏 ∀𝑖 ∈ 𝐼 (5.20)

∑
∈
𝑊 = 1 ∀𝑖 ∈ 𝐼 (5.21)

𝑋 , 𝑉 ∈ ℕ ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 (5.22)
𝑌 , 𝑍 ,𝑊 ∈ {0, 1} ∀ℎ ∈ 𝐻, ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 (5.23)
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5.4. The extended approximate linear model
Like in the initial model, we add the distinction between skills in the approximate linear
model.

This for example makes constraints (4.52) and (4.53) turn into:

𝑚 ≥ ∑
∈
𝑋 − 𝑐 𝑎 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (5.24)

𝑚 ≥ 𝑐 𝑎 − ∑
∈
𝑋 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (5.25)

Constraints (4.54) and (4.55) stay the same (while this part of the objective function changes),
apart from the new indexes:

𝜈 ≥∑
∈
𝑋 − 𝑑 ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 (5.26)

𝜈 ≥ 𝑑 −∑
∈
𝑋 ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 (5.27)

And instead of constraints (4.56) and (4.57), we get:

𝜎 ≥∑
∈
(∑
∈
𝑋 + 𝑐 (1 − 𝑎 )) − |𝑇|𝑐 ∀𝑖 ∈ 𝐼 (5.28)

𝜎 ≥ |𝑇|𝑐 −∑
∈
(∑
∈
𝑋 + 𝑐 (1 − 𝑎 )) ∀𝑖 ∈ 𝐼 (5.29)

The whole model gets extended like that and leads to the following model:

min 𝜅 ⋅∑
∈
𝑚 + 𝜅 ⋅ 𝜈 + 𝜅 ⋅ 𝜎 + 𝜅 ⋅∑

∈
∑
∈
𝑝

+ 𝜅 ⋅∑
∈
𝑞 + 𝜅 ⋅∑

∈
∑
∈
𝜌 + 𝜅 ⋅∑

∈
𝜏 (5.30)

s.t. 𝑙 𝑎 ≤ ∑
∈
𝑋 ≤ 𝑢 𝑎 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (5.31)

𝑋 = 0 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇, ∀𝑠 ∉ 𝑆 (5.32)

∑
∈
𝑋 = 𝑟 ⋅ 𝑉 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (5.33)

𝑚 ≥ ∑
∈
𝑋 − 𝑐 𝑎 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (5.34)

𝑚 ≥ 𝑐 𝑎 − ∑
∈
𝑋 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (5.35)

𝜈 ≥∑
∈
𝑋 − 𝑑 ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 (5.36)

𝜈 ≥ 𝑑 −∑
∈
𝑋 ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 (5.37)

𝜎 ≥∑
∈
(∑
∈
𝑋 + 𝑐 (1 − 𝑎 )) − |𝑇|𝑐 ∀𝑖 ∈ 𝐼 (5.38)
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𝜎 ≥ |𝑇|𝑐 −∑
∈
(∑
∈
𝑋 + 𝑐 (1 − 𝑎 )) ∀𝑖 ∈ 𝐼 (5.39)

𝑝 ≥ ∑
∈
𝑋 − 𝑐 𝑎 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (5.40)

𝑝 ≥ 𝑐 𝑎 − ∑
∈
𝑋 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (5.41)

𝑞 ≥∑
∈
𝑋 − 𝑑 ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 (5.42)

𝑞 ≥ 𝑑 −∑
∈
𝑋 ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 (5.43)

𝜌 ≥∑
∈
𝑋 − 𝑑 ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 (5.44)

𝜌 ≥ 𝑑 −∑
∈
𝑋 ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 (5.45)

𝜏 ≥∑
∈
(∑
∈
𝑋 + 𝑐 (1 − 𝑎 )) − |𝑇|𝑐 ∀𝑖 ∈ 𝐼 (5.46)

𝜏 ≥ |𝑇|𝑐 −∑
∈
(∑
∈
𝑋 + 𝑐 (1 − 𝑎 )) ∀𝑖 ∈ 𝐼 (5.47)

𝑋 , 𝑉 ∈ ℕ ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 (5.48)





6
Results MILP models

In this chapter, we discuss the results from our previously introduced models.

6.1. Data and parameters
To test our model we need data. This data is obtained from a random instance generator
provided by ORTEC. As input, this generator needs the number of employees, weeks, skills
and instances we would like it to create. Then, a data set is put together with the following
data:

• For each employee is given whether or not the employee possesses a certain skill;

• For each employee, his/her minimum working hours per week, 𝑙 , is given;

• For each employee, his/her contract working hours per week, 𝑐 , is given;

• For each employee, his/her maximum working hours per week, 𝑢 , is given;

• For each employee, the weeks are given in which the employee is absent, this gets
translated to 𝑎 ;

• For each week, the demand is given in hours per week (per skill), 𝑑 (/𝑑 )

In the part where the skills are not introduced yet, we only consider one skill, which all em-
ployees are qualified for. The demand is then given by 𝑑 instead of 𝑑 .

Next to this data, we choose a value for parameter 𝑟, which defines the shift duration. In the
tests in this thesis, we defined 𝑟 to be equal to four hours.

Further, we need to make a choice for our weights. In our initial model and the exact lin-
ear model, 𝜆 , 𝜆 and 𝜆 are used. Because the three parts of our objective function vary
considerably in order of magnitude, we have to adapt our weights to make the parts weigh
equally. For doing this, we make use of sets 𝐽, 𝐻 and 𝐾 introduced in Section 4.3 With
their maximum values equal to max ∈ 𝑏 =max ∈ (𝑢 −𝑙 ), max ∈ 𝑑 / max ∈ (max ∈ 𝑑 ) and
max ∈ 𝑡𝑐 =max ∈ (|𝑇| ⋅max(𝑢 − 𝑐 , 𝑐 − 𝑙 )), respectively. We use the halved maximum values
to obtain values for the 𝜆 , 𝜆 and 𝜆 and standardize the outcome to obtain our weights.

𝜆∗ = 1
max ∈ 𝑏

𝜆∗ = 1
max ∈ 𝑑 𝜆∗ = 1

max ∈ 𝑡𝑐
(6.1)

𝜆∗ = 𝜆∗ + 𝜆∗ + 𝜆∗ (6.2)
𝜆 = 𝜆∗/𝜆∗ 𝜆 = 𝜆∗/𝜆∗ 𝜆 = 𝜆∗/𝜆∗ (6.3)

In the case we consider different skills, 𝜆∗ changes to
max ∈ (max ∈ )

.
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When we would like to make one part of the objective function dominant over the others, we
multiply the 𝜆∗ of that part by a chosen factor.

We aim to create a model for a planning horizon of 52 weeks and 100 employees, and next
to this, in the second time formulating the models, 5 skills. We run our exact linear model
and approximate linear model on this data set with varying weights for the three parts of the
objective function.

6.2. Results of the models that do not consider skills
First, we do not consider skills. In practice, this means that we consider one skill, which all
employees possess. So each employee is able to do each task.

We have set up the two models described in Chapter 4. We implemented them in Python
3.7.2 with the use of PuLP and solved them to optimality with the solver Gurobi (version 8.1).

We have solved the model for 20 instances with 100 employees and 52 weeks. When measur-
ing the run time of the two models, the exact model takes 70.89 seconds on average, while
the approximate model is done in 1.83 seconds on average. The run time and objective value
for each individual instance and for each model is given in Table 6.1.

Run time (s) Objective value Percentage
Instance Exact Approximate Exact Approximate (appr. obj. / exact obj.)

1 49.85 1.39 101,313.0 122,159.8 120.58%
2 53.30 2.41 165,098.0 195,330.1 118.31%
3 168.49 1.22 155,166.0 204,128.8 131.56%
4 47.97 2.68 204,134.0 255,559.5 125.19%
5 76.08 8.46 141,671.0 168,587.2 119.00%
6 65.46 2.09 100,439.0 124,227.1 123.68%
7 79.64 1.26 112,051.0 127,419.0 113.72%
8 55.59 0.86 125,761.0 157,401.6 125.16%
9 68.92 1.47 119,912.0 144,608.3 120.60%
10 28.45 1.24 148,255.0 182,308.5 122.97%
11 73.13 1.11 115,909.0 140,480.6 121.20%
12 46.54 0.95 106,608.0 125,117.2 117.36%
13 62.46 1.11 139,465.0 169,308.6 121.40%
14 41.68 3.31 98,095.0 114,775.2 117.00%
15 61.96 1.21 75,774.7 88,408.7 116.67%
16 64.44 0.98 122,049.0 139,151.2 114.01%
17 60.18 1.35 146,536.0 174,152.0 118.85%
18 68.09 1.87 106,074.0 129,921.2 122.48%
19 125.46 0.30 149,692.0 190,552.1 127.30%
20 120.12 1.36 110,046.0 133,287.3 121.12%

Average 70.89 1.83 120.91%

Table 6.1: Run time (in seconds) and objective values of 20 instances with 100 employees and 52 weeks, the last column
represents the percentage that the approximate objective value is of the exact objective value.

From this table, we observe that the run time of the exact model is, in every instance, higher
than the run time of the approximate model. Next to this, we notice that the objective value
of the approximate model deviates 20.91% from the objective value of the exact model on
average. The minimum deviation is 13.72% and the maximum deviation is 31.56%. Note
that the two largest deviations in objective values correspond with the two largest deviations
in run time when considering the percentages. This is not a clear correlation, since it does
not hold for all instances.
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6.3. Results of the models that consider skills
We decided to add skills to our model, which is presented in Chapter 5. This introduces ad-
ditional variables and constraints, which make the run time of our model longer. Again we
tested both models on 20 instances with 100 employees, 52 weeks, and now 5 skills. When
comparing the run time of the exact model with the approximate model, we use different
weights. For this, we use our weights like stated in Equation 6.3 and let one of the weights
weigh a chosen factor more than the other two.

Figure 6.1: Average run time over 20 instances with 100 employees, 52
weeks, 5 skills and a varying factor with which we multiply the first part of
the objective function.

In Figure 6.1, the average run
times over 20 instances with 100
employees, 52 weeks and 5 skills,
for varying weights for the part in
which the difference between work-
ing hours and contract hours per
employee per week is minimized,
are presented for the exact and the
approximate model. What strikes
in this figure is that for the weight
of the first part of the objective
function weighing as much as the
other two parts (when the weight
factor is 1), the run time of the ex-
act model is way higher than the
other weight factors, and than the
approximate model. This might be
because it takes time to find a cor-
rect balance between the parts. A
second remarkable result in this graph is the average run time of the exact model being lower
than the run time of the approximate model when the weight is multiplied with a factor ten.
For this weight factor, we look at corresponding Table 6.2, which shows the run time and ob-
jective value of each instance separately. In this table, we observe that the value for the first
part of the objective function - the value we emphasize to minimize in this case - is the same
for the exact model and the approximate one. However, the objective value for the exact model
is better each instance. We expect this must have to do with the exact model being more ap-
propriate to minimize the parts with a relatively lower weight, than the approximate model is.

After analyzing the effect of varying the weight of the first part of the objective function, we
started varying the weight of the second part. The second part of the objective function is
the part which is meant to minimize the over and under staffing. We first multiplied the
weight with 10, giving us 7.69 seconds as average run time for 20 instances solved with the
approximate model, and 189.33 seconds for the 20 instances using the exact model. When
multiplying the weight with 25, we got 26.11 seconds on average for the approximate model,
and 145.15 for the exact model. When we multiplied the weight with 50, the run time started
to vary a lot more per instance, especially for the approximate model. In 16 out of 20 in-
stances, the time needed by the approximate model was longer than the time needed by the
exact model. From these results, which are summarized in Table 6.3, we conclude that the
approximate model is not suited for getting an approximation of the solution of the objective
value of the initial model when the weight for the second part of the objective function is
multiplied by 50, 75 or 100. We stopped the computation of the approximate model when
it exceeded the run time of the exact model. Therefore it is not possible to compute a repre-
sentative average run time for the approximate model for some of the weights. In the fourth
column we show how many instances exceed the run time of the exact model.

Instead of using the approximate model, we might be able to use the exact model with a
time limit. Because the time limit causes that in most instances the optimal value cannot
be calculated in this fixed amount of time, this time limited model gives an approximation of
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Instance Run time (s) Objective value Value first part
Exact Appr. Exact Appr. Exact Appr.

1 17.869 23.781 3687.820 3704.618 1316 1316
2 30.134 17.715 4367.283 4391.545 2020 2020
3 12.992 19.681 6515.549 6535.934 196 196
4 38.953 4.398 12065.025 12279.201 1516 1516
5 24.287 5.967 2781.902 2787.609 972 972
6 34.071 56.080 10467.056 10672.391 1308 1308
7 20.225 58.411 3326.457 3339.188 572 572
8 15.851 41.692 4836.339 4890.565 596 596
9 33.281 28.935 6531.890 6597.810 756 756
10 22.024 17.364 2701.313 2711.530 924 924
11 19.379 9.337 3694.619 3694.990 592 592
12 14.733 22.492 4200.169 4250.338 748 748
13 23.948 7.067 6133.590 6169.483 732 732
14 25.202 6.923 4492.524 4514.941 1468 1468
15 14.223 68.018 3523.074 3559.683 576 576
16 27.883 21.944 2896.262 2921.558 552 552
17 10.177 58.686 3768.307 3779.896 780 780
18 17.345 71.541 2651.304 2667.317 560 560
19 11.557 15.057 4081.422 4090.993 168 168
20 21.019 6.947 3862.665 3869.702 756 756

Average 21.758 28.102

Table 6.2: Run time, objective values and the value for part one of the initial model, for the models for the 20 separate instances
with 100 employees, 52 weeks, 5 skills and the weight of the first part of the objective function being a factor 10 bigger than the
other two.

Weight Run time (s) Times exceeding
Exact Approximate

1 98.471 23.656 0
10 189.326 7.673 0
25 145.145 26.026 0
50 231.774 - 16
75 346.847 - 17
100 309.323 - 15

Table 6.3: Average run time over 20 instances with 100 employees, 52 weeks, 5 skills and a varying factor with which we multiply
the second part of the objective function.

the optimal objective value for the initial model, which we then prefer using over the approx-
imate model. We consider time limits of 60 seconds and 120 seconds. The objective values
obtained by this are presented in Table 6.4. In this table, the objective values that deviate at
most 5% from the objective value of the exact model without time limit are marked green.

For the third part, multiplying the weight by 10 made us obtain average run times of 140.32
seconds and 29.88 seconds for the exact and approximate model, respectively. Multiplying
the weight by 25 resulted in average run times of 193.19 seconds for the exact model, but
this weight already gave a problem for the approximate model and made the model exceed the
run time of the exact model for 14 out of 20 instances. This time we do not use a time limit
on our exact model to find another approximation. Namely, there is a correlation between
this third part of the objective function and the first part, for which we do have a working
approximate model. This correlation is visible in Table 6.5. For the approximate model with
extra weight on the first part of the objective function, the value for the third part is the same
as or even lower than the exact model with extra weight on the third part. In the table it is
clear that the size of weights do not correspond well; we would expect the exact model to give
a lower objective value.
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Instance Run time (s) Objective value Objective value Objective value
Exact Exact Exact - TL=60 Exact TL=120

1 121.677 218268.3 1843910.8 218279.4
2 175.290 267655.2 269092.5 267712.4
3 196.674 544572.4 1263146.0 544629.5
4 16.652 1170432.6 1170432.6 1170432.6
5 202.297 103844.7 104140.3 103865.7
6 58.787 830323.2 83023.2 830323.2
7 222.923 293299.2 838200.1 838200.1
8 220.317 414468.6 416551.4 414537.5
9 49.610 529450.1 529450.1 529450.1
10 276.101 148667.8 10161070.4 10161070.4
11 234.483 311084.6 3950796.5 2131371.1
12 84.194 396956.8 943800.2 396956.8
13 119.341 435610.4 435694.5 435610.4
14 183.023 362195.4 2043692.7 362197.5
15 97.180 293020.0 293057.0 293020.0
16 94.416 232703.5 232854.0 232703.5
17 674.826 339401.1 36791808.4 1109759.3
18 253.698 122572.0 3945076.1 2033049.6
19 230.733 376477.1 1808776.8 376518.8
20 176.662 297209.8 2185658.5 297248.3

Table 6.4: Objective values for 20 separate instances with 100 employees, 52 weeks, 5 skills and the weight of the second part
of the objective function being a factor 50 bigger than the other two, for the exact model (for which also run time in seconds is
given) and the exact model with a time limit (TL) on the run time of 60 and 120 seconds.

We expect that putting a higher weight on the third part of the objective function of the exact
model will give us values for the third part as good as the approximate model with extra
weight on the first part. We chose to multiply the weight of the third part by 100, for which
the results are shown in Table 6.6. In this case we did indeed get the same values for the
third part of the objective function as the approximate model. However, what is remarkable
is that the overall objective value is higher than of the approximate model. We expect this
having to do with the weights of the exact and approximate model not corresponding one on
one, and the weight on the first part of the objective model not corresponding to the weight
of the third part.
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Run time (s) Objective value Value third part
Instance Exact - w3=10 Appr. w1=10 Exact - w3=10 Appr. w1=10 Exact - w3=10 Appr. w1=10

1 119.819 23.781 18829.1 3704.6 12 12
2 238.553 17.715 19244.8 4391.5 636 12
3 119.904 19.681 45080.6 6535.9 996 4
4 127.995 4.398 80088.6 12279.2 3660 12
5 170.032 5.967 14292.3 2787.6 4 4
6 157.842 56.080 69433.5 10672.4 4012 12
7 209.701 58.411 22232.5 3339.2 508 12
8 75.972 41.692 32168.9 4890.6 1028 4
9 213.515 28.935 43921.6 6597.8 1036 12
10 65.641 17.364 13983.6 2711.5 12 12
11 107.352 9.337 23583.4 3695.0 8 8
12 153.604 22.492 28030.5 4250.3 84 4
13 136.633 7.067 40467.4 6169.5 972 12
14 95.009 6.923 23617.6 4514.9 20 20
15 59.720 68.018 21533.9 3559.7 24 8
16 126.767 21.944 19029.9 2921.6 40 8
17 138.108 58.686 22496.0 3779.9 916 4
18 118.564 71.541 16131.2 2667.3 8 8
19 130.124 15.057 29269.4 4091.0 1056 0
20 241.463 6.947 23901.0 3869.7 956 12

Table 6.5: Run time in seconds, objective value and value of the third part of the initial objective function for 20 separate instances
with 100 employees, 52 weeks and 5 skills, for the exact model with the weight of the third part of the objective function being a
factor 10 bigger than the other two, and the approximate model with the weight of the first part of the objective function being a
factor 10 bigger than the other two.

Instance Run time Objective value Value third
Exact - w3=100 Exact - w3=100 Exact - w3=100

1 113.066 5964.3 12
2 1057.344 6105.6 12
3 724.653 13101.5 4
4 135.234 25742.1 12
5 370.585 4531.9 4
6 211.544 22293.8 12
7 209.489 7906.1 12
8 69.031 10242.0 4
9 68.999 14015.7 12
10 108.512 4429.8 12
11 479.769 7461.2 8
12 36.114 9959.0 4
13 118.447 12963.2 12
14 271.467 7483.2 20
15 80.325 6204.9 8
16 152.815 6763.8 8
17 122.752 7165.9 4
18 811.912 5155.0 8
19 175.131 9351.2 0
20 359.431 7582.4 12

Table 6.6: Run time in seconds, objective value and the value for the third part of the initial model for the 20 separate instances
with 100 employees, 52 weeks, 5 skills and the weight of the third part of the objective function being a factor 100 bigger than
the other two.
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Conclusion, discussion and

recommendation
In this thesis, we have created two models which give a working schedule for 100 employees
with 5 skills for 52 weeks. From the exact linear model, we obtain the schedule for which
the difference between contract hours and working hours for each employee each week, over
and under staffing and the difference between contract hours and working hours for each
employee over the total planning horizon, is minimized. Next to this model, we have made
an approximate model, which is meant to approximate the solution of the problem within a
shorter amount of time.

We used Gurobi to solve our implemented problem. We compared the run time for our two
models first for a version in which we do not distinct between skills. The average run time of
20 instances of these models for 100 employees, 52 weeks and equal weights for each part of
the objective function was 17.26 seconds and 0.99 seconds for the exact and the approximate
model, respectively.

After that, we extend the models with a distinction between skills. For these models, we
evaluated the effect of giving different weights to parts of the objective function. For vary-
ing the weight on the first part of the objective function, we are able to use the extended
version of the approximate model. When the wish is to emphasize the second part of the
objective function, the approximate model did not manage to find an approximate solution
of the problem within a shorter amount of time when a weight is used that is 50 times bigger
than the other two. If this is the case, we can use a time limited version of our exact model,
which has a deviation of at most 5% from the exact model without time limit for 15 out of
20 instances, when using a time limit of 120 seconds. It would be interesting for future re-
search to analyze this with higher weights and more instances. The approximate model also
encountered problems when changing the third weight. This made us use the approximate
model with using the weight on the first part of the objective function. The weights do not
exactly correspond, so the outcome for the third part of the initial objective function is not
the same, but the third part does get minimized by the approximate model. It would be inter-
esting for future research to analyze more precisely why the approximate model stops being
able to solve the problem in a shorter amount of time when varying the weight on the second
or the third part of the model. If possible it would be interesting to create one approximate
model which is able to provide a quick approximation for the optimal solution for any weights.

The overall outcome does not seem that strange to us, since there are way more options
in interchanging the hours of the employees to fit the demand, and to make an employees
hours sum up to the needed amount of contract hours over the whole planning period, than
to interchange hours to give an employee its contract hours each week. This, however, is an
unsubstantiated statement, so we would recommend to investigate this in future research.

25
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It could also be interesting to do more research on (the relation between) the weights. We
have now chosen our weights based on the maximum values of each part of the objective
function, but there might be a better way to do this.
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