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Time-Domain Electromagnetic-Field Transmission
Between Small-Loop Antennas on a Half-Space

With Conductive and Dielectric Properties
Martin Štumpf , Member, IEEE, Giulio Antonini , Senior Member, IEEE,

Ioan E. Lager , Senior Member, IEEE, and Guy A. E. Vandenbosch , Fellow, IEEE

Abstract— The pulsed EM-field signal transfer between two
co-planar small-loop antennas located on a half-space with
dielectric and conductive properties is analyzed analytically with
the help of the Cagniard–DeHoop technique and the Schouten–
Van der Pol theorem. The analysis yields a closed-form time-
domain expression for the open-circuit voltage induced across
the ports of the receiving antenna. Limiting cases considering
the mutual coupling between two loops placed in free-space and
on a dielectric half-space are discussed. The obtained results are
validated using analytical expressions for the special cases and
with the aid of a 3-D EM computational tool.

Index Terms— Cagniard–DeHoop method, electromagnetic
coupling, electromagnetic propagation, electromagnetic radia-
tion, time-domain (TD) analysis.

I. INTRODUCTION

S INCE the early times of EM wave theory, considerable
research has been devoted to the EM-field propagation

along a conductive surface (see [1, Ch. VI]). In this regard,
a problem of particular interest consists of a pair of small
loop antennas lying on the conductive surface. This problem
has been thoroughly studied in the frequency domain [2]–[6],
thereby providing an efficient means for the determination
of electric permittivity and conductivity of a homogeneous
ground [7]. While the time-domain (TD) operation of buried
loop antennas has been successfully analyzed under the
quasi-static (diffusive) approximation [8], [9], the problem of
loop-to-loop coupling on a lossy half-space has never been
conquered analytically in the TD.
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The availability of ultra-wideband pulse generators
(see [10]) has enabled the development of body-centric
communication systems [11], [12] and pulsed radar systems
capable of probing the earth [13] or a human body [14]–[16].
Accordingly, with such TD EM applications in mind, this
article aims at describing the pulsed EM-field signal transfer
between two co-planar loop antennas lying on a half-space
with dielectric and conductive properties. It is demonstrated
that the Cagniard–DeHoop technique [17], [18] with the
Schouten–Van der Pol theorem of the unilateral Laplace
transformation [19], [20] is capable of meeting the goal. The
analysis yields a novel closed-form TD expression for the
open-circuit voltage induced across the ports of the receiving
antenna. In the expression, one can clearly identify wave
constituents that are propagating just above and just below the
interface with the (wavefront) EM wave speeds not influenced
by dispersion. In addition, a wave contribution forming
the tail of the response is present. The latter contribution
causes the pulse broadening and can be interpreted as a
dispersion effect due to a finite half-space conductivity.
Despite the latter vanishes on a dielectric half-space,
the observed voltage response is still wider with respect to
the exciting electric-current pulse due to the two propagation
paths.

The problem configuration considered in this article is
introduced in Section II. Subsequently, Section III presents
the problem formulation in the TD. In virtue of the Cagniard–
DeHoop technique [17], the problem is solved in Section IV
in the Laplace-transform domain under the wave slowness rep-
resentation. The TD solutions are provided in Section V upon
invoking the results derived in the Appendices. In Section VI,
the numerical results are given and validated with the aid of
CST Microwave Studio�. Finally, conclusions are drawn in
Section VII.

II. PROBLEM DESCRIPTION

The problem configuration under consideration is shown
in Fig. 1. To localize a point in the configuration, we employ
the Cartesian coordinates {x, y, z} with respect to a Cartesian
reference frame with the origin O and the standard base
{ix , iy , iz}. The problem configuration consists of two co-
planar loop antennas LT,R lying on the interface of two semi-
infinite media. The upper half-space represents the free space
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Fig. 1. Transmitting and receiving loop antennas lying on the lossy half-
space.

that occupies D0 = {−∞ < x < ∞,−∞ < y < ∞, 0 <
z < ∞}, while the ground extends over D1 = {−∞ < x <
∞,−∞ < y < ∞,−∞ < z < 0}. Accordingly, the EM
properties of D0 are described by (real-valued, positive, and
scalar) electric permittivity �0 and magnetic permeability μ0,
while the (homogeneous and isotropic) ground is described
by its electric permittivity �1, magnetic permeability μ0, and
electric conductivity σ . The corresponding (wavefront) wave
speeds in D0,1 are given by c0,1 = (�0,1μ0)

−1/2 > 0. The
maximum diameter of the loops is assumed to be small (with
respect to the spatial support of the excitation pulse) such that
they can be represented by magnetic dipoles oriented along the
z-axis [21, Sec. 26.10]. The transmitting antenna is, without
any loss of generality, located at the origin and the receiving
antenna is placed at (x0, y0, 0) or just at (x0, 0, 0) by virtue
of the circular symmetry. The areas of the transmitting and
receiving loops are denoted by AT,R. The time coordinate is
t . The time convolution between two signals, say f (t) and
g(t), is defined as

f (t) ∗t g(t) =
∫ ∞

τ=−∞
f (τ )g(t − τ )dτ (1)

and the time-integration operator can be then defined by

∂−1
t f (t) = f (t) ∗t H(t) =

∫ t

τ=−∞
f (τ )dτ (2)

where H(t) denotes the Heaviside-unit step function. The
Dirac-delta distribution is denoted by δ(t). Finally, the partial
differentiation is denoted by ∂ that is supplied with the
pertaining subscript. Then, the differentiation with respect to
x is denoted by ∂x and the time derivative is denoted by ∂t ,
for example.

III. PROBLEM FORMULATION

Following the approach based on EM reciprocity [22],
the open-circuit voltage induced at the ports of the receiving
loop LR is found from

V G(t) � −μ0AR∂t H e
z (x0, y0, 0, t) (3)

where H e
z is the z-component of the excitation (denoted by

superscript e) magnetic-field strength, which corresponds to
the field that would be excited by the transmitting loop in the

absence of the receiving antenna. Accordingly, the magnetic
field can be represented by [23, eq. (1.130)]

H e
z (x, y, z, t) = −�0∂t k(t)∗t G(x, y, z, t)

+ μ−1
0 ∂−1

t k(t)∗t ∂
2
z G(x, y, z, t) (4)

in D0 and

H e
z (x, y, z, t) = −(�1∂t + σ)k(t)∗t G(x, y, z, t)

+ μ−1
0 ∂−1

t k(t)∗t ∂
2
z G(x, y, z, t) (5)

in D1. Furthermore, the azimuthal component of the electric-
field strength and the radial component of the magnetic-field
strength can be represented with the help of [23, eqs. (1.129)
and (1.130)] and [24, eqs. (A2.34) and (A2.42)] as

Ee
φ(x, y, z, t) = k(t)∗t ∂r G(x, y, z, t) (6)

H e
r (x, y, z, t) = μ−1

0 ∂−1
t k(t)∗t ∂r∂z G(x, y, z, t) (7)

respectively, in which the source signature is related to the
exciting electric current i(t) via [21, p. 759]

k(t) = μ0AT∂t i(t) (8)

and G is the Green’s function of the scalar wave equation
applying to D0 and D1 (see [23, Sec. 2] and [21, Sec. 26.5]).
With reference to (6), the continuity of Ee

φ across the interface
requires

lim
z↓0

G(x, y, z, t) = lim
z↑0

G(x, y, z, t) (9)

while the presence of the transmitting loop is accounted for
via the excitation condition

lim
z↓0

∂z G(x, y, z, t)−lim
z↑0

∂z G(x, y, z, t)=−δ(x, y)δ(t) (10)

for all t > 0 and x ∈ R and y ∈ R. The thus formulated
problem whose solution yields a description of the EM-field
signal transfer, that is, V G(t) = Z(t) ∗t i(t), is the main
objective of the ensuing sections.

IV. TRANSFORM-DOMAIN SOLUTION

The problem will be solved with the aid of the Cagniard–
DeHoop technique [17], [18] that combines a unilateral
Laplace transform

Ĥ e
z (x, y, z, s) =

∫ ∞

t=0
exp(−st)H e

z (x, y, z, t)dt (11)

where s is the real-valued and positive transform parameter
with the wave slowness representation

Ĥ e
z (x, y, z, s)=(s/2π i)2

∫ i∞

κ=−i∞
dκ

∫ i∞

σ=−i∞
exp[−s(κx +σ y)]

× H̃ e
z (κ, σ, z, s)dσ (12)

where κ and σ are the slowness parameters in the x- and
y-directions, respectively. Employing the properties ∂̂t = s,
∂̂−1

t = 1/s, ∂̃x = −sκ , and ∂̃y = −sσ , the vertical magnetic
field in the transform domain follows upon using (11) and (12)
in (4) and (5)

H̃ e
z (κ, σ, z, s) = −s2î(s)AT(κ2 + σ 2)G̃(κ, σ, z, s) (13)
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where the transform-domain Green’s function has the follow-
ing form

G̃(κ, σ, z, s) =
{

A exp(−sγ0z), for z ≥ 0

B exp(−sγ̂1z), for z ≤ 0
(14)

with the vertical slowness parameters in D0,1 given by

γ0 = (
c−2

0 − κ2 − σ 2)1/2 (15)

γ̂1 = (
ĉ−2

1 − κ2 − σ 2)1/2 (16)

respectively, with ĉ1 = (c−2
1 + σμ0/s)−1/2 > 0 and Re(γ0) ≥

0 and Re(γ̂1) ≥ 0. It is noted that c1 is, in fact, the “high-
frequency limit” of ĉ1. The unknown coefficients in (14) are
finally found from the interface conditions (9) and (10) in the
transform domain. In this way, we obtain

A = B = 1/(sγ0 + sγ̂1) (17)

that fully determines the transform-domain solution. Noting
the property that the transform-domain magnetic-field strength
given by (13) is a function of κ2+σ 2, we change the variables
of integration according to

κ = p cos(φ) − iq sin(φ) (18)

σ = p sin(φ) + iq cos(φ) (19)

where x = r cos(φ) and y = r sin(φ) with r = (x2 + y2)1/2 >
0 and 0 ≤ φ < 2π . Under the substitution, κx + σ y = pr ,
dκdσ = id pdq and κ2+σ 2 = p2−q2, which implies [see (15)
and (16)]

γ0 = [
�2

0(q) − p2]1/2 (20)

γ̂1 = [
�̂2

1(q) − p2]1/2
(21)

where �0(q) = (c−2
0 + q2)1/2 > 0 and �̂1(q) = (ĉ−2

1 +
q2)1/2 > 0. This finally leads to

Ĥ e
z (x, y, z, s) = (s2/4π2i)

∫ ∞

q=−∞
dq

×
∫ i∞

p=−i∞
exp(−spr)H̄ e

z (p, q, z, s)d p (22)

where H̄ e
z (p, q, z, s) follows from (13) subject to the trans-

formation (18) and (19).

V. TIME-DOMAIN SOLUTION

Collecting the results from Section IV, the induced open-
circuit voltage can be expressed as

V̂ G(s) � ζ0ATARs3î(s) [P̂(x0, y0, s) − K̂ (x0, y0, s)] (23)

where ζ0 = (μ0/�0)
1/2 is the wave impedance in D0 and

the representation of functions P̂(x, y, s) and K̂ (x, y, s) is
discussed in Appendix A. Employing the results from the
appendix, we write

V̂ G(s) � (
ζ0ATAR/2πr5

0

)
î(s) Û(s; α0)

× {9[exp(−sT0) − exp(−sT̂1)]
+ 9[sT0 exp(−sT0) − sT̂1 exp(−sT̂1)]
+ 4[(sT0)

2 exp(−sT0) − (sT̂1)
2 exp(−sT̂1)]

+ [(sT0)
3 exp(−sT0) − (sT̂1)

3 exp(−sT̂1)]} (24)

with T0 = r0/c0, T̂1 = r0/ĉ1, r0 = (x2
0 + y2

0)1/2 > 0, and

Û(s; α0) = c0/(sχ + α0) (25)

in which χ = �1/�0 − 1 and α0 = σ/�0. The transformation
of (24) back to the TD is carried out with the aid of the
Schouten–Van der Pol theorem as given in Appendix B,
multiple integrations by parts and some standard rules of the
Laplace transformation (see [25, eq. (29.2.12)]). This way
leads to the main result expressed as

V G(t)

� ζ0ATAR

2πr2
0

U(t; α0)

∗t

{[
∂3

t i(t − T0)

c3
0

− c3
0

c3
1

∂3
t i(t − T1)

c3
0

exp(−α1T1/2)

]

+ 4

r0

[
∂2

t i(t − T0)

c2
0

− c2
0

c2
1

(
1 − 3

8
α1T1 + 1

32
α2

1 T 2
1

)

× ∂2
t i(t − T1)

c2
0

exp(−α1T1/2)

]

+ 9

r2
0

[
∂t i(t − T0)

c0
− c0

c1

(
1 − 4

9
α1T1 + 7

72
α2

1 T 2
1

− 1

72
α3

1 T 3
1 + 1

1152
α4

1 T 4
1

)
∂t i(t − T1)

c0
exp(−α1T1/2)

]

+ 9

r3
0

[
i(t − T0)−

(
1− 1

2
α1T1+ 1

8
α2

1 T 2
1 − 1

48
α3

1 T 3
1

+ 1

384
α4

1 T 4
1 − 1

2304
α5

1 T 5
1 + 1

27648
α6

1 T 6
1

)

× i(t − T1) exp(−α1T1/2)

]}
+ V G

0 (t) (26)

where α1 = σ/�1 and [see (25)]

U(t; α0) = (c0/χ) exp(−α0t/χ)H(t) (27)

and

V G
0 (t) = ζ0ATAR

2πr5
0

α1

2
i(t)∗t U(t; α0)

∗t

[
9 �(t, τ ; α1)|τ=T1 − 9 T1∂τ�(t, τ ; α1)|τ=T1

+ 4 (T1)
2∂2

τ �(t, τ ; α1)|τ=T1 −(T1)
3

× ∂3
τ �(t, τ ; α1)|τ=T1

]
× exp(−α1 t/2)H(t − T1) (28)

with

�(t, τ ; α) = τ

(t2 − τ 2)1/2 I1[(α/2)(t2 − τ 2)1/2] (29)

where I1(x) denotes the modified Bessel function of the first
kind and first order. The differentiations of (29) with respect
to τ readily follow and can be found in Appendix C.

The voltage response described by (26) consists of wave
constituents that are proportional to (a weighted sum of) the
exciting current and its first, second, and third time derivatives.
Clearly, the wave constituents appear at the receiving loop
at the (wavefront) arrival times T0,1 = r0/c0,1 = r0(�0,1μ0)

1/2
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Fig. 2. Ray trajectories of the wave constituents.

corresponding to D0,1 that are not affected by the electric
conductivity of the lower half-space (see Fig. 2). Accord-
ingly, these arrival times have been previously associated
with forerunners propagating along a conductive surface
[26]. The TD analytical solution represented by (26) fur-
ther reveals that the wave constituents propagating in the
conductive half-space undergo the exponential decay whose
rate is proportional to the inverse of the relaxation time
�1/σ = 1/α1 and distance r0. Owing to the exponential
damping, the latter constituents can be for good conductors
essentially neglected with respect to the ones traveling above
the interface. In fact, before the disturbance propagating at
wavefront speed c1 = (�1μ0)

−1/2 appears, the wave con-
stituents associated with the free-space travel time T0 are the
only non-vanishing constituents, thus forming the early time
part of the voltage response. Consequently, referring to (26),
we may write

V G(t) � ζ0ATAR

2πr2
0

U(t; α0)∗t

[
∂3

t i(t−T0)

c3
0

+ 4

r0

∂2
t i(t − T0)

c2
0

+ 9

r2
0

∂t i(t−T0)

c0
+ 9

r3
0

i(t−T0)

]
(30)

for {0 ≤ t < T1}, without introducing any further approxima-
tion. The remaining term V G

0 (t) in (26) does not contribute to
the initial part of the response and can be, hence, interpreted as
a relaxational effect shaping the long-time tail of the induced
voltage signal.

The existence of forerunners has been first theoretically
predicted by Sommerfeld [27, Ch. II and III] who analyzed 1-
D wave propagation through a dispersive medium. His solution
based on a time Fourier-integral representation consists of
two very weak forerunners followed by a dominant wave
packet traveling with the so-called group velocity. While the
first forerunner observed in the dispersive medium propa-
gates at the speed of light much like the initial disturbance
described by (30), the latter is not subject to drastic exponential
damping.

For a lossless half-space, α0,1 = 0 and (26) boils down to

lim
σ↓0

V G(t) � ζ0ATAR

2πr2
0

U(t; 0)

∗t

{[
∂3

t i(t − T0)

c3
0

− c3
0

c3
1

∂3
t i(t − T1)

c3
0

]

+ 4

r0

[
∂2

t i(t − T0)

c2
0

− c2
0

c2
1

∂2
t i(t − T1)

c2
0

]

+ 9

r2
0

[
∂t i(t − T0)

c0
− c0

c1

∂t i(t − T1)

c0

]

+ 9

r3
0

[i(t − T0) − i(t − T1)]

}
(31)

Since U(t; 0), in fact, represents the scaled Heaviside step
function, the time convolution in (31) can be carried out
analytically and we end up with

lim
σ↓0

V G(t)

� ζ0ATAR

2πr2
0

1

χ

×
{[

∂2
t i(t − T0)

c2
0

− c3
0

c3
1

∂2
t i(t − T1)

c2
0

]

+ 4

r0

[
∂t i(t − T0)

c0
− c2

0

c2
1

∂t i(t − T1)

c0

]

+ 9

r2
0

[i(t − T0) − (c0/c1)i(t − T1)]

+ 9

r3
0

[
c0∂

−1
t i(t − T0) − c0∂

−1
t i(t − T1)

]}
(32)

and recall that χ = �1/�0−1. Finally, if D1 does not show any
EM contrast with respect to the upper half-space D0, we get a
well-known expression for the “Thévenin equivalent generator
voltage”

lim
χ↓0

lim
σ↓0

V G(t) � ζ0ATAR

4πr0

{
∂3

t i(t − T0)

c3
0

+ 1

r0

∂2
t i(t − T0)

c2
0

+ 1

r2
0

∂t i(t − T0)

c0

}
(33)

which is consistent with (the TD counterpart of) (23) with the
limit (45) and with the results introduced in [22] and [28].

VI. ILLUSTRATIVE NUMERICAL EXAMPLES

We shall evaluate the pulsed EM transfer between two
co-planar loop antennas lying on the surface of a dielec-
tric/conductive half-space. The loops have the shape of a
square whose sides have a length a = 50 mm and areas
AT = AR = a2. The receiving loop is located at (x0, y0) =
(2.0, 1.0) m with respect to the center of the transmitter
(see Fig. 1) so that the distance between the antennas is
r0 = √

5 m. The transmitting loop is excited by a causal
electric-current pulse with finite temporal support that can be
simply constructed by convolving two triangular pulses, that
is,

i(t) = 16im

3

[(
t

tw

)3

H(t) − 2

(
t

tw
− 1

4

)3

H

(
t

tw
− 1

4

)

+ 2

(
t

tw
− 3

4

)3

H

(
t

tw
− 3

4

)
− 2

(
t

tw
− 1

)3

H

(
t

tw
− 1

)
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Fig. 3. Excitation electric-current pulse shape.

+ 2

(
t

tw
− 5

4

)3

H

(
t

tw
− 5

4

)
− 2

(
t

tw
− 7

4

)3

H

(
t

tw
− 7

4

)

+
(

t

tw
− 2

)3

H

(
t

tw
− 2

) ]
(34)

with the unit amplitude im = 1.0 A and the spatial support
of the pulse described by c0tw/r0 = √

5 (see Fig. 3).
Consequently, c0tw = 100a so that the loops are relatively
small as assumed before. For validation purposes, the induced
voltages will also be calculated with the aid of the finite-
integration technique (FIT) as implemented in CST Microwave
Studio�. The computational CST-FIT model consists of a
“brick” with defined dielectric/conductive properties whose
side lengths are 10 m × 10 m × 5.0 m, along the x-, y-,
and z-directions, respectively. The transmitting antenna that
is composed of four “discrete ports” forming the square
loop is placed on the top of the brick. The resulting pulses
representing the z-component of the excitation magnetic-
field strength are recorded using a standard “H -field probe”
located at the interface of the brick and the surrounding
space at distance r0 from the center of the source. The
induced voltage is subsequently calculated according to (3) in
a post-processing procedure. Around the analyzed structure,
we prescribe the standard “open (add space)” boundary con-
ditions. The model is spatially discretized into mesh cells such
that the parameter (maximum mesh step)/c0tw is always less
than 1/40.

In the first example, the antennas are placed on a loss-
free dielectric half-space whose permittivity is �1 = 4.0�0.
Fig. 4 shows that the resulting voltage responses as calculated
using (32) and FIT agree well. As the response calculated via
FIT suffered from fast oscillations whose period was neither
related to the characteristic travel times within the analyzed
problem configuration nor to reflections from its outer bound-
ary, we easily removed the artifacts using a simple 3-point
moving average filter [29, Sec. 6.4.1]. As the total voltage
response is composed of wave constituents propagating at

Fig. 4. Open-circuit voltage induced in the receiving loop on the loss-free
dielectric half-space with �1 = 4.0�0.

Fig. 5. Open-circuit voltage induced in the receiving loop on the lossy
half-space with �1 = 4.0�0 and σ = 50 mS/m.

the front wave speed c0 and of slower ones propagating at
c1 = c0/2, its pulse time width is, despite the dispersion-free
half-space, greater than the one of the exciting electric current
(see Fig. 3).

In the second case, the lower half-space is described by �1 =
4.0�0, again, and by a non-vanishing electric conductivity σ =
50 mS/m (see [30, Sec. III.B]). Fig. 5 shows the corresponding
pulse shapes calculated using (26) and FIT, again. Apparently,
the received voltage pulse is highly attenuated with respect to
the one shown in Fig. 4. On top of this, the finite conductivity
has a significant impact on the pulse shape as well as on the
pulse time width.

In order to further reveal the impact of the conductivity
on the induced voltage waveform, we next apply a narrower
excitation pulse with c0tw = 50a so that the spatial extent
of the pulse in D0 is approximately equal to the distance
between the antennas, namely, c0tw/r0 = √

5/2 � 1.12.
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Fig. 6. (a) Open-circuit voltage due to a relatively short electric-current pulse
with c0tw = 50a as induced at the receiving loop on the lossy half-space with
�1 = 4.0�0 and σ = 50 mS/m. (b) Comparison with the corresponding result
observed on the dielectric half-space with �1 = 4.0�0 and σ = 0.

Fig. 6(a) then shows the open-circuit voltage response as
calculated via (26) and using FIT, while in Fig. 6(b), we
compare the response with the corresponding one pertaining
to the loss-free dielectric half-space. It is clearly seen that
the response just after t = T0 (i.e., c0t/r0 = 1) is much
less affected by the finite conductivity then the later part after
t = T1 (i.e., c0t/r0 = 2). This observation is attributed to
the fact that the wave constituents whose ray trajectory goes
through (lossy) D1 (see Fig. 2) are highly attenuated, which
is not the case for the (loss-free) dielectric half-space. This
observation is also compatible with a frequency-domain view
that dispersive phenomena are imperceptible at observation
times close to the initial wavefront (with its high-frequency
content) and manifest themselves later when low-frequency
constituents become important [31].

VII. CONCLUSION

The pulsed EM signal transmission between two co-planar
loop antennas located on a lossy half-space was described
analytically via the Cagniard–DeHoop technique and the
Schouten–Van der Pol theorem. A closed-form space-time
expression for the open-voltage induced in the receiving

antenna was introduced and discussed. It follows that the
resulting voltage response can be constructed from a weighted
sum of the exciting current and its first, second, and third
time derivatives and from a late-time tail due to a finite
conductivity. Numerical examples illustrated special features
of the space-time solution that are not directly apparent
from the available frequency-domain results. The analytical
formulas are suitable for validation and benchmarking of
purely numerical techniques. It is further anticipated that
the introduced methodology is applicable to describing the
EM pulse transmission between buried antennas, which is
commonly analyzed with the aid of general-purpose direct-
discretization techniques (see [30]) at the expense of high
computational demands.

APPENDIX

A. Generic Integrals

In this appendix, the slowness-domain representations of
constitutive functions P̂(x, y, s) and K̂ (x, y, s) [see (23)]
are cast into a form that is amenable to inversion to
the TD.

1) Representation of Function P̂(x, y, s): The slowness
representation of the constitutive function P̂(x, y, s) is given
by

P̂(x, y, s) = s

4π2i

c−1
0

ĉ−2
1 − c−2

0

∫ ∞

q=−∞
dq

×
∫ i∞

p=−i∞
exp(−spr)γ̂1(p, q)(p2 − q2)d p (35)

for r > 0 and s > 0 with γ̂1 given by (21). The integration
contour along the imaginary axis in the complex p-plane
is further deformed into the loop encircling the branch cut
{0 < �̂1(q) < Re(p) < ∞, Im(p) = 0}. The deformation
is permissible since sr > 0, thus getting a vanishingly small
integrand along supplementing circular arcs of infinite radius
in Re(p) > 0. The loop is associated with the Cagniard–
DeHoop path, say C ∪ C∗, with

C = {p(τ ) = τ/r + i0} (36)

for {τ ∈ R; r�̂1(q) ≤ τ < ∞}. Combining the contributions
from C and C∗ and introducing τ as the new variable of
integration, we get

P̂(x, y, s)=− s

2π2r2

c−1
0

ĉ−2
1 −c−2

0

∫ ∞

q=−∞
dq

∫ ∞

τ=r�̂1(q)
exp(−sτ )

× [p2(τ ) − q2][τ 2 − r2�̂2
1(q)

]1/2dτ (37)

In the next step, we change the order of the integrations and
use the fact that the integrand is an even function of q . We then
obtain

P̂(x, y, s) = − s

π2r

c−1
0

ĉ−2
1 − c−2

0

∫ ∞

τ=D̂1

exp(−sτ )dτ

×
∫ Q̂1(τ )

q=0
[τ 2/r2 − q2][Q̂2

1(τ ) − q2]1/2dq (38)
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where Q̂1(τ ) = (τ 2/r2 − ĉ−2
1 )1/2 and D̂1 = r/ĉ1. The integral

with respect to q can be carried out analytically, which yields

P̂(x, y, s) = − sc−1
0

16πr

c2
0/ĉ2

1

c2
0 − ĉ2

1

3

D̂4
1

∫ ∞

τ=D̂1

exp(−sτ )τ 4dτ

+ sc−1
0

16πr

c2
0/ĉ2

1

c2
0 − ĉ2

1

2

D̂2
1

∫ ∞

τ=D̂1

exp(−sτ )τ 2dτ

+ sc−1
0

16πr

c2
0/ĉ2

1

c2
0 − ĉ2

1

∫ ∞

τ=D̂1

exp(−sτ )dτ (39)

which is a sum of Laplace-transform integrals [see (11)].
2) Representation of Function K̂ (x, y, s): The slowness

representation of the constitutive function K̂ (x, y, s) is given
by

K̂ (x, y, s) = s

4π2i

c−1
0

ĉ−2
1 − c−2

0

∫ ∞

q=−∞
dq

×
∫ i∞

p=−i∞
exp(−spr)γ0(p, q)(p2−q2)d p (40)

for r > 0 and s > 0 with γ0 given by (20). Following the
lines of reasoning from Section VII, the integration contour is
first replaced with the corresponding Cagniard–DeHoop path,
say G ∪ G∗, whose parametrization is

G = {p(τ ) = τ/r + i0} (41)

for {τ ∈ R; r�0(q) ≤ τ < ∞} [see (20)]. Again, introducing τ
as the new variable of integration, combining the contributions
from G and G∗, and changing the order of the integrations with
respect to q and τ , we end up with [see (38)]

K̂ (x, y, s) = − s

π2r

c−1
0

ĉ−2
1 − c−2

0

∫ ∞

τ=D0

exp(−sτ )dτ

×
∫ Q0(τ )

q=0
[τ 2/r2 − q2][Q2

0(τ ) − q2]1/2dq (42)

where Q̂0(τ ) = (τ 2/r2 − c−2
0 )1/2 and D0 = r/c0. Evaluating

the inner integral, we get

K̂ (x, y, s) = − sc−1
0

16πr

ĉ2
1/c2

0

c2
0 − ĉ2

1

3

D4
0

∫ ∞

τ=D0

exp(−sτ )τ 4dτ

+ sc−1
0

16πr

ĉ2
1/c2

0

c2
0 − ĉ2

1

2

D2
0

∫ ∞

τ=D0

exp(−sτ )τ 2dτ

+ sc−1
0

16πr

ĉ2
1/c2

0

c2
0 − ĉ2

1

∫ ∞

τ=D0

exp(−sτ )dτ (43)

which has, again, the form of Laplace-transform integrals.
3) Difference P̂(x, y, s) − K̂ (x, y, s): With reference to

(23), we shall evaluate the difference of (39) and (43). To
that end, the integrations with respect to τ are carried out
analytically and we end up with

P̂(x, y, s)− K̂ (x, y, s)

= 1

2πr

c−1
0

c2
0−ĉ2

1

[
ĉ2

1

c2
0

exp(−s D0)

s D0
− c2

0

ĉ2
1

exp(−s D̂1)

s D̂1

]

+ 4

2πr

c−1
0

c2
0−ĉ2

1

[
ĉ2

1

c2
0

exp(−s D0)

s2 D2
0

− c2
0

ĉ2
1

exp(−s D̂1)

s2 D̂2
1

]

+ 9

2πr

c−1
0

c2
0−ĉ2

1

[
ĉ2

1

c2
0

exp(−s D0)

s3 D3
0

− c2
0

ĉ2
1

exp(−s D̂1)

s3 D̂3
1

]

+ 9

2πr

c−1
0

c2
0−ĉ2

1

[
ĉ2

1

c2
0

exp(−s D0)

s4 D4
0

− c2
0

ĉ2
1

exp(−s D̂1)

s4 D̂4
1

]
. (44)

It is interesting to observe that the following limit

lim
ĉ1↑c0

[P̂(x, y, s) − K̂ (x, y, s)]

= 1

4πr

1

c3
0

[
1 + 1

s D0
+ 1

s2 D2
0

]
exp(−s D0) (45)

when used in (23) conforms with the description of a two-loop
EM-field transfer system [22, Sec. IX]. Equation (44) has been
used in (23) to find the closed-form expression (24) for the
open-circuit voltage response in the s-domain.

B. Schouten–Van der Pol Theorem for the Replacement of s
by (s2 − α2/4)1/2

Let f (t) be a causal function whose Laplace transform is

f̂ (s) =
∫ ∞

τ=0
exp(−sτ ) f (τ )dτ (46)

for {s ∈ R; s > 0}. Consequently, replacing s with (s2 −
α2/4)1/2 leads to

F̂(s; α) = f̂ [(s2 − α2/4)1/2]
=

∫ ∞

τ=0
exp[−(s2 − α2/4)1/2τ ] f (τ )dτ. (47)

The TD counterpart of the latter is found with the aid of

exp[−(s2 − α2/4)1/2τ ] =
∫ ∞

t=0
exp(−st)�(t, τ ; α)dt (48)

where (see [25, eq. (29.3.96)])

�(t, τ ; α) = δ(t − τ ) + (α/2)τ (t2 − τ 2)−1/2

× I1[(α/2)(t2 − τ 2)1/2]H(t − τ ). (49)

Substituting (48) in (47) and using Lerch’s uniqueness theorem
[32, Appendix], we arrive at

F(t; α) = f (t) + (α/2)

∫ t

τ=0
f (τ )I1[(α/2)(t2 − τ 2)1/2]

× τ dτ

(t2 − τ 2)1/2 . (50)

Equation (50) will be used to find the TD voltage
response (26).

C. Supplementing Expressions

The differentiations of (29) can be carried out analytically,
which yields

∂τ�(t, τ ; α) = t2+τ 2

t2−τ 2

I1[(α/2)(t2−τ 2)1/2]
(t2−τ 2)1/2

− ατ

2

τ

(t2−τ 2)1/2

I0[(α/2)(t2−τ 2)1/2]
(t2 − τ 2)1/2 (51)

∂2
τ �(t, τ ; α) ]=

[
6τ

(t2−τ 2)1/2 + 8τ 3

(t2−τ 2)3/2
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+α2τ 2

4

τ

(t2−τ 2)1/2

]
I1[(α/2)(t2−τ 2)1/2]

t2−τ 2

− ατ

[
2τ 2

t2 − τ 2 + 3

2

]
I0[(α/2)(t2−τ 2)1/2]

t2−τ 2

(52)

and finally

∂3
τ �(t, τ ; α) =

[
6 + 3α2τ 2

2
+ 48τ 2

t2 − τ 2 + 48τ 4

(t2 − τ 2)2

+ 2α2τ 2 τ 2

t2 − τ 2

]
I1[(α/2)(t2 − τ 2)1/2]

(t2 − τ 2)3/2

−
[

3
2α(t2 − τ 2)1/2 + 12ατ

τ

(t2 − τ 2)1/2

+ 12ατ
τ 3

(t2−τ 2)3/2 + α3τ 3

8

τ

(t2−τ 2)1/2

]

× I0[(α/2)(t2 − τ 2)1/2]
(t2 − τ 2)3/2 . (53)

Expressions (29) with (51)–(53) can be used in (28) to
calculate the time convolution with U(t; α0). In this respect,
it is noted that �(t, τ ; α) and its derivatives are bounded as
t → τ . Indeed, the limits of (51)–(53) read

lim
t→τ

�(t, τ ; α) = 1

4
ατ (54)

lim
t→τ

∂τ�(t, τ ; α) = α

(
1

4
− 1

64
α2τ 2

)
(55)

lim
t→τ

∂2
τ �(t, τ ; α) = −α2

(
3

64
ατ − 1

1536
α3τ 3

)
(56)

lim
t→τ

∂3
τ �(t, τ ; α) = −α3

(
3

64
− 1

256
α2τ 2+ 1

49152
α4τ 4

)
(57)

respectively. Notwithstanding the bounded limits, the eval-
uation of the time-convolution integrals in (28) is a chal-
lenging task. Accordingly, nearly singular integrals can
be evaluated via stretching the variable of integration
[33, Sec. VIII].

ACKNOWLEDGMENT

The authors would like to extend their thanks to the (anony-
mous) reviewers for their careful reading of the article and
their constructive suggestions for the improvement of this
article. The research reported in this article was carried out
during a visiting professorship M. Štumpf had effectuated at
the UAq EMC Laboratory, University of L’Aquila, Italy.

REFERENCES

[1] A. Sommerfeld, Partial Differential Equations in Physics. New York,
NY, USA: Academic, 1949.

[2] J. R. Wait, “Current-carrying wire loops in a simple inhomogeneous
region,” J. Appl. Phys., vol. 23, no. 4, pp. 497–498, 1952.

[3] J. R. Wait, “Mutual electromagnetic coupling of loops over a homoge-
neous ground,” Geophysics, vol. 20, no. 3, pp. 630–637, 1955.

[4] M. Parise, “Exact electromagnetic field excited by a vertical magnetic
dipole on the surface of a lossy half-space,” Prog. Electromagn. Res.,
vol. 23, pp. 69–82, 2010.

[5] M. Parise, M. Muzi, and G. Antonini, “Loop antennas with uniform
current in close proximity to the earth: Canonical solution to the surface-
to-surface propagation problem,” Prog. Electromagn. Res., vol. 77,
pp. 57–69, 2017.

[6] J. Nagar, B. Q. Lu, M. F. Pantoja, and D. H. Werner, “Analytical
expressions for the mutual coupling of loop antennas valid from the
RF to optical regimes,” IEEE Trans. Antennas Propag., vol. 65, no. 12,
pp. 6889–6903, Dec. 2017.

[7] J. R. Wait, “Mutual coupling of loops lying on the ground,” Geophysics,
vol. 19, no. 2, pp. 290–296, 1954.

[8] J. R. Wait and D. A. Hill, “Transient signals from a buried magnetic
dipole,” J. Appl. Phys., vol. 42, no. 10, pp. 3866–3869, 1971.

[9] J. R. Wait and D. A. Hill, “Transient electromagnetic fields of a finite
circular loop in the presence of a conducting half-space,” J. Appl. Phys.,
vol. 43, no. 11, pp. 4532–4534, 1972.

[10] F. Zito, D. Pepe, and D. Zito, “UWB CMOS monocycle pulse generator,”
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 10, pp. 2654–2664,
May 2010.

[11] S. L. Cotton, “A statistical model for shadowed body-centric com-
munications channels: Theory and validation,” IEEE Trans. Antennas
Propag., vol. 62, no. 2, pp. 1416–1424, Mar. 2014.

[12] L. A. Y. Poffelie, P. J. Soh, S. Yan, and G. A. E. Vandenbosch, “A high-
fidelity all-textile UWB antenna with low back radiation for off-body
WBAN applications,” IEEE Trans. Antennas Propag., vol. 64, no. 2,
pp. 757–760, Feb. 2016.

[13] S. Vitebskiy, L. Carin, M. A. Ressler, and F. H. Le, “Ultra-wideband,
short-pulse ground-penetrating radar: Simulation and measurement,”
IEEE Trans. Geosci. Remote Sens., vol. 35, no. 3, pp. 762–772,
May 1997.

[14] F. Thiel and F. Seifert, “Noninvasive probing of the human body with
electromagnetic pulses: Modeling of the signal path,” J. Appl. Phys.,
vol. 105, no. 4, 2009, Art. no. 044904.

[15] Ø. Aardal, Y. Paichard, S. Brovoll, T. Berger, T. S. Lande, and
S.-E. Hamran, “Physical working principles of medical radar,” IEEE
Trans. Biomed. Eng., vol. 60, no. 4, pp. 1142–1149, Apr. 2013.

[16] H. Song et al., “Detectability of breast tumor by a hand-held impulse-
radar detector: Performance evaluation and pilot clinical study,” Sci.
Rep., vol. 7, no. 1, 2017, Art. no. 16353.

[17] A. T. De Hoop, “A modification of Cagniard’s method for solving
seismic pulse problems,” Appl. Sci. Res., vol. 8, no. 1, pp. 349–356,
1960.

[18] M. Štumpf, A. T. De Hoop, and G. A. E. Vandenbosch, “Generalized
ray theory for time-domain electromagnetic fields in horizontally layered
media,” IEEE Trans. Antennas Propag., vol. 61, no. 5, pp. 2676–2687,
May 2013.

[19] J. P. Schouten, “A new theorem in operational calculus together
with an application of it,” Physica, vol. 2, nos. 1–12, pp. 75–80,
1935.

[20] B. van der Pol, “A theorem on electrical networks with an application
to filters,” Physica, vol. 1, pp. 521–530, May 1934.

[21] A. T. de Hoop, Handbook of Radiation and Scattering of Waves. London,
U.K.: Academic, 1995.

[22] A. T. De Hoop, I. E. Lager, and V. Tomassetti, “The pulsed-field
multiport antenna system reciprocity relation and its applications—A
time-domain approach,” IEEE Trans. Antennas Propag., vol. 57, no. 3,
pp. 594–605, Mar. 2009.

[23] S. H. Ward and G. W. Hohmann, “Electromagnetic theory for geophys-
ical applications,” Electromagn. Methods Appl. Geophys., vol. 1, no. 3,
pp. 130–311, 1988.

[24] J. G. van Bladel, Electromagnetic Fields, 2nd ed. Hoboken, NJ, USA:
Wiley, 2007.

[25] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions.
New York, NY, USA: Dover, 1972.

[26] G. J. Weir, “Forerunners on conducting surfaces: The infinitesimal
vertical magnetic dipole with displacement terms,” Geophys. J. Int.,
vol. 81, no. 1, pp. 19–31, 1985.

[27] L. Brillouin, Wave Propagation and Group Velocity. New York, NY,
USA: Academic, 1960.

[28] I. E. Lager and A. T. de Hoop, “Loop-to-loop pulsed electromagnetic
field wireless signal transfer,” in Proc. 6th Eur. Conf. Antennas Propag.,
2012, pp. 786–790.

[29] A. V. Oppenheim, Signals Systems, 2nd ed. Upper Saddle River, NJ,
USA: Prentice-Hall, 1997.

[30] A. S. Kesar and E. Weiss, “Wave propagation between buried anten-
nas,” IEEE Trans. Antennas Propag., vol. 61, no. 12, pp. 6152–6156,
Nov. 2013.

[31] L. B. Felsen, “Propagation and diffraction of transient fields in non-
dispersive and dispersive media,” in Transient Electromagnetic Fields.
New York, NY, USA: Springer-Verlag, 1976, pp. 1–72.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 21,2020 at 06:55:34 UTC from IEEE Xplore.  Restrictions apply. 



946 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 68, NO. 2, FEBRUARY 2020

[32] M. Štumpf, Electromagnetic Reciprocity in Antenna Theory. Hoboken,
NJ, USA: Wiley, 2018.

[33] A. T. D. Hoop, M. Štumpf, and I. E. Lager, “Pulsed electromagnetic
field radiation from a wide slot antenna with a dielectric layer,” IEEE
Trans. Antennas Propag., vol. 59, no. 8, pp. 2789–2798, Aug. 2011.

Martin Štumpf (M’15) received the Ph.D. degree
in electrical engineering from the Brno University of
Technology (BUT), Brno, Czech Republic, in 2011.

He was a Post-Doctoral Fellow with the ESAT-
TELEMIC Division, Katholieke Universiteit Leu-
ven, Leuven, Belgium. During a 3-month period
in 2018, he was a Visiting Professor with the UAq
EMC Laboratory, University of L’Aquila, L’Aquila,
Italy. He is currently an Associate Professor with
the Department of Radioelectronics, BUT. He has
authored the books titled Electromagnetic Reci-

procity in Antenna Theory (Wiley–IEEE Press, 2017), Pulsed EM Field
Computation in Planar Circuits: The Contour Integral Method (CRC Press,
2018), and Time-Domain Electromagnetic Reciprocity in Antenna Modeling
(Wiley–IEEE Press, 2019). His current research interest includes modeling
of electromagnetic wave phenomena with an emphasis on EMC and antenna
engineering.

Giulio Antonini (M’94–SM’05) received the Laurea
degree (cum laude) in electrical engineering from
the University of L’Aquila, L’Aquila, Italy, in 1994,
and the Ph.D. degree in electrical engineering from
the University of Rome “La Sapienza,” Rome, Italy,
in 1998.

Since 1998, he has been with the UAq EMC
Laboratory, University of L’Aquila, where he is
currently a Professor. He has coauthored the book
Circuit Oriented Electromagnetic Modeling Using
the PEEC Techniques (Wiley–IEEE Press, 2017).

His current research interest includes computational electromagnetics.

Ioan E. Lager (SM’14) received the M.Sc. degree
from the “Transilvania” University of Braşov,
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