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the Cycle Space of the Graph*
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Chenghui Zhang\S 

Abstract. The synchronization stability of a complex network system of coupled phase oscillators is discussed.
In case the network is affected by disturbances, a stochastic linearized system of the coupled phase
oscillators may be used to determine the fluctuations of phase differences in the lines between the
nodes and to identify the vulnerable lines that may lead to desynchronization. The main result is
the derivation of the asymptotic variance matrices of the phase differences which characterizes the
severity of the fluctuations. It is found that the cycle space of the graph of the system plays a role
in this characterization. With theory of the cycle space, the effect of forming small cycles on the
fluctuations is evaluated. It is proven that adding a new line or increasing the coupling strength of
a line affects the fluctuations in the lines in any cycle including this line, while it does not affect the
fluctuations in the other lines. In particular, if the phase differences at the synchronous state are
not changed by these actions, then the affected fluctuations reduce.

Key words. networked system, synchronization stability, cycle space of graphs, invariant probability distribu-
tion, asymptotic variance, stochastic Gaussian system, Lyapunov equation
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1. Introduction. Synchronization in a networked system of coupled phase oscillators
serves as a paradigm for understanding the collective behavior of a real complex networked
system. A coupled oscillator network is characterized by a population of heterogeneous oscil-
lators and a graph describing the interaction among the oscillators. Examples of such systems
arise in nature (e.g., Kuramoto oscillators [17], chimera spatiotemporal patterns [1], cardiac
pacemaker cells [11]) and in technological systems (e.g., multi-agent systems [19], consensus
problems [7], distributed optimization [32], power grids [31, 21]).

In this paper, we focus on systems which need synchronization for proper functioning, such
as power grids. If the synchronization is lost, then the systems can no longer function properly.
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SYNCHRONIZATION OF COUPLED PHASE OSCILLATORS 1031

The vast literature shows that significant insights have been obtained on the emergence of a
synchronous state (defined to be a steady state of the system) and synchronization coherence.
The synchronization is determined by the system parameters, including the natural frequencies
at the nodes, the network topology, and the coupling strength of lines. With the metrics of
the critical coupling strength [7, 8, 10] and the order parameter [25], the effects of these
parameters on the synchronization are widely investigated. Based on these investigations,
the system parameters may be assigned to optimize the synchrony, which can be attained by
deletion or addition of lines, or by changing the coupling strength of the lines in the network.
An important problem is to maintain the synchronization when the system is subjected to
disturbances. Regarding the ability to maintain the synchronization, the spectrum of the
system matrix of the linearized system and the volume of the basin of attraction of a stable
synchronous state may be investigated. However, in these investigations, the severity of the
disturbances is not considered and the lines at which the synchronization may be lost cannot
be effectively identified. The question of how disturbances spread through networks of power
systems has attracted wide interest in investigation with a toolbox for simulations and with
analytic methods [16, 34, 2, 20]. In control theory, the synchronous state is mentioned as
the set point for control, in which control actions are taken to let the state converge to
the synchronous state after disturbances. Thus, under continuous disturbances, the phase
may fluctuate around the synchronous state. If the fluctuations of the phase differences are
larger than the threshold \pi /2, a synchronous state may not be attained any longer, and
then the synchronization may be lost [13]. This indicates the necessity to study the phase
difference in the lines but not the phases at the nodes. One says that a line is vulnerable
if the desynchronization occurs at this line easily. Clearly, the lines with large fluctuations
in the phase difference are vulnerable. Modelling the disturbances by inputs to the system,
the \scrH 2 norm of a linear input-output system has been widely used to study the fluctuations
of the phase differences [23, 26]. With this \scrH 2 norm, the fluctuations may be effectively
suppressed by assigning the system parameters, thus improving the robustness of the system.
However, because the \scrH 2 norm is equal to the trace of a matrix [26], which is a global metric
characterizing the sum of the fluctuations, the fluctuations of the phase differences in the lines
and their correlation can hardly be explicitly characterized.

In this paper, we investigate the dependence of the fluctuations of the phase differences in
each line on the system parameters analytically, which can be used to suppress the fluctuations
and identify the vulnerable lines, thus improving the ability of the system to maintain the
synchronization. We model the disturbance by a set of Brownian motions and reformulate the
system as a stochastic linear system. It is well known that for a linear Gaussian stochastic
system with a system matrix that is Hurwitz, there exists an invariant probability distribution
of the state that is a Gaussian probability distribution characterized by the mean value and
the asymptotic variance of the state [18, Theorem 1.53], [15, Theorem 6.7]. In the invariant
distribution, the asymptotic variance characterizes the severity of the fluctuations in the phase
difference in each line of the system. The focus of this paper is on the asymptotic variance
of a stochastic linearized network system of coupled phase oscillators, which reveals how the
fluctuations in the phase differences depend on the system parameters. With the asymptotic
matrix as a metric, a new avenue is open to study the robustness of network systems against
the disturbances. The contribution of this paper include explicit formulas of the asymptotic
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1032 XI, WANG, CHENG, LIN, VAN SCHUPPEN, AND ZHANG

variance matrix and findings from these formulas on the impact of adding new lines and
strengthening the coupling of the oscillators. To the best of our knowledge, for the first time
the cycle space of a graph is related to the robustness of the system by an explicit formula. The
method to study the synchronization stability in this paper can be extended to the networks
with synchronizations, such as the power systems [30] and the general diffusive network [25].

The paper is structured as follows. Section 2 provides elementary preliminaries on graph
theory and the invariant probability distribution of a stochastic process. We formulate the
problem of the complex network of coupled phase oscillators and present the main results on
the asymptotic variance in section 3. The findings from the asymptotic variance are illustrated
in three example networks in section 4. Section 5 provides the proofs of the results, and section
6 concludes with remarks.

2. Preliminaries. The elementary notation, properties of graphs and the cycle space, and
the concept of the asymptotic variance of a stochastic Gaussian system are introduced in this
section.

2.1. Notation. The set of the integers is denoted by \BbbZ = \{ . . . , - 1,0,1,2, . . .\} and that of
the positive integers by \BbbZ + = \{ 1,2, . . .\} . For any integer n \in \BbbZ denote the set of the first n
positive integers by \BbbZ n = \{ 1,2, . . . , n\} . The set of the real numbers is denoted by \BbbR . Denote
the strictly positive real numbers by \BbbR + = (0,+\infty ).

The vector space of n-tuples of the real numbers is denoted by \BbbR n for an integer n \in \BbbZ +.
For the integers n,m \in \BbbZ + the set of n by m matrices with entries of the real numbers is
denoted by \BbbR n\times m. Denote the identity matrix of size n by n by \bfI n \in \BbbR n\times n, which may also
be denoted by \bfI if the size is clear from the context.

Denote subsets of matrices as follows: for an integer n \in \BbbZ +, \BbbR n\times n
spd denotes the subset of

symmetric positive semi-definite matrices of which an element is denoted by 0\preceq \bfQ =\bfQ \top ; for
matrices \bfA \in \BbbR n\times n and \bfB \in \BbbR n\times n, \bfA \preceq \bfB denotes that \bfB  - \bfA is positive semi-definite; \BbbR n\times n

nsng

denotes the subset of nonsingular square matrices; and \BbbR n\times n
ortg denotes the subset of orthogonal

matrices which by definition satisfy \bfU \bfU \top = \bfI n = \bfU \top \bfU . Call a square matrix \bfA \in \BbbR n\times n

Hurwitz if all eigenvalues have a real part which is strictly negative; in terms of notation, for
any eigenvalue \lambda (\bfA ) of the matrix \bfA , Re(\lambda (\bfA ))< 0.

2.2. Graphs and the cycle space. Consider an undirected weighted network \scrG = (\scrV ,\scrE )
with a set of n\in \BbbZ + nodes denoted by \scrV and a set of m\in \BbbZ + edges or lines denoted by \scrE and
line weight wij = wji \in \BbbR + if the nodes i and j are connected and wij = 0 otherwise. Denote
by k= (i, j)\in \scrE the edge connecting the nodes i and j. The Laplacian matrix of the graph is
defined as \bfL = (lij)\in \BbbR n\times n with

lij =

\biggl\{ 
 - wij if i \not = j,\sum n

k=1,k \not =iwik if i= j.

The incidence matrix is defined as \bfC = (Cik)\in \BbbR n\times m with Cik \in \BbbR , where

Cik =

\left\{   
1 if node i is the beginning of line ek,

 - 1 if node i is the end of line ek,
0 otherwise.

(2.1)
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SYNCHRONIZATION OF COUPLED PHASE OSCILLATORS 1033

Here the direction of line ek is arbitrarily specified in order to define the incidence matrix.
We further define a diagonal matrix \bfR =diag(Rk)\in \BbbR m\times m with Rk =wij being the weight of
line ek with k = (i, j) \in \scrE . Elementary properties of matrices which are needed subsequently
are summarized in the next lemma.

Lemma 2.1. Consider the graph \scrG with matrices \bfL ,\bfC ,\bfR .
(i) The Laplacian matrix \bfL is symmetric, and hence all its eigenvalues are real.
(ii) Following the Gerschgorin theorem [29, Theorem 36], all the eigenvalues of \bfL are

nonnegative.
(iii) Denote the eigenvalues of \bfL by 0 \leq \mu 1 \leq \mu 2 \leq \cdot \cdot \cdot \leq \mu n. It holds that \bfL \bfone n = \bfzero n; thus,

\mu 1 = 0 is an eigenvalue of \bfL with an eigenvector \tau \bfone n, where \tau \in \BbbR .
(iv) The graph \scrG is connected if and only if the second smallest eigenvalue \mu 2 > 0 [29,

Theorem 10].
(v) A relation between the incidence matrix \bfC and the Laplacian matrix \bfL is

\bfC \bfR \bfC \top =\bfL .(2.2)

(vi) It holds that \bfC \top \bfone n = \bfzero m.
(vii) If the graph \scrG is connected, then rank(\bfC ) = n - 1 [29, Theorem 1].

The concept of the cycle space of the graph plays an important role in the characterization
of the asymptotic variance matrix in this paper, which is defined below.

Definition 2.2. Consider a connected and undirected graph \scrG = (\scrV ,\scrE ) with matrix \bfC .
(i) If \scrC is a subset of \scrE such that the subgraph formed by \scrC is a cycle graph, in which there

are at least three nodes, the number of nodes is equal to the number of lines, and all
the nodes are in a path that starts and ends at the same node without repeating any
lines, then \scrC is a cycle in \scrG .

(ii) Let \scrT be a spanning tree of \scrG ; then there are n - 1 edges in \scrT and m - n+1 edges of
\scrG that lie outside of \scrT . For each of these m - n+1 edges e\in \scrE \setminus \scrE (\scrT ), the graph \scrT + e
contains a unique cycle in which the lines form a fundamental cycle of the graph \scrG .

(iii) The cycle space of graph \scrG is defined as the kernel of the incidence matrix \bfC ,

\bfX cysp =ker(\bfC ) = \{ \xi \in \BbbR m| \bfC \xi = \bfzero n\} \subseteq \BbbR m,

dim(\bfX cysp) = ncysp =m - rank(\bfC ) =m - n+ 1.

The basis vectors of the cycle space can be derived based on the following theorem.

Theorem 2.3 ([3, Theorems 4.5 and 5.2], [4, Chapter 4]). Consider a connected and undi-
rected graph \scrG = (\scrV ,\scrE ) with matrix \bfC .

(i) For a cycle \scrC c with set \scrE c of lines in the graph \scrG , we specify a direction for \scrC c and
define a vector for the cycle,

\xi c =
\bigl[ 
\xi c,1 \xi c,2 \cdot \cdot \cdot \xi c,m

\bigr] \top \in \BbbR m,

\xi c,k =

\left\{     
+1 if ek \in \scrE c with direction = the cycle direction,

 - 1 if ek \in \scrE c with direction \not = the cycle direction ,

0 otherwise.
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1034 XI, WANG, CHENG, LIN, VAN SCHUPPEN, AND ZHANG

(a) (b)

(c)

Figure 1. Three networks with eight nodes.

Then, \xi c satisfies \bfC \xi c = \bfzero ; thus, \xi c belongs to the kernel of \bfC .
(ii) A set of basis vectors of the cycle space can be derived by taking the vectors as \xi c for

c= 1, . . . ,m - n+ 1 corresponding to the (m - n+ 1) fundamental cycles

If the direction of the cycle \scrC c is changed, the vector  - \xi c is obtained, which can also be
a basis vector of the kernel of the cycle space. Thus, to obtain the basis vectors of the cycle
space, the directions of the cycles can be specified arbitrarily, which are independent of the
directions of the lines specified for the definition of the incidence matrix.

We take the networks in Figure 1 as examples to illustrate the cycle space of graphs and
its basis vectors. The directions of the lines are arbitrarily specified, and the directions of
all the cycles are chosen to be clockwise. These directions are set for the calculation of the
incidence matrix \bfC and the basis vectors of the cycle space, which does not mean the networks
are directed. The network (a) is a tree network and hence m = n  - 1; thus the dimension
of the kernel of the incidence matrix is zero and no basis vectors can be formulated. For
network (b), the basis vectors of the cycle space are \xi 1 = [0,0,0,0,0, - 1,1, - 1,0]\top and \xi 2 =
[0, - 1,1, - 1,0,0,0,0,1]\top corresponding to the cycles \{ e2, e3, e4, e9\} and \{ e6, e7, e8\} , respec-
tively. For network (c), the basis vectors of the cycle space are \xi 1 = [0,0,0,0,0, - 1,1, - 1,0]\top ,
\xi 2 = [0, - 1,1, - 1,0,0,0,0,1]\top , and \xi 3 = [1,0,0,0,0,0,0,0, - 1,1] corresponding to the cy-
cles \{ e2, e3, e4, e9\} , \{ e6, e7, e8\} , and \{ e1, e9, e10\} , respectively. Note that for the graph with
cycles, because the spanning tree may not be unique, the set of the basis vectors of the
cycle space may be nonunique. For example, for network (c), the basis vectors of the
cycle space can also be \xi 1 = [0,0,0,0,0, - 1,1, - 1,0]\top , \xi 2 = [0, - 1,1, - 1,0,0,0,0,1]\top , and
\xi 3 = [1, - 1,1, - 1,0,0,0,0,0,1] corresponding to the cycles \{ e2, e3, e4, e9\} , \{ e6, e7, e8\} , and
\{ e1, e2, e3, e4, e10\} , respectively.

2.3. The asymptotic variance. Consider a time-invariant linear stochastic differential
equation with representation

d\bfx (t) =\bfA \bfx (t)dt+\bfM d\bfv (t), \bfx (0) = \bfx 0,

\bfy (t) =\bfN \bfx (t),

where \bfx : \Omega \times T \rightarrow \BbbR nx ; \bfA \in \BbbR nx\times nx ; \bfM \in \BbbR nx\times nv ; \bfv : \Omega \times T \rightarrow \BbbR nv is a standard Brownian
motion with \bfv (t) - \bfv (s) \in G(0, \bfI nv

(t - s))\forall t, s \in T, s < t; \bfx 0 \in G(0,\bfQ \bfx 0
) with \bfQ \bfx 0

\in \BbbR nx\times nx

spd ;
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SYNCHRONIZATION OF COUPLED PHASE OSCILLATORS 1035

\bfy : \Omega \times T \rightarrow \BbbR ny , \bfN \in \BbbR ny\times nx . A standard Brownian motion is a stochastic process which
starts at t= 0 with \bfv (0) = \bfzero and has independent increments, and the probability distribution
of each increment is specified by (\bfv (t) - \bfv (s)) \in G(0, (t - s)\bfI nv

) for any s, t \in T with s < t,
meaning that (\bfv (t) - \bfv (s)) has a Gaussian probability distribution with mean zero and variance
(t - s)\bfI nv

.
It follows from [18, Theorem 1.52] and [15, Theorem 6.17] that the state process \bfx and the

output process \bfy are Gaussian processes. Denote then, for all t\in T , \bfx (t)\in G(\bfm x(t),\bfQ x,tv(t))

with \bfQ x,tv(t) \in \BbbR nx\times nx

spd and \bfy (t) \in G(\bfm y(t),\bfQ y,tv(t)) with \bfQ y,tv(t) \in \BbbR ny\times ny

spd . If in addition
the matrix \bfA is Hurwitz, then there exists an invariant probability distribution of this linear
stochastic system with the representation and properties

\bfzero = lim
t\rightarrow \infty 

\bfm x(t), \bfzero = lim
t\rightarrow \infty 

\bfm y(t),

\bfQ x = lim
t\rightarrow \infty 

\bfQ x,tv(t), \bfQ y = lim
t\rightarrow \infty 

\bfQ y,tv(t),

where the variance matrices

\bfQ x =

\int +\infty 

0
exp(\bfA t)\bfM \bfM \top exp(\bfA \top t)dt, \bfQ y =\bfN \bfQ x\bfN 

\top .

Here \bfQ x is the unique solution of the matrix equation

\bfzero =\bfA \bfQ x +\bfQ x\bfA 
\top +\bfM \bfM \top .(2.3)

One calls the matrix \bfQ x the asymptotic variance of the state process, \bfQ y the asymptotic
variance of the output process, and the matrix equation (2.3) the (continuous-time) Lyapunov
equation for the asymptotic variance\bfQ x. Because the matrix\bfA is assumed to be Hurwitz, this
equation has a unique solution which can be computed by a standard iterative procedure. In
general the solution \bfQ x is symmetric and positive semi-definite. If the matrix tuple (\bfA , \bfM ) is
a controllable pair, then the matrix \bfQ x is positive definite, denoted by 0\prec \bfQ x. These results
may be found in [18, Theorem 1.53 and Lemma 1.5] and [15].

3. Problem formulation and the main results. In this section, we formulate the problem
and present the main results of this paper. The reader can find the proofs of the results in
section 5.

The dynamics of a complex network of coupled phase oscillators are described in the
following definition.

Definition 3.1. Consider an undirected graph \scrG = (\scrV ,\scrE ) with a set of n\in \BbbZ + nodes denoted
by \scrV and a set of m\in \BbbZ + edges or lines denoted by \scrE . The system of coupled phase oscillators
is described by the dynamics [25, 27, 33],

di
d\delta i(t)

dt
= \omega i +

n\sum 
j=1

Kij sin(\delta j(t) - \delta i(t)) \forall i\in \scrV =\BbbZ n,(3.1)

with

Kij =

\biggl\{ 
> 0 if \exists (i, j)\in \scrE 
= 0 else

\forall i, j \in \BbbZ n,
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where di \in \BbbR + denotes the response time of oscillator i; \delta i : T \rightarrow \BbbR denotes the phase; \omega i \in \BbbR 
denotes the natural frequency which is a parameter of the system; and Kij denotes the coupling
strength of the nodes i and j.

When the network is complete, that is, every two nodes are connected, and di = 1 for all
the nodes and Kij = K/n for all (i, j) \in \scrE with K \in \BbbR +, the system becomes the Kuramoto
Model [17]. In the differential equation of a power system there are two types of state variables,
phase angles, and frequencies. System (3.1) is an abstraction of a power system in which there
is only one set of state variables. The state variables are denoted by \delta i, but that need not
correspond to the phase angles of a power system.

Definition 3.2. Define a synchronous state of the networked system (3.1) as the vector
\delta \ast (t) = \widetilde \delta + (\widetilde \omega t)\bfone n \in \BbbR n, which is a solution of the equation

di\widetilde \omega = \omega i +

n\sum 
j=1

Kij sin(\widetilde \delta j  - \widetilde \delta i) for i= 1, . . . , n,(3.2)

where \widetilde \delta = col(\widetilde \delta i)\in \BbbR n satisfies \widetilde \delta i  - \widetilde \delta j = (\delta \ast i (t) - \delta \ast j (t))(mod(2\pi )) for all (i, j)\in \scrE .
By summing all the equations in (3.2), it yields that at the synchronous state

\widetilde \omega =

\sum n
i \omega i\sum n
i di

\in \BbbR .(3.3)

The existence of a synchronous state can typically be obtained by increasing the coupling
strength Kij for all the lines to sufficiently high values [6]. Consider the following domain:

\bfTheta = \{ \delta \in \BbbR n| | \delta i  - \delta j | <\pi /2, (i, j)\in \scrE \} ,(3.4)

where \delta = col(\delta i). It has been shown that the synchronous state in this domain is unique
and exponentially stable [24, 13]. In addition, if the initial state lies in this domain, the state
of the system will converge to the synchronous state in this domain [24, 13]. Instead of the
phase difference in (3.4), the counterclockwise difference between the phases on the unit circle
is defined for identifying the subsets of the n-torus where there exists at most one synchronous
state; see [14] for details.

Due to continuous disturbances, the state will fluctuate around the synchronous state. If
the fluctuation is too large such that the state exits from the domain \bfTheta , the synchronization
may be lost. Below attention is restricted to the stable synchronous states in the domain \bfTheta .
The fluctuations of the phase differences (\delta i - \delta j) with (i, j)\in \scrE in (3.1) around a synchronous
state are the object of study in this paper. If the fluctuations are small, then the system
operates in a neighborhood of a synchronous state. The derivation of the linearized system of
(3.1) is briefly summarized below with an assumption for the synchronous state.

Assumption 3.3. Consider the system (3.1). Assume that (1) the graph \scrG is connected,
and hence m\geq n - 1 holds; and (2) there exists a stable synchronous state such that the phase
differences | \widetilde \delta i  - \widetilde \delta j | <\pi /2 for all (i, j)\in \scrE .
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SYNCHRONIZATION OF COUPLED PHASE OSCILLATORS 1037

We denote \Delta \delta i(t) = \delta i(t)  - \delta \ast i \forall i \in \BbbZ n. The linearized system, linearized around the
considered synchronous state, is then derived as

di
d

dt
\Delta \delta i(t) =

n\sum 
j=1

wij (\Delta \delta j(t) - \Delta \delta i(t)) \forall i\in \BbbZ n,(3.5)

where

wij =

\biggl\{ 
Kij cos(\widetilde \delta i  - \widetilde \delta j) if \exists (i, j)\in \scrE ,
0 else.

(3.6)

Remark 3.4. Consider the following more general dynamics [25]:

d\delta i
dt

= \omega i  - K

n\sum 
j=1

AijH(\delta i  - \delta j) for i= 1, . . . , n,

where K is the coupling strength of lines, Aij = 1 if nodes i and j are connected, Aij = 0
otherwise, and H is a 2\pi periodic coupling function. If the coupling strength is sufficiently
large, there exists a synchronous state for this system. Clearly, after the linearization of this
system around the synchronous state, the system (3.5) can be obtained. Another case is the
consensus protocol for a system of n autonomous multi-agents,

dxi(t)

dt
=

n\sum 
j=1

aij(xj(t) - xi(t)), i\in \BbbZ n,

where xi(t) \in \BbbR is a state variable, and aij is the coupling strength of the agents. The basic
task is to achieve a consensus on a common state, that is, all xi(t) should converge to a
common value \=x as t\rightarrow \infty . It has been shown that for a connected graph \scrG for the agents and
for aij > 0, consensus can be established [7]. Clearly this consensus protocol with constant
coupling strength is the same as the linearized system (3.5). The theoretical result of this
paper presented below may be directly applied to these types of systems, and the performance
of the synchronization of the systems can be investigated similarly.

The linearized system (3.5) is then made stochastic by defining a linear stochastic differ-
ential equation driven by a Brownian motion process according to

di d\Delta \delta i(t) =

n\sum 
j=1

wij (\Delta \delta j(t) - \Delta \delta i(t))dt+ bi dvi(t), \Delta \delta i(0) = 0 \forall i\in \BbbZ n.(3.7)

In this equation, vi : \Omega \times T \rightarrow \BbbR denotes a standard Brownian motion process which is a model
for the disturbance, and bi \in \BbbR + models the strength of the disturbance; it can be compared
to the standard deviation. Note that the noise vi affects only node i. The noise components
v1, v2, . . . ,vn are assumed to be independent. In (3.7) the state variable \Delta \delta i(t) denotes the
deviation of the phase \delta i(t) from the phase \delta \ast i (t) in the synchronous state.
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To investigate the fluctuations of the phase differences of the line k which connects the
node pair (i, j) around the synchronous state \delta \ast (t), define the kth output of the system as

yk(t) =\Delta \delta j(t) - \Delta \delta i(t) \forall k \in \BbbZ m,(3.8)

where k denotes the index of the line ek which connects the nodes i and j. The variance of
the output component yk characterizes the phase difference in line ek in case of stochastic
disturbances. Here, the direction of the line ek is from node j to i. Note that the directions
of the lines may be specified arbitrarily because it has no impact on the following analysis of
the variance of the phase difference. After the specification of the directions of the lines, the
incidence matrix \bfC of the graph is determined in (2.1).

The stochastic linear system (3.7) is written in a compact form of vectors,

d\delta (t) = - \bfD  - 1\bfL \delta (t) dt+\bfD  - 1\bfB d\bfv (t), \delta (0) = \delta 0 \in \BbbR n,(3.9a)

\bfy (t) =\bfC \top \delta (t),(3.9b)

where \delta (t) = col(\Delta \delta i(t)) \in \BbbR n, \bfD = diag(di) \in \BbbR n\times n, and \bfL = (lij) \in \BbbR n\times n is the Laplacian
matrix of graph \scrG with the weight wij for the line (i, j) \in \scrE defined in (3.6). \bfB = diag(di) \in 
\BbbR n\times n, \bfv (t) = col(vi(t))\in \BbbR n, \bfy = col(yk)\in \BbbR m, and \bfC = (Cik)\in \BbbR n\times m is the incidence matrix
as defined in (2.1). As in subsection 2.2, we also define a diagonal matrix \bfR = diag(Rk) \in 
\BbbR m\times m with Rk = wij being the weight of line ek with k = (i, j) \in \scrE . The properties of the
matrices \bfL ,\bfC , and \bfR can be found in Lemma 2.1.

It is well known that for a time-invariant linear stochastic system there exists a unique so-
lution which satisfies the stochastic differential equation. Though the analysis of the stochastic
linear system is valid only for comparatively small disturbances, it still provides intuitive in-
sights on the robustness of the coupled phase oscillators. The problem of the characterization
of the asymptotic variance of the stochastic linear system is described below.

Problem 3.5. Consider the stochastic linear system (3.9). Determine an analytic expression
of the asymptotic variance of the output process \bfy and display how this variance depends on
the parameters of the system.

The theorem for the solution of Problem 3.5 makes use of the properties and the notations
in the following lemma.

Lemma 3.6. Consider the stochastic linear system (3.9) with Assumption 3.3 and matrices
\bfL and \bfD . If the weights wij of all the lines are strictly positive and the matrix \bfD is strictly
positive definite, then there exist matrices with the following decomposition:

\bfU \bfLambda n\bfU 
\top =\bfD  - 1/2\bfL \bfD  - 1/2,(3.10)

where \bfLambda n = diag(\lambda i) \in \BbbR n\times n
diag with 0 = \lambda 1 < \lambda 2 \leq \cdot \cdot \cdot \leq \lambda n and \lambda i \in \BbbR for i = 1, . . . , n

being the eigenvalues of the matrix \bfD  - 1/2\bfL \bfD  - 1/2, \bfU =
\bigl[ 
\bfu 1 \bfu 2 \bfu 3 . . . \bfu n

\bigr] 
\in \BbbR n\times n

ortg with
\bfu i \in \BbbR n being the eigenvector corresponding to the eigenvalue \lambda i for i= 1, . . . , n. In addition,
\bfu 1 = \tau \bfD 1/2\bfone n, where \tau \in \BbbR .

The matrix decomposition in this lemma has also been presented in [22].
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SYNCHRONIZATION OF COUPLED PHASE OSCILLATORS 1039

For the asymptotic variance matrix of the stochastic system (3.9), we have the following
theorem.

Theorem 3.7. Consider the stochastic system (3.9) with Assumption 3.3 and the notation
in Lemma 3.6. The asymptotic variance of the output process \bfy can be computed by

\bfQ y =\bfC \top \bfD  - 1/2\bfU 2\bfQ n - 1\bfU 
\top 
2 \bfD 

 - 1/2\bfC ,(3.11)

where \bfU 2 =
\bigl[ 
\bfu 2 \bfu 3 . . . \bfu n

\bigr] 
\in \BbbR n\times (n - 1) and \bfQ n - 1 = (qij) \in \BbbR (n - 1)\times (n - 1)

spd is the unique
solution of the Lyapunov equation,

\bfzero = - \bfLambda n - 1\bfQ n - 1  - \bfQ n - 1\bfLambda n - 1 +\bfU \top 
2 \bfD 

 - 1/2\bfB \bfB \top \bfD  - 1/2\bfU 2,(3.12)

with \bfLambda n - 1 =diag(\lambda 2, \lambda 3, . . . , \lambda n)\in \BbbR (n - 1)\times (n - 1)
diag . In addition, the matrix \bfQ n - 1 is solved from

the Lyapunov equation as

qij = (\lambda i + \lambda j)
 - 1\bfu \top 

i \bfD 
 - 1/2\bfB \bfB \top \bfD  - 1/2\bfu j \forall i, j = 2, . . . , n, i \not = j,(3.13)

and in particular,

qii =
1

2
\lambda  - 1
i \bfu \top 

i \bfD 
 - 1/2\bfB \bfB \top \bfD  - 1/2\bfu i \forall i= 2, . . . , n.(3.14)

The diagonal elements of \bfQ y are the variances of the phase differences of the lines. The
line with the largest value is the most vulnerable. Hence, the most vulnerable lines can be
identified directly by the values of the diagonal elements of that asymptotic variance matrix.

It follows from (3.11)--(3.14) that if the eigenvalues of the Laplacian matrix \bfD  - 1/2\bfL \bfD  - 1/2

increase, the variances of the phase differences decrease; consequently, the robustness increases.
This finding is consistent with the finding of a corresponding investigation by a perturbation
method using a newly defined performance metric [27]. In that investigation the robustness
is related to the Kirchhoff indices. The trace of \bfQ y is the \scrH 2 norm of the system (3.9) which
is often used to study the performance of the synchronization of complex networks [23, 27].

For the network of complex phase oscillators with an assumption which follows, we further
obtain an explicit formula of the asymptotic variance matrix.

Assumption 3.8. Consider the stochastic process (3.9). Assume that there exists a real
number \beta \in \BbbR + such that \forall i\in \BbbZ n, b

2
i /di = \beta .

With this assumption, it holds that \beta \bfI n =\bfD  - 1/2\bfB \bfB \top \bfD  - 1/2, which leads to

\bfU \top \bfD  - 1/2\bfB \bfB \top \bfD  - 1/2\bfU =\bfU \top \beta \bfI n\bfU = \beta \bfI n.

In addition, we obtain an explicit formula of the variance matrix in the next theorem.

Theorem 3.9. Consider the stochastic system (3.9) with Assumptions 3.3 and 3.8. The
asymptotic variance of the output process \bfy satisfies

\bfQ y =
\beta 

2
\bfR  - 1/2

\biggl( 
\bfI m  - 

m - n+1\sum 
i=1

\bfX i\bfX 
\top 
i

\biggr) 
\bfR  - 1/2,(3.15)
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where the vectors, \bfX i for i = 1, . . . ,m - n+ 1, are a set of orthonormal basis vectors of the
kernel of \bfC \bfR 1/2.

For graphs with cycles, the orthonormal basis vectors of the kernel of \bfC \bfR 1/2 is related
to the cycle space of the graph \scrG defined in Definition 2.2. This relation and the method for
computing the orthonormal basis vectors are explained in the following remark.

Remark 3.10. Based on Theorem 2.3, the vectors \xi c for c= 1, . . . ,m - n+1 obtained from
the m - n+1 fundamental cycles of the graph \scrG form a set of basis vectors of the kernel of the
matrix \bfC . Thus, with the nonsingular matrix \bfR , the set of vectors \bfR  - 1/2\xi c for c= 1, . . . ,m - 
n+1 form a set of basis vectors of the kernel of \bfC \bfR 1/2. A set of orthonormal basis vectors of
the kernel of \bfC \bfR 1/2 can then be derived by the Gram--Schmidt orthogonalization procedure
applied to the basis vectors \bfR  - 1/2\xi c for c= 1, . . . ,m - n+1. Due to the nonuniqueness of the
basis vectors \xi c for c = 1, . . . ,m - n+ 1 of the kernel of \bfC , the set of the orthonormal basis
vectors of the kernel of \bfC \bfR 1/2 is also nonunique. However, for the kernel, a set of othonormal
basis vectors can be obtained from another such set by a linear transformation consisting of an
orthogonal matrix. Such a transformation does not influence the calculation of the variance
in (3.15).

Formula (3.15) shows explicitly the relation between the system parameters and the as-
ymptotic variance of the lines. The variance increases linearly with respect to the factor \beta .
Because vector \bfX i also depends on the weight wij of the lines, the relationship between the
variance and the weight is nonlinear. Furthermore, formula (3.15) relates the robustness of
the system to the cycle space of graphs. To the best of our knowledge, this is the first time
that this relation is shown, which is important for studying the impact of the network topology
on the synchronization stability. We remark that the cycles also play a role in the existence
of the synchronous state [5, 9]. To illustrate the effects of increasing the coupling strength of
a line or of adding a new line using the theory of the cycle space, we introduce two concepts
for graphs.

Definition 3.11. Consider a connected and undirected graph \scrG .
(i) A single line is defined as an acyclic line that does not belong to any cycle.
(ii) Lines e1, e2 are cycle-shared if there exists at least one cycle containing both e1 and e2.
(iii) A cycle-cluster is a subgraph of \scrG obtained in the following way. One starts from a

subgraph of one cycle and extends it by adding the lines in all the cycles with which
the subgraph has at least one line in common; thus one obtains a cycle-cluster.

It is deduced from Definition 3.11 that a line either belongs to a cycle-cluster or is a single
line, and in a cycle-cluster, all the lines are in cycles and each pair of lines are cycle-shared
lines. Taking the networks in Figure 1 as examples, it is seen that there are no cycle-clusters in
network (a) and there are two cycle-clusters in networks (b) and (c). All the lines in network
(a), lines e1 and e5 in network (b), and line e5 in network (c) are singles lines. In network (c),
each pair of lines in \{ e1, e2, e3, e4, e9, e10\} are cycle-shared lines while e1, e7 are not cycle-shared
because they are not contained in any cycles. See Table 1 for the details of the cycle-clusters
and singles.

The next corollary of Theorem 3.9 describes explicitly the effects on the variances of the
phase differences of constructing a new line and of increasing the coupling strength of a line.
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SYNCHRONIZATION OF COUPLED PHASE OSCILLATORS 1041

Table 1
The cycle-clusters and single lines of the networks in Figure 1.

Network Line sets of cycle-clusters Single lines

(a) -- e1  - e7
(b) (e2, e3, e4, e9), (e6, e7, e8) e1, e5
(c) (e1, e2, e3, e4, e9, e10), (e6, e7, e8) e5

The proof of this corollary makes use of the theory of the cycle space, which can be found in
section 5.

Corollary 3.12. Consider the stochastic system (3.9) with Assumption 3.8. The following
conclusions hold.

(i) The variance of the phase difference in a single line connecting node i and j equals
\beta 
2w

 - 1
ij .

(ii) Increasing the coupling strength of a single line does not affect the variances of the
phase differences in the other lines, and increasing the coupling strength of a line or
constructing a new line in a cycle-cluster does not affect the variances of the phase
differences of the lines that are not in this cycle-cluster.

(iii) If the coupling strength of lines is increased or new lines are constructed in a cycle-
cluster, which does not change the weights of the other lines at the synchronous state,
then the variances of the phase differences in all the lines in this cycle-cluster decrease.

(iv) For a cycle-cluster with only one cycle with lines in the set \scrE c of the graph, the variance
of the phase differences in the line connecting nodes i and j in this cycle-cluster equals

\beta 

2

\Bigl( 
w - 1
ij  - w - 2

ij

\Bigl( \sum 
(r,q)\in \scrE c

w - 1
rq

\Bigr)  - 1\Bigr) 
.(3.16)

In addition, if it holds that wij = \gamma for all the lines in this cycle, the variance becomes
\beta 
2\gamma (1 - 

1
N ), where N is the length of this cycle.

It is remarked that after increasing the coupling strength of a line or constructing a new
line, if the phase differences in the other lines at the synchronous state are not changed, the
weight of these lines will not change, in which case Corollary 3.12(iii) holds.

Next the case is treated in which Assumption 3.8 does not hold, where bounds of the
asymptotic variance are obtained.

Theorem 3.13. Consider the stochastic system (3.9). Denote

\beta =min\{ b2i /di \in \BbbR + \forall i\in \BbbZ n\} , \beta =max\{ b2i /di \in \BbbR + \forall i\in \BbbZ n\} .

The variance matrix \bfQ y of the phase differences in the lines satisfies

1

2
\beta \widehat \bfQ \preceq \bfQ y \preceq 

1

2
\beta \widehat \bfQ , \widehat \bfQ =\bfR  - 1/2

\biggl( 
\bfI m  - 

m - n+1\sum 
i=1

\bfX i\bfX 
\top 
i

\biggr) 
\bfR  - 1/2.(3.17)
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1042 XI, WANG, CHENG, LIN, VAN SCHUPPEN, AND ZHANG

4. Case study. In this section, by the three example networks shown in Figure 1, we verify
the explicit formula (3.11) of the variance matrix and illustrate the findings in Corollary 3.12
for the networks with Assumption 3.8. We also verify the bounds of the variance matrix for
the network without Assumption 3.8.

Example 4.1. Consider the three networks (a), (b), and (c) with eight nodes displayed in
Figure 1. Networks (b) and (c) are constructed based on network (a) by adding lines e8, e9
and by adding lines e8, e9, e10, respectively. We set bi = 0.1 for all the nodes in the three
networks. Three cases below are considered.

Case 1: \omega i = 0, di = 1 for all the nodes and Kij = 1 for all the lines in networks (a)--(c);
thus b2i /di = 10 - 2 for all the nodes in the three networks.

Case 2: \omega i = 0, di = 1 for all the nodes and Kij = 1 for the lines e1  - e9 and K14 = 2 for
e10 in network (c); thus b2i /di = 10 - 2 for all the nodes in this network.

Case 3: \omega i = 0, d5 = 2, d8 = 1/2, and di = 1 for all the other nodes, and Kij = 1 for the
lines e1  - e9 and K14 = 2 for e10 in network (c); thus b25/d5 = 0.5\times 10 - 2, b28/d8 = 2\times 10 - 2,
and b2i /di = 10 - 2 for the other nodes in this network.

Due to the setting of \omega i = 0 for all the nodes, it holds that the weight wij =Kij for all lines
in the three cases. Thus, increasing the coupling strength of lines or constructing new lines
has no impact on the weights. It is deduced that Assumption 3.8 holds in the networks in
Cases 1--2, while it does not hold in the one in Case 3. For the case with \omega i \not = 0, the variances
of the phase differences can be obtained from (3.15) after calculating wij from (3.6) where \delta \ast i
is solved from (3.2). Here, to verify the formula (3.15), the findings in Corollary 3.12, and
the bounds of the matrices, it is sufficient to study the cases with \omega i = 0 only. In these cases,
either constructing a new line or increasing the strength of a line will not change the weight
of the other lines.

The variances in the lines are shown in Table 2. Here, the variances shown in all the rows
except the ones with (c\ast ) and (c+) are calculated by formula (3.15) according to the procedure
for computing the kernel of \bfC \bfR 1/2 in Remark 3.10 and are verified by MATLAB using formula
(3.11). For example, the variances in the lines in network (a) can be calculated directly from
\beta 
2\bfR 

 - 1 because the cycle space of a tree network is empty. In network (b), the bases of the kernel
of the cycle space are \xi 1 = [0,0,0,0,0, - 1,1, - 1,0]\top and \xi 2 = [0, - 1,1, - 1,0,0,0,0,1]\top , which
are orthogonal. By scaling the vectors\bfR  - 1/2\xi i for i= 1,2 to unit length with\bfR = \bfI m, we derive
\bfX 1 = [0,0,0,0,0, - 1/

\surd 
3,1/

\surd 
3, - 1/

\surd 
3,0]\top and \bfX 2 = [0, - 1/2,1/2, - 1/2,0,0,0,0,1/2]\top . We

obtain the variances of the phase differences using formula (3.15). In contrast, the numbers in
the row with (c*) in the table are calculated from the simulations of system (3.9) for network
(c) in Case 2. The simulation is conducted via the Euler--Maruyama method [12] with time
T = 10000 and time step dt = 10 - 3. The numbers in the row with (c+) in the table are
calculated by MATLAB using formula (3.11). Table 2 shows that the statistical values of the
variances in the last row are very close to the analytical values for network (c) in Case 2. This
verifies the correctness of formula (3.15).

The effects of adding new lines and increasing coupling strength are described next with
the networks in Figure 1. For the analytic derivation, see Corollary 3.12.

First, the variance of the phase difference in a single line connecting nodes i and j is \beta 
2w

 - 1
ij .

When considering the single lines shown in Table 1, we find that the variances in these lines
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SYNCHRONIZATION OF COUPLED PHASE OSCILLATORS 1043

Table 2
The diagonal elements of \bfQ y/b

2
i for the networks of Cases (1--2) in Figure 1; (c)-L and (c)-U denote the

lower and upper bounds in Case 3.

Case Net. e1 e2 e3 e4 e5 e6 e7 e8 e9 e10

1 (a) 0.500 0.500 0.500 0.500 0.500 0.500 0.500  -  -  - 
(b) 0.500 0.375 0.375 0.375 0.500 0.333 0.333 0.333 0.375  - 
(c) 0.318 0.364 0.364 0.364 0.500 0.333 0.333 0.333 0.273 0.318

2 (c) 0.278 0.361 0.361 10.361 0.500 0.333 0.333 0.333 0.250 0.194

(c*) 0.278 0.365 0.368 0.365 0.501 0.330 0.330 0.328 0.250 0.194

(c)-L 0.139 0.181 0.181 0.181 0.250 0.167 0.167 0.167 0.125 0.097

3 (c+) 0.278 0.357 0.311 0.304 0.487 0.541 0.334 0.533 0.249 0.193

(c)-U 0.556 0.722 0.722 0.722 1.000 0.667 0.667 0.667 0.500 0.389

are all \beta /2, as shown in Table 2. In addition, the variance in line e5 is not affected by adding
lines e8, e9 in network (b) or by adding lines e8, e9, e10 in network (c). Similarly, increasing
the coupling strength of e9 in network (c) in Case 2 also has no impact on this variance.

Second, adding new lines or increasing the coupling strength of lines in a cycle-cluster
does not affect the variance of the phase differences in the lines outside this cycle-cluster. In
network (c) of Case 1, the variances in lines e6, e7, e8 are the same as those in network (b)
and are not affected by adding e10. Similarly, in network (c) of Case 2, these variances are
not changed by increasing the coupling strength of line e10 from 1 to 2 because line e10 is not
in the cycle-cluster of (e6, e7, e8).

Third, by adding new lines or increasing the coupling strength of lines in a cycle-cluster,
the variances of the phase differences in all the lines of this cycle-cluster will decrease. The
calculations for networks (b)--(c) in Case 1 verify this finding, where the variances in lines
e2, e3, e4, e9 decrease from 3\beta /8 in network (b) to 4\beta /11, 4\beta /11, 4\beta /11, and 3\beta /11 in net-
work (c), respectively, after adding line e10. In addition, the variances further decrease to
13\beta /36,13\beta /36,13\beta /36, and \beta /4 when the coupling strength of line e10 increases from 1 to 2
in network (c) in Case 2.

Fourth, for a cycle-cluster with only one cycle with lines in set \scrE c in the graph, the variance
of the phase difference in the line connecting nodes i and j is

\beta 

2

\biggl( 
w - 1
ij  - w - 2

ij

\biggl( \sum 
(r,q)\in \scrE c

w - 1
rq

\biggr)  - 1\biggr) 
.(4.1)

In addition, if wij = \gamma holds for all the lines, the variance becomes \beta 
2\gamma (1  - 

1
N ), where N is

the length of the cycle. In network (b) in Case 1, there are two cycles. By means of (4.1),
it is obtained that the variances in lines e6, e7, e8 are all \beta /3 and those in lines e2, e3, e4, e9
are all 3\beta /8. This result demonstrates that forming small cycles can effectively suppress the
variances of the phase differences and the benefit of forming a cycle of length N is of the order
of O(N - 1). This is consistent with the findings in [28, 31]. We conclude that formula (4.1)
provides a conservative estimate of the variances in lines in cycle-clusters. In other words,
the variance in a line that is in multiple cycles can be approximated by formula (4.1) by
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1044 XI, WANG, CHENG, LIN, VAN SCHUPPEN, AND ZHANG

considering the smallest cycle that includes this line. For example, the variance in line e1 in
network (c) in Case 1 can be approximated as \beta /3, which is calculated in the cycle (e1, e9, e10)
by formula (4.1) and is slightly larger than 7\beta /22, as shown in Table 2. Clearly, this value is
conservative.

Finally, increasing the scale of the network by adding nodes with b2i /di = \beta will neither
decrease nor increase the fluctuations of the phase differences; thus, it has no impact on the
synchronization stability. This is a result from formula (3.15), where the variance matrix is
determined by the strength of disturbance, the cycle space, and the weights of the lines.

Regarding the vulnerability, we find that based on formula (3.15) single lines are usually
the most vulnerable lines which are the bottleneck of the network on the synchronization
stability. We remark that for the networks with nonuniform ratio b2i /di among the nodes, the
lines with the most serious fluctuations can be identified by formula (3.11). With respect to
the bounds of the variances for the networks with nonuniform ratio b2i /di, it is seen that all
the values of the variance are constrained by the lower and upper bounds. In addition, when
comparing the variances in Case 3 with those in Case 2, it is found that the variances in the
lines e1  - e5, e9  - e10 all decrease mainly due to the increase of the damping coefficient at
node 5, while those in the lines e6  - e8 increase mainly due to the decrease of the damping
coefficient at node 8. This indicates that the variances of the lines in a cycle-cluster are mainly
influenced by the disturbances at the nodes in this cycle-cluster. We remark that the increase
of d5 also influences the variances in lines e6 - e8 which, however, is overtaken by the decrease
of d8 in the cycle-cluster \{ e6, e7, e8\} .

5. The proofs.

Proof of Lemma 3.6. The spectral decomposition of matrix \bfD  - 1/2\bfL \bfD  - 1/2 follows di-
rectly from the positive definiteness of the diagonal matrix \bfD and positive semi-definiteness
of the Laplacian matrix \bfL which has a zero eigenvalue and n  - 1 positive real eigen-
values. Because \tau \bfone n is the eigenvector corresponding to the zero eigenvalue of the
matrix \bfL , \tau \bfD 1/2\bfone n is the eigenvector related to the zero eigenvalue of the matrix
\bfD  - 1/2\bfL \bfD  - 1/2.

Proof of Theorem 3.7. Consider the stochastic system (3.9). Let \bfx (t) = \bfU \top \bfD 1/2\delta (t),\bfx :
\Omega \times T \rightarrow \BbbR n. Transform the stochastic differential equation according to Lemma 3.6,

d\bfx (t) = - \bfLambda n\bfx (t)dt+\bfU \top \bfD  - 1/2\bfB d\bfv (t),

where the following formula is applied:

\bfU \top \bfD 1/2\bfD  - 1\bfL \bfD  - 1/2\bfU =\bfU \top \bfD  - 1/2\bfL \bfD  - 1/2\bfU =\bfLambda n.

Decomposing this stochastic differential equation according to the formulas

\bfx (t) =

\biggl[ 
x1(t)
\bfx 2(t)

\biggr] 
, x1 : \Omega \times T \rightarrow \BbbR 1, \bfx 2 : \Omega \times T \rightarrow \BbbR n - 1,

and

\bfLambda n =

\biggl[ 
0 \bfzero \top n - 1

\bfzero n - 1 \bfLambda n - 1

\biggr] 
\in \BbbR n\times n, \bfLambda n - 1 \in \BbbR (n - 1)\times (n - 1),(5.1)
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SYNCHRONIZATION OF COUPLED PHASE OSCILLATORS 1045

we obtain

d\bfx 2(t) = - \bfLambda n - 1\bfx 2(t)dt+\bfU \top 
2 \bfD 

 - 1/2\bfB d\bfv (t),(5.2)

and the output becomes

\bfy (t) =\bfC \top \delta (t) =\bfC \top \bfD  - 1/2\bfU \bfx (t) =
\bigl[ 
\bfC \top \bfD  - 1/2\bfu 1 \bfC \top \bfD  - 1/2\bfU 2

\bigr] 
\bfx (t)

(using Lemmas 3.6 and 2.1 one obtains)

=
\bigl[ 
0 \bfC \top \bfD  - 1/2\bfU 2

\bigr] \biggl[ x1(t)
\bfx 2(t)

\biggr] 
=\bfC \top \bfD  - 1/2\bfU 2\bfx 2(t).(5.3)

From the summary of properties of linear stochastic differential equations in subsection
2.3, it follows that both \bfx 2 and \bfy are stationary Gaussian stochastic processes of which the
asymptotic variance matrices are determined by (3.12) and (3.11), respectively. It follows
from consideration of  - \bfL , from Lemma 3.6, that the matrix  - \bfLambda n - 1 is a Hurwitz matrix.
Hence there exists a unique solution \bfQ n - 1 of the above Lyapunov equation which is positive
semi-definite. The formula for the variance of the output process \bfy follows then from the
equation of the output.

The analytic form of (3.13)--(3.14) then follows directly from the above Lyapunov equation
using the fact that the matrix \bfLambda n - 1 is a diagonal matrix.

Before introducing the proof of Theorem 3.9, another lemma is presented.

Lemma 5.1. Define the matrix \widehat \bfC =\bfR 1/2\bfC \top \bfD  - 1/2 \in \BbbR m\times n. If m\geq n, then there exists an
orthogonal matrix \bfW \in \BbbR m\times m such that

\bfW \top \widehat \bfC \widehat \bfC \top \bfW =\bfLambda m,(5.4)

where

\bfLambda m =

\biggl[ 
\bfLambda n - 1 \bfzero 
\bfzero \bfzero 

\biggr] 
\in \BbbR m\times m.

Denote

\bfW =
\bigl[ 
\bfw 1 \bfw 2 \cdot \cdot \cdot \bfw n - 1 \bfw n \cdot \cdot \cdot \bfw m

\bigr] 
.

The vector \bfw i is an orthonormal eigenvector of \widehat \bfC \widehat \bfC \top corresponding to the nonzero eigenvalue
\lambda i+1 for i= 1, . . . , n - 1 and \bfw i for i= n, . . . ,m are the orthonormal eigenvectors corresponding
to the zero eigenvalues.

Proof. For the connected graph \scrG , it holds that rank(\bfC ) = n - 1, which leads to rank(\widehat \bfC ) =
n  - 1. Because the kernels of \widehat \bfC \widehat \bfC \top and \widehat \bfC \top are identical, we obtain rank(\widehat \bfC \widehat \bfC \top ) = n  - 1.
Hence, it only needs to be proven that the nonzero diagonal elements of \bfLambda m are the nonzero
eigenvalues of \widehat \bfC \widehat \bfC \top . We obtain from (2.2) and (3.10) that

\bfU \top \widehat \bfC \top \widehat \bfC \bfU =\bfU \top \bfD  - 1/2\bfC \bfR \bfC \top \bfD  - 1/2\bfU =\bfU \top \bfD  - 1/2\bfL \bfD  - 1/2\bfU =\bfLambda n.

We premultiply the above equation by \widehat \bfC \bfU , and then derive

(5.5) \widehat \bfC \widehat \bfC \top \widehat \bfC \bfU = \widehat \bfC \bfU \bfLambda n.
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1046 XI, WANG, CHENG, LIN, VAN SCHUPPEN, AND ZHANG

As in Lemma 3.6, we write \bfU as
\bigl[ 
\bfu 1 \bfu 2 \bfu 3 \cdot \cdot \cdot \bfu n

\bigr] 
with \bfD  - 1/2\bfu 1 = \tau \bfone n. It follows from

\bfC \top \bfone n = \bfzero that \widehat \bfC \bfu 1 = \bfzero . Hence, we obtain from (5.5) that

\widehat \bfC \widehat \bfC \top 
\Bigl[ \widehat \bfC \bfu 2

\widehat \bfC \bfu 3 \cdot \cdot \cdot \widehat \bfC \bfu n

\Bigr] 
=
\Bigl[ 
\lambda 2

\widehat \bfC \bfu 2 \lambda 3
\widehat \bfC \bfu 2 \cdot \cdot \cdot \lambda n

\widehat \bfC \bfu n

\Bigr] 
,

which demonstrates that \lambda i is an eigenvalue of \widehat \bfC \widehat \bfC \top with corresponding eigenvectors \widehat \bfC \bfu i for
i= 2, . . . , n.

Proof of Theorem 3.9. With the assumption of \bfD  - 1/2\bfB \bfB \top \bfD  - 1/2 = \beta \bfI n, we obtain from
(3.13)--(3.14) that

(5.6) \bfQ n - 1 =
\beta 

2
\bfLambda  - 1

n - 1.

By the definition of the Moore--Penrose inverse of a symmetric matrix, we obtain from
(5.1) that

(\bfD  - 1/2\bfL \bfD  - 1/2)\dagger =\bfU \Lambda \dagger 
n\bfU 

\top =\bfU 2\bfLambda 
 - 1
n - 1\bfU 

\top 
2 ,(5.7)

where (\cdot )\dagger denotes the Moore--Penrose inverse of a matrix. By inserting (5.6) into (3.11), we
obtain from (5.7) that

\bfQ \bfy =
\beta 

2
\bfC \top \bfD  - 1/2(\bfD  - 1/2\bfL \bfD  - 1/2)\dagger \bfD  - 1/2\bfC 

=
\beta 

2
\bfC \top \bfD  - 1/2(\bfD  - 1/2\bfC \bfR \bfC \top \bfD  - 1/2)\dagger \bfD  - 1/2\bfC =

\beta 

2
\bfR  - 1/2 \widehat \bfC (\widehat \bfC \top \widehat \bfC )\dagger \widehat \bfC \top \bfR  - 1/2.

By left multiplying (5.4) with \widehat \bfC \top \bfW , we obtain\widehat \bfC \top \widehat \bfC \widehat \bfC \top \bfW = \widehat \bfC \top \bfW \bfLambda m,

which indicates that the column vectors of \widehat \bfC \top \bfW are the eigenvectors of \widehat \bfC \top \widehat \bfC . We focus on
the first n - 1 eigenvectors \widehat \bfC \bfw 1 \cdot \cdot \cdot \widehat \bfC \bfw n - 1 in matrix \widehat \bfC \top \bfW , which are orthogonal. From the
normalization of \widehat \bfC \bfw i for i= 1, . . . , n - 1, we obtain

\lambda 
 - 1/2
2

\widehat \bfC \bfw 1, \lambda 
 - 1/2
3

\widehat \bfC \bfw 2, \cdot \cdot \cdot , \lambda  - 1/2
n

\widehat \bfC \bfw n - 1.

With these unit vectors, we derive that the Moore--Penrose inverse of \widehat \bfC \top \widehat \bfC satisfies\Bigl( \widehat \bfC \top \widehat \bfC \Bigr) \dagger 
=

n\sum 
i=2

\lambda  - 2
i (\widehat \bfC \bfw i - 1)(\widehat \bfC \bfw i - 1)

\top .

From (5.4), we further get

\widehat \bfC \Bigl( \widehat \bfC \top \widehat \bfC \Bigr) \dagger \widehat \bfC \top =

n\sum 
i=2

\lambda  - 2
i

\widehat \bfC \widehat \bfC \top \bfw i - 1\bfw 
\top 
i - 1

\widehat \bfC \widehat \bfC \top =

n\sum 
i=2

\bfw i - 1\bfw 
\top 
i - 1 = \bfI m  - 

m\sum 
i=n

\bfw i\bfw 
\top 
i .

Here \bfw i for i= n, . . . ,m are the orthonormal eigenvectors corresponding to the zero eigenvalue
such that \bfw \top 

i
\widehat \bfC \widehat \bfC \top \bfw i = 0; thus \widehat \bfC \top \bfw i = 0. From \widehat \bfC \top =\bfD  - 1/2\bfC \bfR 1/2, we obtain \bfC \bfR 1/2\bfw i = 0,

which indicates that the vectors \bfw i for i = n, . . . ,m form an orthonormal basis of the kernel
of \bfC \bfR 1/2. We denote \bfX i =\bfw i+n - 1 for i= 1, . . . ,m - n+ 1, which completes the proof.
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Proof of Corollary 3.12.
(i) If the network is acyclic, all the lines are single lines. There are no nonzero elements

in the cycle space; the variance matrix of the phase difference is thus \beta 
2\bfR 

 - 1 obtained from
(3.15). If there are cycles in the network, without loss of generality, assume line e1 is a single
line. By the method used to formulate the basis of the cycle space in subsection 2.2, the basis

of the cycle space has the form \xi i =
\bigl[ 
0 \xi i,2 \xi i,3 \cdot \cdot \cdot \xi i,m

\bigr] \top 
where \xi i,j is either  - 1, 1, or 0,

and \bfX i can be obtained by the Gram--Schmidt orthogonalization of \bfR  - 1/2\xi i, which has the

form \bfX i =
\bigl[ 
0 xi,2 xi,3 \cdot \cdot \cdot xi,m

\bigr] \top 
. Because the elements in the first column and the first

row of \bfX i\bfX 
\top 
i are all zero, we obtain from (3.15) that the variance of the phase differences in

this line is \beta 
2wij

.

(ii) Without loss of generality, assume there are three subgraphs in \scrG = (\scrV ,\scrE ), i.e., \scrG 1 =
(\scrV 1,\scrE 1), \scrG 2 = (\scrV 2,\scrE 2), and \scrG 3 = (\scrV 3,\scrE 3), where \scrG 1 is either a cycle-cluster or a single line,
\scrE 1 \cup \scrE 2 \cup \scrE 3 = \scrE , \scrE i \cap \scrE j = \emptyset for i \not = j, and \scrV 1 \cap \scrV 2 = \{ p\} , \scrV 1 \cap \scrV 3 = \{ q\} , and \scrV 2 \cap \scrV 3 = \emptyset .
Here p, q denote the indices of two nodes, respectively. We prove that increasing the coupling
strength of a line in \scrG 1 or constructing a new line in \scrG 1 has no impact on the variances of the
phase differences in the lines in \scrG 2 and \scrG 3. Here, we say constructing a new line in \scrG 1 only
when \scrG 1 is a cycle-cluster.

From the formula (3.15), it is seen that the variance depends on the phase differences at
the synchronous state, which play a role in the terms \bfR and \bfX i. Due to the dependence of the
phase differences at the synchronous state on the network topology, constructing new lines or
increasing the coupling strength affects the variance in a nonlinear way. Hence, we prove this
conclusion in two steps.

First, we prove that the phase differences at the synchronous state in the lines of \scrG 2 are
independent of constructing new lines and increasing the coupling strength of lines in \scrG 1 and
similarly for \scrG 3. From (3.3), it is seen that the synchronized frequency \widetilde \omega is not affected by
these actions. With (3.3), it is deduced that the sum of the equations in (3.2) is zero, which
indicates the equations are singular and the phases at the nodes cannot be solved directly.
To obtain the phase differences at the synchronous state, a node has to be selected as the
reference node at which the phase is zero. The selection of the reference node does not affect
the phase difference due to the uniqueness of the synchronous state with Assumption 3.3. The
common node p of \scrG 1 and \scrG 2 is selected as the reference node. Then we obtain the equations
for the calculation of the phase differences in \scrG 2,

di\widetilde \omega = \omega i +
\sum 
j\in \scrV 2

Kij sin(\widetilde \delta j  - \widetilde \delta i) for i\in \scrV 2 and i \not = p,

\widetilde \delta p = 0.

Clearly, these equations are not affected by either increasing the coupling strength of lines or
constructing new lines in \scrG 1. Thus, the phase differences solved from the above equations are
not affected by these changes. It follows that the weights wij of the lines in \scrG 2 are also not
affected.

© 2023 \mathrm{S}\mathrm{I}\mathrm{A}\mathrm{M}. \mathrm{P}\mathrm{u}\mathrm{b}\mathrm{l}\mathrm{i}\mathrm{s}\mathrm{h}\mathrm{e}\mathrm{d} \mathrm{b}\mathrm{y} \mathrm{S}\mathrm{I}\mathrm{A}\mathrm{M} \mathrm{u}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{r} \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{t}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{s} \mathrm{o}\mathrm{f} \mathrm{t}\mathrm{h}\mathrm{e}\mathrm{C}\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e} \mathrm{C}\mathrm{o}\mathrm{m}\mathrm{m}\mathrm{o}\mathrm{n}\mathrm{s} 4.0 \mathrm{l}\mathrm{i}\mathrm{c}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{e}

D
ow

nl
oa

de
d 

08
/0

3/
23

 to
 1

31
.1

80
.1

30
.1

37
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
C

C
B

Y
 li

ce
ns

e 



1048 XI, WANG, CHENG, LIN, VAN SCHUPPEN, AND ZHANG

Second, we prove that the variances of the phase differences in the lines of \scrG 2 \cup \scrG 3 are
not influenced by constructing a new line or increasing the coupling strength of a line in \scrG 1.
(i) If graph \scrG is a tree, then \scrG 1 is a single line and the conclusion is obtained from Corollary
3.12(i) directly due to the unchanged weights of the lines in \scrG 2 \cup \scrG 3. (ii) If there are cycles in
\scrG and \scrG 1 is a single line, which is denoted by e1, then the basis vectors for the fundamental

cycles of \scrG have the form \xi i =
\bigl[ 
0 \xi i,2 \xi i,3 \cdot \cdot \cdot \xi i,m

\bigr] \top 
for i = 1, . . . ,m  - n + 1, where

\xi i,q = 1,  - 1, or 0 for q = 2, . . . ,m. By the Gram--Schmidt orthogonalization of \bfR  - 1/2\xi i, we

obtain \bfX i =
\bigl[ 
0 xi,2 xi,3 \cdot \cdot \cdot xi,m

\bigr] \top 
for i= 1, . . . ,m - n+1 where there are no contributions

from line e1. Hence the weight of e1 has no impact on the matrix \bfX i\bfX 
\top 
i for i= 1, . . . ,m - n+1.

Because the weights of the lines in \scrG 2 \cup \scrG 3 are not changed, increasing the coupling strength
of line e1 in \scrG 1 thus has no impact on the variance of the phase difference in these lines. (iii)
If \scrG 1 is a cycle-cluster, denote the number of lines in \scrG 1 and \scrG 2 \cup \scrG 3 by N and m - N , the
lines by e1, e2, . . . , eN and eN+1, . . . , em, and the number of the fundamental cycles by m1 and
m2, respectively. Here m1 +m2 =m - n+ 1. Because the lines in one cycle-cluster are never
in the other cycle-cluster, the basis vectors of the cycles in cycle-cluster \scrG 1 have the form

\xi i =
\bigl[ 
\xi i,1 \xi i,2 \cdot \cdot \cdot \xi i,N 0 \cdot \cdot \cdot 0

\bigr] \top 
for i= 1, . . . ,m1 and those of the cycles in \scrG 2\cup \scrG 3 have

the form \xi i =
\bigl[ 
0 0 \cdot \cdot \cdot 0 \xi i,N+1 \cdot \cdot \cdot \xi i,m

\bigr] \top 
for i=m1+1, . . . ,m - n+1. In these vectors,

\xi i,j are either 1,  - 1, or 0. By the Gram--Schmidt orthogonalization of \bfR  - 1/2\xi i, we obtain the
orthonormal vectors

\bfX i =
\bigl[ 
xi,1 \cdot \cdot \cdot xi,N 0 \cdot \cdot \cdot 0

\bigr] \top \forall i= 1, . . . ,m1,

\bfX i =
\bigl[ 
0 \cdot \cdot \cdot 0 xi,N+1 \cdot \cdot \cdot xi,m

\bigr] \top \forall i=m1 + 1, . . . ,m - n+ 1.

It is obvious that the entries in the first N columns and the first N rows of the matrix\sum m - n+1
i=m1+1 \bfX i\bfX 

\top 
i are all zero. This indicates that the lines in \scrG 2 \cup \scrG 3 have no contributions to

the first N columns and the first N rows of \bfQ y. Similarly, the lines in cycle-cluster \scrG 1 have no
contributions to the last m - N columns and the last m - N rows of \bfQ y. Hence, constructing
new lines or increasing coupling strength of lines in cycle-cluster \scrG 1 has no impact on the
variance of the phase differences in the lines in \scrG 2 \cup \scrG 3 and vice versa.

(iii) We first consider the case where the coupling strength of a line in a cycle-cluster
increases. If there are two or more cycle-clusters, based on Corollary 3.12(ii), then it is
deduced that increasing the coupling strength of a line in a cycle-cluster has no impact on the
variances in the lines in the cycle-clusters that do not contain this line. Thus, we focus only
on its impact on those lines in the cycle-cluster that contains this line. Assume there is only
one cycle-cluster in the graph where the coupling strength of line e1 increases. Because the
weight of line e1 increases while the weights in the other lines are not changed, we only need
to study the changes in the variances when the weight of line e1 increases. The dimension
k of the kernel of \bfC \bfR 1/2 equals m  - n + 1, and the basis vectors can be obtained from
the k fundamental cycles. The corresponding basis vectors to the k  - 1 cycles which do

not include line e1 have the form \xi i =
\bigl[ 
0 \xi i,2 \xi i,3 \cdot \cdot \cdot \xi i,m

\bigr] \top 
for i = 1, . . . , k  - 1, where

\xi i,q = 1,  - 1, or 0 for q = 2, . . . ,m. The basis vector corresponding to the fundamental cycle

which includes line e1 has the form \bfitxi k =
\bigl[ 
\xi k,1 \xi k,2 \cdot \cdot \cdot \xi k,m

\bigr] \top 
, where \xi k,1 = 1 or  - 1 and

\xi k,q = 1,  - 1, or 0 for q = 2, . . . ,m. By the Gram--Schmidt orthogonalization of \bfR  - 1/2\xi i, we

obtain \bfX i =
\bigl[ 
0 xi,2 xi,3 \cdot \cdot \cdot xi,m

\bigr] \top 
for i = 1, . . . , k  - 1 where there are no contributions
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from line e1. Hence the weight of e1 denoted by l1 has no impact on the matrix \bfX i\bfX 
\top 
i for

i= 1, . . . , k - 1. The last vector \bfX k can be obtained by normalization of the vector

\bfX k
\prime =\bfR  - 1/2\xi k  - \alpha 1\bfX 1  - \cdot \cdot \cdot  - \alpha k - 1\bfX k - 1,

where \alpha i =
(\bfR  - 1/2\xi k)\top \bfX i

\bfX \top 
i \bfX i

\in \BbbR is independent of l1 because the first element of \bfX i equals zero

for i= 1, . . . , k - 1. Hence \bfX k
\prime has the form

\bfX k
\prime =

\Bigl[ 
l
 - 1/2
1 \xi k,1 x\prime k,2 x\prime k,3 \cdot \cdot \cdot x\prime k,m

\Bigr] \top 
,

where x\prime k,q is independent of l1 for q = 2, . . . ,m. By the normalization of \bfX k
\prime , we obtain

\bfX k = a\bfX k
\prime , where a = (l - 1

1 +
\sum m

i=2 x
\prime 
k,i

2) - 1/2. Hence, the diagonal element of \bfX k\bfX 
\top 
k equals

to a2l - 1
1 for i= 1 and a2x\prime k,i

2 for i= 2, . . . , m. Thus, the variance of the phase difference in line

e1 equals
1
2\beta (l

 - 1
1  - a2l - 2

1 ) and that in line eq with weight lq equals
1
2\beta l

 - 1
q (1 - a2x\prime k,q

2 - 
\sum k - 1

i=1 x2i,q)
for q = 2, . . . ,m. Clearly, the variance in line e1 decreases as l1 increases. Here we further
prove this trend also holds for the variance in line e1. Let z = l - 1

1 and b =
\sum m

i=2 x
\prime 
k,i

2; then
the variance in line e1 becomes

1

2
\beta (l - 1

1  - a2l - 2
1 ) =

1

2
\beta (z  - (z + b) - 1z2).

The derivative of this variance with respect to z is b2\beta 
2(z+b)2 , which is strictly positive for any

z > 0. Hence, the variance is monotonously increasing with respect to z and decreases as l1
increases.

We next consider the case when a new line is constructed in a cycle-cluster without chang-
ing the weight of all the other lines. Assume line e1 is the new line. The variance of the phase
difference in line eq with weight lq before adding line e1 is

1

2
\beta l - 1

q

\biggl( 
1 - 

k - 1\sum 
i=1

x2i,q

\biggr) 
for q= 2, . . . ,m, which decreases to

1

2
\beta l - 1

q

\biggl( 
1 - a2x\prime k,q

2  - 
k - 1\sum 
i=1

x2i,q

\biggr) 
after adding line e1.

(iv) Denote the vector corresponding to this cycle by \xi 1 and the ones corresponding to
the other cycles by \xi i with i = 2, . . . ,m  - n + 1. Without loss of generality, we assume the
lines e1, e2, . . . , eN with weights l1, l2, . . . , lN are in the cycle and the direction of these lines is
consistent with the direction of the cycle. By the definition of the basis of the cycle space, we

obtain \xi 1 =
\bigl[ 
1 1 \cdot \cdot \cdot 1 0 \cdot \cdot \cdot 0

\bigr] \top 
, where the first N elements equal 1 and the last m - N

elements equal 0, and \xi i =
\bigl[ 
0 0 \cdot \cdot \cdot 0 \xi i,N+1 \cdot \cdot \cdot \xi i,m

\bigr] \top 
, where the first N elements are

all 0 and the last m  - N elements equal either 0 or 1. Obviously, the vector \bfR  - 1/2\xi 1 is
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orthogonal to the vector \bfR  - 1/2\xi i for i = 2, . . . ,m  - n + 1. By scaling these vectors to unit
Euclidean length, we obtain the unit vector

\bfX 1 =
\Bigl( N\sum 

k=1

l - 1
k

\Bigr)  - 1/2 \Bigl[ 
l
 - 1/2
1 l

 - 1/2
2 \cdot \cdot \cdot l

 - 1/2
N 0 \cdot \cdot \cdot 0

\Bigr] \top 
for \bfR  - 1/2\xi 1,

and \bfX i =
\bigl[ 
0 0 \cdot \cdot \cdot 0 xi,N+1 \cdot \cdot \cdot xi,m

\bigr] \top 
for the linear subspace composed by the vectors

\bfR  - 1/2\xi i for i= 2, . . . ,m - n+1. Since the firstN elements are all 0, \bfX i\bfX 
\top 
i for i= 2, . . . ,m - n+1

has no contributions to the first N columns and the first N rows of \bfQ y. By (3.15), we obtain
that the kth diagonal element of \bfQ y for k= 1, . . . ,N is

\beta 

2

\biggl( 
l - 1
k  - l - 2

k

\biggl( N\sum 
r=1

l - 1
r

\biggr)  - 1\biggr) 
from which we obtain (4.1) by replacing lk by wij . If lk = \gamma for all k = 1, . . . ,N , we further

get the first N diagonal elements of \bfQ y equal to \beta 
2\gamma (1 - 

1
N ).

Proof of Theorem 3.13. With the definition of \beta and \beta , we define \bfB = (\beta \bfD )1/2 and

\bfB = (\beta \bfD )1/2. Thus,

\beta \bfI n =\bfD  - 1/2\bfB \bfB \top \bfD  - 1/2 \preceq \bfD  - 1/2\bfB \bfB \top \bfD  - 1/2 \preceq \bfD  - 1/2\bfB \bfB 
\top 
\bfD  - 1/2 = \beta \bfI n.

From formula (3.12), we derive 1
2 \beta \bfLambda  - 1

n - 1 \preceq \bfQ n - 1 \preceq 1
2\beta \bfLambda 

 - 1
n - 1. Thus, by (3.11) we have that

1

2
\beta \bfC \top \bfD  - 1/2\bfU 2\bfLambda n - 1\bfU 

\top 
2 \bfD 

 - 1/2\bfC \preceq \bfQ \bfy \preceq 1

2
\beta \bfC \top \bfD  - 1/2\bfU 2\bfLambda n - 1\bfU 

\top 
2 \bfD 

 - 1/2\bfC .

By repeating the proof of Theorem 3.9, we obtain the bounds of \bfQ \bfy in (3.17).

6. Conclusions. Explicit expressions for the asymptotic variance matrix of a stochastic
linear system for the evaluation of the fluctuations in complex phase oscillators have been
derived and analyzed.

Research interest remains for optimization of the network topology to improve the syn-
chronization stability of the complex phase oscillators.
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