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Abstract. This chapter contributes to the ongoing discussion of streng-
thening security by applying AI techniques in the scope of intrusion
detection. The focus is set on open-world detection of attacks through
data-driven network traffic analysis. This research topic is complemen-
tary to the earlier chapter on intelligent malware detection.

In this chapter, we revisit the foundations of machine learning-based
solutions for network security, which aim to make network defense tools
more autonomous, adaptive, proactive and responsive. Specifically, we
give a comprehensive introduction to the research on anomaly detec-
tion for network intrusion detection – that is, defensive schemes that do
not assume complete prior knowledge of malicious patterns and instead
learn the notion of normality from benign traffic. Along with outlin-
ing the recent advances in the field, we provide insights and reflect on
the current limitations and research challenges. Therefore, this chapter
presents compelling research opportunities to advance machine learning
techniques in network security and push the boundaries of open-world
network intrusion detection.

1 Introduction

Intrusion detection is an integral part of securing information systems. Detection
tools stem from the early realization of the computer security community that
full and provable protection of an ICT infrastructure is practically infeasible, if
not impossible. Attempts to compromise the system can emerge from within the
infrastructure as well as from its adversarial environment. An intrusion detection
system (IDS) therefore aims at detecting exploitation attempts and active misuse
both within the perimeter and from outside of it.

Continuous monitoring of the system and accurate detection of malicious
behavior constitute the first step of the incident response process. For this funda-
mental step, an IDS performs acquisition of relevant data streams that represent
operation of the system and its internal and external communication. Through
an in-depth real-time analysis of these monitored data, an IDS searches for any
signs of a potential misuse of the system. If such evidence is detected with high
enough confidence, an alert is raised which is then propagated to security ana-
lysts, or to a Security Information and Event Management (SIEM) system. SIEM
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systems are used mostly in larger networks to aggregate and correlate alerts and
other security events. This way the incident response team can analyze the data
from IDS and other sources (network logs, firewalls, servers, antivirus software,
etc.) in one place to construct a full picture of threats in the network before
taking measures.

In essence, an IDS is responsible for intelligent automated decision making
that can, depending on the correctness of those decisions, either safeguard or
disrupt normal operation of the infrastructure. Reliable intrusion detection is
indispensable, but despite the world-wide efforts of the last 40 years, IDSs reg-
ularly generate false alarms, at times fail to prevent intrusions, and thus end up
jeopardizing system and data security with high recovery costs. A vast amount of
research and development has gone into creating dedicated tools and algorithms
in order to bring intelligent and reliable intrusion detection into reality. Among
the possible solutions, artificial intelligence (AI) has always been a compelling
component for automated knowledge retrieval that aids in efficient detection of
ever-changing attacks, with a varying level of complexity and involvement. Espe-
cially in light of recent advances in the machine learning (ML) and deep learning
domains, the solution space is evolving so rapidly that it has become challenging
to keep track of major changes.

With this chapter, we aim to revise the intrinsic factors that continue to pose
challenges for research on machine learning based solutions for network security.
As AI algorithms are ubiquitously used across all possible data sources and
points of IDS deployment, for the purpose of a more contained discussion we will
focus on network intrusion detection as one particularly prominent and highly
representative application of machine learning in network security. Specifically,
we will explore network traffic as the primary data source for detection. Network
intrusion detection systems can detect attacks either through misuse detection,
i.e. matching observed traffic to a known malicious traffic signature, or through
anomaly detection, i.e. detecting suspicious patterns as indicators of malicious
activity by comparing traffic to a previously established benign baseline. While
both directions present unique research challenges, in this chapter we highlight
traffic anomaly detection as a particularly promising approach which does not
rely on the knowledge of malicious signatures, but instead detects earlier unseen
attack patterns. This intrinsic ability of anomaly detection to discover novel
attack types respects the open-world nature of intrusion detection where attacks
are continuously evolving. Therefore, we dedicate our discussion to open-world
network intrusion detection, a highly compelling and indispensable paradigm in
network security that can be empowered with machine learning capabilities.

The chapter is organized as follows. In Sect. 2, we introduce the IDS domain
and its core concepts. After reviewing the problem statement and the threat
model of a network-based IDS, we move on to outlining the principal machine
learning techniques and their underlying assumptions in Sect. 3. Finally, in
Sect. 4, we analyze open challenges, specifically in relation to the usage of
machine learning for open-world detection on network traffic. As these chal-
lenges were revealed through a long and potent line of research, an important
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question remains as to which recent advances have been made to address them.
We conclude our reflections on the current state of the domain in Sect. 5.

2 Network Intrusion Detection

Malicious attempts to invade an ICT infrastructure must be detected and local-
ized while in progress. This objective implies performing real-time analysis of
continuous streams of data from various sources and locations in search for
indicators of compromise. Traditionally, the process of intrusion detection has
been split between network-based (NIDS) and host-based (HIDS) systems, that
serve complementary purposes by monitoring malicious activities at different
levels. HIDS runs on internal nodes, carrying the ability to closely monitor their
individual behavior. It primarily relies on host-specific data sources, such as
system and kernel-level activity traces, program analysis, audit logs, files and
documents. Maintaining a fine-grained access to activities on individual hosts
enables a HIDS to precisely localize misuse, e.g. an active malware. For further
information on HIDSs and the diverse data types they utilize to detect attacks,
we refer the reader to the recent survey [17].

The holy grail of intrusion detection is to recognize threats as early as possi-
ble before the system and its data get compromised. Since the most common way
for intruders to enter an infrastructure is through the network, a NIDS – being
placed at the edge of the network – analyses inbound and outbound network
traffic and thus acts as the first line of defense. As opposed to the host-based
level of monitoring, a network-based approach gives a more expansive view over
the network, allowing for an early detection of attacks, including those that
target multiple hosts at once. NIDSs can be also freely deployed within the
perimeter, enabling them to monitor traffic traversing inside the network and to
detect internal attacks. Today, security is moving beyond traditional perimeter-
based solutions: the growth in cloud, mobile and edge computing and connected
devices makes network borders and access points much less defined. The Zero
Trust paradigm has been introduced [55] to address the gaps in traditional net-
work design by (i) not trusting any entities inside or outside the organization
network, and by (ii) segmenting the network and thus providing only limited
access required to perform specific tasks, even after verification. From perspec-
tive of network intrusion detection, this entails that all network traffic is treated
as untrusted, increasing the workload for NIDSs deployed at choke points in the
zero-trust network.

AI-powered traffic analysis and network defense tools are becoming ubiqui-
tous across ICT infrastructures, being adopted to diverse network architectures,
points of NIDS deployment and data sources. Before diving into the data-driven
approach used to enhance network intrusion detection, we establish a general
threat model under which a NIDS operates.
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2.1 Network Threats

Cyberthreats targeted by a NIDS are either executed over a network, or commu-
nicate with external parties over a network. A NIDS mirrors the entire network
traffic that is permitted by a firewall, being able to distinguish attacks across
the OSI stack, from Layer 2 (Data Link) potentially all the way up to Layer 7
(Application). Very broadly, these threats can be categorized into passive and
active attacks.

Passive attacks do not involve any meaningful interaction with nodes in a
target network and do not alter any data. Instead, the purpose is to probe the
system – obtain useful information which can be efficiently collected through, for
instance, network scanning or port scanning. Network scanning allows to detect
accessible nodes, while probing open ports allows to identify services running on
these nodes, exposing their vulnerabilities. As such, a passive attack does not
leave any traces in the system and is by itself a preparatory step before a more
aggressive intervention. Detecting a passive attack in real-time gives a defender
an opportunity to proactively identify an adversary and prevent their intrusion.

The types of active attacks, however, vary greatly. These are the network
attacks that aim at compromising integrity, confidentiality and availability of
target systems. Without being exhaustive, we list some of the most prominent
attack scenarios.

The most basic way to penetrate the network would be by brute forcing cre-
dentials of a legitimate user, which is characterized by an overwhelming series
of unsuccessful logins rather noticeable in the inbound network traffic. More
advanced attackers penetrate a protected network by carefully exploiting vul-
nerabilities found in its perimeter and thus gaining unauthorized, potentially
privileged access to the system in a more stealthy manner. These can be miscon-
figurations or vulnerabilities in firmware of entry-level network devices, or web
and software vulnerabilities of publicly accessible hosts, such as buffer overflows,
cross-site scripting (XSS) and SQL injections. Similar to brute force attacks,
these exploits can also be launched over the network, carried in incoming net-
work packets’ payloads. However, due to traffic encryption and a number of
other considerations to be discussed further, malicious payloads even of well-
known exploits are not guaranteed to be detected.

Apart from penetration attacks, another large family of network threats is
denial of service (DoS) attacks, which aim at disrupting normal functioning of
target hosts and deny their availability to legitimate users. This goal can be
achieved through flooding the victim node or resource with superfluous requests
in an attempt to overload both the network bandwidth and the system, possi-
bly also targeting its IDS. There are many variations of a DoS attack, includ-
ing SYN flooding, ICMP flooding, smurf and others, which differ in mechanics
and final effects. A distributed DoS attack (DDoS) is launched from numerous
sources at once, often automated by a whole network of compromised computers
– bots. Today, botnets are seen as the largest network security threat and remain
one of the key research topics in intrusion detection. Bots become disguised as
legitimate actors through infecting privately owned systems. Their automated
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illegitimate activities can have various malicious impact, ranging from spam and
click fraud campaigns to identity theft, DoS attacks and malware infections.
Remote command-and-control (C&C) servers send instructions to the compro-
mised cluster of computers and receive back reports and leaked information.
Even though botnets generate a lot of communication, detecting them through
traffic analysis or other means is a serious challenge for any type of IDS, as bots
continue to evolve and find better disguises.

While botnets are rather stealthy and can cause extremely damaging con-
sequences, there is an attack class that surpasses others in evasiveness, sophis-
tication and severity – advanced persistent threats (APTs). These threats are
human-driven attacks targeted against a specific infrastructure and aimed at
gaining an ongoing access for a long period of time in order to exfiltrate sensitive
valuable data – this could be, for instance, intellectual property of organizations,
trade secrets, or customer information. It is especially difficult to detect an APT
at the moment of perimeter penetration or privilege escalation, since advanced
attackers may use unknown exploits or social engineering tricks to infiltrate an
infrastructure. Afterwards, an APT only infects a few chosen hosts to get closer
to valuable resources of the network, effectively staying under the radar. They
rarely contact remote C&C servers, and when they do, they use encryption or
obfuscation techniques, complicating traffic analysis by a NIDS. However, the
data exfiltration process – a common goal of an APT – may be well observable
in outbound network traffic, which grants a crucial defensive role to a NIDS.

2.2 Network Traffic Monitoring

Network traffic became a universal data source for intrusion detection thanks to
standardization and ubiquity of network protocols, which makes NIDSs adapt-
able to a wide range of platforms and applications. A NIDS collects and inspects
network traffic in different modes, mostly either on a packet level or on a flow
level. These approaches to traffic monitoring differ in informational content and
practicality, and selecting one, or a combination, depends on the environment
and the threat model.

Packet-Level Inspection. Capturing traffic from the network by a NIDS for
monitoring and analysis purposes is achieved with promiscuous access to copies
of network packets, and therefore without interference in communication. Full
packet captures are usually made in the pcap file format, a widely used and
portable format for packet inspection. Pcap files can be processed with Deep
Packet Inspection (DPI), which performs both packet header and payload anal-
ysis. DPI can provide extensive information about communication, exposing
malicious payloads to a NIDS. One of the earliest IDS tools that performs
application-level DPI is Snort [80], an open-source signature-based detector.
Snort matches observed packets with known malicious patterns using regular
expressions (e.g., for a linux web server, a pattern could be an HTTP request
containing ‘etc./passwd’). A more recent open-source NIDS called Suricata [1]
improves scalability of Snort [5]. Such signature-based NIDS strongly rely on
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a rich database of malicious payloads. For anomaly-based NIDS, one promi-
nent example is the Zeek [2] tool (formerly known as Bro [73]). Zeek constructs
benign baseline profiles for an application’s usage based on predefined policy
scripts and flags deviations from these profiles. For instance, it was shown to
effectively detect web attacks, such as reflected XSS injection and SQL injec-
tion, by inspecting strings in the HTTP-request parameters [98]. With access to
payloads, these attacks are straightforwardly detected due to presence of unusual
characters in the request body.

Despite all these advantages, processing full packet captures comes with some
considerable practical issues. The sheer volume of packets in modern high speed
communication networks is overwhelming, making DPI inefficient or even infea-
sible in real-time. Moreover, storing full captures for further network forensics
is a highly limited resource. Captures of very large packets are often incom-
plete or even limited to header information, largely omitting the most infor-
mative parts. And finally, two fundamental limitations to performing DPI are
(i) invasion of privacy through accessing and storing benign packets’ content,
and (ii) traffic encryption. Packet-level inspection on TLS-encrypted traffic can
be realized through man-in-the-middle solutions that decrypt and re-encrypt
payloads, thereby violating end-to-end security guarantees, which can be both
unsafe and computationally intensive for a particular environment. An ongoing
line of research explores DPI over encrypted traffic through matching encrypted
tokens with encrypted rules [70,84]. Currently this approach requires computa-
tionally intensive setup phases for every network connection, and, without the
aid of decryption, supports only a limited number of IDS rules.

In view of the above circumstances – high data rates, computationally
demanding processing, privacy and encryption concerns – DPI for intrusion
detection is arguably becoming increasingly obsolete in modern environments.
Nevertheless, there exist numerous network intrusion detection datasets with full
packet captures, as packet-level analysis has proven to be highly beneficial for
research purposes.

Flow-Level Inspection. Rather than inspecting and storing all individual
incoming and outgoing packets, a NIDS may group relevant packets together
in a flow and collect their aggregated information on a flow level. A traffic
flow is commonly defined as a series of bidirectional packets exchanged between
two hosts that share a five-tuple – source and destination IP addresses, source
and destination ports, and a protocol – collected over a certain period of time.
This may correspond to a duration of one complete network connection, or to a
predefined time window (until a timeout is reached). Flow-level information is
aggregated across all the packets belonging to one flow – typically this includes
timestamps of start and finish, number of packets and bytes, arrival times, cer-
tain packet header attributes, etc. These traffic flow meta-data provide a high-
level description of communication between source and destination hosts which
can be very telling about its benign or malicious nature [90]. As a result, flow-
based inspection does not take into account traffic content, but instead reveals
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informative high-level communication patterns, while greatly reducing the size
of data to be analyzed.

Packet counts are recorded when packets cross network router interfaces.
Most often, flow data aggregation is performed through Netflow [21] – a network
monitoring protocol that is well integrated in modern network environments.
Since Netflow counters are mostly generated directly on the network equipment,
performance of the network may be affected. The overhead can be limited by
performing traffic aggregation at the hardware level or even by decoupling traf-
fic routing and flow computation by passively copying traffic data, similar to
the case of packet inspection. As opposed to the packet-level inspection, which
mostly provides signature-based analysis, an advantage of flow-based inspection
is that it supports anomaly detection approach, as we describe in Sect. 3. Further-
more, network aggregates are applicable in the context of end-to-end encryption
or privacy constraints of a particular environment, because they omit packet
payloads from analysis. This property facilitates public availability of real traffic
data aggregated in the form of flows, which is extremely valuable for open net-
work intrusion detection research. A NIDS can also implement a hybrid approach
that combines DPI and traffic flow analysis in a number of variations, mostly
relying on the flow-based analysis complemented with an occasional payload
inspection of suspicious traces.

3 A Data Analysis Approach

Monitored traffic traces – in the form of full captures or aggregated flows –
are analyzed to find indicators of potential attacks. In the early days, review of
monitored activities for intrusion detection was performed manually by security
analysts or system administrators. They used to devise and manually adjust
rules and heuristics that would help to find harmful packets and identify sus-
picious behavior. The volume and increasing complexity of monitored data has
long deemed any such manual efforts insufficient and prompted the community
to introduce automation. Already in the 1990s, progress in AI research enabled
investigation of ML techniques1 in application to intrusion detection. The power
of data analysis is in interpreting large amounts of data and automatically discov-
ering new relevant knowledge – a highly valuable capability in the ever-growing
and ever-changing security landscape.

A ML-based IDS employs a data-driven approach to intrusion detection –
it uses ML methods to autonomously learn characteristic rules and patterns
from previously observed data. For the case of network intrusion detection, the
abundance of network traffic data creates an opportunity to apply data-driven
techniques. A ML-based NIDS configured for misuse detection can detect vari-
ants of known attacks by finding patterns sufficiently similar to previously seen
malicious traffic. On the other hand, a ML-based NIDS that performs anomaly
1 Machine learning is defined as a subfield of AI that focuses on data-driven modeling

of concepts, while deep learning is a subfield of machine learning that uses a partic-
ular family of techniques – artificial neural networks with representation learning.
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detection can model ‘normal’ behavior of the system by learning from benign
network traffic, and catches anomalous patterns that deviate significantly from
the baseline. In the context of high non-stationarity and strong heterogeneity
of network traffic, another strength of ML is its ability to dynamically adapt to
changes in the network when exposed to new data.

The prolific use of AI cannot be merely attributed to impressive automation
capabilities of ML algorithms, as it also relies heavily on expert involvement. In
order to benefit from the advantages offered by ML, the designer of a ML-based
NIDS applies their domain expertise to create an appropriate learning system.
First and foremost, an in-depth understanding of the network environment and
the threat model are required in the data representation phase that converts
monitored traffic data into a suitable format for ML. Applying ML methods
directly to raw monitoring data, such as full pcap files, is not only hardly com-
putationally feasible, but also does not usually yield useful results. The reason
is that the numerous values in their original form are not equally relevant to
the learning problem, which is especially true for data of such complex struc-
ture and overwhelming volume as network traffic. Therefore, an IDS designer
leverages expert knowledge to find a compact representation of raw traffic which
conveys characteristics that are most relevant to the task of misuse or anomaly
detection. This step is known as feature extraction – a transformation that con-
verts an initial set of input data into derived values, or features, that capture
its underlying structure and complexity. As a result, information-rich raw data
is represented as a feature vector containing compact, non-redundant informa-
tion that is appropriate for subsequent learning and inference. The goal of the
feature extraction process is to compose such features that describe patterns in
data which, during inference, can generalize to previously unseen samples drawn
from the same distribution. Today there exist two major general approaches to
extracting features: (i) feature engineering & selection – hand-crafting and select-
ing most salient features based on practical experience and intuition about the
problem, and (ii) feature learning – automated feature extraction with the use
of learning algorithms.

The quality of features constructed from input data is one of the most influ-
ential factors that define the effectiveness of a ML algorithm. For optimal perfor-
mance, it is crucial to keep the feature set up-to-date with the ongoing changes
in the learning problem – a concern especially present in network security. There-
fore, in NIDS domain, both approaches to feature extraction are continuously
revised and improved: while the former has traditionally played a predominant
role, the latter is receiving increasing attention lately in light of recent progress
in deep learning (DL) research.

Feature Engineering and Selection. When engineering features for network
intrusion detection, and other related traffic analysis tasks [16], it is important
to consider the characteristics of the learning problem and define the level of
granularity of features. In networking, an analyst can choose from the wide range
of packet-level, flow-level, session- or connection-level, and multi-flow features,
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with increasing level of granularity. On each level, a statistical description of
data, such as distributions of attributes or groups of attributes, can be formed:

– Packet-level features are extracted or derived from collected packets: payload
information, packet-specific header attributes and packet-level statistics, e.g.
mean and variance of packet sizes and inter-arrival times.

– Flow-level description includes simple aggregated statistical features such as
mean flow duration, mean number of packets per flow, mean number of bytes
per flow, bytes transmitted per second, and more. The latest versions of Net-
Flow compute very basic features of traffic flows in real time, including bytes
per packet and packets per flow, which are further used to derive flow-based
statistics. Despite the simplicity, statistical features turn out to be highly
informative of the nature of a particular communication, as they are quite
effective in revealing traffic anomalies and particular known malicious pat-
terns. For instance, a basic DoS attack is a volumetric attack that is commonly
characterized by sending many packets in one direction within a short time
period, making flow statistics well-suited for detection.

– Connection-level features are extracted from the transport layer and include
information about the particular network connection (which may be split into
several flows). For TCP connections, these additional features may include
advertised window sizes in TCP headers and the throughput distributions.

– Multi-flow features appear especially valuable for security applications such
as network intrusion detection. For some types of intrusions, meaningful
revealing information can be only derived through aggregation across mul-
tiple flows/connections. For instance, for a particular flow, number of recent
connections from the same source or to the same destination can be rele-
vant. These aggregated measurements are highly instrumental, for instance,
in detecting attacks executed over multiple connections, be that from differ-
ent sources against the same victim, or against different nodes in the network.
Probe attacks, DDoS attacks and bot communication are obvious examples,
where one flow in isolation might appear harmless, while the overall behavior
is more indicative. Temporal statistical features is another example of feature
extraction approach that aims to solve the problem of a narrow one-flow view
by aggregating traffic information over time across multiple flows, thereby
respecting temporal dependencies between them [64].

The set of engineered features is often further optimized through automatic
feature selection in order to discard redundant or irrelevant features and reduce
dimensionality of voluminous data. In this way, feature selection may decrease
computational overhead while maintaining accuracy, and also help to avoid over-
fitting of a ML model to the training data of high complexity, i.e. memorizing
the data instead of deriving the underlying patterns. For different approaches to
composing and reducing the feature set, we refer the reader to the corresponding
surveys [16,26,68].

The resulting new set of high-quality manually extracted features forms fea-
ture vectors that are compact, non-redundant, informative and generalized, and
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possibly interpretable, having clear semantics for each vector dimension. Arriv-
ing at high quality representations is a challenging iterative manual process,
involving experimentation with many techniques in combination with domain
expertise and intuition about the problem. Feature learning aims at automating
the process of feature extraction, relaxing the need for close expert involvement.

Feature Learning. As ML approaches struggle with high-dimensional inputs
and manual feature extraction, deep neural networks have recently been
embraced for dimensionality reduction and feature/representation learning. DL
approaches are able to automatically extract discriminative internal representa-
tions of the input through a series of non-linear transformations upon observing
sufficient amounts of data. Several studies applied deep belief networks for mis-
use and anomaly detection in order to obviate manual engineering of traffic
flow features [6,32,41,86]. Automatically learned representations have proven
to be more robust to irrelevant deviations in data and thus contributed to
higher generalizability of ML models to earlier unseen patterns. The immedi-
ate drawback of automatically learned abstract features is that, as opposed to
hand-crafted feature vectors, they do not provide clear semantics. Decisions of
DL-based NIDS are, therefore, hardly directly interpretable. This calls for addi-
tional methods to verify that a trained DL-based feature extractor has learned
appropriate meaningful traffic patterns and to explain a model’s decisions to
security analysts [7,69]. Therefore, more automation implies less interpretability
– a trade-off that a NIDS designer has to balance.

3.1 Machine Learning for NIDS

When selecting an appropriate ML model, it is crucial to understand how
to leverage the properties of the features and relationship between them. For
instance, streaming data represented as a time series consists of temporal fea-
tures, which are best interpreted with a model capable of recognizing temporal
dependencies. The choice of a learning algorithm, however, starts with defining
a concrete ML problem statement that most accurately represents the task of
intrusion detection, be it misuse- or anomaly-based. This encapsulates at the
very least such influential factors as (i) expected input and output of the sys-
tem, (ii) assumption about the knowledge of all existing data categories, and
(iii) availability of annotated training data.

Input and Output. The expected input implies the data representation, i.e. the
types and dimensionality of extracted and selected features. The expected output
of the model is a design choice of how to present the inferred information about
the event for further analysis and response. In general, for a given test instance,
the output can be a label : malicious vs. benign or anomaly vs. benign. For
anomaly detection in particular, it can also be an anomaly score that indicates
significance of the detected anomaly for further investigation. Optionally, the
model can also provide its confidence score for each decision.

Closed-World and Open-World Assumptions. The assumption about the
knowledge of all data categories is what largely drives the choice between misuse
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and anomaly detection in the first place. A misuse detector is typically deployed
under a closed-world assumption, which implies that all possible data categories,
i.e. types of intrusions, have been seen at the training stage of the model. A
common closed-world NIDS employs a ML classifier that learns to recognize
a traffic instance as benign or belonging to one or another attack class, thus
performing intrusion recognition. Closed-world detection has been thoroughly
researched in the network security domain, and has been traditionally favored
by industry due to predictability and high detection rates. However, in operation,
such a model can only detect known malicious behaviors and assumes that no
unexpected attack type may appear.

In reality, a network environment operates under a much more challenging
threat model that includes known attacks, new variants of known attacks and
completely novel, earlier unseen cyber-threats, comprising an open world of pos-
sibilities (hence the title of this chapter). In order to enable open-world detection,
a ML problem statement has to change from standard classification to either
open-world recognition [11] (also called open-set recognition/classification), or
anomaly detection [20] (also called outlier detection). An open-world classifier
performs its originally intended task, but also leverages additional mechanisms
to be able to identify novel patterns as instances that cannot be confidently
classified as one of the learned attack types. Anomaly detection algorithms,
however, are inherently open-world: as was explained earlier, anomaly detection
exclusively relies on knowledge of benign data (normal, background traffic), and
flags any sufficiently deviant pattern as a potential intrusion attempt of unknown
nature. Therefore, in operation, an anomaly-based NIDS is an open-world detec-
tor as it targets both known and unknown attacks, although it can similarly use
patterns of earlier seen attacks for model evaluation at the design stage. A core
drawback of employing anomaly detection for defensive purposes is its depen-
dence on the notion of ‘normality’ – as a consequence, a pattern that deviates
from normal data for benign reasons is also flagged as potentially malicious, usu-
ally causing a high number of false alerts that need to be investigated. Further
in Sect. 4, we zoom in on the challenges of traffic anomaly detection.

There are many studies in the literature that join anomaly detection with
misuse detection in an attempt to combine the strengths of both paradigms:
improve the detection rate and minimize the rate of false alerts. In fact, com-
mercial platforms very rarely use anomaly detection in isolation, but rather
adopt the hybrid approach [54]. The mismatch between the promises of anomaly
detection and its actual adoption in industry is what demands a more explicit
academic focus on anomaly-based IDS research.

Supervised and Unsupervised Learning. Another fundamental distinction
between ML approaches relates to availability of annotated/labeled data. Super-
vised ML, such as classification, is a learning mode that relies on labeled training
data. Namely, a classifier requires a significant number of representative labeled
training examples from all the considered classes. Therefore, a classifier-based
misuse detector works with a continuously updated database of known mali-
cious patterns that need to be well represented in training data for a NIDS.
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Acquiring labeled malicious data is expensive, as it requires either manual inves-
tigation by network experts, or development of automated labeling algorithms,
which essentially create a chicken and egg problem. Moreover, supervised learn-
ing is in general highly sensitive to class imbalance in data, demanding equal
representation of every class. Otherwise, a classifier trained with imbalanced data
becomes biased towards the majority class and largely ignores instances belong-
ing to the minority class of interest. Since in network environments benign traffic
is predominant, the benign class outweighs malicious traffic classes in labeled
training data, causing a much lower representation of attacks. This undermines
the sole purpose of intrusion detection, since the most interesting and inher-
ently rare intrusions become overlooked. The issue can be addressed by using
specialized techniques to increase importance of the minority attack classes [97].
Another solution is attack simulation performed to generate more malicious traf-
fic for training under an assumption of its representativeness of real intrusions.
However, for simulated benchmark datasets, the class imbalance problem is not
unheard of, either.

Unsupervised ML paradigm obviates the need for labeled data altogether.
A general example is clustering, which performs exploratory data analysis to
draw inferences and find hidden patterns and correlations in unlabeled data.
Clusters are automatically formed with the use of a similarity measure between
instances. Unsupervised approaches generally do not assume any a priori knowl-
edge on the data distribution and labels, which corresponds to a realistic NIDS
scenario. In practice, though, semi-supervised anomaly detection is often applica-
ble under the assumption of availability of labeled normal data. As the shortage
of malicious labeled traffic is the main issue, both supervised and semi-supervised
approaches pose the biggest interest for NIDS research.

While supervised NIDS approaches are widely utilized and thoroughly stud-
ied in the literature, they either violate the open-world context of network
security, or extensively rely on manual data labeling, or both. In recent years,
unsupervised and semi-supervised techniques in application to NIDS are gain-
ing more traction; however, the research is largely ongoing. The community
have composed a number of excellent surveys on the topic that provide detailed
taxonomies and analyses of existing ML-based approaches to NIDS. For the
closed-world misuse detection research, we refer the reader to the correspond-
ing expansive literature that surveys supervised classification methods [12,18].
Further in our discussion, we elaborate on the open-world NIDS research, specif-
ically, unsupervised or semi-supervised anomaly-based ML paradigms, which we
believe deserve more attention in the field of network security. Hence, our aim is
to complement the existing surveys [4,34,42,96], which provide in-depth analy-
ses of individual techniques, with a broad overview of the current solution space
and the key remaining challenges.

3.2 Anomaly Detection for Open-World NIDS

An anomaly is commonly defined as a rare pattern that does not conform to
expected behavior. In machine learning, an anomaly is detected as an outlier with
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respect to the region representing normal data. In intrusion detection, different
types of anomalies are typically mapped to different types of malicious behavior:

1. Point anomalies – individual data observations that lie outside of the nor-
mal behavioral boundaries (relative to the rest of the data). For instance,
sophisticated network exploits that aim to gain unauthorized access or esca-
late privileges, such as buffer overflow attacks or web attacks, can be care-
fully deployed through one packet payload, or one traffic flow. Simple probing
attacks, launched through malformed packets, incomplete connections or with
incorrect combinations of header attributes, also form a point anomaly.

2. Contextual anomalies – individual data observations that are anomalous in
a given context. One example of a contextual anomaly are stealthy prob-
ing attack [91], where each individual packet and the whole connection may
correspond to normal traffic. However, given the context of systematic infor-
mation collection without meaningful interaction, the connection becomes
anomalous. Some botnet traffic can also arguably be considered a contex-
tual anomaly: while communication with the C&C server can by itself form
a benign connection, its timestamp may point to suspicious behavior.

3. Collective anomalies – multiple data observations occurring together that
differ from normal behavior. The key here is the collective occurrence of those
observations, as each single instance is not anomalous by itself. A common
example is a DoS attack, where only one connection is legitimate, but the
abundance of similar connections becomes anomalous as they overwhelm the
target system. Another example is the brute force network attacks, where a
single incorrect log-in attempt is not yet suspicious, but a sequence of frequent
attempts makes them collectively anomalous.

For anomaly-based network intrusion detection to be effective, the following
assumptions have to hold:

– Benign data assumption – there exists a region with well-defined boundaries
that encompasses all the normal traffic data.

– Clean training data (for semi-supervised approaches) – benign training data
acquired by collecting live background traffic is attack-free.

– All attacks are rare and anomalous – traffic generated by malicious actions
related to network intrusions deviates sufficiently from the normal traffic and
will only constitute a small fraction of monitored data.

– All anomalies are malicious – whenever a deviant pattern is observed, it
presents evidence of a potential intrusion.

– Attacks are universal – given correct modeling of normal data, all types of
attacks are detected equally well.

Naturally, the extent to which these properties can be safely assumed differs
from one environment to another and strongly depends on the threat model of
a NIDS. For instance, it is already clear that a system tailed to detection of one
of the three types of anomalies is not a universal detector for all attack types.
We elaborate more on the implications of these assumptions in the next section.
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Major anomaly detection techniques explored in application to intrusion
detection can be grouped in four categories.

Statistical Approaches. Statistical anomaly-detection works based on the
principles of the statistical theory to model the distinction between normal
and anomalous. A common solution for anomaly-based NIDS is Principle Com-
ponent Analysis (PCA) – a dimensionality reduction approach that projects
high-dimensional data onto a normal and anomalous subspace. PCA does not
assume any statistical distribution and is known for low computational com-
plexity. Lakhina et al. explored the use of PCA on network traffic [57]; however,
further studies revealed sensitivity of PCA to such aspects as the level of traffic
aggregation and small noises in the normal subspace [79], which the state-of-the-
art solutions aim to overcome [35,36].

Clustering Approaches. Clustering groups unlabeled traffic based on a chosen
similarity metric, e.g. a Euclidean distance, and flag outliers as potential intru-
sions. Plenty of clustering algorithms have been applied to NIDS. More recent
works utilize k-means with optimizations [52], Gaussian mixture model [15],
incremental grid clustering [28] and novel affinity propagation clustering [102].
The advantages of clustering usually are stable performance and the possibility
of incremental updates. On the other hand, clustering is not intrinsically opti-
mized for anomaly detection, can be time-consuming and heavily depends on
distance measures and tuning.

One-Class Classification. A semi-supervised adaptation of classification is
called one-class classification, as it only utilizes negative examples in training,
i.e. benign data. A data instance that falls outside of the learned class, depend-
ing on a chosen threshold, is considered anomalous. One-class Naive Bayes [94]
and one-class Support Vector Machine (SVM) [54] are recent examples of tradi-
tional ML approaches used for anomaly-based NIDS. While we already discussed
deep learning approaches for feature learning and dimensionality reduction, deep
neural networks are also being employed as sole anomaly detectors. Deep belief
networks [37], variational autoencoders [69] and ensembles of light-weight shal-
low autoencoders [64] have been successfully used for anomaly detection on net-
work data, demonstrating good generalization abilities and self-adaptive nature
of neural networks. A lingering issue of DL-based anomaly detectors is that by
themselves, they are not optimized for anomaly detection, therefore selecting
appropriate thresholds and tuning the architecture is challenging.

Time-Series Forecasting. Forecasting is a semi-supervised predictive ano-
maly detection approach specifically tailed for sequential inputs (including data
with high seasonality), as they are capable of detecting temporal anomalies
in complex scenarios [3]. The idea is to perform rolling predictions based on
observed normal data and compare them with new observations. Strong devi-
ation from predictions thus indicates an anomaly. While there exist numer-
ous advanced time-series modeling and forecasting techniques, from traditional
exponential smoothing [95] to more modern ones such as recurrent neural net-
works [60], their application to network traffic anomaly detection has thus far
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been limited. This approach does not only heavily rely on unpolluted train-
ing benign data and clear observable trends, but also struggles with high-
dimensionality and categorical inputs. In light of remarkable performance by
recurrent neural networks in anomaly detection on multi-dimensional time-series,
we expect new forecasting NIDS approaches to appear in near future.

In the remainder of this chapter, we give a fresh look on the state of open-
world NIDS research in terms of main challenges and recent contributions.

4 Challenges and Advances in Open-World NIDS
Research

Machine learning algorithms, and anomaly detection in particular, have gained a
lot of attention in network intrusion detection research because of its compelling
potential in detecting novel attacks. A decade ago, the community brought into
the spotlight the intrinsic challenges of open-world network intrusion detec-
tion [42,43,88,96]. It turned out that most of the conducted research explored
ML-based IDS solutions under numerous unrealistic assumptions. In reality, with
these wishful assumptions dropped, the effectiveness of ML-based solutions in
detecting novel and known attacks falls way down below the estimated perfor-
mance. In the context of a NIDS, ML algorithms are tasked with search for the
unknown, while costs for mistakes in a security-critical environment are high. A
fundamental question was raised as to how appropriate ML algorithms are to
such defensive applications, and which guarantees they can give for operation in
sensitive environments.

Since then, the security domain grew significantly, with attacks becoming
more sophisticated and resourceful. A wide spectrum of cutting-edge machine
learning techniques, including deep learning and big data analytics, have been
proposed for a variety of applications. New benchmark NIDS datasets have been
jointly developed and evaluated [78]. In general, today we observe a closer collab-
oration between the AI and the security community. In light of the new devel-
opments, we revisit the primary conceptual and practical issues of ML-based
NIDS.

4.1 Original Premise of Anomaly Detection

The underlying assumptions of machine learning underpin open-world ML-based
NIDS solutions. To enable the full potential of ML, these assumptions have to
align with domain-specific characteristics, which in the case of securing dynamic
and modern network environments is not a trivial question. For anomaly detec-
tion specifically, the community is actively attempting to address some of the
following fundamental questions:

Can normal data be modeled? Most of the studies attempt to model
benign traffic; however, not all benign behaviors follow a common distribu-
tion. It is overwhelmingly hard to completely capture the notion of ‘normal-
ity’, so the safest assumption to make is that the model cannot describe all the
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possible benign instances. Hence, false alerts and missed attacks are unavoid-
able, and adjustment to novel benign patterns is necessary, which we discuss
further in the section.
Is it possible to acquire clean training data? The current consensus is
that normal traffic collected in a live environment is never attack-free without
additional (manual) sanitization.
Are attacks rare? Certain illegitimate activities in the network (e.g., scan-
ning) have become so common that they comprise a large fraction of back-
ground traffic [103]. Durumeric et al. [30] revealed that DDoS cannot be
considered anomalous in most networks. However, even though large-scale
attacks are not rare, these are not of the biggest interest for detection. More
sophisticated intrusions such as APTs are still manifested in rare events.
Are attacks anomalous? The answer directly relates to the vague defi-
nition of traffic ‘normality’. Due to the noisy and highly varied nature of
traffic, attack features may in practice appear as variations of benign traffic.
Iglesias et al. [50] have recently conducted an analytical study to assess the
‘outlierness’ of malicious traffic. They confirmed that network attacks have
higher global distance-based outlierness averages; however, attack and nor-
mal traffic distributions strongly overlap. One can choose the feature space
that maximizes the separation of benign and malicious traffic, which indi-
cates that understanding the nature of target anomalies in a certain scenario
is instrumental for anomaly detection. Another known issue is that attackers
may attempt to make traffic features indistinguishable from normal traffic.
We elaborate on the associated risks further in the section.
Are attacks universal and equally detectable? Taking everything into
account, there is little ground in assuming that different types of intrusions
can be detected in one common manner. Moreover, the very definition of
what is malicious differs across environments. Indeed, we observe the trend of
developing NIDSs tailored to specific threat models. This includes, e.g., works
that focus on botnet detection [58,81], DDoS detection [92], and especially
APT detection [61], where data exfiltration through the network can be a
target anomaly. It is quite unlikely that such targeted detectors generalize to
other types of intrusions, but perhaps that should not be the initial goal. We
advocate for deeper insight in target malicious activities even for open-world
anomaly detectors, in order to adopt the most suitable strategies.
Is a detected anomaly an attack? Nowadays, it is commonly acknowl-
edged that an anomaly detected by a NIDS is most probably a false alert. Even
correctly detected anomalies are not always malicious: sometimes, deviations
happen due to noise, changes in the underlying infrastructure or changes in
the benign data distribution. Therefore, additional processing is required to
investigate the issue, as monitoring and detection is just the earliest stage in
the complex process of incident management. Additional analysis, attack cor-
relation and response planning is a prerogative of Security Information and
Event Management (SIEM) platforms [14]. While researchers have mainly
focused on developing effective solutions for detection, studies on automatic
intrusion response are still limited. The main challenge is in providing an
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accurate and informative description of the detected anomaly, including inter-
pretation of the ML model’s decision to raise an alert.

4.2 High Error Rates and Performance Estimation

Among the main problems with adoption of anomaly detection in mainstream
security systems, high false positive rate (FPR) is an immediate candidate. For
an enterprise IDS, manual investigation and interpretation of alerts consumes
expensive analyst time. Given the large volumes of processed data and a low base
rate of attacks of interest, even a very small fraction of false alerts generated by
a nearly-perfect model yields an unacceptably large absolute number, effectively
rendering a NIDS unusable in the operational setting. This issue of base rate
fallacy was raised two decades ago [9], and is seen today as an inevitable pitfall
of open-world detection: precision of an IDS will always be determined by both
the base rate of different attacks and the FPR. Regretfully, however, we lack
historical statistics for the base rates of attacks in real computer infrastructures,
and measuring them reliably is still considered beyond present capabilities [71].

As the tolerance for errors in the application domain is critically low,
researchers started advocating for placing more emphasis on constraining the
FPR while preserving high detection rates [88]. Since then, more studies have
targeted this specific problem. We observe that the solution space can be mainly
branched into five complementary directions: (i) further developing more pre-
cise learning algorithms to lower the FPR [4,34]; (ii) post-processing alerts with
the use of context or prior knowledge in the system [45,104], in order to aid
in manual diagnostics and potentially understand the nature of an anomaly;
(iii) employing a hybrid approach by combining anomaly detectors with misuse
detectors [46], which cannot detect novel attacks but are considered less prone to
mispredictions. (iv) tuning model parameters and detection thresholds in order
to obtain optimal trade-offs in success rates and false alerts [89]; (v) modeling a
realistic network environment in a structured manner and choosing appropriate
metrics to correctly estimate the FPR and the overall performance.

While the first four objectives are gradually unfolding in present research, the
last one is fundamental and largely remains an open question. It relates to the
inherent difficulties with evaluating an open-world detector, which started being
actively discussed more than ten years ago [42,43,88] and still hold today. With
more progress in this direction, future NIDS studies should adopt an appropri-
ate evaluation methodology and correct metrics that correspond to an actual
operational usage of the target system. This requirement encapsulates such a
crucial issue as validating and testing the model on data that resembles real-
world ratios of benign vs. attack data – which again relates to the base rate
fallacy. Without satisfying these goals, performance numbers and errors rates
achieved in lab conditions will remain hardly reliable or comparable. The issue is
especially pronounced for unsupervised methods, which learn from distributions
and spaces drawn from the observed data. Note that even modern benchmark
datasets are not said to be representative of an actual ratio of normal and attack
traffic, therefore they are most often not directly applicable for (unsupervised)
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open-world evaluation schemes. We detail on the representativeness of existing
datasets further below.

All in all, the research on decreasing the FPR while preserving performance
in a general NIDS setting is still unfolding. Despite some studies emphasizing the
post-processing stage of predictions, there is generally not enough investigation
being made on the nature of false alerts, while most of the works solely focus
on increasing the detection rates instead. Even though anomaly detectors with
manageable error rates are allegedly becoming more widely adopted in indus-
try, these solutions are often designed for specific scenarios and their internals
are rarely publicly available [4,42,48], preventing direct comparison. The field
appears to be in the urgent need of a common comprehensive methodology for
estimating and comparing performance and error rates of an open-world NIDS.

4.3 Representative Datasets and Ground Truth

In IDS research, evaluation on benchmark datasets primarily serves a two-fold
purpose: (i) real-world performance estimation of a particular algorithm, and
(ii) consistent comparison between different approaches. In this respect, quality
of data has a decisive influence on valid outcome of both objectives. Unfortu-
nately, benchmark datasets do not always adequately represent the real problem
of network intrusion detection, discrediting the performance numbers achieved
in laboratory conditions. As a response, over the last 10 years the community
has collectively devised the criteria that reliable research traffic data should
meet [31,67,83,85,96,101], which encapsulate the following dataset properties:
(i) realistic w.r.t. real production environments; (ii) valid w.r.t. completeness of
traces; (iii) labeled; (iv) correctly labeled w.r.t. benign training data for anomaly-
detection; (v) highly variant and diverse w.r.t. used services, protocols, benign
behaviors and attacks; (vi) correctly implemented w.r.t. real attack scenarios;
(vii) easily updatable with new services and attacks; (viii) reproducible for peri-
odical updates and performance comparisons; (ix) shareable/non-sensitive; (x)
well-documented. Despite this recently achieved consensus and clarity in guide-
lines, a lot of fundamental limitations of the task hamper both creation and pub-
lication of a corresponding proper dataset. Consequentially, many researchers
have kept using the existing suboptimal datasets for the sake of comparison
with prior work. Unfortunately, the usage of outdated or even novel but flawed
datasets may lead to unreliable ML evaluations, as has been recently shown
by Engelen et al. [31]. Nevertheless, the research community is making tangi-
ble progress in this direction by exploring both possibilities to contribute a new
dataset: (i) generate synthetic traffic, and (ii) collect real traffic in a production
environment.

Generation of synthetic datasets provides the luxury of a controlled envi-
ronment, clean labels and no privacy concerns. The main challenge, however, is
in simulation of realistic background traffic, lately attempted through statisti-
cally modeling user behavior [82,85] or more recently through modeling relevant
traffic communication scenarios with input randomization [22,23]. Even though
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creators of modern synthetic datasets strive to satisfy the requirements and min-
imize occurrence of simulation artifacts, the practice of evaluating a novel IDS
on a synthetic dataset solely, however, is often criticized as insufficient. While it
can be reasonable to compare different frameworks on synthetic data, evaluation
on diverse network traffic collected in a live environment over a lengthy period
of time is becoming the desired norm in NIDS research.

Real traffic, on the other hand, should be stripped of confidential data, care-
fully labeled and rigorously sanitized in order to meet the established criteria.
Several studies contributed approaches to sanitization of traffic [13,25,47,100]
in order to not only label embedded attacks and benign traces, but also to
pre-select the most representative instances. Automated sanitization uses such
methods as entropy analysis and signature-based attack labeling, which may
result in erroneous ground-truth. Manual sanitization hardly scales and is prone
to human bias, which threatens reliability and representativeness of the dataset,
respectively. However, manual supervision in labeling seems unavoidable when
it comes to zero-day network attacks.

All in all, it is unclear whether a perfectly sanitized real traffic-based dataset
can be obtained. Hence, learning algorithms that are robust to the inevitably
occurring noise in labels would give a strong advantage from the operational
point of view. Promising examples for anomaly detection on imperfectly labeled
traffic include, e.g., robust PCA algorithms [62,72] and a convex combination of
anomaly detectors’ outputs [44].

Another suggestion for creation of an open, real NIDS dataset was voiced
by Gates et al. [43], who promoted a community-based approach. One promi-
nent example is the MAWILab dataset [39] – a public repository for automated
labeling and performance estimation that has since been continuously updated
and collectively labeled with the use of state-of-the-art anomaly detectors. While
anomaly detection solutions on these data are still scarce [19], we believe that
such collective efforts establish a strong foundation for open-world detection
research.

4.4 Concept Drift

In dynamic environments, events undergo gradual and abrupt changes over time,
which cause a shift in data distribution known as the concept drift [74]. When
developing data-driven real-time defensive solutions such as ML-based IDSs,
it is crucial to account for concept drift, otherwise the model’s performance
is unpredictably and heavily impacted. For an anomaly detector, this implies
the need to track drift in the data in order to continuously adjust to the new
definition of normal behavior, instead of erroneously flagging these changes as
anomalies. A direct way to re-adapt the system accordingly is to re-train the
model on new data, as is strongly recommended in the literature [42,63,88].
In anomaly detection literature, the problem of detecting newly emerging pat-
terns is referred to as novelty detection, when previously unobserved detected
patterns in data are incorporated into the normal model. In time-series analy-
sis, a similar idea is defined as change point detection [10] that aims to detect
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points in a time-series from which the data distribution changes. Conventional
approaches often suggested for ML-based defenses aim to detect concept drift
by recognizing model’s performance degradation on streaming data and identify-
ing the appropriate moment for a model update. Naturally, the crucial trade-off
emerges between the detection delay and the detection quality. Some families of
ML algorithms such as neural networks can adapt through a continuous retrain-
ing mechanism known as online/incremental learning, exemplified by a DL-based
IDS that analyzes log data [29]. By incorporating the most recent changes in sys-
tem logs into the DNN model, a DL-based IDS can adjust to the newly emerging
patterns in a timely manner. Incremental learning can also be applied for tradi-
tional ML algorithms, albeit with high computational complexity. For instance,
Rassam et al. [76] utilize an adaptive principal component classifier-based
anomaly detector that tracks dynamic normal changes in real sensor data. How-
ever, effectiveness and practicality of incremental learning or re-training for an
anomaly IDS on network traffic – non-stationary streaming data – largely remain
unexplored. Raza et al. [77] developed a theoretical approach that addresses
detection of covariate shifts in generic non-stationary environments and can
potentially aid in IDS concept drift. One promising approach to an autonomic
anomaly NIDS was proposed by Wang et al. [102], who use novel clustering algo-
rithms to label new data and dynamically adapt to normal behavior. They show
efficacy of their algorithm on a private dataset of real HTTP traffic streams.
Zhang et al. [106] employ a competing approach specifically tailored to high-
dimensional streaming data. To account for concept drift, they perform adaptive
subspace analysis that fully relies on human feedback to prune away irrelevant
subspaces of anomalies. As this novel algorithm is only evaluated on the KDD’99
dataset, its ability to generalize to real traffic and scale to live environments is
unknown. Dong et al. [27] developed a batch-based adaptation approach that
utilizes an SVM classifier and incorporates human feedback to determine when
re-training is necessary. Their evaluation is limited to malicious web requests,
and they use a public dataset with HTTP traffic.

Currently, a thorough investigation of concept drift detection and adaptation
techniques for open-world NIDSs is pending, and the lack of public representative
benchmark datasets that contain labeled shifts in traffic has been one of the
largest roadblocks. A notable recent contribution is the UGR’16 dataset [59] –
real anonymized Netflow data for adaptive NIDS research that includes long-
term traffic evolution and periodicity.

4.5 Real-Time Detection

In the era of growing risk and severity of cyber-attacks, an effective NIDS is
expected to detect potential threats immediately as they occur in the network.
An ideal real-time detector processes and analyzes a continuous stream of data in
its natural sequential form and makes immediate decisions online [66]. Anomaly
detection is regarded as indispensable in early open-world detection of novel,
unusual behaviors, and yet the existing approaches are not effective enough in
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real-time detection [4] and still largely resort to offline analysis, or batch process-
ing at best, allowing some intrusions to go unnoticed for days. In the meantime,
the bar for real-time processing capabilities is only increasing: not only does the
internet traffic double each year, but in addition to that, the growth of the Inter-
net of Things (IoT), sensors, smart cities, mobile clouds, autonomous vehicles,
and other emerging technologies has unleashed enormous amounts of generated
network data. Cisco has reported [40] that by 2022, the omnipresent non-PC
devices are estimated to drive 81% of global internet traffic, opening the gate
for more large-scale network attacks against small connected devices. The net-
work data of today is already characterized by huge volume, velocity, variety and
veracity, fulfilling the definition of big data. Traditional ML-enabled NIDS have
not been developed to handle big data, but largely aimed at enhancing learning
algorithms, which mostly results in increasing the computational complexity and
processing time [4,18,34], further hindering real-time analysis.

As the demand for effective security monitoring raises higher by day, novel
solutions are required to facilitate large-scale, real-time detection. Hoplaros et
al. [49] explored data summarization techniques that mine patterns in summaries
of network traffic to approximate final decisions and improve efficiency of detec-
tion. Since this approach effectively allows to cut offline detection runtimes, the
authors propose to develop stream data summarization and distributed summa-
rization methods for online detection. The downside is that complex summa-
rization on big data contributes to opacity of model predictions, while threat
analysis benefits from more granularity and transparency in decision-making.

Collaborative intrusion detection systems that employ several distributed
monitors for collection and analysis of traffic pose an alternative to the bot-
tleneck stand-alone anomaly detectors. A collaborative NIDS is considered to
be much more efficient in analysis of numerous data streams traversing through
large networks and IT ecosystems. Vasilomanolakis et al. [99] provide a taxon-
omy and a detailed survey on the topic, including possible topologies and threat
models for a collaborative NIDS. Zarpelao et al. [105] presented a survey of
stand-alone and collaborative IDS solutions specifically for IoT infrastructures.
Crucially, most of the modern NIDS research on large-scale networks, IoT in
particular, does not provide enough details for reproducibility and use private
specifically chosen testbeds or simulation tools. Moreover, the internal mech-
anisms of existing commercial products are also hardly available. All in all, a
thorough investigation on public data with a standardized evaluation strategy
is required to assess effectiveness of a collaborative NIDS in real-time detection
of sophisticated attacks in modern network environments.

Suthaharan et al. [93] were among the first to highlight the challenging big
data properties associated with network monitoring for security. They advocated
incorporating known big data frameworks, e.g. Hadoop [87], into a ML-based
NIDS framework, in order to combine big data processing tailored to real-time
analytics with supervised ML classifiers and representation-learning techniques.
This integration requires to rethink implementations of ML algorithms in general
and introduce parallelization by either dividing data into separately processed
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subsets, or dividing a ML algorithm into concurrently performed steps. Later
on, the discussion was extended to anomaly-based NIDS in order to enable real-
time open-world detection on large streaming data [19,33,64,65,75]. Recently,
Habeeb et al. [48] have thoroughly reviewed real-time network anomaly detection
algorithms and discussed the aspects and challenges of their application to big
network traffic data. Despite the promise of big data frameworks widely deployed
in other domains, in network security we still observe a premature state of big
data processing capabilities. Efficient model and parameter selection, automation
of data filtering and curation, dynamic resource allocation, reduction of power
and memory consumption are only a few associated future research directions.
With these enhancements, advance anomaly detection in combination with mod-
ern big data tools should be adequate to handle large-scale real-time detection,
feature extraction and selection, labeling, and model retraining.

4.6 Adversarial Robustness

Attackers have always had great incentives and tools to evade detection by a
NIDS. Knowing the blind spots of a detector, an adaptive attacker chooses
the optimal strategy that fools a NIDS into thinking that the passing traffic
is legitimate. Misuse-based detectors that inspect traffic on the packet level are
traditionally evaded through such means as encryption, obfuscation and packet
fragmentation, which make sure that malicious traffic does not match a known
signature. A general anomaly-based detector is vulnerable to mimicry attacks,
which modify malicious traffic in such a way that it corresponds to normal traf-
fic patterns [38,53]. Besides, any type of a NIDS is susceptible to various DoS
attacks, which can overload the detector with meaningless connections to create
a bottleneck, so that the actual malicious connection comes through unnoticed.
The security analysis of novel NIDS solutions with respect to adaptive attackers
is regarded as a crucial research angle.

In the last decade, more attention was brought specifically to evasion of ML-
enabled defenses. When placing a ML model at the core of a defensive system,
one will always involuntarily introduce a new attack vector of undetermined
severity. Adversarial machine learning is a set of techniques that exploit specific
vulnerabilities of ML algorithms in order to trigger an incorrect output. These
vulnerabilities arise from the same aspect that makes ML models unadapted to
concept drift: ML models that are initially designed and evaluated in a stationary
environment without any external influences assume a certain data distribution
with static priors. The guarantees provided by this evaluation are only valid for
the expected inputs to the model, i.e. the datapoints generated from the same
data distribution that was considered during training and testing. NIDSs, how-
ever, are deployed in non-stationary adversarial environments, where attackers
may choose to purposefully alter and perturb the input data to force the ML
model to fail, thus inducing adversarial drift [51]. Adaptive attacks that specifi-
cally target vulnerabilities and assumptions of ML algorithms are referred to in
the literature as adversarial attacks.



276 V. Rimmer et al.

Corona et al. [24] describe a general adaptive threat model for a NIDS
and review studies of one particular category of adversarial attacks – poison-
ing attacks. In case of ML models that are designed to automatically adapt to
changes in normal traffic – either through online learning or retraining –, an
attacker can poison the model by inserting adversarial noise in seemingly benign
traffic that is consequently used for training. After compromising the learning
process in this way, the attacker can bypass the poisoned model by manipulating
input samples in accordance with the new decision boundary. Essentially, as a
result of a poisoning attack, an attacker establishes a backdoor in the ML model
that allows to evade detection. For instance, Kloft and Laskov [56] explored poi-
soning attacks against centroid anomaly detection and confirmed its effectiveness
on feature vectors representing real HTTP traffic.

The second, most known type of adversarial attacks is evasion, where an
attacker constructs a malicious adversarial example by introducing carefully
crafted minor perturbations in input traffic that cause a desired output of the
target model. In case of a targeted attack, an adversary attempts to influence the
exact outcome of prediction at inference time. Meanwhile, an untargeted attack
succeeds as long as any misprediction occurs. To construct adversarial examples
that effectively evade detection, an adversary should either have direct access to
some of the target’s model properties (architecture, parameters, training data,
input features, etc.), or simply be able to continuously query the model as an
oracle and analyze its output. These threat models are referred to as white-box
and black-box respectively, with the latter assuming minimal knowledge about
the target NIDS. While the black-box scenario is more appropriate in network
security, white-box approaches to generation of adversarial examples are also
applicable assuming a local surrogate ML model whose decision boundary is
close to that of the target.

Although all these approaches are algorithmically feasible in terms of math-
ematical formulations, their practicality and impact on security of real network
environments are just starting to be comprehensively researched. Preliminary
research results on closed-world systems (e.g., evasion of botnet classifiers trained
on Netflow features [8]) indicate that ML algorithms used behind NIDSs are
indeed not robust to perturbations. However, at this point, it remains unclear
whether adversarial attacks against open-world network intrusion detection sys-
tems can withstand domain-specific practical constraints. One of the obsta-
cles to investigating this question is the absence of dedicated research datasets
that include sophisticated ML-specific evasion attempts in raw network traffic.
Another more fundamental concern is the overall utility of adversarial learning
in this context, that is how compelling this approach would be for a network
attacker. While introducing ML into a NIDS pipeline undeniably creates addi-
tional tangible threats, other more conventional attack vectors – such as the
above-mentioned mimicry attacks or DoS attacks that overload the detector –
appear much less costly or complex to perform than adversarial attacks against
ML. As the practicality and impact of adversarial attacks in the operational sce-
nario of a NIDS remain unknown, and other challenges in using ML effectively
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keep affecting operational performance of NIDSs, hardening detectors used in
actual services and infrastructures against adversarial perturbations has not yet
gained the envisioned priority.

5 Conclusion

Machine learning for network intrusion detection is an extremely intriguing and
potent research direction, which – despite its strong theoretical base – is still lack-
ing devoted attention in defensive security. Today, the community acknowledges
the non-stationarity and adversarial nature of security applications, promoting
thoughtful and realistic evaluation of effective and adaptable ML-based defenses.
We had to face the hard truths about domain-specific properties and limitations
of ML in open dynamic environments. While we cannot create a silver-bullet
solution to network intrusion detection, we can deepen our understanding of the
underlying issues and provide fundamentally sound ML techniques for NIDS.

In this chapter, we reviewed the wide spectrum of impressive research efforts
in the area of anomaly-based NIDS and highlighted the main challenges that
should become the focus of the future research. Our analysis encompasses the
domain misalignment with the original assumptions of anomaly detection, high
error rates, the problem of performance estimation and comparison, availability
of realistic datasets and reliable ground truth, adaptability to concept drift,
feasibility of real-time detection, and adversarial impact. From our discussion, it
becomes evident that there is no clear-cut separation between various challenges
or desired properties of open-world detection systems. Moreover, the undeniable
benefits of using ML in security context come together with a number of concerns
and even incompatibilities between the techniques and the problem at hand. It
is the balance between entrusting security tasks to ML and yet being aware of
its potential pitfalls that may bring out the most reliable and fruitful solutions.

Therefore, we hope that the future research will reason about network intru-
sion detection in a more principled way that considers all important aspects in
conjunction and allows to systematically assess how they affect each other. To
achieve that, we encourage the community to collectively devise appropriate ML
methodologies to develop and evaluate realistic open-world network intrusion
detectors in different environments and threat models. As this is a tough task
for the years to come, we need to scale research by composing benchmarking
scenarios under a common set of assumptions to compare novel methods in a
fair and informative way. To this end, the coordinated effort and the open science
approach to NIDS research – i.e., new open realistic datasets and open-source
implementations – deserve the highest priority.
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104. Yue, W.T., Çakanyıldırım, M.: A cost-based analysis of intrusion detection system
configuration under active or passive response. Decis. Support Syst. 50(1), 21–31
(2010)

105. Zarpelão, B.B., Miani, R.S., Kawakani, C.T., de Alvarenga, S.C.: A survey of
intrusion detection in internet of things. J. Netw. Comput. Appl. 84, 25–37 (2017)

106. Zhang, J., Li, H., Gao, Q., Wang, H., Luo, Y.: Detecting anomalies from big
network traffic data using an adaptive detection approach. Inf. Sci. 318, 91–110
(2015)

https://doi.org/10.1007/s11235-015-0017-6
https://doi.org/10.1007/s11235-015-0017-6

	Open-World Network Intrusion Detection
	1 Introduction
	2 Network Intrusion Detection
	2.1 Network Threats
	2.2 Network Traffic Monitoring

	3 A Data Analysis Approach
	3.1 Machine Learning for NIDS
	3.2 Anomaly Detection for Open-World NIDS

	4 Challenges and Advances in Open-World NIDS Research
	4.1 Original Premise of Anomaly Detection
	4.2 High Error Rates and Performance Estimation
	4.3 Representative Datasets and Ground Truth
	4.4 Concept Drift
	4.5 Real-Time Detection
	4.6 Adversarial Robustness

	5 Conclusion
	References




