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Abstract
Inverse Reinforcement Learning (IRL) is a sub-
field of Reinforcement Learning (RL) that focuses
on recovering the reward function using expert
demonstrations. In the field of IRL, Adversarial
IRL (AIRL) is a promising algorithm that is pos-
tulated to recover non-linear rewards in environ-
ments with unknown dynamics. This study inves-
tigates the potential benefits of applying the Cur-
riculum Learning (CL) strategy to the AIRL al-
gorithm. For our experiments, we use a random-
ized partially observable Markov decision process
in the form of a grid-world-like environment. Us-
ing only expert demonstrations obtained with an
RL algorithm under the true reward function, we
train AIRL in a variety of configurations and iden-
tify an effective curriculum. Our results show, that
a well-constructed curriculum can enhance the per-
formance of AIRL twofold in both key aspects:
the speed of convergence and the efficiency of us-
ing expert demonstrations. We thus conclude that
CL can be a useful addition to an AIRL-based so-
lution. Full code is available online in the sup-
plementary material https://github.com/mikhail-
vlasenko/curriculum-learning-IRL.

1 Introduction
Inverse Reinforcement Learning (IRL) is an aspect of ma-
chine learning that enables artificial agents to infer the re-
ward function from observed expert demonstrations. Such
reward function can later be used to train a Reinforcement
Learning (RL) agent in an environment. Utilizing a reward
learned by IRL can be advantageous compared to employing
a hand-crafted one (Coates et al., 2008). This is particularly
the case in certain environments, such as driving, where defin-
ing a useful reward function may be challenging, yet expert
demonstrations are comparatively easier to acquire (Abbeel
& Ng, 2004).

Several IRL strategies have been proposed to recover the
rewards of an environment. Notably, Ng, Russell, et al.
(2000) laid the foundation for IRL methodologies. The au-
thors proposed novel algorithms for apprenticeship learning,
a setting where the agent learns from an expert’s demonstra-
tions.

Ziebart et al. (2010, 2008) proposed Maximum Entropy
Inverse Reinforcement Learning - a method that takes a prob-
abilistic, maximum entropy approach to resolve ambiguity
(Ng et al., 1999) in determining the expert’s intentions. This
approach provides a solid mathematical foundation but is
model-based and can only extract linear rewards. Thus, it
finds limited applications in complex environments (Levine et
al., 2011). Later, Wulfmeier et al. (2015) extended the Max-
imum Entropy IRL algorithm with deep convolutional neural
networks (Lecun et al., 1998). Still, the performance was only
demonstrated for relatively simple problems.

More recently, Fu et al. (2018) introduced an adversarial
training approach to IRL in their paper about Adversarial In-
verse Reinforcement Learning (AIRL). The authors show that

rewards recovered by AIRL generalize better than those pro-
duced by previous methods and, crucially, are more robust
to changes in the environment during training. Unlike previ-
ous methods, AIRL has been shown to perform well even in
high-dimensional control tasks.

However, training models via IRL can be computationally
expensive and challenging, particularly in complex environ-
ments (Wulfmeier et al., 2015). Additionally, IRL requires
data from highly skilled experts for training (Arora & Doshi,
2021). This can become a significant bottleneck, as expert
demonstrations can be expensive and time-consuming to ac-
quire.

In RL, a technique known as Curriculum Learning (CL)
(Bengio et al., 2009), has been shown to accelerate con-
vergence and improve generalization (Narvekar et al., 2020;
Wang et al., 2020). CL is a learning strategy, inspired by the
human learning process. Its general method is to start learn-
ing from easy tasks and progressively adapt to more difficult
ones. Given the success of CL in RL, it is worth investigat-
ing whether CL is able to benefit IRL, potentially improving
training speed or reducing the number of necessary expert
demonstrations.

Shen et al. (2022) have applied an IRL algorithm together
with CL for the task of driving. In their ablation study, they
show that CL brings improvements to the training results.
However, they only run a single kind of curriculum - one that
makes the model train on the early steps of the episode before
being allowed to reach the further steps. Such a curriculum is
not suitable for some applications, including for the environ-
ment discussed in this paper, as we show in Section 5.4. Also,
their CL can only be applied when an RL algorithm is used
alongside IRL, as the curriculum’s progress depends on the
trust-region optimization. Finally, Shen et al. used the IRL
technique developed by Abbeel and Ng (2004), which brings
such limitations as restricting the reward function to a linear
combination of known features.

To address the aforementioned limitations, we propose a
novel framework that applies the principles of CL to AIRL,
aiming to improve the learning efficiency and performance
of artificial agents. We show that a well-constructed learning
curriculum allows the agent to learn the underlying reward
function more effectively, reducing computational costs and
decreasing the needed amount of expert data by supplement-
ing it with demonstrations from less proficient performers.

2 Background
To understand the context and mechanisms behind the work
presented in this paper, it is essential to delve into the tech-
niques that the research is built upon. In this section, we aim
to provide a brief overview of the methods that underpin our
work: Proximal Policy Optimization, Adversarial Inverse Re-
inforcement Learning, and Curriculum Learning.

2.1 Proximal Policy Optimization
Proximal Policy Optimization (PPO) is a reinforcement learn-
ing policy optimization method (Schulman et al., 2017). It is
characterized by an objective function that restricts the degree
to which the policy can change during each update, ensuring
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the new policy does not deviate too far from the previous one.
Such a design reduces the risk of harmful updates that can
lead to a substantial drop in performance. Mathematically,
Schulman et al. (2017) define the update function as:

LCLIP(θ) = Êt

[
min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)

]
where Êt denotes expectation, Ât is an estimator of the ad-
vantage function, rt(θ) is the ratio of probabilities to take ac-
tion at between the new and the old policy, and ϵ is a hyper-
parameter.

2.2 Adversarial Inverse Reinforcement Learning
Adversarial Inverse Reinforcement Learning (Fu et al., 2018)
was preferred over other approaches mentioned in Section
1, as it was shown to perform better in complex environ-
ments and respond more robustly to environment changes.
In contrast, other techniques such as maximum entropy IRL
were observed to struggle with acquiring rewards resilient to
changes in the environment, as elaborated upon by Fu et al.
(2018).

AIRL uses adversarial methods similar to those used by
Generative Adversarial Networks (GANs) (Goodfellow et al.,
2020). The algorithm initializes two models: a policy opti-
mization agent, and a discriminator, which also acts as a re-
ward model. For policy optimization, this paper uses PPO,
as it has been shown to outperform Trust Region Policy Op-
timization (TRPO) (Schulman et al., 2015; Schulman et al.,
2017). The initialized PPO is then used to gather trajectories
in the environment.

Subsequently, as described by Fu et al. (2018), the dis-
criminator model utilizes expert demonstrations and the lat-
est agent’s trajectories as input. Its objective is to differenti-
ate between the expert demonstrations and the agent’s policy
rollouts, much like a discriminator in a GAN distinguishes
between real and fake samples. Then, the discriminator up-
date is followed by the policy update, and the process of gath-
ering trajectories and updating models is repeated.

Through this iterative process, AIRL strives to train a good
policy for the environment. The incorporation of the reward
model in the adversarial setup allows for the learning of more
sophisticated and resilient reward functions than traditional
IRL methods offer.

Notably, the discriminator operates on individual state tran-
sitions rather than full trajectories, since the latter formulation
can result in estimates with higher variance than the former
(Fu et al., 2018). The algorithm’s pseudocode is described in
Algorithm 1, and Figure 1 schematically presents the infor-
mation flow.

More formally, the discriminator objective can be stated as

Dθ,ϕ(s, a, s
′) =

exp(fθ,ϕ(s, a, s
′))

exp(fθ,ϕ(s, a, s′)) + π(a|s)
,

where fθ,ϕ is restricted to a reward approximator gθ and a
shaping term hϕ as

fθ,ϕ(s, a, s
′) = gθ(s, a) + γhϕ(s

′)− hϕ(s),

which is also known as the advantage.
As shown by the authors of the original paper, in case the

algorithm is trained to optimality, an optimal reward function
can be extracted from the discriminator as

f∗(τ) = R∗(τ) + const,

while π recovers the optimal policy.
Additionally, the algorithm does not use actions to estimate

rewards, meaning that the reward is only dependent on the
state (gθ(s)). This allows us to extract rewards that are disen-
tangled from the state transitions within the environment.

Algorithm 1 Adversarial Inverse Reinforcement Learning

1: Obtain expert trajectories τEi

2: Initialize policy π and discriminator Dθ,φ.
3: for step ∈ {1, . . . , N} do
4: Collect trajectories τi = (s0, a0, . . . , sT , aT ) by exe-

cuting π.
5: Train Dθ,φ via binary logistic regression to classify

expert data τEi
from samples τi.

6: Update reward rθ,φ(s, a, s
′) ← logDθ,φ(s, a, s

′) −
log(1−Dθ,φ(s, a, s

′))
7: Update π with respect to rθ,φ using any policy opti-

mization method.
8: end for

Figure 1: Diagram of AIRL algorithm. Expert trajectories are gath-
ered once, before AIRL starts training. After AIRL’s policy receives
the reward, it is updated and new policy trajectories are sampled.

2.3 Curriculum learning
In this work, we incorporate the concept of Curriculum
Learning (CL) to effectively enhance the learning process in
our IRL framework. The core idea behind CL is to start learn-
ing from simpler tasks and progressively move to more com-
plex ones, similar to how a curriculum operates in the educa-
tion system (Bengio et al., 2009). This approach is postulated
to accelerate learning and potentially result in better gener-
alization capabilities. The model’s training starts with less
complex tasks demonstrated by less proficient agents, then



the complexity of tasks and/or the skill level of the demon-
strators is progressively increased. This approach allows the
model to build upon foundational knowledge and gradually
adapt to more complex situations (Narvekar et al., 2020). In
doing so, we can make efficient use of available data, and
possibly reduce the requirement for large volumes of expert
demonstrations.

This strategy presents two potential advantages: it helps
to prevent the learner from getting stuck in poor local min-
ima (Guo et al., 2018), and it accelerates the learning process
(Wang et al., 2020). In our context, a curriculum reduces the
complexity of the task or the size of the state space. We dis-
cuss how exactly CL is applied in Section 3.3.

3 Methodology
This section outlines the methodology adopted in this study.
The primary focus of our research is the application of CL
to the AIRL algorithm. Besides this, we will delve into the
importance of expert demonstrations and the technical details
around the used implementation of the AIRL algorithm.

3.1 Expert Demonstrations
IRL requires demonstrations for training. Thus, before we
start running any IRL algorithm, we need a way to obtain a set
of trajectories from a policy that we consider to be an expert.
Note that the said policy does not need to take exclusively
optimal actions.

To gather the demonstrations, we could ask humans to per-
form actions in our environments. However, we believe that
for the test environments discussed in this paper, a human
would not provide any more information than an RL policy
trained with a defined reward function. On the other hand,
human demonstrations would be less controllable and more
difficult to acquire (Zakour et al., 2021). Therefore, for the
demonstrations, we train a neural network with PPO (Schul-
man et al., 2017) and then store its trajectories from infer-
ence runs. Other approaches for automatically gathering ex-
pert demonstrations could include: training with Trust Re-
gion Policy Optimization (TRPO) (Schulman et al., 2015),
Deep Q-Network (DQN) (Mnih et al., 2013), or Q-learning
(Watkins & Dayan, 1992). In our case, the performance
reached by a trained PPO is well above that of a random pol-
icy, so we use this algorithm for consistency with AIRL.

3.2 Implementation of AIRL
This paper uses an implementation of AIRL that slightly devi-
ates from the original paper. As the starting point, we use the
work of Peschl et al. (2021; 2022). Additionally, we intro-
duced a number of modifications that allow us to reach better
results and run the algorithm faster.

Most importantly, we corrected reward estimation on the fi-
nal step of the episode. In the original code, the environment
vectorizer was combined with AIRL in an inconsistent way.
The discriminator always expected a state pair (obs, obs′) as
though it derived from transition (obs, action, obs′). Where
obs is given to the actor policy, which produces action in re-
sponse, and obs′ is the observation after action is performed
in the environment.

However, as shown in Algorithm 2, immediately following
an episode termination, the produced obs′ was in fact the ini-
tial observation of a new episode, thus having no relation to
obs. As a result, the reward estimation was misleading and
hindered training progress. We modify the wrapper such that
the returned obs′ is not overwritten at the end of an episode,
while an observation that should be acted on - from a new
episode - can be accessed separately. The resulting improve-
ment is discussed in Section 5.1.

Algorithm 2 Original Vector Wrapper Step Procedure

1: procedure STEP(action list)
2: Initialize result lists
3: for env in self.envs do
4: obs, rew, done, info← env.step(action)
5: if done then
6: obs← env.reset()
7: end if
8: Append obs, rew, done, info to the result lists
9: end for

10: return result lists
11: end procedure
Observation returned from the environment step function is
lost if it ends the episode.

To speed up the training process, we implemented a se-
ries of minor modifications. As part of this, we eliminated
unnecessary tensor copying and batched some Neural Net-
work (NN) evaluations. Compared to feeding states through
the NN individually, batch computations allow us to leverage
the hardware accelerator’s capabilities and reduce the total
computation time (Shawahna et al., 2019). Specific details
of these minor modifications can be found in our repository1.
Finally, we modified the NN architecture, reducing the num-
ber of layers and neurons in a layer, as the dimensions used
by Peschl et al. (2022) were deemed excessively large for
our task. For our experiments, we primarily use PPO with
3 hidden layers, 128 neurons each with Rectified Linear Unit
(ReLU) in between, and Softmax for actor output, as the ac-
tion space is discrete. The discriminator also has 3 hidden
layers but with 256 neurons each and ReLU between them.
The detailed visualizations of both architectures are presented
in Appendix D.

3.3 Curriculum Learning for AIRL
The main contribution of this paper lies in investigating
whether applying CL to the AIRL algorithm is able to ac-
celerate training. This section elaborates on the utilization of
CL, and the components within a curriculum, while Section
5 covers how it performs compared to the baseline - training
entirely in the evaluation environment.

A curriculum defines which environment configurations
will be used for the training and for how many steps each of
those is used. For example, a curriculum that was used most

1GitHub repository: https://github.com/mikhail-
vlasenko/curriculum-learning-IRL
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in this research dictates starting the training with a scaled-
down environment and subsequently transitioning to its full-
sized equivalent. Mathematically, we define a curriculum
as Cu(n, [Conf1, ..., Confn], [Step1, ..., Stepn]), where n
is the number of curriculum stages, Confi is an entity that
defines an environment configuration and expert demonstra-
tions, while Stepi specifies the duration in environment steps
that Confi is used to train the model.

Once a curriculum Cu is defined, randomly initialized
AIRL policy, π, and discriminator, D, begin training in
Conf1 environment. After completing Step1 steps, π and D
are retained, while the optimizers, policy trajectory dataset,
and the current environment state are discarded. A new envi-
ronment is then initialized using Conf2, and the previously
saved π and D undergo further training. This process is con-
tinued for all remaining pairs (Confi, Stepi) in Cu. Note
that, in this work, Confn corresponds to the evaluation envi-
ronment configuration for all curricula.

This procedure allows AIRL’s neural networks to be ini-
tially trained on a relatively straightforward task before tran-
sitioning to a more complex setting, enabling them to dedi-
cate fewer steps to the initial exploration in the complex set-
ting.

One of the main challenges in applying curriculum learn-
ing is the design of an effective curriculum. This requires
defining what constitutes a simple task and a complex task in
the context of the problem domain and determining a suitable
progression from simple to complex. In our work, we address
this challenge through a combination of domain expertise and
empirical evaluation. However, as shown in Section 5, some
of the tested curricula in this research failed to enhance the
training.

4 Environment Design
In the scope of this paper, two grid world-type environments
were implemented for evaluation. First, we will describe a
very simple environment that allows for an effective curricu-
lum. Then, we present a more complex, partially observable,
environment to showcase the benefits of curriculum learning
in a more difficult setting. In both environments, the actor is
shown as a blue circle that is able to move in one out of four
directions (up, down, left, right) per step. When the actor tries
to move out of the field, it stays in place, but the step is used.
The target is represented as a light blue tile.

4.1 Simple Environment
The environment was designed to be easy, yet, it is random-
ized. It initializes the actor and the target on two random
non-coinciding tiles of a grid. As supported by the findings
of Zhang et al. (2018), environment randomization prevents
overfitting.

In this environment, the agent observes the relative position
of the target with respect to the actor, pa,t = pt − pa, where
pt ∈ R2 and pa ∈ R2 are grid positions of target and actor
respectively. The episode ends when the actor reaches the
goal, or when it runs out of turns. The reward is given only on
the final step and is 1 if the goal is reached and -1 otherwise.
The maximum number of steps, max steps, is deliberately

chosen to be large, calculated as max steps = 2 · size2,
where size is defined as the length of the square’s side in
tiles. An instance of such an environment with size = 5 is
presented in Figure 2.

Figure 2: Example of a simple environment

4.2 Tile Reward Environment
The second presented environment, tile reward, builds on the
previous one. Here, the number of turns is significantly lim-
ited, defined as 3 · size, and a reward between -1 and 1 is
given for stepping on every unvisited tile. The episode ends
when the agent steps on the goal or runs out of turns. In the
latter case, the agent gets the reward of −0.5 ·max steps for
the final step, to encourage reaching the target. Notably, the
given number of steps per episode is always enough to reach
the target. Figure 3 shows two instances of the tile reward
environment.

Similar to the simple version, the initial positions of the
actor and the target are random. Additionally, the reward on
every tile is randomized. The values are sampled from an
independent uniform distribution: rewardi,j ∼ U(−1, 1).

Figure 3: An example starting state in the tile reward environment
with size = 5 and size = 10.

Observation Space
For the tile reward environment, the agent’s observation is
significantly augmented. As visualized in Figure 4, it in-
cludes rewards of the 5 by 5 part of the field around the actor,
as well as information on whether those tiles are walkable
(tiles out of bounds, as well as the target, have reward 0). In
addition to that, the agent also receives its absolute position,
the absolute position of the target, and the number of turns
left until the deadline. The positional observations are im-
portant since the environment is only partially observable, so



the agent needs to know which direction it needs to go when
the target is far away. The number of turns left is also very
valuable, as it allows the agent to make a decision whether to
rush directly to the target or to spend turns gathering positive
rewards.

Figure 4: Observation space in the tile reward environment

Special Reward Patterns
Figure 5 shows two possible reward configurations that can
be used in a curriculum. On the left, it shows an example
of positive stripe reward. In such a configuration, all positive
rewards are guaranteed to be on a stripe of width 2 (vertical or
horizontal), while all other rewards are negative. On the right,
negative rewards are arranged in a checkerboard-like pattern,
such that they can always be avoided.

Figure 5: Positive stripe and checkers reward patterns in the tile re-
ward environment.

4.3 Used Configurations

From the described environments, this study primarily uses
two main configurations. Using terminology from Section
3.3, Confeval is the tile reward environment with default re-
ward pattern and size = 10,max steps = 30. Confsmall is
the same as Confeval, except with size = 5,max steps =
15. Unless otherwise stated, Confi includes 50000 steps of
expert demonstrations that are sampled with a converged PPO
policy in the corresponding environment.

The results are only presented for the tile reward environ-
ment because we believe that the simple environment does
not provide significantly interesting findings.

5 Results
The following procedure is used for evaluation: multiple
AIRL policies are trained for an equal number of environ-
ment steps. Among these, one referred to as the baseline, is
entirely trained in the evaluation environment. Other policies
use different configurations, according to their curricula. Ev-
ery 1024 environment steps, the performance of each policy’s
actor is assessed in the evaluation environment. The average
reward earned per episode, as determined by the true reward
function, is recorded for these resultant trajectories. Later,
we refer to this as (non-discounted) true returns - R̄true in
Equation 1.

R̄true =
1

Nepisodes

Nepisodes∑
i=1

Teval∑
t=0

ri,t (1)

We assess the effectiveness and the learning speed of a pol-
icy by considering the R̄true it achieves at different stages of
training. It is crucial to note that, by focusing on the true
returns, we are not just assessing the proficiency of the ac-
tor policy, but also the reward model. This is because the
AIRL’s actor relies solely on the rewards generated by the
reward model.

Training of AIRL is impacted by a multitude of random
factors: random initialization of NNs, randomness in the en-
vironment, stochastic nature of the policy, etc. To reduce the
influence of the random events, all described experiments are
repeated at least three times, and standard deviations are pre-
sented.

5.1 Modification to the AIRL implementation
First, we present the impact of the main modification that was
introduced to the implementation of AIRL that was used in
this paper, in line with Section 3.2. The returns achieved by
the changed and unchanged versions are shown in Figure 6.
Apart from the increased returns, decreased noise is also ob-
served. The expert that is used to sample the demonstrations
for training reaches R̄true = 3.9, so an improvement from
-1.5 to 3 is substantial. Therefore, for the following experi-
ments, we use the corrected version of the implementation.

Figure 6: Graph of the true returns as the model trains. 68% con-
fidence intervals (one σ from the mean) are shown with the half-
transparent fill.



5.2 Increasing Environment Size Curriculum

The primary curriculum discussed in this paper can be stated
as:

Cu(2, [Confsmall, Confeval], [x, 10
6 − x]), (2)

using notation from Section 3.3, Confsmall, Confeval de-
fined in Section 4.3 and an integer x. For the total number
of steps, we chose 106 because, with our parameters, most of
the models converge by that point.

Figure 7 shows the true returns obtained by the AIRL’s pol-
icy in the evaluation environment throughout training. Runs
that make use of CL reach R̄true = −3 faster, but then
plateau, as they are trained in an environment that is differ-
ent from the evaluation one. In this experiment, x = 2 · 105,
so after 2 ·105 steps, the CL run’s configuration is changed to
the evaluation environment, and training is continued for the
remaining 8 · 105 steps.

In this scenario, utilizing CL proves beneficial, as its true
average return R̄true is higher or equal to that of the base-
line throughout training. Moreover, the CL method reaches
near-convergence returns about 2 times faster than the base-
line. We believe that the success of this curriculum stems
from its effective simplification of the task. In Confsmall

the episodes are shorter, the target is on average closer, and
the state space is reduced. Thus, a random policy (like the
one initialized) has a better chance to perform well in the en-
vironment. Moreover, the knowledge gained in the smaller
environment can be applied in the larger one, Confeval, as it
is very similar.

Figure 7: Graph of the true returns as models train. For curriculum,
the configuration is switched from Confsmall to Confeval at 2·105
steps (the vertical line).

We also explore the influence of changing the duration of
the first curriculum stage - x from Equation 2. From Figure
8, we conclude that x = 100000 is not enough to harvest the
full benefit of CL, while x = 300000 is likely unnecessarily
long.

Figure 8: Graph of the true returns as models train. Dotted verti-
cal lines of the corresponding color show when the configuration is
switched. Running average smoothing is applied to improve graph
readability.

5.3 Data Efficiency
Another important aspect where curriculum learning can help
is reaching similar performance while using less data. As dis-
cussed before, expert data can be costly to obtain, so min-
imizing its amount is important in IRL applications. This
section tests whether CL can help AIRL to recover better re-
wards when the number of demonstrations from an expert is
severely limited.

For experiments, we provide only 50 expert demonstration
steps in the evaluation environment. This number was chosen
empirically as an amount with which AIRL’s policy rewards
become significantly lower than those in the default config-
uration (where 50000 expert steps are provided). The small
number of demonstrations introduces another source of ran-
domness, as the dataset becomes less representative. For this
reason, we create 5 sets of 50 demonstrations and run experi-
ments 5 times - once for each set. We thus encounter a larger
variance, but less bias.

Demonstrations from Another Environment
One way to improve achieved returns with limited demonstra-
tions is to use an auxiliary set of demonstrations from another
environment. For this experiment, the curriculum starts with
Confsmall50, which is identical to Confsmall, except only
50 expert steps are provided. As presented in Figure 9a, the
mean value achieved by CL (in orange) is significantly higher
than that of the baseline (in blue). We also note that despite
the large variance of the baseline, none of the baseline runs
reached returns higher than CL’s average. We thus conclude
that our method substantially improves the outcome. Fur-
thermore, the performance is on par with the results achieved
when using 100 expert demonstrations in the evaluation envi-
ronment - double the number used for CL.

Non-Expert Demonstrations
Another approach makes use of demonstrations that are sam-
pled from a less optimal policy. Previously, all data came



(a) CL includes simplified environment (b) CL includes worse expert

Figure 9: Non-discounted true returns as the models train. Five runs are grouped for each line. 68% confidence intervals (one σ from the
mean) are shown with the half-transparent fill.

from a converged policy, reaching R̄true = 3.9 in the evalu-
ation environment. Here, we gather 500 demonstration steps
that achieve R̄true = −0.35, and use them for the first stage
of the curriculum. Figure 9b shows that AIRL is on average
able to get higher true returns with CL. However, the results
are less conclusive in this case due to the high variance of
the baseline, and relatively good performance achieved with
exclusively non-expert demonstrations.

5.4 Other Curricula
Besides the discussed increasing grid size curriculum, other
curricula were tested for the tile reward environment. How-
ever, they have not provided significant improvements com-
pared to the baseline method, so we only discuss them briefly.

The sequential curriculum, as described by Shen et al.
(2022), was adapted to the used evaluation environment in
the following way: Conf1 is the same as the evaluation con-
figuration, Confeval, but the max steps is very low. Then,
subsequent Confi gradually increase the max steps up to
30, which is used for the evaluation environment. The per-
formance of such a curriculum shows to be worse than the
baseline, taking more environment steps to reach the same
true returns, as presented in Appendix A.

We have speculated that a custom reward pattern like pos-
itive stripe or checkers could be useful for a curriculum be-
cause it is easier to reach good rewards in these configura-
tions. However, the results show that such a curriculum does
not significantly contribute to performance in the default ver-
sion of the environment. We present the graphs for these cur-
ricula in Appendix B.

6 Discussion
Within this study, we focused on a comparison of our pro-
posed approach, CL for AIRL, solely with the standard AIRL.
While there are indeed multiple other IRL algorithms that

could be relevant to the problems discussed, we excluded
them from our experiments. As shown by Fu et al. (2018),
AIRL significantly outperforms other IRL techniques, we
thus believe the additional comparison is unnecessary. More-
over, some IRL algorithms are model-based, which severely
complicates applying them to our environment.

Given that in CL the trained models must be applicable
across all stages of the curriculum, the dimensions of the in-
put and output need to be consistent across all environments.
This imposes a limitation on the possible range of curriculum
environments for a given evaluation configuration.

We understand that creating an efficient curriculum may be
time-consuming, which is why such an approach may not be
universally applicable. Still, the demonstrated improvements
can be crucial for some applications, making CL an important
component to consider.

We also acknowledge that we did not exhaustively explore
certain parameters, such as NN architectures, the configura-
tion of the evaluation environment, some hyperparameters of
AIRL and PPO, and the default number of expert demonstra-
tions. Consequently, we cannot completely rule out the po-
tential for different outcomes with alternative parameter con-
figurations.

7 Conclusion and Future Work
In this study, we investigate the application of curriculum
learning in the context of the Adversarial Inverse Reinforce-
ment Learning algorithm. We find that well-constructed cur-
ricula significantly reduce the number of environment steps
that are necessary to learn a certain policy. Moreover, when
expert demonstrations are scarce, CL is able to augment train-
ing in such a way that better true returns are reached, and
thus, the reward estimation is improved. Nevertheless, if the
crafted curriculum inadequately reflects the final problem, it
may fail to enhance or even potentially impede the training



process.
In summary, this research provides evidence that integrat-

ing CL strategies into AIRL can substantially improve perfor-
mance in two main aspects: accelerating convergence speed
and improving the effectiveness of the learned reward func-
tion. We hope that our work sparks further investigation into
the broader application of CL in the field of IRL and helps to
guide the responsible development of such methods.

In future work, we aim to investigate the feasibility of dy-
namically selecting the transition point to the next curricu-
lum stage. For instance, by detecting the convergence of the
model on the current configuration, we could identify oppor-
tune moments to transition to the subsequent stage. We also
plan to experiment with varying learning rates for different
stages or learning rate schedulers in general. Finally, more
stages can be introduced to the existing curricula. It is likely
that a more gradual transition between the complexity of con-
figurations will positively impact the speed of convergence,
so it may be valuable to investigate it.

8 Responsible Research
Despite the subtitle of the paper mentioning human data,
no data from humans was used in the research. The expert
demonstrations were gathered exclusively using RL models,
and the training environments did not ask for any human feed-
back.

8.1 Ethical Considerations
In conducting this exploration, we have committed to main-
taining the essential principles of ethical research within the
machine learning landscape. The implementation of curricu-
lum learning strategies within the realm of IRL, while promis-
ing, does carry the potential for misuse or unintended conse-
quences.

For instance, biased or ethically compromised curricula
could result in harmful outcomes when applied in real-
world scenarios through IRL algorithms. We hope that our
research’s potential applications are oriented toward ethi-
cally acceptable and beneficial goals. One such application
could be more human-like navigation capabilities for artifi-
cial agents.

8.2 Reproducibility
In the spirit of promoting open science, we made a concerted
effort to ensure the reproducibility of our research. A de-
tailed and transparent account of the methodologies applied,
including the development of curriculum learning strategies,
the setup of IRL methods, and our experimentation process,
are all provided.

In addition, we make a commitment to the FAIR (Findable,
Accessible, Interoperable, and Reusable) principles, by mak-
ing all data and code used within the study publicly available.
This not only allows our contribution to be used by fellow re-
searchers for further studies but also promotes a collaborative
scientific community.
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Figure 11: Graph of the true returns as models train.
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D Neural Network Architecture Diagrams

Figure 12: Network architecture of the PPO policy. On the diagram,
64 is the batch size (and thus can be substituted for another integer).
55 is the observation dimension of the tile reward environment.

Figure 13: Network architecture of the AIRL discriminator. On the
diagram, 64 is the batch size (and thus can be substituted for another
integer). 55 is the observation dimension of the tile reward environ-
ment.
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