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Abstract

Detailed imaging of blood flow may improve the understanding
of brain functions. The state-of-the-art non-invasive flow imaging of
the brain is limited to a one-dimensional Doppler setting. We pro-
pose a method to estimate the two-dimensional flow vector in the
fine vascular network of the brain by using a speckle tracking tech-
nique. The framework of Orthogonal Matching Pursuit is used for
speckle tracking and modified to include prior constraints to guide
the matching process among two frames, called as Guided Orthogo-
nal Matching Pursuit. Prior constraint is in the form of a directional
constraint which determines the probability of vector flow in all the
directions according to the orientation of the vessels. The orienta-
tion of the vessels is computed using Power Doppler Imaging. In this
work, the proposed method for two-dimensional vector estimation is
compared with the standard block matching technique of Normalized
Cross-Correlation. We see that the variance of the final velocity esti-
mates has reduced when compared to the standard speckle tracking
method and the direction of blood flow is found within the curvature
of the vessel.
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Introduction 1
Ultrasound Imaging is a non-invasive method which is frequently used in medical diag-
nosis. Blood flow imaging techniques have been vastly investigated for focused ultra-
sound emission [1]. Parallel emission systems have drawn attention in recent years as
they provide faster scanning times.

In the brain imaging sector, extensive research has been carried out to understand
the brain using MRI [2] tools. A new focus has emerged to scan the brain through
the use of ultrasonic waves. This emergence of interest is due to the high potential
that ultrasound offers in terms of speed of operation, lower costs and the resulting high
spatial-temporal resolution [3]. The high frame rate of unfocused parallel beams comes
with its demerits. The received response of a plane wave emission suffers from a loss of
spatial awareness which arises when the whole region is scanned at once. At the time
of reception, the transducer elements receive a signal from the whole region of interest
which causes a reduction in the spatial resolution. Therefore the scan suffers from a
low Signal-to-Noise ratio (SNR) and a Contrast-to-Noise ratio (CNR). [3].

To increase the SNR and CNR values, plane waves are emitted not just once but
at multiple times at different firing angles and then coherently added together to form
a compound image. This sequence of emission of plane waves is termed as ultrafast
ultrasound. [3].

As the name suggests, this newer method is faster than the conventional line-by-line
scanning method as illustrated in Figure 1.1.
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Figure 1.1: Comparison between the line-by-line conventional ultrasound (a, b) and the ul-
trafast ultrasound (c, d). The data acquisition steps are shown in the upper half and the final
Power Doppler images for the same scanning time are shown in the lower half. Clearly, the
image quality using the ultrafast method is the best of the two. Figure is adopted from [4].

Problem Definition

The current state-of-the-art imaging of blood flow estimation in the brain showcases
blood velocities which have flow mainly in the direction of the emitted ultrasonic plane
waves. The flow information is obtained for one dimension using the Ultrafast Ultra-
sound [4]. The objective of this thesis is to investigate blood flow in all directions of
the two-dimensional scanning region using the Ultrafast Ultrasound. The proposed
method aims at producing reliable velocity estimates of blood flow in the brain by
guiding the velocity estimates of speckle tracking with prior information obtained by
Power Doppler Imaging.

Thesis Outline

In Section 1.1, an overall view of our system from the earliest step of data acquisition
by the elements of the transducer array until the estimation of the velocity flow is
explained. The following Section 1.2 presents the current state-of-the-art techniques
used to estimate the blood flow in the brain. Issues with the current imaging methods
are laid out in Section 1.3.

The general flow visualization techniques for ultrasound are explained and illus-
trated in Chapter 2, after which Chapter 3 focuses on the proposed methodology of the
Guided Orthogonal Matching Pursuit (GOMP) for velocity estimation in the brain. To
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implement GOMP, prior knowledge regarding the orientation of the vessels is required.
A method is developed and explained in Chapter 3 to find the orientation of the fine
vascular network of the brain. The k-Wave toolbox is used to produce the simulation
data-set. The setup environment for this toolbox is explained in Chapter 4. The results
of both the simulation and experimental data-sets are also presented in Chapter 4; and
the performance of these results is discussed in Chapter 5. All the results presented
in this work are implemented in MATLAB. In the end, the findings of this thesis are
concluded in Chapter 6. The experimental data-set of a mouse brain is obtained at
Erasmus MC, Rotterdam.

1.1 Image Acquisition

The data recorded by the linear transducer array is processed as per the stages described
below and is illustrated in Figure 1.2.
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Figure 1.2: Overall flow map depicting the stages from the raw data recording until the
velocity estimation. Stage one depicts the repeated firing of plane waves in a sequence of
unique angles; Stage two aligns the angle plane waves with the transducer axis and calculates
the spatial response by focusing the waves; Stage three shows the compounding i.e the addition
of all the beamformed frames in a sequence; Stage four applies high pass filtering on the
individual compound frames to eliminate the low frequencies related to the tissue and the
respiratory motion; Stage five is where the velocity estimation techniques are implemented.

1.1.1 Angled Emissions

The preliminary step of data acquisition is storing the response of angled plane waves.
These plane waves are emitted in an interleaved manner, where emissions are fired at
the lowest angle and then increment towards the maximum angle. This whole process is
sequentially repeated. A sequence in the raw data acquisition refers to the information
received by firing the angled plane waves once for all the unique angles. The backscat-
tered echoes of the mth element coming from the spatial position (z, x) is denoted by
sm(tfm(z, x), ts). The axis parallel to the linear transducer array is referred as lateral
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direction and the axis perpendicular to the array is referred as axial direction.
For the given position (z, x) as shown in Figure 1.3a, the tfm is the time taken by

the wave to reach the mth element from the given position. Therefore, it is the sum of
the time taken by the plane wave during transmission to reach the given position and
the time taken by its reflection to come back from the given position back to the mth

element [5]. This time is referred to as fast-time. The distance between the position of
the element and the given position is denoted by dm(z, x). The tfm is given by

tfm(z, x) = transmitted time + reflected time,

=
z cosφ+ x sinφ

c
+
dm(z, x)

c
,

where

dm(z, x) =
√

(z)2 + (x− xm)2.

xm is the lateral position of the element, c is the speed of sound in the region and φ is
the inclination angle of emitted plane wave as shown in Figure 1.3b. The elements are
placed along the lateral direction where zm is zero.

ts is the time stamp at which the plane wave comes back after traversing the com-
plete scanning region. This time is referred to as slow-time. The slow time ts

1 for a
plane wave which is emitted at a sequence repetition j with an angle increment n is
calculated as

ts(j, n) = (Nangles(j − 1) + n)Tframe,

where Nangles is the total number of angled plane waves used in a sequence and
n = 1, 2, · · ·Nangles. The total time taken by the planewave to traverse the complete
scanning region once is given by Tframe. The sampling frequency of the frames is set
by 1/Tframe.

1For readability, ts is used instead of ts(j, n) for equations till beamforming
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(a) (b)

Figure 1.3: Representation of the spatial coordinates used in the post-processing of the ul-
trasound acquisition. The rectangular blocks represent the linear transducer array; x-axis
indicates the lateral direction; and z-axis indicates the axial direction. In (a) the plane waves
reflected from the spatial position (z, x) are shown. In (b) plane waves approach the linear
transducer array at an inclination of φ.

1.1.2 Beamforming

The beamformed image is produced for each plane wave emission and it provides a
complete response of the scatterers at (z, x). The is accomplished by coherently adding
the amplitude of the delayed backscattered echoes and is given by

BF (z, x, ts) =

m=N/2∑
m=−N/2

sm(tfm(z, x), ts). (1.1)

The spectrum of the real valued beamformed signal in the spatial domain is centered
around the ultrasound emission frequency f0. Hilbert transform is applied on the
beamformed signal spatially along the axial direction to demodulate the beamformed
signal. Due to the application of this transform, the phase of the positive frequencies is
shifted by −π/2 and the phase of the negative frequencies is shifted by π/2. The real
valued beamformed signal at the is transformed to a complex signal and is given by

BFH(z, x, ts) = HTz(BF (z, x, ts) ),

where BFH() denotes the Hilbert transformed, beamformed signal and HTz() denotes
the Hilbert Transform function applied to the axial direction. The complex values are
required to calculate the envelope of the signal and to compute the velocities of the
scatterers in the scanning region using the Doppler method. The phase of the complex
value helps in determining the sign of the frequency. The phase content is crucial for
the Doppler method to work.
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1.1.3 Compounding

The values at all spatial positions for a given slow-time stamp is referred to as a
frame. The beamformed frames of a sequence are added together to form a compounded
frame. Now, it is required to show the independent variables of ts as ts(j, n) because a
compounded frame is formed by adding the Hilbert transformed, beamformed frames
for the total number of angled plane Nangles as

CF (z, x, ts(j,Nangles)) =

Nangles∑
n=1

BFH(z, x, ts(j, n)).

From now onward, the compounded frame would be denoted as CF (z, x, ts(j)). The
Nangles is a constant term and therefore could be removed from the compounded frame
notation.

1.1.4 Filtering

In the slow-time dimension, it is important to apply a clutter filter [4] at every pixel
to reject the low frequencies corresponding to the global motion and the respiratory
motion of the scanning region. The filtering operation tends to extract the blood
activity response that corresponds to the high frequencies. A Butterworth high pass
filter is used for this purpose and the filtered, compounded frame consisting of blood
motion is denoted by CFb(z, x, ts(j)).

1.1.5 Velocity Estimation

After the filtering process, the compounded frames are ready to be used for velocity
estimation techniques. The velocity estimation techniques, namely, the Doppler method
[6] and speckle tracking [7] are discussed in detail in Chapter 2. These two methods
are merged together to develop an improved velocity estimator which is discussed in 3.

1.2 Doppler Imaging

Doppler imaging is based on the well-known concept of physics known as the Doppler
effect. The Doppler effect states that a stationary observer will experience a change
in the perceived frequency depending on the direction and speed of the transmitting
wave source. If the transmitting wave source is moving towards the observer then there
is an increase in the received frequency whereas if the transmitting source is moving
away from the observer then there is a decrease in the received frequency in relation
to the position of the stationary observer. In ultrasound, the transducer is the source
where the movement of the scatterers in the scanning region is found by measuring
the change in the phase value of the reflected source waves. The change in the phase
value is generally interpreted as the change in the percieved frequency which is known
as Doppler frequency. The activity of scatterers is found using the Doppler frequency
and can be visualized by the following sub-modes2:

2These sub-modes are explained with respect to the brain imaging using ultrafast ultrasound
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• Power Doppler Imaging

• Signed Power Doppler Imaging

• Color Doppler Imaging

1.2.1 Power Doppler Imaging

The amount of red blood cells per volume of the scanning region is represented as the
brightness map in the Power Doppler Image (PDI) [4]. The PDI is formed when the
filtered frames are averaged over a time range. The average value represents the average
power of the Doppler frequency. This time range is decided by the consistency of the
blood flow dynamics. The number of frames used to compute the brightness map of
the PDI is termed as the ensemble length. The PDI value at each spatial position is
the summation of the squared absolute values over the ensemble length Nensemble. The
PDI computation is given as

PDI(z, x) =

∑Nensemble

j=1 |CF b(z, x, ts(j))|2

Nensemble

.

1.2.2 Signed Power Doppler Imaging

This mode of imaging superimposes the directional information of the flow over the
PDI. The sign of the present Doppler frequencies indicate the direction of the blood
flow. The positive sign means that the flow is towards the placement of the transducer
and vice versa for the negative sign [8]. The direction of flow in the vessels can be
visualised by taking the sum of the power spectral densities separately for the positive
and negative spectrum. The Power Spectral Density (PSD) of CF b(z, x, ts(j)) in slow-

time is denoted by absolute square of its Fourier coefficient ĈF b(z, x, ωs(j)). The PSD
is given by

S(z, x, ωs(j)) = |ĈF b(z, x, ωs(j))|2.

The signed Power Doppler images at each spatial position are computed as

PDI+(z, x) =

Nensemble/2−1∑
j=1

S(z, x, ωs(j)), and

PDI−(z, x) =

Nensemble∑
j=Nensemble/2+1

S(z, x, ωs(j)).

1.2.3 Color Doppler Imaging

The Doppler frequency is directly proportional to the velocity of blood particles in a
vessel. The positive frequencies indicate that the velocities are directed towards the
location of the transducer array and vice versa. The signal at each position (z, x) is
transformed in its frequency domain to compute the power spectrum over its ensemble
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length. The frequency corresponding to the average of the power spectrum gives the
Doppler frequency [8], computed as

fd(z, x) =

∑Nensemble

j=1 ωs(j)
∑Nensemble

j=1 S(z, x, ωs(j))

2π
∑Nensemble

j=1 S(z, x, ωs(j))
.

Color Doppler imaging relies on the computation of flows whereas Power Doppler
imaging relies on the average power which makes PDI more sensitive to the different
directions of the flow than the Color Doppler image.

1.3 Current Issues with Doppler Imaging

The idea behind Doppler imaging in ultrasound is to map the response of blood flow
in the brain vessels. The true velocity measurement is obstructed due to the following
issues.

Out of plane motion

The brain consists of vessels running in all three spatial dimensions. When a two-
dimensional sector is scanned using the linear transducer, the measured velocity is equal
to the projection of the velocity vector in the two-dimensional plane. This obscures the
measurement of the true velocity.

Directional sensitivity

The sensitivity of particle movement in the scanned region is highest in the perpendic-
ular direction to the linear array and the sensitivity decreases as the angle between the
line perpendicular to the array and the velocity vector increases.

Aliasing

The time taken to record one sequence of angled emissions is termed as Pulse Interval
Time (PIT). The reciprocal of the PIT gives the Pulse Repetition Frequency (PRF).
High PRF means a high number of frames can be captured in one second, increasing
the maximum detectable velocity using the Doppler method. PRF is dependent on the
size of the imaging domain and the central frequency of the emitted ultrasound wave.
Velocities higher than the Nyquist limit maps in the spectrum of negative frequencies
which results in false-negative velocities. The mapping of higher positive velocities onto
the negative velocities is called Aliasing.

We will now concentrate on the information provided by Power Doppler Imaging
and couple its advantages with the speckle tracking to provide accurate estimates of the
blood velocity in the brain. This is done to tackle the issues related to the directional
sensitivity and aliasing. So far, speckle tracking is vastly used in heart applications
as flow occurs in arteries of large diameters making the implementation of the speckle
techniques quite effective. When applied to the brain, the convoluted structure of brain
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vessels should be considered. The working of the Doppler method and speckle tracking
method is discussed in detail in the next chapter.
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Directional Velocity
Estimation Methods 2
Blood velocity estimation in ultrasound broadly relies on Doppler and the speckle
flow measurement techniques. In clinical practice, blood flow measurements inside
the brain is limited to one dimensional Doppler imaging [4]. This opened research
areas for multi-dimensional blood flow estimators using speckle tracking and Doppler
Processing. Different setups of transmission and reception methods of ultrasonic waves
like Planewave Transverse Oscillation, Compounded Plane waves, and Multi direction
Velocity Estimation [1] allow for a better quantization of the multi-dimensional flow. In
this thesis, we will focus on estimating the two-dimensional velocity vector for Ultrafast
Ultrasound by combining the merits of Doppler imaging with speckle tracking. This
Chapter introduces the working concepts and equations of these two techniques in
Sections 2.1 and 2.2 respectively, along with the potential they behold to estimate
better velocity vectors.

2.1 Doppler method

In Ultrasound, the Doppler frequency provides the frequency corresponding to the
velocity of scatterers. The concept of Doppler imaging is explained in Chapter 1. Here,
a generic example is considered to derive the Doppler frequency formula. An ultrasonic
wave with the central frequency f0 is emitted by one transducer element to observe the
movement of scatterers within the target area in the scanning region. The ultrasonic
wave consists pulses of finite length. The Doppler frequency is calculated by emitting
the wave repeatedly at a sampling frequency fs. The target area under the observation
is highlighted by the dashed line in Figure 2.1 which shows the change in the phase
between the emitted plane waves due to the movement of the scatterers.

In Figure 2.1, the phase shift in the plane waves emitted at fs is shown. In one
element transducer array, the scatterers movement is seen only in the axial direction.
Since there is one element of the transducer, the beamforming operation is not required.
The recorded response is a real valued signal which is converted to a complex valued
signal by applying the Hilbert transform. The complex recorded signal is given by

r(n) = An exp (
i2πfdn

fs
),

where n is the count of emissions, fd is the Doppler frequency and An is the magnitude
of the recorded response. A discrete Fourier transform is applied on r(n) to compute
the fd. At fd, the average power of the signal is concentrated. The Doppler velocity
vd is derived from fd. The scatterers would have moved by a distance z when the
second transmitted wave reaches the target area as shown in Figure 2.1. The change
in the phase of the backscattered echo due to this movement is given by ∆(φ). The
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Figure 2.1: Visualization of the Doppler frequency for a one element ultrasound system.
The vertical axis indicates the slow-time emission of the plane waves. The horizontal axis
indicate the spatial position of the scanning region which is the axial direction in this case.
To estimate the movement of scatterers (shown in the solid red circle) z in the target area
(boundary marked by the dashed line), the ultrasonic waves are repeatedly emitted at a
sampling frequency fs. The target area is the size of one imaging pixel. It can be seen that
the movement of the scatterers causes a phase shift in the emitted plane waves.

ratio of the phase change with respect to the complete phase cycle is equal to the ratio
of total moved distance 2z with respect to the wavelength λ0 of the ultrasonic wave.
The total distance moved by the scatterers is considered during both the emission and
transmission time taken by the plane wave. The equality of the ratios is given by

∆(φ)

2π
=

2z

λ0
,

where z = vd/fs and λ0 = c/f0. The speed of sound is c in the scanning medium. The
above equation can be rewritten as

∆(φ)

2π
=

2vdf0
cfs

.

Hence, the Doppler velocity is

vd =
cfs∆(φ)

4πf0
,

12



where the Doppler frequency is given by

fd =
fs∆(φ)

2π
.

The Doppler frequency is based on the sampling frequency. In Ultrasound imaging of
the brain, the Doppler frequency at each spatial position is computed in slow-time. The
compounded frames are produced in the slow-time where the number of compounded
frames per second sets the sampling frequency for which the Doppler frequency is
calculated. The cardinal method for calculating the Doppler frequency is to take the
Fourier Transform of the slow-time ensemble at each spatial position and then compute
its average frequency. An effective approach in finding the Doppler frequency is to use
the Lag-One Autocorrelation method as explained in [6].

2.1.1 Implementation using Lag-one Autocorrelation method

This method computes the Doppler frequency using the autocorrelation of the time
domain values. The equations that convert the autocorrelation estimate to a velocity
estimate are explained below.

According to the Wiener Khinchin theorem, the autocorrelation in the time do-
main is the inverse Fourier Transform of its Power Spectral Density (PSD) estimate.
Therefore, the Lag-one Autocorrelation can be written as

R(1) =
1

2π

∫ π

−π
S(z, x, ω) exp(iω)dω,

where S(z, x, ω) is the PSD estimate of the filtered compounded signal CF b(z, x, t)
at the spatial position of (z, x). The PSD estimate is the squared magnitude of

ĈF b(z, x, ω) (Fourier transform of the CFb(z, x, t)), given by

S(z, x, ω) = |ĈF b(z, x, ω)|2,

where

ĈF b(z, x, ω) =

∫ ∞
−∞

CF b(z, x, t) exp(−iωt)dt.

If the PSD is at an angular frequency ωd (which corresponds to a phase shift ∆(φ)),
such that S(z, x, ω) = δ(ω − ωd), the autocorrelation function is

R(1) =
1

2π

∫ π

−π
δ(ω − ωd) exp(iω)dω,

=⇒ R(1) =
1

2π
exp(iωd).
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Here, the argument of R(1) is multiplied with the slow-time sampling frequency to give
the Doppler frequency in (2.1). When the ultrasonic wave has central frequency f0, the
Doppler frequency at (z, x) is

fd(z, x) =
fs
2π
arg{R(1)}, (2.1)

where fs is the slow-time sampling frequency of C̃F (z, x, t). The Doppler velocity at
the spatial position (z, x) is

vd(z, x) =
cfd(z, x)

2f0
. (2.2)

The Lag-one method is computationally faster and has higher accuracy than the Fourier
Transform based method.

In the Doppler velocity estimation, if the particle is moving in a direction perpen-
dicular to the direction of the plane wave this method renders futile results. Figure 2.2
shows the Doppler flow estimation for simulated vertical and horizontal vessels. The
actual velocity of the flow of both the vessels is 0.3m/s. The velocity estimation for
the vertical vessel is comparable to that of the actual velocity but the same does not
hold in the case of the horizontal vessel. The vessel’s boundary is highlighted at the
centre. From Figure 2.2, the Doppler velocities in the same within and outside the
vessel. This happens because only the phase of the Doppler frequency is considered
and not its amplitude.

As explained in Chapter 1, a Power Doppler Image (PDI) which is the mean of
average Doppler frequencies gives a mean response of blood activity over the ensemble
length. This is turn provides the spatial information of the blood vessels present in the
scanning region. Though, the Doppler method cannot be used as a velocity estimator
due to its ill response in the lateral direction but it can be used to extract the location
of the vessels.
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Figure 2.2: Velocity estimation of the scanning region using the Doppler method. The y-axes
indicates the axial direction and the x-axes indicates the lateral direction of the region. The
axial velocity is indicated by the brightness map. In (a), the area at the centre contains
the simulated flow of 0.3m/s in the decreasing axial direction and in (b), the area at the
centre contains the simulated flow of 0.3m/s in the increasing lateral direction. The Doppler
estimates of the vertical vessel simulation show comparable values to the actual flow whereas
the estimates are ineffective for the horizontal vessel simulation.

2.2 Speckle Tracking method

The interference of waves with the granular structure in the scanning medium results
in the visualization of speckle. The speckle pattern moves when the particles in the
medium move. The speckle pattern remains correlated for consecutive frames but is
uncorrelated for a longer duration of time. The method by which the motion of particles
can be estimated using the knowledge of speckle displacement is called speckle tracking
[9]. In speckle tracking, two consecutive images are compared with each other to find
the displacement vectors in the horizontal and vertical directions of the image.

The block matching technique based on the maximization of Normalized Cross-
Correlation (NCC) has been used for speckle tracking [1] [10]. In this block matching
technique, images are divided into blocks as shown in Figure 2.3 and then each pair of
corresponding blocks between two frames is used to find the velocity vector. Therefore,
one velocity vector represents the flow information for each block. The number of
velocity vectors in a frame depends on the size and overlap between the blocks. The
minimum block size should be such that it encompasses the whole structure of a speckle,
else the velocity vector will give random values. The maximum velocity that can be
detected depends on the size of the block. The implementation of NCC is provided in
the following subsection.
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Figure 2.3: Flowchart of a speckle tracking algorithm using NCC. Firstly, two subsequent
frames are divided into blocks (also known as subwindowing step); then NCC is calculated
for the corresponding block pairs by normalizing the Fourier Transforms of the blocks; finally,
the displacement vector is measured by finding the peak corresponding to the maximum of
the correlation map. This is a modified figure from [9].

2.2.1 Implementation using Normalized Cross-Correlation

A general algorithm for NCC as outlined in [1] is divided into three steps: 1) divide
the beamformed images into small blocks; 2) match the block pairs using a similarity
or a dis-similarity measure; 3) find the maximum or the minimum displacement of the
measure using a peak estimation method. The matching measure used here is used in
[9], which calculates the NCC coefficient ρ for the block pairs and finds its maximum
to obtain the displacement in these two-dimensional blocks. To find the displaced
horizontal and vertical vectors, two successive images p and q are divided, let us say,
in a total number of L blocks and the ρ is computed for each block pair (pk, qk), where
k = 1, . . . , L is the block number. Using the Fourier Transforms p̂k and q̂k, ρ for block
k is calculated as

ρk =
F−1(p̂kq̂k)
MNσkpσ

k
q

.

p̂k represents the complex conjugate of the Fourier Transform of p̂k, MN represents the
size of the block in pixels and σ is the standard deviation of this stochastic process.

The subpixel displacements in vertical z and horizontal x directions are found by
estimating the peak of ρk using parabolic curve-fitting. The displacement is found as

(∆zkp→q,∆x
k
p→q) = max(ρk). (2.3)

When speckle tracking using NCC is implemented to detect the blood flow in the
brain vessels, the performance is found to be poor. As shown in Figure 2.4, where the
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Figure 2.4: The simulated vessel is inclined at 30◦ consisting of ground flow velocity of 0.6m/s.
The velocity magnitude at is displayed at each pixel by the colorbar on the right side. The
arrows over the magnitude plot display the direction of the flow and the length of the arrow
is directly proportional to the magnitude. (a) shows the actual velocity and (b) shows the
velocity computed using the standard NCC (implemented in MATLAB). It is seen that some
of the NCC vectors show false velocity directions. The ultrasound data-set for this simulation
is obtained using the k-Wave toolbox [11] (further details of the setup are given in Chapter
4).

speckle tracking is implemented on the simulated k-Wave data-set, this method works
poorly for the narrow vessels. In this figure, the left image shows the ground velocity
magnitude using a colormap and the direction of actual velocity using arrows over
the region of the vessel. Similarly the right image shows the magnitude and direction
of the velocity vectors which were computed by implementing the NCC algorithm in
MATLAB.

As opposed to the Doppler method, speckle tracking can find the vector flow in all
directions as demonstrated in [12].The performance of speckle tracking in the brain can
be improved if the speckle matching process can be guided along the vessel’s curvature.
This is done by using prior information in the form of the vessel’s orientation to guide
the speckle matching process as discussed in Chapter 3.
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Proposed Methodology 3
Two categories of velocity estimation techniques were discussed in the last chapter.
Moving forward in this Chapter, a new method is proposed where the merits from both
the techniques are combined to estimate the blood flow in the brain. Here, the orien-
tation of the vessel which is obtained through the segmentation of the Power Doppler
Image acts as prior information to increase the accuracy of the velocity estimation. The
constraint enforces the velocity estimator to find the vector along the direction of the
vessel. As explained in Chapter 2 velocities between two frames are estimated when
a block in one frame is matched to the corresponding block in the second frame. The
directional constraint in the matching procedure of speckle tracking is used along with
the framework of the Orthogonal Matching Pursuit (OMP) [13]. The implementation
of OMP with the directional constraint is called GOMP. The steps developed for calcu-
lating the orientation of the brain vessels are discussed in Section 3.1. A system model
for speckle tracking is formulated in Section 3.2 and the implementation of GOMP on
the system model is explained in Section 3.3. The computation of the directional con-
straint in the form of spatial weights is in Section 3.4. The overall procedure adopted
to estimate the blood velocities using GOMP is given in Section 3.5.

Notation: A vector, say x is represented by a small alphabet in bold font. An
element in the ith position of a vector is symbolized by xi. Matrix notation is given by
a bold capital font like X, while a column of matrix X is given by xi.

3.1 Orientation of the Vascular Map

The Power Doppler Imaging helps in visualizing a vascular network of the brain. The
orientation of the vessels can be extracted from the PDI to be used as prior information
in the calculation of finding the velocity vectors within the vessel’s curvature. As
shown in Figure 3.1, in contrast to the standard speckle tracking techniques where
the probability of finding the vectors is equal in all the directions, the proposed speckle
tracking has higher probabilities along the vessel’s orientation. A method to extract the
orientation of the vessels is developed so the probabilities based on vessel’s curvature
can be calculated. The probabilities are used in the form of spatial weights which are
explained in Section 3.4.

Figure 3.2 shows the process of extracting the orientation of the vessels from the
PDI of the cerebellum region of the mouse brain. The detailed information behind the
acquisition parameters of the mouse data is discussed in Chapter 4. Firstly, the PDI is
segmented to separate the vascular network from the background. The segmentation
is done by finding a uniform threshold value through a trial and error approach in
which the values higher than the threshold value in the PDI are kept and the others
are discarded. A two-dimensional first-order differentiator is applied to the segmented
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Figure 3.1: (a, b) displaying the difference in the approach of the standard and the proposed
speckle tracking methods, respectively. The blue arrows indicate the possible flow directions
within the vessel and the length of the arrow shows the probability of finding that direction.
In (a), the probability of finding the velocity estimates is maintained same in all the directions
for a standard speckle tracking technique. In (b), the directional probability is non-uniform
and is maximum within the curvature of the vessel.

PDI to find the raw orientation of the vessels. The first-order differentiator does not
work within the vessel’s area as the PDI intensities within the vessel are almost uniform
providing with almost zero gradient changes. As seen from Figure 3.2, the gradients
for the raw vessel orientation are significant near the vessel’s boundary but almost flat
within the vessel’s area. In other words, angles measured at the boundaries of the
vessels provide a correct measure whereas gibberish angle measures are found within
the vessel’s perimeter. Therefore, the correct angles at the boundaries of the vessels are
extracted using the Sobel edge detector of MATLAB. To get the correct orientation at
all the points of the vessels, orientation of the closest extracted boundary is used for
each spatial positions.
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Figure 3.2: Illustration of the steps involved in the computation of the vessel’s orientation at
each pixel. (a) is the Power Doppler Image (PDI) which is segmented to obtain the location
of the vessels. The segmented vessels are passed through the first-order differentiator acting
in both the axial and lateral directions. The arctangent of the slope is computed from these
differential components to produce the inclination of the pixel in the vessel shown in (b). The
vessel’s boundaries compute the accurate inclination due to the high contrast between the
absence and presence of Red Blood Cells. The boundary values are extracted using the Sobel
operator as shown in (c). Finally, the correct orientation values are filled within the vessels
at each pixel by finding the orientation of the nearest boundary as shown in (d).

3.2 System Model

The motion of the particles is calculated by finding the displacement of the underlying
speckles. Each frame is divided into blocks and each block in a frame is associated with
one displacement value. So a block in the frame 1 is matched to all the possible shifted
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Figure 3.3: Speckle tracking using the proposed method is performed on the real values. (a)
shows the absolute signature of a filtered frame and (b) shows the real signature of a filtered
frame. The real value is used as it provides discontinuous ridges like pattern which is preferred
for the speckle tracking method.

blocks within the search region of the frame 2. The shifted block refers to the block
whose centre is present at a shift calculated from the centre of the search region. The
shift is measured as a displacement vector between the centre of the shifted block and
the centre of the search region. The best match between the two frames is calculated
using GOMP. A system model is formulated on which GOMP can be implemented. The
speckles of the real valued filtered, compounded frames are tracked. The real values
provide a less smooth speckle pattern than the absolute values as shown in Figure 3.3,
which is desired for speckle tracking. Therefore, the system model consists only real
values.

In Figure 3.4, a block shown in the frame 1 is vectorized as y ∈ RM , where M is
the total number of pixels in a block. The shifted blocks in the corresponding search
region as shown in the frame 2 are vectorized as dn, where n = 1, · · · , N . N is the total
number of shifts possible in the search region. All the shifted vectors dn are stacked
column-wise in the matrix D ∈ RM×N , known as the dictionary matrix. The columns
of D are referred to as atoms. The aim of making a dictionary is to construct a matrix
that includes all the displaced values of the second frame. The area of the search region
in the next frame is decided by the maximum velocity assumed in that region. The
objective is to select one column of D that best matches with y. The selection takes
place by forming a selection vector b ∈ RN to decide which column is of interest. The
system equation is given by

y = Db. (3.1)

As every practical system contains noise, we assume that noise is present in the
ultrasound measurement system and is uncorrelated with the measurements. The new
system equation is
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Figure 3.4: The two frames represent the formulation of the system model given in (3.2).
In (a), the frame 1 is divided into small blocks indicated by the grey dashed lines. The
selected block in the frame 1 is vectorized as y and this block is searched in the corresponding
local search region in the frame 2 (enclosed in the solid black boundaries) in (b). The blocks
corresponding to all the shifts (some shifts are shown through the black arrows) are vectorized
and stacked column-wise to form a dictionary matrix D.

y = Db + n.

One column of D needs to be found such that it has the highest similarity with y.
For the proposed speckle tracking in this thesis, the cardinality k is set to 1. In general
for cardinality k the column selection will proceed as

P0 : min
b

‖ b ‖l0 ,

subject to Db = y, ‖ b ‖l0≤ k,

where y is the vectorized form of a block in the frame 1 and D is the dictionary matrix
of shifted blocks in the frame 2. The problem P0 is referred to as a L0 minimization
problem. The computational complexity for P0 is categorized as a Non-Polynomial
Hard (NP-Hard) problem.

To reduce the computational complexity, P0 can be solved using relaxation methods
[14] or greedy methods [13] [15]. The detailed explanation of various approaches to
sparse problem modeling along with the theorems that ensure the optimality of these
approaches is given in the thesis report of Sejeso [16]. With relaxation methods, the
non-convex objective function of P0 is changed to a convex function and a suboptimal
solution for this problem is found. On the other hand, greedy methods search the
suboptimal solution by sequentially selecting and storing the basis for the support set
of b. This selection criterion reduces the computational complexity to a maximum
of cubic order dependencies for the greedy methods. An optimal solution is obtained
when matrix D follows certain conditions [17]. The L1 relaxation method and greedy
methods require the entries of D to be in accordance with the restricted isometric
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condition [18]. The greedy method, namely, Orthogonal Matching Pursuit is used in
this thesis to find a column of D that will provide the best match with the reference y.

The standard Orthogonal Matching Pursuit is modified to compute the displacement
between the frames taking into account the orientation of the vessel. The working of
this algorithm is explained in the next section.

3.3 Guided Orthogonal Matching Pursuit

The greedy selection of the columns of D through OMP is described in Algorithm
1. The first step in this method is to find a column of D which gives a maximum
correlation with the residue vector. The residue vector is given by

r(j) = y −Db(j),

where j is the iteration number. The columns of D are indexed by i and are normalized.
The ith column is selected by finding the maximum inner product by

max
i
|dᵀ
i r(j − 1)| ∀i = 1, · · · , N. (3.2)

The ith column that has a maximum correlation, say i0, with the current residue
is added to the support set Sj = Sj−1 ∪ i0. Then the least square solution of b is
computed in its current support set Sj and the residue value r is updated for the next
iteration. The iterations are terminated when the residue reach their minimum value

1 Initialization ;
2 Iteration Number j = 0 b(0) = 0 r0 = y S0 = {} ;
3 while r(j) ≤ ε1 or j = k do
4 j = j + 1 ;
5 Compute i0 = argmax

i
|dᵀ
i r(j − 1)| ∀i = 1, · · · , N ;

6 Update Sj = Sj−1 ∪ {i0} ;
7 Least Squares b(j) = argmin

b
‖ Db− y ‖22 s.t. sup{b} = Sj ;

8 Update r(j) = y −Db(j) ;

9 end

Algorithm 1: Orthogonal Matching Pursuit

or the iterations reach its maximum. The number of iterations is representative of the
cardinality of the system k. There are two operations in this algorithm. The first ,
the least squares operation which finds b(j) such that the error is perpendicular to the
column subspace spanned by the support set Sj; second is the correlation operation
where matching is performed between a column of D and the residue. From these two
steps, the method is named as Orthogonal Matching Pursuit. The result is interpreted
in the form of selected columns of D. When k = 1, the selected index corresponds to
the shift of the block in the frame 2. The orientation of the vessel which is computed
from the Power Doppler Image could be used to direct the searching of the support set
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in the preferred direction, i.e., the direction along the orientation of the vessel. Every
column of D is multiplied by a weight value wi to guide the searching process. This
type of weighing makes the selection of ith column biased towards the orientation of the
vessel. The weights depend on the direction of the shift θi which is measured by taking
the centre of the search region as the origin. The maximization step of the guided
matching pursuit is modified to

max
i
|wi.dᵀ

i r(j − 1)| ∀i = 1, · · · , N. (3.3)

The weighing of the maximisation step of OMP is referred to as the Guided Orthogonal
Matching Pursuit.

3.4 Spatial Weights for GOMP

In [19], three types of weighing functions are defined, namely Cauchy (wc), Huber (wh)
and Bisquare (wb) functions. The weight functions are adapted to the GOMP and are
given as

wc(θis) =
2

1 + (θis)2
,

wh(θis) = min(1,
p

|θis|
),

wb(θis) =

{
(1− (θis)

2

c2
)+

}2

,

where (a)+ = max(0, a), s is the scaling parameter and c, p are the hyperparameters.
The θi ranges from [−90◦, 90◦]. The hyperparameters change the gradient of the weight
functions. The scaling parameter tunes the function value according to its domain.
The three different weight functions are shown in Figure 3.5, wherein the Bisquare
curve smoothly decreases over the domain whereas Cauchy and Huber curves roll down
quickly to a minimal weight.

The function value is shifted by the orientation of the vessel θv (calculated within
the range of [−90◦, 90◦]) as the maximum function value should occur at θv. This shift
is incorporated in the Huber’s weight distribution as

wh((θi − θv)s) = min(1,
p

|(θi − θv)s|
), if − 90◦ ≤ θi − θv ≤ 90◦.

For GOMP, the Huber distribution is used to compute the spatial weights. Therefore,
the weight value in (3.3) is given by

wi = wh((θi − θv)s).
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Figure 3.5: Cauchy, Huber (p = 1.5) and Bisquare (c = 7) weight functions are plotted with
respect to the angular position θi (s = 1/16). With these parameters, the Bisquare curve has
the smoothest gradient and the Cauchy curve has the maximum gradient over the domain.

Implementation of the spatial weights

The θv is the average of the orientation values at each pixel in the selected block of
the frame 1. The range of the vessel’s orientation lies between -90◦ to +90◦. The
implementation of the spatial weights is explained through an example of a vessel that
is laterally aligned in the scanning region.

Uniform weights are applied to take into account the possibility of the upward and
downward motion of the blood flow in the vessel as shown in Figure 3.6. Therefore, the
weights are symmetric around θv and 180◦ + θv.

A block inside a horizontal vessel is selected as shown in Figure 3.7 and the weights
are computed for the different shift directions of this block in the frame 1. The spatial
weights at each pixel are obtained from the Huber’s function, where the distribution
has higher weights for θi closer to θv and 180◦ + θv. θv is equal to 0◦ as the vessel is
laterally aligned.

In the next chapter, results are provided on simulated and real data-set which will
enable us to verify the accuracy of the proposed method.
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180  -   

Figure 3.6: Huber function is applied to the horizontal vessel simulation in both the forward
and reverse directions. The curve shows the weight distribution for all the angular shifts in
the selected block. As θv is zero, the spatial weights are uniform for both the forward and
reverse flows.

Figure 3.7: The spatial weights distribution for the block placed over the PDI. (a) shows the
PDI of a horizontal vessel in the spatial domain. The spatial weights are computed for the
block highlighted by the orange boundary. As the vessel’s orientation θv is zero, the weights
for each spatial location in the selected block is shown in (b). Huber function is used to
compute these weights.
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3.5 Velocity Estimation using GOMP

In this thesis, the velocity vectors for each block are computed using GOMP in the
following way:

• The filtered, compounded frames are acquired for an ensemble length Nensemble.
The total number of frame pairs of the consecutive frames is Nensemble − 1. From
the estimation theory of signals, the Signal to Noise Ratio of the velocity estima-
tion can be improved if more number of frame pairs are considered. If the number
of frame pairs that are considered is navg then the system model (3.2) is modified
to

1

navg


y1,2

y2,3
...

yp,q

 =
1

navg


D1,2

D2,3
...

Dp,q

b +
1

navg


n1,2

n2,3
...

np,q

 , (3.4)

where p = navg, q = navg +1. The subscripts (p, q) of the vectors and the matrices
denote the frame pair made up of pth frame as the frame 1 and qth frame as the
frame 2.

• The velocity vector is found for k is equal to one. The above system model is
used to find a selected index using GOMP. The selected index gives the shift of
speckles within a block in the frame 1. According to the sampling frequency of
the filtered frames, the velocity vector is calculated from the shift.

• The vectors are estimated for navg consecutive frame pairs at the each spatial
position in the scanning region.
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Results 4
The data acquisition parameters for the k-Wave simulation toolbox and the results of
the proposed method are presented in this chapter. Section 4.1 consists the settings
of the toolbox modules that are used to produce the ultrasonic backscattered echoes
from the known components of the scanning region. The Guided Orthogonal Matching
Pursuit (GOMP) technique is implemented to find the displacement vectors between the
two filtered, compounded frames of the ultrasound acquisition. The spatial weights are
combined with the matching pursuit to find the displacement along the direction of the
vessel. The weights guide the matching procedure to find the velocity vector within the
vessel’s curvature as explained in Chapter 3. The sign conventions for velocity estimates
is the same as that for the Doppler flow estimates. This means that the direction of
the velocities towards the transducer have a positive sign and vice-versa. The sign
convention used for the velocities is not the same as that for the spatial positions of
the scanning region. Section 4.2 includes the results of velocity estimation using the
proposed method and the standard method using Normalized Cross-Correlation (NCC)
where the simulation data-set is produced using the k-Wave toolbox. In Section 4.3 the
performance of the proposed method is checked on the experimental data-set provided
by Erasmus Medical Centre, Rotterdam where the experiments were conducted on a
mouse brain.

4.1 Input Structures

In this thesis, the k-Wave toolbox by Bradley Treeby and Ben Cox [11] is used to
simulate the behavior of the ultrasound system. This creates a simulation environment
that mimics the interaction of plane waves with the moving Red Blood Cells. The
details of the toolbox parameters are given in Table 4.1 and the type of the input
structures to the k-Wave toolbox is discussed below:

• Transducer: A linear transducer array is defined where each element of the array
is excited by a Gaussian pulse. The central frequency of the plane wave emission
depends on this Gaussian pulse frequency. An angled plane wave is emitted by
sequentially delaying the input pulses to the transducer elements to form a wave
front inclined at the given angle with respect to the array axis.

• Computational grid: A spatial grid is defined to calculate the amplitude response
of the plane wave interaction with the medium. The horizontal and vertical di-
rections in the imaging region are referred to as lateral and axial directions, re-
spectively. The lateral direction is parallel to the transducer array and the other
direction is perpendicular to the transducer array.
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TABLE 4.1. THE PARAMETERS OF THE ULTRASOUND SETUP IN THE K-WAVE
SIMULATION

Transducer Grid Medium

Excitation Gaussian Lateral length 256 pixels Tissue density 1041 kg/m3

Central Frequency 25 MHz Axial length 256 pixels Tissue sound speed 1541 m/s
Pitch 7.6 µm Resolution 7.6 µm Blood density ∼ N (1041, 40) kg/m3

Kerf 0 µm Grid size 1.9 mm x 1.9 mm Blood sound speed ∼ N (1541, 40) m/s

• Medium: The medium properties are defined by the density and speed of the
sound of the medium to be scanned. The background region resembles the tissue
region and the vessel region resembles the Red Blood Cells.

4.2 Simulation Results

Three different versions of simulations are produced to compare the accuracy of the
proposed method with NCC. The first version contains blood flow inside a vertical
vessel that is perpendicular to the transducer array; the second version contains flow
inside a horizontal vessel that is parallel to the array and the third version contains
flow inside a slanted vessel that makes an angle of 30◦ with the array axis. The true
velocity of particles inside the vessels is kept constant throughout the simulation time.
A sequence of five angled plane waves [−10◦ −5◦ 0◦ 5◦ 10◦] is repeated to obtain 60
compounded frames (Nensemble = 60). With the simulation parameters in Table 4.1,
the sampling frequency at which a plane wave is emitted would be 363kHz in a real-
time scenario. In these simulations the sampling frequency of compounded frames is
high because the emitted plane waves scan a small region with dimensions of 1.9mm
× 1.9mm, hence covering the scanned area at a faster rate. A high pass Butterworth
filtering operation is applied to the compounded frames where the cut-off frequency
is set as two percent of the sampling frequency and the order of the filter is set as 8.
The filtering operation ensures that the amplitude of the stationary and slow moving
tissue is removed from the ultrasound signal to track the amplitude of the moving Red
Blood Cells. A block size of 16 × 16 pixels is chosen as it is large enough to enclose the
complete outline of speckles. The velocities in the axial and lateral directions for each
version is given in Table 4.2. The positive axial velocities point towards the transducer
and the positive lateral velocities point towards the increasing spatial position in the
lateral direction. The number of compounded frame pairs navg considered to calculate
the displacement vectors is 4.

The results for the simulation are given in the below-mentioned order. Foremost
the Doppler velocity estimation at each pixel of the scanning region is shown for each
version; then the computation of the spatial weights for these versions is shown; followed
by the frame-wise velocity estimation which shows the velocity components per navg
frame pairs; and then the final velocity estimation for the complete ensemble length
of the 60 filtered frames. Lastly, the convergence analysis compares the quality of the
velocity magnitudes in the axial and lateral directions computed by the NCC and the
proposed method.
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TABLE 4.2. AXIAL AND LATERAL VELOCITIES SET AS REFERENCE IN THE
K-WAVE SIMULATION FOR THE THREE VERSIONS

Ground Truth Vertical Vessel Horizontal Vessel Slanted Vessel

Axial Velocity (m/s) 0.3 0 0.3
Lateral Velocity (m/s) 0 0.3 0.52

4.2.1 Doppler Velocity

The performance of the Doppler blood flow estimation is analyzed in this subsection.
The Doppler velocity is calculated using the Lag-One Autocorrelation [20] for the en-
semble length of 60 filtered frames. Figure 4.1 shows the estimates for all the three
versions. The Doppler estimation in the vertical vessel is close to the ground truth
but this method does not appropriately work for the slanted vessel and the horizontal
vessel. In the slanted version, the overall axial velocity is closer to the actual vertical
component. The axial velocity is close to zero in the horizontal vessel version. As the
Doppler estimation is suitable in the planewave emission direction, it provides compa-
rable velocity estimates only for the vertical vessel simulation; lower overall velocity
estimates for the slanted vessel simulation and approximately zero estimates for the
horizontal vessel simulation.
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Figure 4.1: The axial velocities for the three simulated versions computed using the Lag-One
Autocorrelation. The centre of the images show the area of the vessel. (a) is the Doppler flow
estimation of the vertical vessel, (b) is of the slanted vessel and (c) is of the horizontal vessel.
The ensemble length for the Doppler estimation is 60. The actual flow velocities are given in
Table 4.2. The Doppler estimation is accurate for the vertical vessel simulation, lower than
the actual magnitude for the slanted vessel simulation and inaccurate for the horizontal vessel
simulation.

4.2.2 Spatial Weights

The velocity vectors are obtained in the narrow vessels with the usage of the spatial
weights. The spatial weights are computed from the segmentation of the Power Doppler
Image (PDI). The PDI is obtained after averaging the 60 filtered frames and provides
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the location of the vascular network in the scanned region. After applying image
segmentation, the vessel masks are obtained from the PDI. With the angle detection
technique discussed in Chapter 3, the orientation of the vessels is found. In Figure 4.2,
the first column shows the PDI of each vessel; the second column shows the orientation
of the vessels; and the third column shows the distribution of the spatial weights defined
for the selected block in the filtered frame.

Figure 4.2: The spatial weights computation from the PDI. The first column shows the PDI for
the three versions in the spatial domain. The second column shows the respective orientations
of the vessels in degrees and the third column shows the distribution of the spatial weights
(Huber function with p = 1.5 and s = 1/16) for the selected block (highlighted by the orange
marker) in the second column.

4.2.3 Frame-wise Velocity Estimates

The velocity components are estimated using GOMP and the vectors are visualised at
each pixel in the scanning region in Figure 4.3 and Figure 4.4. The vectors visualized
at a specific frame number correspond to the frame-wise estimates after considering
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four filtered frame pairs (navg = 4). The total number of frames for which frame-wise
estimates are calculated after using navg frame pairs is

frames =
Nensemble − 2

navg
. (4.1)

In these figures, the frame-wise estimates are shown at different frames which shows
the velocity estimation at different acquisition times. The pixel of the image shows the
magnitude of the velocity and the arrows over the image point towards the direction of
the flow. The length of the arrow is directly proportional to the velocity magnitude.

The frame-wise velocity vectors that are measured using Normalized Cross-
Correlation are shown in Figure 4.3. Here, the first row contains the ground truth
representation of actual velocities and the rows afterward show the vector visualization
for three distinct frames. The columns contain the estimates for each of the versions.
In the vertical vessel simulation, the NCC vectors are mainly biased towards the pos-
itive axial and positive lateral directions. For the slanted vessel simulation, some of
the vectors are aligned with the positive lateral direction while the majority of the
other vectors are found within the vessel’s periphery. With the visual inspection of the
horizontal vessel simulation, it is observed that the direction of the estimated vectors
is along the orientation of the vessel.

The frame-wise vector visualization for the proposed method is shown in a similar
format as shown for the NCC method in Figure 4.4. The directivity of the vectors
is considerably improved in the vertical vessel simulation. In the slanted version, the
vectors which were aligned to the horizontal direction in the NCC methodology are now
aligned along the vessel’s orientation and the vectors in the horizontal vessel simulation
are completely aligned along the horizontal direction.

All the velocity measurements across the 60 filtered, compounded frames are dis-
played as scatter plots with the y-axis indicating the measured axial velocity and x-axis
indicating the measured lateral velocity components. The color of the plot markers cor-
respond to the Pearson Correlation Coefficient (PCC) calculated for the matched block
pairs of consecutive frames. In Figures 4.5, 4.5 and 4.5, the direction of the estimates
found using the proposed method is closer to the actual direction (indicated by a solid
black line in the scatter plot) when compared to the velocity estimates found by the
NCC method. The higher PCC values for the scatter points in Figure 4.5 are farther
away compared to the lower PCC values in both the speckle tracking methods. All
the measurements by the proposed method in the slanted vessel are below the actual
velocity. The actual velocity is indicated by a solid black circular marker in all the
scatter plots.
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Figure 4.3: The frame-wise vector visualization for the three different time stamps at each
spatial location of the simulated vessels. The first column shows the velocity vectors for
the vertical vessel, the second column for the slanted vessel and the third column for the
horizontal vessel. The velocity magnitude of the ground truth is displayed by the hot color
map and the velocity direction of the ground truth is pointed with the arrows. The first
row shows the ground truth for the three versions and the consecutive rows show the NCC
measured vectors per frame. The spurious flow directions are observed in the vertical vessel
simulation; high magnitude velocity vectors are obtained in the slanted vessel simulation; and
the velocity vectors within the vessel are found in the horizontal vessel simulation.

34



Figure 4.4: The frame-wise vector visualization for the three different time stamps at each
spatial location of the simulated vessels. The first column shows the velocity vectors for
the vertical vessel, the second column for the slanted vessel and the third column for the
horizontal vessel. The velocity magnitude of the ground truth is displayed by the hot color
map and the velocity direction of the ground truth is pointed with the arrows. The first row
shows the ground truth for the three versions and the consecutive rows show the measured
vectors per frame using the proposed method. Flow directions are obtained within the vessel’s
orientation and the measured magnitude values are lower than the ground truth.
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Figure 4.5: Scatter plots consisting of all the velocity measurements for the 60 filtered, com-
pounded frames. The first column shows the scatter plots for the NCC method and the
second column shows the scatter plots for the proposed method. The measurements are
marked according to the Pearson Correlation Coefficients. (a) compares the measurements
of the vertical vessel, (b) of the slanted vessel and (c) of the horizontal vessel. The actual
velocity is shown by a solid black disc and the flow direction is indicated by a solid black line.
The variance of the measurements is reduced and the measurements are aggregated along the
direction of the actual velocity.
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4.2.4 Final Velocity Estimates

The final velocity estimate is given by computing the mean of all the velocity measure-
ments at each spatial position over the ensemble length. The measurements which are
more than three standard deviations away from the mean are removed to compute the
regression and performance parameters. The linear regression parameters like the mean
(µ), standard deviation (σ) and Mean Square Error (MSE) are calculated to further
investigate the performance of the estimators [21]. The regression values are calculated
individually for the lateral and axial components of the velocity vector as seen in Table
4.3. The table lists the values for the two speckle tracking techniques i.e. NCC and
the proposed method. The σ is less for the proposed method. The difference in the
performance among the three simulated versions is further investigated in Chapter 5.

TABLE 4.3. LINEAR REGRESSION ANALYSIS OF THE AXIAL AND LATERAL
VELOCITY COMPONENTS AS ESTIMATED BY NCC AND GOMP

Versions Velocity NCC GOMP
µ σ MSE µ σ MSE

Vertical Axial 0.17 0.08 0.02 0.20 0.10 0.01
Lateral 0.15 0.16 0.04 ∼0 ∼0 ∼0

Slanted Axial 0.17 0.10 0.02 0.08 0.05 0.04
Lateral 0.47 0.36 0.13 0.17 0.13 0.13

Horizontal Axial -0.08 0.14 0.02 -0.02 0.04 ∼0
Lateral 0.16 0.21 0.06 0.24 0.32 0.10

Total 1.07 0.29 0.65 0.28

The final velocity estimates for the new technique are shown in Figures 4.6, 4.7
and 4.8 showing the vertical, slanted and horizontal versions respectively. Each figure
pictorially represents the mean axial velocity, mean lateral velocity, mean velocity mag-
nitude and mean velocity direction over the ensemble length. The mean is computed
at a given pixel for the frame-wise estimates obtained during the ensemble length ac-
quisition. The mean velocity magnitude is the value computed using the mean axial
velocity and mean lateral velocity at each pixel. Similarly, the mean velocity direction
is computed using the mean values of the components at each pixel.

In Figure 4.6, the mean axial component is uniform and close to the actual axial
velocity component of 0.3m/s; and the mean lateral component is around the actual
magnitude of 0m/s at each spatial location. These mean components set the mean
direction of the velocity vectors to be in the perpendicular direction to the scanning
region. The mean direction of the vertical vessel simulation is comparable to the ground
truth. The slanted vessel simulation results are in Figure 4.7. It shows that both
the axial and lateral components are under-estimated values of the actual velocity
components. The mean direction of velocity flow is nearly 10◦ less than the actual
direction of 30◦. In Figure 4.8, the mean velocity magnitude is approximately equal to
the mean horizontal velocity as the mean vertical velocity component is almost equal
to 0m/s. The mean magnitude of the horizontal vessel is around the actual velocity
magnitude of 0.3m/s.
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Figure 4.6: Final velocity estimates for the vertical vessel. The mean of the pixel measure-
ments is computed to obtain the final estimates. The velocity magnitude in (c) and velocity
direction in (d) are calculated from the mean axial velocity (a) and the mean lateral veloc-
ity (b) components. The measured axial and lateral estimates resemble the actual velocity
components. The actual vertical and lateral velocity is 0.3m/s and 0m/s respectively.

38



Figure 4.7: Final velocity estimates for the slanted vessel. The mean of the pixel measure-
ments is computed to obtain the final estimates. The velocity magnitude in (c) and velocity
direction in (d) are calculated from the mean axial velocity (a) and the mean lateral velocity
(b) components. The measured axial and lateral components underestimate the actual veloc-
ity components. The actual vertical and lateral velocity is 0.3m/s and 0.5192m/s respectively.
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Figure 4.8: Final velocity estimates for the horizontal vessel. The mean of the pixel measure-
ments is computed to obtain the final estimates. The velocity magnitude in (c) and velocity
direction in (d) are calculated from the mean axial velocity (a) and the mean lateral velocity
(b) components. The measured axial estimates resemble the actual axial velocity components
but it shows variations throughout the length of the vessel. The actual vertical and lateral
velocity is 0m/s and 0.3m/s respectively.
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4.2.5 Performance Analysis

The performance of the velocity estimation techniques i.e. the NCC method and the
GOMP method is compared based on the Mean Deviation (MD) and Mean Square
Error (MSE). MD is the mean difference between the actual velocity component and
the measured velocity component of each spatial position in the vessel. MD is computed
at each frame and is represented in percentage by dividing the mean deviation by the
maximum of the velocity component measured in the given frame. MSE for a given
frame is calculated by taking the mean of the squared error between the actual velocity
component and all the velocities measured before and till the given frame. The MD
and MSE curves are plotted against the time of acquisition of the filtered, compounded
frames.

The performance plots for all the versions are shown in Figures 4.9, 4.10 and 4.11.
Due to the underestimation of the measurement values, the performance of GOMP is
poor in the slanted vessel simulation whereas MSE for the horizontal and vertical vessel
is better for GOMP than NCC.

Figure 4.9: Performance Comparison between the NCC and GOMP methods for the vertical
vessel simulation. (a, b) show the MD and MSE for the axial direction; (c, d) show the MD
and MSE in the lateral direction. The axial MD and MSE for the GOMP method is lower
than the NCC. The lateral component has higher MAD but has lower MSE than NCC. The
measurements of the lateral components varies within a large range but the limits of the range
are close to the actual axial components.
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Figure 4.10: Performance Comparison between the NCC and GOMP methods for the slanted
vessel simulation. (a, b) show the MD and MSE in the axial direction; (c, d) show the MD
and MSE in the lateral direction. The MD and MSE for the GOMP method is more for
both the axial and lateral velocity components because underestimation of the actual velocity
components takes place with the application of a directional constraint.
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Figure 4.11: Performance Comparison between the NCC and the GOMP methods for the
horizontal vessel simulation. (a, b) show the MD and MSE in the axial direction; (c, d) show
the MD and MSE in the lateral direction. The MD is similar for both the components but
the MSE has a lower value than NCC.

4.3 In Vivo Results

The new approach is applied on the cerebellum region of the mouse brain to estimate
the velocity vectors. The orientation of the vessels needs to be calculated for the
implementation of this approach. With the usage of the angle detection technique as
explained in Chapter 3, the orientation of the vascular network is obtained from the
PDI of mouse brain is shown in Figure 4.12.

The navg to find the velocity vectors using GOMP in the in vivo data-set is also 4.
The other important details for the ultrasound setup are given in Table 4.4. The block
size of 16 × 16 pixels is used for the speckle tracking. This size ensures that the speckle
pattern in the local region is completely contained inside this block area. The size is
enough to capture the movement of speckles within one vessel and avoid the movement
of speckles moving in different directions.

The frame-wise representation of the velocity estimates by the proposed and the
NCC methods on this data-set is shown in Figure 4.13 and 4.14, respectively. With
the proposed method in Figure 4.13, some vessels show one flow direction in all the
frames. From (4.1), the total number of frames available for the computation of frame-
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Figure 4.12: Illustration of the vessel’s orientation computed from the Power Doppler Image
(PDI). (a) the PDI is shown and (b) the orientation of the vessels at each pixel is shown. The
data-set is of the cerebellum region of the mouse brain.

TABLE 4.4. THE PARAMETERS OF THE ULTRASOUND SETUP FOR THE IN-VIVO
EXPERIMENT

In-Vivo Ultrasound Setup

Central Frequency 25MHz Frame Frequency 600Hz
Pitch 0.069 mm Ensemble frames 200
Kerf 0.020 mm Number of angled emissions 20
Pixel resolution [λ/8,λ/8] Angles Range [−5◦, 5◦]
Number of elements 256 Angle Increment 0.5263◦

High Pass Filter Butterworth Cut-off frequency 60 Hz
Apodization Kernel Smoothed Square Total Acquisition time 0.3333 s

wise estimates is 48. In other vessels, there are regions within the same vessel showing
the flow in opposite direction to the majority of the flow in the vessel. There are
even alternating flow directions at the same spatial position across the frames. It is
assumed that the flow within a vessel should have same direction through out the
ensemble acquisition. From these observations, it could be concluded that the tracking
of the real signature of the filtered frames gives faulty estimates for displacement of
the scatterers in particular directions. When the frame-wise vectors of the proposed
method are compared with the NCC method, it is observed that the NCC velocity
estimates do not provide true flow as shown in Figure 4.14.

With the increasing number of frames, the frame-wise velocity estimates are av-
eraged till the given frame number is shown in Figure 4.15. In comparison with the
frame-wise estimates shown in Figure 4.13, the averaged frame-wise estimates follow a
consistent flow direction.

The complete overview of the final velocity estimates is given in Figure 4.16 that
displays the mean axial velocity, mean vertical velocity, mean velocity magnitude and
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Figure 4.13: The frame-wise vector visualization across four time stamps. The arrows point
in the velocity direction and intensity of the map indicate the velocity magnitude measured
by the proposed method. The length of the arrow is directly proportional to the velocity
magnitude.

the mean direction in its four sub-figures configuration. From the Figure 4.16, the signs
of the axial and lateral velocity components are such that the flow direction is ensured
within the vessel’s curvature.

In the mean magnitude velocity plot, certain regions within the same vessel have
higher magnitude than the rest. In the mean direction plot, it is easy to identify
the regions where the frame-wise vectors show different flow directions at the same
spatial positions because the mean direction is not within the vessel’s curvature. These
fluctuating flows can be detected by computing the variance of the estimated direction
of the frame-wise velocity estimates. The pixels which have low directional variance
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Figure 4.14: The frame-wise vector visualization across four time stamps. The arrows point
in the velocity direction and intensity of the map indicate the velocity magnitude measured
by NCC. The length of the arrow is directly proportional to the velocity magnitude. The
blood flow is not observed within the vessel’s curvature but in random directions.

also have high mean PCC as shown in Figure 4.17. The mean PCC of each pixel is
computed on the PCC values of the frame-wise velocity estimates.

In Figure 4.18, the Doppler velocities in the cerebellum region and the Pearson
Correlation Coefficient map are shown. For the proposed method, it can be seen that
the estimated flow direction of the regions have the same direction as that of the
Doppler flow estimates with high mean PCC. The portion of the vessels which show
positive Doppler estimates also show positive axial GOMP estimates. There are some
regions which have contradiction between the estimates of the Doppler and the proposed
method.
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Figure 4.15: The averaged frame-wise velocity estimation till the given frame. The arrows
point in the velocity direction and intensity of the map indicate the averaged velocity mag-
nitude measured by the proposed method. The length of the arrow is directly proportional
to the velocity magnitude.
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Figure 4.16: Final velocity estimates computed using the proposed method for the in vivo
experiment. The final estimates are the mean of the measurements obtained at each pixel.
The final velocity magnitude and velocity direction is calculated using the mean of the lateral
and axial components. (a) is the mean axial velocity and (b) is the mean lateral velocity
component at each pixel in the vessel. (c) shows the final velocity magnitude computed
from the mean of the individual components and (d) shows the direction of the final velocity
estimate.
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Figure 4.17: The variance of the estimated direction of the frame-wise velocity estimates is
visualized in (a). High variance shows the estimated flow fluctuations at the given region.
Low variance shows the stability of the estimated flow by the proposed method. The stable
regions are further supported with high mean PCC as shown in (b).
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Figure 4.18: Velocity estimation in the cerebellum of the mouse brain using the Doppler
method is shown in (a). The mean of Pearson Correlation Coefficients (PCC) is computed
for the best match provided by GOMP at each pixel as in (b). It is observed that the high
correlated GOMP values also satisfy the flow directions provided by the Doppler estimates.
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Discussions and Future Work 5
Blood velocity estimation for Ultrafast Ultrasound in the brain vessels is performed
using the speckle tracking technique. The standard method for speckle tracking is NCC.
This method when applied to the fine vascular network of the brain provides spurious
velocity directions. The proposed method for speckle tracking uses prior information
in the form of the vessel’s orientation to estimate the velocity magnitudes along the
curvature of the vessel.

Section 4.2 compares the NCC method to the proposed method on a simulated data-
set obtained using the k-Wave toolbox in MATLAB. The methods are compared using
the parameters of linear regression analysis that include mean (µ), standard deviation
(σ) and Mean Square Error (MSE). The combined linear regression analysis for the
three simulated versions is that velocity estimates of the proposed method have 38%
less standard deviation and almost the same MSE as the NCC method. This is due to
the application of a directional constraint which aligns all the measurements along the
direction of actual velocities.

The proposed method provides a mathematical framework on which different con-
straints can be applied to regularize the resultant flow. In this thesis, velocity is esti-
mated by using a directional constraint. This is accomplished by weighing the columns
of the dictionary in the system model using the spatial weights. Spatial weights are
used as prior constraint to find shifts between two frames using the GOMP. The match-
ing pursuit works through one iteration that finds one column index of the dictionary.
It would be expected that with the increasing number of iterations, the new selected
column index of the dictionary that corresponds to a new shift would be near to the
previously calculated shift values. In this case, a method to interpret the resultant shift
from the selected indices should be developed in future.

Speckle tracking is carried out on the real signature of the filtered, compounded
frames. This thesis, explores the speckle tracking in the domain of the real signature
which has not been studied before. As the speckles are to be tracked in the narrow
vessels, the absolute signature of the filtered, compounded frames is not used as it
gives a smooth speckle pattern making it difficult to track the speckle movement. The
interference pattern is granular for the real signature because of which the real values
are used for velocity estimation.

Most of the velocity vectors estimated using NCC do not flow along the orientation
of the vessel. Hence, there is a requirement to guide the estimation method to find
the displacement within the vessel’s orientation. The estimated vectors nicely align
along the vessel when the directional constraint is enforced on the matching process
using GOMP. As seen from the scatter plots in Figure 4.5, the variance of the velocity
estimates measured by the proposed method has been reduced as the direction of the
velocity estimates is concentrated along the orientation of the vessel.

The performance between the NCC and the GOMP methods is analyzed per frame
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using Mean Deviation (MD) and MSE. The performance of these methods is tested on
the three simulated versions consisting vessels with different orientations. The k-Wave
toolbox is used to create the simulation data-set for the fixed medium properties of
the scanning region. Since the medium properties are known, MD and MSE can be
calculated for the simulation data-set.

The MD per frame measured by GOMP is lower either in the lateral direction or the
axial direction depending on the direction fixed for the actual velocities. The MD per
frame captures the percentage of mean deviation of the measurements from the ground
truth with respect to the maximum measurement in the frame. The MD plots in Figures
4.9, 4.10 and 4.11 are shown with respect to the time of acquisition of the frames. In the
case of the vertical vessel simulation, the axial MD for GOMP is lower than the NCC
and in the slanted vessel simulation, the MD in the axial and lateral directions is higher
than the NCC. The MD results are influenced by the directional constraint, providing
lower values when the measurements are around the actual velocity and higher values
when the measurements are under-estimated.

The MSE for a given frame is the mean square of the error between the estimates
and the ground truth. The mean of all the estimates until the given frame is used to
compute the corresponding MSE for a given frame. The total MSE for the horizontal
and the vertical vessels which is computed for the GOMP estimates is lower than the
NCC. But, the MSE for the GOMP estimates is higher than NCC for the slanted vessel
as all the measurements of GOMP are under-estimated.

The real signature of the filtered, compounded frames occur in the form of high and
low sinusoidal waves that are alternately stacked. The resulting speckle pattern has
higher discontinuity in the axial direction than in the lateral direction. The MSE of
the proposed method is lower than NCC for the vertical vessel simulation and higher
for the slanted vessel simulation. In the horizontal and slanted vessel simulation, the
motion of the real speckle pattern between two frames is not well defined because the
movement of Red Blood Cells (RBC) is in a direction where the speckle pattern is
continuous. Hence, the shifts in the horizontal and slanted vessel simulation are not
tracked with the required accuracy.

In the in vivo experiments, the Doppler velocity estimates show a downward blood
flow motion in the cerebellum region of the mouse brain. The Doppler velocity esti-
mation has been proven to have a higher sensitivity in the axial direction than in the
lateral direction. The velocity vectors estimated by the proposed method show the mo-
tion of RBC in all the vessels. Some of the frame-wise estimates have high variance of
the estimated flow direction and the others have consistent flow directions throughout
the computation. The regions which have low variance in the estimated direction also
have high mean PCC values. With the computation of variance, regions with consistent
flow directions can be detected.

Moreover, the proposed method estimates are also compared with the Doppler esti-
mates. As the Doppler method only computes the flow in axial direction, the axial flow
of both the methods is compared. Most of the scanning region is in agreement with
the flow directions estimated by both the methods but there are some regions where
Doppler estimates have negative axial flow and the proposed estimates have positive
axial flow. Aliasing of Doppler estimates could provide false flow direction. Due to
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aliasing, it is observed that majority of the areas which have contradictory flow results
have low negative Doppler velocities but high positive GOMP velocity estimates.

Future Work

The velocity vectors can be regularised in both the temporal and spatial domains as
given in [1]. The temporal domain deals with the measurements at a given spatial
position for the entire ensemble range, while the spatial domain deals with all the
measurements in a particular slow-time stamp. The speckle tracking using GOMP
has created a mathematical framework on which different types of constraints can be
easily incorporated. In this thesis, a directional constraint is applied in the spatial
domain to regularize the velocity estimates within the vessel’s curvature. Even better
velocity estimates might be found after the application of other spatial and temporal
constraints.

In the proposed method, the final velocity estimates are provided per ensemble
length. The velocity estimates for all the frames are averaged to compute the final
velocity estimates. Instead of simple averaging, Kalman filtering can be adopted for
the frame-wise velocity estimation that are measured by the proposed method. The
state space model for Kalman filtering will depend on a constant flow model. The final
velocity estimates would be the values provided by the Kalman filter at the end of the
ensemble range. In this way, a minimum variance approach is adopted to enforce a
constant flow profile at every time stamp between the present and past measurements
in the ensemble range.

As discussed, the tracking of the real signature of the filtered, compounded frames
is not much effective for the displacements inclined more towards the lateral direction.
In the simulations, the actual displacement with respect to frame sampling frequency is
small. The change in discontinuity of the real speckle pattern with increasing velocities
could be studied to analyze the effectiveness of the proposed method.
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Conclusions 6
The frame rate for ultrasound has increased with the development of the Ultrafast
method. This has increased the focus on signal processing techniques to obtain reliable
velocity estimates of Red Blood Cells flowing in the brain vessels. The velocity estima-
tion of the blood flow in the brain is limited to the upward and downward directions
with the standard ultrafast ultrasound acquisition procedure. Prior information in the
form of vascular orientation is obtained by segmenting the Power Doppler Image. This
information is incorporated using the Guided Orthogonal Matching Pursuit (GOMP)
method for speckle tracking between frame pairs. When the GOMP method along with
the directional constraint is applied on the acquired frames, velocity vectors are found
within the vessel’s curvature with a lower variance compared to the state-of-the-art
Normalized Cross-Correlation (NCC) method [9].

A convergence analysis is performed to show that the Mean Square Error (MSE) of
the velocity in the axial and lateral directions converge to a lower value in the proposed
method compared to NCC. This is true for the horizontal and vertical vessels used for
simulations. The MSE is higher compared to the NCC method for the slanted vessel
simulation because the measurements are under-estimated and have low variance.

Although the new velocity estimator does not provide accurate magnitude estimates
of the blood flow, it is a promising tool to provide a reliable direction in the fine vascular
network of the brain.
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