

Delft University of Technology

Event-based Classification with Recurrent Spiking Neural Networks on Low-end Micro-
Controller Units

Boretti, Chiara; Prono, Luciano; Frenkel, Charlotte; Indiveri, Giacomo; Pareschi, Fabio; Mangia, Mauro;
Rovatti, Riccardo; Setti, Gianluca
DOI
10.1109/ISCAS46773.2023.10181998
Publication date
2023
Document Version
Final published version
Published in
ISCAS 2023 - 56th IEEE International Symposium on Circuits and Systems, Proceedings

Citation (APA)
Boretti, C., Prono, L., Frenkel, C., Indiveri, G., Pareschi, F., Mangia, M., Rovatti, R., & Setti, G. (2023).
Event-based Classification with Recurrent Spiking Neural Networks on Low-end Micro-Controller Units. In
ISCAS 2023 - 56th IEEE International Symposium on Circuits and Systems, Proceedings (Proceedings -
IEEE International Symposium on Circuits and Systems; Vol. 2023-May). IEEE.
https://doi.org/10.1109/ISCAS46773.2023.10181998
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ISCAS46773.2023.10181998
https://doi.org/10.1109/ISCAS46773.2023.10181998

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Event-based Classification with Recurrent Spiking
Neural Networks on Low-end Micro-Controller Units

Chiara Boretti‡, Luciano Prono‡, Charlotte Frenkel§, Giacomo Indiveri¶, Fabio Pareschi‡,†, Mauro Mangia∗,†,
Riccardo Rovatti∗,†, and Gianluca Setti∥,∗

‡DET, Politecnico di Torino, Italy - Email: {chiara.boretti, luciano.prono, fabio.pareschi}@polito.it
§Microelectronics Department, Delft University of Technology, The Netherlands - Email: c.frenkel@tudelft.nl

¶Institute of Neuroinformatics, University of Zurich and ETH Zurich, Switzerland - Email: giacomo@ini.uzh.ch
∗DEI, †ARCES, University of Bologna, Italy - Email: {mauro.mangia, riccardo.rovatti}@unibo.it

∥CEMSE, King Abdullah University of Science and Technology (KAUST), Saudi Arabia - Email: gianluca.setti@kaust.edu.sa

Abstract—Due to its intrinsic sparsity both in time and space,
event-based data is optimally suited for edge-computing appli-
cations that require low power and low latency. Time varying
signals encoded with this data representation are best processed
with Spiking Neural Networks (SNN). In particular, recurrent
SNNs (RSNNs) can solve temporal tasks using a relatively low
number of parameters, and therefore support their hardware
implementation in resource-constrained computing architectures.
These premises propel the need of exploring the properties of
these kinds of structures on low-power processing systems to
test their limits both in terms of computational accuracy and
resource consumption, without having to resort to full-custom im-
plementations. In this work, we implemented an RSNN model on
a low-end, resource-constrained ARM-Cortex-M4-based Micro
Controller Unit (MCU). We trained it on a down-sampled version
of the N-MNIST event-based dataset for digit recognition as an
example to assess its performance in the inference phase. With
an accuracy of 97.2%, the implementation has an average energy
consumption as low as 4.1 µJ and a worst-case computational
time of 150.4 µs per time-step with an operating frequency of
180 MHz, so the deployment of RSNNs on MCU devices is a
feasible option for small image vision real-time tasks.

I. INTRODUCTION

Deep Neural Networks (DNNs) are structures capable of
solving complex tasks with the use of trainable parameters
that can be optimized to fit on low-end devices for edge
computing tasks. Indeed, the use of DNNs on mobile Internet
of Things (IoT) devices is of great interest, with numerous
potential applications [1], [2]. Many works on DNNs applied
to edge computing, tiny machine learning (tinyML) and mobile
computing have been proposed, ranging from augmented re-
ality [3], natural language processing [4], computer vision [5]
to compressed sensing for biomedical signals [6].

In computer vision, event-based encoding of data is an
interesting approach to solving machine vision and object
detection tasks, when applied to edge computing [7]. Indeed,
this type of data representation is intrinsically sparse both in
space and time, thus allowing for both a large reduction of the

This study was carried out within the FAIR - Future Artificial Intelligence
Research and received funding from the European Union Next-GenerationEU
(PIANO NAZIONALE DI RIPRESA E RESILIENZA (PNRR) – MIS-
SIONE 4 COMPONENTE 2, INVESTIMENTO 1.3 – D.D. 1555 11/10/2022,
PE00000013). This manuscript reflects only the authors’ views and opinions,
neither the European Union nor the European Commission can be considered
responsible for them.

memory footprint necessary to store the information and the
minimization of the energy cost due to its acquisition. Event-
based signals can be produced for example by Dynamic Vision
Sensors (DVS), that are asynchronous cameras capable of
responding only to the temporal contrast changes in the visual
scene. The first prototype of a DVS sensor was developed in
2002 [8] and since then event-based versions of widely used
datasets and new collections of samples have been created [9]–
[15].

When working with event-based data, a promising approach
is to use Spiking Neural Networks (SNNs) [16]–[18]. These
networks leverage the possibility of representing data sparsely
both in time and space because each spiking neuron is a
dynamical system and thus possess a state variable, as it
integrates the inputs in its membrane potential variable. In
machine vision, SNNs processing event-based data have been
shown to solve many tasks reliably and efficiently, ranging
from classification [19], [20] or hand-gesture recognition [10],
[21], [22] to object recognition [23], [24] and optical flow
estimation [25].

Among different SNN models, Recurrent Spiking Neural
Networks (RSNNs) [26] are of great interest, as their recurrent
nature extends the simple SNN’s ability to process temporal
signals to time-scales that go beyond the time constants of
individual elements in the network [27]. In this work we
present an RSNN implemented on a low-end Micro Controller
Unit (MCU) that is highly resource-constrained both in terms
of memory footprint and power consumption, inspired by
recently proposed RSNN hardware-constrained designs [28].
By deploying an RSNN on a low-end MCU, we demonstrate
the suitability of these structures on low-cost, low-budget
commercial devices, which would allow for fast prototyping
and deployment times compared to more complex custom
hardware implementations.

In Section II, we describe the RSNN model we are using in
this implementation. In Section III, we present the N-MNIST
dataset on which we test the RSNN, we explain how the RSNN
is trained, and we report the network performance in terms of
accuracy. In Section IV-A we describe the MCU implementa-
tion and we show the results in terms of computational time,
energy consumption and memory footprint.

20
23

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
siu

m
 o

n
Ci

rc
ui

ts
 a

nd
 S

ys
te

m
s (

IS
CA

S)
 |

 9
78

-1
-6

65
4-

51
09

-3
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IS

CA
S4

67
73

.2
02

3.
10

18
19

98

Authorized licensed use limited to: TU Delft Library. Downloaded on August 21,2023 at 13:21:35 UTC from IEEE Xplore. Restrictions apply.

Input layer Recurrent layer Output layer
W rec

W in W out

M neuronsN neurons L neurons

Fig. 1. Scheme of the RSNN model employed in this work, composed of an
input layer (for feeding input spikes), a hidden recurrent layer composed of
LIF neurons and an output layer composed of leaky integrators.

II. RECURRENT SNN ARCHITECTURE

The RSNN that we are using for our implementation on
MCU makes use of Leaky Integrate and Fire (LIF) neurons,
following the time-discrete models presented in [26] and used
in the custom implementation proposed in [28].

A. Model description

The RSNN is composed of an input layer, a hidden recurrent
layer and an output layer, as illustrated in Fig. 1.

The input layer is represented by a series of external input
spikes that are fed to the interconnections leading to the
recurrent layer. These input spikes are encoded as a series
of vectors x1, . . . ,xT defined for any discrete time step
t ∈ {1, · · · , T}, with xt ∈ {0, 1}N where N is the number of
input neurons. The value 1 represents a spike at time t, while
0 indicates the absence of activity.

Conversely, the LIF neurons in the hidden recurrent layer
are entities retaining membrane potentials vt ∈ RM which
can generate spiking outputs zt ∈ {0, 1}M , where M is the
number of recurrent neurons. The potentials vt are updated at
each time step following the rule

vt+1
j = αvtj +

N∑
i=1

win
jix

t
i +

M∑
i=1,i̸=j

wrec
ji z

t
i − θztj

for j ∈ 1, . . . ,M (1)

where vtj is the value of the potential of the j-th neuron, α ∈
(0, 1) is a damping factor, win

ji is the value at row j and column
i of the input weights matrix W in, xt

i is the i-th value of input
spikes vector xt, wrec

ji is the value at row j and column i of the
recurrent weights matrix W rec, zti is the i-th value of output
spikes vector zt and θ is the firing threshold parameter.

Moreover, the spiking outputs generated by the hidden
recurrent neurons behave according to

ztj = H
(
vtj − θ

)
for j ∈ 1, . . . ,M (2)

where H (·) is the step Heaviside function defined as

H
(
vtj − θ

)
=

{
0 for vtj ≤ θ

1 for vtj > θ
(3)

θ − 1 0 θ θ + 1

0

γ

vtj

∂
H
/∂

v
t j

Fig. 2. Plot of the pseudo derivative function in (5).

The damping term α of (1) has the effect of decreasing
the membrane potential exponentially over time, such that in
absence of input spikes, it leaks to zero.

Then, the second and third terms on the right-hand-side
of (1) integrate the input spikes xt and the hidden recurrent
spikes zt, respectively. When a spike is present, the value
of the corresponding weight is added to the neuron potential.
While the input spikes are sent to the network from an external
source, the hidden recurrent spikes are generated from (2) and
then fed back to hidden neurons through recurrent connections,
excluding self-recurrence.

Finally, the Heaviside function in (2) simply describes the
firing mechanism of the neuron: when the neuron potential
grows bigger than the threshold value θ, a spike is produced
(i.e., ztj = 1) and the neuron potential is reset, thanks to the
presence of the last term on the right-hand-side of (1).

The output layer of the network comprises neurons modeled
as non-firing leaky integrators with dynamics determined by
the following equation:

yt+1
k = κytk +

L∑
i=0

wout
ji z

t
i for k ∈ 1, . . . , L (4)

where yt+1
k is the k-th output of the network, κ ∈ (0, 1) is a

damping factor and wout
ji is the value at row j and column i

of the output weights matrix W out. The output neuron is fed
by the output spikes of the hidden recurrent layer zt.

The damping factors α and κ define the leakage time
constants of the recurrent and output layer units, respectively
τrec and τout, as α = exp (−∆t/τrec) and κ = exp (−∆t/τout),
where ∆t is the time interval between two discrete time-steps,
i.e. the temporal resolution.

The RSNN is trained with the Back Propagation Through
Time (BPTT) algorithm, it is thus important that the gradients
are defined everywhere. As (2) introduces a discontinuity, a
pseudo derivative function is employed as suggested in [26],
defined as

∂H
∂vtj

≜ γmax
(
0, 1−

∣∣vtj − θ
∣∣) (5)

where γ is a factor controlling the strength of the pseudo
derivative, as illustrated in Fig. 2.

III. DATASET AND PERFORMANCE

We employ the RSNN model to solve an event-based clas-
sification task, in the domain of event-based image processing

Authorized licensed use limited to: TU Delft Library. Downloaded on August 21,2023 at 13:21:35 UTC from IEEE Xplore. Restrictions apply.

applications. Training and preliminary tests are performed off-
line, within a PyTorch-based framework.

A. N-MNIST event-based dataset for digit recognition

The N-MNIST dataset [29] is the neuromorphic event-based
version of the well-known MNIST dataset [30]. It is composed
of a total of 70 000 samples (55 000 for training, 5000 for
validation and 10 000 for testing). Each sample is labeled with
a number from 0 to 9 and is a collection of events with a
duration of about 350ms, a time resolution of about 1 µs and a
spatial resolution of 34×34 pixels. Each event is represented as
positive (+1) or negative (−1), depending on the direction of
variation of the associated pixel. The way events are collected
takes inspiration from the biological phenomenon known as
saccade, defined as a quick and simultaneous movement of
the eye between multiple phases of fixation [31]. In particular,
each digit image from the MNIST dataset is displayed on a
monitor and then recorded by a motor-driven DVS camera,
moving in three “saccadic” movements, along different direc-
tions in a triangular alignment.

For this demonstration, the resolution of the recordings is
down-sampled to 17× 17 with a remapping of all the events
in order to decrease the number of input neurons required in
the RSNN and consequentially to reduce the memory footprint
and computational effort on MCU. For the same reason, the
number of time-steps T is reduced to 300 by discarding any
event eventually exceeding 300ms and by down-sampling the
time resolution to ∆t = 1ms, i.e., the events contained in
each 1ms time bin are merged together. This value of time
resolution is in line with most of the SNN tasks, that typically
do not benefit from lower values of ∆t [21], [28], [32].

B. Training setup and preliminary performance

We train and test an RSNN with M = 100 recurrent neurons
and L = 10 output neurons, as the number of classes to be
recognized. The hyperparameters selected for the network are
θ = 0.6, τrec = 250ms, τout = 20ms and γ = 0.3.

To account for the input event polarity, a pair of input
neurons is associated to each pixel in the N-MNIST dataset:
one neuron for the positive events and the other for the
negative events associated with that position. Therefore, we set
the number of input neurons of the RSNN to N = 578, defined
as the number of pixels in the sample (17× 17) multiplied by
two to include both positive and negative events. An example
of input sample is illustrated in Fig. 3.

The RSNN is trained following a standard BPTT proce-
dure [33] with the Adam optimizer [34] and a cross-entropy
(CE) loss function between the output potentials yt and the
target yt

true label averaged for all the time-steps t ∈ {1, . . . , T}.
For validation/test, the selected class is considered as the one
corresponding to the output neuron with the highest average
output potential.

In order to minimize the spiking activity of the recurrent
neurons, a regularization contribute is added to the loss func-
tion computed as the L2 norm of the spike-trains generated by
the recurrent neurons (i.e., zt), averaged for all time steps. By
introducing this contribution, the number of spikes generated
while inferring the complete test set is reduced by about 90%.

0 8 16

0

8

16

Time surfaces (class 0)

0 8 16

0

8

16
0 100 200 300

0

578

Time-steps

In
pu

tn
eu

ro
ns

Spikes activity (class 0)

Fig. 3. An example of sample of class 0. On the left, the time surfaces
for positive and negative events, obtained by integrating all the events over
300ms. On the right, the spiking activity of the sample.

This introduces a significant increase of the sparsity of the
hidden layer activity without impeding classification accuracy.

Additionally, to use quantized parameters in the resulting
network, we employ quantization-aware training techniques.
Because of this, during training we perform fake quantiza-
tion [35], i.e., forward pass is performed using dynamically
quantized 8-bit weights.

With a batch size of 5 and a learning rate of 10−4, after
50 epochs the accuracy we achieve on the test set is 97.2 %,
which is near state-of-the-art performance on the N-MNIST
dataset with more complex structures [36]–[39].

IV. IMPLEMENTATION AND PERFORMANCE

A. Implementation on MCU

The RSNN model described in Section II-A is implemented
by software on an ARM-Cortex-M4-based MCU, namely the
STM32F767ZI. This device features an SRAM of 512 kB and
a maximum operating frequency of 216MHz. Spike updates
are applied column-first, i.e., for each spike the potential
update is applied sequentially to all neuron potentials. The
leakage is applied to all neurons potentials at each time-step. C
code1 is compiled with gcc and optimized by means of -Cfast
and -loop-unroll options. STM32 AXI interface is enabled
along with data and instruction caches.

Each input event sent to the MCU is encoded in 32 bits,
with 16 bits used for the input neuron address and 16 bits
that indicate the number of time steps from the previous spike
(that can be associated with any input neuron). Conversely,
recurrent spikes are generated internally at each time step and
are encoded as an array of 8-bit values indicating the recurrent
neuron address.

Internally, the weights are encoded with 8 bits (sign bit with
7 fractional bits) while the neuron potentials are encoded with
32 bits (sign bit, 16 integer bits and 15 fractional bits). Given
the bits alignment used for neuron potentials, no overflow
detection mechanism is required as the numerical range is far
greater than what can be reached in practice.

1GitHub repository at https://github.com/SSIGPRO/ucrsnn.

Authorized licensed use limited to: TU Delft Library. Downloaded on August 21,2023 at 13:21:35 UTC from IEEE Xplore. Restrictions apply.

0

20

40

60

80

100

120

140

∆
t c

om
p

[µ
s]

Sample for class 0

1 100 200 300
0

10
20
30
40

Time-step

Sp
ik

es
nu

m
be

r
Sample for class 4

100 200 300

Time-step

Sample for class 9

apply xt

apply zt (recurrent)

generate zt

apply zt (output)
total

100 200 300

Time-step

input spikes xt

recurrent spikes zt

Fig. 4. Computational time per time-step ∆tc for example inferred samples with fCLK = 144MHz, compared with the input and recurrent spiking activity.
The computational time is split in different contributions, and the contributions due to the application of the leakage are not shown as they are below 1 µs. The
greatest contributions are due to the input spikes whose number is high compared to the recurrent spikes. Their trend is coherent with the three movements
performed by the DVS camera while recording N-MNIST.

B. Performance

In order to assess the performance of the RSNN implemen-
tation on MCU, the full test set of 10 000 samples of 300 time-
steps each is inferred, resulting in the same accuracy measured
in Section III, and the computational time required by each
operation is measured with an on-chip counter.

Fig. 4 shows the computational time per time-step ∆tc
for different samples with an operating frequency fCLK =
144MHz, along with the spiking activity of the model.
Computational time is split among its different contributions,
i.e., application of leakages to recurrent and output neurons,
application of input spikes and recurrent spikes to the recurrent
neurons and to the output neurons, and recurrent spikes
generation. Most of the computational time is due to the
application of the spikes to the neuron potentials, which is of
course proportional to the number of spikes to be integrated.
On the other hand, other contributions are almost negligible.

Tab. I shows the average and worst-case power consumption
of the MCU, the computational time for a single time-step,
and the energy consumed by the device for the update of a
time-step. Power consumption is calculated with the values
declared in the datasheet with an internal supply voltage of
1.2V, STM32 AXI interface and cache enabled, all peripherals
disabled2. The average and worst-case computational times are
evaluated over the time-steps for the samples, while the energy
consumption is simply the product of power consumption and
time.

Worst-case computational times are about 1ms for the
lowest operational frequency tested, while it can reach values
as low as 150.4 µs for a higher fCLK of 180MHz, enabling the
use of this type of neural network models on low-cost, low-
resource devices with fast deployment times when compared
to custom hardware implementations.

2Power consumption is actually the sum of two contributions, the principal
one given by the internal power supply, the other one from the external power
supply of 1.7V that absorbs and average of 1mA and 2mA in the worst-
case.

TABLE I
POWER CONSUMPTION OF STM32F767ZI, WITH THE COMPUTATIONAL
TIME AND ENERGY CONSUMPTION FOR A SINGLE TIME-STEP UPDATE OF

THE RSNN

fCLK Ptyp ∆tc, avg Ec, avg

25MHz 13.1mW 292.5 µs 3.8 µJ
60MHz 26.8mW 121.5 µs 3.3 µJ
144MHz 58.7mW 50.1 µs 3.1 µJ
169MHz 83.6mW 43.5 µs 3.7 µJ
180MHz 99.5mW 40.6 µs 4.1 µJ

fCLK Pmax ∆tc, worst-case Ec, worst-case

25MHz 18.5mW 1082.4 µs 21.9 µJ
60MHz 34.1mW 444.7 µs 15.9 µJ
144MHz 70.1mW 207.0 µs 14.8 µJ
169MHz 98.1mW 161.3 µs 16.1 µJ
180MHz 116.5mW 150.4 µs 17.8 µJ

Finally, the memory footprint of the RSNN model on MCU
is mostly due to its parameters, which, in this work, use
68.8 kB of space.

V. CONCLUSION

We trained and tested an RSNN model to solve an event-
based machine vision task, using the N-MNIST dataset for
digit recognition. The implementation of the models on a low-
cost, low-power MCU device with strong resource constraints,
successfully validated the approach proposed. The benefits of
this approach include the use of standard commercial devices
and fast prototyping and deployment times. With an accuracy
of 97.2%, the worst-case computational time per time-step can
be as low as 150.4 µs with an average energy consumption per
time-step of 4.1 µJ at fCLK = 180MHz. This shows that it
is possible to employ software-based RSNNs for inference in
real-time image vision applications using resource constrained
hardware.

Authorized licensed use limited to: TU Delft Library. Downloaded on August 21,2023 at 13:21:35 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] M. Merenda, C. Porcaro, and D. Iero, “Edge Machine Learning for AI-
Enabled IoT Devices: A Review,” Sensors, vol. 20, no. 9, p. 2533, Jan.
2020. doi:10.3390/s20092533

[2] J. Chen and X. Ran, “Deep Learning With Edge Computing: A Review,”
Proceedings of the IEEE, vol. 107, no. 8, pp. 1655–1674, Aug. 2019.
doi:10.1109/JPROC.2019.2921977

[3] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M. Satyanarayanan,
“Towards wearable cognitive assistance,” in 12th annual international
conference on Mobile systems, applications, and services (MobiSys ’14),
Jun. 2014, pp. 68–81. doi:10.1145/2594368.2594383

[4] A. Kusupati, M. Singh, K. Bhatia, A. Kumar, P. Jain, and M. Varma,
“FastGRNN: A Fast, Accurate, Stable and Tiny Kilobyte Sized Gated
Recurrent Neural Network,” in 32nd International Conference on Neural
Information Processing Systems (NIPS’18), Dec. 2018, pp. 9031–9042.

[5] T. Zhang, A. Chowdhery, P. V. Bahl, K. Jamieson, and S. Baner-
jee, “The Design and Implementation of a Wireless Video Surveil-
lance System,” in 21st Annual International Conference on Mobile
Computing and Networking (MobiCom ’15), Sep. 2015, pp. 426–438.
doi:10.1145/2789168.2790123

[6] L. Prono, M. Mangia, A. Marchioni, F. Pareschi, R. Rovatti, and
G. Setti, “Deep Neural Oracle With Support Identification in the
Compressed Domain,” IEEE Journal on Emerging and Selected Topics
in Circuits and Systems, vol. 10, no. 4, pp. 458–468, Dec. 2020.
doi:10.1109/JETCAS.2020.3039731

[7] G. Gallego et al., “Event-Based Vision: A Survey,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 44, no. 1, pp. 154–
180, Jan. 2022. doi:10.1109/TPAMI.2020.3008413

[8] J. Kramer, “An on/off transient imager with event-driven, asyn-
chronous read-out,” in 2002 IEEE International Symposium on
Circuits and Systems (ISCAS), vol. 2, May 2002, pp. II–II.
doi:10.1109/ISCAS.2002.1010950

[9] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128 X 128 120db
30mw asynchronous vision sensor that responds to relative inten-
sity change,” in 2006 IEEE International Solid State Circuits Con-
ference - Digest of Technical Papers, Feb. 2006, pp. 2060–2069.
doi:10.1109/ISSCC.2006.1696265 ISSN: 2376-8606.

[10] A. Amir et al., “A Low Power, Fully Event-Based Gesture
Recognition System,” in 2017 IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), Jul. 2017, pp. 7388–7397.
doi:10.1109/CVPR.2017.781 ISSN: 1063-6919.

[11] Y. Park et al., “A Wireless Power and Data Transfer IC for Neural Pros-
theses Using a Single Inductive Link With Frequency-Splitting Charac-
teristic,” IEEE Transactions on Biomedical Circuits and Systems, vol. 15,
no. 6, pp. 1306–1319, Dec. 2021. doi:10.1109/TBCAS.2021.3135843

[12] H. Li, H. Liu, X. Ji, G. Li, and L. Shi, “CIFAR10-DVS: An Event-
Stream Dataset for Object Classification,” Frontiers in Neuroscience,
vol. 11, 2017. doi:10.3389/fnins.2017.00309

[13] C. Scheerlinck, H. Rebecq, T. Stoffregen, N. Barnes, R. Ma-
hony, and D. Scaramuzza, “CED: Color Event Camera Dataset,”
in 2019 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition Workshops (CVPRW), Jun. 2019, pp. 1684–1693.
doi:10.1109/CVPRW.2019.00215 ISSN: 2160-7516.

[14] M. Gehrig, W. Aarents, D. Gehrig, and D. Scaramuzza, “DSEC: A
Stereo Event Camera Dataset for Driving Scenarios,” IEEE Robotics
and Automation Letters, vol. 6, no. 3, pp. 4947–4954, Jul. 2021.
doi:10.1109/LRA.2021.3068942

[15] E. Perot, P. de Tournemire, D. Nitti, J. Masci, and A. Sironi, “Learning
to Detect Objects with a 1 Megapixel Event Camera,” in Advances
in Neural Information Processing Systems, vol. 33, 2020, pp. 16 639–
16 652.

[16] P. Dayan and L. F. Abbott, Theoretical Neuroscience: Computational
and Mathematical Modeling of Neural Systems. MIT Press, Aug. 2005.
ISBN 978-0-262-54185-5 Google-Books-ID: fLT4DwAAQBAJ.

[17] S. Ghosh-Dastidar and H. Adeli, “Spiking neural networks,” Interna-
tional Journal of Neural Systems, vol. 19, no. 04, pp. 295–308, Aug.
2009. doi:10.1142/S0129065709002002

[18] A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier, and
A. Maida, “Deep learning in spiking neural networks,” Neural Networks,
vol. 111, pp. 47–63, Mar. 2019. doi:10.1016/j.neunet.2018.12.002

[19] A. Samadzadeh, F. S. T. Far, A. Javadi, A. Nickabadi,
and M. H. Chehreghani, “Convolutional Spiking Neural
Networks for Spatio-Temporal Feature Extraction,” Jan. 2021.
doi:10.48550/arXiv.2003.12346

[20] B. Han and K. Roy, “Deep Spiking Neural Network: Energy Efficiency
Through Time Based Coding,” in Computer Vision – ECCV 2020, 2020,
pp. 388–404. doi:10.1007/978-3-030-58607-2 23

[21] A. M. George, D. Banerjee, S. Dey, A. Mukherjee, and P. Bal-
amurali, “A Reservoir-based Convolutional Spiking Neural Network
for Gesture Recognition from DVS Input,” in 2020 International
Joint Conference on Neural Networks (IJCNN), Jul. 2020, pp. 1–9.
doi:10.1109/IJCNN48605.2020.9206681 ISSN: 2161-4407.

[22] E. Ceolini, C. Frenkel, S. B. Shrestha, G. Taverni, L. Khacef, M. Pay-
vand, and E. Donati, “Hand-gesture recognition based on emg and event-
based camera sensor fusion: A benchmark in neuromorphic computing,”
Frontiers in Neuroscience, vol. 14, p. 637, 2020.

[23] Y. Cao, Y. Chen, and D. Khosla, “Spiking Deep Convolutional Neu-
ral Networks for Energy-Efficient Object Recognition,” International
Journal of Computer Vision, vol. 113, no. 1, pp. 54–66, May 2015.
doi:10.1007/s11263-014-0788-3

[24] S. Kim, S. Park, B. Na, and S. Yoon, “Spiking-YOLO: Spiking Neural
Network for Energy-Efficient Object Detection,” Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 34, no. 07, pp. 11 270–
11 277, Apr. 2020. doi:10.1609/aaai.v34i07.6787

[25] R. Benosman, S.-H. Ieng, C. Clercq, C. Bartolozzi,
and M. Srinivasan, “Asynchronous frameless event-based
optical flow,” Neural Networks, vol. 27, pp. 32–37, 2012.
doi:https://doi.org/10.1016/j.neunet.2011.11.001

[26] G. Bellec, F. Scherr, A. Subramoney, E. Hajek, D. Salaj, R. Legenstein,
and W. Maass, “A solution to the learning dilemma for recurrent
networks of spiking neurons,” Nature Communications, vol. 11, no. 1,
p. 3625, Jul. 2020. doi:10.1038/s41467-020-17236-y

[27] B. Yin, F. Corradi, and S. M. Bohté, “Accurate and efficient time-
domain classification with adaptive spiking recurrent neural networks,”
Nature Machine Intelligence, vol. 3, no. 10, pp. 905–913, Oct. 2021.
doi:10.1038/s42256-021-00397-w

[28] C. Frenkel and G. Indiveri, “ReckOn: A 28nm Sub-mm2 Task-Agnostic
Spiking Recurrent Neural Network Processor Enabling On-Chip Learn-
ing over Second-Long Timescales,” in 2022 IEEE International Solid-
State Circuits Conference (ISSCC), vol. 65, Feb. 2022, pp. 1–3.
doi:10.1109/ISSCC42614.2022.9731734 ISSN: 2376-8606.

[29] G. Orchard, A. Jayawant, G. K. Cohen, and N. Thakor,
“Converting Static Image Datasets to Spiking Neuromorphic
Datasets Using Saccades,” Frontiers in Neuroscience, vol. 9, 2015.
doi:10.3389/fnins.2015.00437

[30] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, Nov. 1998. doi:10.1109/5.726791

[31] K. R. Gegenfurtner, “The Interaction Between Vision and Eye Move-
ments,” Perception, vol. 45, no. 12, pp. 1333–1357, Dec. 2016.
doi:10.1177/0301006616657097

[32] Y. Xing, G. Di Caterina, and J. Soraghan, “A New Spiking Convolutional
Recurrent Neural Network (SCRNN) With Applications to Event-Based
Hand Gesture Recognition,” Frontiers in Neuroscience, vol. 14, 2020.
doi:10.3389/fnins.2020.590164

[33] P. Werbos, “Backpropagation through time: what it does and how to do
it,” Proceedings of the IEEE, vol. 78, no. 10, pp. 1550–1560, Oct. 1990.
doi:10.1109/5.58337

[34] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
Jan. 2017. doi:10.48550/arXiv.1412.6980

[35] O. Zafrir, G. Boudoukh, P. Izsak, and M. Wasserblat, “Q8BERT: Quan-
tized 8Bit BERT,” in 2019 Fifth Workshop on Energy Efficient Machine
Learning and Cognitive Computing - NeurIPS Edition (EMC2-NIPS),
Dec. 2019, pp. 36–39. doi:10.1109/EMC2-NIPS53020.2019.00016

[36] R. Vaila, J. Chiasson, and V. Saxena, “Feature Extraction using Spiking
Convolutional Neural Networks,” in Proceedings of the International
Conference on Neuromorphic Systems (ICONS ’19), New York, NY,
USA, 2019, pp. 1–8. doi:10.1145/3354265.3354279

[37] X. Cheng, Y. Hao, J. Xu, and B. Xu, “LISNN: Improving Spiking Neural
Networks with Lateral Interactions for Robust Object Recognition,” in
Twenty-Ninth International Joint Conference on Artificial Intelligence,
vol. 2, Jul. 2020, pp. 1519–1525. doi:10.24963/ijcai.2020/211 ISSN:
1045-0823.

[38] S. B. Shrestha and G. Orchard, “SLAYER: spike layer error reassign-
ment in time,” in Proceedings of the 32nd International Conference
on Neural Information Processing Systems (NIPS’18), Red Hook, NY,
USA, 2018, pp. 1419–1428.

[39] W. Zhang and P. Li, “Temporal Spike Sequence Learning via Back-
propagation for Deep Spiking Neural Networks,” in Advances in Neural
Information Processing Systems, vol. 33, 2020, pp. 12 022–12 033.

Authorized licensed use limited to: TU Delft Library. Downloaded on August 21,2023 at 13:21:35 UTC from IEEE Xplore. Restrictions apply.

		2023-07-19T08:42:22-0400
	Preflight Ticket Signature

