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PPDIST, global 0.1° daily and 
3-hourly precipitation probability 
distribution climatologies for  
1979–2018
Hylke E. Beck   1 ✉, Seth Westra2, Jackson Tan3,4, Florian Pappenberger   5, 
George J. Huffman6, Tim R. McVicar   7,8, Gaby J. Gründemann9, Noemi Vergopolan1, 
Hayley J. Fowler10, Elizabeth Lewis10, Koen Verbist11 & Eric F. Wood   1

We introduce the Precipitation Probability DISTribution (PPDIST) dataset, a collection of global high-
resolution (0.1°) observation-based climatologies (1979–2018) of the occurrence and peak intensity 
of precipitation (P) at daily and 3-hourly time-scales. The climatologies were produced using neural 
networks trained with daily P observations from 93,138 gauges and hourly P observations (resampled 
to 3-hourly) from 11,881 gauges worldwide. Mean validation coefficient of determination (R2) values 
ranged from 0.76 to 0.80 for the daily P occurrence indices, and from 0.44 to 0.84 for the daily peak 
P intensity indices. The neural networks performed significantly better than current state-of-the-art 
reanalysis (ERA5) and satellite (IMERG) products for all P indices. Using a 0.1 mm 3 h−1 threshold, P was 
estimated to occur 12.2%, 7.4%, and 14.3% of the time, on average, over the global, land, and ocean 
domains, respectively. The highest P intensities were found over parts of Central America, India, and 
Southeast Asia, along the western equatorial coast of Africa, and in the intertropical convergence zone. 
The PPDIST dataset is available via www.gloh2o.org/ppdist.

Background & Summary
Knowledge about the climatological probability distribution of precipitation (P) is essential for a wide range 
of scientific, engineering, and operational applications1–3. In the scientific realm, P distributional information 
is used, for example, to evaluate P outputs from climate models (e.g., Dai4 and Bosilovich et al.5) and to reduce 
systematic biases in gridded P datasets (e.g., Zhu and Luo6, Xie et al.7, and Karbalaee et al.8). In the engineering 
sector, information on the upper tail of the P distribution is crucial for planning, design, and management of 
infrastructure (e.g., Lumbroso et al.9 and Yan et al.10). In an operational context, reliable information on the P 
distribution can be used to improve flood and drought forecasting systems (e.g., Cloke and Pappenberger11, Hirpa 
et al.12, and Siegmund et al.13).

Past studies deriving (quasi-)global climatologies of P distributional characteristics typically relied on just one 
of the three main sources of P data (satellites, reanalyses, or gauges), each with strengths and weaknesses:

	 1.	 Ricko et al.14 used the TMPA satellite P product15 while Trenberth and Zhang16 and Li et al.17 used the 
CMORPH satellite P product7,18 (both available from 2000 onwards) to estimate climatological P char-
acteristics. Satellite P estimates have several advantages, including a high spatial (~0.1°) and temporal 
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(≤3-hourly) resolution, and near-global coverage (typically <60°N/S)19,20. However, satellite P retrieval is 
confounded by complex terrain21–23 and surface snow and ice22,24, and there are major challenges associated 
with the detection of snowfall25,26.

	 2.	 Courty et al.27 used P estimates between 1979 and 2018 from the ERA5 reanalysis28 to derive probability 
distribution parameters of annual P maxima for the entire globe. Reanalyses assimilate vast amounts of 
in situ and satellite observations into numerical weather prediction models29 to produce a temporally and 
spatially consistent continuous record of the state of the atmosphere, ocean, and land surface. However, re-
analyses are affected by deficiencies in model structure and parameterization, uncertainties in observation 
error statistics, and historical changes in observing systems5,30,31.

	 3.	 Sun et al.32 calculated P occurrence estimates directly from gauge observations, while Dietzsch et al.33 
used the gauge-based interpolated GPCC dataset34 to estimate P characteristics for the entire land surface. 
Gauges provide accurate estimates of P at point scales and therefore have been widely used to evaluate 
satellite- and reanalysis-based P products (e.g., Hirpa et al.35, Zambrano-Bigiarini et al.36, and Beck et 
al.37). However, only 16% of the global land surface (excluding Antarctica) has a gauge located at <25-km 
distance38,39, gauge placement is topographically biased towards low elevations40,41, and there has been 
a significant decline in the number of active gauges over recent decades42. Additionally, interpolation of 
gauge observations generally leads to systematic overestimation of low intensity events and underestima-
tion of high intensity events43,44.

Here, we introduce the Precipitation Probability DISTribution (PPDIST) dataset, a collection of 
high-resolution (0.1°) fully global climatologies (1979–2018) of eight P occurrence indices (using different 
thresholds to discriminate between P and no-P) and nine peak P intensity indices (using different return peri-
ods) at daily and 3-hourly time-scales (Figs. 1b and 2b). The climatologies were produced using neural network 
ensembles trained to estimate the P indices using quality-controlled P observations from an unprecedented data-
base consisting of 93,138 daily and 11,881 hourly gauges worldwide (Fig. 1a and Supplement Fig. S2a). Ten global 
P-, climate-, and topography-related predictors derived from all three main P data sources — satellites, reanaly-
ses, and gauges — were used as input to the neural networks to enhance the accuracy of the estimates (Table 1). 
Ten-fold cross-validation was used to obtain an ensemble of neural networks, evaluate the generalizability of the 
approach, and quantify the uncertainty. The performance was assessed using the coefficient of determination (R2), 
the mean absolute error (MAE), and the bias (B; Fig. 3). The neural networks yielded mean validation R2 values 
(calculated using the validation subsets of observations) of 0.78 and 0.86 for the daily and 3-hourly P occurrence 
indices, respectively, and 0.72 and 0.83 for the daily and 3-hourly peak P intensity indices, respectively (Fig. 3 and 
Supplement Fig. S4). The neural networks outperformed current state-of-the-art reanalysis (ERA528) and satellite 
(IMERG45,46) products for all P indices and performance metrics (Fig. 3). ERA5 consistently overestimated the 
P occurrence (Fig. 1c), while IMERG tended to overestimate the peak P intensity (Fig. 2d). The uncertainty in 
the neural network-based estimates of the P indices was quantified globally and was generally higher in sparsely 
gauged, mountainous, and tropical regions (Fig. 4). Overall, these results suggest that the neural networks provide 
a useful high-resolution, global-scale picture of the P probability distribution. It should be noted that although the 
climatologies are provided as gridded maps, the estimates represent the point scale rather than the grid-box scale, 
due to the use of gauge observations for the training43,47.

Since the eight PPDIST P occurrence climatologies were similar, we only present and discuss results for the 
>0.5 mm d−1 daily P occurrence climatology (Fig. 1b), although the others can be viewed by accessing the data-
set. The P occurrence was particularly high (>0.5 mm d−1 on >50% of days) in windward coastal areas of Chile, 
Colombia, the British Isles, and Norway, along the Pacific coast of North America, and over parts of Southeast 
Asia (Fig. 1b)16,48–51. Conversely, the P occurrence was particularly low (>0.5 mm d−1 on <1% of days) in the 
Atacama and Sahara deserts. At a daily time-scale using a 0.5 mm d−1 threshold, P was found to occur 34.4%, 
24.9%, and 38.9% of days, on average, over the global, land, and ocean domains, respectively (Fig. 1b). At a 
3-hourly time-scale using a 0.1 mm 3 h−1 threshold, P was found to occur 12.2%, 7.4%, and 14.3% of the time, on 
average, over the global, land, and ocean domains, respectively (Supplement Fig. S2b). These estimates are in line 
with previous estimates derived from the satellite-based CMORPH product16 and from the satellite-, reanalysis-, 
and gauge-based MSWEP product52. The higher average P occurrence over ocean than over land reflects the 
unlimited water supply53. The PPDIST > 0.5 mm d−1 daily P occurrence climatology (Fig. 1b) exhibits reasonable 
visual agreement with similar climatologies from previous studies despite the use of different data sources, spati-
otemporal resolutions, and thresholds to discriminate between P and no-P (Sun et al.32, their Fig. 1; Ellis et al.54, 
their Fig. 3; Trenberth and Zhang16, their Fig. 4; and Beck et al.52, their Fig. 8).

Since the nine PPDIST peak P intensity climatologies were similar, we only present and discuss results for 
the 15-year return-period daily P climatology (Fig. 2b). Peak P intensities were markedly higher at low lati-
tudes (<30°N/S; Fig. 2b), due to the higher air temperatures which lead to more intense P in accordance with 
the Clausius-Clapeyron relationship55–57. The highest 15-year return-period P intensities (>200 mm d−1) over 
land were found in parts of Central America, India, and Southeast Asia, along the western equatorial coast of 
Africa, and over oceans in the intertropical convergence zone (Fig. 2b)17,48,58,59. Conversely, the lowest 15-year 
return-period P intensities (<50 mm d−1) were found in the desert regions of the world, at high latitudes where 
frontal P dominates, and over southeastern parts of the Atlantic and Pacific oceans where semi-permanent 
anticyclones prevail54,60. The PPDIST 15-year return-period daily P climatology (Fig. 2b) exhibits reasonable 
visual agreement with a maximum one-day P climatology derived by Dietzsch et al.33 (their Fig. 5d) from the 
gauge-based GPCC Full Data Daily dataset34, as well as with a 3.4-year return-period 3-hourly P climatology 
derived by Beck et al.52 (their Fig. 7) from the satellite-, reanalysis-, and gauge-based MSWEP dataset52.
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Methods
Gauge observations and quality control.  Our initial database of daily P gauge observations com-
prised 149,095 gauges worldwide and was compiled from (i) the Global Historical Climatology Network-Daily 
(GHCN-D) dataset (ftp.ncdc.noaa.gov/pub/data/ghcn/daily/)61 (102,954 gauges), (ii) the Global Summary Of 
the Day (GSOD) dataset (https://data.noaa.gov; 24,730 gauges), (iii) the Latin American Climate Assessment & 
Dataset (LACA&D) dataset (http://lacad.ciifen.org/; 231 gauges), (iv) the Chile Climate Data Library (www.cli-
matedatalibrary.cl; 716 gauges), and (v) national datasets for Brazil (11,678 gauges; www.snirh.gov.br/hidroweb/
apresentacao), Mexico (5398 gauges), Peru (255 gauges), and Iran (3133 gauges). Our initial database of hourly P 
gauge observations (resampled to 3-hourly) comprised 14,350 gauges from the Global Sub-Daily Rainfall (GSDR) 
dataset62 produced as part of the INTElligent use of climate models for adaptatioN to non-Stationary hydrological 
Extremes (INTENSE) project63.

Gauge data can have considerable measurement errors and therefore quality control is important64–66. To elim-
inate long series of erroneous zeros frequently present in daily GSOD records67,68, we calculated a central moving 
mean with a one-year window (assigning a value only if at least half a year of values were present), and discarded 
daily and 3-hourly P observations with a coincident moving mean of zero. To eliminate long series of P without 
zeros, indicative of biased reporting practices or quality control issues, we calculated a central moving minimum 
with a one-year window (assigning a value only if at least half a year of values were present), and discarded daily 

Fig. 1  The >0.5 mm d−1 daily P occurrence according to (a) the gauge observations, (b) the PPDIST dataset, (c) 
the ERA5 reanalysis, and (d) the IMERG satellite product. Supplement Fig. S2 presents an equivalent figure for 
the >0.1 mm 3 h−1 3-hourly P occurrence. The other PPDIST P occurrence indices can be viewed by accessing 
the dataset.

https://doi.org/10.1038/s41597-020-00631-x
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and 3-hourly P observations with a coincident moving minimum greater than zero. We only used observations 
between January 1st, 1979, and December 31st, 2018, and discarded gauges with (i) < 3 years of remaining data, 
(ii) the largest daily P > 2000 mm d−1 or 3-hourly P > 500 mm 3 h−1 (approximately the maximum recorded 24-h 
and 3-h P, respectively69), (iii) the highest P value < 2 mm d−1 or <1 mm 3 h−1, or (iv) the lowest P value > 1 mm 
d−1 or >0.5 mm 3 h−1. The resulting database comprised 93,138 gauges with daily data (Fig. 1a) and 11,881 gauges 
with 3-hourly data (Supplement Fig. S2a). See Supplement Fig. S1 for record lengths of the daily and 3-hourly 
gauge data.

Precipitation occurrence and peak intensity indices.  We considered eight P occurrence indices 
(related to the lower tail of the P distribution) and nine peak P intensity indices (related to the upper tail of the P 
distribution), all calculated for both the daily and 3-hourly time-scale. The eight P occurrence indices measure 
the percentage of time with P using thresholds of 0.1, 0.15, 0.2, 0.25, 0.35, 0.5, 0.75, and 1 mm d−1 or mm 3 h−1 to 
discriminate between P and no-P. The P occurrence was calculated using the percentileofscore function 
of the scipy Python module70. We considered multiple thresholds because (i) different researchers and meteoro-
logical agencies adopt different definitions of “wet day” and “rain day”, (ii) the most suitable threshold depends on 
the application, and (iii) the estimation accuracy depends on the threshold16,71.

Fig. 2  The 15-year return-period daily P intensity according to (a) the gauge observations, (b) the PPDIST 
dataset, (c) the ERA5 reanalysis, and (d) the IMERG satellite product. IMERG has data gaps at high latitudes 
(>60°N/S) precluding the calculation of the 15-year return-period daily P intensity. Supplement Fig. S3 presents 
an equivalent figure for the 15-year return-period 3-hourly P intensity. The other PPDIST P intensity indices 
can be viewed by accessing the dataset.

https://doi.org/10.1038/s41597-020-00631-x
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The nine peak P intensity indices measure the magnitude of daily or 3-hourly P events for return periods of 
3 days, 7 days, 1 month, 3 months, 1 year, 3 years, 5 years, 10 years, and 15 years. The magnitudes were calcu-
lated using the percentile function of the numpy Python module72,73. Percentiles were calculated according to 
p = 100 − 100/(365.25 · R) for the daily time-scale and p = 100 − 100/(365.25 · 8 · R) for the 3-hourly time-scale, 
where p is the percentile (%) and R is the return period (years). Gauges with <3 years of data were discarded per 
the preceding subsection. However, we only calculated the three highest return periods if the record lengths were 
longer than 5, 10, and 15 years, respectively. We did not consider return periods >15 years because (i) the number 
of observations would significantly decrease, and (ii) the IMERG dataset, which was used as predictor, spans only 
20 years.

Neural network ensembles.  We used feed-forward artificial neural networks based on the multilayer per-
ceptron74 to produce global maps of the P indices. Neural networks are models composed of interconnected 
neurons able to model complex non-linear relationships between inputs and outputs. Neural networks have 
been successfully applied in numerous studies to estimate different aspects of P (e.g., Coulibaly et al.75, Kim and 
Pachepsky76, and Nastos et al.77). We used a neural network with one hidden layer composed of 10 nodes with 
the logistic sigmoid activation function. The stochastic gradient descent method was used to train the weights. 
To make the training more efficient, the inputs (i.e., the predictors; Table 1) were standardized by subtracting the 
means and dividing by the standard deviations of the global predictor maps. Additionally, the outputs (i.e., the P 
indices) were square-root transformed to reduce the skewness of the distributions, and standardized using means 
and standard deviations of the observed P indices.

To obtain an ensemble of neural networks, evaluate the generalizability of the approach, and quantify the 
uncertainty, we trained neural networks for each P index using ten-fold cross-validation. For each cross-validation 
iteration, the observations were partitioned into subsets of 90% for training and 10% for validation. The parti-
tioning was random, although each observation was used only once for validation. Since the validation subsets 
are completely independent and were not used to train the neural networks, they allow quantification of the 
performance at ungauged locations.

We subsequently applied the trained neural networks using global 0.1° maps of the predictors, yielding 
an ensemble of ten global maps for each P index (one for each cross-validation iteration). The values were 
destandardized by multiplying by the standard deviation and adding the mean of observed P indices, and 
back-transformed by squaring the values, after which we used the mean of the ensemble to provide a ‘best esti-
mate’ and the standard deviation to provide an indication of the uncertainty. As a last step, we sorted the eight 

Predictor Description (units Resolution Data source

Used for 
daily P 
indices

Used for 
3-hourly P 
indices

CAPE Convective available potential energy 
(J kg−1) 0.28°

ERA5-HRES reanalysis (mean over 
1979–2018)28 (https://cds.climate.
copernicus.eu)

✓ ✓

CldCov Cloud cover frequency (%) 1 km
Wilson et al.114 (www.earthenv.org/
cloud); gaps over ocean filled using 
linear interpolation

✓ ✓

Elev
Square-root transformed surface 
elevation smoothed using 10-km filter 
(—)

90 m
MERIT115 (http://hydro.iis.u-tokyo.
ac.jp/~yamadai/MERIT_DEM/) over 
land; 0 over ocean

✓ ✓

MAP1a Square-root-transformed mean annual 
precipitation (—) from WorldClim V2

1 km (land); 
0.28° (ocean)

WorldClim V284 (www.worldclim.org) 
over land; ERA528 (https://cds.climate.
copernicus.eu) over ocean

✓ ✓

MAP2a
Difference in square-root-transformed 
mean annual precipitation (—) between 
WorldClim V2 and CHPclim V2

0.05° (land); 
0.28° (ocean)

CHPclim V183 (www.chc.ucsb.edu/data/
chpclim) and WorldClim V284 (www.
worldclim.org) over land; 0 over ocean

✓ ✓

MAT Mean annual air temperature (°C) 1 km (land); 
0.28° (ocean) See MAP1 ✓ ✓

Snow Frac
Long-term fraction of total P falling as 
snow (—) calculated according to Legates 
and Bogart116

1 km (land); 
0.28° (ocean) See MAP1 ✓ ✓

Lat Absolute geographical latitude (°) 0.1° — ✓ ✓

ERA5b
ERA5-HRES (1979–2018) reanalysis 
P occurrence (% of time) and peak P 
intensity (mm d-1 or mm 3 h-1) indices

0.28° Hersbach et al.28 (https://cds.climate.
copernicus.eu) ✓ ✓

IMERGb

IMERG Late run (IMERGHHL) V06 
(2000–2018) satellite-based P occurrence 
(% of time) and peak P intensity (mm d−1 
or mm 3 h−1) indices

0.1° Huffman et al.45,46 (https://pmm.nasa.
gov/data-access/downloads/gpm) ✓ ✓

PPDISTdly
c Daily PPDIST estimates of the P 

occurrence and peak P intensity indices 0.1° The PPDIST dataset derived in this study 
(www.gloh2o.org/ppdist) ✗ ✓

Table 1.  Predictors used in the neural networks to estimate the P occurrence and peak P intensity indices. aTwo 
mean annual P climatologies were used to account the uncertainty in mean annual P estimates. bThe ERA5 and 
IMERG predictors represent estimates of the P index subject of the estimation. cDaily PPDIST estimates of the P 
index subject of the estimation were used as predictor for the 3-hourly estimates.
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mean P occurrence estimates for each 0.1° grid cell to ensure that they continuously decrease as a function of the 
thresholds, and sorted the nine mean peak P intensity estimates to ensure that they continuously increase as a 
function of the percentiles. The uncertainty estimates were re-ordered according to the mean estimates.

Predictors.  Table 1 presents the predictors used as input to the neural networks. The predictors were upscaled 
from their native resolution to 0.1° using average resampling. To highlight broad-scale topographic features, the 
elevation predictor (Elev) was smoothed using a Gaussian kernel with a 10-km radius following earlier stud-
ies78,79. The Elev predictor was square-root transformed to increase the importance of topographic features at low 
elevation80. The mean annual air temperature predictor (MAT) was included because higher air temperatures are 
generally associated with higher P intensities56,81.

Mean annual P predictors (MAP1 and MAP2) were included due to the high correlations found between 
mean and extreme values of P14,82. To account for the uncertainty in mean annual P estimates, we considered 

Fig. 3  Performance of the PPDIST dataset, the ERA5 reanalysis, and the IMERG satellite product in estimating 
the daily P occurrence and peak P intensity indices. For the PPDIST dataset, we calculated the mean of the ten 
validation scores (one for each cross-validation iteration). The training scores were not shown as they were 
nearly identical to the validation scores. All scores were calculated using square-root-transformed observed and 
estimated values. Supplement Fig. S4 presents an equivalent figure for the 3-hourly P indices.

Fig. 4  PPDIST uncertainty estimates for (a) the >0.5 mm d−1 daily P occurrence and (b) the 15-year return-
period daily P intensity. The uncertainty represents the spread of the ten cross-validation iterations. Supplement 
Fig. S5 presents an equivalent figure for the >0.1 mm 3 h−1 P occurrence and the 15-year return-period 3-hourly 
P intensity.

https://doi.org/10.1038/s41597-020-00631-x
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two state-of-the-art climatologies: CHPclim V183 and WorldClim V284. Since the use of correlated predictors 
can increase training time85, we did not directly use both climatologies as separate predictors. Instead, we used 
square-root transformed mean annual P from WorldClim as predictor MAP1, and the difference in square-root 
transformed mean annual P between CHPclim and WorldClim as predictor MAP2. The square-root transforma-
tion was used to increase the importance of smaller values.

The ERA5 and IMERG predictors represent maps of the P index subject of the estimation derived from ERA5 
and IMERG P data, respectively. The ERA5 and IMERG predictors were added because they provide valuable 
independent information about the P distribution with (near-)global coverage. All predictors cover the entire 
land surface, with the exception of IMERG, which was often not available at latitudes higher than approximately 
60°N/S46. This issue was addressed by replacing missing IMERG estimates of the P indices with equivalent esti-
mates from ERA5, resulting in a duplication of ERA5 at high latitudes. P distributional characteristics associated 
with different durations often exhibit similar spatial patterns27,86. To allow the 3-hourly estimates to take advan-
tage of the much better availability of daily P observations (Figs. 1a and 2a), we used the daily climatology of the 
P index subject of the estimation as additional predictor for producing the 3-hourly climatology.

Performance metrics.  We assessed the performance of the PPDIST dataset, the ERA5 reanalysis, and the 
IMERG satellite product in estimating the P indices using the gauge observations as reference. Prior to the assess-
ment, the P indices of the products and the reference were square-root transformed to reduce the skewness of the 
distributions. For the PPDIST dataset, we calculated the average of the ten scores calculated using the ten inde-
pendent validation subsets of observations (one for each cross-validation iteration). For ERA5 and IMERG, we 
simply calculated the scores using all available observations. The following three performance metrics were used:

1. The coefficient of determination (R2), which measures the proportion of variance accounted for87, ranges 
from 0 to 1, and has its optimum at 1.

2. The mean absolute error (MAE), calculated as:

=
∑ −
=
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where Xi
e and Xi

o represent estimated and observed values of the transformed P indices, respectively, i = 1, …, n 
denotes the observations, and n is the sample size. The MAE ranges from 0 to ∞ and has its optimum at 0. We 
used the MAE, instead of the more common root mean square error (RMSE), because the errors are unlikely to 
follow a normal distribution88,89.

3. The bias (B), defined as:
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B ranges from −1 to 1 and has its optimum at 0. Other widely used bias formulations, which contain the sum of 
only the observations in the denominator rather than the sum of both the observations and estimates90,91, were 
not used, because they yield unwieldy high B values when the observations tend to zero.

Data Records
The PPDIST dataset is available for download at figshare92 and www.gloh2o.org/ppdist. The data are provided as a 
zip file containing four netCDF-4 files (www.unidata.ucar.edu/software/netcdf) with gridded observations, mean 
estimates, and uncertainty estimates of (i) the daily P occurrence (daily_occurrence_point_scale.nc),  
(ii) the daily peak P intensity (daily_intensity_point_scale.nc), (iii) the 3-hourly P occurrence 
(3hourly_occurrence_point_scale.nc), and (iv) the 3-hourly peak P intensity (3hourly_inten-
sity_point_scale.nc). The grids have a 0.1° spatial resolution and are referenced to the World Geodetic 
Reference System 1984 (WGS 84) ellipsoid. The observational grids were produced by averaging the observations 
if multiple observations were present in a single grid cell. The netCDF-4 files can be viewed, edited, and analyzed 
using most Geographic Information Systems (GIS) software packages, including ArcGIS, QGIS, and GRASS.

Technical Validation
Figure 3 presents the performance of the PPDIST dataset, the ERA5 reanalysis, and the IMERG satellite product 
in estimating the daily P indices (Supplement Fig. S4 presents the performance in estimating the 3-hourly P 
indices). The PPDIST scores represent averages calculated from the ten independent validation subsets of obser-
vations (one for each cross-validation iteration). The PPDIST R2 values ranged from 0.76 to 0.80 (mean 0.78) for 
the daily P occurrence indices, 0.85 to 0.88 (mean 0.86) for the 3-hourly P occurrence indices, 0.44 to 0.84 (mean 
0.72) for the daily peak P intensity indices, and 0.72 to 0.88 (mean 0.83) for the 3-hourly peak P intensity indices 
(Fig. 3 and Supplement Fig. S4). The 3-hourly R2 values were thus higher than the daily R2 values, likely because 
the 3-hourly gauge observations tend to be of higher quality62. The markedly lower R2 for the 3-day return-period 
daily P intensity reflects the fact that the majority (58%) of the observations were 0 mm d−1. For the ≥3-year 
return-period daily and 3-hourly P indices, the lower performance reflects the uncertainty associated with esti-
mating the magnitude of heavy P events93–95. The PPDIST scores were superior to the ERA5 and IMERG scores 
for every P index and performance metric by a substantial margin. The PPDIST B scores were close to 0 for all 
P indices, indicating that the estimates do not exhibit systematic biases, apart from those already present in the 
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gauge data due to wind-induced under-catch64,96 and the underreporting of light P events65. Overall, these results 
suggest that the PPDIST dataset provides a reliable global-scale picture of the P probability distribution.

The ERA5 and IMERG products yielded mean R2 values of 0.59 and 0.58 for the daily P occurrence indices, 
0.69 and 0.49 for the 3-hourly P occurrence indices, 0.65 and 0.56 for the daily P intensity indices, and 0.79 and 
0.57 for the 3-hourly P intensity indices, respectively (Fig. 3 and Supplement Fig. S4). The global patterns of P 
occurrence and peak P intensity were thus generally better estimated by ERA5 than by IMERG. However, ERA5 
consistently overestimated the P occurrence and the lowest return periods, in line with evaluations of other cli-
mate models30,37,97. Additionally, ERA5 generally showed lower values for the highest return periods (Fig. 3), 
which is at least partly due to the spatial scale mismatch between point-scale observations and grid-box aver-
ages43,47,98,99. Conversely, ERA5 strongly overestimated the P intensity over several grid cells in eastern Africa in 
particular (Fig. 2c), likely due to the presence of so-called “rain bombs” caused by numerical artifacts100.

The overly high P occurrence of IMERG in the tropics (Fig. 1d) may be at least partly attributable to the inclu-
sion of relatively noisy P estimates from the SAPHIR sensor on board the tropical-orbiting Megha-Tropiques sat-
ellite46. Similar to the TMPA 3B42 and CMORPH satellite products, IMERG overestimated the P occurrence over 
several large rivers (notably the Amazon, the Lena, and the Ob), likely due to misinterpretation of the emissivity 
of small inland water bodies as P by the passive microwave P retrieval algorithms101. The too low P occurrence at 
high latitudes reflects the challenges associated with the retrieval of snowfall26,102 and light P103,104. Furthermore, 
IMERG tended to underestimate the P intensity over regions of complex topography (e.g., over Japan and the 
west coast of India; Fig. 2d), which is a known limitation of the product23,105. The too high P intensity in the south 
central US may stem from the way P estimates from the various passive microwave sensors are intercalibrated to 
the radar-based CORRA product in the IMERG algorithm46.

Usage Notes
The PPDIST dataset will be useful for numerous purposes, such as the evaluation of P from climate models (e.g., 
Dai4 and Bosilovich et al5.), the distributional correction of gridded P datasets (e.g., Zhu and Luo6, Xie et al.7, and 
Karbalaee et al.8), the design of infrastructure in poorly gauged regions (e.g., Lumbroso et al.9), and in hydrologi-
cal modelling where P intensity is required (e.g., Donohue et al.106 and Liu et al.107). However, some caveats should 
be kept in mind:

	 1.	 The uncertainty estimates included in the PPDIST dataset provide an indication of the reliability of the 
climatologies. The uncertainty is generally higher in sparsely gauged, mountainous, and tropical regions 
(Fig. 4). The uncertainty estimates may, however, be on the low end, because while we accounted for uncer-
tainty in the mean annual P predictor, we did not account for uncertainty in the other predictors.

	 2.	 The P occurrence estimates using low thresholds to discriminate between P and no-P (≤0.25 mm d−1 or 
mm 3 h−1) should be interpreted with caution due to the detection limits of gauges (~0.25 mm for the US 
National Weather Service [NWS] 8” standard gauge108) and satellite sensors (~0.8 mm h−1 for the TRMM 
microwave imager [TMI]109 and possibly higher for other sensors with coarser footprints) and the underre-
porting of light P events65.

	 3.	 P observations from unshielded gauges (e.g., the US NWS 8” standard gauge) are subject to wind-induced 
gauge under-catch and therefore underestimate rainfall by 5–15% and snowfall by 20–80%64,96. This un-
derestimation is reflected in the PPDIST estimates. The Precipitation Bias CORrection (PBCOR) dataset110 
(www.gloh2o.org/pbcor) provides a means to ameliorate this bias to some degree.

	 4.	 The PPDIST climatologies were derived from gauge observations and therefore represent the point scale. 
Compared to point-scale estimates, grid-box averages tend to exhibit more frequent P of lower intensi-
ty16,43,47,99. Point-scale P occurrence estimates can be transformed to grid-box averages using, for example, 
the equations of Osborn and Hulme111, whereas the peak P intensity estimates can be transformed to grid-
box averages using, for example, the areal reduction factors collated by Pietersen et al.112.

	 5.	 As mentioned before, ERA5 strongly overestimates the P intensity over several grid cells in eastern Africa 
in particular (Fig. 2c). Since ERA5 was used as predictor, these artifacts are also present, albeit less pro-
nounced, in the PPDIST P intensity estimates (Fig. 2b).

	 6.	 Some of the PPDIST climatologies (e.g., the 15-year return-period daily P climatology; Fig. 2b) exhibit a 
longitudinal discontinuity at 60°N/S, reflecting the spatial extent of the IMERG data (Table 1). Addition-
ally, some of the climatologies exhibit discontinuities at coastlines (e.g., along the west coast of Patagonia), 
due to the use of different data sources for land and ocean for the MAP1, MAP2, MAT, and SnowFrac 
predictors.

Code availability
The neural networks used to produce the PPDIST dataset were implemented using the MLPRegressor class 
of the scikit-learn Python module113. The P occurrence for different thresholds was calculated using the 
percentileofscore function of the scipy Python module70, whereas the P magnitudes for different return 
periods were calculated using the percentile function of the numpy Python module72,73. The other codes are 
available upon request from the first author. The predictor, IMERG, and ERA5 data are available via the URLs 
listed in Table 1. Most of the gauge observations are available via the URLs provided in the “Gauge observations 
and quality control” subsection. Part of the GSDR database and some of the national databases are only available 
upon request.
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