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A B S T R A C T

Background: Endowing intelligent systems with semantic data commonly requires designing and instantiating
ontologies with domain-specific knowledge. Especially in the early phases, those activities are typically
performed manually by human experts possibly leveraging on their own experience. The resulting process is
therefore time-consuming, error-prone, and often biased by the personal background of the ontology designer.
Objective: To mitigate that issue, we propose a novel domain-independent approach to automatically
instantiate ontologies with domain-specific knowledge, by leveraging on large language models (LLMs) as
oracles.
Methods: Starting from (i) an initial schema composed by inter-related classes and properties and (ii) a set
of query templates, our method queries the LLM multiple times, and generates instances for both classes and
properties from its replies. Thus, the ontology is automatically filled with domain-specific knowledge, compliant
to the initial schema. As a result, the ontology is quickly and automatically enriched with manifold instances,
which experts may consider to keep, adjust, discard, or complement according to their own needs and expertise.
Contribution: We formalise our method in general way and instantiate it over various LLMs, as well as on a
concrete case study. We report experiments rooted in the nutritional domain where an ontology of food meals
and their ingredients is automatically instantiated from scratch, starting from a categorisation of meals and
their relationships. There, we analyse the quality of the generated ontologies and compare ontologies attained
by exploiting different LLMs. Experimentally, our approach achieves a quality metric that is up to five times
higher than the state-of-the-art, while reducing erroneous entities and relations by up to ten times. Finally, we
provide a SWOT analysis of the proposed method.
1. Introduction

Nowadays, the demand for intelligent systems capable of under-
standing, reasoning, and interacting with complex information is be-
coming paramount. However, the possibility of truly intelligent systems
hinges upon the incorporation of machine-interpretable knowledge rep-
resentations that can capture humans’ domain-specific knowledge from
diverse domains.

The rapid proliferation of data and data representation formats,
coupled with the need for intelligent systems to comprehend and con-
textualise ambiguous, vague, and often incomplete information, brings
about the question ‘‘how can we precisely represent domain-specific
information in a machine-understandable manner?’’, whose answer is
rooted in the notion of ontology [1].

∗ Corresponding author.
E-mail addresses: giovanni.ciatto@unibo.it (G. Ciatto), A.Agiollo-1@tudelft.nl (A. Agiollo), matteo.magnini@unibo.it (M. Magnini), andrea.omicini@unibo.it

(A. Omicini).

Regardless of the particular technological reification of choice, on-
tologies are formal, extensional representations of knowledge following
the principles of description logics. There, concepts and relationships
among concepts are formally defined and expressed in a machine-
readable format, facilitating computational systems to reason about
the world in a manner akin to human cognition. In other words,
ontologies provide a means to convey human knowledge in a machine-
understandable way.

Unlike sub-symbolic approaches that rely on distributed or loosely
organised data [2], ontologies provide a structured framework that
defines concepts, relationships, and properties within a specific domain.
Such a structured knowledge representation is a key enabling factor
in bridging the semantic gap, pushing AI systems beyond superficial
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Knowledge-Based Systems 310 (2025) 112940 
pattern recognition and possibly grasp the underlying meaning of the
data.

Hence, from the human perspective, ontologies provide a shared vo-
cabulary and an unambiguous understanding of domain-specific knowl-
edge. This comes at the cost of a meticulous and time-consuming
process of ontology creation, which should be performed in such a way
to guarantee some degree of adherence among the ontology and the
real-world domain it represents.

Currently, ontologies are populated either manually, by domain
xperts or communities, or through semi-automatic extraction from
ata [3]. On the one hand, manual ontology population is time- and

effort-consuming, and possibly affected by humans’ errors and biases.
However, if the population process is long and inclusive enough, it may
easily yield higher-quality (in terms of adherence to reality) results on
the long run. On the other hand, data-driven approaches offer speed
and scalability but might yield lower-quality ontologies. In this case,
low quality may be due to biases in the data or to the characteristic
of the extraction procedure (e.g. data may be under-representing some
aspects of the domain, or the procedure may trade off completeness for
speed).

Arguably, the ideal population procedure would involve both
uman- and data-driven approaches: the latter should provide ‘‘mass’’
o the ontology, while the former should refine and revise its details.
long this line, this paper introduces KGFiller: a novel approach that
ims at amalgamating the strengths of both human- and data-driven

ontology population methods.
Leveraging the observation that large language models (LLM) are

trained on various data from the entire web, we hypothesise that these
odels encapsulate a substantial amount of domain-specific knowl-

dge. Based on this premise, we propose an automated procedure,
GFiller, to extract domain-specific knowledge from LLM and use it for
opulating ontologies. Starting from (i) an initial schema composed by
nter-related classes and properties, and (ii) a set of query templates
ur method queries the LLM multiple times, and it generates instances
or both classes, relationships, and properties from its replies. Further
ueries are performed to refine the ontology, and to balance the in-
tances in the class hierarchy. In this way, the ontology is automatically
illed with domain-specific knowledge from the LLM, while remaining
ompliant to the initial schema. As result, the ontology is quickly and
utomatically enriched with manifold instances, which experts may
onsider to keep, adjust, discard, or complement according to their own
eeds and expertise.

While data-driven, our method comes with several peculiarities
w.r.t. other state-of-the-art approaches. First, it is not tailored upon
any specific dataset, but rather it uses LLM as oracles to generate
data. Second, it supports not only the population of the ontology, but
ts refinement as well. In fact, it is incremental, in the sense that it

can be applied to already-instantiated ontologies, hence enriching or
populating them even more. Finally, it is general-purpose, in the sense
that it can be applied to virtually any domain, and to different LLM.

To validate our approach, we provide a Python implementation
f KGFiller, and we let it populate a custom OWL ontology of ours

and we evaluate the quality of the resulting ontology. The evaluation
involves a thorough inspection of the populated instances, where we
manually and carefully assess whether LLM-generated individuals are
meaningful and correctly placed within the ontology structure. We
repeat the experiment on different LLMs, and we compare the results.

Broadly speaking, our method contributes to the ongoing discourse
n ontology population methods, presenting a promising hybrid ap-
roach that harnesses the power of LLMs to enhance the efficiency and
ccuracy of the ontology creation process. Along this line, to deepen the

discussion about the strengths, weaknesses, opportunities, and threats
f our method, we dedicate an entire section to a SWOT analysis of our
pproach.

Accordingly, the remainder of this paper is organised as follows.
ection 2 provides background on ontologies, LLMs, and related work.
2 
Section 3 presents the KGFiller method. Section 4 introduces a case
tudy where KGFiller is validated, and results from different LLM
amilies are compared. After Section 5 reports a SWOT analysis of our

method, Section 6 concludes the paper.

2. Background

In this section, we recall basic theoretical and practical notions
bout ontologies, and we summarise the state of the art in ontology
opulation. Then, we provide an overview on large language models.

2.1. Ontologies, description logics, and semantic web

An ontology is ‘‘a formal explicit specification of a shared con-
ceptualisation of a domain of interest’’ [1]. It describes the entities
involved in a specific domain, and their properties, as well as the
relationships among them. Inside an ontology, information is organised
and represented in such a way that it can be interpreted by both
humans and machines.

In this paper, we adopt the syntax and semantics of the well-known
 description logics [4]. In , an ontology is a set of axioms
imed at specifying:

classes (a.k.a. concepts) are set of entities of the same sort. We denote
classes either by their mnemonic names, in capital italics (e.g.:
𝐴𝑛𝑖𝑚𝑎𝑙) or by expressions composing simpler classes via alge-
braic operations such as union (⊔), intersection (⊓), or negation
(¬).

instances (a.k.a. individuals) are constants representing (identifiers
of) relevant entities. We denote instances by mnemonic names
in lowercase monospaced font, e.g.: 𝚝𝚘𝚖. Entities may be part
of one or more classes: we use operator ∶ to denote the ‘‘is a’’
(a.k.a., ‘‘instance of’’) relation, e.g., ‘‘𝚝𝚘𝚖 ∶ 𝐶 𝑎𝑡’’ ≡ ‘‘Tom is a
cat’’.

properties (a.k.a. roles) are binary relations among pairs of instances.
We denote properties by mnemonic names in lowercase sans-
serif font, e.g. 𝖾𝖺𝗍𝗌. As binary relations, properties require spec-
ifying which pair of concepts they are linking together. For
example, we write 𝖾𝖺𝗍𝗌 ⊆ 𝐴𝑛𝑖𝑚𝑎𝑙 × 𝐸 𝑑 𝑖𝑏𝑙 𝑒 meaning that one
animal may, in general, eat something edible. In that case, we
say that 𝐴𝑛𝑖𝑚𝑎𝑙 is the domain of 𝖾𝖺𝗍𝗌, and 𝐸 𝑑 𝑖𝑏𝑙 𝑒 is its range.
For any two actual instances in the relation, we use the prefix
functional notation to denote that the relationship holds among
those two instances, e.g. 𝖾𝖺𝗍𝗌(𝚝𝚘𝚖, 𝚓𝚎𝚛𝚛𝚢).

Both concepts and roles may be subject to the subsumption (a.k.a.
subclass) relation (⊑), which essentially corresponds to set inclusion.
So, for instance, 𝐶 𝑎𝑡 ⊑ 𝐴𝑛𝑖𝑚𝑎𝑙 states that all cats are also animals,
whereas 𝗉𝗋𝖾𝖽𝖺𝗍𝗈𝗋𝖮𝖿 ⊑ 𝖾𝖺𝗍𝗌 means that, for any couple of animals, if one
eats another, then the former is a predator for the latter.

Two special concepts are introduced in the  logic, namely ⊤
and ⊥— respectively, the set of all instances and the set with no
instances. These are used to denote the most general and the most
specific concepts, respectively. Thanks to subsumption, concepts (and
properties) can be organised hierarchically, forming a taxonomy —i.e. a
graph where nodes are concepts and arcs are subsumption relations.

Summarising, any  theory would consist of (i) terminological
axioms (a.k.a. TBox), aimed at defining concepts and properties, as well
subsumption or equivalence relations among them, and (ii) assertion
axioms (a.k.a. ABox), aimed at assigning instances to either classes or
properties. When it comes to practice, and a new ontology is being
defined from scratch, the TBox is usually defined first, in the modelling
phase, and the ABox is defined next, in the population phase. Both
phases could be iterated multiple times until the ontology is deemed

complete and satisfactory, but the key point is: there is a modelling
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Knowledge-Based Systems 310 (2025) 112940 
phase, where concepts and properties are defined, and a population
hase, where instances are assigned to them.

Technologically speaking, ontologies are most often expressed by
means of Semantic Web [5] languages, such as the Web Ontology
anguage1 (OWL) or the Resource Description Framework2 (RDF).

These languages come along with concrete syntaxes for representing
ontologies, as well as with software tools facilitating their manip-
ulation, visualisation, and processing. Among these, we rely upon
Protégé [6] for the manual editing and inspection of ontologies, and

wlready23 [7] for automating ontology manipulation by means of the
Python language.

2.2. Related works on ontology population

The problem of filling ontologies with instances is well-known in
the Semantic Web community [8]. It consists of expanding an ontology
with further assertions (i.e., ABox axioms), compliant with the concepts
and properties therein defined (i.e., TBox axioms). Such problem is
commonly referred to in the literature as ‘‘ontology population’’ —or
‘‘learning’’, when the authors want to stress that the ontology is being
populated via some data-driven (semi-)automatic procedure [3]. Some
authors have also used the expression ‘‘ontology learning’’ to refer to
he process of (semi-)automatically inferring the whole ontology – there
ncluding TBox axioms too –, hence why we stick to the ‘‘ontology
opulation’’ nomenclature.

The need of a (semi-)automatic procedure to populate ontologies
s motivated by the fact that manual population activities are time-
onsuming and error-prone, and therefore inherently costly [9].

Several methods for structured data extraction from text have been
proposed in the literature to serve the purpose of semi-automatic
ontology population. Broadly speaking, these methods can be classified
into two main categories: linguistics-based and machine-learning (ML)
approaches [10].

Linguistics-based approaches [11–13] are early techniques, includ-
ng, but not limited to: analysis of the syntactic structure of sentences,

pattern-based extraction, part-of-speech tagging, dictionaries, etc. Be-
cause these approaches are not fully automatic, they still need lots of
human effort (e.g., corpora selection, supervision, revision, parameter
fine-tuning, etc.). Moreover, these methods are often tightly coupled
the domain they have been designed for, (e.g., different corpora might
lead to different statistical information for the same terms, therefore
different thresholds may be required).

ML approaches may either rely on statistic-based shallow ML, or
eep learning. Statistic-based approaches attempt to convert free text
nto numerical data by relying on classical NLP techniques (e.g. term
requency-inverse document frequency, TF-IDF) which is later used to
eed shallow data-mining algorithms (e.g. decision trees). The main lim-
tation of these methods is that they may struggle to capture contextual
nformation from the text. The interested reader may find examples of
ethods from this category in the following works [14–20].

Recent trends in ontology population involve the application of deep
learning techniques [21–23]. Differently than shallow ML approaches,
which rely on hand-crafted, statistical representations of text, deep
learning approaches attempt to learn such representations automati-
ally, from the data. In this way, contextual information in the text
s more likely to be captured.

Overall, all the approaches mentioned so far require a large corpus
of textual documents to be available, from which concepts, instances,
and properties are extracted. This is a major limitation, because it re-
uires the ontology designer to either manually collect the documents,
r to rely on third-party document sources. In both cases, the corpus

1 https://www.w3.org/OWL/
2 https://www.w3.org/2001/sw/wiki/RDF
3 https://github.com/pwin/owlready2
3 
of documents may be biased, incomplete, non-representative of the
domain, or simply lacking.

The reliance on large amounts of data also implies that state-
of-the-art population methods are very domain-sensitive, and poorly
ncremental. Here, domain-sensitivity refers to the availability of docu-
ents for the domain of interest: if the domain is too narrow, it may be
ifficult to find enough relevant documents to populate the ontology;
f the domain is too broad, it may be difficult to avoid the inclusion
f irrelevant information in the ontology. Poor incrementality, instead,
efers to the fact that, once the ontology is populated from a given
orpus of documents, it may be difficult to add further instances to the
ntology, without having to re-populate it from scratch.

2.3. Large language models

Large-language models are deep NN with enormous number of
weights — from BERT [24] with 340 millions weights to GPT-3 [25]
with 175 billions weights –, which are specialised on NLP tasks, and,
n particular, text generation.

In this subsection, we provide a brief overview of LLM, referencing
elevant literature on the topic and outlining the most relevant aspects

that we exploit in our work.

The role of pretraining. One key aspect of modern LLM is that they are
pre-trained on very large corpora of textual data, to learn general-purpose
language models [26]. Language models are sub-symbolic probabilistic
representations of natural language, capturing underlying meaning of
words in texts.

Before LLM were introduced, language models were trained on
small domain-specific datasets, resulting in neural networks which were
nly able to operate in that domain. Changing the domain implied re-

training the model from scratch, on a possibly different dataset. This is
ot the case for LLM, which are trained to learn a reusable language

model, which is in principle-domain agnostic.
From an engineering perspective, pre-training is highly benefi-

cial, as it implies a paradigm shift [26]. The data-provisioning, pre-
processing, and training pipeline is factorised, and performed once and
for all domains, while fine-tuning upon need.

Learning from the web. LLMs are essentially very big knowledge bases
[27], storing the text they have been trained upon, and supporting
efficient information retrieval, via free-text. The training text most
ommonly consists of a fairly wide portion of the publicly available
eb.
For instance, the early BERT model [24, sec. 3.1] was trained on

he well-known BooksCorpus dataset (cf. [28, sec. 3]) and on dump of
the English Wikipedia of the time.

Similarly, models from the GPT family [25,29] were trained on
ocuments scraped from the public Internet, using Reddit as the entry
oint [30, sec. 2.1].

Models following the RoBERTa [31] approach were trained using
i) the same datasets as BERT, (ii) a sample of the Common Crawl4

News dataset, (iii) the OpenWebTextCorpus [32], and (iv) the Stories
ataset [33].

The LLAMA model family [34,35] relies on a composition of
datasets, including the Colossal Clean Crawled Corpus (C4) [36] En-
glish Wikipedia, and many more.

Finally, according to their Web site,5 MistralAI’s Mixtral-of-Experts
model is ‘‘pre-trained on data extracted from the open Web’’.

4 https://commoncrawl.org
5 https://mistral.ai/news/mixtral-of-experts

https://www.w3.org/OWL/
https://www.w3.org/2001/sw/wiki/RDF
https://github.com/pwin/owlready2
https://commoncrawl.org
https://mistral.ai/news/mixtral-of-experts


G. Ciatto et al.

t
t

i

a
t
c
F

t
c
m
b
t
e

i
i

a
r
f

‘

t

r

m
w

g

r

a

t
o

f
o
a
C
t

p
s
o

–

i

Knowledge-Based Systems 310 (2025) 112940 
Oracles for data generation. Our hypothesis is that Web-wise pre-training
lets LLM accumulate substantial amounts of domain-specific knowl-
edge, on manifold domains — virtually, all the ones described on the
Web. Such knowledge may then be extracted by querying the LLM with
adequate prompts, aimed at letting the LLM generate relevant text for
the domain at hand. In the perspective of the user, this implies that
LLM may be exploited as oracles for information retrieval tasks.

Hallucinations. It is worth mentioning that, at the current state of
echnology, LLMs are not perfect oracles, and they may generate text
hat is not coherent with the context of the conversation, or simply

factually wrong. Such phenomenon is known as hallucination [37], and
t is a major issue to take into account when using LLM as oracles —as

it implies that the LLM cannot be trusted blindly.

Temperature. Arguably, hallucinations may be critical if information
retrieval is performed by inexperienced users, but they may be tolerable
if the goal is data generation — as some degree of error may be
acceptable. In any case, some degree of control may be desirable to
tolerate the issue.

To mitigate the hallucination issue, LLM technologies come with
 parameter called temperature, which regulates the randomness of
he response. In the intention of designers, this should allow users to
ontrol the ‘‘creativity’’ of the LLM, and hence to mitigate hallucination.
or instance, in GPT, the temperature parameter is a real value between

0 and 1, regulating the percentage of randomness in the response.6

The role of prompts. Other mitigation techniques may be applied to
he hallucination issue, such as prompt engineering. In fact, while of
ourse writing clear and unambiguous prompts may help the LLM in
atching users’ expectations, it has been observed that the prompt may

e tweaked in finer ways. For instance, the authors of [38] observed
hat explicitly telling the LLM to put itself in the shoes of a domain
xpert may lead to more accurate answers.

Emergent capabilities. In the future, we expect LLM performance to
mprove, and hallucinations to become more and more controllable —
f not negligible.

Recent research suggests that LLM may be capable of emergent
capabilities —i.e. they learn to do tasks that they have not been trained
for. According to Wei et al. [39], emergent capabilities are tied to the
amount of parameters in the LLM.

Despite some authors hypothesise that emergent capabilities may
just be the result of non-linear evaluation metrics [40], and other
uthors [41] observed performance degradation in unusual tasks, most
esearchers and practitioners are currently optimistic about future per-
ormance improvements of LLM.

Pricing and rating plans. Using LLM implies having access to consid-
erable computational resources. Operating LLM – even if in inference-
only mode – is currently unfeasible on commodity hardware, and it
requires the use of specialised hardware, such as GPUs or TPUs.

For this reason, most LLM technologies nowadays are available
‘as-a-Service’’, via Web API. This situation is conceptualised in Fig. 1.

Two notable examples of LLM technologies available as-a-Service
are OpenAI Platform’s API7 – which provides remote access to GPT-*

6 How does temperature work? Let us recall that a language model is
essentially a probabilistic representation of which words are likely to appear
next in the sentence, given words that are currently in the sentence. When
generating a sentence, the LLM will proceed by sampling the next word from
the probability distribution of the words that are likely to appear next. Setting
temperature to 0 implies that the LLM will always choose the most likely word
o appear next – hence making text generation completely deterministic –,

while setting temperature to 1 implies that the LLM will choose the next word
andomly, according to the probability distribution.

7 https://platform.openai.com/
4 
Fig. 1. Conceptualisation of LLM services.

models –, and Hugging Face8 —that is, a Web community where LLM
odels can be published, and possibly queried via a unified Web API.
hich make it easy to automate LLM queries.

One key limitation implied by LLM as Web services open to the
eneral audience is guaranteeing fair access to the service —as well

as providers covering their operational costs. For these reasons, most
providers will require users to pay for the service, or be subject to some
rate limitations when using the service.

For instance, OpenAI Platform comes with a pricing model9 which
depends on (i) the model being queried, (ii) the amount of input tokens
in the query, and (iii) the amount of output tokens generated by the
LLM. That pricing model brings about an implicit incentive on the user
side, towards minimising the amount of tokens in the query, and in the
esponse, as well. Similarly, OpenAI Platform imposes rate constraints10

which depend on (i) the model being queried, (ii) on the sort of client
querying it (paying or free), (iii) on the amount of tokens per request,
nd (iv) requests per time unit from the same client. Such rate-limiting

model forces the user to artificially slow down any client application
querying the LLM in automatic ways.

Hugging Face comes with similar pricing11 and rate-limiting mod-
els,12 which are however more flexible, as they include a free – yet very
slow and limited – option.

2.4. Related works on LLMs and knowledge graphs

In the literature, there are many works where LLMs are applied to
(semi-)automatic knowledge graph (KG) manipulation [42–44], in ways
which are apparently similar to our work. In this section, we summarise
he most relevant works in this area, discussing how they differ from
urs.

Similarly to ontologies, KGs represent knowledge in a structured
way, by means of nodes and edges. Nodes (resp. edges) represent
entities (resp. relations). They are made of triplets (a.k.a. facts) of the
orm (𝑠, 𝑝, 𝑜), where 𝑠 is the subject, 𝑝 is the predicate, and 𝑜 is the
bject. However, differently from ontologies [45], KGs do not impose
ny further constraint on the structure of the knowledge they represent.
onversely, ontologies use a well-defined set of axioms, which make
hem amenable to automated reasoning.

In practice, KGs are more flexible than ontologies, as they can be
opulated with triples that do not necessarily respect any pre-defined
chema. Vice versa, populating an ontology means that, at the end
f the process, the final ontology is still compliant with the original

schema. In other words, KGs can be considered as one possible means
 among many – to represent ontologies.

Works from the literature applying LLMs to KGs can be classified
nto two main categories, namely: LLM-augmented KG completion and

construction.

8 https://huggingface.co/
9 https://openai.com/pricing

10 https://platform.openai.com/docs/guides/rate-limits
11 https://huggingface.co/pricing
12 https://huggingface.co/docs/api-inference/faq#rate-limits

https://platform.openai.com/
https://huggingface.co/
https://openai.com/pricing
https://platform.openai.com/docs/guides/rate-limits
https://huggingface.co/pricing
https://huggingface.co/docs/api-inference/faq#rate-limits
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Knowledge-Based Systems 310 (2025) 112940 
LLM-augmented KG completion. KG completion is the task of predicting
missing facts. Here, LLMs may either play the role of encoders or
enerators.

When LLMs act as encoders [46–48], their goal is to encode textual
information to ease the work of another model, aimed at predicting

issing facts. When LLMs act as generators [49–52] they extract the
missing facts directly. All such contributions differ from our work,
as they assume that information about the KG is somehow textually
encoded into the LLM’s prompt, hence the LLM is a mere tool for
extraction rather than the source from which to extract. Technically
speaking, this implies that these methods require some input text from
which to extract the missing facts, while our work does not.

Most notably, some methods – namely, [50,51] – require the LLM to
ndergo ad-hoc training on a corpus of text data, which is yet another

requirement our work does not have. Unlike those works, we do not
equire an additional pre-training phase for the LLM.

LLM-augmented KG construction. KG construction is the task of building
a KG from scratch. Here, LLM may assist in the process of entity
discovery, end-to-end KG construction, or KG distillation.

Entity discovery aims at mining KG entities from textual data. Some
works [53] use models to first classify entities in text data, and then link
them to form a KG. Again, this approach is different from ours, as we
do not rely on external text data. Other methods [54] train LLMs on a
orpus of text data and use it to later retrieve entities. These differ from
ur approach as we do not require any additional pre-training phase for
he LLM.

End-to-end KG construction methods use LLMs to generate KGs in
n end-to-end fashion. Methods of this kind [55–57], despite working
ifferently, still require ad-hoc textual data as the input for the LLM.
herefore, they differ from our work for the same reason as the above.

Finally, there are a few works – namely, Comet [58] and Har-
vest [59] – that perform KG distillation from LLMs, meaning that they
use LLMs as oracles to generate KGs, similarly to our work.

In Comet [58], an LLM is trained to generate missing objects (𝑜)
in the triples of the form (𝑠, 𝑝, 𝑜). The distillation procedure involves
querying an LLM of such a sort. While this task is similar to what we
do in our method, there are a few notable differences. First, Comet is
not tailored on ontologies, meaning that it does not take into account
the nature of 𝑝 and 𝑠 in distilling 𝑜, which may lead to inconsistencies
in the generated KG —a situation which is impossible by Construction
in our method. Second, [58] implies training an LLM in a particular

ay, – which is the main focus of that paper – whereas our method re-
quires no particular sort of training for the LLM, aside general-purpose
pre-training.

Another similar method is Harvest [59], which relies on pre-trained
LMs to distill KGs. The method generates novel triples of the form
𝑠, 𝗉, 𝑜), for given relations 𝗉, starting from prompts that exemplify those
elations, to be submitted to LLM oracles. Peculiar to this method is the

fact that prompt engineering is LLM-mediated too: for each relation 𝗉,
users just need to provide a natural language description and a few
examples of the relation, and further examples are generated by the
LLM. These examples are then used as prompts to query the LLM for
pairs of entities (𝑠, 𝑜) which are related by 𝗉. Similarly to Comet and
differently from our method, Harvest is not tailored on ontologies, so
it may lead to inconsistent KGs too. However, Harvest, like our method,
does not require any additional training phase for the LLM, and can be
pplied to general-purpose LLMs. Because of this similarity, we provide
 technical comparison between Harvest and our method in Section 4.6.

3. Filling ontologies with KGFiller

In this section, we present KGFiller, a framework for semi-automatic
ntology population exploiting LLM as oracles. We do our best to
eep the description of KGFiller abstract, general and concise, yet

we acknowledge that, to make the framework effective in practice,
5 
it requires engineering several technical details, which we discuss in
Appendix A.2.

At the abstract level, the core functioning of KGFiller is very simple.
Stemming from a partially instantiated ontology including at least
class and property definitions, a set of query templates, and a trained
LLM oracle, KGFiller generates questions from the templates, with
the purpose of querying the oracle to populate the ontology from its
answers.

An overview of the KGFiller framework is depicted in Fig. 2, lever-
ging on a simplified graphical representation of a run of the population

algorithm. While the rest of this section provides a detailed description
of the framework, the figure is intended as a compact roadmap to guide
the reader through the various stages of the algorithm.

Input ontology. KGFiller assumes the ontology to be populated is al-
ready partially initialised. The ontology must contain class and property
definitions, and classes must be organised hierarchically, into a directed
acyclic graph (DAG). Classes may, or may not, have instances. In other

ords, the ontology may be partially populated with instances.
Classes must be named after the concepts they represent. Class

names must be meaningful, short, and unambiguous to avoid problems
in later stages of the algorithm (e.g., generation of queries for the LLM
racle). A similar argument holds for the property names.

Under such hypotheses, KGFiller will generate individuals for all the
lasses in the ontology, and it will associate individuals by means of the
roperties in the ontology. In doing so, it will guarantee that generated
ndividuals are represented by meaningful names, and they are placed
n the most specific class available in the ontology.

It is worth highlighting that our ‘‘partial initialisation’’ assumption
erves the use case where ontology designers have already defined the
oncepts they want to represent in the ontology and the relationships
mong them, but they lack the instances to populate the ontology. Con-
ersely, the ‘‘partial population’’ assumption serves the use case where
esigners simply want to add ‘‘more’’ instances to the ontology. The
wo use cases could be combined: designers may define the skeleton
f the ontology first (i.e., the concepts and the relationships) and they
o several rounds of population via KGFiller, possibly interleaved with
anual interventions to refine the ontology. In this scenario, from the

econd round on, KGFiller would be applied to a partially instantiated
ntology, hence it must be designed to support this case.

Query templates. KGFiller needs to generate questions to be asked to
the LLM oracle. To do so, it relies on a set of query templates, which
are pieces of text of arbitrary length (i.e. strings), containing named
placeholders. Placeholders are meant to be eventually replaced with
ctual string, by means of substitutions. Substitutions are assignments
f placeholders names to actual strings. They can be applied to tem-
lates to generate concrete strings. For example, the template 𝑡 =

‘What is the capital of ⟨𝑐⟩?’’ may be instantiated by applying
he substitution 𝜎 = {⟨𝑐⟩ ↦ ‘‘𝙸𝚝𝚊𝚕𝚢’’}, denoted by 𝑡∕𝜎.

We distinguish among query templates of four sorts:

individual seeking templates, asking for instances of a given class.
For instance: ‘‘examples of ⟨𝑐 𝑙 𝑎𝑠𝑠⟩?’’.

relation seeking templates, asking for individuals related to some
given individual via a given property. For instance: ‘‘examples
of ⟨𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦⟩ for ⟨𝑖𝑛𝑑 𝑖𝑣𝑖𝑑 𝑢𝑎𝑙⟩?’’.

best match templates, asking for the best class for a given individual,
given a set of candidate classes. For instance: ‘‘what class is
best for ⟨𝑖𝑛𝑑 𝑖𝑣𝑖𝑑 𝑢𝑎𝑙⟩ among ⟨𝑐 𝑙 𝑎𝑠𝑠𝑒𝑠⟩?’’.

individuals merging templates, asking if two instances from the same
class are semantically identical. For instance ‘‘in ⟨𝑐 𝑙 𝑎𝑠𝑠⟩, are
the instances ⟨𝑖𝑛𝑑1⟩ and ⟨𝑖𝑛𝑑2⟩ the same?’’.
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Fig. 2. Overview of KGFiller, based on a running example. The example assumes that the ontology to be populated is about animals, and it includes the classes 𝐶 𝑎𝑡, 𝐷 𝑜𝑔 , 𝑀 𝑜𝑢𝑠𝑒 ⊏
𝐴𝑛𝑖𝑚𝑎𝑙 ⊏ 𝑇 ℎ𝑖𝑛𝑔 ≡ ⊤ – none of which has any instance yet –, as well as a property 𝖼𝗁𝖺𝗌𝖾𝖽𝖡𝗒 ∶ 𝐴𝑛𝑖𝑚𝑎𝑙 ×⊤, stating that each animal may be chased by some other entity. The initial
state of the input ontology is depicted in the top-left box: classes are represented as yellow boxes, property definitions as dashed edges with black arrows, while subsumption
relations among classes as straight edges with big white arrows. The KGFiller algorithm will then encompass four phases, each one depicted in a separate box: in each box,
differences with respect to the previous state are highlighted in blue. The bottom-left box represents the outcome of the first phase, namely the population phase, the LLM is
queried to generate instances for the classes in the ontology. Instances are represented as green ellipses, whereas the relations between instances and classes are depicted as straight
edges with white diamonds. Accordingly, in this phase, we let the LLM return animals from old cartoons such as: 𝚝𝚘𝚖 (which is a cat), 𝚓𝚎𝚛𝚛𝚢 (which is a mouse), 𝚙𝚕𝚞𝚝𝚘 (which is
a dog), and 𝚋𝚞𝚐𝚜 and 𝚋𝚞𝚐𝚜_𝚋𝚞𝚗𝚗𝚢 —i.e., two different names referencing the same entity (which is a rabbit). Rabbits get assigned to the 𝐴𝑛𝑖𝑚𝑎𝑙 class, as no better class is available
in the ontology. In the next phase (bottom-middle box), the relation phase, the LLM is queried to generate relations between instances, w.r.t. the properties in the ontology. The
relations 𝖼𝗁𝖺𝗌𝖾𝖽𝖡𝗒(𝚓𝚎𝚛𝚛𝚢, 𝚝𝚘𝚖) and 𝖼𝗁𝖺𝗌𝖾𝖽𝖡𝗒(𝚝𝚘𝚖, 𝚜𝚙𝚒𝚔𝚎), where 𝚜𝚙𝚒𝚔𝚎 novel instance of a dog, generated on the fly as in instance of ⊤ —as ⊤ class is the range of 𝖼𝗁𝖺𝗌𝖾𝖽𝖡𝗒. Such
a new entry is eventually moved into the 𝐷 𝑜𝑔 class during the redistribution phase (bottom-right box), where the LLM is queried to redistribute instances among sub-classes. In
the process, 𝚜𝚙𝚒𝚔𝚎 is moved from ⊤ to 𝐴𝑛𝑖𝑚𝑎𝑙 and then to 𝐷 𝑜𝑔, where it belongs. Finally, in the merging phase (top-right box), the LLM is queried to merge instances that are
syntactically similar. This is the case, for instance, of 𝚋𝚞𝚐𝚜 and 𝚋𝚞𝚐𝚜𝚋𝚞𝚗𝚗𝚢, which are merged into a single entity. This instance should remain in the 𝐴𝑛𝑖𝑚𝑎𝑙 class, as no other
class in the ontology is more specific than 𝐴𝑛𝑖𝑚𝑎𝑙 for this particular individual.
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LLM oracle. We do not impose any particular constraint on the nature
of the LLM oracle, nor on the sort of model it is based on. In fact,
KGFiller is agnostic to the LLM oracle, and it can be used with any
LLM oracle available on the market, as far as it supports the generation
of textual responses from textual prompts. Both the prompt and the
response are assumed to consist of strings of arbitrary length, represent-
ing text in (some) natural language. The natural language is assumed
to be the same one used to name classes and properties in the ontology.
Without loss of generality, we assume the language is English.

Finally, one key assumption is that the LLM oracle is already trained
on a large corpus of textual data – also covering text in the natural
anguage of choice –, and that it absorbed a substantial amount of
nowledge concerning the domain at hand.

Problem statement. We formalise the ontology population problem
solved by KGFiller as follows. Stemming from:

1. a partially instantiated ontology  =  ∪  ∪  , including
a non-empty set of class definitions  ≠ ∅, a non-empty set of
property definitions  ≠ ∅, and a possibly empty set of indi-
viduals and their relationships  (matching the aforementioned
definitions);

2. a subsumption relation ⊑ among the classes in ;
3. a set of query templates  = 𝐼 ∪ 𝑅 ∪ 𝐵 ∪ 𝑀 , where

𝐼 is a set of individual seeking templates, 𝑅 is a set of relation
seeking templates, 𝐵 is a set of best match templates, and 𝑀
is a set of individuals merging templates;
 s

6 
4. and a trained LLM oracle , encapsulating domain-specific
knowledge about ;

KGFiller aims at generating a set of individuals and relationships  ′

such that  ⊆  ′, and all novel individuals and relationships in  ′

are consistent with the class and property definitions in  and  ,
respectively.

In particular, KGFiller guarantees that, at the end: (i) every indi-
idual is associated with the most specific concept available in  –
.r.t. the subsumption relation ⊑ –, and (ii) for every property in  ,
very individual in that property’s domain is associated with several
ndividuals in that property’s range.

Phases. To compute  ′, KGFiller encompasses four major phases,
namely: (i) the population phase, where novel individuals are iden-
ified for each class in , (ii) the relation phase, where novel rela-
ionships are identified for each property in  , (iii) the redistribution
hase, where the individuals identified in the previous phases are
edistributed among the classes in , in such a way that each individual
s put in the best (i.e. most specific) class available, (iv) the merge
hase, where the individuals of each class in  are checked to detect
emantic duplicates. It is of paramount importance that phases follow
his order of execution, as the population phase generates individuals
hat are then used in the relation phase, and the relation phase
ay then generate novel individuals; hence, the redistribution phase

s needed to ensure that all individuals are put in the best class
vailable, while the merge phase is required to reduce the amount of

emantically-duplicated entries.
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Ancillary functions. The remainder of this section relies on a number of
ncillary functions, whose details are provided in Appendix A.1. Here,

we briefly summarise the notation.
Function GetRange (resp. GetDomain) returns the domain (resp.

ange) of a given property. Function AskOracle models queries to
LM oracles, hence it accepts and returns arbitrary strings. Function
xtractBinary (resp. ExtractNames) aims to extract binary values (resp.
elevant individuals’ or concepts’ names) from LLMs’ textual responses,
ence it returns a Boolean value (resp. a list of names), while accepting
 string as input. Finally, function AddToClass adds an individual to a
lass, doing nothing if the individual is already in the class, or in any

of its sub-classes.

3.1. Population phase

Algorithm 1 Populates the given ontology with novel individuals queried from
n LLM oracle
Require:  =  ∪  ∪  : partially populated ontology
equire: 𝐼 : individual seeking query templates
equire: : LLM oracle
equire: 𝑅 ∈ : root concept to be populated
nsure:  ′ contains novel individuals, assigned to the classes in 

1: function Populate(, 𝐼 ,, 𝑅)
2:  ′ ← 
3: for all 𝐶 ∈  s.t. 𝐶 ⊏ 𝑅 ∧ 𝐶 ≠ ⊥ do
4: ′ ←  ∪  ∪  ′

5:  ′ ← Populate′ , 𝐼 ,, 𝐶
6: for all 𝑡 ∈ 𝐼 do
7: 𝑞 ← 𝑡∕{⟨𝑐 𝑙 𝑎𝑠𝑠⟩ ↦ 𝑅}
8: 𝑡𝑒𝑥𝑡 ← AskOracle, 𝑞
9: for all 𝚒 ∈ ExtractNames𝑡𝑒𝑥𝑡 do
0: ′ ←  ∪  ∪  ′

1:  ′ ← AddToClass′ , 𝚒, 𝑅
2: return  ′

The population phase relies on the Populate function, defined in
Algorithm 1. This function fills a partially instantiated ontology  with
novel instances, queried to some LLM oracle , via a set of instance
seeking query templates 𝐼 .

Starting from some root class of choice 𝑅 ∈ , the function recur-
ively explores the class graph spawned by the subsumption relation ⊑,
ollowing a depth-first post-order exploration strategy.

For each visited sub-class 𝐶 ⊑ 𝑅, the function generates as many
queries as the templates in 𝐼 , by replacing the placeholder ⟨𝑐 𝑙 𝑎𝑠𝑠⟩ in
each template with the name of 𝐶. Then, it submits each query to the
LLM oracle , and it extracts the names of the individuals from the
response. The amount of individual generated per query is unbounded,
and it depends on the LLM oracle , and on other technicalities
discussed in Appendix A.2.

It may happen that the same individual is generated by multiple
queries, or that the same individual is generated for multiple different
sub-classes of 𝑅. None of these situations is problematic, as individual
addition is performed by means of the AddToClass function, which
does not duplicate individuals, nor assignments to classes, and in case
of multiple assignments, prioritises the most specific class. In keeping
ndividuals assignment as specific as possible, the post-order exploration
trategy is crucial. By visiting most specific classes first, the function
nsures that the most specific concepts are populated first, while less
pecific concepts are directly populated only when no more specific
oncepts are available in the ontology.

Notably, to populate the whole ontology , one may simply invoke
the function as follows: Populate, 𝐼 ,, ⊤.

3.2. Relation phase

The relation phase relies on the Relate function, defined in Algo-
rithm 2. This function fills a partially instantiated ontology  with
novel relationships between the individuals therein contained (and,
possibly, novel individuals as well), queried to some LLM oracle , via
7 
Algorithm 2 Populates the given ontology with novel relationships queried
from an LLM oracle
Require:  =  ∪  ∪  : partially populated ontology
Require: 𝑅: relation seeking query templates
Require: : LLM oracle
Require: 𝗉 ∈  : property to be populated
Ensure:  ′ contains novel relationships, involving individuals in 

1: function Relate(, 𝑅 ,, 𝗉)
2:  ′ ← 
3: 𝐷 ← GetDomain𝗉
4: 𝑅 ← GetRange𝗉
5: for all (𝚒 ∶ 𝐷) ∈  do
6: for all 𝑡 ∈ 𝑅 do
7: 𝑞 ← 𝑡∕{⟨𝑖𝑛𝑑 𝑖𝑣𝑖𝑑 𝑢𝑎𝑙⟩↦𝚒, ⟨𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦⟩↦ 𝗉}
8: 𝑡𝑒𝑥𝑡 ← AskOracle, 𝑞
9: for all 𝚒′ ∈ ExtractNames𝑡𝑒𝑥𝑡 do

10: ′ ←  ∪  ∪  ′

11:  ′ ← AddToClass′ , 𝚒′ , 𝑅
12:  ′ ←  ′ ∪ {𝗉(𝚒, 𝚒′)}
13: return  ′

a set of relation seeking query templates 𝑅.
Focussing upon the some property 𝗉 ∈  s.t. 𝗉 ∶ 𝐷×𝑅, the function

queries the LLM oracle  about relationships linking each individual 𝚒
in 𝐷, to some other individual 𝚒′ in 𝑅, through 𝗉. In particular, for each
individual, and for each query template 𝑡 ∈ 𝑅, the function produces
a query 𝑞 by replacing the placeholders ⟨𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦⟩ and ⟨𝑖𝑛𝑑 𝑖𝑣𝑖𝑑 𝑢𝑎𝑙⟩ in 𝑡
with the names of 𝗉 and 𝚒, respectively. Each query 𝑞 is then submitted
o the LLM oracle , and the names of the individuals in the response

are considered as individuals to be added to the ontology — and, in
particular, to the range 𝑅 of 𝗉. Accordingly, for each individual 𝚒′

returned by the LLM oracle, the function shall add both the individual
𝚒′ and the relationship 𝗉(𝚒, 𝚒′) to the ontology.

To populate relationships for all properties 𝗉 ∈  in the ontology,
one may simply invoke the function once per property, as follows:
Relate, 𝑅,, 𝗉.

It is worth highlighting that the Relate function may generate novel
individuals, as a by-product of its operation. When this is the case, it
may happen that the range 𝑅 of the target relation 𝗉, is not necessarily
the most adequate class for the generated individuals. For instance,
there could be some sub-class 𝐶 ⊏ 𝑅 which is a better fit for some
generated individuals. This is why the redistribution phase is needed.

3.3. Redistribution phase

The redistribution phase relies on the Redistribute function, de-
fined in Algorithm 3. This function redistributes individuals among the
lasses of an instantiated ontology , in such a way that each individual

is assigned to the most specific class available. To do so, the function
ueries the LLM oracle  via a set of best match query templates 𝐵 .

Starting from some root class of choice 𝑅 ∈ , the function recur-
sively explores the class graph spawned by the subsumption relation ⊑,
following a depth-first pre-order exploration strategy. For each visited
lass 𝐶 ⊑ 𝑅, the function attempts to determine whether 𝐶 is actually
he best class for all individual therein contained. For some individuals,
t might be the case that 𝐶 is not the best class, as some of its sub-classes

is more indicated. For instance, it may happen that classes 𝐶 𝑎𝑡 ⊏ 𝐴𝑛𝑖𝑚𝑎𝑙
are available, yet 𝚝𝚘𝚖 is assigned to 𝐴𝑛𝑖𝑚𝑎𝑙 rather than to 𝐶 𝑎𝑡.

To determine whether 𝐶 is the best class (among it, and all its sub-
lasses) for some individual 𝚒 ∶ 𝐶, the function generates a query for

each template 𝑡 ∈ 𝐵 , by replacing the placeholders ⟨𝑖𝑛𝑑 𝑖𝑣𝑖𝑑 𝑢𝑎𝑙⟩ and
⟨𝑐 𝑙 𝑎𝑠𝑠𝑒𝑠⟩ in 𝑡 with the name of 𝚒 and the concatenation of names of all
direct sub-classes of 𝐶, respectively. Each query 𝑞 is then submitted to
the LLM oracle , and the names of the individuals in the response are
considered as class names, i.e. as candidate classes for 𝚒. Among these,
the function selects the first one (𝐵, for ‘‘best’’) and re-assigns 𝚒 to 𝐵.
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Algorithm 3 Redistributes individuals from the given ontology’s classes, in
uch a way that each individual is assigned to the most specific class available
Require:  =  ∪  ∪  : partially populated ontology
equire: 𝐵 : relation seeking query templates
equire: : LLM oracle
equire: 𝑅 ∈ : root concept within which redistribution should occur

Ensure:  ′ contains the different assignments of individuals to classes

1: function Redistribute(, 𝐵 ,, 𝑅)
2:  ′ ← 
3:  ← {𝑆 ∈  ∣ 𝑆 ⊏ 𝑅}
4: for all (𝚒 ∶ 𝑅) ∈  ′ do
5: 𝐵 ← 𝑅
6: for all 𝑡 ∈ 𝐵 do
7: 𝑞 ← 𝑡∕{⟨𝑖𝑛𝑑 𝑖𝑣𝑖𝑑 𝑢𝑎𝑙⟩ ↦ 𝚒, ⟨𝑐 𝑙 𝑎𝑠𝑠𝑒𝑠⟩ ↦ }
8: 𝑡𝑒𝑥𝑡 ← AskOracle, 𝑞
9: for all 𝐶 ∈ ExtractNames𝑡𝑒𝑥𝑡 do

10: 𝐵 ← 𝐶
11: break going to line 12
2: ′ ←  ∪  ∪  ′

3:  ′ ← AddToClass′ , 𝚒, 𝐵
4: for all 𝐶 ∈  s.t. 𝐶 ⊏ 𝑅 ∧ 𝐶 ≠ ⊥ do
5: ′ ←  ∪  ∪  ′

6:  ′ ← Redistribute′ , 𝐵 ,, 𝐶
7: return  ′

As the function is recursive, each individual may be reassigned mul-
iple times, until eventually reaching the most specific class available
or it in the ontology. To make this possible, the depth-first pre-order
xploration strategy is crucial, as it lets individuals ‘‘move down’’ in
he class hierarchy quickly, while keeping the size of queries relatively

small.
Notably, to redistribute all individuals from an ontology , one may

imply invoke the function as follows: Redistribute, 𝐼 ,, ⊤.

3.4. Merge phase

The merge phase relies on the Merge function, defined in Algorithm
4. This function merges duplicated individuals from an instantiated
ontology .

Algorithm 4 Merges syntactically and semantically similar individuals from
the given ontology’s classes
Require:  =  ∪  ∪  : partially populated ontology
equire: 𝑀 : individuals merging query templates
equire: : LLM oracle
equire: 𝑅 ∈ : root concept within which merge should occur

Ensure:  ′ contains no duplicated individuals

1: function Merge(, 𝑀 ,, 𝑅)
2:  ′ ← 
3: for all 𝐶 ∈  s.t. 𝐶 ⊏ 𝑅 do
4:  ← ∅
5: for all 𝚒, 𝚓 ∶ 𝐶 s.t. (𝚒, 𝚓) ∈  ′ ×  ′ do
6: if SyntacticallySimilar𝚒, 𝚓 then
7:  ←  ∪ {{𝚒, 𝚓}}
8: for all {𝚒, 𝚓} ∈  do
9: for all 𝑡 ∈ 𝑀 do
0: 𝑞 ← 𝑡∕{⟨𝑖𝑛𝑑1⟩↦𝚒, ⟨𝑖𝑛𝑑2⟩↦𝚓, ⟨𝑐 𝑙 𝑎𝑠𝑠⟩↦𝐶}
1: 𝑡𝑒𝑥𝑡 ← AskOracle, 𝑞
2: if ExtractBinary𝑡𝑒𝑥𝑡 then
3:  ′ ← MergeIndividuals𝑖, 𝑗
4: break going to line 9

By ‘duplicated individuals’, we mean individuals with slightly dif-
erent names, which are actually semantically identical. We observe
mpirically that these could appear in the ontology, as a by-product
f the previous phases. Consider for instance the case: 𝚖𝚊𝚒𝚗𝚌𝚘𝚘𝚗𝚎_𝚌𝚊𝚝,

𝚖𝚊𝚒𝚗𝚌𝚘𝚘𝚗𝚎 ∶ 𝐶 𝑎𝑡 ⊏ 𝐴𝑛𝑖𝑚𝑎𝑙, which are syntactically different. To mit-
igate this issue, the Merge function queries the LLM oracle to identify
semantically similar individuals, and it merges them together into a
single one.

To serve its purpose, the Merge function scans an instantiated on-
tology , looking for pairs of syntactically similar individuals. For each
 e
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pair, the function queries the LLM oracle  via a set of individuals
merging templates 𝑀 , to determine whether to merge them into a
single individual or not.

More precisely, starting from some root class of choice 𝑅 ∈ ,
the function recursively explores the class graph spawned by the sub-
sumption relation ⊑. For each visited class 𝐶 ⊑ 𝑅, the function first
determines the set  of candidate duplicate pairs, by means of the
SyntacticallySimilar function. Then, for each pair, it decides whether
o merge the two individuals or not, by means of the ExtractBinary
unction — which interprets the response from the LLM oracle as
 boolean value. In case of a positive response, the MergeIndividuals
unction is exploited to perform the actual merge. The latter simply
orks by transferring the information of an instance to the other and

by removing one of the two, hence returning the updated ontology  ′.
As far as LLM queries are concerned, these rely on the templates in

𝑀 . For each pair of candidate duplicates, the Merge function generates
 query for each template 𝑡 ∈ 𝑀 , by replacing the placeholders ⟨𝑖𝑛𝑑_1⟩,

⟨𝑖𝑛𝑑_2⟩, and ⟨𝑐 𝑙 𝑎𝑠𝑠⟩ in 𝑡 with the name of the instances 𝚒 and 𝚓, and of
class 𝐶, respectively. The first template producing a positive response is
onsidered as definitive, otherwise further templates are queried. Most
otably, to avoid issues that may arise from the LLM’s creativity, we
orce-set temperature to 0.0 when querying the LLM oracle in the Merge
unction.

Notably, to detect and merge all duplicated individuals from an on-
tology , one may simply invoke the function as follows: Merge, 𝑀 ,
, ⊤.

Remarks. Despite algorithm 4 uses a post-order strategy, the choice of
he exploration strategy is not relevant here. Similar formulations may
e written, leveraging different strategies. These would be equivalent,
s long as they visit all direct and indirect sub-classes of 𝑅.

Another remark is about the role of the SyntacticallySimilar func-
tion. As it decides if two instances 𝚒 and 𝚓 should be considered
enough similar at the syntactic level to be considered for merging,
the implementation of this function has a relevant impact on the
verall performance of the Merge function, as we further discuss in

Appendix A.2.
Finally, about the overall role of the merging phase, one may

wonder why we do not rely on entity alignment approaches [60].
While these mechanisms are effective in identifying similar instances
in different knowledge graphs, they usually require additional data
about the domain at hand [61,62]. This is because entity alignment
systems rely on ad-hoc ML models being trained on the alignment task,
thus introducing an additional layer of complexity in the system. In
fact, in our approach, we consider relying on the same LLM oracle
for both populating the ontology and to identifying the duplicates in
it. While not completely error-free, this approach avoids additional
computational burdens in the population phase, while prevents the
need, for the user, to provide additional data about the domain at hand,
as well as to train additional models.

4. Case study and experiments

In this section, we present a case study we designed to validate
GFiller empirically.

Experimental setup. The experimental setup is as follows. We design
 non-trivial ontology (cf. Section 4.1), by defining a class hierarchy

and a set of properties, and we populate it by means of KGFiller. In
oing so, we fine-tune ad-hoc query templates (cf. Section 4.2), we

exploit several LLM oracles, from different families and technologies
(cf. Section 4.3), hence producing a set of populated ontologies, all
sharing the same class hierarchy and properties. We then analyse and
compare the populated ontologies, with the purpose of assessing the
performance of KGFiller, and the impact of the LLM family of choice on
the quality of the population process. To do so, we define a taxonomy of
rrors that may occur during the population process, as well as a set of
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Fig. 3. Class hierarchy of the case study ontology. Notice that the hierarchy is not really a tree, but rather a DAG. The asterisk (*) denotes classes having multiple super-classes
they are depicted once per super-class for the sake of readability).
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metrics (cf. Section 4.4) based on those errors, to measure the quality
f the populated ontologies. We then manually inspect the generated
ntologies (one-by-one and one individual at a time), looking for errors

and computing the corresponding scores accordingly (cf. Section 4.5).
Testing KGFiller on a custom ontology created for the purpose

of this case study – as opposed to testing it on a publicly available
ontology – comes with several key benefits. First, it allows us to finely
control every aspect of the experiment — there including its complexity
and its content. Second, it avoids the hard-to-verify and hard-to-exclude
situation where LLM oracles perform good simply because they are
tested on some ontology they have already met during training. How-
ever, it also comes with some drawbacks — most notably, the fact that
no ground truth data is available for the ontology, hence no simple
automatic validation procedure can be devised. This is the reason
why we resort to manual inspection of the populated ontologies for
validation: thoroughly inspecting each edit made by KGFiller to the
ontology is the only way to spot errors and check that the output of
our algorithm is correct.

Code and data. Technically speaking, we conduct our experiments
by means of a Python implementation of KGFiller, developed by us,
which is publicly available on GitHub.13 The experimental results are
vailable as well on GitHub, on a dedicated repository.14 There, each
it branch corresponds to a different experiment, whereas the main
ranch contains the initial ontology — only containing class and prop-
rty definitions, and no individuals.

Reproducibility. For the sake of reproducibility, each experiment branch
on GitHub contains not only the ontology populated by KGFiller in that
experiment, but also the caches of the LLM query–response pairs, for all
the queries submitted to the LLM oracle during the experiment. In this
way, anyone can inspect the exact queries submitted to the LLM oracle,
and the exact responses received, and can reproduce our experiments
deterministically.

Finally, we automate our experiments so that each experiment’s
ranch contains a sequence of commits such that every commit cor-
esponds to a unitary operation that KGFiller performs on the ontology
e.g., populating a class with instances, populating a property with
elationships, etc.). In this way, the history of commits in each branch
an be used to inspect the exact sequence of operations performed by
GFiller in the corresponding experiment.

13 https://github.com/Chistera4-Expectation/kg-filler
14 https://github.com/Chistera4-Expectation/knowledge-graphs/branches
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4.1. Ontology

As dictated by the needs of the Expectation project [63], (i.e., one
of the funding sources of this work), we design an ontology in the
nutritional domain. In Expectation, the ontology would serve as a basis
for a nutritional recommender system, aimed at suggesting recipes to
users based on their dietary needs and preferences (cf. [64]). Even
though the Expectation recommender system lays outside the scope of
this work, we believe it may help the reader understanding the ontology
design choices. We also stress that, as far as this work is concerned,
the ontology is just one of many possible case studies, and it was
designed by leveraging on the authors’ common-sense only. Designing a
scientifically-accurate nutritional ontology would require the expertise
of a nutritionist—and this, too, lays outside the scope of this work.

The ontology aims at collecting recipes and their ingredients. To do
so, it categorises edible items into several sub-classes, which should
allow a recommender system to categorise edible items in such a way
to match all possible dietary needs and preferences.

The ontology consists of 54 classes, organised as in Fig. 3. The
root class is 𝐸 𝑑 𝑖𝑏𝑙 𝑒 and it has several direct or indirect subclasses.

ne relevant sub-class of 𝐸 𝑑 𝑖𝑏𝑙 𝑒 is 𝑅𝑒𝑐 𝑖𝑝𝑒, which is the root class
f various sorts of cuisines (e.g. 𝐼 𝑡𝑎𝑙 𝑖𝑎𝑛, 𝐶 ℎ𝑖𝑛𝑒𝑠𝑒, etc.). Some classes
ave an annotation property, (𝖿 𝖺𝗇𝖼𝗒𝖭𝖺𝗆𝖾) that better describes the
eaning of the class (cf. Appendix A.2.1). Another relevant property

s 𝗂𝗇𝗀𝗋𝖾𝖽𝗂𝖾𝗇𝗍𝖮𝖿 ∶ 𝐸 𝑑 𝑖𝑏𝑙 𝑒 × 𝑅𝑒𝑐 𝑖𝑝𝑒, which is used to connect recipes to
their edible ingredients. Of course, the ontology is just a skeleton, and
it initially contains no individuals.

4.2. Query templates

To query the LLM oracle, we fine-tune query templates as follows.
We define the set of individual seeking templates (𝐼 ), as fol-

lows15: ‘‘(𝚒𝚗𝚜𝚝𝚊𝚗𝚌𝚎𝚜∣𝚎𝚡𝚊𝚖𝚙𝚕𝚎𝚜) 𝚕𝚒𝚜𝚝 𝚏𝚘𝚛 𝚌𝚕𝚊𝚜𝚜 ⟨𝑐 𝑙 𝑎𝑠𝑠⟩ (, 𝚗𝚊𝚖𝚎𝚜 𝚘𝚗𝚕𝚢)?’’
e define the set of relation seeking templates (𝑅) as the singleton:

‘ingredient list for ⟨𝑖𝑛𝑑 𝑖𝑣𝑖𝑑 𝑢𝑎𝑙⟩, names only’’. We only use a
emplate with hard-coded property name, to make the sentence look

more natural.
We define the set of best match templates (𝐵) as the single-

on: ‘‘most adequate class for ⟨𝑖𝑛𝑑 𝑖𝑣𝑖𝑑 𝑢𝑎𝑙⟩ among: ⟨𝑐 𝑙 𝑎𝑠𝑠𝑒𝑠⟩.
oncise’’.

Finally, we define the set of individual merging templates (𝑀 ) as
the singleton: ‘‘in the ⟨𝑐 𝑙 𝑎𝑠𝑠⟩ class, should instances ⟨𝑖𝑛𝑑1⟩

15 We denote by (𝐴|𝐵) a template coming in two variants: one with 𝐴 and
one with 𝐵; and by (𝐴)? a template with two variants: one with 𝐴 and one
without it.

https://github.com/Chistera4-Expectation/kg-filler
https://github.com/Chistera4-Expectation/knowledge-graphs/branches
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and ⟨𝑖𝑛𝑑2⟩ be merged together as semantic and ontologic
duplicates? yes or no answer only’’.

4.3. LLM oracles

To test the impact of the LLM quality on the KGFiller ontology
opulation process, we consider integrating several different state-of-

the-art LLMs into the KGFiller pipeline. In particular, we consider 8
different LLMs aiming at covering the almost totality of the state-of-
the-art. We consider both open source (e.g., OpenChat, Llama, etc.) and
closed models (e.g., GPT), as well as Mixture of Experts (MoE) models
—e.g., Mixtral.

To integrate querying open source models into the KGFiller pipeline,
we rely on the Hugging Chat API,16 which represents a third party
library of the Hugging chat service built by the HuggingFace team.17

Leveraging the Hugging Chat API it is possible to define multiple
imultaneous conversations with different LLMs hosted by the Hugging

Chat platform.18 Most popular HuggingFace open-source LLMs can be
eemingly integrated into KGFiller, and automatically queried via the

Hugging Chat API.19 Therefore, we select the following open source
odels for our evaluation:

Llama 2: a family of open-source LLMs, representing the most popular
open-source alternative to OpenAI’s GPT [35]. Throughout our
experiments, we select the 70 billion parameters model of this
family, as supported by the Hugging Chat API at the time of
writing.

OpenChat 3.5: a 13 billion parameters model fine-tuned from the
Llama LLM family, optimised for mixed-quality data [65].

Mistral 7B: a relatively small LLM (7 billion parameters) developed
by the Mistral AI team20 and sponsored as the most powerful
language model for its size [66].

Gemma: a family of lightweight, state-of-the-art open models from
Google, built from the same research and technology used to
create the Gemini models [67]. Throughout our experiments we
select the 7 billion parameters model.

Similarly, we rely on the same Hugging Chat API and platform to in-
lude a few MoE models in our analysis. MoE models combine multiple
LMs – possibly optimised on different data and of different sizes –
sing ensemble techniques like boosting and bagging to achieve higher
eneralisation and reasoning performance. In particular, we consider
he following MoE LLM models:

Mixtral: a pretrained generative sparse MoE – developed by the Mis-
tral AI team21 – aggregating 8 different LLMs, each having 7
billion parameters [68].

Nous Hermes: the new flagship Nous Research22 model, trained over
GPT-4 generated data – as well as other high quality data –
, achieving state-of-the-art performance on a variety of tasks.
Similarly to Mixtral, this MoE model is built from the ensemble
of 8 different 7 billion parameters LLMs.

Finally, concerning closed source models, we consider to rely on the
penAI API23 to query two different versions of the GPT family of
odels, namely:

16 https://github.com/Soulter/hugging-chat-api
17 https://huggingface.co
18 https://huggingface.co/chat/
19 https://github.com/Soulter/hugging-chat-api
20 https://mistral.ai
21 https://mistral.ai
22 https://nousresearch.com
23 https://openai.com/blog/openai-api
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GPT 3.5 Turbo: the most popular LLM, showcasing ground-breaking
performances against its predecessors and counterparts [25].

GPT 4 Turbo: the latest version of the GPT models family [69]. Its
exact number of parameters is unknown, but few sources report
the GPT 4 model to be a MoE.

The LLM size is well-known to impact greatly the performance of the
model, thus affecting the overall quality of the pipeline relying on
the LLM. Similarly, the experiments setup may alter the performance
of the different models selected. Therefore, we report in Table 1 the
LM number of parameters along with few relevant hyperparameters

of our experiments. Here, max tokens represents limit of the LLM’s
output length, while max retries is used to limit the number of times
the API is called in case of failure. The back-off time parameter is
used to specify the time to wait between two consecutive API calls
in case of failure. Finally, as LLMs are proven to be influenced by
their temperature parameter which represents a cumbersome value to
exactly fine-tune, we leave it untouched to its default value – available
either through the HuggingFace or the OpenAI API – throughout all our
experiments. Table 1 highlights a relevant difference in terms of model
size between open-source and close-source LLMs, with GPT 4 being
lmost 200 times larger than the largest open source model available
Llama 2). We expect this difference to profoundly impact the quality of
he constructed ontology and delve more into this issue in Section 4.5.

4.4. Performance metrics

Measuring the quality of ontology construction and population pro-
cesses is not trivial, as several components come into play, such as
the quality of the added instances, the reliability of the relations or
their lack there-of. Therefore, we here analyse and present the possible
issues that we should take into account when analysing the KGFiller’s
outcome, and we define the corresponding quantitative performance

etrics.

4.4.1. Types of errors
When relying on sub-symbolic black-box models for populating

ontologies, several issues may arise depending on the quality of the
racle’s output and the quality of the output post-processing proce-

dure. LLMs are famously prone to hallucinations, thus making their
suggestions often unreliable. Moreover, their output’s structure is often
unpredictable, depending on how the model interprets the given query,
thus the post-processing procedure is complex and not always infallible.
Therefore, we here define several types of errors that may arise in the
ontology population process.

Misplacement error (𝐸𝑚𝑖𝑠). The individual is part of the ontology, but it
is assigned to the wrong class. This error represents the most common
ype of issue when dealing with large ontologies with many classes. We
istinguish between two sorts of misplacement errors, depending on
hether the misplaced individual is assigned to (i) a too general class
 i.e., there exists a better-suited sub-class for it –; or (ii) a semantically
rong class. Throughout our investigation, we consider these errors as
uantitatively identical, meaning that the occurrence of a misplacement
s counted independently of the misplacement type. However, we argue
hat the first sort of misplacement error is ‘just’ lack of precision, while
he second sort is a more severe issue.

Incorrect individual (𝐸𝑖𝑖). The individual makes no sense for the ontol-
gy, yet it has a meaningful name. This error occurs either when (i)
he LLM oracle model produces an hallucinated response to a query,
uggesting that an out-of-scope meaningful instance should be added to
he ontology – e.g., suggesting that ‘‘dog ’’ represents an instance of the
lass ‘‘Edible meat ’’ –; or (ii) the LLM output processing procedure fails,

extracting a meaningful, yet out-of-context, instance from a correct LLM
suggestion —e.g., wrongly post-processing the suggestion ‘‘Bolognese
sauce’’ may result in adding the instance ‘‘Bolognese’’ to the class
‘‘Recipe’’, while the word alone indicates a person from Bologna (Italy).
As these errors are generally related to LLM’s hallucination issues, they

represent a relevant class of errors which require careful consideration.

https://github.com/Soulter/hugging-chat-api
https://huggingface.co
https://huggingface.co/chat/
https://github.com/Soulter/hugging-chat-api
https://mistral.ai
https://mistral.ai
https://nousresearch.com
https://openai.com/blog/openai-api
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Table 1
Size (number of parameters) and experiments setup of the different LLMs used in KGFiller. Values reported with ∗ are an educated estimate
– not confirmed –, as the corresponding models have not be fully disclosed to the public.
LLM Size [B] Max tokens Max retries Back-off time [s] Temperature

GPT 3.5 Turbo [25] 375∗ 1000 2 30 0.7
GPT 4 Turbo [69] 1500∗ 1000 2 30 0.7

Openchat [65] 13 1000 2 30 0.1
Llama2 [35] 70 1000 2 30 0.1
Mistral [66] 7 1000 2 30 0.1
Gemma [67] 7 1000 2 30 0.1

Mixtral [68] 56 1000 2 30 0.1
Nous Hermes 56 1000 2 30 0.1
e
m
w
i

Meaningless individual (𝐸𝑚𝑖). The individual name makes no sense at
all, and it should not be considered as a part of the ontology. These
errors occur when the LLM output processing procedure fails to identify
a negative response or it fails to identify the correct cluster of words
that refer to the suggested instance. For example, failing to interpret the
message ‘‘As an AI language model I do not have access to a pre-existing list
of instances for class milk that contains names only ’’ as a negative reply
would create a meaningless instances in the ontology.

Class-like individuals (𝐸𝑐 𝑖). The individual has the same or very similar
emantic value of the class it belongs. Broad answers from the LLM

oracle cause this issue, translating to vague instances that should be re-
oved from a class. For example, when querying for ‘‘meat ’’ instances,

t is not uncommon for LLM oracles to suggest the same ‘‘meat ’’ to be
art of the class itself.

Duplicate individuals (𝐸𝑑 𝑖). Two or more individuals have the same
r very similar semantic value. This issue may occur either from (i)

the LLM oracle suggesting multiple times very similar instances –
e.g., apple, apples, apple slices, etc. – or from (ii) a wrongful post-
rocessing of the LLM outputs. Similarly, as the proposed ontology
illing process is iterative, it is possible that different queries outputs
roduce semantically identical instances to be added to the ontology.
n KGFiller, we aim at overcoming such issue with the latest merge phase
cf. Section 3.4), where we sample possible duplicates amongst the

ontology class and query the LLM to assess if they need to be merged or
ot. However, this process is prone to error and duplicate individuals
ay still be present in the final ontology.

Wrong relation (𝐸𝑤𝑟). The relation linking two individuals is not valid.
n KGFiller’s relation phase (Section 3.2), we aim at populating a
artially instantiated ontology  with novel relationships between the
ndividuals therein contained. This process is performed via querying

the LLM oracle. Therefore, the relationships contained in the ontol-
ogy may suffer issues related to the quality of the LLM’s output –
e.g., hallucinations –, translating to wrong or invalid relationships
between individuals. For example, an hallucinated LLM may suggest
that ‘‘onions’’ are an ingredient of the recipe ‘‘carbonara spaghetti’’, thus
generating an inconsistent relation in the ontology. Measuring these
errors is fundamental to identify the quality of the generated ontology
and connect it to the quality of the LLM’s suggestions.

About subjectivity. Throughout our experiments, we measure the im-
pact of these errors by simply counting how many times they occur.
While the definition of these errors is arguable clear and objective,
the identification of the errors themselves is open to a small degree of
subjectivity. This is particularly the case for the ‘incorrect individual’
and the ‘wrong relation’ errors, where the classification of an individual
or a relation as ‘incorrect’ or ‘wrong’ may depend on the evaluator’s
interpretation. To mitigate this issue, we let each author evaluate the
populated ontologies independently, and we resolve any disagreement

y majority voting.
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4.4.2. Measures
As KGFiller relies on sub-symbolic models to populate the given

ontology, we need to assess the quality of the population process. How-
ver, up to our knowledge there exist no well-established quantitative
easures that analyse the quality of a constructed ontology. Therefore,
e define the following metrics, focusing on various aspects of the

ndividuals and relations quality:

1. the total amount of generated individuals 𝑇 𝐼 , so as to evalu-
ate KGFiller’s ability to generate large ontologies with various
individuals for each class

2. the minimum (resp. maximum) class weight 𝑚𝑖𝑛𝐶 𝑊 (resp.
𝑚𝑎𝑥𝐶 𝑊 ), which is defined as the minimum (resp. maximum)
amount of individuals generated per class. This measure allows
for checking if – and to what extent – the populated classes are
unbalanced

3. the total number of individuals belonging to leaf classes 𝑇 𝐿,
gauging how much KGFiller can identify specific classes for the
generated individuals

4. the total amount of individuals affected by errors 𝑇 𝐸 —where
each individual can count as either zero or one error

5. the relative individual error 𝑅𝐼 𝐸, defined as the ratio between
the number of individuals affected by errors and the total num-
ber of individuals 𝑅𝐼 𝐸 = 𝑇 𝐸

𝑇 𝐼
6. the total amount of errors for each class of errors identified in

Section 4.4.1 —each individual may count for zero, one, or more
sorts of errors

7. the total amount of generated relations between individuals 𝑇 𝑅
8. the relative relation error 𝑅𝑅𝐸, which is simply defined as the

ratio between the number of wrongful relation and the total
number of relations 𝑅𝑅𝐸 =

𝐸𝑤𝑟
𝑇 𝑅 .

The selected metrics used to measure the quality of the populated on-
tology – along with the corresponding types of errors presented in Sec-
tion 4.4.1 – were manually evaluated for each experiment considered
in this paper.

Finally, we define a quality metric 𝑄 which summarises the overall
quality of the populated ontology by measuring the correct individu-
als and relations over the total amount of generated instances. More
formally:

𝑄 =
𝑇 𝐼 − 𝑇 𝐸 + 𝑇 𝑅 − 𝐸𝑤𝑟

𝑇 𝐼 + 𝑇 𝑅 . (1)

The quality metric 𝑄 ∈ [0, 1] represents an intuitive and easy-to-
understand measure of the proposed automatic ontology population
process, being equal to 1 for a perfect population mechanism that
generates only valid instances and relations amongst them, while being
equal to 0 whenever the LLM fills the ontology only with invalid data.

4.4.3. Quality of service
Finally, for the sake of comparison, we consider three more metrics,

which aim at measuring the quality of service (QoS) of the LLM oracle
backing our KGFiller algorithm. These metrics are:
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Table 2
Performance of KGFiller over different state-of-the-art LLMs. For each performance metric (column) we denote with † and ‡ the best and second best performing model respectively

LLM 𝑇 𝐼 𝑚𝑖𝑛𝐶 𝑊 𝑚𝑎𝑥𝐶 𝑊 𝑇 𝐿 𝑇 𝐸 𝑅𝐼 𝐸 𝐸𝑚𝑖𝑠 𝐸𝑖𝑖 𝐸𝑚𝑖 𝐸𝑐 𝑖 𝐸𝑑 𝑖 𝑇 𝑅 𝐸𝑤𝑟 𝑅𝑅𝐸 𝑄

GPT 3.5 Turbo [25] 511 4 40 495 44† 0.0861† 37† 1† 0† 13† 3† 736 51† 0.0693† 0.924†

GPT 4 Turbo [69] 735 5 56 727 91‡ 0.1238 40‡ 5 18 19 8 1061 96‡ 0.0905‡ 0.896‡

Openchat [65] 997 9 105 970 244 0.2447 105 65 11 23 32 1329† 440 0.3311 0.706
Llama2 [35] 665 6 55 609 119 0.1789 84 8 4‡ 21 7 1062 197 0.1855 0.817
Mistral [66] 1176† 11† 110 1113† 255 0.2168 133 14 60 32 72 1211 284 0.2345 0.774
Gemma [67] 433 1 40 407 107 0.2471 70 2‡ 21 16‡ 3† 989 290 0.2932 0.721

Mixtral [68] 841 3 111‡ 819 228 0.2711 94 22 78 22 15 960 174 0.1813 0.777
Nous Hermes 1121‡ 11† 121† 1082‡ 123 0.1097‡ 59 12 11 28 11 1222‡ 227 0.1858 0.851
r
T

a
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G
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• the time (𝛥𝑡) required to populate the ontology (i.e., the time
required by a single KGFiller run), computed as the difference
between the time of the last and the first query to the LLM oracle;

• the number of queries (𝑁) submitted to the LLM oracle in total
by a single KGFiller run (there including inconclusive queries);

• the total cost ($), in USD, of a single KGFiller run (considering
that queries are cached on a per-model basis, so that the unitary
cost of each query is computed at most once).

Care should be taken in interpreting these metrics, because: (i)
the time is impacted by network latencies, network congestion, and
he LLM’s service provider’s load and rate limitations; (ii) the overall
mount of queries is influenced by the length of the LLM’s responses –
onger responses in earlier phases shall produce more queries in later
hases –, as well as by the response length limitations imposed to save
oney; (iii) the cost is influenced by the number of queries, by their
rompt, by the verbosity of the LLM’s responses, by the model, and
ltimately by the LLM’s service provider’s price. Also notice that, at
he time of writing, Hugging Face models can be queried for free (with
trict rate limitations), while OpenAI ones come with the following
ricing scheme (with much looser rate limitations):

GPT 3.5 Turbo: $0.5 (resp. $1.5) every 1M input (resp. output) tokens;

GPT 4 Turbo: $10 (resp. $30) every 1M input (resp. output) tokens.

Details about how KGFiller deals with these aspects are provided in
Appendix A.2.2.

4.5. Results

Table 2 presents the results of the performances obtained by differ-
ent runs of KGFiller, when backed by the many LLM models considered
in Section 4.3. Overall, the obtained results highlight how it is possible
o build quite reliably ontologies from the implicit knowledge that
LMs attain during their training process. In fact, focusing on the qual-

ity metric 𝑄, at least 75% of the instances and relations added to the
initial empty ontology are valid for most of the given LLMs. Moreover,
GPT 3.5 Turbo achieves 92.4% of valid instances and relations and its
successor GPT 4 Turbo achieves similar performance – i.e., 𝑄 = 89.6%
–, encouragingly showing the reliability of our approach.

The types of errors occurred in the ontology population phase also
epresents a valuable insight, as they highlight how most issues are
elated to the relative position of the added instances, rather than high-
ighting the prevalence of nonsensical entries. These results represent
n encouraging finding as they confirm the feasibility of relying on
arge general-knowledge black-box LLMs to extract a structured and
recise definition of the knowledge concerning a specific topic —such
s the food domain in our case study.

Depending on the specific performance metric considered, different
odels achieve the highest performance. For example, Mistral con-

tructs one of the largest ontology, being capable of adding 1176
nstances and 1211 relations to the final version of the ontology.
owever, the large number of instances and relations brings issues
oncerning the quality of the added components, resulting in a high
12 
relative error measurement. On the other hand, GPT-based solutions
achieve low relative error metrics, with GPT 3.5 Turbo achieving an
encouraging 0.0861 relative individual error and an even more impres-
sive relative relation error of 0.0693. However, relying on these models
esult in the construction of relatively small ontologies, as the GPT 3.5
urbo version has almost half of the instances of several counterparts.

As expected, if we focus on the minimisation of erroneous instances
nd relations, we identify GPT-based solutions – and especially GPT
.5 – as the best approach. The large difference in the size of the
PT-based models against the selected counterparts represents a clear
dvantage whenever the LLM is presented with the complex task of

classifying instances into the corresponding semantic classes or listing
ingredients of recipes without incurring into hallucinations or slightly
nreliable recipes. Indeed, the ontologies constructed relying on the
PT family also present the least relevant amount of worrying mistakes

or hallucinations (see Section 4.5.1).
However, our results also show that relying on closed source models

does not represent the only viable approach, as few open source models
chieve similarly acceptable level of performance. The Llama 2 model
onstructs a rather small, but quite effective ontology, keeping both the
umber of incorrect – 𝐸𝑖𝑖 – and meaningless individuals – 𝐸𝑚𝑖 – low,
hus highlighting its potential.

Moreover, relying on the MoE process, the Nous Hermes model
allows a large ontology to be constructed – almost twice as big as the

PT 3.5 version –, while having almost 90% of the added individuals
correct – surpassing GPT 4 Turbo – and reaching 𝑄 = 85.1%. Once
again, these results confirm the correlation between the dimensionality
of the LLM model and the quality of the constructed ontology, as
Llama 2 and Nous Hermes represent the largest open source models (see
Table 1).

Finally, one may notice quite a strong proportionality between
the relative individual error and the relative relation error measures.
ndeed, LLMs achieving small 𝑅𝐼 𝐸 tend to achieve a smaller 𝑅𝑅𝐸 as

well. So, the ability of the underlying LLM to suggest instances of a
specific class or to classify correctly random instances as belonging to
a specific class looks like proportional to the LLM’s ability of building
correct relations between instances, without proposing meaningless
associations. This finding represents a relevant discovery as it suggests
the generality of the LLMs capability of dealing with instances and
relations between instances of an ontology.

QoS-related remarks. As far as QoS is concerned, we summarise the
easurements of our experiments in Table 3. It is worth noticing how

GPT-based models generally imply much quicker execution times (𝛥𝑡) –
ostly due to the looser rate limitations that OpenAI applies to paying
sers –, at the price of a moderate expense in terms of USD dollars

($). Other models are useable via the Hugging Face API which can be
reely used, at the price of tighter rate limitations, which result in much
onger runs for KGFiller.

Another interesting remark is about the overall amount of queries
(𝑁), which vary greatly among runs, depending on the model of the
LLM oracle. As the models were subject to the same length limitations,
we speculate that such variability is due to the different verbosity of
the LLMs’ responses, which essentially depends on the model’s training

data and architecture.
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Table 3
QoS measurements (duration, number of queries, cost) of KGFiller over different state-
f-the-art LLMs. Each line describes the QoS of the experiment corresponding to the

same line in Table 2.
LLM 𝛥𝑡 𝑁 $

GPT 3.5 Turbo [25] 15 m 39s 1236 0.06
GPT 4 Turbo [69] 58 m 43s 2414 2.16

Openchat [65] 11h 50 m 25s 4710 n.a.
Llama2 [35] 5h 8m28s 1990 n.a.
Mistral [66] 2h 19 m 40s 907 n.a.
Gemma [67] 4h 55 m 2s 1141 n.a.

Mixtral [68] 12h 51 m 2s 2620 n.a.
Nous Hermes 14h 40 m 3s 6083 n.a.

4.5.1. Mistakes and hallucinations examples
We here present and analyse few relevant examples of mistakes and

allucinations we found throughout our investigation. We rank these
xamples from least to most relevant, helping to shed some light on
he characteristics of KGFiller’s shortcomings.

Minor mistakes. Most recipes of most models – especially smaller open
source models – have troubles with the identification of the proper
spices that compose a recipe. These types of mistakes cannot be consid-
ered as the product of the LLM hallucinating, as they do not resemble
the LLM leaving the context of the recipe, nor can really be considered
as blatantly wrong information, as the concept of a recipe varies a
lot depending on personal preferences. Therefore, we consider similar
mistakes as relevant, yet minor mistakes, which we consider as quickly
identifiable after the ontology filling process is complete. Similar mis-
takes include the identification of sauces as toppings and vice-versa, or
the misclassification of an instance which is fuzzy by itself —e.g., is
peanut butter?

Mistakes due to the ontology structure. Depending on the context and
he capability of human designers, the skeleton composing the initial
mpty ontology may be more or less complete. This may cause issues
henever KGFiller deals with fuzzy instances that are not easy to

lassify directly into one of the available classes. This may be the
ase of uncommon LLM suggestions or peculiar items. For example,
crocodile’ and ‘alligator’ are not the most common type of consumed

eat, however it is true that there exists few recipes based on these
eat cuts. Therefore, whenever the LLM oracle suggests adding the

crocodile’ and ‘alligator’ instances to the ontology, it is not perfectly
lear where they should be added. This results in the case of ‘crocodile’
nd ‘alligator’ to be classified as instances of the class ‘poultry-derived
ood’ by the Nous Hermes model. While the incidence frequency can
e decreased via a rigorous and complete definition of the starting
mpty ontology classes, the fuzziness of the LLM suggestions should
e better taken into account when dealing with ontology population as
he boundary between reasonable and unreasonable suggestion is tight.

LLM’s hallucinations. LLMs are known to suffer hallucinations which
may affect the suggestion of instances and relations to be added to the
ntology under construction. For example, in our experiments we found
he chemotherapy infusion keyword to be suggested by the Mistral model
s an instance for the infusion class. This represents an hallucination
f the underlying LLM, which when prompted for a list of infusions
n the food domain – and also having the dietician imposition from
ts context –, produced the chemotherapy infusion shot as a possible

suggestion. The automatic post-processing procedure in KGFiller is
unable to identify the proposal as a wrongful instance, as it respects
grammar principles and it is also semantically valid, therefore adding
it to the ontology under construction. Similarly, pizza is confidently
suggested as an American recipe by the Mixtral model, although it
originally from Italy. Dealing with such issues is complex, as it is not
really possible to check reliably if all the suggestions of the queried
LLMs are to be considered as valid or as hallucinations. Therefore, the
 t

13 
complete removal of these issues is almost impossible. One may think
to query multiple times the LLM to check if the predicted suggestion
persists or not – relying on the hypothesis that hallucinations are
rare and that the model is not confidently predicting an hallucinated
suggestion – and add to the ontology only the confirmed predictions.
However, this would require querying multiple times the LLM only
to check the validity of each suggestion, thus rendering the overall
ontology filling process (more) inefficient.

Worrying hallucinations. Most commonly, hallucinations cause the out-
put to be not coherent with the given context, thus creating instances
that should not belong to the ontology to be constructed. However,
here exists a possibility for LLMs to provide factually false information

– under the form of hallucinations –, which however, belongs to the
given context. This probably represents the worst possible scenario for
the ontology construction process, since it results in wrong assertions
which are very complex to detect and may sometimes be danger-
us. For example, in our experiments we found that, in the ‘edible
ushrooms’ class, Gemma’s first suggestion is the Amanita muscaria
hich is poisonous. Being a mushroom, the ‘Amanita muscaria’ does

not represent an out-of-context suggestion for the LLM, but it still
represents a completely false information to consider it as an edible
mushroom, as its poisonousness should be known to the LLM. We also
confirm that the LLM was trained to recognise the Amanita muscaria
as a poisonous mushroom: we separately asked for information about
this fact and Gemma confirmed that the Amanita muscaria is in fact
poisonous.

4.6. Comparison with related works

Here we compare KGFiller with the other methods for LLM-aug
mented knowledge graph construction surveyed in Section 2.4. The
comparison involves two major phases. In the first one we compare
methods on a per-feature basis, and we later filter out the methods that
operate too differently for a performance-based comparison with KG-
Filler to be meaningful. We then compare the performance of KGFiller
with the remaining methods.

4.6.1. Feature-based comparison
Here we identify five desirable features to be achieved for an

ideal ontology population method. We then compare state-of-the-art
methods, as well as KGFiller, against these features.

An ideal ontology population method should (F1) not require tex-
ual information as input from which to extract instances or relation –
ut it should rather rely on the knowledge acquired by the LLM oracle
uring training –, hence follow a document-free approach. It should also
F2) not require additional training or fine-tuning of the LLM oracle,
ence follow a training-free approach. Finally, it should (F3) support
he construction of the entire ontology, not just focussing on generating
ntities or relations (but not both); (F4) allow for user-provided prompt
emplates to tailor LLM queries on the process on the domain at hand;
nd (F5) guarantee that the generated ontology remains consistent,
eaning that its structural integrity is preserved by the population
rocess. Table 4 presents the results of our feature-based comparison,

showing which features are satisfied by each approach surveyed in
Section 2.4.

The majority of surveyed approaches either rely on user-provided
textual data to ease the mining process, or require expensive model
raining to effectively construct KGs. Moreover, no surveyed approach
uarantees the integrity of the generated ontology – as they target KGs,
o they do not keep ontological constraints into account –, leading to

potentially inconsistent outcomes. Therefore, KGFiller represents the
nly approach in which all requirements are satisfied, providing a
ocument- and training-free ontology population approach, based on
rompt templating, which uses the LLM as an oracle and guarantees
he consistency of the generated ontology, while Harvest [59] is the
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Table 4
Feature-based comparison between KGFiller and state-of-the-art KG construction meth-
ds. The arrow (→) denotes the best-featured method from the literature, namely
arvest, which we compare with KGFiller under a performance-based perspective.
Method Document

Free
Training
Free

Construction Prompt
Templating

Consistency

[70] ✗ ✗ ✓ ✗ ✗

[58] ✗ ✗ ✓ ✗ ✗

[55] ✗ ✗ ✓ ✗ ✗

[46] ✗ ✗ ✗ ✗ ✗

[47] ✗ ✗ ✗ ✗ ✗

[54] ✗ ✗ ✓ ✗ ✗

[56] ✗ ✗ ✓ ✗ ✗

[49] ✗ ✗ ✗ ✗ ✗

[50] ✗ ✗ ✗ ✗ ✗

[51] ✗ ✗ ✗ ✗ ✗

[53] ✗ ✓ ✓ ✗ ✗

[48] ✗ ✗ ✗ ✗ ✗

[57] ✗ ✓ ✓ ✓ ✗

→[59] ✓ ✓ ✓ ✓ ✗

[71] ✓ ✗ ✓ ✓ ✗

[72] ✓ ✗ ✓ ✓ ✗

Ours
(KGFiller)

✓ ✓ ✓ ✓ ✓

second-best approach in terms of features satisfaction.
Accordingly, Harvest turns out to be the only surveyed approach

for which the comparison for KGFiller seems fair. Therefore, in Sec-
tion 4.6.2 we compare the empirical performance of KGFiller against
Harvest.

4.6.2. Performance-based comparison
As highlighted in Section 4.6.1, most state-of-the-art methods for

LLM-augmented knowledge graph construction are indeed not directly
comparable with KGFiller, as they address the problem in substantially
ifferent ways; and this is the reason why we focus on Harvest [59].

Our performance-based comparison is straightforward. We run Har-
est to populate the same ontology schema presented in Section 4.1,

and we evaluate the populated ontology using the same performance
metrics defined in Section 4.4. In other words, we evaluate Harvest’s
performance exactly as we did for KGFiller in Section 4.5, and we
discuss the differences. In doing so, we replicate the experiments on
everal LLM families, namely the ones where Harvest has been tested

in the original paper [59]:

RoBERTa base: 12 layer, 768-hidden, 12-heads, 125M parameters
RoBERTa [31] using the BERT-base architecture;

RoBERTa large: same architecture as above, but with 24 layers, 1024
hidden, 16 heads, and 355M parameters;

BERT large cased: 24-layer, 1024-hidden, 16-heads, 340M parame-
ters, BERT [24] trained on lower-cased English text.

The number followed by heads and the number followed by hidden
efer to the number of attention heads and the hidden dimension of
ach block of the transformer architecture respectively. Descriptions
re taken from Hugging Face’s documentation.24

The results of our experiments with Harvest are reported in Table 5,
while the source code of the comparison is available on GitHub.25

Furthermore, to ease the comparison between KGFiller and Harvest,
e summarise the best-performing run of each method in Fig. 4. As the

24 https://huggingface.co/transformers/v3.3.1/pretrained_models.html
25 https://github.com/Chistera4-Expectation/experiments-knowledge-
arvest-from-llm
14 
Fig. 4. Comparison of the performance of Harvest [59] and KGFiller w.r.t. the task
of populating our food ontology (cf. Section 4.1). For KGFiller, the best-performing
losed-source and open-source LLM models are considered — respectively GPT 3.5
urbo and Nous Hermes.

reader can notice by comparing Tables 2 and 5, or by looking at Fig. 4,
KGFiller outperforms Harvest in all the considered metrics. The quality
metric of the generated ontology is up to five times higher when using
KGFiller over Harvest, while the 𝑅𝐼 𝐸 and 𝑅𝑅𝐸 are up to ten times
lower.

5. Discussion and SWOT analysis

To the best of our knowledge, our approach is an innovation in
the field of ontology population, and it impacts the way structured
knowledge can generated to match a specific domain and/or a schema
rovided by the user.

Here, we propose a SWOT analysis – namely, a discussion about
the strengths, weaknesses, opportunities, and threats – of KGFiller.

long this line, we let our focus shift from the technical aspects of the
pproach – namely, how (cf. Section 3) and whether (cf. Section 4) it

works – to strategical aspects, namely, why and when it should be used,
what are the possible future developments of the approach, what are
ts current limitations, and how they could be addressed in the future.

5.1. Strengths

Automation. By relying on LLM oracles – which are trained on large
mounts of general-knowledge data once and for all –, KGFiller over-
omes the limitations of state-of-the-art approaches for ontology popu-
ation, which require large corpora of textual documents to be available,
rom which to extract concepts, instances, and properties. Therefore,
GFiller represents the first truly automatic ontology population pro-
edure, which does not require the user to provide any prior form of
omain knowledge representation to populate any given ontology.

Generality. LLMs make KGFiller a general-purpose mechanism to be
pplied to virtually any domain, independently of data/domain knowl-
dge availability. Arguably, KGFiller is poorly affected by the nar-
owness of the domain, as LLM oracles are usually trained on large

amount of data gathered from the Web, which cover most of the
humankind’s written knowledge. On the other hand, state-of-the-art
ontology population approaches heavily suffer the domain-sensitivity
issue, as the corpus of documents they rely upon may be incomplete,
non-representative, or simply lacking.

https://huggingface.co/transformers/v3.3.1/pretrained_models.html
https://github.com/Chistera4-Expectation/experiments-knowledge-harvest-from-llm
https://github.com/Chistera4-Expectation/experiments-knowledge-harvest-from-llm
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Table 5
Performance of Harvest [59] over different state-of-the-art pre-trained models.

LLM 𝑇 𝐼 𝑚𝑖𝑛𝐶 𝑊 𝑚𝑎𝑥𝐶 𝑊 𝑇 𝐿 𝑇 𝐸 𝑅𝐼 𝐸 𝐸𝑚𝑖𝑠 𝐸𝑖𝑖 𝐸𝑚𝑖 𝐸𝑐 𝑖 𝐸𝑑 𝑖 𝑇 𝑅 𝐸𝑤𝑟 𝑅𝑅𝐸 𝑄

RoBERTa base 812 2 36 682 617 0.7599 391 118 84 70 20 40 25 0.6250 0.2465
RoBERTa large 580 0 36 867 440 0.7586 479 126 54 30 25 55 27 0.4909 0.2646
BERT large cased 1086 22 61 942 909 0.8370 734 153 45 97 125 51 37 0.7255 0.1680
a

i
t
t
s

h
t
t
t
e

k

o

t
a

Incrementality. KGFiller does not require the input ontology to be
mpty. In other words, KGFiller supports not only the population of the
ntology, but its refinement as well. In this sense, we say that KGFiller
s an incremental approach, which can be applied to already-instantiated
ntologies, aiming at enriching or populating them even more. Along
his line, one may simply think to execute KGFiller multiple times,
tarting from an empty ontology and populating it incrementally.

Open future. As LLMs have been demonstrated capable of going beyond
the data they are trained on, and they are expected to spontaneously
develop more emergent capabilities as they grow in size and complex-
ity, we expect that the quality of the ontology population process will
increase as well, by simply relying on the latest LLM models available
n the future.

5.2. Weaknesses

Completeness. Similarly to state-of-the-art approaches, KGFiller does
ot provide completeness guarantees for the populated ontologies:
esults may be lacking instances or relations that the user would expect
o be present. Arguably, this is intrinsic to any (semi-)automatic data-
riven ontology population approach. Put simply, incompleteness is

due to the fact that KGFiller is not designed to extract all the knowledge
the LLM oracle holds. It rather provides means to limit the amount
f instances extracted (to save time or money). And, even if it was
esigned to extract all the knowledge, there is no guarantee that the
LM oracle has acquired all mankind’s knowledge in the first place.

Sampling bias. Being completely dependent on what LLM oracle has
learnt from the Web, KGFiller may be subject to sampling bias issues.
In fact, the algorithm can only extract what the LLM oracle has learnt
(or what is inferable from that knowledge). But, if the LLM did not
learn about a specific topic, and that topic is not inferable from what
the LLM knows, then KGFiller will not be able to extract that topic.
As LLMs are trained on the Web, under-represented topics on the Web
may be less likely to be extracted by KGFiller, thus leading to a possibly
unbalanced or biased ontology.

Correctness. Similarly to any (semi-)automatic data-driven ontology
opulation approach, KGFiller does not provide any guarantee that the

extracted information is correct. In this context, ‘correct’ is intended
s the truthfulness of the information added to the ontology. In fact,

as exemplified in Section 4.5.1, LLM may mistakenly assign poisonous
ushrooms to some class of edible mushrooms, which is of course

ncorrect. This is due to the fact that LLMs are prone to hallucinations
nd to providing false information —a well-known issue in the LLM
ommunity [37].

5.3. Opportunities

Cold start. The development workflow of any novel data-driven or
nowledge-based software system shall eventually face the cold start

issue: the system is well-engineered and operative, but for it to be
effective there must be some data to operate upon. But to gather data,
the system should have users, and to have users, the system should be
effective.

In such situations, relying on KGFiller’s automatic ontology popu-
lation procedure can help mitigating the cold start issue, by providing
a quick, cheap, and reliable way to generate domain-specific data for
he system to start being effective.

For instance, in the Expectation project [63], a nutritional recom-
ender system was needed (cf. [64]), but not enough data about food

ingredients and recipes was available: that fuelled the idea of KGFiller.
15 
Automatic hierarchy construction. KGFiller focuses on ontology popu-
lation. As such, it assumes the existence of a pre-defined ontology
schema. However, extensions of the algorithm where LLM oracles
are queried to construct the ontology schema itself are possible. Ap-
proaches of this sort have been proposed in the literature, e.g. [73],
where the task is referred to as hierarchy construction.

Along this line, we envision further extensions of KGFiller, aimed
t automatising the whole ontology construction process, e.g. by inter-

twining hierarchy construction and ontology population activities. For
nstance, the algorithm may be extended to identify lacking concepts in
he input ontology in order to better assign the individuals generated by
he LLM oracle. The result would be an intriguing continuous learning
etup, where domain knowledge is repetitively extended and refined.

Zero-shot ontology creation. Generalising upon the idea of automatic
ierarchy construction, one may wonder if KGFiller can be extended
o support the creation of ontologies from scratch. Once a mechanism
o construct the ontology schema is in place, it would be interesting
o explore if, and to what extent, KGFiller can be used to populate an
mpty ontology.

Procedural knowledge extraction. Another intriguing opportunity may
arise from the application of KGFiller to the extraction of procedural
nowledge. By procedural knowledge, we refer to the structured data

representing the steps required to complete a process, or attain a
specific goal. In the fields of automated planning, as well as multi-agent
systems, procedural knowledge is the way by which agents’ plans are
encoded. One key aspects of plans is that agents can execute them, to
reproduce the process or to attain the goal.

What if KGFiller is exploited to extract plans from LLM oracles? This
would pave the way towards the possibility, for a software agent, to
learn novel behaviours autonomously, by simply asking an LLM how to
do something, and letting KGFiller translate that in structured – hence
executable – form.

5.4. Threats

LLM performance degradation. Web-based, conversational agents backed
by LLM technology – especially OpenAI’s ChatGPT – have been shown
to suffer from performance instability over time [74]. This phenomenon
is probably linked with the continuous optimisation process these
agents periodically undergo. Being trained not only on the Web, but
on previous interactions too, the quality of their training data varies
ver time, and the same is true for their performance.

Instability potentially affects KGFiller’s performances as well. De-
pending on the moment when the algorithm is executed, the quality of
the generated responses may vary significantly, possibly hindering the
reliability of the final ontology.

Lock-in effect. As for any other technology provided ‘as a Service’ by
he very few private players who can afford the infrastructure to train
nd maintain LLMs, there is a chance for the lock-in effect [75] to

arise. Once an ontology is populated using a specific LLM, it may be
difficult to consider leveraging a different LLM to refine or modify
the created ontology, as the knowledge of the second LLM would be
(slightly?) different. Therefore, users might end up in a situation where
there is an over-reliance on a specific LLM technology, a no other
different technology could be exploited unless the whole ontology is
re-populated from scratch, which might be very expensive.
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Combined with performance instability, the lock-in effect may also
affect the applicability of KGFiller as a whole. This may happen in the
eriods of time when the LLM oracle is not performing well: in that
eriod locked-in users may have no choice but to wait for the LLM to
e re-trained, and hope for the best.

6. Conclusions

Ontologies provide a structured framework that defines concepts,
elationships, and properties within a specific domain, defining an
nambiguous and understandable representation of domain-specific
nowledge. However, ontologies come along with the cost of a meticu-
ous and time-consuming population process, which is usually manual
nd possibly affected by humans’ errors and biases. In this paper,
e hypothesise that LLMs incorporate a relevant amount of domain-

pecific knowledge obtained from their domain-agnostic training pro-
ess, involving huge amount of data gathered from the Web. Accord-
ngly, we propose KGFiller, a novel automatic ontology population
pproach leveraging LLMs. Starting from (i) an initial schema com-
osed by inter-related classes and properties, and on (ii) a set of query
emplates, KGFiller queries the LLM multiple times, and generates
nstances for both classes, relationships, and properties from its replies.
everal other queries are performed to refine the ontology, balancing
he instances in the class hierarchy and avoiding the occurrence of
uplicates.
KGFiller’s validity is assessed through a case study on the food

domain, where the ontology population requires gathering food in-
redients – over multiple categories – and recipes. We test KGFiller
ver multiple state-of-the-art LLMs – open source, closed source and
oEs –, measuring an array of metrics that analyse the quality of the

onstructed ontology. Our results highlight KGFiller’s ability of reliably
opulating a given ontology across several LLMs, reaching instances
nd relations accuracy of up to 0.91 and 0.93 for the GPT 3.5 model, re-
pectively. As expected, larger LLMs achieve better performance, while
e highlight an interesting correlation between erroneous instances
nd misplaced relations. Finally, we analyse the various degrees of
rror severity, showcasing how LLMs hallucinations may negatively im-
act the automatic ontology population process. Overall, the obtained
esults are encouraging, as they show how the complex process of
onstructing ontologies can be – at least partially – automated, while
till requiring few caveats and minor post-processing efforts.
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Appendix. Engineering KGFiller

A.1. Ancillary functions

KGFiller relies on a number of shared ancillary functions, whose
semi-formal definitions are provided here.
Algorithm 5 Adds an individual to a class, unless it is already assigned to a
more specific class
Require:  =  ∪  ∪  : partially populated ontology
Require: 𝚒 is an individual
Require: 𝑅 ∈ : root concept 𝚒 should be assigned to
Ensure:  ′ contains the (possibly indirect) assignment of 𝚒 to 𝑅

1: function AddToClass(, 𝚒, 𝑅)
2: if ∃𝐶 s.t. (𝚒 ∶ 𝐶) ∈  ′ ∧ 𝐶 ⊐ 𝑅 then
3: return  ∪ {𝚒 ∶ 𝑅} − {𝚒 ∶ 𝐶}
4: else if ∄𝐶 s.t. (𝚒 ∶ 𝐶) ∈  ′ then
5: return  ∪ {𝚒 ∶ 𝑅}
6: return 

Functions GetRange and GetDomain are used to retrieve the domain
and range of a given property, respectively. So, for instance, for prop-
erty 𝗉 ⊆ 𝐷 × 𝑅, GetDomain𝗉 returns 𝐶, whereas GetRange𝗉 returns
𝑅.

Function AskOracle is used to query LLM oracles, whereas func-
ions ExtractBinary and ExtractNames aim to extract binary answers, or
elevant individuals’ or concepts’ names from their textual responses,
espectively. Their internal functioning is non-trivial, and we discuss it

in Appendix A.2.1. Here, we just focus on their syntax and expected
semantics. Accordingly, function AskOracle, 𝑞 accepts as input the
LLM oracle  to query and the query string 𝑞 to be submitted to the
oracle, and it returns a string as response 𝑡𝑒𝑥𝑡. Both the input (𝑞) and
utput (𝑡𝑒𝑥𝑡) strings are assumed to contain natural language text, and
o be of arbitrary length. Function ExtractNames𝑡𝑒𝑥𝑡 accepts as input
he response string 𝑡𝑒𝑥𝑡 from an LLM oracle, and it returns a set of
trings 𝑛𝑎𝑚𝑒𝑠, to be interpreted as names of individuals or concepts, de-
ending on the concept. Function ExtractBinary𝑡𝑒𝑥𝑡 performs a similar

operation, but it returns a boolean value (true/false, yes/no, et similia).
Finally, function AddToClass is used to add individuals to classes.

espite the simplicity of its intuitive definition, its actual operation
s non-trivial, hence why we detail pseudo-code in Algorithm 5. In

particular, we write AddToClass, 𝚒, 𝐶 to denote the assignment of
individual 𝚒 to class 𝐶 in ontology . However, there may be corner
ases in doing so, such as the case where 𝚒 is already assigned to

some sub-class 𝑆 ⊏ 𝐶. In that case, no actual edit is performed on the
ntology. Vice versa, if 𝚒 is already assigned to some super-class 𝑅 ⊐ 𝐶,

then 𝚒 is assigned to 𝐶, and it is unassigned from 𝑅. In any case, the
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Listing 1: Example of response from ChatGPT to the query ‘‘can you
enerate examples of cats?’’

Certainly! While I can’t physically generate images, I can
certainly describe or provide information about different
types of cats. Here are a few examples:

1. Domestic Shorthair:
Description: A common and popular cat breed known for its

short, sleek coat.
Characteristics: Versatile in colors and patterns ,

friendly , and adaptable.

2. Siamese Cat:
Description: Elegant and slender cat with distinctive

color points.
Characteristics: Vocal, social, and known for their

striking blue almond-shaped eyes.

…

10. Russian Blue:
Description: Short-haired cat with a bluish-gray coat and

striking green eyes.
Characteristics: Reserved but affectionate , known for its

plush double coat.

These are just a few examples, and there are many more cat breeds,
each with its own unique characteristics and appearance.

function returns a novel set of assertions  ′, which is possibly different
from the input one (denoted by ).

A.2. Practical aspects

At the practical level, a number of aspects should be considered in
order for KGFiller to be effective. Most notably, the abstract formula-
tion from Section 3 models interaction with LLM oracles by means of
unctions AskOracle and ExtractNames, abstracting technicalities away.
owever, in practice, the implementation of these functionalities is
on-trivial, and it requires taking into account technicalities involving
i) the engineering of prompts to be submitted to the LLM oracle, (ii)
he mining of relevant individual or concepts’ names from the textual
esponses of the LLM oracle, as well as (iii) corner cases involving
mpty or inconclusive responses, and (iv) other relevant aspects such
s costs and rate limitations.

Accordingly, we here discuss each of these aspects in detail, follow-
ng a means-oriented approach.

A.2.1. Prompt and response engineering
Generally speaking, KGFiller performs automatic queries to LLM

racles, with the purpose of inducing them to generate individuals or
oncept names. However, LLM come with no guarantee on the structure

of the generated text, nor on its relevance w.r.t. the ontology: the
generated text may be long, unstructured, and it may contain both
relevant and irrelevant chunks of information. For instance, submitting
the query ‘‘can you generate examples of cats?’’ to ChatGPT
may produce a reponse similar to the one in listing 1. This may
omplicate the automatic extraction of relevant information from the
extual responses of the LLM oracle, as irrelevant information should be
iltered out, while only relevant information should be retained. In the
xample from listing 1 the relevant information is the list cats’ races’
ames, whereas the irrelevant information is anything else.

There exists a delicate trade-off among the complexity of the prompt
and the complexity of the response. As a consequence, instead of engi-
neering complex text extraction procedures aimed at distilling relevant
information from arbitrary text, one may try to engineer the prompt
in order to induce the LLM oracle to generate more concise or more
structured responses. In other words, a trade-off exists between the
length/intricacy of query templates and the algorithmic complexity of
function ExtractNames.

In the following paragraphs, we discuss a number of strategies to
ngineer the prompt in order to induce the LLM oracle to generate more

concise or more structured responses, and then we delve into the details
f the ExtractNames.
17 
Listing 2: Example of response from ChatGPT to the query ‘‘list of
cat races, names only’’
Certainly , here’s a list of cat breeds with names only:

1. Persian
2. Siamese
…
10. Domestic Shorthair

Getting concise and structured responses from oracles. One may induce an
LLM oracle to generate concise and structured responses by explicitly
sking for these features in the query. For instance, at the time of

writing, it is sufficient to ask for a ‘‘concise list’’ of something to
let the LLM generate text formatted as a list in Markdown format.26

Moreover, we observe that complementing the query with the
‘names only’’ requirement, induces the LLM to generate a very
compact list of names, with no additional information.

Finally, we also observe that the word ‘‘concise’’ may be omit-
ted when combining the two requirements. We speculate that this is
possible because the ‘‘names only’’ requirement already implies the

aximum level of conciseness.
As an example, consider again the case of listing 2. There, the re-

sponse was attained by submitting the query: ‘‘list of cat races,
names only’’.

Along this line, we recommend engineering query templates in such
a way to include the aforementioned requirements. So, for instance, in-
ividual seeking templates should be of the form ‘‘list of examples
or ⟨𝑐 𝑙 𝑎𝑠𝑠⟩, names only’’, whereas relation seeking templates should
e of the form list of examples of ⟨𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦⟩ for ⟨𝑖𝑛𝑑 𝑖𝑣𝑖𝑑 𝑢𝑎𝑙⟩,
ames only’’. Similarly, best match templates should be of the form

‘best class for ⟨𝑖𝑛𝑑 𝑖𝑣𝑖𝑑 𝑢𝑎𝑙⟩ among ⟨𝑐 𝑙 𝑎𝑠𝑠𝑒𝑠⟩, be concise’’.

Avoiding out-of-context responses. One may induce an LLM to generate
ontext-aware responses by explicitly providing context in the query.

But what is context, precisely?
In the particular case of KGFiller applied to a domain-specific

ontology, the context is always (at least) two-folded. In fact, the LLM
racle should be aware that queries may contain references to (i) the

ontology’s domain, and (ii) ontologies in general (e.g. ontologic jargon
such as ‘‘class’’ or ‘‘individual’’).

In our running example about animals, the domain could be for
instance ‘‘a zoologist willing to populate an ontology describing sorts
of animals’’. This could be made explicit in the query by prepend-
ing a statement such as ‘‘you’re a zoologist’’ or ‘‘zoological
context’’.

The takeaway here is that query templates should contain explicit
references to the ontology’s domain, and possibly explicitly clarify
when they are seeking for individuals or class names.

Going back to our running example, consider for instance case of the
uery ‘‘can you name a few examples of cats?’’. This is very am-
iguous, as no context is provided. In fact, at the time of writing, Chat-
PT replies with a list of common names for domestic cats, including;

‘Whisker’’, ‘‘Luna’’, ‘‘Oliver’’, ‘‘Cleo’’, ‘‘Simba’’, etc. However,
imply prepending the string ‘‘zoological context’’ to the query
ay induce ChatGPT to reply with a list of members of Felidae fam-

ly (e.g. ‘‘African Lion (Panthera leo)’’, ‘‘Tiger (Panthera
igris)’’, etc.) plus a warning that ‘‘the term ‘cats’ generally
efers to members of the family ‘Felidae’’’. An even more
recise result can be attained via the query ‘‘zoological context.
an you name a few instances of class ‘cat race’?’’, where

he ontological jargon is explicitly adopted.
In the specific case of KGFiller, context information may be simply

provided by means of ad-hoc text in query templates. Contextual text

26 https://www.markdownguide.org/basic-syntax/#lists-1

https://www.markdownguide.org/basic-syntax/#lists-1
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Listing 3: Example of LLM response containing a numbered list of
ake cat names. Some items in the list actually contain more than one
ame. Some names are composed by more than one word. The response
lso contains text which is not part of the list. Relevant names are
ighlighted in blue and cyan (alternating colours).

Certainly , here’s a list of cat breeds with names only:

1. Persian or Siamese
2. Maine Coon
3. Bengal, Caracal
4. Sphynx
…
9. Domestic Shorthair

These are just a few examples, and there are many more cat breeds,
each with its own unique characteristics and appearance.

may be the same for all templates, or it may be slightly different for
ach template. It could be simply prepended or appended to each

template (e.g. ‘‘zoological context. list of examples for
⟨𝑐 𝑙 𝑎𝑠𝑠⟩, names only’’).

Another key aspect to consider is that query templates are meant
to be filled with class or property names from the initial ontology
definition. This may be problematic, if the name of the class or property
is ambiguous outside the context of the ontology. To avoid this incon-
venience, we assume that each class and property in the ontology may
come with an optional attribute, namely 𝖿 𝖺𝗇𝖼𝗒𝖭𝖺𝗆𝖾, which is meant to
be used in queries instead of the actual name of the class/property.

Consider for instance the case of the aforementioned 𝐶 𝑎𝑡 class
which may be present in the ontology, yet ambiguous in the zoological
domain. Let us also assume that, for some technical/administrative
reason, the class name cannot be changed. When this is the case, the
ntology designers may add the attribute 𝖿 𝖺𝗇𝖼𝗒𝖭𝖺𝗆𝖾 to 𝐶 𝑎𝑡, and set its
alue to some zoologically-correct name, such as ‘‘feline species’’
r ‘‘felidae family’’. In this way, queries would be generated in an
nambiguous way, despite the ontology contains a compact class name.

Mining relevant information from textual responses. Assuming that query
templates are engineered in such a way to force LLM responses to
ontain a list of names (spanning either a single line or multiple ones)
KGFiller relies on function ExtractNames for the localisation of those
names in the response text. To do so, the function attempts to parse
LLM responses against a fairly flexible context-free grammar, tailored
on the localisation of relevant chunks of text.

Before delving into the details of the grammar and the parsing
rocedure, let us exemplify the typical situation. Both in the population
nd relation phases, the LLM oracle is asked to produce a list of names,
o be interpreted as individuals. Conversely, in the redistribution phase,
he LLM oracle is asked to produce a single name, to be interpreted
s a class, among a set of candidate names which are selected by
he algorithm. So, in the general case, LLM is asked to produce a
ultitude of names, in the form of a list. Empirically, we observed the

LM oracles tend to produce either multi-line lists or single-line lists.
ulti-line lists are typically formatted as bulleted or numbered lists

n Markdown format, whereas single-line lists are typically sentences
ontaining commas, semicolons, or words such as ‘‘and’’ or ‘‘or’’. It
s worth highlighting that responses containing singleton names, can
e considered a trivial case of single-line lists. Finally, we observed
hat LLM oracles may sometime include irrelevant (w.r.t. KGFiller)
nformation in the response, such as pleasantries, contextualisation text,
r warnings about the fact that the response may be incomplete. In
isting 3, we report a handcrafted response aimed at exemplifying one
omplex case, where inline and multi-line lists are mixed, as well as

irrelevant text.
The actual implementation of the ExtractNames function is based on

he assumption that meaningful response consists of text (containing
18 
some sub-string) matching the following context-free grammar:
⟨𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒⟩ ∶= ⟨𝑆 𝑖𝑛𝑔 𝑙 𝑒𝐿𝑖𝑛𝑒⟩ ∣ ⟨𝑀 𝑢𝑙 𝑡𝑖𝐿𝑖𝑛𝑒⟩

⟨𝑀 𝑢𝑙 𝑡𝑖𝐿𝑖𝑛𝑒⟩ ∶= ⟨𝐼 𝑡𝑒𝑚⟩(⟨𝑊 ℎ𝑖𝑡𝑒𝑠𝑝𝑎𝑐 𝑒⟩⟨𝐼 𝑡𝑒𝑚⟩) ∗
⟨𝐼 𝑡𝑒𝑚⟩ ∶= ⟨𝐵 𝑢𝑙 𝑙 𝑒𝑡⟩⟨𝑆 𝑖𝑛𝑔 𝑙 𝑒𝐿𝑖𝑛𝑒⟩

⟨𝑆 𝑖𝑛𝑔 𝑙 𝑒𝐿𝑖𝑛𝑒⟩ ∶= ⟨𝑅𝑒𝑙 𝑒𝑣𝑎𝑛𝑡⟩(⟨𝑆 𝑒𝑝𝑎𝑟𝑎𝑡𝑜𝑟⟩⟨𝑅𝑒𝑙 𝑒𝑣𝑎𝑛𝑡⟩) ∗
⟨𝑅𝑒𝑙 𝑒𝑣𝑎𝑛𝑡⟩ ∶= ⟨𝑊 𝑜𝑟𝑑⟩(⟨𝑊 ℎ𝑖𝑡𝑒𝑠𝑝𝑎𝑐 𝑒⟩⟨𝑊 𝑜𝑟𝑑⟩) ∗

⟨𝑊 𝑜𝑟𝑑⟩ ∶= any combination of letters,
punctuation, or digits

∣ ‘‘⟨𝑊 𝑜𝑟𝑑⟩’’ ∣ ‘⟨𝑊 𝑜𝑟𝑑⟩’
⟨𝑊 ℎ𝑖𝑡𝑒𝑠𝑝𝑎𝑐 𝑒⟩ ∶= any combination of spaces,

tabulations, or newlines
⟨𝑆 𝑒𝑝𝑎𝑟𝑎𝑡𝑜𝑟⟩ ∶= 𝚊𝚗𝚍 ∣ 𝚘𝚛 ∣ , ∣ ;

⟨𝐵 𝑢𝑙 𝑙 𝑒𝑡⟩ ∶= − ∣ ∗ ∣ + ∣ #+ ∣ ⟨𝐼 𝑛𝑑 𝑒𝑥⟩.
⟨𝐼 𝑛𝑑 𝑒𝑥⟩ ∶= 𝟷 ∣ 𝟸 ∣ 𝟹 ∣ …

(A.1)

In the grammar, relevant snippets of text are denoted by the non-
terminal symbol ⟨𝑅𝑒𝑙 𝑒𝑣𝑎𝑛𝑡⟩, which may consist of one or more words,
possibly separated by white space. Different relevant snippets may be
separated by a ⟨𝑆 𝑒𝑝𝑎𝑟𝑎𝑡𝑜𝑟⟩ – which may be one of the following strings:
‘‘and’’ or ‘‘or’’, or ‘‘,’’ –, or they may be spanning multiple items of a
ulleted or numbered list.

To extract relevant names from any given text, the ExtractNames
function would look for the longest sub-string matching the grammar
from Eq. (A.1), and, if any such sub-string exists, it would build a
arse tree for it. For instance, for the response in listing 3, the parse

tree would look like the one in Fig. A.5. In the parse tree, any node
corresponds to non-terminal symbols in the grammar (rectangles in
the figure), whereas leaves correspond to terminal symbols (ellipses
in the figure). To select relevant names from the parse tree, the func-
ion would simply select all the subtrees rooted in a ⟨𝑅𝑒𝑙 𝑒𝑣𝑎𝑛𝑡⟩ node
coloured subtrees in the figure), and it would concatenate the leaves
f each subtree to form one relevant name to be output. Notably,

this procedure would automatically exclude irrelevant text from the
response, there including any prologue or epilogue which does not
contain a list, as well as any irrelevant text in the middle of the list.

Technically, other fine-grained constraints may be imposed on the
rammar, in order to make the extraction procedure more robust. For

instance, one may require that the indexes of a numbered list are
continuous and monotonically increasing, or that bullets in bullet lists
are all the same. In the particular case of queries for the redistribution
phase, one may also filter out from the response any relevant name
which is not included in the query (as that would imply the LLM is
providing an answer which is not among the admissible ones).

As far as the ExtractBinary function is concerned, information min-
ng is far less articulated. In that case, the function simply looks for

positive (‘yes’, ‘true’, etc.) or negative (‘no’, ‘false’) words in the textual
answer, in a case-insensitive way. Combined with query templates
which explicitly invite the LLM to be sharp in its answer, this approach
provides a simple yet effective way to interpret LLM responses as
boolean values.

Handling empty or inconclusive responses. Put it simply, the Extract-
ames function outputs a set of sentences, each one to be interpreted
s a relevant name. Despite all the precautions adopted in the design
f the templates and in the parsing of responses, the function may still
utput names that require post-processing. For instance, it may happen
hat the LLM oracle politely refuses to provide an answer to the query.

When this is the case, the answer is not empty, but rather it contains
 sentence such as ‘‘I’m sorry, but I’m a large language
odel trained by OpenAI, and I ⟨𝑚𝑜𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 ℎ𝑒𝑟𝑒⟩’’. However,
ur parsing procedure would interpret this sentence as an inline list of

names, such as ‘‘I’m sorry’’, ‘‘but I’m a large language model
trained by OpenAI’’, etc., which are clearly meaningless. This is the
reason why any robust implementation of the ExtractNames function
hould include a post-processing phase, where irrelevant names are

filtered out. This can be done by means of a set of regular expressions,
which are meant to match irrelevant snippets of text in a sentence.
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Fig. A.5. Parse tree for the response in listing 3, parsed according to the grammar in Eq. (A.1). Colours highlight relevant sub-trees of the parse tree. Blue and cyan (alternating
colours) ellipses highlights relevant names output by the ExtractNames function when fed with that response.
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For instance, sentences containing sub-strings ‘‘I’m sorry’’, ‘‘I’m a
arge language model’’, etc. may be filtered by the list of relevant

names output by the ExtractNames function.
As a consequence of this post-processing phase, the ExtractNames

unction may output an empty list of names. To mitigate this issue,
sers of KGFiller may consider asking the same question multiple times
n slightly different way. This is the reason why each phase of KGFiller
elies on a set of query templates, rather than a single one. Providing
ore than one query template for each phase is the way by which
sers can let KGFiller ask the same question multiple times, in slightly
ifferent ways. To serve this purpose, it is quintessential that users of
KGFiller design query templates accordingly.

Regulating the creativity of the LLM oracle. Despite the many tricks de-
cribed so far, it is worth recalling that LLM oracles may still allow for
 degree of randomness when generating their responses. Randomness
s, to some extent, a desirable feature in this context as it allows for
he generation of novel names, yet it may also imply higher chances
f generating meaning-less names. Most commonly, LLM providers
rovide a way to regulate the randomness of their responses, by means
f a parameter called temperature (cf. Section 2.3).

As far as KGFiller is concerned, the temperature parameter can
be set by the user when starting the algorithm, and that value will
be used for all queries submitted to the LLM oracle during a run
of the algorithm. It is worth mentioning that the algorithm will set
temperature to 0.0 when querying the LLM oracle in the merging phase,
regardless of what the temperature the user has set.

About the syntactic similarity of individuals. The merging phase heav-
ily relies on the SyntacticallySimilar function, which is in charge of
determining whether two individuals names are similar enough to
be considered for merging. The implementation of this function is
critical for the success of the merging phase, as it is in charge of
selecting candidates for merging. Making it too permissive may lead
the algorithm to do too many LLM queries, whereas making it too strict
may lead the algorithm to miss some duplicates.

We rely on a simple implementation where SyntacticallySimilar(𝚒, 𝚒)
eturns true if (and only if) the names of the two instances 𝚒 and 𝚓

share an identical substring longer than 𝜆 characters. There, 𝜆 is a
yper-parameter of KGFiller, that we empirically set to 4.

A.2.2. Costs and rate limitations
As LLM text generation functionalities are currently provided ‘as

a service’, providers may charge users for the queries they submit
o the LLM oracle, or they may limit the rate at which queries can

be submitted. On the KGFiller side, this may be problematic, as the
number of queries submitted to the LLM oracle may be very high. Hence
 m
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why any practical implementation of KGFiller should be robust w.r.t.
abrupt service unavailability, and it should minimise the financial cost
of the queries submitted to the LLM oracle. In the following paragraphs,

e discuss a number of strategies to achieve these goals.

Automatic query rate regulation. Rate limitations are typically perceived
one the user side as service disruptions: the LLM service provider may
imply reject queries because too many queries have been submitted
n a short time span—or maybe because too many tokens have been
onsumed/produced by the previous queries and the corresponding
nswers.

To mitigate this issue, practical implementations of KGFiller should
e able to automatically regulate the rate at which queries are submit-
ed to the LLM oracle. One simple yet effective strategy to achieve this

goal is the so-called exponential back-off strategy — which is commonly
used in communication protocols to avoid congestion.

The exponential back-off strategy is based on the assumption that a
failure to submit a query to the LLM oracle may most likely due to a
rate-limitation or service-overload situation, and that retrying the query
after a short delay may be sufficient to overcome the issue. If it is not,
the same strategy could be applied again, with a longer delay.

For instance, as LLM provides’ rate limitations are typically ex-
pressed in terms of queries or tokens per minute, one may consider
setting the initial delay to 30s and the back-off factor to 150%. In this
way, the first time a query is submitted, there is no delay, the second
attempt would be delayed of 30 s, the third one of 45 s, the fourth one
of roughly more than one minute, and so on. Of course, one may also
consider limiting the amount of retries, or to set a maximum cumulative
delay.

In KGFiller, the exponential back-off strategy is implemented by
eans of the AskOracle function, which is responsible for submitting

ueries to the LLM oracle.

Minimising costs. Minimising financial costs can either be achieved by
minimising the number of queries submitted to the LLM oracle, or by
minimising the amount of tokens involved in each query. Notice that
he second option may imply the first option: fewer tokens produced

per query implies fewer names being generated by KGFiller, which
implies fewer individuals are added to the ontology, which implies
fewer queries are submitted in the relation and redistribution phases.
Accordingly, we here discuss how to minimise the amount of tokens
consumed and produced by each query.

Our first hint is to design query templates in such a way to sug-
gest the LLM to generate short and structured responses, as already
discussed in Appendix A.2.1. However, that would only reduce the
produced tokens. To minimise the consumed tokens, one may consider

aking query templates, class names, property names, and fancy names
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as concise as possible. So, for instance, the query template ‘‘list of
examples for ⟨𝑐 𝑙 𝑎𝑠𝑠⟩, names only’’ is sub-optimal, as it contains
as it could be shrank to ‘‘examples list for ⟨𝑐 𝑙 𝑎𝑠𝑠⟩ names only’’,

ith no relevant change in the generated response.
A more direct way to impose token limitations is to exploit ad-

hoc API options provided by LLM providers, if any. For example, the
OpenAI allows clients to specify the maximum amount of tokens in
he response via the query parameter ‘max_tokens’.27. When such

parameter is set, the LLM oracle will stop generating text as soon
as the maximum amount of tokens is reached. This may result in
truncated responses, but it may give full control on the amount of
tokens consumed by each query —therefore making financial planning
easier.

It is worth remarking that truncated responses may require further
ost-processing, especially as far as names extraction is concerned.
hen truncation is in place, there is no guarantee that the last extracted

name is complete, as therefore it should be dropped — in order to avoid
introducing corrupted data into the ontology.

Another feature that may be exploited to minimise costs in face
of trials and errors – which are almost unavoidable when fine-tuning
query templates on a new ontology – is caching. By caching queries
(along with their parameters such as temperature and max tokens) and
he corresponding answers, one may avoid costs in case the same query

is submitted again. This is not really useful within the single run of
GFiller, but it may be useful to avoid costs when re-running KGFiller

on the same ontology, or when re-running KGFiller on a similar ontol-
ogy. Moreover, it is possible to exploit caches for debugging purposes,
e.g. for retrospectively analysing an unsatisfying ontology population
attempt. This could also be useful to compare different runs of KGFiller
on the same ontology, or on different ontologies.

Data availability

The code and the data of our experiments are publicly available as
GitHub repositories, whose URL are referenced in the paper.
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