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5.1  INTRODUCTION

Of all the dreams of humankind, the most popular one is certainly the 
ability to predict the future. By staring at a crystal ball or the stars, 
different people in the past have developed different techniques to fight 
the scariest of all potential demons—uncertainty. They may have done 
this for one simple reason, which is knowing in advance what is going to 
happen. Unfortunately, this is not always the case in practice. Take an 
example of the slopes of Vesuvius which currently host the homes of 
3 million inhabitants. Even though science has been very clear that a new 
explosive eruption will occur sooner or later (Barnes 2011), people still 
live there. A similar situation exists at the Campi Flegrei caldera (Kilburn 
et al. 2017).

5.1.1  Resilience Definition

In the context of this chapter, resilience is the ability to withstand 
stresses caused by external events and recover quickly to the functional 
state (Kammouh et al. 2018b). Resilience ensures a reliable and affordable 
continuity of the service supply in normal operation as well as during (and 
after) disaster events. Several methods to quantify the resilience of 
communities exist in the literature (Cimellaro et al. 2016b; Kammouh et al. 
2017, 2018c, 2019). However, none has considered the role of machine 
learning (ML) in their respective assessments of resilience.

According to Bruneau et al. (2003), the resilience of a system depends 
on its functionality performance. The functionality of a system is the ability 
to use it at an impaired level. The conceptual approach of resilience 
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232	 OBJECTIVE RESILIENCE

described in Bruneau et  al. (2003) is illustrated in Figure 5-1. The 
functionality performance (Q) ranges from 0% to 100%, where 100% and 
0% imply full availability and nonavailability of services, respectively. The 
occurrence of a disaster at time t0 causes damage to the system and this 
produces an instant drop in the system’s functionality (ΔQ). Afterward, 
the system is restored to its initial state over the recovery period (t1−t0). 
The loss in resilience is considered equivalent to the quality degradation 
of the system over the recovery period. Mathematically, it can be defined 
by Equation (5-1) in the form of an equation, and here, Eq. (1) is used for 
this purpose as follows:

	
LOR = −[ ]∫ 100

0

1

Q t dt
t

t

( )
	

(5-1)

where
LOR = Loss-in-resilience measure,
t0 = Time at which a disastrous event occurs,
t1 = Time at which the system recovers to 100% of its initial function-
ality, and
Q(t) = Functionality of the system at a given time t.

5.1.2  Machine Learning and Artificial Intelligence

Artificial intelligence (AI), and its subset machine learning, have the 
potential to offer valuable solutions to realize resilient communities. ML 
is employed in a range of computing tasks where designing and 
programming explicit algorithms with good performance are difficult or 
infeasible. To understand its benefits within the resilience-relevant 
aspects (social, economic, infrastructural, institutional, environmental, 

Figure 5-1.  The concept of disaster resilience.
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and community-wise), the role of ML in the different disaster management 
applications is discussed:

	 1.	 Model identification: ML can learn patterns and provide indicators 
for future predictions. This is what researchers are constantly trying 
to do with natural and human disasters. In fact, ML is much better 
than humans at learning from mistakes, literally.

	 2.	 Emergency detection: In emergencies, choosing one alternative over 
another can cost lives and money. Questions like “Which building 
needs to be addressed first?” or “Is it safe to send the civil defense in 
this area?” need precise and quick answers. ML can detect if something 
unusual is happening, trigger intelligent alerts, and suggest the 
optimal ways to deal with the emergency.

	 3.	 Solution generation: Expecting constraints and requirements as 
input, AI techniques explore the entire solution space and then 
investigate every solution that may solve the problem.

5.1.3  Semantic Representation of Emergency

Thanks to the internet, we are all connected. We are given an easy way to 
share multimedia content in real time, making it available not just to our 
chosen emergency contact but to a whole audience. Smartphones, wearables, 
and the Internet of Things (IoT) devices are constantly with us: they save our 
location, our pictures, our voices. All this generates an enormous amount of 
information, in very different formats, with very different and unrelated 
meanings. Although humans are capable of understanding and using this 
information to figure out if there is an emergency going on, machines are 
much more efficient in performing such a task considering that several 
emergencies are taking place at the same time. Nonetheless, a machine 
would struggle more to find meaning in the data.

Hence, at the heart of any ML approach to emergencies is the 
representation of real-world data in a language that is comprehensible to 
machines. The semantic web is a set of technologies that provide 
standardized formats for the representation of both data and ontological 
background knowledge (Tresp et al. 2006). Here, by ontology, we mean the 
domain-specific background information organized in logical statements. 
An ontology describes object classes, predicate classes, and their 
interdependencies. Using this common vocabulary, machines communicate 
and understand. This is exactly what is happening in the background 
when we type on Google “Brad Pitt’s mother.” First of all, it understands 
our question. Then, it starts exploring the Google Knowledge Graph, a 
graph where every edge is a relationship between two entities (in this case, 
Brad Pitt and his mother), to extract the answer to our question. Google is 
not just listing top articles containing the same words we have inserted in 
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our query. Instead, it is producing an intelligent answer because it has 
really understood our question.

Ontologies are built on top of two standards: RDF and RDFS. RDF is a 
resource description framework that represents information about 
resources using basic triplets: subject, predicate, object. Each resource is 
associated with one or several concepts (i.e., classes) via the type property. 
Concepts are defined in the RDF Vocabulary Description Language, also 
called RDF-Schema or RDFS. The web ontology language is OWL, which 
allows stating that classes are equivalent or disjointed and that properties 
and instances are identical or different. Properties can be symmetric, 
transitive, functional, or inverse-functional. In RDFS concepts are simply 
named, while OWL allows the user to construct classes by enumerating 
their content (explicitly stating its members) or by forming intersections, 
unions, and complements of other classes. An ontology formulates logical 
statements, which can be used for analyzing data consistency and for 
deriving new implicit statements concerning instances and concepts.

So, what does ML have to do with all this? ML comes into play with 
ontology evaluation, refinement, evolution, as well as the merging and 
alignment of ontologies (Tresp et  al. 2006). One possible scenario is the 
following: we build an ontology, a representation of the world that becomes 
our baseline. Using ML, we can apply learning algorithms to our axioms and 
instances, which, in turn, allows us to understand more about our world.

We can extract new subject–predicate–object triplets that will then be 
added to our ontology to generate more knowledge. ML would then need 
to create samples of the population existing in the ontology and extract the 
latent features (the fundamental characteristics) introduced in a cluster 
analysis or a principal component analysis, with the support of SQL 
(declarative querying language) or SPARK (big data framework). Finally, 
ML would generate new statements which would be weighted depending 
on their likelihood: after all, ML still lives in the dimension of the uncertain. 
This likelihood can be established by ensemble methods: different 
algorithms with different characteristics and different results that are 
merged to form a more likely result.

ML can also be employed in ontology learning. This includes the 
identification of concepts, concept hierarchies, properties, property 
hierarchies, domain, and class definitions. One way to do this is by 
applying hierarchical clustering techniques such as single-link, complete-
link, or average-link clustering to leverage the semantic and syntactic 
context of words to understand new concepts previously absent from the 
ontology (Tresp et  al. 2008). This idea has been applied to build a 
crowdsourcing-based knowledge base, that is extracted from social media 
keywords and patterns (Xu et al. 2016).

To sum up, ML is fundamental in times of crisis and emergency 
management because it provides an underlying dictionary that allows us 
to understand what is happening, how to react, how to communicate 
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with different systems to dispatch alerts. It is also a way to incorporate 
the new knowledge from the data and represent it in a formal way that 
makes it available not just to a single script but to entire systems. Starting 
from a baseline that comes from theory (a theoretical, physical model 
created by earthquake experts), it can then add more knowledge extracted 
from the data.

5.2  MODEL IDENTIFICATION

All models are wrong, some are useful—G. Box

In 2014, it was estimated that natural and man-made catastrophes took 
7,700 lives and caused approximately USD 110 billion in damage. The need 
(and the market potential) for predictive tools is extremely clear.

5.2.1  The Problem of Data Integration

In data science, a simple algorithm with a lot of data is considered to be 
better than a complex algorithm with far fewer data. Very often in ML and 
data science, the fundamental problem is the lack of data. By data, we do 
not mean just any kind of data, but rather meaningful, labeled, organized 
data that can be used consistently by any algorithm. As previously 
mentioned , our world is becoming more and more connected. The IoT is 
the term used in the tech community to describe the existence and 
communication of different sensors and devices through the internet. One 
example that leverages this task force of measuring sensors is the Quake-
Catcher Network, a joint seismic initiative that has provided traditional 
seismic stations with innovative data sources, bringing together 
information from the accelerometers in mobile phones and cloud 
computing and guaranteeing faster detection of earthquakes. This stems 
from a very democratic, crowdsourcing idea: everybody can contribute to 
providing better-performing emergency response systems at a low cost 
(Cochran et al. 2009).

A key to more data and more accurate results is often the integration of 
multiple sources. One model was able to detect landslides using a Bayesian 
approach with social and physical sensors, such as USGS seismometers 
and TRMM satellites (Musaev et  al. 2014). The system periodically 
downloads data from multiple social and physical sensors, extracts 
information from social sensors such as Twitter, YouTube, and Instagram, 
and then performs multiple filtering steps of exclusive or inclusive type. 
These filters are related to the specific type of emergency. The result of this 
filtering is merged with the one coming from physical sensors such as 
seismic activity or rainfall-level measurements. These steps are included 
in Figure 5-2 for further clarity.
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236	 OBJECTIVE RESILIENCE

Big Data–enabled integration was also the fosterer of a flood-detection 
system. Researchers combined information from Twitter and from Satellite 
observations to build a learning and real-time map of floods. The problem 
of integration is also behind Digital Delta, a research program involving 
IBM, the Rijkswaterstaat, the University of Delft, and the Deltares Water 
Institute (Byrne). It has been proven that by listening to what the data have 
to say, it is possible to build better infrastructure, understand the weakest 
points of the current infrastructure, and achieve better target maintenance 
and investments. However, this is not just a matter of data integration, it 
is also a matter of response integration among the many districts and 
communities.

5.2.2  Predicting Natural and Man-Made Hazards

We have been supported by AI in various fields. Now, researchers have 
found that AI can be used for natural disaster prediction. AI can forecast 
the occurrence of multiple natural disasters given large good-quality 
datasets. Examples of the natural hazards predictable for AI are 
earthquakes, volcanic eruptions, and hurricanes.

Many seismic scholars and scientists believe that predicting earthquakes 
is nearly impossible. However, thanks to new model identification and ML 
techniques, a lot of interesting insights are being extracted from seismic 

Figure 5-2.  Overview of a data flow for the detection application of a landslide.
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data. Researchers are using deep learning systems to gather large quantities 
of seismic data for analysis (Zhang et al. 2018). AI may use seismic data to 
evaluate earthquake magnitude and frequency. These data can be useful 
in forecasting the occurrence of earthquakes. Some attempts have shown 
that AI-based algorithms can predict aftershock positions more precisely 
than other approaches.

The prediction of volcano eruptions has always been a challenge. Recent 
attempts could find ways of accurately forecasting volcanic eruptions by 
training an AI system to recognize tiny volcanic ash particles. The ash 
particle shape can be used to classify the volcano’s type. These advances 
can help predict eruptions and to establish strategies for minimizing 
volcanic hazards.

Hurricanes are one of the most damaging natural hazards. NASA 
recently employed a system that combined satellite images and ML to 
monitor Hurricane Harvey. The system proved to be six times better than 
the conventional monitoring systems: The hurricane can be monitored 
every hour instead of every 6 hours as in the case of traditional systems. 
Therefore, technical advances are helping track hurricanes and forecast the 
course of hurricanes, which can aid in mitigation efforts.

For man-made hazards such as terrorism, it is reasonable to express 
doubt with a question such as: Is there really nothing we can do to prevent, 
if not predict, terrorism? In the aftermath of a terror attack, much 
controversy is sparked when it turns out that the terrorist organizations 
were very well “known” to authorities. However, what seems to be the key 
issue is that it is extremely difficult for governing entities to track every 
single individual who has demonstrated a weird or dangerous behavior 
that would lead to terrorist-like behavior. This is where ML could be of use: 
it is not only a matter of automating and repeating a task (that of monitoring 
an individual), which is something machines can do very well. What is 
needed is continuous monitoring of a number of different sources and 
combining them into one, meaningful output. Again, as previously 
mentioned in this chapter, it is always a matter of humans and machines: 
Human intervention will always be required in the end to extract a decision 
from all this information. However, this will be an informed decision, an 
educated and science-backed guess.

Some researchers have already tried to experiment with the potential 
that lies in the application of ML techniques for emergency detection 
(Tutun et al. 2017). The researchers attempted to identify patterns in suicide 
attacks using ESALLOR, a new Evolution Stimulating Annealing Lasso 
Logistic Regression. The system identified the most important features of 
terror attacks, while also proposing a new similarity function to estimate 
the relationship among similar events.

Machine-learning classifiers are, in general, very good at discovering 
trends, clusters, and stereotypes. They are statistical approaches and not 
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individualistic ones. Although it is appropriate for a recommender system 
like Spotify to suggest a song you do not really like just because other 
users, who have proven, in general, to have a musical taste similar to 
yours, enjoyed them before, it is less appropriate for the government to 
increase surveillance on you, intercept your communications, and monitor 
what you do (a violation of constitutional rights and a waste of law 
enforcement resources).

ML could also recognize faces via ordinary monitoring systems (CCTV). 
The FBI, for instance, has access to nearly 412 million photos in its facial 
recognition system (Orcutt 2016), which constitutes a great training set for 
learning algorithms. State-of-the-art face matching systems can be nearly 
95% accurate on mugshot databases, which sounds extremely promising, 
but these pictures are very clear and taken in controlled environmental 
conditions and of cooperative subjects. Adding blurred, dark pictures may 
be characterized by unusual facial expressions or poses, which would 
worsen the accuracy. Moreover, any gender, age group, or race that is 
under-represented in the training data will be reflected in the algorithm 
performance. This is probably the reason why some organizations that are 
using MorphoTrus’s facial and iris recognition are still uncertain about the 
accuracy of the system.

In the absence of faces, ML could also identify terrorists from their 
victory sign using hand shape biometrics (hand silhouette, finger widths, 
lengths, angles, etc.). Image segmentation is an important processing step 
in many images, videos, and computer vision applications, and it was the 
key to the victory sign analysis. In this chapter, we mention four approaches 
to segment the hand: Otsu’s method of histogram shape–based image 
thresholding (Xu et al. 2011); K nearest neighbor classifiers that distinguish 
between “hand” and “not hand” using Euclidean (Laaksonen and Oja 
1996); Manhattan and Hassanat distance (Alkasassbeh et al. 2015); and 
artificial neural network based on RGB information (Ramil et al. 2018). The 
training architecture is shown in Figure 5-3.

Given the preceding observations, ML has clear advantages: It easily 
identifies trends and patterns, no human intervention is needed, and so 
forth. However, it also has disadvantages because of data acquisition 
issues, time and resource requirements, data interpretation difficulties, and 
so forth.

5.3  EMERGENCY DETECTION

5.3.1  Detecting and Managing Emergencies

During emergencies, it is of utmost importance to be able to understand 
where an emergency is and what has been damaged the most. In the case 
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of particularly big emergencies, it is even harder to be able to organize the 
available human and financial resources. Many advancements in recent 
technologies have been useful to partially tackle this problem.

One of the first studies on this topic developed an ML tool predicting 
the damage expected on a network based on the weather forecast 
(Angalakudati et al. 2014). In particular, it had in mind what today we 
would call “Industry 4.0,” where many sensors work together creating a 
robust monitoring system that helps prevent the failure of million-dollars 
systems. If we think of an electrical network, weather-related damage 
might result in a huge economic loss where several days are needed to 
restore the situation to normal conditions.

It is reasonable to imagine a feature where drones fly above a critical 
location in real time, or where heat-detecting robots are able to locate 
survivors and perform rescue operations more quickly and efficiently than 
a team of humans are capable of doing. Embedded systems and IoT 
applications are going to be our eyes and ears across the world, providing 
more and more accurate information concerning people and buildings. 
This allows better planning from the rescuers’ part, which can give a clear 
idea about the topography of the landscape and the extent of damage to a 
building.

When an emergency occurs, two approaches can be utilized to gain 
further information. First, it can be detected from the real world itself, 
thanks to the ubiquitous presence of sensors throughout the world. Second, 
we can rely on the immediacy of social networks and news agency 
reporting. Both of these approaches are discussed subsequently.

Figure 5-3.  A typical hand shape biometric system.
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5.3.2  Emergency Detection: Real World

Traditional warning systems operate in a broadcast fashion. Sirens, text 
messages, or emails are meant to alert almost everyone, in every place, and 
every situation. Cellular phone or radio broadcast networks make it hard 
for these systems to reach individuals who are located inside buildings. 
Moreover, networks such as Ethernet and Wi-Fi tend to fail in times of 
extremely high demand (like emergencies). In these situations, deep 
learning can be used to trigger emergency warning systems via existing 
infrastructure such as closed-circuit television (Kang and Choo 2016). This 
approach is to start from a real-time video analysis: CCTV modules store 
the captured video data locally and periodically monitor the footage 
received performing object detection and image classification. When an 
emergency is detected, an alert is forwarded directly to the police station. 
This way, emergency detection is autonomous, and civil protection receives 
more and more accurate information about the emergency (e.g., type, 
location, time, images, etc.) The two types of emergencies aforementioned 
are generated via a Poisson process, progressively increasing the level of 
strength (weak, normal, strong) and the lambda value. This deep learning 
approach makes the overall system more scalable and faster, as it can be 
directly deployed in embedded devices (such as CCTV) and respond 
extremely quickly (in milliseconds). Deep learning also guarantees that no 
features need to be hardcoded by experts as they will be learned by the 
network.

Several attempts have been made to use ML as early warning systems 
to predict natural disasters and processes. For instance, Asnaning and 
Putra (2018) introduced the automatic water-level recorder (AWLR) in 
conducting water-level monitoring at the water-gate dam. The AWLR 
sensor has been designed for monitoring and recording in a database with 
real-time sensing. The results show that the low-cost AWLR sensor reduced 
processing time by 92.7% compared with conventional data processing. 
Another attempt is applying ML to an early warning system for very short-
term heavy rainfall (Moon et al. 2019). The authors introduced a method 
for an effective early warning system for very short-term heavy rainfall 
with ML techniques. The results showed a better predicting pattern than 
other methods (Moon et al. 2019).

5.3.3  Emergency Detection: Virtual World

Social networks and internet platforms, in general, have been hosting 
people’s messages and thoughts for quite some time now. Often, these 
messages have been frequently analyzed using simple techniques such as 
measuring the frequency of emergency-related words as an emergency is 
approaching. These messages are real time, can be location-based, and 

Book_5124_C005.indd   240Book_5124_C005.indd   240 09-12-2021   21:20:3409-12-2021   21:20:34



	 Machine Learning	 241

ultimately provide precious information about disease outbreaks 
(Brownstein et al. 2007), conflicts and terror-related situations, and natural 
catastrophes. We can see this very clearly from the Boston Marathon 
terrorist incident (Cassa et al. 2013).

Twitter, among others, is a very valuable source of information. 
However, this social network platform has two sides. On the one hand, it 
carries precious events and provides real-time insight into events as they 
evolve. On the other hand, care must be taken to avoid false-positive 
reports with negative effects. For this reason, it is necessary to compare the 
cost of unnecessary investigation and the opportunity cost of not reacting 
early enough.

A traditional approach in natural language processing is the Bag of 
Words model (Araque et  al. 2017), where a document is mapped to a 
feature vector and then classified by ML techniques. This is a very simple 
approach, and it destroys information like word order and syntactic 
structures. Another kind of feature that can be used is Part of Speech (POS) 
tagging, which is commonly used during a syntactic analysis process. 
Some authors refer to this kind of feature as surface forms, as they consist 
of lexical and syntactical information that relies on the pattern of the text, 
rather than on its semantic aspect. These low-level classifiers can be used 
in rule-based approaches, meaning that low-level predictions are treated 
by rules such as majority voting, or in meta-learning, where they constitute 
features (parameters) for higher-level models.

Combining classifiers usually helps achieve greater accuracy and single 
classifiers alone. This integration can happen concurrently (divide the 
original dataset into several subsets from which multiple classifiers learn in 
a parallel fashion) as it happens in bagging, or sequentially, such as in 
boosting. In Natural Language Processing, deep learning has been used to 
learn word vector representations using neural language models such as 
word2vec (Collobert et al. 2011). This approach models words as vectors, 
allowing them to retain a large number of syntactic and semantic regularities.

Unsupervised learning has also been employed, for example, via 
autoencoder, which allows extracting a new, more concise (or de-noised) 
representation of the input. In general, there is a growing tendency that 
tries to incorporate additional information into the word embeddings 
created by deep learning networks. Augmenting knowledge in the 
embedding vectors with other sources of information can also be useful, for 
example, using a previous related topic or sentiment-related information.

A very recent work proposes the recursive neural tensor network model 
(Araque et al. 2017), which represents a phrase using word vectors obtained 
in an unsupervised manner and a parse tree, computing vectors for higher 
nodes in the tree using a tensor-based composition function. On top of this, 
there is the ensemble model that combines classifiers trained with deep 
and surface features. This model combines several base classifiers into one 
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ensemble that makes predictions from the same input data. This model is 
proposed to combine several types of features into a unified feature set 
and, consequently, combine the information these features give. In this 
way, a learning model that learns from this unified set could achieve better 
performance scores than one that learns from a feature subset.

The Qatar Computing Research Institute has developed a free, open-
source, ML-based framework to improve efficiency and management in 
the aftermath of crises: AI for Disaster Response (AIDR) (Imran et al. 2014). 
Its objective is to help create a comprehensive picture of an emergency, 
helping the organization of the emergency operation centers (EOCs). 
According to tweet analysis, the system can identify and categorize needs 
based on urgency, infrastructure damage, and resource deployment. The 
rescuers can reduce the time spent on planning and organization and can 
focus instead on helping those who need help. Organized reaction and 
targeted alerting (contacting people in the identified places) can help 
evacuate people quickly from the identified danger zones.

5.3.4  Managing an Emergency

Once an emergency is detected, a planned intervention is to be deployed. 
Several companies are already involved in this activity, experimenting 
with several learning-based solutions. One example is IBM, which has 
developed a predictive tool, the “Intelligent Operations Center for 
Emergency Management,” in partnership with the Weather Channel. The 
system integrates multiple data sources in real time to create “multifaceted 
situational awareness of city resources & events and create a collaborative 
environment for planning, monitoring & sharing information.”

The information retrieved from this kind of analysis can be very useful 
in the planning of evacuation or rescue activities after an emergency or 
crisis. It could be, for example, included in models such as a dynamic 
Bayesian network (Radianti et al. 2015), supporting distinct kinds of crowd 
evacuation behavior, both descriptive and normative (optimal). Descriptive 
modeling is based on studies of physical fire models, crowd psychology 
models, and corresponding flow models, whereas we identify optimal 
behavior using ant-colony optimization (ACO). Simulation results 
demonstrate that the DNB model allows us to track and forecast the 
movement of people until they escape, as the hazard develops from one 
time step to another time step. Furthermore, the ACO provides safe paths, 
dynamically responding to current threats such as cyber threats (Kammouh 
and Cimellaro 2018). This kind of model integrates concepts from graph 
theory and probability theory, capturing conditional independencies 
between a set of random variables by means of a directed acyclic graph, 
each edge of which typically represents a cause–effect relationship.
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A similar path is being followed by One Concern, a machine learning–
based startup that provides EOCs with critical situation awareness: for 
instance, instant information on response priorities and other insights to 
allocate all the limited resources effectively. The platform sends automatic 
alerts when an earthquake seems to have affected a certain county, 
including key information like “the elderly population in a particular 
block that is badly damaged, or the number of kids in a school which could 
be hit” (Shueh 2016). The system can also ease the creation of the initial 
damage estimate, being able to identify and quantify the extent of damage 
to its jurisdiction with a significant amount of accuracy in minutes, thus 
saving a lot of time and promising high precision. The system puts special 
care in redundancy and distributed servers, allowing the platform to be up 
and running even when phone networks are usually down (indeed, during 
crises).

Concerning the technology used, very little is known because it is 
proprietary. What is known is that the same technology used for real-
time estimation is also included in an AI-based training module that will 
allow emergency operations centers to train on scenarios based on actual 
simulations to get a real sense of the situation, helping personnel 
readiness and plan development, thereby making a community more 
resilient.

5.4  SOLUTION GENERATION AND DECISION MAKING

5.4.1  An Excursus on Artificial Intelligence

The key aspect of every disaster management situation is what happens 
after the moment of solution generation. This is the moment when the 
emergency has gone, when we have counted the injuries and the victims, 
when we have calculated losses and damage and it is now time to build 
again (De Iuliis et al. 2019, Kammouh et al. 2018a). History has shown that 
sometimes this second chance is not well used. This situation has great 
potential for AI and ML applications. The history of computer science 
leads us to imagine enormous supercomputers producing the result of 
very complex, yet mechanical calculations. Among all its qualities, we 
would certainly not define a machine as innovative (Perez 2016). 
Surprisingly enough, a new branch of AI research is producing generative 
design tools, algorithms that ask for four ingredients: goals, constraints, 
computing power, and time. In return, they produce solutions that 
humans could have never come up with. How? They simply start from 
scratch and then, very methodically, search the entire solution space and 
explore every single possibility that fulfills the initial requirements 
(Duckworth 2017). The three structural elements shown in Figure 5-4 are 
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all designed to carry the same structural loads and forces. As we move 
from left to right, we shift from a traditional design to the most recent 
computer optimization.

With respect to the traditional production methods, generative solutions 
offer a height reduction of 50%, weight reduction per node is 75%, and an 
overall weight reduction (on a construction project) of more than 40% 
(Carlos 2016). In this case, the strength of the machine over the human is 
that it is not biased: when the search algorithm starts, it is still a kid. It has 
no ideas about what has been studied for centuries, what is already 
working well, what has already been tested useless. It analyses every 
single possibility, without prejudice.

This problem cannot be tackled by “ordinary” machine learning. As 
we have seen so far, ML is the art of extracting the most important 
features from the data since it was designed to operate on known objects, 
not to invent them. Independently from the specific algorithm, learning 
problems usually look for a function that is a good representation of the 
mapping between objects and their corresponding classes. Learning 
models are not designed to hypothesize about the creation of new 
objects, they simply assume that by applying a series of operations we 
can learn new knowledge from that world by generalizing upon existing 
objects or relationships. These algorithms thus neglect the fact that 
sometimes it is simply more important to decide what to look for than 
finding what is already there. By contrast to decision and learning 
paradigms, the design is the creation of new objects. Designers generate 
multiple novel object definitions that might be explored next. The true 
value of a designer lies in their judgment. It is not a matter of choosing 
the best among existing objects but to explore among a set of novel 
definitions. This is a decision theory specific to design processes, that is 
yet to be formulated (Kazakci 2014).

Figure 5-4.  Evolution of a structural element using ML and computer 
optimization.
Source: Modified from Carlos (2016).
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5.4.2  Resilience and the Role of Machine Learning

The impact of ML on the aftermath of an emergency is extremely 
relevant also from another point of view: we can image a central ML engine 
that considers all the most relevant variables like weather/geologic 
conditions, human exploitation, civil use of the building, history (what 
emergencies happened there, what went wrong), and builds an eternal 
knowledge base out of them. It is not hard to envision how the PEOPLES 
framework (Cimellaro et al. 2016a) could contribute to this and take strong 
advances from such knowledge. This knowledge would not get lost with 
time, politics, or just a change in the team or the company that is in charge 
of the reconstruction. ML is a form of intelligence that continues to grow 
and becomes more accurate and comprehensive as time (and data 
available) accumulates. Once more, a semantic way of dealing with Big 
Data is fundamental.

Moving on to the act of reconstruction itself, an intelligent machine 
could coordinate the workers, incorporate vision and change the path and 
the project as it goes on and as new impediments arise, as new data 
becomes available. Machines would be thus greatly contributing to the 
resilience of our new cities and buildings, in their capability to “sustain a 
level of functionality or performance for a given building, bridge, lifeline 
networks, or community, over a period defined as the control time” 
(Cimellaro et al. 2010).

5.5  DISCUSSION AND CONCLUSIONS

This chapter introduced the role of machine learning (ML) in different 
applications and scenarios of Resilience Engineering, such as during 
natural and man-made disasters. Three main applications for ML in 
disaster management are discussed: model identification, emergency 
detection, and solution generation.

In the model identification, the problem of data scarcity is presented. 
Data need to be complete before any meaningful results can be drawn. The 
solution to this is by improving the data type and increasing the data 
channels. In emergency detection, the application of ML in different fields 
(e.g., physical, virtual) is highlighted. The role and objective of ML in every 
field can be very different. Finally, in the “Solution Generation” section, the 
effectiveness of ML in supporting humans with decision making is 
discussed. This was also supported by real examples where the machines 
could generate better solutions than the human.

5.5.1  On Human–Computer Interaction

There is one very famous scene in the movie, “I, Robot” 2004, one of the 
most famous modern movies about robots coming to life. That is when 
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Will Smith finally unveils to the audience the origin of his long-living 
hatred toward machines. This dates back to his past when as a result of a 
severe car crash, two cars (including his) fell into a river. Together with the 
others, a little girl fell into the water with him. A robot came to rescue but 
soon understood that (a) he could not save everyone and (b) will had a 
much higher chance at survival than the little girl. As a result, Will was 
saved, the child was not.

This brief but relevant scene leaves a lot of us wondering: Is this the 
kind of world we are about to make come true? A world where the law of 
the jungle is going to prevail, and logic and formal rules are going to take 
the place of emotions, comprehension, altruism? Although it is very hard 
at this point to predict the course of research in AI, especially in emergency 
management, we would argue that for the time being, when machines are 
given a goal to reach, they do not find their own. It is then a matter of the 
human beings behind them, the very ones that set the goals and the 
parameters to evaluate the success of an algorithm. Ultimately, it is a 
matter of those who write the basic rules that the machines will have to 
respect.

Finally, if we think of an autonomous driving scenario, many people 
argue that they would rather be completely in charge of their vehicle. 
Think of an emergency: Would you like to be in control of what is going 
on, or would you trust an algorithm that somebody else has written? For 
us, humans, the most powerful beings on earth, it is hard to devolve 
authority to somebody else, giving up on our very own right to decide for 
ourselves. However, if we think of it, we will soon realize that we are not 
really in control of emergency conditions. Most likely, we act guided by 
fear, irrationalism, or anxiety, and we can make very, very stupid decisions. 
This is because at the very moment when we think it is most important to 
be in control, we are not. Our decisions are the result of a random mixture 
of chance, the mood of the day, and past (biased) experience. Would it not 
be better if we could be guided instead by a machine that is not a victim of 
those evil antagonists but is instead able to remain vigilant in every 
situation and act for the best? Would it not be better if the world could 
come together and decide what rules the machines should obey and what 
are the success criteria every human should be satisfied with? It is of 
utmost importance to find answers to these questions before we even 
forget we had such questions to ask.

Ultimately, it is a problem of understanding the deepest rules governing 
the human–computer interaction—which roles are going to become 
machine-based and which ones are going to be more and more human-
based in the future. None of the approaches mentioned in this work could 
ever take place with only machines, nor only humans; all of them require 
the cooperation of the two parts, leveraging what each can do better. In 
emergencies, humans and machines have equally important roles.
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5.5.2  Complex Decision-Making under Emergency Conditions

The key to better emergency management is better coordination 
between human and machine intelligence. ML can intervene and 
eventually free the human decision-maker from all the low-level analytical 
tasks and unleash their imagination and creativity to a level that machines 
themselves could never reach.

The power of ML lies in its ability to provide extremely valuable and 
meaningful information to humans, and ultimately make a difference in 
the decision process. This information is extremely important, especially 
in emergency conditions, when life-or-death decisions are due in a matter 
of minutes. Provided that algorithms will continue to improve, and models 
will be more and more accurate, are humans ready to accept this power? 
Are they ready to include the results of ML into their decision-making 
processes, allowing them the same credibility they would allow to a 
trusted human advisor? Are humans ready to accept the inexorable, 
scientific results, and the huge transformations they would trigger on our 
society?

Thanks to our augmented capabilities, our world is going to change 
dramatically. We are going to have a world with more variety, more 
connectedness, more dynamism, more complexity, more adaptability, and, 
of course, more beauty. The shape of things to come will be unlike anything 
we have ever seen before. Why? Because what will be shaping those things 
is this new partnership between technology, nature, and humanity 
(Duckworth 2017).

5.6  RECOMMENDATIONS

•	 Good monitoring systems and meaningful data are the basis of 
effective machine learning systems. Thus, practitioners should first 
invest in building reliable monitoring systems.

•	 Training programs on Machine Learning should be arranged for 
researchers in research institutes and IT employees in professional 
industries.

•	 Programs that aim at coordinating human and machine intelligence 
for better results should be created.

•	 Emergency system should be tested independently from Machine 
Learning to consider the efficiency of employing machine intelligence.
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