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Abstract

Over the past decades, engineers have focused on a common goal - to reduce emissions by
making industrial processes more efficient and by utilizing renewable energy sources. One
possibility to reach this goal can be achieved by employing processes with non-ideal fluids,
such as fluids at supercritical conditions in refrigeration, heat pump cycles and power cycles.
Most of the flows in industry are turbulent and hence the need to study turbulence in non-
ideal fluids arose. Turbulence in non-ideal fluids is extremely challenging since there are many
complex effects at play. One such effect is caused by variations in properties, which also occurs
in compressible flows, flows with high concentration gradients, or flows in heat exchangers.

This thesis presents a review of the existing theory on semi-local scaling for variable property
flows with the aim to take it one step further and apply it to turbulent heat flux modeling.
Two types of variable property cases are analysed in this thesis; (1) low-Mach number flows
with uniform pseudo-heating sources, (2) high-Mach number flows with non-uniform viscous
heating. For the former, a Direct Numerical Simulation (DNS) data-base, already available at
TU Delft, has been post-processed with the main goal to investigate if the semi-local theory
can also be applied to thermal turbulence and its modeling. For the latter, additional DNS
simulations of high-Mach number channel flows have been performed to investigate how the
viscous heating and its correlations can be accounted for in the semi-local scaling framework.

Using a 2-equation heat flux model, we find that modeling thermal turbulence in semi-local
scales considerably improves the results for low-Mach number flows. However, for high-Mach
number flows, additional unknown (closure) terms arise due to fluctuations in the viscous
heating source. A model for the source term in the enthalpy variance equation is successfully
proposed. In addition, the DNS study of two high-Mach number flows with constant semi-local
Reynolds number (Re∗τ ) profiles shed light on the importance of a newly defined parameter
(modified Eckert number) and also unveils one of the most important conditions in which
semi-local theory can be compromised, e.g. extreme density gradients.
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Preface

This document is a part of my Master of Science graduation thesis. When I came to TU
Delft, I was of the opinion that I want to pursue my career in the field of system modeling.
I was interested in modeling of heat pumps and gas turbines which is why I chose to do my
internship on heat pump modeling. I was not-very motivated to study turbulence which is
why I decided to not take the elective course on turbulence, however, in September 2020 I
became extremely curios to try a topic that is challenging and to move out of my comfort zone
of system modeling. This is why I started considering topics on combustion, CFD modeling,
and others. Among a lot of topics that I discussed with different professors, the topic of my
thesis was something that I looked upon as a challenge. A challenge to learn turbulence, a
challenge to move out of comfort zone, a challenge to try something new. With this thought I
pursued the topic of this thesis and I liked it so much that now I will continue in this domain
for my PhD.
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Chapter 1

Introduction

Climate at a global level is deteriorating every passing day mainly due to emissions from the
industrial processes in the past decades. Efforts to reduce the emissions and to make the
industrial processes more efficient are required now, more than ever. Research over a large
range of domains is performed to achieve this objective. One of the ways this can be achieved
is by exploiting renewable energy sources to produce electricity in the power industry and
chemical products in the process industry. However, due to the inherent intermittent nature of
renewable energy sources, more options need to be explored. Recently, several research insti-
tutions are evaluating the possibility to use supercritical power cycles not only for converting
various heat sources into electricity, but also to use supercritical fluids in process industries.
For example, supercritical water-cooled reactors (SCWR), which have been accepted as one of
the six most promising nuclear reactor concepts recommended by Generation IV International
Forum (DoE, 2002), are expected to increase the thermal efficiency of nuclear power plants
from 34-36% currently to >44%. Supercritical fluids are also expected to be widely used in
extraction processes. High diffusion coefficients, low surface tension, and low viscosity make
supercritical fluids an important extracting solvent.

Most of the wall-bounded industrial flows are turbulent. Understanding turbulent heat and
momentum transport is of utmost importance for designing engineering components. This
becomes more challenging if there are extreme gradients in properties. High variations in
fluid properties alter turbulence. The characterization laws (like law-of-the-wall) developed
considering constant properties in the domain, fail for variable property flows.

In general, variable property flows are those in which there are extreme gradients in fluid
properties in the flow domain due to highly non-ideal fluids, high gradients in tempera-
ture, concentration, etc. An important class of variable property flows are those involving
supercritical fluids. Supercritical fluids undergo extreme variations in properties near the
pseudo-critical point. The fluid is said to undergo a continuous transition from a liquid-like
to a gas-like state near the pseudo-critical temperature, as we increase the temperature at
constant pressure. This causes a tremendous change in certain properties, like specific heat
capacity cp, thermal conductivity λ, density ρ, viscosity µ, and others. This effect is promi-
nent at supercritical temperatures and pressures near the liquid-vapor critical point. Apart
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2 Introduction

Figure 1-1: Types of variable property cases analysed in this thesis.

from applications employing supercritical fluids, variations in properties are also found in heat
exchanger flows with extreme heat flux, rocket propulsion systems, combustion, and all ap-
plications involving compressible flows as compressible flows are inherently variable property
flows.

In this thesis, the main focus is on variable property fully developed channel flows with
variation in properties due to temperature gradients. There is a strong coupling between
energy and momentum equations as the energy equation governs the temperature, which
influences the properties, thus affecting the momentum equation.

We will analyse thermal turbulence in two types of variable property flows as described in
figure 1-1.

In the next section we will introduce semi-local scaling which is an important tool to charac-
terize variable property flows.

1-1 Semi-Local Scaling

For variable property flows, the scaling laws developed for constant property flows (classical
scaling) fail and thus, the need to explore a different scaling methodology arose. Semi-local
scaling is a methodology in which the variables are scaled with quantities based on local
properties. Patel et al. (2015) developed a mathematical framework to support the use of
semi-local scaling that has been initially proposed by Huang et al. (1995). Patel et al. first
hypothesized that, just like constant property flows are characterized by wall-normal distance
y/hc and friction Reynolds number Reτ , variable property flows can be characterized by wall-
normal distance y/hc and semi-local Reynolds number Re∗τ . hc is the channel half-width
(sub-script "c" is intentionally added in this thesis to distinguish from enthalpy h). This
hypothesis was verified using a Direct Numerical Simulation (DNS) study for a fully developed
channel flow based on different fluid types with different combinations of property profiles.
In the end, turbulent structures were analysed in detail for different variable property cases
and it was found that in semi-local scales, near the wall (semi-local wall-normal distance,
y∗ = y/hcRe

∗
τ < 10), there was turbulent structure modulation with respect to constant

property flows due to gradients in Re∗τ profile, but away from the wall (y∗ > 10), when viewed
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1-1 Semi-Local Scaling 3

in semi-local scales, there was no modulation. This analysis gave a strong hint towards the
similarities between semi-locally scaled variable property flows and classically scaled constant
property flows.

In constant property turbulent channel flows, there exists a universal law of the wall (Pope,
2001): classically scaled mean velocity collapses, independent of Reτ , as a function of y+ over
the entire inner layer (inner layer comprises of viscous sublayer, buffer layer and log-law layer,
mathematically y/hc < 0.1). It was noted, that the van Driest transformed velocity collapses
for quasi-similar Re∗τ profiles (Patel et al., 2015) but a universal velocity transformation was
missing for variable property flows. Patel et al. (2016) used a similar DNS database as used
for Patel et al. (2015) and noticed that the collapse of semi-locally scaled viscous stress over
the entire inner layer is independent of Re∗τ profiles. Using this collapse, an extended van
Driest transformation was derived, that collapses velocity profiles independent of Re∗τ profiles.

Trettel and Larsson (2016) arrived at the same extended van Driest velocity transformation
as was obtained by Patel et al. (2016), but using a different approach. They proposed trans-
formation kernels that transformed the compressible variable property flow at hand into an
incompressible flow field of friction Reynolds number (Reτ ) computed using properties at the
channel centre in the untransformed case. A few assumptions in their analysis, are: (1) the
slope of the velocity profile in the log-law region is the same in the untransformed and trans-
formed states, the slope being given by the von-Karman constant κ; (2) the turbulent and
viscous shear stresses are equal in the transformed and untransformed states, over the entire
inner layer. More details about the transformation can be found in the PhD dissertation,
Trettel (2019).

Pecnik and Patel (2017) derived the semi-locally scaled form of the turbulent kinetic energy
(TKE, k) equation. They analysed the budget of the semi-local TKE and found the property
dependent terms to be very small. Thus, what was left for a fully developed channel flow, were
terms that were governed by just one parameter, i.e. Re∗τ . This led to the conclusion that the
leading-order effect of variable properties on turbulence is characterized by Re∗τ . They solved
the turbulence model equations in their semi-locally scaled form and found the results to be
exceptionally improved with respect to solving the equations in their conventional form. This
was a major breakthrough in using the theory developed on semi-local scaling, for modeling.

Otero Rodriguez et al. (2018) built on the work of Pecnik and Patel (2017) but now they
compared the results for different turbulence models (Cess (1958), Spalart and Allmaras
(1992), Myong and Kasagi (1990), Menter (1993) and Durbin (1995)). They solved the
turbulence model equations in their semi-local form but the variables were written in the
classically scaled form. This was done to avoid rescaling the variables with updated local
properties at every iteration step while solving the model. It was found that semi-local scaling
improves the prediction of eddy-viscosity (µt) for most of the models. The best improvement
of semi-local results, as compared to solving conventional equations, is observed for Myong
and Kasagi’s k − ε model. Conventional scaling proves to provide poor results for variable
property flows for most of the models. Interestingly, Spalart and Allmaras’s model provides
sufficiently accurate results without any modifications.

The energy equation is also solved by Otero Rodriguez et al. (2018) to obtain the temperature
profile. The eddy-conductivity (λt) is computed from the eddy-viscosity (µt) using a constant
turbulent Prandtl number (Prt) of unity, as suggested in the analysis of Patel et al. (2017).
The results were not as convincing as they were for velocity, especially for the gas-like fluid.
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This suggested, that using Prt of unity is not the most accurate way of solving for eddy-
conductivity (λt) for variable property flows and shed light on the need to study different
heat flux models in detail. However, a major drive to study heat flux modeling for variable
property cases also comes from the fact that constant Prt models fail in cases where turbulent
heat flux and turbulent shear stress are not strongly correlated, for instance, cases in which
buoyancy effects are dominant (So and Speziale, 1999; Patel, 2013). Before proceeding with
heat flux modeling in variable property flows, reviewing the literature on turbulent heat
transfer in constant property flows is important to create analogies and for a comprehensive
understanding.

1-2 DNS of Turbulent Heat Transfer and Heat Flux Modeling for
Constant Property Channel Flows

Article Boundary Condition Pr Reτ
Kim and Moin (1989) Iso-thermal 0.71 180
Kasagi et al. (1992) Iso-flux 0.71 150
Kasagi and Ohtsubo (1993) Iso-flux 0.025 150
Kawamura et al. (1998) Iso-flux 0.025 - 5 180
Kawamura et al. (1999) Iso-flux 0.025, 0.2, 0.71 180, 395

Table 1-1: A compilation of the DNS studies performed to study turbulent heat transfer in
channel flows

Various DNS studies have been performed over the years to study more about the turbulent
heat transfer physics. Kawamura et al. (1998) concluded that for Pr ≥ 0.1, the turbulent
Prandtl number Prt is independent of molecular Prandtl number Pr. Kawamura et al. (1999)
studied effects of Reynolds and Prandtl number on thermal statistics and it was found that the
turbulent Prandtl number is independent of friction Reynolds number and molecular Prandtl
number for fluids with Pr ≥ 0.2. Kasagi and Ohtsubo (1993) presented instantaneous thermal
structures for a low Prandtl number fluid (Pr = 0.025), and substantial difference was noted
compared to the structures obtained for a fluid with Pr = 0.71. Kawamura et al. (1999) also
presented instantaneous thermal structures for a high and a low Prandtl number fluid at two
different Reynolds numbers.

Heat flux modeling: Research on heat flux models has been limited as compared to the
research on turbulent stress models. This is understandable, as turbulent stresses have a
direct implication on the equations required to solve for mean temperature, and an indirect
implication through their influence on mean velocity (Launder, 1976). Thus, development of
turbulent stress models precedes development of heat flux models. Constant turbulent Prandtl
number model with the value of Prt near unity is widely used for heat transfer calculations
and has an implicit assumption of a strong analogy between heat and momentum transport.
However, with the advent of computational power and the need for accurate results, research
to develop heat flux models gained importance. Also, it is known that constant Prt models
fail for flows with strong buoyancy effects (So and Speziale, 1999).
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Launder (1976) was one of the pioneering researches in heat flux modeling. Launder discussed
about closures for the heat flux transport equation. Transport equation of the temperature
fluctuation θ′2 (analogous to turbulent kinetic energy equation), which was originally pre-
sented by Corrsin (1952), is also discussed. The turbulent diffusion term in that equation
is closed using a gradient type representation. Another term that needs to be modeled so
as to construct a time scale (alongwith θ′2) was the dissipation of thermal fluctuation (εθ)
term. The usual way of modeling this term, using the definition of time scale ratio (R), is not
accurate, as it demands specification of the time scale ratio beforehand. Beguier et al. (1978)
suggests the ratio to be constant at 0.5 for pipe flows. However, the heated grid experiments
of Warhaft and Lumley (1978) suggested that the decay exponent of the thermal fluctuations
depend on the heat flux input and is not a constant. The DNS data of Kawamura et al. (1998)
shows a clear Prandtl number Pr dependence of the time scale ratio for channel flows. The
non-uniqueness of R suggests that using it for computing dissipation of thermal fluctuations
is not the right way as was also concluded by Launder (1976). This necessitates solving a
transport equation for εθ. Launder (1976) extensively discusses modeling of dissipation and
generation terms in the εθ transport equation, and also mentions the challenge in modeling
these terms due to the availability of twice as many parameters as were there for modeling
of velocity fluctuation dissipation (ε). For example, two time scales (k/ε and θ′2/εθ) and two
dimensionless measures of generation rates (P/ε and Pθ/εθ). k denotes the turbulent kinetic
energy and P , Pθ denotes the rate of production of turbulent kinetic energy k and thermal
variance θ′2 respectively.

An extensive review of turbulent heat transfer modeling was presented by So and Speziale
(1999). The authors reviewed different high-Re heat flux models and classified them appro-
priately (0,1,2-equation models, etc.). Near wall models are also presented in which the near
wall effects are incorporated by modifying the model equations, such that they are valid in
the entire domain all the way up to the wall. Boundary condition of thermal fluctuations,
θ′2 = 0, is a valid approximation for both, iso-thermal and iso-flux boundary conditions, for
engineering applications as long as Pr > 0.1. This was concluded based on the analysis of
the effect of θ′2 = 0 boundary condition on the mean temperature and associated integral
quantities, done by Sommer et al. (1994). Near wall behaviour of turbulent thermal quanti-
ties like turbulent heat flux (v′θ′), thermal fluctuations (θ′2) and dissipation (εθ) exhibit a Pr
dependency and, as per the authors, very few models are able to capture this dependency.

In this thesis, we shall use a 2-equation heat flux model. The 2-equation class of heat flux
models obtain their name because they solve transport equations of two thermal quantities,
thermal variance (θ′2) and its dissipation (εθ). These two quantities are used to construct
a time scale called the thermal time scale (τt = (θ′2/2)/εθ). This time scale along with the
velocity time scale τu = k/ε, is used to construct a composite (hybrid) time scale (τm) for
heat transfer. This hybrid time scale is then used to estimate the eddy conductivity λt.

Deng et al. (2001) and Nagano and Kim (1988) approximated this hybrid time scale as √τuτt,
whereas, Abe et al. (1995) checked for multiple formulations of the hybrid time scale. One of
the formulations is the one by Zeman and Lumley (1976) which models the hybrid time scale
as the harmonic average of the thermal and velocity time scales. This implies that the lower
one of τu and τt will have more importance on the estimation of τm. Nagano and Shimada
(1996) also used the harmonic average formulation of the time scale.

Near wall effects are incorporated in the model using suitable damping functions or using
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additional terms. Deng et al. (2001) used a damping function to model the near wall effects
on eddy conductivity λt but without incorporation of Prandtl number dependency. Nagano
and Kim (1988) used a formulation of damping function with incorporation of Prandtl number
effects on the near wall behaviour. Abe et al. (1995); Nagano and Shimada (1996) modeled
the near wall effects on eddy conductivity in more detail. They proposed an additional time
scale dependent on the dissipative eddy time scale based on the motivation that near the wall,
the relevant dynamics are governed by the dissipative time scale. Also, these models took
care of the Prandtl number effects on λt.

Deng et al. (2001) incorporated the near wall effects on the model equations (θ′2/2, εθ) using
damping functions to modify the model constants in the εθ equation. Nagano and Kim (1988)
did not use any damping function in the model equations. However, they incorporated the
near wall behaviour by modeling an extra term. Hanjalić and Launder (1976) found that
modeling an analogous term to what Nagano and Kim (1988) modeled, proves to be very
beneficial to incorporate the near wall effects on TKE dissipation ε. Abe et al. (1995) used
damping functions and Nagano and Shimada (1996) used both the damping functions and
also modeled the extra term that Nagano and Kim (1988) modeled. Nagano and Shimada
(1996) attempted to incorporate Prandtl number effects also in the model equations which
other models don’t. This is why the Nagano and Shimada model works well for a range of
Prandtl numbers.

Nagano and Kim (1988) and Nagano and Shimada (1996) did not solve for the actual thermal
variance dissipation but for its isotropic part such that it goes to zero at the wall. Doing so is
found to be computationally very stable. Jones and Launder (1973) solved for the isotropic
part of TKE dissipation in their k − ε model with the motivation of computational stability.

Due to the dependency of heat flux models on turbulent stress models and not vice versa, So
and Speziale (1999) suggested to use turbulent stress models belonging to the same or higher
hierarchy than what is used for heat flux modeling. For example, if a two equation model is
used for heat flux then the turbulent stress model should be either two equation or of higher
hierarchy and not one equation or lower.

1-3 Turbulent Heat Transfer in Variable Property Channel Flows

DNS studies mentioned in section 1-2 treated temperature as a passive scalar which means
that the temperature field will not have any effect on turbulent motions. For cases with
very high heat flux or for fluids with strong temperature dependency of properties, property
variations due to temperature are severe and temperature does not remain a passive scalar
anymore (Patel et al., 2017). It influences fluid properties that modify turbulence. Effect
of variable properties on turbulence in a fully developed low-Mach number channel flow has
been extensively studied (Patel et al., 2015, 2016; Pecnik and Patel, 2017). Effect of variable
properties on scalar transport has been studied by Patel et al. (2017).

Patel et al. (2017) performed DNS of low-Mach number fully developed channel flows for a
set of fluids with different variations in properties, leading to a variety of profiles of semi-local
Reynolds number Re∗τ and semi-local Prandtl number Pr∗. Unlike the collapse of viscous
and turbulent shear stresses observed in Patel et al. (2016), neither the semi-locally scaled
conductive heat flux nor the semi-locally scaled turbulent heat flux have a universal profile in
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the entire inner layer when plotted against the semi-local co-ordinate y∗. Thus, the technique
which Patel et al. (2016) used to derive a universal transformation for velocity, will not work
to derive a universal transformation for temperature. However, the authors came up with
an extended van Driest temperature transformation using the collapse of semi-locally scaled
turbulent heat flux in the log-law layer. The extended transformation collapses for cases with
quasi-similar Pr∗ profiles independent of Re∗τ profiles.The fluids with quasi-similar Re∗τ and
Pr∗ profiles have thermal statistics that almost collapse, hinting towards the characterization
of heat transfer in variable property flows by Re∗τ and Pr∗ profiles. For all the cases, the
turbulent Prandtl number was found to be near unity, which inspired Otero Rodriguez et al.
(2018) to use unity turbulent Prandtl number in their analysis.

Lee et al. (2014) studied the effect of variable viscosity in a thermal turbulent boundary layer
on thermal statistics. They modified the original Kader’s relation which computed the van
Driest temperature (θvD) based on the Prandtl number of fluids. Lee et al. assumed that
the effect of variable Prandtl number on θvD can be captured by using semi-local Prandtl
number Pr∗ in the equation and by modifying the elevation of the edge of log-law region.
The modifications proved to work well with the cases proposed in Lee et al. (2014). However,
Patel et al. (2017) tested the modifications for their cases, and the modified equation proved
to fail. Patel et al. (2017) reasoned this failure due to the fact that the modifications do not
capture the effect of Re∗τ gradients on the slope of the log-law profile.

Earlier studies on scalar transport in variable property flows (Patel et al., 2017; Lee et al.,
2014) used DNS in their research to draw out important conclusions. However, an extensive
research on heat flux modeling of variable property flows needs to be carried out. Using
a constant turbulent Prandtl number of unity for heat flux modeling is not the right way
as it results in high errors, especially for the gas-like fluids, as can be seen in the results
of Otero Rodriguez et al. (2018). Also, to achieve the final goal of predicting heat transfer
in supercritical fluids, capturing of additional physics (due to buoyancy and acceleration) is
required, and a constant Prt model would be insufficient to capture these effects. Therefore,
an extensive study of heat flux modeling for variable property turbulent channel flows is
needed.

1-4 Compressible Channel Flows

Compressible flows are an important class of flows with variable properties. These flows
are different than the constant property incompressible turbulent flows because of two main
reasons; they have variation in properties and they have "pure compressibility" effects. Cole-
man et al. (1995) performed DNS simulations of compressible channel flows up to bulk Mach
number of 3. They observed that near the wall, fluctuations in density and temperature are
mainly caused due to solenoidal passive mixing and hence is an outcome of mean gradient in
temperature and density. These fluctuations are not of acoustic nature and this is clarified
using joint probability density functions studied. To isolate the pure compressibility effects
from the effects arising due to mean gradients in properties, they constructed a case with
fictitious heating source which balances the viscous heating such that the net heat source is
zero. This implies constant temperature and properties in the domain. The study showed
that the case with fictitious heat source is identical to incompressible flows with constant
properties and thus, reinforced the fact that pure compressibility effects are small.

Master of Science Thesis A.M. Hasan



8 Introduction

Huang et al. (1995) was the first study that introduced semi-locally scaled wall-normal co-
ordinate (y∗). In this study, differences between Reynolds and Favre averaging is studied
using DNS simulations of supersonic channel flows. The difference between Reynolds and
Favre averaged streamwise velocity is found to be small and limited to the near wall region.
This supports Markovin’s hypothesis in the sense that effects of density fluctuations are
negligible. The budget of TKE was plotted and it is found that the terms due to "pure
compressibility", for instance, pressure-dilatation correlation, are small.

These studies and numerous others have the same broad conclusion: pure compressibility
effects in supersonic channel flows (bulk Mach number < 5) are small (for more details about
pure-compressibility effects on turbulence, refer Lele (1994)). The variable property cases
analysed in Patel et al. (2015, 2016, 2017) are "low-Mach number" cases. The low-Mach
number approximation implies that these flows are similar to incompressible flows, but with
variable properties. All compressibility effects are neglected in this approximation. The fact
that pure compressibility effects are small in supersonic channel flows motivates us to treat
them like low-Mach number variable property flows.

Morinishi et al. (2004) discussed about the difference in low-Mach number flows with "uniform
heating" and high-Mach number flows with "viscous heating". They showed that for high-Mach
number cases, due to the dissipation term, there exists no log-law region in the temperature
profile (normalized by friction temperature). The budget of mean internal energy, for the
compressible and low-Mach number cases, are presented and a clear distinction between the
two type of flows is visible. A more detailed discussion on the contents of Morinishi et al.
(2004) can be found in the PhD dissertation by Tamano (2002).

In high-Mach number flows, fluctuations in dissipation and in temperature can correlate to
form a source/sink term in the temperature variance budget equation. Plate (1971) neglected
this correlation for atmospheric boundary layers. It was neglected based on the assumption
that dissipation is dominant in high frequency range of the velocity spectrum (small scales)
whereas temperature fluctuations are small in this frequency range. However, Antonia et al.
(1980) claimed that even though the correlation term is negligible in the thermal variance
budget for atmospheric surface layers, the correlation coefficient is not negligible. It will be
interesting to study this correlation for high-Mach number channel flows, especially near the
wall where dissipation is very high.

1-5 Research Objectives, Scope and Goal

In this thesis, two different but related research objectives will be achieved.

Research Objective 1:

To analyse the governing parameters for thermal turbulence in low-Mach number
variable property flows with uniform volumetric heating and to explore if semi-
locally scaled heat flux models capture variable inertia effects better than conven-
tionally scaled models.

PhD work of Patel (2017) is a major contribution towards the study of variable property
turbulence in channel flows. However, an extensive analysis of heat flux modeling still needs
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to be done for variable property flows. A constant turbulent Prandtl number model is not the
most robust solution as it fails in cases with strong buoyancy or in cases where the similarity
between heat and momentum transport does not hold. Thus, an accurate 2-equation heat
flux model for variable property flows has to be developed.

Research Objective 2:

To study the physics and importance of viscous heating for high-Mach number
channel flows, using correlation coefficients and budgets of thermal quantities.
To analyse the governing parameters for thermal turbulence and to solve RANS
(Reynolds Averaged Navier Stokes) equations using a 2-equation heat flux model
in high-Mach number flows.

A detailed study of 2-equation heat flux modeling is needed for compressible flows in sit-
uations where the assumption of a constant turbulent Prandtl number or the validity of
Reynolds analogies fail. Fluctuations in dissipation of kinetic energy (viscous heating) can
add source/sink terms in the model equations. An analysis is thus required to develop and
implement proper models for capturing these flows physics. If semi-local scaling is capable to
capture (to a certain extent) the variable inertia effects in thermal turbulence, then a semi-
locally scaled heat flux model can be used to isolate and analyse the effect of viscous heating
on the model equations. This is why, this objective is combined with the first one.

The Goal of this thesis to extend the existing constant-property heat flux models for variable
property flows. The research in this thesis can be applied further to build robust heat flux
models for supercritical flows to finally be able to predict the heat transfer deterioration
(HTD) and heat transfer enhancement (HTE) phenomena. The target of the research is
not only limited to RANS modeling but can also be extended to wall-modeled Large Eddy
Simulations (LES).

The Scope of this thesis is limited to calorifically perfect fluids in a fully developed channel
flow with extreme variations in properties (ρ, µ, λ), but with negligible buoyancy effects. The
high-Mach number cases analysed will be supersonic and the low-Mach number cases will be
the ones with uniform heating.

• In chapter 2, a background on governing equations and basics of modeling is provided.

• Chapter 3 describes the motivation behind modeling in semi-local scales. It also coher-
ently presents the mathematics associated with semi-local scaling. The equations that
are previously derived in literature and the equations that will be derived in this thesis
are presented.

• In Chapter 4, variable property cases analysed in this thesis are presented. They include
the low-Mach number cases of Patel et al. (2017), high-Mach number cases of Trettel
and Larsson (2016) and the constant Re∗τ cases that are simulated (DNS) in this thesis
using the in-house FORTRAN code.

• Chapter 5 is related to research objective 1. The enthalpy variance equation presented
in chapter 3 is simplified for low-Mach number cases by developing a FORTRAN post-
processing code to post-process existing DNS data. The governing parameters for ther-
mal turbulence are analysed. The 2-equation heat flux model of Nagano and Shimada
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(1996) is solved on MATLAB in semi-locally scaled form and compared with the results
from solving it in conventional form.

• Chapter 6 is related to research objective 2. The viscous heating cases are compared
with the low-Mach number uniform heating cases. The physics behind fluctuations in
dissipation is discussed using correlation coefficients, that are computed using a post-
processing FORTRAN code. The effects of viscous heating on mean enthalpy, enthalpy
variance and turbulent heat flux equations are presented. Using the constant Re∗τ high-
Mach number cases simulated in this thesis, the importance of the modified Eckert
number (Ecθ∗τ ) is isolated and discussed. In the end we describe the effects of viscous
heating on the 2-equation heat flux models and also propose a model for viscous heating
source term in enthalpy variance equation, motivated from near-wall physics.

• In chapter 7, we discuss on one of the main criteria under which semi-local scaling can
be compromised - extreme density gradients.
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Chapter 2

Governing Equations

In this chapter, the governing equations in the instantaneous form are presented. Then, the
equations are averaged using Reynolds and Favre decompositions to obtain the Reynolds
Averaged Navier Stokes (RANS) equations. In the end, ways to model the unclosed terms in
RANS equations are briefly discussed.

2-1 Governing Equations: Instantaneous Form

The Navier-Stokes equation in dimensional form are presented in this section.

• Continuity equation

∂ρ

∂t
+ ∂ρui

∂xi
= 0, (2-1)

where ui is the instantaneous velocity. The sub-script i defines the direction. For example, u2
corresponds to velocity v in the x2 direction, i.e. y direction. In this thesis, x1, x2, x3 (or x, y,
z) correspond to streamwise, wall-normal and spanwise directions in a channel, respectively.

• Momentum equation

ρ
∂ui
∂t

+ ρuj
∂ui
∂xj

= − ∂P
∂xi

+ ∂τij
∂xj
− ∂ρΨ

∂xi
. (2-2)

Defining modified pressure as defined in Pope (2001),

p = P + ρΨ, (2-3)

where Ψ is the gravitational potential. For a Newtonian fluid, the overall stress tensor is
defined as,

Tij = −Pδij + 2µSij + λv
∂uk
∂xk

δij , (2-4)
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where µ is defined as the first coefficient of viscosity and λv is defined as the second coefficient
of viscosity. P is the thermodynamic pressure and Sij is the rate of strain tensor defined as,

Sij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
. (2-5)

Mechanical pressure is defined as the trace of the stress tensor given by (White, 1974),

pmech = −P +
(2µ

3 + λv

)
∂uk
∂xk

. (2-6)

Thus, the thermodynamic pressure due to vibration of molecules, and mechanical pressure
are different by the definition of equation (2-6). However, using Stoke’s hypothesis, the bulk
viscosity defined as, k = 2µ

3 + λv, is zero and thus, the mechanical and thermodynamic
pressures are equal.

By incorporating the Stoke’s hypothesis, we get,

Tij = −Pδij + 2µSij −
2
3µ

∂uk
∂xk

δij , (2-7)

which can be written as,
Tij = −Pδij + τij . (2-8)

For more details on how did we arrive from equation (2-4) to equation (2-8), reader is referred
to White (1974), chapter 2.

The anisotropic part of stress tensor, τij , is symmetric and is defined as,

τij = 2µSij −
2
3µ

∂uk
∂xk

δij . (2-9)

• Energy equation

ρ
∂h

∂t
+ ρuj

∂h

∂xj
= ∂p

∂t
+ uj

∂p

∂xj
+ ∂

∂xj

(
λ
∂T

∂xj

)
+ Φ, (2-10)

where λ is the thermal conductivity, h is the enthalpy of fluid per unit mass, T is the tem-
perature and Φ is the volumetric heat source/sink per unit volume. cp is defined as,

∂h

∂T

∣∣∣∣
p

= cp, (2-11)

and thus we can write,
dh = cpdT , (2-12)

only when the thermodynamic pressure is constant. In general,

dh = ∂h

∂T

∣∣∣∣
p

dT + ∂h

∂p

∣∣∣∣
T

dP. (2-13)
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2-2 Governing Equations: Averaged Form 13

For ideal gases,
∂h

∂p

∣∣∣∣
T

= 0, (2-14)

and thus, equation (2-12) always holds. However, for fluids with a different equation of state,
equation (2-12) can be written only under the assumption of small variations in thermody-
namic pressure. In this thesis, we will either analyse ideal gases or flows in low-Mach number
approximation (thermodynamic pressure = constant) and thus we will use equation (2-12) to
replace temperature in the diffusion term of equation (2-10) by enthalpy.

Using,
α = λ

cp
, (2-15)

the final equation becomes,

ρ
∂h

∂t
+ ρuj

∂h

∂xj
= ∂p

∂t
+ uj

∂p

∂xj
+ ∂

∂xj

(
α
∂h

∂xj

)
+ Φ. (2-16)

Writing an equation in terms of h instead of T will be preferred in this thesis. Here, cp is the
specific heat capacity and α is a form of conductivity. Note that in most of the literature, α
is defined as thermal diffusivity, α = λ/(ρcp). We will use Γt to denote thermal diffusivity.
In this Master thesis we will deal with calorifically perfect fluids, i.e. cp will be treated as
constant in the domain.

Equations (2-1, 2-2 and 2-16) are instantaneous equations which are solved in a Direct Nu-
merical Simulation (DNS) code for turbulent flows. In DNS, all scales are resolved and thus
the mesh needs to be very fine. As useful as this sounds for academic study, performing a
DNS simulation for industrial applications is not always practically feasible. For industrial
applications, often the averaged form of these equations are solved which are nothing but the
RANS equations. They are discussed in the next section.

2-2 Governing Equations: Averaged Form

Osborne Reynolds, in 1895, proposed a decomposition as,

γ = 〈γ〉+ γ′, (2-17)

where γ is any quantity and 〈.〉 is the mean operator. Thus, the instantaneous quantity is
decomposed into a mean and a fluctuating part such that,

〈γ′〉 = 0. (2-18)

For variable density flows, density-weighted averaging is used for velocity ui and enthalpy h,
which helps to keep the form of the governing equations similar to constant property RANS
equations. The decomposition using density-weighted mean is called Favre decomposition
and is written as,

γ = {γ}+ γ′′, (2-19)
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14 Governing Equations

where, {.} is the Favre-mean operator and,

{γ} = 〈ργ〉
〈ρ〉

, (2-20)

and,
〈γ′′〉 6= 0, (2-21)

but,
〈ργ′′〉 = 0. (2-22)

Favre decomposition for velocity and enthalpy (or temperature), and Reynolds decomposition
for all other quantities shall be used from now on. To arrive at the RANS set of governing
equations from the instantaneous equations, following recipe can be used:

1. Decompose the variables using Reynolds decomposition or Favre decomposition as suit-
able,

ui = {ui}+ u′′i , h = {h}+ h′′, µ = 〈µ〉+ µ′, p = 〈p〉+ p′,
α = 〈α〉+ α′, ρ = 〈ρ〉+ ρ′.

(2-23)

2. Take Reynolds average 〈.〉 of the entire equation.

3. Apply rules of averaging and simplify.

• Continuity equation

∂〈ρ〉
∂t

+ ∂〈ρ〉{ui}
∂xi

= 0. (2-24)

• Momentum equation

〈ρ〉∂{ui}
∂t

+ 〈ρ〉{uj}
∂{ui}
∂xj

= −∂〈p〉
∂xi

+ ∂〈τij〉
∂xj

−
∂〈ρu′′i u′′j 〉
∂xj

, (2-25)

where,
〈τij〉 =

〈
2µSij −

2
3µ

∂uk
∂xk

δij

〉
. (2-26)

The additional unclosed term, ∂〈ρu′′i u′′j 〉/∂xj in equation (2-25), originates from the advection
term, but due to its form being very similar to the viscous stress term in the momentum
equation, this term is called "Reynolds stress". The Reynolds stress tensor is splitted into an
isotropic part and a deviatoric part as,

〈ρu′′i u′′j 〉 = aij + 2
3〈ρ〉{k}δij , (2-27)

where,

k = u′′i u
′′
i

2 . (2-28)

{k} is defined as the turbulent kinetic energy (TKE) and, aij , is the deviatoric part of the
Reynolds stress tensor.
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2-3 Turbulence Modeling 15

• Energy equation

〈ρ〉∂{h}
∂t

+ 〈ρ〉{uj}
∂{h}
∂xj

= ∂〈p〉
∂t

+
〈
uj

∂p

∂xj

〉
+ ∂〈qj〉

∂xj
−
∂〈ρu′′jh′′〉
∂xj

+ 〈Φ〉, (2-29)

where,

〈qj〉 =
〈
α
∂h

∂xj

〉
. (2-30)

The additional term on the right hand side originates from the advection term and it represents
transport of enthalpy due to fluctuating motions (eddies). Due to its form being very similar
to the conductive heat flux, this term is usually referred to as turbulent heat flux.

As can be seen from equations (2-25, 2-29), averaging the instantaneous equations results
in additional unknown terms like the Reynolds stress or the turbulent heat flux that need
closure equations. In the section to follow, closures for these quantities will be discussed.

2-3 Turbulence Modeling

In this section, we will discuss various types of models used for modeling the additional terms
in equations (2-25) and (2-29).

2-3-1 Reynolds Stress Modeling

2-3-1-1 Turbulent viscosity models

A very well-known way of modeling the Reynolds stresses is by using the turbulent viscosity
hypothesis. This hypothesis is written as,

aij = −µt

[(
∂{ui}
∂xj

+ ∂{uj}
∂xi

)
− 2

3
∂{uk}
∂xk

δij

]
, (2-31)

where aij is defined in equation (2-27).

Deviatoric part of the Reynolds stress tensor is proportional to the deviatoric part of the
mean rate of strain tensor and the constant of proportionality is the eddy viscosity (µt). This
is analogous to the relation of viscous stress in a Newtonian fluid, the difference being in the
constant of proportionality.

Equation (2-31) involves an intrinsic assumption and a specific assumption (Pope, 2001).
The intrinsic assumption is that the hypothesis defines turbulent stress at a point based on
local velocity gradient at that point. Turbulence at a point in the domain is often influenced
by the conditions upstream (memory effects) of the point and thus, it is not always a local
phenomenon described by local quantities. However, this assumption works for simple shear
flows due to the absence of memory effects. A specific assumption is that the hypothesis
assumes a linear relation between the turbulent stress and the mean rate of strain tensor with
the constant of proportionality µt. This is patently incorrect even for the simplest of flows
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16 Governing Equations

(Pope, 2001). However, for fully developed channel flows, just one component of the Reynolds
stress tensor needs modeling which is,

〈ρu′′v′′〉 = −µt∂{u}/∂y. (2-32)

Equation (2-32) can be used as a definition of µt and thus no assumptions are involved (Pope,
2001).

For turbulent channel flows, referring equation (2-32), the main task now is to find µt. As
commonly done in literature, we shall discuss ways to compute νt which is related to µt as,

νt = µt/〈ρ〉. (2-33)

The dimension of νt is m2 s−1 and is a flow property rather than a fluid property. Writing νt
in terms of flow quantities,

νt ∼ uolo, (2-34)

where uo and lo are large eddy velocity and length scales, as majority of the contribution to
momentum transport will be done by large eddies.

Different types of models try to approach the problem of finding a suitable estimation of
velocity scale uo and length scale lo in different ways. Most of the models solve the transport
equations of turbulent quantities like TKE (k), dissipation of TKE (ε), etc. to construct these
scales. Based on the number of transport equations solved, the models are divided in different
categories as follows:

• 0-equation model:

– The mixing-length model: In this model the velocity scale is approximated as uo ∼
lm|∂〈u〉/∂y| and the length scale is approximated as lo ∼ lm where, lm is the Prandtl’s
mixing length and it signifies length up to which momentum is transported by mixing.
We get, νt ∼ l2m|∂〈u〉/∂y|. The problem is only partially solved as determination of
lm is yet to be done. lm is flow specific and that is a major drawback of this model.

• 1-equation model: The mixing-length model estimates uo as a function of the mean
velocity gradient. Kolmogorov in 1942 and Prandtl in 1945 suggested that a better velocity
scale is based on the turbulent kinetic energy (〈k〉 = 〈u′iu′i/2〉), uo ∼

√
〈k〉. These models

require solving of the transport equation of TKE. Readers are referred to Pope (2001) for
more details. One major drawback of this model, like the mixing-length model, is that lm
still needs to be specified.

• 2-equation models: Two most famous classes of models in this category are the k − ε
and k−w models. In k− ε models, along with the TKE transport equation, the transport
equation of dissipation of TKE (ε) is solved. Using these two turbulent quantities, the
length scale and velocity scale are constructed as, uo ∼

√
〈k〉 and lo ∼ 〈k〉1.5/ε. The

main advantage of this model is that the exclusive specification of lm is not needed as it is
constructed using k and ε. The k − ε class of models are further divided into low-Re and
high-Re k − ε models. The high-Re models are used for flows with very high Reynolds
number and thus a very thin near-wall region (viscous sub-layer and buffer layer). In these
models, the near-wall region is not solved and the first computation point lies in the log-
law region. Suitable boundary conditions considering the wall-effect is devised using the
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2-3 Turbulence Modeling 17

wall-functions. For low Reynolds number flows, the width of the near wall region is not
negligible anymore. Also, if accurate near wall prediction of certain turbulent quantities
(like k) is needed, near-wall region should be solved. For this, low-Remodels are proposed.
In this type of models, suitable damping functions are introduced in the model equations
to reproduce the near-wall behaviour accurately, such that now the equations can be
integrated all the way up to the wall. Various researchers have their own way of devising
these damping functions and this is where a lot of models differ from each other.
k−w models solves the transport equation of specific dissipation w = 〈k〉/ε as the second
turbulent quantity alongside 〈k〉 , instead of ε. These models are known to provide superior
performance in the near-wall region that led (Menter, 1993) to propose another model
which solves k − w like equations near the wall, and k − ε like equations away from the
wall.

• V2F model: This model was proposed by Durbin in 1991 (Durbin, 1991). In this model,
alongwith the usual k− ε equations, two additional equations are solved, one for the wall-
normal fluctuations 〈v′2〉 and another is an elliptic equation to model the pressure-velocity
correlation term in the transport equation of 〈v′2〉. The salient feature of this model is
that the use of damping function in the equation of νt to model the near wall effects is
eliminated. This is because, the near wall damping functions are used to capture the
inviscid effects of wall blocking that arise due to the impermeability kinematic boundary
condition on v′. However, since now νt is modeled using uo ∼

√
〈v′2〉 and lo ∼

√
〈v′2〉〈k〉/ε,

the wall-blocking effect is taken care in the computation of 〈v′2〉 with the help of an elliptic
model equation to model the pressure-velocity term.

2-3-1-2 Reynolds stress models

In these models, the transport equations of Reynolds stress components are solved together
with a transport equation to model the dissipation rate ε. The important terms in this model
that needs closure are: the turbulent diffusion term, pressure-velocity correlation term and
the anisotropic dissipation term. There are different closure models to model these terms.

For more details on turbulence modeling refer Pope (2001) or Wilcox et al. (1998).

2-3-2 Turbulent Heat Flux Modeling

So and Speziale (1999) presented a detailed review on heat flux models. A detailed description
of the heat flux models, as presented therein, are not reproduced here. However, the most
common ones are briefly discussed.

2-3-2-1 Gradient diffusion hypothesis

Like the turbulent viscosity hypothesis, there is a similar hypothesis for scalars, called the
gradient-diffusion hypothesis. For turbulent channel flows, the turbulent scalar flux in
the wall-normal direction is given by,

〈ρv′′φ′′〉 = −σt∂{φ}/∂y, (2-35)

Master of Science Thesis A.M. Hasan



18 Governing Equations

where φ is any scalar and σt is the turbulent conductivity of that scalar. Using this hypothesis,
turbulent heat flux can be written as,

〈ρv′′h′′〉 = −αt∂{h}/∂y, (2-36)

where αt is λt/cp. The main task now is to find a suitable approximation for αt.

• Constant Prt model: This technique of modeling the heat flux is widely used in the
industry due to its simplicity. However, this model is not always accurate and reliable.
For example, it fails in cases where buoyancy effects are dominant (So and Speziale, 1999).
The eddy conductivity is modeled as,

αt = µt
Prt

. (2-37)

In the constant turbulent Prandtl number model, Prt is assumed to be constant in the flow
field, and a value of 0.9 is widely used. This suggests a strong analogy between momentum
and thermal mixing.

• 2-equation models: In these models, αt is modeled using turbulent quantities. αt has
dimensions of m2 s−1 kg m−3. However, to maintain similarity with the modeling of νt, we
define eddy diffusivity with the dimensions of m2 s−1 as,

Γt = λt
〈ρ〉cp

= αt
〈ρ〉

. (2-38)

We can write,
Γt ∼ u2

oto, (2-39)

where uo is a velocity scale of large eddies responsible for mixing and to is a time scale.
The velocity and time scales are estimated using velocity turbulence quantities like TKE
(k) and its dissipation (ε) and using thermal turbulence quantities like enthalpy variance
(kh = h′′h′′/2) and its dissipation (εh). This implies that αt gets influenced by the turbulent
quantities computed by turbulent stress models and thus, heat flux models are influenced
by the accuracy of turbulent stress models.

After discussing about the governing equations in the dimensional form and also about the
closure models, in the next chapter we will see how does the governing and model equations
look like when they are semi-locally scaled.
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Chapter 3

Semi-Local Scaling

The velocity scale and the viscous length scale are defined as uτ =
√
τw/ρw and δv = νw/uτ

respectively and are used in the classical scaling framework of constant property flows to
characterize the inner layer. τw is the wall shear stress and ν represents kinematic viscosity.
The dimensionless wall-normal co-ordinate is defined as y+ = y/δv, which can be interpreted
as the local Reynolds number. The friction Reynolds number based on the half channel
height is defined as Reτ = hc/δv, where hc is the half channel height. Classical scaling is
developed based on the properties at the wall. For constant properties, the properties in the
flow domain are the same as the properties at the wall, but for variable property flows, this
is not true. Thus, the characteristic scales defined using properties at the wall would not be
a right choice to characterize the inner layer of variable property flows. Semi-local scaling,
which was first introduced by Huang et al. (1995), has been applied mathematically to scale
the Navier-Stokes equation by Patel et al. (2015). In semi-local scaling, the velocity scale and
the viscous length scale are defined using the local properties as,

u∗τ =
√
τw/〈ρ〉, δ∗v = 〈ν〉/u∗τ . (3-1)

The semi-locally scaled wall-normal co-ordinate then becomes,

y∗ = y

δ∗v
= y

hc
Re∗τ , (3-2)

where the semi-local Reynolds number is defined as,

Re∗τ = hc/δ
∗
v . (3-3)

Properties in the 〈.〉 operator indicate averaged local property at a point in the domain. The
semi-local Prandtl number based on local properties is defined as,

Pr∗ = 〈µ〉cp/〈λ〉. (3-4)

Like the friction velocity, u∗τ , the semi-local friction temperature is defined as,

θ∗τ = qw
〈ρ〉cpu∗τ

. (3-5)
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20 Semi-Local Scaling

Knowing now the basics of semi-local scaling and understanding its essence, it would be
interesting for the reader to know the motivation behind semi-local scaling and its importance.
This is discussed in the next section.

3-1 Motivation Behind Using Semi-Local Scaling

Based on the analysis of Patel et al. (2015, 2016), we know that semi-local scaling characterizes
variable property flows better than wall-based scaling. The best proof of this is the fact that
solving RANS models in semi-locally scaled form provides much better results compared to
just solving them in their conventional form (Pecnik and Patel, 2017; Otero Rodriguez et al.,
2018). However, a clear explanation of why the same constant property models with the same
model constants work for the different variable property cases, is not provided. An attempt
to provide a clear explanation is made in this section.
Figure 3-1 shows the TKE production (scaled by ρwu3

τ/hc) of three constant property cases
of Moser et al. (1999) with Reτ = 590, Reτ = 395 and Reτ = 180. Generally in literature,
this quantity is scaled with δv and not hc. Figure 3-2 shows the TKE production of these
cases but now scaled using ρwu3

τ/δv (in other words, dividing the production curves in figure
3-1 by their respective Reτ ). As seen, the cases collapse almost perfectly (except the low
Reynolds number case with Reτ = 180, of Moser et al. (1999)). This collapse shows that the
scaled production is universal for the constant property cases. Now let us do the same with
the variable property cases. Figure 3-3 shows the TKE production for the different low-Mach
number cases, as described in table 4-1 in the next chapter, scaled by 〈ρ〉u∗3

τ /hc. As seen, the
constant property case (CP) and constant semi-local Reynolds number cases (CRe∗τ , CRe∗τ2
and CRe∗τCPr∗) are almost perfectly collapsing. Apart from this there is no sign of similarity
with CP for other cases. Figure 3-4 shows the TKE production for these cases when scaled
by ρu∗3

τ /δ
∗
v (effectively dividing the production term in figure 3-3 by Re∗τ ) and just like what

happened with constant property cases in figure 3-2, we get nearly collapsing profiles in the
region y∗ > 10 (this universal profile is the same as what was obtained in figure 3-2. CP
is equivalent to Moser395 in figure 3-2). This universal collapse is also observed for other
TKE budget terms. Zhang et al. (2018) shows the nearly collapsing budget profiles, when
semi-locally scaled, for different high-Mach number variable property cases analysed by them.
The collapsing TKE budget profiles, when semi-locally scaled, hints towards similarity in
the dynamics of variable property cases and constant property cases. A major support of
the similar dynamics in variable property and constant property cases also comes from Patel
et al. (2015, 2016) where it is shown that the turbulent structures when scaled by semi-local
viscous length scale (δ∗v), become similar to constant property structures scaled by wall-based
viscous length scale (δv), beyond y∗ ≈ 10. This is shown in figure 3-5 taken from Patel
et al. (2016) which shows that the spanwise spacing of streaks (scaled by semi-local viscous
length scale) becomes similar for the constant and variable property cases beyond y∗ ≈ 10.
Figure 3-6 provides additional justification for similar dynamics. It shows the mixing length
scaled by δ∗v for the low-Mach number cases described in table 4-1, and as clearly seen, it
becomes universal beyond y∗ ≈ 10. The universal collapse of mixing length is also shown in
Patel et al. (2016).
Note the fact that we arrived from figure 3-1 to a collapsing profile in figure 3-2 by dividing by
Reτ and from figure 3-3 to a collapsing profile in figure 3-4 by dividing by Re∗τ . This means
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3-1 Motivation Behind Using Semi-Local Scaling 21

Figure 3-1: Production of TKE scaled by ρwu3
τ/hc for the constant property cases of Moser

et al. (1999) (Reτ =590, 395, 180) and Hoyas and Jiménez (2006) (Reτ =950) available online
on https://turbulence.oden.utexas.edu/.

Figure 3-2: Production of TKE scaled by ρwu3
τ/δv for the cases described in figure 3-1.
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22 Semi-Local Scaling

Figure 3-3: Production of TKE scaled by 〈ρ〉u∗3

τ /hc for the low-Mach number cases described
in table 4-1 in the next chapter.

Figure 3-4: Production of TKE scaled by 〈ρ〉u∗3

τ /δ
∗
v for the low-Mach number cases described

in table 4-1 in the next chapter. CP is equivalent to Moser395 described in figure 3-1.
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Figure 3-5: λ∗z as a function of y∗ obtained using bands of pre-multiplied spanwise spectra
kzEû′û′/û′û′ with values larger than 96% of its maximum value; λ∗z = λz/δ

∗
v is semi-locally

scaled wavelength; Wavelength corresponding to the maximum value of pre-multiplied spanwise
spectra implies mean streak spacing in the spanwise direction; black, brown, green, blue and red
lines correspond to case CP395 (constant property with Reτ = 395), CP150 (constant property
with Reτ = 150), CP550 (constant property with Reτ = 550), GL (gas-like fluid) and LL (liquid-
like fluid), respectively (Refer Patel et al. (2016) for more details on the cases); the grey region
corresponds to case CRe∗τ (constant Re∗τ = 395). Image is taken unedited from Patel et al.
(2016).

Figure 3-6: Mixing length lm scaled by semi-local viscous length scale (δ∗v). CP is equivalent to
Moser395 described in figure 3-1.
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that the TKE production Pk/(〈ρ〉u∗
3
τ /hc) at a certain y∗ will be similar for a constant property

flow and a variable property flow provided Reτ of constant property flow is equal to the local
Re∗τ at that point. Same can also be said for other TKE budget terms. This implies that there
exists a piecewise or pointwise similarity between semi-locally scaled variable property and
constant property flows, provided that their Reynolds number are the same. It is important
to note that this piecewise similarity and hence characterization by Re∗τ is a result of scaling
with length scale hc. However, if we choose to scale with δ∗v then we expect universality and
no Reynolds number dependence on the TKE evolution (figure 3-2 and 3-4). Pecnik and
Patel (2017) and Otero Rodriguez et al. (2018) choose to solve the model equations in the
semi-locally scaled form with hc as a length scale to non-dimensionalize the equations. This
implies that the idea of piecewise similarity can be applied here and we can say that solving
RANS model equations for a variable property flow implicitly means that we are solving them
piecewise for different constant property flows with different Reτ , such that Reτ = Re∗τ . Thus,
the success of using the same models as constant property flows, but in semi-local form, is
inevitable. It is stressed that near the wall (y∗ < 10), there is no similarity between variable
and constant property cases as also depicted by structure modulation seen in figure 3-5 (refer
Patel et al. (2016) for more details on structure modulation). However, the error in the overall
RANS solution caused by the non-similarity in this region is small due to viscous domination
in this region. That means even if the value of µt computed in this region is not accurate, it
does not matter because µt << µ.

The piecewise similarity is justified physically only if a point under consideration is influenced
by neighbours where the semi-local Reynolds number is approximately similar to that at the
point. Only then we can say that approximately the dynamics depends only on the local Re∗τ
and these dynamics are similar to those of constant property at Reτ = Re∗τ . This will be
checked using a length scale argument as discussed next.

Consider a point in the domain and let us draw a rectangle about the point ranging from
+lm to −lm. lm (mixing length) is a length scale signifying distance over which momentum is
transported (Tennekes and Lumley, 1972). Let us define a length scale signifying the variation
of Re∗τ as,

L = Re∗τ
dRe∗τ/dy

. (3-6)

Length scale L is compared with mixing length lm and their ratio, for two variable property
cases, is plotted in Figure 3-7.

Figure 3-7 shows that in the entire inner layer, L >> lm. This leads to the conclusion that
inside the hypothetical rectangle we drew, the variation in Re∗τ is minimal.

The similarity between the variable and constant property flows, that can be seen when semi-
locally scaled, is the main motivation behind solving the RANS models, that were originally
developed for constant property flows, in semi-locally scaled form. Doing this for variable
property flows tremendously improved the estimation of shear stress as seen in Pecnik and
Patel (2017); Otero Rodriguez et al. (2018). Will this also be effective for heat flux modeling?
This is the question that is answered in chapter 5.
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Figure 3-7: Ratio of the length scale defined in equation (3-6) and mixing-length scale (lm).

3-2 Semi-Local Equations

In this section we shall present the governing equations, transport equations of TKE, enthalpy
variance and turbulent heat flux in semi-local form. Table 3-1 shows which equations have
already been derived (with reference) and also which equations will be derived as a part of
this thesis.

Equation Source
Continuity Pecnik and Patel (2017)
Momentum Pecnik and Patel (2017)
Energy This work
TKE Pecnik and Patel (2017)
Enthalpy Variance This work
Turbulent Heat Flux This work

Table 3-1: List of equations in semi-local form

Some relations between the semi-local quantities and quantities defined using the wall prop-
erties, that are important for derivations are,

u∗τ = uτ

√
ρw
〈ρ〉

, θ∗τ = θτ

√
ρw
〈ρ〉

, Re∗τ =
√
〈ρ〉/ρw
〈µ〉/µw

Reτ , P r∗ = 〈µ〉/µw
〈λ〉/λw

Prw. (3-7)

Until now, the equations were written in their dimensional form. But from here onward,
their non-dimensional forms will be dealt with. In order to clearly differentiate, the following
nomenclature is decided: for any variable, γ,

• γ- Dimensional variable,
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26 Semi-Local Scaling

• γ̂ - Semi-locally scaled variable,

• γ̃ - Classically scaled variable.

In order to arrive at the non-dimensional form of any equation, the variables in the equation
must be represented by their non-dimensional counterparts multiplied by a characteristic
scale. For example, if xi is a length variable then it is represented as x̂ihc where x̂i is the
non-dimensional representation and hc is the characteristic scale (Refer table 3-2 for more
such examples of different quantities). The equation then needs to be simplified to finally
obtain its non-dimensional form.

Quantity Classical scales Semi-local scales

Length xi x̃ihc x̂ihc

Time t t̃hc/uτ t̂hc/u
∗
τ

Velocity ui ũiuτ ûiu
∗
τ

Pressure p p̃ρwu
2
τ p̂〈ρ〉u∗2

τ

Enthalpy h h̃cpθτ ĥcpθ
∗
τ

Density ρ ρ̃ρw ρ̂〈ρ〉

Dynamic viscosity µ µ̃µw µ̂〈µ〉

Thermal conductivity λ λ̃λw λ̂〈λ〉

Turbulent KE k k̃u2
τ k̂u∗

2
τ

Eddy viscosity µt µ̃tρwuτhc µ̂t〈ρ〉u∗τhc

Dissipation of TKE (per unit mass) ε ε̃u3
τ/hc ε̂u∗

3
τ /hc

Enthalpy variance kh k̃h(cpθτ )2 k̂h(cpθ∗τ )2

Eddy conductivity αt α̃tρwuτhc α̂t〈ρ〉u∗τhc

Dissipation of kh (per unit mass) εkh ε̃khuτ (cpθτ )2/hc ε̂khu
∗
τ (cpθ∗τ )2/hc

Table 3-2: Representation of different quantities in their non-dimensional form multiplied by a
characteristic scale.

Some assumptions in the derivations performed to arrive at the semi-local equations are as
follows:

1. Streamwise variations of the wall shear stress (τw) are zero or very small. Also, variations
in the wall properties in the streamwise direction are neglected. As the wall properties
and τw, also, do not vary in the spanwise direction, we conclude that they are mere
constants and can be pulled out of the spatial derivatives. This assumption is valid for
fully developed channel flows.

2. Characteristic scales, u∗τ , 〈ρ〉, etc., are assumed to be independent of time and are pulled
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3-2 Semi-Local Equations 27

out of the time derivative ∂(.)/∂t.

3-2-1 Governing Equations: Instantaneous Form

• Continuity equation

Derivation of the semi-local instantaneous continuity equation is performed in Pecnik and
Patel (2017). The final result is,

t∗τ
∂ρ̂

∂t
+ ∂ρ̂ûi

∂x̂i
+ ρ̂ûi

1
2〈ρ〉

∂〈ρ〉
∂x̂i︸ ︷︷ ︸

di

= 0. (3-8)

The last term arises because density is not constant in the domain and thus, it is a function
of spatial co-ordinates. This term is an "individual property dependent" term as it needs
individual property (density) profile (or data) for its computation.

• Momentum equation

Derivation of the semi-local instantaneous momentum equation is performed in Pecnik and
Patel (2017). The final result is,

t∗τ ρ̂
∂ûi
∂t

+ ρ̂ûj
∂ûi
∂x̂j
− ρ̂ûiûjdj︸ ︷︷ ︸

(I)

= − ∂p̂

∂x̂i
+ ∂τ̂ij
∂x̂j
− ∂D̂ij

∂x̂j︸ ︷︷ ︸
(II)

. (3-9)

Pecnik and Patel (2017) also had a term, ρ̂f̂i, indicating the body force term. But to be
consistent with the instantaneous momentum equation (2-2), we assume the body force term
to be incorporated in the pressure, p, as was done in Pope (2001).

Other terms in the equation are defined as,

τ̂ij = µ̂/Re∗τ [(∂ûi/∂x̂j + ∂ûj/∂x̂i)− 2/3 (∂ûk/∂x̂k) δij ] , (3-10)

D̂ij = µ̂/Re∗τ [(ûidj + ûjdi)− 2/3 (ûkdk) δij ] . (3-11)

Due to semi-local scaling, we have additional property dependent terms (term (I) and (II)).
These terms are based on the derivative of density term, di. The viscosity coefficient in the
momentum equation is replaced by µ̂/Re∗τ due to semi-local scaling.

An interesting thing to note (which is not previously discussed in literature) is that, if we
introduce the definition of van Driest velocity as,

∂uvDi =
√
〈ρ〉/ρw∂ũi, (3-12)

with the help of equations (3-7, 3-12), the viscous diffusion term and the term (II) in equation
(3-9) can be combined together to form, ∂τvDij /∂x̂j , where,

τvDij = µ̂/Re∗τ

[(
∂uvDi /∂x̂j + ∂uvDj /∂x̂i

)
− 2/3

(
∂uvDk /∂x̂k

)
δij
]
. (3-13)
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28 Semi-Local Scaling

Thus, we have the final equation as,

t∗τ ρ̂
∂ûi
∂t

+ ρ̂ûj
∂ûi
∂x̂j
− ρ̂ûiûjdj = − ∂p̂

∂x̂i
+
∂τvDij
∂x̂j

. (3-14)

• Energy equation

A detailed derivation of the semi-local instantaneous energy equation is not found in any
literature. However, the semi-local averaged energy equation for a fully developed turbulent
channel flow was analysed in Patel et al. (2017). The instantaneous equation is derived in
Appendix A.
The final equation obtained is,

t∗τ ρ̂
∂ĥ

∂t
+ ρ̂ûj

∂ĥ

∂x̂j
− ρ̂ûj ĥdj︸ ︷︷ ︸

(III)

= Ec∗θτ

(
t∗τ
∂p̂

∂t
+ ûj

∂p̂

∂x̂j

)
+ ∂q̂j
∂x̂j
− ∂D̂j

∂x̂j︸ ︷︷ ︸
(IV)

+Φ̂, (3-15)

where q̂j is the conductive heat flux defined as,

q̂j = α̂/(Re∗τPr∗)∂ĥ/∂x̂j , (3-16)

and the density dependent term (term (IV)), which is analogous to term (II) in the momentum
equation (3-9), is defined as,

D̂j = α̂/(Re∗τPr∗)ĥdj . (3-17)

Ec∗θτ is defined as u∗2
τ /(cpθ∗τ ) and comes in front of the pressure term because of the difference

in scales with which pressure is scaled (〈ρ〉u∗2
τ ) and with which the enthalpy equation is scaled

(〈ρ〉u∗τ cpθ∗τ/hc). More about the importance of this parameter is discussed in section 6-3.
Φ̂ is the semi-local form of volumteric heat source. It is defined as,

Φ̂ = Φ
〈ρ〉u∗τ cpθ∗τ/hc

. (3-18)

Like in the momentum equation, due to semi-local scaling, we have additional property de-
pendent terms (term (III) and (IV)). The thermal conductivity, α, in the energy equation
modifies to α̂/(Re∗τPr∗) due to semi-local scaling.
Analogous to what we did for the momentum equation, if we introduce van Driest enthalpy
as,

∂hvD =
√
〈ρ〉/ρw∂h̃, (3-19)

we can combine the conductive heat flux term and term (IV) to form ∂qvDj /∂x̂j where,

qvDj = α̂/(Re∗τPr∗)∂hvD/∂x̂j . (3-20)

The final equation then becomes,

t∗τ ρ̂
∂ĥ

∂t
+ ρ̂ûj

∂ĥ

∂x̂j
− ρ̂ûj ĥdj = Ec∗θτ

(
t∗τ
∂p̂

∂t
+ ûj

∂p̂

∂x̂j

)
+
∂qvDj
∂x̂j

+ Φ̂. (3-21)

Comparing equations (3-14, 3-21), we can notice that in semi-local scales, molecular diffusion
of momentum and energy depends on the gradient of van Driest velocity and van Driest
enthalpy respectively.
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3-2 Semi-Local Equations 29

3-2-2 Governing Equations: Averaged Form

Getting to the semi-locally scaled Reynolds Averaged Navier Stokes equations from the semi-
local instantaneous form of the equations is not different from what we did in section 2-2. An
important identity to note is,

〈ρ̂γ̂〉 = {γ̂}. (3-22)

• Continuity equation

The continuity equation in RANS form is derived as,〈
t∗τ
∂ρ̂

∂t
+ ∂ρ̂ûi

∂x̂i
+ ρ̂ûidi

〉
= t∗τ

∂〈ρ̂〉
∂t︸ ︷︷ ︸
=0

+∂〈ρ̂ûi〉
∂x̂i

+ 〈ρ̂ûi〉di = 0. (3-23)

Using identity (3-22) we get,
∂{ûi}
∂x̂i

+ {ûi}di = 0. (3-24)

• Momentum equation

Rewriting the left-hand side of equation (3-14) as,

t∗τ ρ̂
∂ûi
∂t

+ ρ̂ûj
∂ûi
∂x̂j
− ρ̂ûiûjdj = t∗τ

∂ρ̂ûi
∂t

+ ∂ρ̂ûiûj
∂x̂j

. (3-25)

Taking Reynolds average on both sides of the momentum equation, we have,〈
t∗τ
∂ρ̂ûi
∂t

+ ∂ρ̂ûj ûi
∂x̂j

〉
=
〈
− ∂p̂

∂x̂i
+
∂τvDij
∂x̂j

〉
. (3-26)

We will show the detailed steps of only the advection term.

Advection term:

∂〈ρ̂ûiûj〉
∂x̂j

=
∂〈ρ̂({ûi}+ û′′i )({ûj}+ û′′j )〉

∂x̂j
, (3-27)

=
∂(〈ρ̂{ûi}{ûj}〉+ 〈ρ̂û′′i {ûj}〉+ 〈ρ̂{ûi}û′′j 〉+ 〈ρ̂û′′i û′′j 〉)

∂x̂j
. (3-28)

Using the identity in equation (2-22) and equation (3-22), we get,

∂〈ρ̂ûiûj〉
∂x̂j

= ∂{ûi}{ûj}
∂x̂j

+
∂{û′′i û′′j }
∂x̂j

. (3-29)

The final momentum equation becomes,

t∗τ
∂{ûi}
∂t

+ ∂{ûi}{ûj}
∂x̂j

= −∂〈p̂〉
∂x̂i

+
∂〈τvDij 〉
∂x̂j

−
∂{û′′i û′′j }
∂x̂j

. (3-30)
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30 Semi-Local Scaling

• Energy equation

Detailed derivation of the energy equation is not presented here as the steps are very similar
to what was done for the momentum equation.

The final equation obtained is,

t∗τ
∂{ĥ}
∂t

+ ∂{ûj}{ĥ}
∂x̂j

= Ec∗θτ

(
t∗τ
∂〈p̂〉
∂t

+
〈
ûj

∂p̂

∂x̂j

〉)
+
∂〈qvDj 〉
∂x̂j

−
∂{û′′j ĥ′′}
∂x̂j

+ 〈Φ̂〉. (3-31)

3-2-3 Semi-Local Turbulent Kinetic Energy (TKE) Transport Equation

This equation is derived in Pecnik and Patel (2017). The final result is,

t∗τ
∂{k̂}
∂t

+ ∂{k̂} {ûj}
∂x̂j

= P̂k − ε̂k + T̂k + Ĉk + D̂k. (3-32)

The details about the terms in equation (3-32) are presented in table 3-3.

Term Definition

P̂k = −
{
û′′i û

′′
j

} ∂ {uvDi }
∂x̂j

. Production of TKE.

ε̂k =
〈
τ̂ ′ij
∂û′i
∂x̂j

〉
. Dissipation of TKE.

T̂k = ∂

∂x̂j

(〈
û′iτ̂
′
ij

〉
−
{
û′′j k̂

}
−
〈
p̂′û′j

〉)
. Total diffusion.

Ĉk =
〈
p̂′
∂û′j
∂x̂j

〉
− 〈û′′j 〉

∂〈p̂〉
∂x̂j

+
〈
û′′i
〉 ∂ 〈τ̂ij〉
∂x̂j

. Compressibility term.

D̂k =
(
{ûj} {k̂}+

{
û′′j k̂

})
dj−

〈
û′′i
∂D̂ij

∂x̂j

〉
.

Mathematical artifacts of
semi-local scaling.

Table 3-3: Terms in the TKE equation.
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3-2 Semi-Local Equations 31

τ̂ij is defined in equation (3-10) and D̂ij is defined in equation (3-11). The transport equation
is simplified for a fully developed channel and its model form is solved for estimating eddy
viscosity and hence the turbulent shear stress (Pecnik and Patel, 2017; Otero Rodriguez et al.,
2018).

3-2-4 Semi-Local Enthalpy Variance Transport Equation

Pecnik and Patel (2017) derived the transport equation for turbulent kinetic energy in semi-
local scales. They started with an instantaneous momentum equation in semi-local scales.
In the similar manner, here we derive the counterpart of TKE for thermal turbulence i.e.
the enthalpy variance equation in semi-local scales starting with the instantaneous enthalpy
equation in semi-local scales.

The recipe of derivation is very similar as we would have for a constant property enthalpy
variance (or thermal variance) equation. If H(ĥ) = 0 denotes the instantaneous enthalpy
equation in semi-local form, then the transport equation of enthalpy variance is obtained as,

ĥ′′H(ĥ) = 0, (3-33)

where (.) is another way of denoting Reynolds averaging.

Detailed derivation of the equation is shown in Appendix A. The final equation is,

t∗τ
∂{k̂h}
∂t

+ ∂{k̂h}{ûj}
∂x̂j

= P̂kh − ε̂kh + T̂kh + D̂kh + B̂kh + P̂ rkh + Φ̂kh, (3-34)

where k̂h = ĥ′′ĥ′′/2 is half of enthalpy variance and is analogous to TKE. Each term in
equation (3-34) is described in table 3-4.

Some terms used in table 3-4 are,

q̂j = α̂

Re∗τPr
∗
∂ĥ

∂x̂j
, (3-35)

D̂j = α̂

Re∗τPr
∗ ĥdj , (3-36)

dj = 1
2〈ρ〉

∂〈ρ〉
∂x̂j

. (3-37)

For a fully developed channel, the Equation (3-34) simplifies to,

P̂kh − ε̂kh + T̂kh + D̂kh + B̂kh + P̂ rkh + Φ̂kh = 0, (3-38)

with y being the direction in which mean quantities can vary and x, z are homogeneous
directions.

The main goal of deriving this equation is to solve for eddy conductivity and hence turbulent
heat flux in chapters 5 and 6. In chapter 6 this equation is also used to study the effects of
viscous heating on enthalpy variance.
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Term Definition

P̂kh = −{ĥ′′û′′j }
∂{hvd}
∂x̂j

.
Production of enthalpy vari-
ance.

ε̂kh =
〈
q̂′j
∂ĥ′′

∂x̂j

〉
.

Dissipation of enthalpy vari-
ance.

T̂kh = T̂mkh + T̂ tkh. Total diffusion.

T̂mkh = ∂

∂x̂j

〈
ĥ′′q̂′j

〉
. Molecular diffusion.

T̂ tkh = − ∂

∂x̂j
{û′′j k̂h}. Turbulent diffusion.

B̂kh = 〈ĥ′′〉∂ 〈q̂j〉
∂x̂j

+ 〈ĥ′′〉〈Φ̂〉.
Favre artifact term. This
term arises due to non-zero
〈ĥ′′〉 which is a consequence of
Favre averaging.

D̂kh = {ûj}{k̂h}dj+{û′′j k̂h}dj−
〈
ĥ′′
∂D̂j

∂x̂j

〉
.

Mathematical artifacts of
semi-local scaling.

P̂ rkh = Ec∗τ

(
t∗τ

〈
ĥ′′
∂p̂

∂t

〉
+
〈
ĥ′′ûj

∂p̂

∂x̂j

〉)
.

Contribution due to pressure
terms in the enthalpy equa-
tion.

Φ̂kh = 〈ĥ′′Φ̂′〉. Contribution by fluctuations
in the volumetric heat source.

Table 3-4: Terms in the enthalpy variance equation.
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3-2-5 Semi-Local Turbulent Heat Flux Transport Equation

We aim to derive the budget for 〈û′′i ĥ′′〉 which signifies turbulent heat flux in the xi direction
where i = 1, 2, 3 stands for streamwise, wall-normal and spanwise directions respectively. Let
N (ûi) = 0 denote the semi-local instantaneous momentum equation for ûi and H(ĥ) = 0
denote the semi-local enthalpy equation. The heat flux budget is derived as,

ĥ′′N (ûi) + ûi
′′H(ĥ) = 0, (3-39)

where (.) is another way of denoting Reynolds averaging.

Detailed steps of derivation are shown in Appendix A. The final equation obtained is,

t∗τ
∂{û′′i ĥ′′}

∂t
+ ∂{û′′i ĥ′′}{uj}

∂x̂j
= P̂uih− ε̂uih + T̂uih + Ĥuih + D̂uih + B̂uih + P̂ ruih + Φ̂uih, (3-40)

where the terms are described in table 3-5.

Some terms used in table 3-5 are introduced before and rewritten below for convenience,

q̂j = α̂/(Re∗τPr∗)∂ĥ/∂x̂j , (3-41)

τ̂ij = µ̂/Re∗τ [(∂ûi/∂x̂j + ∂ûj/∂x̂i)− 2/3 (∂ûk/∂x̂k) δij ] , (3-42)

D̂j = α̂

Re∗τPr
∗ ĥdj , (3-43)

D̂ij = µ̂/Re∗τ [(ûidj + ûjdi)− 2/3 (ûkdk) δij ] , (3-44)

dj = 1
2〈ρ〉

∂〈ρ〉
∂x̂j

. (3-45)

For a fully developed channel flow, the equation simplifies to,

P̂uih − ε̂uih + T̂uih + Ĥuih + D̂uih + B̂uih + P̂ ruih + Φ̂uih = 0, (3-46)

with y being the direction in which mean quantities can vary and x, z are homogeneous
directions.

This equation is derived mainly to study the effects of viscous heating on turbulent heat flux
in chapter 6. This equation can also be used for second order closure models for turbulent
heat flux modeling in variable property flows, but it is not done in this thesis.

In this chapter, we have presented the mathematics related to semi-local scaling. In the next
chapter one would gain the knowledge of different variable property cases analysed in this
study.
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Term Definition

P̂uih = −{û′′i û′′j }
∂{hvD}
∂x̂j

−{û′′j ĥ′′}
∂{uvDi }
∂x̂j

.
Production of turbulent heat
flux.

ε̂uih =
〈
q̂′j
∂û′′i
∂x̂j

〉
+
〈
τ̂ ′ij
∂ĥ′′

∂x̂j

〉
.

Dissipation of turbulent heat
flux.

T̂uih = ∂

∂x̂j

(
〈û′′j q̂′j〉+ 〈ĥ′′τ̂ ′ij〉 − {û′′i ĥ′′û′′j }

)
. Total diffusion.

Ĥuih =
〈
ĥ′′

∂p̂

∂x̂i

〉
. Enthalpy - pressure gradient

correlation term .

B̂uih = 〈û′′i 〉
∂ 〈q̂j〉
∂x̂j

+ 〈ĥ′′〉∂ 〈τ̂ij〉
∂x̂j

+ 〈û′′i 〉〈Φ̂〉.

Favre artifact term. This
term arises due to non-zero
〈ĥ′′〉 and 〈û′′i 〉 which is a con-
sequence of Favre averaging.

D̂uih = {ûj}{û′′i ĥ′′}dj + {û′′i ĥ′′û′′j }dj−

〈
û′′i
∂D̂j

∂x̂j

〉
−
〈
ĥ′′
∂D̂ij

∂x̂j

〉
.

Mathematical artifacts of
semi-local scaling.

P̂ ruih = Ec∗τ

(
t∗τ

〈
û′′i
∂p̂

∂t

〉
+
〈
û′′i ûj

∂p̂

∂x̂j

〉)
.

Contribution due to pressure
terms in the enthalpy equa-
tion.

Φ̂uih = 〈û′′i Φ̂′〉. Contribution by fluctuations
in the volumetric heat source.

Table 3-5: Terms in the turbulent heat flux budget.
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Chapter 4

Description of Cases

In this chapter we will describe different cases that will be analysed in this thesis. All the
cases are based on calorifically perfect fluids such that,

cp
cpw

= 1. (4-1)

A summary of all the cases analysed is shown in table 4-1. In table 4-1 Mab is Mach number
based on bulk velocity and speed of sound defined at the wall. Reτw is friction Reynolds
number defined using wall properties and Re∗τc is defined using properties at the channel
centre. Similarly Prw and Pr∗c are Prandtl numbers defined at the wall and channel centre
respectively. The wall and channel centre values give an idea about the variation of the
parameters in the domain.

4-1 Low-Mach Number Cases

Table 4-2 describes the property laws and figure 4-1 shows property distribution for the low-
Mach number cases. Figure 4-2 shows the distribution of semi-local Reynolds and Prandtl
number for these cases.

• CP stands for "constant property" and signifies incompressible constant property cases.

• GL possesses gas-like fluid property laws and thus we can see the viscosity increasing
and density decreasing with temperature (figure 4-1).

• LL signifies liquid-like property laws.

• CRe∗τ is a special case in which the property laws are such that the semi-local Reynolds
number is constant in the domain. This case helps to isolate the individual property
variation effects (like intercomponent energy transfer discussed in chapter 7).
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36 Description of Cases

• CRe∗τCPr∗ is another special case in which the property laws are such that not only the
semi-local Reynolds number but also the semi-local Prandtl number Pr∗ is constant in
the domain.

The difference between GL and GL2 (or CRe∗τ and CRe∗τ2) is that the amount of volumetric
heating is different and hence, the property variations are different, however, the property
laws are the same.

4-2 High-Mach Number Cases

These are high-Mach number ideal gas cases that were discussed in Trettel and Larsson
(2016). Viscosity and thermal conductivity are computed using the relation,

µ

µw
= λ

λw
=
(
T

Tw

)0.75
. (4-2)

Density is computed using the continuity equation but because of the wall-normal variation of
pressure being very small, an approximate law for density follows from the ideal gas equation
of state,

ρ

ρw
≈
(
T

Tw

)−1
. (4-3)

Figure 4-3 shows the property distribution in the domain and figure 4-4 shows the distribution
of semi-local Reynolds number (Re∗τ ) and modified Eckert number (Ec∗θτ ). Distribution of
semi-local Prandtl number (Pr∗) is not shown as it is constant in the domain for all the cases
and takes a value of 0.7. A case with name "MxRy" implies that the bulk Mach number is
"x" and the semi-local Reynolds number at the channel center is "y".

4-3 High-Mach Number Cases with Constant Re∗τ

These are high-Mach number cases but with viscosity and thermal conductivity laws such
that both Re∗τ and Pr∗ are constant in the domain. Ideal gas equation of state is followed
for these cases. The property laws are,

µ

µw
= λ

λw
=
(
ρ

ρw

)0.5
≈
(
T

Tw

)−0.5
. (4-4)

Using the laws mentioned in equation (4-4), the profile of Re∗τ is not strictly constant. This
is because for a strictly constant Re∗τ we must have,

〈µ〉
〈µw〉

=
√
〈ρ〉
〈ρw〉

, (4-5)

but due to non-zero fluctuations in properties we cannot strictly maintain equation (4-5) while
using equation (4-4) as the property laws.
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4-3 High-Mach Number Cases with Constant Re∗τ 37

Figure 4-5 shows the property distribution in the domain and figure 4-6 shows the distribution
of Re∗τ and Ec∗θτ .

In the following two chapters, using DNS data we will analyse thermal turbulence in low-Mach
number and high-Mach number cases. Using the knowledge about the physics and governing
parameters, we shall try to solve RANS equations for these cases using 2-equation turbulent
stress and 2-equation heat flux models.
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Casename Mab Reτw Re∗τc Prw Pr∗c Heating

CP[1] NA 395 395 1 1 UH

CRe∗τ [1] NA 395 395 1 0.34 UH

GL[1] NA 950 137 1 3.10 UH

LL[1] NA 150 945 1 0.16 UH

CRe∗τ2[1] NA 395 395 1 0.71 UH

CRe∗τCPr∗[1] NA 395 395 1 1 UH

GL2[1] NA 395 143 1 1.81 UH

M0.7R400[2] 0.7 437 396 0.7 0.7 VH

M0.7R600[2] 0.7 652 591 0.7 0.7 VH

M1.7R600[2] 1.7 972 596 0.7 0.7 VH

M3.0R200[2][3] 3.0 650 208 0.7 0.7 VH

M3.0R600[2] 3.0 1876 601 0.7 0.7 VH

M4.0R200[2][3] 4.0 1017 203 0.7 0.7 VH

M0.7CRe∗τ [3] 0.7 602 602 0.7 0.7 VH

M3.0CRe∗τ [3] 3.0 606 606 0.7 0.7 VH

Table 4-1: Description of the cases analysed in this thesis. [1] - low-Mach number cases studied
by Patel (2017). [2] - high-Mach number cases of Trettel and Larsson (2016). [3] - cases that
are simulated in this thesis. UH stands for uniform heating and VH stands for viscous heating.

Casename ρ/ρw µ/µw λ/λw

CP[1] 1 1 1

CRe∗τ [1] (T/Tw)−1 (T/Tw)−0.5 1

GL[1] (T/Tw)−1 (T/Tw)0.7 1

LL[1] 1 (T/Tw)−1 1

CRe∗τ2[1] (T/Tw)−1 (T/Tw)−0.5 1

CRe∗τCPr∗[1] (T/Tw)−1 (T/Tw)−0.5 (T/Tw)−0.5

GL2[1] (T/Tw)−1 (T/Tw)0.7 1

Table 4-2: Constitutive relations for density, viscosity and thermal conductivity as a function of
temperature.
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Figure 4-1: Distribution of density (left), viscosity (centre) and thermal conductivity (right) for
the low-Mach number cases described in table 4-1.

Figure 4-2: Semi-local Reynolds (left) and Prandtl (right) number distribution for the low-Mach
number cases described in table 4-1.

Figure 4-3: Distribution of density (left), viscosity (centre) and thermal conductivity (right) for
the high-Mach number cases of Trettel and Larsson (2016) described in table 4-1.

Master of Science Thesis A.M. Hasan



40 Description of Cases

Figure 4-4: Semi-local Reynolds (left) and modified Eckert (right) number distribution for the
high-Mach number cases of Trettel and Larsson (2016) described in table 4-1.

Figure 4-5: Distribution of density (left), viscosity (centre) and thermal conductivity (right) for
the high-Mach number constant Re∗τ cases described in table 4-1.

Figure 4-6: Semi-local Reynolds (left) and modified Eckert (right) number distribution for the
high-Mach number constant Re∗τ cases described in table 4-1.
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Chapter 5

Low-Mach Number Cases with
Uniform Heating

In this chapter we will first simplify the enthalpy variance (kh) equation (equation (3-38)
derived in section 3-2-4) for the low-Mach number cases and check if the additional artifact
terms (Bkh and Dkh) are small or dominant for the low-Mach number cases of Patel et al.
(2017) with uniform heating source. We shall also analyse the governing parameters for
thermal turbulence in these cases. Using this knowledge, in the end, we check if implementing
heat flux models in semi-local form provides improvement in results or not, compared to
solving them in their conventionally scaled form.

The kh equation for a fully developed channel flow derived in section 3-2-4 is,

P̂kh − ε̂kh + T̂kh + D̂kh + B̂kh + P̂ rkh + Φ̂kh = 0. (5-1)

In the low-Mach number approximation, the scale of kinetic energy is negligible compared to
the scale of enthalpy (u∗2

τ << cpθ
∗
τ ). In other words, we can say that Ec∗θτ → 0. Hence,

P̂ rkh = Ec∗τ

(
t∗τ

〈
ĥ′′
∂p̂

∂t

〉
+
〈
ĥ′′ûj

∂p̂

∂x̂j

〉)
≈ 0. (5-2)

Also, the low-Mach number cases analysed in this chapter are of Patel et al. (2017). These
cases have user specified uniform heat source to produce the temperature gradient. Thus, for
cases with uniform and user specified constant heat source,

Φ′ = 0, (5-3)

which gives,
Φ̂kh = 〈ĥ′′Φ̂′〉 = 0. (5-4)

For low-Mach number cases with uniform heating, the kh transport equation further simplifies
to,

P̂kh − ε̂kh + T̂kh + D̂kh + B̂kh = 0. (5-5)
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42 Low-Mach Number Cases with Uniform Heating

Figure 5-1: Semi-local kh budget scaled by 〈ρ〉u∗τ (cpθ∗τ )2/δ∗v (effectively dividing equation (5-5)
by Re∗τ ) for the case CRe∗τ2.

5-1 The Artifact Terms in kh Equation

First three terms on the left hand side of equation (5-5) are familiar terms as we have them
also in the enthalpy variance equation for a constant property flow. However, due to variable
properties, we have two additional terms, B̂kh and D̂kh. Note that the additional terms occur
mainly due to density variation in the domain. For cases with constant density these terms are
zero. In this section, we will present the magnitudes of these additional terms in comparison
with other budget terms.

To do this, in-house DNS data of Patel et al. (2017) was post-processed. We will show the
results for cases CRe∗τ2, CRe∗τCPr∗ and GL2 (cases are described in table 4-1). These cases
comprise of different distributions of properties, Re∗τ and Pr∗ and hence conclusions drawn
from them are general and can be also accepted for other low-Mach number cases.

The enthalpy variance budget for the cases CRe∗τ2, CRe∗τCPr∗ and GL2 are presented in
figures 5-1, 5-2 and 5-3 respectively.

As seen from the budgets presented in figures 5-1 to 5-3, the additional terms are indeed small
compared to other budget terms. Thus, the equation (5-5) can be further simplified as,

P̂kh − ε̂kh + T̂kh ≈ 0. (5-6)

We notice that the only dominant terms in the enthalpy variance budget of low-Mach number
cases analysed in this thesis are the production, dissipation and diffusion terms. If we can also
show that the terms in the budget are governed only by Re∗τ and Pr∗, then there would exist
a very strong analogy between the semi-locally scaled equation and an equation for constant
property governed by Reτ and Prw. The same in analysed in the next section.
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Figure 5-2: Semi-local kh budget scaled by 〈ρ〉u∗τ (cpθ∗τ )2/δ∗v (effectively dividing equation (5-5)
by Re∗τ ) for the case CRe∗τCPr∗.

Figure 5-3: Semi-local kh budget scaled by 〈ρ〉u∗τ (cpθ∗τ )2/δ∗v (effectively dividing equation (5-5)
by Re∗τ ) for the case GL2.
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44 Low-Mach Number Cases with Uniform Heating

Figure 5-4: Semi-local kh budget scaled by 〈ρ〉u∗τ (cpθ∗τ )2/δ∗v for the cases CP and CRe∗τCPr∗.

5-2 Governing Parameters

In this section, the kh budget for a constant property case and a variable property case (with
the same Re∗τ and Pr∗ as constant property) are compared. Figure 5-4 shows the kh budget for
CP and CRe∗τCPr∗ in semi-locally scaled form. The collapse of the budget in figure 5-4 for CP
and CRe∗τCPr∗, is a sufficient proof to conclude that the governing parameters for thermal
turbulence in the low-Mach number cases analysed by Patel et al. (2017), up to a leading
order, are Re∗τ and Pr∗. This implies that fully developed channel flows with very different
types of fluids with very different property laws can exhibit similar thermal turbulence (in
semi-local form) as far as their semi-local Reynolds number and semi-local Prandtl number
are quasi-similar. It is stressed that for similar turbulence we need individually similar profiles
of Re∗τ and Pr∗ and not just similar semi-local Peclet number (Re∗τPr∗) profile because some
terms in a thermal turbulence quantity’s budget are mainly governed by Re∗τ and some have
influence of Pr∗ as well. Figure 5-5 shows the budget for CP and CRe∗τCPr∗, but in classically
scaled form. The non-collapse, despite the same Reynolds number at the wall (Reτ ), signifies
the importance of semi-local scaling for thermal turbulence.

Figure 5-6 shows the kh budget of CP and CRe∗τ2 in semi-local form. Keeping similar Pr∗ is
important especially near the wall, as it is clear from the near-wall non-collapse of the budgets
of CP and CRe∗τ2 with different Pr∗ profiles and the same Re∗τ profiles. Away from the wall in
the log-law region and beyond (y∗ > 30), Prandtl number becomes less important in thermal
turbulence as can be seen from the collapsing budget in that region despite different Pr∗. This
is because, away from the wall, for moderately high Reynolds number flows, the convective
effect becomes more dominant than molecular (or diffusive) effects and convective effects are
mainly governed by Re∗τ . Note that, for very low Prandtl number fluids the molecular effects
are dominant for thermal turbulence even beyond y∗ = 30 and in that case, we would not
expect a collapse in the log-law region if Pr∗ is different. Kawamura et al. (1999) (in section
3.4) also mentions about the effect of Prandtl number being small for high Reynolds number
flows due to dominant convective effect.
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Figure 5-5: Classical kh budget scaled by ρwuτ (cpθτ )2/δv (classically scaled) for the cases CP
and CRe∗τCPr∗.

Figure 5-6: Semi-local kh budget scaled by 〈ρ〉u∗τ (cpθ∗τ )2/δ∗v for the cases CP and CRe∗τ .
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46 Low-Mach Number Cases with Uniform Heating

The fact that thermal turbulence is governed by Re∗τ and Pr∗ profiles and also using the
piecewise similarity arguments made in section 3-1, we can expect that the thermal turbulence
(in semi-locally scaled form) at any point in the flow field is equivalent to a constant property
thermal turbulence at Reτ and Pr of the same value as Re∗τ and Pr∗ defined at the point.
This motivates us to use the same heat flux model as was developed for a constant property
flow and solve it in semi-local scales for various variable property cases. This is presented in
the next section.

5-3 Solving Heat Flux Model in Semi-Local Form

5-3-1 Model Equations and Implementation

The RANS model used in this study is the one developed by Nagano and Shimada (1996)
(2-equation turbulent stress and 2- equation heat flux models) for solving both, turbulent
shear stress and heat flux. The model developed by Nagano and Shimada has been rigorously
built to take care of the near wall effects. Near the wall, turbulent Reynolds number drops
drastically and also the scale separation between energy containing eddies and dissipating
eddies is reduced. This calls for modification of the High-Re form of the model equations.
Some terms that are small in the high turbulent Reynolds number region also become domi-
nant near the wall and needs modeling to capture the near wall behaviour accurately. These
factors are taken care in this model. Also, multiple time and length scales (energy containing
and dissipative) are used to model the eddy viscosity and eddy diffusivity. Another feature of
the heat flux model presented is that the model is built considering the effect Prandtl number
has on the near wall behaviour. The model is validated for a wide range of Reynolds and
Prandtl numbers. For more details refer the original paper (Nagano and Shimada, 1996).

The simplified kh equation (5-6) is rewritten here as,

P̂kh − ε̂kh + T̂kh ≈ 0. (5-7)

Writing the detailed form of each term using table 3-4 we get,

− {ĥ′′v̂′′}∂{h
vd}

∂ŷ
−
〈
q̂′j
∂ĥ′′

∂x̂j

〉
+ ∂

∂ŷ

(〈
ĥ′′q̂′y

〉
− {v̂′′k̂h}

)
= 0. (5-8)

The term representing molecular diffusion
〈
ĥ′′q̂′y

〉
can be simplified as,

〈
ĥ′′q̂′y

〉
=
〈
ĥ′′
(
α̂/(Re∗τPr∗)∂ĥ/∂ŷ

)′〉
. (5-9)

Assuming effects of fluctuations of α are negligible and thus,

α̂ = 1 + α′

〈α〉
≈ 1. (5-10)

Also, we can split ∂ĥ/∂ŷ into Favre mean and fluctuations as,

∂ĥ

∂ŷ
= ∂{ĥ}

∂ŷ
+ ∂ĥ′′

∂ŷ
, (5-11)
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then we finally simplify equation (5-9) to,

〈
ĥ′′q̂′y

〉
≈
〈
ĥ′′

1
Re∗τPr

∗

(
∂{ĥ}
∂ŷ

+ ∂ĥ′′

∂ŷ

)′〉
=
〈

ĥ′′

Re∗τPr
∗
∂ĥ′′

∂ŷ

〉
= 1
Re∗τPr

∗
∂〈k̂h〉
∂ŷ︸ ︷︷ ︸

A

. (5-12)

The term "A" in equation (5-12) is a very recognizable form of the molecular diffusion of
kh. Inline with common modeling methods, the turbulent diffusion term is modeled using
gradient diffusion hypothesis and the production term is modeled using eddy diffusivity. The
modelled form of kh equation becomes,

α̂t

(
∂{hvD}
∂ŷ

)2

+ ∂

∂ŷ

[( 1
Re∗τPr

∗ + α̂t
σkh

)
∂{k̂h}
∂ŷ

]
− ε̂kh = 0, (5-13)

where σkh is a model function/constant. If we compare the equation (5-13) with its dimen-
sional counterpart, we arrive at a simple recipe that can be used to arrive at semi-local form
of model equation of any quantity starting from its dimensional model equation. The recipe
is summarized as,

• Replace all the variables with their semi-local notations, except for 〈α〉 and 〈ρ〉 and
∂{h} (or ∂{T}).

• 〈α〉 is replaced by 1/(Re∗τPr∗).

• 〈ρ〉 is replaced by 1.

• Gradient of the mean enthalpy (or temperature) ∂{h} is replaced by ∂{hvD}.

A similar recipe is also proposed in Pecnik and Patel (2017) pertaining to turbulent stress
modeling. Some additional points to note are,

• If a model equation uses Reτ , Pr, y+, etc. then they should be replaced with their
semi-local counterpart like Re∗τ , Pr∗, y∗, etc.

• Apart from above mentioned points the recipe mentioned in Pecnik and Patel (2017)
should also be considered.

Now that we have a robust recipe in place, we can very easily convert the model equations
of Nagano and Shimada (1996) into semi-locally scaled form. For more details on the model
equations and model constants, refer the Appendix of Nagano and Shimada (1996).
In-house MATLAB code of Pecnik et al. (2018) is modified to implement the model. We solve
the semi-locally scaled form of the equations but the variables are represented in their conven-
tionally (wall-based) scaled form. The advantages of doing so is mentioned in Otero Rodriguez
et al. (2018) in section 2. To reconvert the variables we need information on scale relations
presented in section 3-2 and also in table 3-2.
We will show the steps for the production term of equation (5-13) as follows (averaging
symbols are omitted for the sake of brevity):

α̂t

(
∂hvd

∂ŷ

)2

= α̃t
ρwuτhc
ρu∗τhc

(√
ρ

ρw

∂h̃

∂ỹ

)2

=
√

ρ

ρw
α̃t

(
∂h̃

∂ỹ

)2

. (5-14)
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Repeating this for other terms gives,

√
ρ

ρw
α̃t

(
∂h̃

∂ỹ

)2

+ ∂

∂ỹ

[
1√
ρ/ρw

(
α/αw
ReτPr

+ α̃t
σkh

)
∂ρ/ρwk̃h

∂ỹ

]
−
(
ρ

ρw

)1.5
ε̃kh = 0. (5-15)

Dividing the equation by
√
ρ/ρw and using notations as explained in section 3-2, we can write,

α̃t

(
∂h̃

∂ỹ

)2

+ 1√
ρ̃

∂

∂ỹ

[
1√
ρ̃

(
α/αw
ReτPr

+ α̃t
σkh

)
∂ρ̃k̃h
∂ỹ

]
− ρ̃ε̃kh = 0. (5-16)

The strong similarity between equation (5-16) above and the equation of TKE presented in
Otero Rodriguez et al. (2018) is evident. This confirms that the effects of variable inertia
on the evolution of enthalpy variance (kh) is similar to that on the evolution of TKE (k). If
we compare equation (5-16) to an equation which we would have obtained just by classical
scaling, we note the difference in the diffusion term which is exactly what was observed for
TKE in Otero Rodriguez et al. (2018).

Now that we know how to derive a semi-locally scaled model equation and also how to rewrite
it in terms of conventional variables, the rest is coding the equations and plotting the results.
Nagano and Shimada (1996) solves for k and ε in their turbulent stress model and for kh
(they actually do it for thermal variance but in semi-local scales both thermal and enthalpy
variances are equivalent as cp in semi-local scales is 1 for the calorifically perfect cases analysed
in this thesis) and εkh in their heat flux model. The implementation is validated in Appendix
C.

From the results of Otero Rodriguez et al. (2018), we know that turbulent stress models
performs exceptionally well when solved in semi-local scales and thus, we will follow that.
However, since our goal is to see the effect of semi-local scaling on heat flux models, we shall
solve the heat flux model in both conventionally scaled form and in semi-locally scaled form
and the results will be compared.

5-3-2 Results for Low-Mach Number cases

Results are presented in figures 5-9 to 5-12 for cases CP, CRe∗τ , GL and LL (table 4-1). These
cases were also analysed in Otero Rodriguez et al. (2018). The results plotted are for the
transformed velocity {u∗} defined in Patel et al. (2016) as,

{u∗} =
∫ {uvD}

0

(
1 + y

Re∗τ

dRe∗τ
dy

)
d{uvD}, (5-17)

normalised mean temperature defined in Otero Rodriguez et al. (2018) as,

{T} − Tw
{TmaxDNS} − Tw

,

TKE (k), its dissipation (ε), enthalpy variance (kh) and its dissipation (εkh). TmaxDNS is the
centreline temperature computed from DNS. All the turbulent quantities are presented in
conventionally scaled form, for instance, k in the image is k/u2

τ . Another important thing to
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Figure 5-7: Comparison of εkh computed using the model kh equation (with other terms taken
from DNS) with the actual DNS values. Results are shown for the case CP (left) and CRe∗τ
(right).

note is that the dissipation of enthalpy variance (εkh) presented in the figures 5-11 and 5-12
(for cases GL and LL) are not strictly DNS values. Due to unavailability of DNS data files, it
was not possible to post-process and compute it. Thus, it is computed from a typical "model
kh" equation but with other terms in the equation taken from DNS. Figure 5-7 compares the
dissipation (εkh) computed from DNS and that computed from the model equation (with all
other terms taken from DNS) for cases CP and CRe∗τ . As seen, the accuracy is not very high
but reasonable enough for modeling conclusions.

The solution of RANS using the semi-locally scaled Nagano and Shimada model follows DNS
data accurately for all the cases except the GL case. At first sight one would attribute this
to the low Reynolds number of gas-like case away from the wall (≈ 150) and call it a low-Re
effect. However, apart from the low Reynolds number effect, the error is also attributable to
the high Prandtl number of the gas-like case away from the wall as seen in figure 4-2. As
explained in section 3-1, the major reason behind the success of modeling in semi-local scales
is the similarity between variable property cases and constant property cases beyond y∗ ≈ 10.
However, near the wall, for cases with Re∗τ gradients, there is structure modulation as can
also be seen in figure 3-5, and this similarity fails. For higher Prandtl number cases, the
strong thermal turbulence region shifts to lower y∗ (in other words, the region where values
of αt actually begin to matter). This is evident from figure 5-8 which shows the production
of thermal variance normalized by the maximum value (another measure of this would be to
see the peaks of turbulent heat flux). Clearly the peak of production for the GL case shifts to
y∗ ≈ 8.5 compared to the peaks occurring for other cases beyond y∗ ≈ 11.8. Because of this
shift towards the wall for GL case and considering the fact that using a constant property like
model in this region will not produce accurate results due to structure modulation, one can
explain the error in GL case. The only other case with Re∗τ gradient and hence at the risk of
error due to structure modulation is LL. However, as seen in figure 5-8, the production peak
for LL (due to low Prandtl number) is far in the safe region and hence the effect of structure
modulation on thermal turbulence is negligible.

For all the variable property cases, the solution obtained using semi-locally scaled model is
much better than the solution obtained by solving classically scaled equations. Not just mean
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Figure 5-8: Production of thermal variance Pkh normalized by its maximum value.

temperature but also turbulent quantities are correctly predicted. It is worth noting that the
major advantage of solving in semi-local scales over conventional scales is obtained for cases
with varying density in the domain. This is the reason why for LL (constant ρ), the results
are nearly similar with both the implementations but for CRe∗τ (varying ρ) the improvement
is noteworthy. This supports the conclusion that semi-local scaling indeed takes care of the
variable inertia effects.

For low-Mach number cases, we now know that solving heat flux model equations in semi-local
scales for thermal turbulence captures physics (variable inertia effects) more accurately than
just solving them in conventional scales. At this point, it is interesting to see the results of
semi-locally scaled heat flux models for high-Mach number cases. But before that a detailed
understanding about the physics behind viscous heating is required as it is what separates
the thermal turbulence in low and high-Mach number cases. This analysis is presented in the
next chapter.

A.M. Hasan Master of Science Thesis



5-3 Solving Heat Flux Model in Semi-Local Form 51

Figure 5-9: RANS results for the case CP. "SLS" stands for solving the model in semi-local scales
and "Conv" stands for solving it in conventional form. All turbulent quantities in the figure are
classically scaled. X-axis for the top right image is y/hc and not y∗.

Figure 5-10: RANS results for the case CRe∗τ . "SLS" stands for solving the model in semi-local
scales and "Conv" stands for solving it in conventional form. All turbulent quantities in the figure
are classically scaled. X-axis for the top right image is y/hc and not y∗.
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52 Low-Mach Number Cases with Uniform Heating

Figure 5-11: RANS results for the case GL. "SLS" stands for solving the model in semi-local
scales and "Conv" stands for solving it in conventional form. All turbulent quantities in the figure
are classically scaled. X-axis for the top right image is y/hc and not y∗.

Figure 5-12: RANS results for the case LL. "SLS" stands for solving the model in semi-local
scales and "Conv" stands for solving it in conventional form. All turbulent quantities in the figure
are classically scaled. X-axis for the top right image is y/hc and not y∗.
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Chapter 6

High-Mach Number Cases with
Viscous Heating

In this chapter we will analyse thermal turbulence in high-Mach number cases with viscous
heating. We will first compare these cases with the low-Mach number cases (with uniform heat
source) as discussed in the previous chapter. We will show that the conclusions made in Patel
et al. (2017) pertaining to scalar transport in variable property flows will not necessarily hold
for high-Mach number cases with viscous heating. An analysis showing the effect of viscous
heating source on the mean enthalpy equation, enthalpy variance equation and turbulence
heat flux equation is presented. Later in the chapter, the governing parameters for thermal
turbulence in high-Mach number cases with viscous heating are discussed. The chapter is
concluded with heat flux modeling in semi-local scales for these cases.

For the high-Mach number cases, the volumetric heating source Φ (in the energy equation
(2-10)), unlike low-Mach number cases, is not constant anymore and is coupled to velocity
turbulence as,

Φ = τij
∂ui
∂xj

. (6-1)

Equation (6-1) is called aerodynamic heating or viscous heating. In the low-Mach number
approximation the viscous heating is assumed to be negligible and thus to produce significant
temperature gradients, fictitious user specified heat sources are added.

In semi-local scales Φ is,

Φ̂ = Ecθ∗τ τ̂
vD
ij

∂uvDi
∂x̂j

. (6-2)

6-1 Comparison with Uniform Heating Cases

In previous section we analysed low-Mach number cases of Patel et al. (2017) in which the
temperature gradient (and variable property effect) was produced using user-specified uniform
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Figure 6-1: The distribution of viscous heating source (high-Mach number) and uniform heat
source (low-Mach number) in semi-local scales.

volumetric heating sources. The major difference between those cases and the high-Mach
number cases with viscous heating, is that now the volumetric sources are not uniform but
are governed by dissipation of kinetic energy. This leads to a very non-uniform distribution
of the heat source, with maximum concentration near the wall because that is where we have
the highest gradients in velocity. Because of this disparity in the distribution of the heat
source, maximum temperature change occurs near the wall and, unlike low-Mach number
cases, the change in temperature away from the wall is negligible due to the negligible heat
source. This fundamental difference leads to major differences between the cases with uniform
heating and with viscous heating (will henceforth be referred to as UH and VH respectively
in this section).
Table 6-1 presents the mean enthalpy equation in semi-local scales for UH and VH.

UH VH

∂

∂ŷ

[( 1
Re∗τPr

∗ + α̂t

)
∂{hvD}
∂ŷ

]
= −1. ∂

∂ŷ

[( 1
Re∗τPr

∗ + α̂t

)
∂{hvD}
∂ŷ

]
= −〈Φ̂〉.

Table 6-1: The mean enthalpy equation for UH (low-Mach number) and VH (high-Mach number)
cases

Figure 6-1 shows 〈Φ̂〉 for the cases M3.0R200 and M4.0R200 as described in table 4-1 and for
a low-Mach number case. We can clearly see the non-uniformity in distribution of 〈Φ̂〉 and
also the fact that near the wall it is very high. An interesting thing to note from table 6-1 is
that the uniform user specified volumetric heating source, in semi-local scales, for UH cases
is equal to 1.
When the RHS of equations presented in table 6-1 are integrated, we get local heat flux
(qy/qw) as,

qy/qw = 1− y

hc
, (6-3)
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Figure 6-2: Local heat flux (qy) normalized by heat flux at the wall (qw). In the image on the
right, the distribution only in the inner layer is shown.

and,

qy/qw =
∫ ŷ

1
−〈Φ̂〉dŷ, (6-4)

respectively for UH and VH. This implies that the local heat flux qy/qw varies linearly in UH
cases but for the VH cases, the profile of qy/qw is not necessarily linear. To check this, we
plot qy/qw for a low-Mach number case and for Trettel and Larsson cases (table 4-1) in figure
6-2. As seen, due to the highly non-uniform distribution of viscous heating, qy/qw changes
non-linearly in the near wall region for high-Mach number cases. In the inner layer, the
approximation qy ≈ qw is true for low-Mach number cases but not for the high-Mach number
cases as seen in figure 6-2 (right).

This leads us to the major conclusion of this section. Due to this fundamental difference
between UH and VH cases, the conclusions obtained in Patel et al. (2017), considering UH
cases, will not necessarily hold for VH cases and are very specific. For instance, the derivation
of the extended van Driest temperature transformation,

{θ∗} =
∫ {θvD}

0

(
1 + y

Re∗τ

dRe∗τ
dy

)
d{θvD}, (6-5)

is based on the assumption that in the inner layer qy ≈ qw, which is not true for VH cases
and thus, we would expect it to fail. The transformed mean temperature ({θ∗}) is plotted
in figure 6-3 for the cases of Trettel and Larsson (2016) specified in table 4-1. For low-Mach
number cases with the same Prandtl number (Pr), the transformed mean temperature profile
should collapse. However, for high-Mach number, even though the Prandtl number (Pr) for
all the cases is the same, the profiles do not collapse. Also in figure 6-3 (right), we can see
that there is no log-law region for the high-Mach number cases (incompressible case CP is
added for reference). This is an effect due to viscous heating as was also observed in Morinishi
et al. (2004) for temperature profiles scaled by wall friction temperature θτ .

The effects of viscous heating on thermal turbulence is discussed in the next section.
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Figure 6-3: The transformed mean temperature {θ∗} for the high-Mach number cases of Trettel
and Larsson (2016). In the image on the right, the curves are compared with {θ∗} for a low-Mach
number case (CP).

6-2 Effects of Viscous Heating on Thermal Turbulence

There are two ways in which viscous heating can affect thermal turbulence:

• By changing the volumetric heat source in the mean enthalpy equation and hence af-
fecting the mean enthalpy (or temperature) distribution.

• By correlating with turbulent fluctuations and resulting in additional source/sink in the
transport equations of thermal quantities, such as enthalpy variance and turbulent heat
flux.

6-2-1 Effects on the Mean Enthalpy Equation

This has already been discussed in the previous section (section 6-1) in which the VH cases
were compared with the UH cases.

6-2-2 Effects on the Enthalpy Variance (kh) Budget

The enthalpy variance equation (3-38) for fully developed channel flows is rewritten here as,

P̂kh − ε̂kh + T̂kh + D̂kh + B̂kh + P̂ rkh + Φ̂kh = 0. (6-6)

For the low-Mach number cases, Φ̂kh was neglected due to the uniform and constant nature
of Φ. However, in high-Mach number cases, this term cannot be neglected. In this section
we will analyse the importance of Φ̂kh in the evolution of kh and also discuss the physical
mechanism behind Φ̂kh.
Let us first study the form of Φ. Rewriting equation (6-1),

Φ = τij
∂ui
∂xj

. (6-7)
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The RHS can be expanded as,

Φ = 〈τij〉
∂{ui}
∂xj

+ 〈τij〉
∂u′′i
∂xj

+ τ ′ij
∂{ui}
∂xj

+ τ ′ij
∂u′′i
∂xj

. (6-8)

For a fully developed channel we have,

Φ = 〈τxy〉
∂{u}
∂y

+ 〈τij〉
∂u′′i
∂xj

+ τ ′xy
∂{u}
∂y

+ τ ′ij
∂u′′i
∂xj

. (6-9)

We can write the fluctuations in Φ as,

Φ′ = 〈τij〉
∂u′′i
∂xj︸ ︷︷ ︸

I

+ τ ′xy
∂{u}
∂y︸ ︷︷ ︸

II

+ τ ′ij
∂u′′i
∂xj
−
〈
τ ′ij
∂u′′i
∂xj

〉
︸ ︷︷ ︸

III

. (6-10)

Term III signifies fluctuations in TKE dissipation and can be written as ε′. Equation (6-10)
has an assumption of 〈u′′i 〉 ≈ 0. We want to analyse how Φ′ is correlated to the fluctuations
in streamwise velocity and thus we will study their correlation coefficient. Consider the
correlation,

〈u′′Φ′〉 = 〈τij〉
〈
u′′
∂u′′i
∂xj

〉
︸ ︷︷ ︸

I

+
〈
u′′τ ′xy

〉 ∂{u}
∂y︸ ︷︷ ︸

II

+
〈
u′′ε′

〉︸ ︷︷ ︸
III

, (6-11)

whose correlation coefficient is defined as,

RuΦ = 〈u′′Φ′〉
urmsΦrms

. (6-12)

Figure 6-4 shows the contributions to the correlation coefficient from each term in equation (6-
11) for the case M3.0R200. As seen, the terms I and II on the RHS of equation (6-11)
contribute the most near the wall. Another point to note is that the contributions from the
term I and II are almost identical. With some assumptions we can show that both these
terms (I and II) approximately represent,

〈µ〉∂{u}
∂y

〈
u′′
∂u′′

∂y

〉
,

and hence, their contributions are also similar. Contribution by term III (in equation (6-11))
is small near the wall, but away from the wall, the total contribution comes from this term.
The total correlation coefficient (computed without any assumptions and simplifications) is
high and positive near the wall. This signifies that the fluctuations in Φ (Φ′) are positively
correlated to u′′ which is not possible if the fluctuations were generated due to mere passive
mixing. Because if it was the case then the correlation coefficient should be negative near the
wall as the distribution of 〈Φ〉 decreases away from the wall and that of {u} increases.

Near the wall, the very high velocity gradients provide an important contribution to dissi-
pation and hence to Φ. The role of turbulent dissipation is very small near the wall. This
is clear from figure 6-5 which shows the contributions to 〈Φ〉 from dissipation due to mean
velocity gradients (dissipation of mean KE, 〈τ12〉∂〈u〉/∂y) and dissipation of TKE (ε) for the
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58 High-Mach Number Cases with Viscous Heating

Figure 6-4: Contributions from the individual terms in equation (6-11) to the total correlation
coefficient (equation (6-12)) for the case M3.0R200.

case M3.0R200. However, away from the wall, the gradients in streamwise velocity are small
and thus, the main contribution to Φ comes from the TKE dissipation (ε). Near the wall,
the fluctuations in Φ (Φ′) are generated because of fluctuations in the streamwise velocity
u′′ modifying the instantaneous velocity gradients. A positive u′′ is coupled with a positive
gradient ∂u′′/∂y in the near wall region. A positive gradient ∂u′′/∂y causes the instantaneous
velocity gradient to increase and thus increasing Φ, resulting in a positive fluctuation Φ′. This
explains the positive correlation near the wall. However, away from the wall, the fluctuations
are generated due to passive mixing of ε and hence the correlation coefficient is negative. The
TKE dissipation ε acts on very small scales and hence is a local quantity. u′′ is mainly related
to large scales and has no direct impact on TKE dissipation. Note that this is true only away
from the wall where turbulent Reynolds number and hence scale separation is high. Near the
wall, there is no clear distinction between large and small scales and hence u′′ can directly
affect ε. This is evident from the positive correlation coefficient coming from term III near
the wall in figure 6-4. Phenomenologically, away from the wall, a fluid parcel leaving source
"A" and reaching destination point "B" would also carry with it the dissipation at "A" to "B".
This would create fluctuations in ε at "B" due to passive mixing.
To summarize, near the wall, Φ′ is generated by u′′ affecting the instantaneous velocity gra-
dients. Mathematically,

Φ′ ≈ 〈τij〉
∂u′′i
∂xj

+ τ ′xy
∂{u}
∂y

, (6-13)

and,

〈u′′Φ′〉 ≈ 〈τij〉
〈
u′′
∂u′′i
∂xj

〉
+
〈
u′′τ ′xy

〉 ∂{u}
∂y

. (6-14)

Away from the wall, Φ′ is generated by passive mixing of TKE dissipation ε. Mathematically,

Φ′ ≈ ε′, (6-15)

and,
〈u′′Φ′〉 ≈

〈
u′′ε′

〉
. (6-16)
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Figure 6-5: Contributions to the mean viscous heating 〈Φ〉 from dissipation due to mean velocity
gradients 〈Φ〉vg and from TKE dissipation 〈Φ〉ε for the case M3.0R200. Note that the values are
not semi-locally scaled but are unscaled.

The above analysis proves that the fluctuations in Φ are not simply caused by passive mixing of
the mean heat sources 〈Φ〉, especially near the wall. Viscous heating effects, therefore, cannot
be modelled by just providing a user defined varying volumetric heat source distribution such
that it represents 〈Φ〉. The heat sources also need to be coupled to velocity gradients and
turbulence.

After studying the mechanism of how Φ′ is generated, we want to know how does it correlate
with the enthalpy fluctuations. Since Φ is directly present in the enthalpy equation (2-16),
one would expect fluctuations Φ′ leading to enthalpy fluctuations, or in other words we can
say that Φ′ contributes to an additional source in the enthalpy variance (kh) equation which
is nothing but the Φkh term.

Figure 6-6 and 6-7 show the enthalpy variance budget in semi-local scales for the cases
M3.0R200 and M3.0CRe∗τ . As seen, the production due to the viscous heating (Φ̂kh) is
as large as the conventional production term (P̂kh), however, its peak is much closer to the
wall. This is expected due to very high Φ̂rms near the wall (figure 6-8). The artifact terms
(B̂kh and D̂kh) are small like we had in the low-Mach number cases. However, due to very low
production (P̂kh), these terms might become relatively important. The term due to pressure,
P̂ rkh is small in the entire domain.

Figure 6-9 shows the two mechanisms of production, i.e. by passive mixing (P̂kh) and by
fluctuations in Φ (Φ̂kh) for the case M3.0R200. The same figure also plots the correlation
coefficient defined as,

RhΦ = 〈ĥ′′Φ̂′〉
ĥrmsΦ̂rms

. (6-17)

Near the wall, Φ̂kh is a dominant source term. This implies that fluctuations in enthalpy near
the wall are generated due to fluctuations in viscous heat source Φ. Since Φ is a source term
in the enthalpy transport equation, we would expect the correlation between the fluctuations
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Figure 6-6: Semi-local kh budget for the case M3.0R200 scaled by 〈ρ〉u∗τ (cpθ∗τ )2/δ∗v (effectively
dividing equation (6-6) by Re∗τ ).

Figure 6-7: Semi-local kh budget for the case M3.0CRe∗τ scaled by 〈ρ〉u∗τ (cpθ∗τ )2/δ∗v (effectively
dividing equation (6-6) by Re∗τ ).
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Figure 6-8: Φ̂rms, signifying the magnitude of fluctuations in viscous heating (Φ̂′). The values
are semi-locally scaled.

to be positive and figure 6-9 shows exactly that. However, away from the wall, passive mixing
dominates and P̂kh becomes the dominant production term. Thus, the coefficient changes
sign. The mechanism of generation of enthalpy fluctuations near the wall can be summarized
as follows: Fluctuations in the streamwise velocity u′′ affect the instantaneous streamwise
velocity gradients and hence the viscous heating source Φ. This leads to fluctuations in the
source term (Φ) in the enthalpy equation, causing fluctuations in enthalpy.

In figure 6-9, we have seen that the Φ̂kh term is a dominant production term near the wall.
Its effect on kh is clearly seen in figure 6-10 which compares the kh profile and the k profile
(normalized by their maximums) for the M3.0R200 case. For a Pr = 0.7 fluid, the peaks
should occur nearly at the same y∗ location, but due to the additional production term near
the wall, the peak of kh is shifted towards the wall.

Now that we have studied the effect of viscous heating on enthalpy variance and its budget, we
are interested to study its effect on the quantity of engineering importance, i.e. the turbulent
heat flux.

6-2-3 Effects on the Turbulent Heat Flux Budget

In this section we will present the budget of wall-normal turbulent heat flux in semi-local
scales. The equation for turbulent heat flux in semi-local scales is derived and presented in
section 3-2-5. Figure 6-11 shows the budget for wall-normal turbulent heat flux (-〈v̂′′ĥ′′〉) in
semi-local scales for the case M3.0CRe∗τ . (Note the minus sign. The equations we derived are
for 〈û′′i ĥ′′〉 and thus to obtain budget for −〈û′′i ĥ′′〉, each term in equation (3-46) should be
multiplied by -1.)

Like for the constant property budget, the enthalpy – pressure gradient correlation term
(Ĥuih) acts as a major sink term to balance most of the production (P̂uih). The dissipation
ε̂uih has notable values only in the near wall region. Also, we can see that the artifact terms
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Figure 6-9: Source terms in the kh equation (P̂kh and Φ̂kh) on the left y-axis. Correlation
coefficient defined in equation (6-17) on the right y-axis.

Figure 6-10: TKE and enthalpy variance normalized by their respective maximums for the case
M3.0R200.
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Figure 6-11: Semi-local wall-normal turbulent heat flux budget scaled by 〈ρ〉u∗2

τ (cpθ∗τ )/δ∗v (ef-
fectively dividing equation (3-46) by Re∗τ ), for the case M3.0CRe∗τ .

B̂uih and D̂uih are small throughout the domain. The additional term due to viscous heating
Φuih is negligible in the entire domain and thus, we can conclude that the direct contribution
of viscous heating to the turbulent heat flux is negligible. However, it can affect the heat
flux indirectly by affecting other terms in the budget. The term due to pressure (P̂ ruih) has
notable values near the wall, however, in the entire domain the term is small compared to
other budget terms.

Here, we come to an end of our analysis about the effects of viscous heating on thermal tur-
bulence. We saw the effect of the viscous heating term as a whole. Looking at its formulation
in equation (6-2), the term seems to be governed by Re∗τ and Ec∗θτ . In the next section we
shall discuss more about these parameters and their importance in thermal turbulence.

6-3 Governing Parameters

The viscous heating term is a sink in the mean KE and TKE equations and a source in
the enthalpy equation. In dimensional form they should be equal, however, in semi-local
scales, the sink in KE equation is τvDij ∂uvDi /∂x̂j but the source in the enthalpy equation is
Ec∗θτ τ

vD
ij ∂uvDi /∂x̂j . This is because both the equations are scaled differently. As an artifact

of using different scales to scale kinetic energy (u∗2
τ ) and enthalpy (cpθ∗τ ), we get a new

parameter, called the "modified Eckert number" (Ec∗θτ = u∗
2
τ /(cpθ∗τ )) in this thesis. Its form

is very similar to the conventional Eckert number and hence the name.

We already know the importance of Re∗τ and Pr∗ in semi-locally scaled thermal turbulence
as seen in section 5-2 for low-Mach number cases. However, for high-Mach number cases, due
to viscous heating an additional parameter (modified Eckert number) is introduced. In the
next section we will analyse the importance of this new parameter.
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Figure 6-12: Semi-locally scaled production and dissipation of TKE for the cases M3.0CRe∗τ and
M0.7CRe∗τ .

6-3-1 Importance of Ec∗θτ in thermal turbulence

In this section, we want to know if we can just ensure similar Re∗τ and Pr∗ without considering
about Ec∗θτ and still get similar thermal turbulence statistics for two cases. Answering this
question requires setting up two cases with same Pr∗ and Re∗τ profiles but different Ec∗θτ
profile. This will help us to isolate the effects of Ec∗θτ and comment on its importance in a
better way.

For this purpose, the idea of setting up constant Re∗τ high-Mach number cases (M0.7CRe∗τ
and M3.0CRe∗τ ) was proposed. The cases are described in table 4-1. These cases have the
same Re∗τ and Pr∗ profiles but due to very different Mach numbers, their Ecθ∗τ profiles are
different as seen in figure 4-6.

DNS simulations were performed for these cases using the code developed in-house by the
Fluid Dynamics of Energy Systems team headed by Dr. R. Pecnik. The DNS code is described
briefly in Appendix B. The same code is also used to simulate the M3.0R200 and M4.0R200
cases of Trettel and Larsson (2016) so as to compute the statistics that are not published by
the authors. The validation of the code is presented in Appendix C.

In figure 6-12 we show the production and dissipation of TKE for the M3.0CRe∗τ and M0.7CRe∗τ
cases. We see that indeed the profiles are very similar and hence reinforces our belief in Re∗τ
as a governing parameter for velocity turbulence. However, the peak for the Mach 3 case
is slightly shifted away from the wall. This is due to the inter-component energy transfer
affected by the density profile and not fully characterized by Re∗τ . This is discussed in the
next chapter.

In figure 6-13 we see the production P̂kh, dissipation ε̂kh and viscous heating term Φ̂kh for the
two cases. As seen, the collapse is not as good as what we had in figure 6-12. The peaks of
both P̂kh and Φ̂kh are not fully characterized by Re∗τ and Pr∗. This signifies the importance
of Ec∗θτ in thermal turbulence.
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Figure 6-13: Semi-locally scaled production and dissipation of enthalpy variance for the cases
M3.0CRe∗τ and M0.7CRe∗τ .

In the next section, we will use the findings of this chapter to solve for turbulent heat flux in
high-Mach number flows.

6-4 Heat Flux Modeling of High-Mach Number Cases

At this point, we know that the viscous heating term (Φ̂kh) indeed plays a dominant role in
the evolution of enthalpy variance, especially near the wall (section 6-2-2). We want to see
how dominant is this role from a modeling perspective. In other words, we want to check if
we can use the same model equations for high-Mach number cases as we did for low-Mach
number cases. In section 5-3, we saw that solving heat flux models in semi-locally scaled form
captures variable inertia effects better than solving them in conventionally scaled form. We
will use that conclusion and solve the model equations for high-Mach number cases also in
semi-locally scaled form. This will help to isolate only the effects or differences that arise due
to viscous heating, as the variable property effects are taken care by semi-locally scaling the
model equations.

For high-Mach number cases, the mean enthalpy equation will be modified as,

∂

∂ŷ

[( 1
Re∗τPr

∗ + α̂t

)
∂{hvD}
∂ŷ

]
= −〈Φ̂〉. (6-18)

To solve the mean enthalpy equation, we need an approximation for 〈Φ̂〉. Otero Rodriguez
et al. (2018) have approximated this term as (when reformulated in semi-local scales),

〈Φ̂〉 = Ec∗θτ

 1
Re∗τ

(
∂{uvD}
∂ŷ

)2

+ µ̂t

(
∂{uvD}
∂ŷ

)2
 . (6-19)

Master of Science Thesis A.M. Hasan



66 High-Mach Number Cases with Viscous Heating

Figure 6-14: 〈Φ̂〉 computed using the model (equation (6-19)) and compared with DNS for the
case M3.0R200. Values are semi-locally scaled.

The first term on the RHS is the contribution by dissipation of mean KE and the second
term is the contribution by TKE. This formulation, even though seems to be reasonable from
a modeling perspective, is not fully correct. This is because the second term on the right
hand side of equation (6-19) is production of TKE (Pk), but the contribution to enthalpy is
by dissipation of TKE (ε). In the log-law region and beyond, due to equilibrium nature of
the flow, production and dissipation are nearly in balance. However, near the wall, this is
not the case and thus the formulation is not completely correct. Near the wall the first term
on the RHS of equation (6-19) dominates and the effect of this inaccuracy is overshadowed.
Figure 6-14 shows accurate 〈Φ̂〉 (computed from DNS) and the one obtained using equation
(6-19) for the case M3.0R200. The difference is not too large and is acceptable for modeling
purpose. However, a better approximation would be to use ε computed from the turbulent
stress model, instead of the production term.

The RANS results are presented in figure 6-15 for the case M3.0R200 when the model is solved
in semi-local scales. The model equations are same as the ones used for low-Mach number
cases without any modification to account for viscous heating effects. As seen, the predictions
of mean temperature is not very inaccurate, however, the thermal turbulence quantities are
far from accurate. This near-accurate mean temperature is mere coincidence and does not
speak for robustness of the model as seen in figure 6-16, which shows the normalised mean
temperature for cases M0.7R600 and M3.0R600. The computed mean temperature for these
cases is not accurate showing deficiency in the model equations. The predictions of mean
velocity and velocity turbulence quantities are acceptable. This implies that the turbulent
stress model seems to capture the physics well, but due to viscous heating, the heat flux
model is unable to completely capture the physics.

It is worth noting at this point that Otero Rodriguez et al. (2018) solved the mean temperature
for high-Mach number cases using a simple constant turbulent Prandtl number model and
the results were accurate. So why don’t we simply use constant Prt model? The benefit
of improving 2-equation heat flux models is because these models would even work in cases
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Figure 6-15: RANS results for the case M3.0R200 using the same Nagano and Shimada model as
was used for low-Mach number cases. Turbulence quantities presented in the image are classically
scaled. X-axis for the top right image is y/hc and not y∗.

where the constant turbulent Prandtl number model fails. For instance, where the strong
analogy between heat and momentum transport is not applicable. Nagano and Shimada
(1996) solved developing thermal boundary layers in a fully developed velocity field and
found that a constant Prt model does not work in the early stage of development due to
dissimilarity between velocity and thermal fields, but their 2-equation heat flux model does.
So and Speziale (1999) and Patel (2013) also mention about the failure of constant Prt models
when the buoyancy effects are high.
In the following section we will discuss how the kh and εkh model equations are affected due
to viscous heating in high-Mach number cases. Note that this effect will be dominant only
near the wall because that is where viscous heating effects are strong.

6-4-1 Model enthalpy variance (kh) equation

Figure 6-6 and 6-7 represent the kh budget in semi-local scales for two high-Mach number
channel flows. We notice that apart from the usual terms that are modeled in the low-Mach
number case, viscous heating source term seems to be a dominant production term near the
wall and an attempt to model it is made in this section.
Near the wall, the correlation 〈u′′Φ′〉 can be approximated by equation (6-14). It is rewritten
below as,

〈u′′Φ′〉 ≈ 〈τij〉
〈
u′′
∂u′′i
∂xj

〉
+
〈
u′′τ ′xy

〉 ∂{u}
∂y

. (6-20)
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Figure 6-16: Normalised mean temperature for the cases M0.7R600 (left) and M3.0R600 (right).

In section 6-2-2, we also showed that the terms on the RHS, to a certain approximation,
represent,

〈µ〉∂{u}
∂y

〈
u′′
∂u′′

∂y

〉
,

which in semi-local scales can be written as,

1
Re∗τ

∂{uvD}
∂ŷ

〈
û′′
∂û′′

∂ŷ

〉
.

Using this information, in semi-local scales we can write,

〈û′′Φ̂′〉 ≈ 2
Re∗τ

∂{uvD}
∂ŷ

〈
û′′
∂û′′

∂ŷ

〉
= 2
Re∗τ

∂{uvD}
∂ŷ

∂〈û′′û′′/2〉
∂ŷ︸ ︷︷ ︸
A

. (6-21)

We model term "A" as,
∂{k̂}
∂ŷ

.

The final model becomes,

〈û′′Φ̂′〉 ≈ Cu
2
Re∗τ

∂{uvD}
∂ŷ

∂{k̂}
∂ŷ

, (6-22)

where Cu is a model constant and needs to be fine tuned for accurate predictions. We have
chosen a value of 1.33 for Cu. Figure 6-17 compares our model with the DNS for some cases
and the predictions appear reasonable.
In Figure 6-18 we present the correlation coefficient defined as,

Ruh = 〈û′′ĥ′′〉
ûrmsĥrms

, (6-23)

and as seen the coefficient is very high especially near the wall. Using this information about
u′′ and h′′ being strongly correlated near the wall, and using equation (6-22), we propose the
model for 〈ĥ′′Φ̂′〉 as,

〈ĥ′′Φ̂′〉 ≈ Ch
2
Re∗τ

∂{uvD}
∂ŷ

∂
√
{k̂}{k̂h}
∂ŷ

, (6-24)
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Figure 6-17: Comparison of the model for 〈û′′Φ̂′〉 proposed in equation (6-22) with DNS. Results
are shown for M0.7CRe∗τ (top left), M3.0CRe∗τ (top right), M3.0R200 (bottom left) and M4.0R200
(bottom right). Values are semi-locally scaled.

where Ch is a model constant. After some fine tuning we have selected a value of 1.6 for the
constant. Figure 6-19 compares our model with the DNS for some cases and the predictions
appear accurate.

The best way to check if the model is good or not is to implement it and solve kh. Figure 6-20
shows kh without the model for Φ̂kh, or in other words solution to equation,

P̂kh − ε̂kh + T̂kh = 0. (6-25)

The same figure also shows the results for kh when we use equation (6-24) to model Φ̂kh. In
other words, the solution to equation,

P̂kh − ε̂kh + T̂kh + Φ̂model
kh = 0. (6-26)

The production, dissipation and turbulent diffusion terms are taken directly from DNS and
the viscous diffusion term is used to compute kh by integration. The result without the model
for Φ̂kh is unsatisfactory and is one of the major reasons for poor results obtained in figure 6-
15 for the M3.0R200 case. However, with the model, the results are clearly improved. Note
that in this analysis we have neglected the artifact terms (B̂kh and D̂kh) and the term due to
pressure (P̂ rkh) due to their insignificant magnitudes (figure 6-6 and 6-7).

Using the model proposed for Φ̂kh, the RANS equations were again solved for the case
M3.0R200 (results are not shown here) using the Nagano and Shimada model in semi-local
form. There was no major improvement in the result. This is because the εkh equation pro-
posed for the low-Mach number cases is not suitable for the high-Mach number cases. The
error due to εkh was not reflected in figure 6-20 because we used DNS values for εkh as the
main goal was to study the effectiveness of the proposed model for Φ̂kh. In the next section
the possible reason behind the failure of εkh model equation is discussed.
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Figure 6-18: Coefficient of correlation between the fluctuations in streamwise velocity and en-
thalpy (defined in equation (6-23)).

Figure 6-19: Comparison of the model for 〈ĥ′′Φ̂′〉 proposed in equation (6-24) with DNS. Results
are shown for M0.7CRe∗τ (top left), M3.0CRe∗τ (top right), M3.0R200 (bottom left) and M4.0R200
(bottom right). Values are semi-locally scaled.
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Figure 6-20: Comparison of kh computed using the model for Φ̂kh and that computed without
any model for Φ̂kh, with DNS. Results are shown for M0.7CRe∗τ (top left), M3.0CRe∗τ (top right),
M3.0R200 (bottom left) and M4.0R200 (bottom right). All values presented are semi-locally
scaled.

6-4-2 Model εkh equation

The model equation of thermal variance dissipation (εkh) is proposed based on intelligent
dimensional arguments (Launder, 1976). We can also refer this equation as an empirical
equation for εkh. In Nagano and Shimada (1996), the equation of εkh (referred as εt in the
paper) is rigorously modeled to take care of the near wall effects and Prandtl number (Pr)
dependency. However, the channel cases tested in Nagano and Shimada (1996) are the ones
with uniform internal heat source or with iso-flux boundary condition. They do not discuss if
the εkh equation proposed will work for compressible cases with viscous heating. The question
comes to mind - how are the viscous heating cases different and why would the model εkh
equation not work for them? This question is answered in this section.

Launder (1976) was one of the pioneering work in heat flux modeling. Launder (1976) men-
tioned that coming up with a model equation for εkh is more difficult than that for ε (TKE
dissipation) due to the increased number of parameters. For instance, time scales can be
constructed as k/ε or as kh/εkh. Nagano and Shimada (1996) models the source and sink
terms in the dissipation equation as,

εkh
T
,

where T is a suitable time scale. The time scale for the production of εkh (or εt) is taken
as k/Pk and kh/Pkh. Similarly, the time scale for the dissipation of εkh is taken as k/ε and
kh/εkh. Thus, there are 4 terms representing the source and sink terms in the εkh model
equation, one with each time scale. These terms are,

εkhPkh
kh

,
εkhPk
k

,
εkhεkh
kh

,
εkhε

k
. (6-27)
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However, in the high-Mach number cases, we will have additional source/sink terms in the εkh
equation due to viscous heating. Possibly, it is due to these terms, that the low-Mach number
εkh model equation seems to be insufficient to capture the physics. Modeling these terms by
just using a time scale as kh/Φkh was tried but there was no significant improvement. Thus,
a more rigorous approach needs to be adopted. Fixing the εkh equation for the high-Mach
number cases is beyond the scope of this work and can be pursued as a continuation of this
work in future studies. An appropriate action plan would be to first derive the exact εkh
equation to see which new terms are dominant. A possible way to model these terms then
needs to be figured out. Also, the possibility of the model constants in the εkh equation
getting modified needs to be considered.

This brings us to the end of this section. In summary we can say that viscous heating does
have notable effects on the model equations of kh and εkh, especially near the wall. Thus,
if we are to compute αt using a two equation heat flux model, then we need to incorporate
these effects in the model equations.

The next chapter is not strongly related to the content discussed until now but tells us an
important condition in which semi-local scaling can be compromised. We will see why two
high-Mach number cases (M0.7CRe∗τ and M3.0CRe∗τ ) are different despite having the same
Re∗τ .
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Chapter 7

Effects of High Density Gradients on
Inter-Component Energy Transfer

In the previous chapter, in figure 6-12, we saw that the TKE production profile of the case
M3.0CRe∗τ was slightly shifted away from the wall compared to that of the case M0.7CRe∗τ ,
despite having the same Re∗τ profile. No matter how small the difference seems to be, it is
important to investigate it in more detail as it will help us to understand the scenarios under
which semi-local scaling can fail. In this chapter, a brief discussion on the possible reasons
for this difference is presented.
Figure 7-1 shows the {u∗} profile (equation (5-17), also known as the Trettel and Larsson
transformation) for the high-Mach number cases that have the same semi-local Reynolds
number at the channel centre. As seen, all the cases, except M3.0CRe∗τ , show a perfect collapse
with the constant property "law of the wall", which is clear from these curves collapsing with
the profile of the case Moser590 (incompressible case fromMoser et al. (1999) withReτ = 590).
There is a shift observed in the log-law intercept for the case M3.0CRe∗τ , similar to what is
commonly observed for boundary layers (Zhang et al., 2018).
We saw that the TKE production peak is shifted away from the wall for the case M3.0CRe∗τ .
This is explained from figure 7-2. It shows the distribution of the semi-locally scaled wall-
normal Reynolds stress for the case M3.0CRe∗τ compared with Moser590. The rise of wall-
normal Reynolds stress in the case of M3.0CRe∗τ is delayed and a clear offset is seen. This delay
in the rise of the active motions near the wall is the major reason why the TKE production
peak is shifted away from the wall. This is because, the TKE production depends on the
turbulent shear stress and the production of turbulent shear stress depends on wall-normal
Reynolds stress. This delayed rise is also the possible reason behind the log-law shift observed
in figure 7-1. This is because the collapse obtained in {u∗} is due to the collapse of viscous
shear stress (Patel et al., 2016). The viscous shear stress depends on the turbulent shear
stress in the inner layer as,

τvisc ≈ 1− τturbulent. (7-1)
There is a direct effect of the delayed rise on τturbulent which in turn affects the viscous shear
stress and hence the {u∗} profile. Figure 7-3 shows the viscous and turbulent shear stresses
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Figure 7-1: Universal velocity transformation (equation (5-17)) for the cases M3.0CRe∗τ ,
M0.7R600, M1.7R600, M3.0R600 and Moser590 (incompressible case from Moser et al. (1999)
with Reτ = 590).

for the cases M3.0CRe∗τ and Moser590. As seen, there is a clear effect of wall-normal Reynolds
stress visible on the profile of turbulent shear stress and hence indirectly on the viscous shear
stress.

The delayed rise of the wall-normal Reynolds stress (figure 7-2) can occur because of insuf-
ficient inter-component energy transfer from the streamwise component to the wall-normal
component. This is clear from figure 7-4 which shows the semi-locally scaled pressure-strain
correlation for the streamwise (Π̂11), wall-normal (Π̂22) and spanwise (Π̂33) components for
the case M3.0CRe∗τ compared with Moser590. Clearly, the reduced magnitude of Π̂11 is the
reason why the other two components receive less energy and hence also explains the delayed
rise of the wall-normal Reynolds stress.

The final question that remains unanswered is why is there a reduced energy transfer, or in
other words, why Π̂11 reduces? Patel et al. (2016) discusses about reduced inter-component
energy transfer for the cases with dRe∗τ/dy < 0 but this reasoning is not applicable here due
to dRe∗τ/dy = 0 for both the cases. There can be two possible reasons for this effect:

• A "pure compressibility" effect, or

• A variable inertia effect (due to density gradients).

Initially, the reduced pressure-strain correlation seems to be a pure compressibility effect.
Pantano and Sarkar (2002) analytically explained, using a Green’s function analysis, that the
streamwise pressure-strain correlation in compressible mixing layers is reduced compared to
its incompressible counterpart due to finite speed of the pressure wave opposed to infinite
speed in incompressible flows. However, Foysi et al. (2004) neglected the wave speed effect
while writing the equation for pressure in channel flows with bulk Mach number as high as 3.
In other words, they use the Poisson equation for pressure (and not a wave equation), but
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Figure 7-2: Semi-locally scaled wall-normal Reynolds stress ({v̂′′v̂′′}) for the cases M3.0CRe∗τ
and Moser590 (incompressible case from Moser et al. (1999) with Reτ = 590).

Figure 7-3: Semi-locally scaled turbulent (left) and viscous (right) shear stresses for the cases
M3.0CRe∗τ and Moser590 (incompressible case from Moser et al. (1999) with Reτ = 590).

Master of Science Thesis A.M. Hasan



76 Effects of High Density Gradients on Inter-Component Energy Transfer

Figure 7-4: Semi-locally scaled pressure-strain correlation. Streamwise component Π̂11 =
〈p̂′∂û′′/∂x̂〉 (left), wall-normal component Π̂22 = 〈p̂′∂v̂′′/∂ŷ〉 (centre) and spanwise compo-
nent Π̂33 = 〈p̂′∂ŵ′′/∂ẑ〉 (right), for the cases M3.0CRe∗τ and Moser590 (incompressible case
from Moser et al. (1999) with Reτ = 590). The values are divided by Re∗τ . Axis for Π̂22 is
adjusted to only show the positive values.

they use source term contributions due to gradients in density. So we can call it a low-Mach
number variable property formulation of the pressure Poisson equation. Foysi et al. (2004)
explain the reduced pressure-strain correlation in high-Mach number channel flows as an effect
arising due to decreasing density away from the wall.

As per the analysis of Patel et al. (2015, 2016); Pecnik and Patel (2017), Re∗τ and the semi-
local scaling characterize the variable inertia effects. If the characterization is perfect (without
involving any assumptions), then the density effect that Foysi et al. (2004) explain, should not
be there for two cases with the same Re∗τ profiles, irrespective of their density profiles, when
the equations are semi-locally scaled. In other words, the semi-locally scaled pressure-strain
correlation should collapse for two cases with the same Re∗τ profiles. However, this is not true
as seen in figure 7-5, which shows the semi-locally scaled pressure-strain correlation for the
low-Mach number cases CP, CRe∗τ and CRe∗τ2. The same figure also shows the density profile
for these cases. As seen, the correlation is not fully characterized by Re∗τ and the difference
between CP and the constant Re∗τ cases intensifies as density gradients become more severe.
This is a sufficient proof to say that the reduced pressure-strain correlation is an effect arising
due to decreasing density away from the wall, as Foysi et al. (2004) explain. In semi-local
sense, this implies that we cannot just scale the pressure-strain correlation by the "local"
density, because of the non-locality of this correlation. This non-locality arises because of
pressure being governed by a Poisson equation (a Poisson equation implies that any change
anywhere in the domain will get instantly translated to all other points in the domain). Kim
(1989) discusses this non-local effect on pressure and pressure-strain correlation in detail using
a Green’s function analysis.

To summarize, the reduced pressure-strain correlation is not a pure compressibility effect, is
not an effect due to Re∗τ gradients, but is an individual property effect which is not fully
characterized by semi-local scaling. This tells us about the conditions in which semi-local
scaling can fail (like very steep density gradients near the wall). Another interesting question
still remains to be answered: Why for the cases of Trettel and Larsson (2016) (table 4-1),
despite having steep near-wall density gradients, the transformation seems to work fine (figure
7-1)? The answer again lies in the profile of wall-normal Reynolds stress which is shown in
figure 7-6 for the cases M3.0R600 and Moser590. As seen, the delayed rise is also observed in
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Figure 7-5: Mean density profile scaled by wall density (left) and streamwise component of
pressure-strain correlation Π̂11 (right) for the cases CP, CRe∗τ and CRe∗τ2. Values of Π̂11 are
divided by Re∗τ .

Figure 7-6: Semi-locally scaled wall-normal Reynolds stress ({v̂′′v̂′′}) for the cases M3.0R600
and Moser590 (incompressible case from Moser et al. (1999) with Reτ = 590).

the M3.0R600 case, however, the slope of the rise is much steeper for the M3.0R600 case and
this is why around y∗ ≈ 30, its profile crosses the one of Moser590 (figure 7-6 (right)). This
eliminates the offset that would have been created due to density gradients. The reason for
the increased slope is unclear and is an interesting content for future research.
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Chapter 8

Summary and Conclusions

In this thesis, we have rigorously characterized and modeled thermal turbulence in variable
property channel flows. Particularly,

• The motivation behind solving RANS models in semi-local form is explained.

• The semi-local scaling framework (previous work of Patel et al. (2015, 2016); Pecnik and
Patel (2017)) is presented and semi-local form of the instantaneous enthalpy, enthalpy
variance, and turbulent heat flux transport equations are derived.

• DNS simulations are performed for four high-Mach number cases to obtain a database
for validating the models, analysing governing parameters and studying the underlying
physics of fluctuations in viscous heating. An existing in-house FORTRAN code is
used, which has been extended with the implementation of Artificial Bulk Viscosity and
Artificial Thermal Conductivity.

• Low-Mach Number: An existing DNS database is post-processed, by developing a
FORTRAN code, to simplify the enthalpy variance transport equation and to analyse
the governing parameters in thermal turbulence. With this knowledge, heat flux models
are solved in conventional and semi-local scales.

• High-Mach Number: First, the cases with viscous heating are compared with the
low-Mach number cases with uniform volumetric heating. Using the DNS simulations
performed in-house, the physics of viscous heating and its fluctuations are studied us-
ing different correlation coefficients. Effects of viscous heating on the mean enthalpy,
enthalpy variance and wall-normal turbulent heat flux is discussed and budgets of en-
thalpy variance and turbulent heat flux, obtained by post-processing the DNS data, are
presented. Comments on the additional governing parameter (modified Eckert number)
are made and then finally, RANS equations are solved for these cases using a 2-equation
heat flux model.

• Having discussed about the success of semi-local scaling, we also present an important
condition under which semi-local scaling can be compromised.
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The findings of this thesis will help to improve heat flux modeling for various classes of vari-
able property flows, like supercritical flows. The research outcomes can be further extended
to develop robust heat flux models to capture the complex heat transfer characteristics in su-
percritical fluids. The development of 2-equation heat flux models for compressible flows will
prove to be useful in scenarios where the existing tools like constant Prt model or Reynolds
analogy theories fail. The findings of this thesis are:

Low-Mach Number Cases

1. The additional artifact terms in the enthalpy variance equation (equation (5-5)) are
small compared to other budget terms and can be neglected.

2. The collapse in the enthalpy variance budget of the cases CP and CRe∗τCPr∗ in semi-
locally scaled form, is a sufficient proof to conclude that, up to a leading order, the
variable property effects on thermal turbulence for low-Mach number cases are charac-
terized by Re∗τ and Pr∗. In other words, two cases with any combination of property
profiles would have identical thermal turbulence behaviour provided their Re∗τ and Pr∗
profiles are similar.

3. The semi-locally scaled heat flux models seem to capture the variable inertia effects on
thermal turbulence better than their conventionally scaled counterparts.

High-Mach Number Cases

4. The fundamental difference between the low-Mach number uniform heating cases and
high-Mach number cases with viscous heating lies in the fact that viscous heating sources
are highly non-uniform and are coupled with velocity turbulence. Due to this difference,
the findings in Patel et al. (2017) pertaining to scalar transport in low-Mach number
cases with uniform heating, does not necessarily hold true for the high-Mach number
cases with viscous heating.

5. Fluctuations in the viscous heating source Φ can be caused due to two major reasons:
(1) because of the fluctuations in streamwise velocity affecting the instantaneous velocity
gradients near the wall, (2) because of passive mixing of TKE dissipation (ε), away from
the wall.

6. Viscous heating contributes to a source term in the budget of enthalpy variance. This
source term is as large as the conventional production term, but it is dominant very
close to the wall (y∗ < 10). The direct contribution of viscous heating to the budget of
the wall-normal turbulent heat flux is negligible.

7. Thermal turbulence, unlike in low-Mach number cases, cannot be fully characterized by
Re∗τ and Pr∗. The modified Eckert number (Ec∗θτ ) also becomes important.

8. RANS modeling of thermal turbulence in high-Mach number cases cannot be done by
simply using the heat flux model equations as for low-Mach number cases. Due to
viscous heating, near the wall, the model equations of kh and εkh are modified. One
such modification is modeling of the Φkh term in the kh model equation. The model
proposed in this thesis for Φkh is based on physical understanding and hence proves to
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be adequate over a range of Mach and Reynolds numbers. More work needs to be done
to improve the εkh equation. An appropriate approach would be to derive the exact
equation and check what terms, among the new terms arising due to viscous heating,
are dominant and need modeling.

General

9. Very steep negative density gradients reduces the inter-component energy transfer from
the streamwise fluctuations to the wall-normal and spanwise fluctuations, as was ob-
served in Foysi et al. (2004). However, even in semi-local scales this effect is not char-
acterized and hence two cases with the same Re∗τ profiles can have different inter-
component energy transfers and hence can have different anisotropies.
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Appendix A

Derivation of Transport Equations

A-1 Instantaneous Form of the Semi-Local Energy Equation

In this section, detailed derivation of equation (3-15) is presented.
Starting with the dimensional form of the instantaneous energy equation,

ρ
∂h

∂t
+ ρuj

∂h

∂xj
= ∂p

∂t
+ uj

∂p

∂xj
+ ∂

∂xj

(
α
∂h

∂xj

)
+ Φ. (A-1)

Rewriting equation (A-1) using the continuity equation (2-1) as,

∂ρh

∂t
+ ∂ρujh

∂xj
= ∂p

∂t
+ uj

∂p

∂xj
+ ∂

∂xj

(
α
∂h

∂xj

)
+ Φ. (A-2)

Introducing the characteristic scales presented in Table 3-2,

∂ρ̂ĥ〈ρ〉cpθ∗τ
∂t

+ 1
hc

∂ρ̂ûj ĥ〈ρ〉u∗τ cpθ∗τ
∂x̂j

=∂p̂〈ρ〉u∗2
τ

∂t
+ ûj

u∗τ
hc

∂p̂〈ρ〉u∗2
τ

∂x̂j

+ 1
h2
c

∂

∂x̂j

(
α̂〈α〉∂ĥcpθ

∗
τ

∂x̂j

)
+ Φ̂〈ρ〉u

∗
τ cpθ

∗
τ

hc
.

(A-3)

We then divide both the sides by 〈ρ〉u∗τ cpθ∗τ/hc. Referring equation (3-5), 〈ρ〉u∗τ cpθ∗τ represents
qw, which is a constant, and thus, can be moved inside/outside the derivatives. Similarly,
〈ρ〉u∗2

τ represents τw and thus can be moved inside/outside derivatives. We get,

t∗τ
∂ρ̂ĥ

∂t
+ ∂ρ̂ûj ĥ

∂x̂j
= Ec∗θτ

(
t∗τ
∂p̂

∂t
+ ûj

∂p̂

∂x̂j

)
+ ∂

∂x̂j

(
α̂

Re∗τPr
∗θ∗τ

∂ĥθ∗τ
∂x̂j

)
+ Φ̂. (A-4)

Ec∗θτ is defined as u∗2
τ /(cpθ∗τ ). Applying chain rule on the derivative, ∂ĥθ∗τ/∂x̂j we get,

t∗τ
∂ρ̂ĥ

∂t
+ ∂ρ̂ûj ĥ

∂x̂j
= Ec∗θτ

(
t∗τ
∂p̂

∂t
+ ûj

∂p̂

∂x̂j

)
+ ∂

∂x̂j

(
α̂

Re∗τPr
∗
∂ĥ

∂x̂j

)
+ ∂

∂x̂j

(
α̂ĥ

Re∗τPr
∗θ∗τ

∂θ∗τ
∂x̂j

)
+ Φ̂.

(A-5)
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Using equation (3-7), we can write,

∂θ∗τ
∂x̂j

= −θ∗τdj , (A-6)

where,
dj = 1

2〈ρ〉
∂〈ρ〉
∂x̂j

. (A-7)

Incorporating the continuity equation (3-8) in the left hand side of equation (A-5) we get,

t∗τ ρ̂
∂ĥ

∂t
+ ρ̂ûj

∂ĥ

∂x̂j
− ρ̂ûj ĥdj = Ec∗θτ

(
t∗τ
∂p̂

∂t
+ ûj

∂p̂

∂x̂j

)
+ ∂q̂j
∂x̂j
− ∂D̂j

∂x̂j
+ Φ̂, (A-8)

where,
q̂j = α̂/(Re∗τPr∗)∂ĥ/∂x̂j , (A-9)

and,
D̂j = α̂/(Re∗τPr∗)ĥdj . (A-10)

A-2 Semi-Locally Scaled Enthalpy Variance Budget

In this section we will derive equation (3-34) in detail. The derivation steps of only the
terms coming out of temporal, advection and density related terms in the enthalpy transport
equation, will be shown. The other terms in the budget can be derived in a similar manner
and their steps of derivation are quite straightforward.

The equations are derived using a recipe similar to what is used for constant property flows:

ĥ′′H(ĥ) = 0, (A-11)

where H(ĥ) = 0 is semi-locally scaled instantaneous energy equation (equation (3-15)).

Throughout the derivation, the following identities will be frequently used,

ρ̂γ̂ = {γ̂},

and,
ρ̂γ̂′′ = 0.

Temporal:

t∗τ ĥ
′′ρ̂
∂ĥ

∂t
= t∗τ ĥ

′′ρ̂
∂ĥ′′

∂t
,

= t∗τ ρ̂
∂

∂t

(
ĥ′′ĥ′′/2

)
,

= t∗τ
∂

∂t

{
k̂h
}

︸ ︷︷ ︸− k̂ht∗τ
∂ρ̂

∂t︸ ︷︷ ︸
A

.
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Advection:

ρ̂ûj ĥ′′
∂ĥ

∂x̂j
.

Velocity and enthalpy are written using Favre decomposition. We get,

ρ̂ {ûj} ĥ′′
∂{ĥ}
∂x̂j︸ ︷︷ ︸

=0

, ρ̂û′′j ĥ
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.

Term III gives,
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.

Term IV can be written as,
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.

Term II can be written as,

ρ̂û′′j ĥ
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√
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,

which can be expanded to give,
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Using,
∂
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∂ρ
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ρdj ,

we finally get, {
û′′j ĥ

′′
} ∂ {hvD}

∂x̂j︸ ︷︷ ︸+
{
û′′j ĥ

′′
}
{ĥ}dj︸ ︷︷ ︸

P

.

Terms A,B and C can be combined with the continuity equation (3-8) to give,

ρ̂ûj k̂hdj︸ ︷︷ ︸
R

.

Density Related Terms

−ρ̂ûj ĥdj ĥ′′.
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The velocity and enthalpy are written using Favre decomposition. The terms obtained are,

−ρ̂ {ûj} {ĥ}dj ĥ′′︸ ︷︷ ︸
=0

, −ρ̂û′′j {ĥ}dj ĥ′′︸ ︷︷ ︸
P2

, −ρ̂ {ûj} ĥ′′dj ĥ′′︸ ︷︷ ︸
J

, −ρ̂û′′j ĥ′′dj ĥ′′︸ ︷︷ ︸
K

.

Term P2 is cancelled with P.

Terms J and K are combined to give,

−ρ̂ûj ĥ′′ĥ′′dj = −2ρ̂ûj k̂hdj .

Terms J,K and R when added, finally give,

−ρ̂ûj k̂hdj ,

which is equal to,
−
{
k̂h
}
{ûj} dj −

{
k̂hû

′′
j

}
dj︸ ︷︷ ︸ .

The terms with red underbraces are the ones pending and show up in the final equation.

Likewise, if we repeat the steps for other terms, and by simple grouping as shown in table
3-4, we end up with the final equation (3-34).

A-3 Semi-Locally Scaled Turbulent Heat Flux Budget

In this section we will derive equation (3-40) in detail. The derivation steps of only the terms
coming out of temporal, advection and density related terms in the enthalpy and momentum
transport equation, will be shown. The other terms in the budget can be derived in a similar
manner and the steps of derivation are quite straightforward.

The equations are derived using a recipe similar to what is used for constant property flows:

ĥ′′N (ûi) + ûi
′′H(ĥ) = 0, (A-12)

where N (ûi) = 0 and H(ĥ) = 0 are semi-locally scaled instantaneous momentum and energy
equations (3-9 and 3-15) respectively.

Throughout the derivation, the following identities will be frequently used,

ρ̂γ̂ = {γ̂},

and,
ρ̂γ̂′′ = 0.

Temporal:
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t∗τ

(
û′′i ρ̂

∂ĥ

∂t
+ ĥ′′ρ̂

∂ûi
∂t

)
= t∗τ

(
û′′i ρ̂

∂ĥ′′

∂t
+ ĥ′′ρ̂

∂û′′i
∂t

)
,

= t∗τ ρ̂
∂

∂t

(
û′′i ĥ

′′
)
,

= t∗τ
∂

∂t

{
û′′i ĥ

′′
}

︸ ︷︷ ︸− û′′i ĥ′′t∗τ
∂ρ̂

∂t︸ ︷︷ ︸
A

.

Advection:

ρ̂ûj û′′i
∂ĥ

∂x̂j
+ ρ̂ûj ĥ′′

∂ûi
∂x̂j

.

Velocity and enthalpy are written using Favre decomposition. From first term above, we get,

ρ̂ {ûj} û′′i
∂{ĥ}
∂x̂j︸ ︷︷ ︸

=0

, ρ̂û′′j û
′′
i

∂{ĥ}
∂x̂j︸ ︷︷ ︸

II

, ρ̂ {ûj} û′′i
∂ĥ′′

∂x̂j︸ ︷︷ ︸
III

, ρ̂û′′i û
′′
j

∂ĥ′′

∂x̂j︸ ︷︷ ︸
IV

,

and from the second term, we get,

ρ̂ {ûj} ĥ′′
∂{ûi}
∂x̂j︸ ︷︷ ︸

=0

, ρ̂û′′j ĥ
′′∂ {ûi}
∂x̂j︸ ︷︷ ︸

VI

, ρ̂ {ûj} ĥ′′
∂û′′i
∂x̂j︸ ︷︷ ︸

VII

, ρ̂û′′j ĥ
′′∂û

′′
i

∂x̂j︸ ︷︷ ︸
VIII

.

Terms III and VII give,

∂

∂x̂j

({
ĥ′′û′′i

}
{ûj}

)
︸ ︷︷ ︸− ĥ′′û

′′
i

∂

∂x̂j
(ρ̂ {ûj})︸ ︷︷ ︸

B

.

Terms IV and VIII can be combined to give,

ρ̂û′′j
∂

∂x̂j

(
ĥ′′û′′i

)
,

which can be written as,

ρ̂û′′j
∂

∂x̂j

(
ĥ′′û′′i

)
= ∂

∂x̂j

{
ĥ′′û′′i û

′′
j

}
︸ ︷︷ ︸− ĥ′′û

′′
i

∂

∂x̂j

(
ρ̂û′′j

)
︸ ︷︷ ︸

C

.
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Term II can be written as,

ρ̂û′′j û
′′
i

∂{h̃}
√
ρ̄/ρw

∂x̂j
,

which can be expanded to give,

ρ̂û′′j û
′′
i

∂
{
hvD

}
∂x̂j

+ ρ̂û′′j û
′′
i

{
h̃
}

√
ρw

∂
√
ρ

∂x̂j
.

Using,
∂
√
ρ

∂x̂j
= 1

2
√
ρ

∂ρ

∂x̂j
=
√
ρdj ,

we finally get, {
û′′i û

′′
j

} ∂ {hvD}
∂x̂j︸ ︷︷ ︸+

{
û′′j û

′′
i

}
{ĥ}dj︸ ︷︷ ︸

P

.

Likewise doing the same for term VI, we get,

{
ĥ′′û′′j

} ∂ {uvDi }
∂x̂j︸ ︷︷ ︸+

{
û′′j ĥ

′′
}
{ûi}dj︸ ︷︷ ︸

Q

.

Terms A,B and C can be combined with the continuity equation (3-8) to give,

ρ̂ûj û′′i ĥ
′′dj︸ ︷︷ ︸

R

.

Density Related Terms

−ρ̂ûj ĥdj û′′i − ρ̂ûiûjdj ĥ′′.

The velocity and enthalpy are written using Favre decomposition. The terms obtained from
the first term above are,

−ρ̂ {ûj} {ĥ}dj û′′i︸ ︷︷ ︸
=0

, −ρ̂û′′j {ĥ}dj û′′i︸ ︷︷ ︸
P2

, −ρ̂ {ûj} ĥ′′dj û′′i︸ ︷︷ ︸
J

, −ρ̂û′′j ĥ′′dj û′′i︸ ︷︷ ︸
K

,

and from the second term are,

−ρ̂ {ûj} {ûi}dj ĥ′′︸ ︷︷ ︸
=0

, −ρ̂û′′j {ûi}dj ĥ′′︸ ︷︷ ︸
Q2

, −ρ̂ {ûj} û′′i dj ĥ′′︸ ︷︷ ︸
L

, −ρ̂û′′j û′′i dj ĥ′′︸ ︷︷ ︸
M

.

Terms P2 and Q2 are cancelled with P and Q.

Terms J and K are combined to give,

−ρ̂ûj ĥ′′û′′i dj .
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Also, terms L and M are combined to give,

−ρ̂ûj ĥ′′û′′i dj .

Terms J,K,L,M and R when added, finally give,

−ρ̂ûj ĥ′′û′′i dj ,

which is equal to,
−
{
ĥ′′û′′i

}
{ûj} dj −

{
ĥ′′û′′i û

′′
j

}
dj︸ ︷︷ ︸ .

The terms with red underbraces are the ones pending and show up in the final equation.

Likewise, if we repeat the steps for other terms, and by simple grouping as shown in table
3-5, we end up with the final equation (3-40).
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Appendix B

Description of the DNS code

The DNS code used in this thesis is developed in-house by the Fluid Dynamics of Energy
Systems team headed by Dr. R. Pecnik . The equations solved in the code are,

∂ρ

∂t
+ ∂ρui

∂xi
= 0,

∂ρui
∂t

+ ∂ρuiuj
∂xj

= − ∂p

∂xi
+ ∂τij
∂xj

+ fδi1,

∂ρE

∂t
+ ∂ρujE

∂xj
= −∂puj

∂xj
− ∂qj
∂xj

+ ∂τijui
∂xj

+ fu1,

(B-1)

where,

τij = µ

(
∂ui
∂xj

+ ∂uj
∂xi
− 2

3
∂uk
∂xk

δij

)
,

qj = −λ ∂T
∂xj

.

(B-2)

They are similar to the ones described in chapter 2, but in the energy equation, instead of
solving for enthalpy, the code solves for total energy defined as,

E = i+ 1
2
(
u2 + v2 + w2

)
, (B-3)

where i is the internal energy per unit mass and the second term on right hand side represents
total kinetic energy per unit mass. The equations in the code are non-dimensionalized using
bulk velocity (Ub), bulk density (ρb), wall temperature (Tw) and channel half height (hc).
The energy equation is chosen to be non-dimensionalized using a scale of energy as U2

b .
This non-dimensionalization leads to viscosity as (µ/µw)/Reb and thermal conductivity as
(λ/λw)/(RebPrEc), where Reb is defined as,

Reb = ρbUbhc
µw

. (B-4)
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The Eckert number depends on the bulk Mach number (for ideal gases) as,

Ecb = (γ − 1)Ma2
b , (B-5)

where γ is the ratio of specific heats. Mab is defined as,

Mab = Ub
cw
, (B-6)

where cw is the speed of sound computed at the wall.

The significant inputs required by the code are: Reb, Mab, Pr, γ. Apart from these, the
viscosity and thermal conductivity laws (as a function of temperature, for instance) also need
to be provided. In equation (B-1), the term "f" is an external body force term which is required
to maintain the flow in the channel (analogous to pressure gradient in the streamwise direction
in pressure driven flows). The body force term is computed by an iterative algorithm, such
that it ensures a desired mass flux in the channel. The power input to the domain associated
with the body force term is added at the end of the energy equation.

For a fully developed channel flow, the spanwise and streamwise directions are periodic and
hence they are discretized uniformly. The discretization in the wall-normal direction uses
a hyperbolic tangent function to ensure clustering of cells near the walls. The code uses a
Cartesian collocated grid arrangement, which implies that there exists a computational point
at the wall. This simplifies the incorporation of boundary conditions. In a staggered grid
arrangement, the wall coincides with intermediate nodes where fluxes are computed. Even
though, this enables specification of a zero convective flux at the wall which in turn ensures
strict mass conservation, it complicates the incorporation of boundary conditions.

At the walls, the code incorporates no-slip, no-penetration boundary conditions for veloci-
ties, isothermal boundary condition (Dirichlet) for temperature and a zero pressure-gradient
(Neumann) boundary condition for pressure. A periodic boundary condition is used in the
streamwise and spanwise directions.

The convective terms in equation (B-1) are discretized using the energy conserving split-
formulation presented in Pirozzoli (2010). The code is based on a standard central finite
differencing scheme of sixth-order for the convective terms. The viscous terms in the mo-
mentum equations are split into Laplacian form to avoid even-odd decoupling phenomena
(Bernardini et al., 2021) and are discretized using a fourth-order standard central finite dif-
ferencing scheme. Time advancement in the code uses an explicit third-order Runge-Kutta
scheme (Gottlieb and Shu, 1998).

For the constant Re∗τ cases, the same value of Re∗τ was desired for two cases with different
Mach numbers, but the DNS code takes the bulk Reynolds number as an input. The bulk
Reynolds number entered in the code should be such that the semi-local Reynolds number
obtained is of the desired value. There was a need to relate these two. This was done by
using a MATLAB code which solves RANS equations using a 2-equation Nagano and Shimada
(1996) turbulent stress model and a constant Prt model. The equations in the RANS code
are non-dimensionalized using the friction velocity uτ and ρw, and thus it takes Reτ as an
input. Providing the required Reτ and property laws to maintain constant Re∗τ , we get an
approximate estimate of Reb (bulk Reynolds number) which acts as an input to the DNS code.
The bulk Reynolds number estimate from RANS is very close to the required value so as to
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attain the desired Re∗τ . Also, the temperature and velocity profiles obtained from RANS are
used to build an initial condition for the DNS and this considerably reduces computational
time.

B-1 Artificial Diffusivities for Shock Capturing

Artificial Diffusivities are those that do not carry a physical relevance but are added to make
the code numerically stable in case of discontinuities in the domain (shock waves). A shock
wave is a discontinuity encountered in compressible flows and it is so thin that one would need
a very fine mesh to resolve it. Differentiation across such a discontinuity without sufficient
resolution leads to spurious oscillations which might blow up the solution. Such discontinuities
are artificially thickened using artificial diffusivities, such that the mesh resolution is sufficient
to resolve it. Because they are unphysical, it is necessary to limit them only where required,
for instance, very close to the discontinuities.

The implementation of the Artificial Bulk Viscosity (ABV) and the Artificial Thermal Con-
ductivity (ATC) in the code was done as a part of this thesis. The code uses the formulation
of Kawai et al. (2010), which is built upon the work of Cook and Cabot (2005) and Mani
et al. (2009). ABV is computed in the code as,

β∗ = C
β
ρfsw

∣∣∣∣∣
3∑
l=1

∂4Fβ
∂x4

l

∆x4
l ∆2

l,β

∣∣∣∣∣, (B-7)

where C
β
is a constant taken as 1.0, ρ is fluid density, fsw is a switching function (shock sensor)

intended to remove ABV from places where it is not required (regions without shocks). It is
defined as,

fsw = H(−∇ · u) (∇ · u)2

(∇ · u)2 + |∇ × u|2 + ε︸ ︷︷ ︸
D

, (B-8)

where H(−∇·u) is the Heavyside function that ensures that ABV is not added in the regions
with positive ∇ · u. This is because a shock can occur only in regions of ∇ · u < 0. The
term D is a Ducros-type shock sensor so as to localize ABV only in the regions where there
is a discontinuity (shock). ε is a small number to avoid division by zero in regions where
both dilatation and vorticity are zero. Fβ was chosen to be the magnitude of the strain rate
tensor (S) by Cook and Cabot (2005). However, Mani et al. (2009) showed that using S as
the function adds unnecessary ABV in the vortical regions of the flow, where S is non-zero,
despite no sign of a shock there. This is why, Mani et al. (2009) proposed to replace S by
∇ · u stating that near the shocks both the choices are equivalent, however, away from the
shocks in the vortical regions, choosing ∇ · u leads to very low ABV, as ∇ · u << S, which
is desired. ∆xl is the grid spacing in the x, y and z (l = 1, 2, 3) directions. ∆l,β is a suitable
length scale so as to construct the dimensions of viscosity. ∆l,β was approximated as V 0.33 by
Cook and Cabot (2005) (where V is the volume of the cell). Such a length scale would work
in the case of isotropic grids. For anisotropic grids, the formulation of Mani et al. (2009) is
chosen in the code as,

∆l,β =
∣∣∣∣∆xl · ∇ρ

|∇ρ|

∣∣∣∣ , (B-9)
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which signifies that the suitable length scale is the grid spacing projected along the vector
normal to the shock. (.) in equation (B-7) should not be confused with the usual Reynolds
averaging operator. Here it signifies a gaussian filter, so as to obtain a smooth distribution
of ABV.

The implementation of ATC is similar to that of ABV, however, the detail mathematical
formulations can be referred in Kawai et al. (2010). The major difference lies in the fact that
instead of using ∇ · u as Fβ, internal energy per unit mass (i or e) is used.

Having presented the mathematics behind the formulation of ABV, one would like to know
the reasoning that leads to the formulation. Mani et al. (2009) discusses that using ABV
is better than using Artificial Viscosity (µ∗) because ABV acts on ∇ · u in the momentum
equation, and thus, it has little to no role to play in the vorticity equation. The vorticity
equation (taken from Mani et al. (2009)) is,

dω

dt
= RHS1 −

∇ρ
ρ2︸︷︷︸
A

×∇ [β∗(∇ · u)]︸ ︷︷ ︸
B

. (B-10)

Both the terms A and B are majorly oriented along the shock (because that is where one
would have maximum variation in density and in dilatation), and hence are parallel. Thus,
their cross product would be small. However, ABV contributes to an additional term in the
dilation transport equation. Thus, away from the shock, if ABV is higher, then it would
affect the physics associated with sound waves. This is why it is necessary to ensure that
the ABV is small in the regions away from shock waves. This is ensured by using Fβ as
dilation and not S as discussed above. The order of the derivative of Fβ in equation (B-7)
would influence the distribution of ABV. Higher order implies that the ABV is localized in
the region of discontinuity (Kawai et al., 2010).
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Appendix C

Validation of the DNS and RANS
Codes

The DNS code is validated against the data of Trettel and Larsson (2016) as shown in fig-
ures C-1 and C-2.

The implementation of the RANS model is validated with the fully developed channel flow
results in Nagano and Shimada (1996). The validation is shown in figure C-3.

T&L

Figure C-1: Velocity (left) and temperature (right) profiles for the case M3.0R200, computed
using the in-house code, and validated with the data of Trettel and Larsson (2016).
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T&L

Figure C-2: Normal Reynolds stresses computed using the in-house code (lines) and validated
with Trettel and Larsson (2016) for the case M3.0R200.

Figure C-3: Square-root of enthalpy variance (left) and its dissipation (right) for a fully developed
channel flow with Reτ = 180 and Pr = 0.71.
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