
 
 

Delft University of Technology

Predicting subsurface classification in 2D from cone penetration test data

Varkey, Divya; Hicks, Michael A.; van den Eijnden, Abraham P.

DOI
10.1016/j.trgeo.2023.101128
Publication date
2023
Document Version
Final published version
Published in
Transportation Geotechnics

Citation (APA)
Varkey, D., Hicks, M. A., & van den Eijnden, A. P. (2023). Predicting subsurface classification in 2D from
cone penetration test data. Transportation Geotechnics, 43, Article 101128.
https://doi.org/10.1016/j.trgeo.2023.101128

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.trgeo.2023.101128
https://doi.org/10.1016/j.trgeo.2023.101128


Transportation Geotechnics 43 (2023) 101128

Available online 4 October 2023
2214-3912/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Predicting subsurface classification in 2D from cone penetration test data 

Divya Varkey , Michael A. Hicks *, Abraham P. van den Eijnden 
Geo-Engineering Section, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, the Netherlands   

A R T I C L E  I N F O   
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A B S T R A C T   

Uncertainty is inevitable in the characterisation of a geotechnical site, especially due to the inherently hetero
geneous nature of the ground. In this paper, a method for characterising a subsurface with limited cone pene
tration test (CPT) data is proposed. The method is based on integrating predictions of CPT parameters with a 
probabilistic approach for subsoil classification at the CPTs. The predicted stratigraphy is able to capture the 
spatial variability of soil measured via CPTs and takes account of the uncertainties that arise from transforming 
CPT measurements into soil units as well as errors in the measurements themselves. The applicability of the 
proposed method is demonstrated for a site in the Netherlands. The results show that the proposed approach can 
identify the most likely classification in the domain with good accuracy. Furthermore, the significance of 
considering the uncertainties in predicting the most likely classification is illustrated via finite element stability 
analyses of a slope cut-out in the domain.   

Introduction 

One of the first steps in the analysis of a geotechnical structure is the 
characterisation of the site, for which field measurements are generally 
used. The cone penetration test (CPT) is a widely used field investigation 
technique, which, unlike other traditional investigation techniques, 
does not involve drilling, is fast, repeatable and gives near-continuous 
data over its entire depth. However, uncertainty is inevitable in the 
characterisation and analysis of structures due to the inherently het
erogeneous nature of soils. For example, the subsurface is composed of 
different soil units that were formed due to a combination of various 
geological, environmental and physicochemical processes [13], result
ing in spatial variability of the units and of the properties within the 
units [12]. Furthermore, the number of CPTs performed at a site is often 
limited and soil samples are often not collected during the CPTs to assist 
in soil classification, so that methods for transforming CPT measure
ments into soil units are required, adding to the already challenging task 
of site characterisation. 

Much research has been done on the influence of spatial variability of 
soil properties in the analyses of geotechnical structures. For example, 
Hicks and Samy [4], Griffiths et al. [3], Hicks and Spencer [5], Huang et 
al. [10], Hicks et al. [6], Hicks and Li [7], Hicks et al. [8] and Varkey 
et al. [16] have used the random finite element method for investigating 
the influence of 2D and 3D spatial variability of strength parameters in 
the reliability-based assessments of slopes. Research on the 

characterisation of the subsurface is more limited, although it is now 
receiving increasing attention. Cao and Wang [1] and Wang et al. 
[20,21] have proposed methods, based on integrating the Robertson 
classification chart [15] with a Bayesian approach, for determining the 
subsurface classification at the test location (i.e. only in the 1D depth 
direction). Qi et al. [14], Xiao et al. [23] and Zhang et al. [24] have used 
a coupled Markov chain method for predicting soil units between the 
measurement locations. In this method, the transitions from one soil unit 
to another along the vertical and horizontal directions are modelled as 
Markov processes, which are coupled together to predict soil units at 
unsampled locations. Varkey et al. [17] have highlighted the drawbacks 
of this method in estimating the transition probability matrices from a 
limited dataset and in potentially violating the principles of Markov 
process stationarity due to the coupling. Wang et al. [22] proposed 
methods for subsoil classification in a 2D domain by interpolating CPT 
data in the domain using Bayesian compressive sampling. Hu and Wang 
[9] combined the interpolated CPT data with the soil behaviour type 
index (Ic) to classify the subsurface. The uncertainties in the classifica
tion were addressed by considering the uncertainty in the Ic classifica
tion boundaries, where the latter was based on gauging the Ic data 
variability in the existing literature. 

In this paper, a method for subsoil classification in 2D is proposed by 
transforming CPT parameter predictions to soil units while accounting 
for uncertainties in the measurements and transformation. The method 
is based on integrating the CPT predictions with the method by Wang 
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et al. [20] within the Bayesian framework, to obtain prior knowledge of 
the soil distributions in a domain as well as the updated knowledge of 
soil distributions in the domain. In the following section, a method for 
predicting CPT parameters between limited measurement locations is 
discussed and this is followed by a detailed explanation of the proposed 
probabilistic approach for the transformation to soil units. The subse
quent sections discuss the results obtained by applying the proposed 
approach to a site in the Netherlands. 

Fig. 1. Illustration of the probabilisitic 1D soil classification based on Wang 
et al. [20]. 

Fig. 2. Flowchart of the proposed approach.  

Fig. 3. Relative locations of five CPTs from the Groningen region in the Netherlands.  

Fig. 4. Vertical scale of fluctuation estimated from (a) ln(Fr) and (b) ln(Qt).  
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Methodology 

In this paper, a two-step approach is proposed for the classification of 
a 2D domain with limited CPT measurements. In the first step, the CPT 
parameters, i.e. the normalised friction ratio ln(Fr) and the normalised 
tip resistance ln(Qt) are predicted between the measurement locations 
by making use of the spatial nature of soil variability. In the second step, 
the estimated CPT parameters are transformed into soil units. This can 
be achieved by mapping the estimated parameter values onto, for 
example, the Robertson chart and thereby classifying each point in the 
domain into one of the nine soil units. However, this method of classi
fication, based on past observations and experiences, inevitably contains 
various uncertainties arising from measurement errors and trans
formation uncertainties, amongst others. Therefore, in order to take 
account of these uncertainties, a probabilistic subsoil classification in 1D 
is first carried out at each CPT location. The results of the 1D probabi
listic analyses are then integrated with the Kriged CPT predictions to 
predict updated soil distributions over the 2D domain. An explanation of 
the various steps followed are given below, along with a detailed 
implementation procedure. Although the approach has been applied on 
the Robertson chart, it may be noted that the same approach can easily 
be adapted for other classification charts as well. This would, for 
example, allow incorporating additional site-specific knowledge into the 
classification charts. 

Predicting CPT parameters at unsampled locations 

Two-dimensional Kriging [11] has been adopted to interpolate CPT 
parameter fields in the 2D domain by conditioning the fields at the CPT 
measurements. Kriging is a ‘Best Linear Unbiased Estimation’ method 

that gives the best estimation by minimising the variance with respect to 
the true field and incorporates the spatial correlation of points into the 
interpolation procedure. The Kriged interpolation of a parameter Z at 
some location x0 (=

(
x0, y0

)
) is given by 

Ẑ =
∑m

i=1
λiZi (1)  

where Zi = Z1, Z2, …, Zm are the m measured values of Z at points x1, x2, 
…, xm, respectively, and λi are the weights at those points. Ordinary 
Kriging has been used in this paper such that 

∑m
i=1λi = 1. 

The weights in Eq. (1) can be determined by minimising the variance 

(σ2
e) of the Kriged predictions with respect to the true field, i.e., σ2

e =

E
[
(Ẑ − Z)2

]
where E[] is the expectation operator. To minimise the 

error variance, the Lagrange method with parameter μ has been used in 
this paper, which leads to the following equation (see Wackernagel [18] 
for a detailed derivation): 
⎛

⎜
⎜
⎝

γ(x1 − x1) ⋯ γ(x1 − xm) 1
⋮ ⋱ ⋮ ⋮

γ(xm − x1) ⋯ γ(xm − xm) 1
1 ⋯ 1 0

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

λ1
⋮
λm
μ

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

γ(x1 − x0)

⋮
γ(xm − x0)

1

⎞

⎟
⎟
⎠ (2)  

where γ
(
xi − xj

)
is the variogram between the points xi and xj. Assuming 

second order stationary data, the variogram can be calculated using 

γ
(
xi − xj

)
= σ2 × (1 − ρ(τh, τv)) (3)  

ρ(τh, τv) = exp

⎛

⎝ −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

2τh

θh

)2

+

(
2τv

θv

)2
√ ⎞

⎠

where σ2 is the variance of the field, ρ(τh, τv) is the assumed autocor

relation function between the two points, τh =
⃒
⃒xi − xj

⃒
⃒ and τv =

⃒
⃒
⃒yi − yj

⃒
⃒
⃒

are the lag distances between the points in the horizontal and vertical 
directions, and θh and θv are the scales of fluctuation in the horizontal 
and vertical directions, respectively. 

Transforming CPT parameters into soil units 

The Kriged predictions of CPT parameters are transformed into soil 
units while accounting for uncertainties in the measurements and 
transformation. This is proposed to be carried out in two sub-steps: using 
the CPT measurements to predict the most likely 1D classification at the 
measurement locations, and using the results of the 1D classification to 
predict the classification over the 2D domain. 

Fig. 5. Variance of the estimated field generated using different values of θh.  

Fig. 6. Kriged predictions of (a) ln(Fr) and (b) ln(Qt) obtained using different values of θh. The CPT profiles have been included to indicate the conditioning locations.  
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Predicting the most likely classification in 1D 
The probabilistic approach by Wang et al. [20], following certain 

modifications, has been used in this paper for predicting the most likely 
1D classification of the subsurface at the CPT locations. In this method, 
uncertainties in the measurements and transformation are accounted for 
by integrating the Robertson chart with the Bayesian approach. A brief 
overview of this method is given below and a detailed explanation can 
be found in Wang et al. [20]. 

In this method, instead of performing a deterministic classification of 
the soil at a depth i with normalised CPT measurements ξi (= (ln(Fr

i), ln 

(Qt
i)), the probability of the soil being classified as one of the nine units 

is determined through a Gaussian probability density function (pdf) 
centred at (ln(Fr

i), ln(Qt
i)) in the Robertson chart. The standard devia

tion of this Gaussian distribution reflects the uncertainties in the mea
surements and in the Robertson chart (i.e. the transformation 
uncertainty). The classification is carried out in two steps: (a) for a given 
number of layers, identifying the most probable soil layer thicknesses, 
and (b) identifying the most likely number of layers which, together 
with the most probable thicknesses, maximises the likelihood of 
observing the CPT measurements. 

Fig. 7. Conventional method of interpreting CPT data using the Robertson chart: (a) the normalised measurements at CPT3; (b) measurements plotted on the 
Robertson chart; (c) deterministic classification at CPT3. 

D. Varkey et al.                                                                                                                                                                                                                                 
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As illustrated in Fig. 1, P(σn|N ) and P(ξn|σn,N ) are the prior distri
bution of the model parameters and the likelihood function for the n th 

layer, respectively, of a subsoil classified into N layers. Here, ‘|’ stands 
for conditionality, σn = (σFr ,n, σQt ,n) denotes the set of standard de
viations of the joint Gaussian distribution for the n th layer, and σFr and 
σQt are the standard deviations of ln(Fr) and ln(Qt), respectively. Since 
all the data points in a layer should belong to one soil unit, the likelihood 
function is given by 

P(ξn|σn,N ) =
∑9

j=1

∏kn

i=1
Pj
(
ξi

n

⃒
⃒σn,N

)
(4)  

where kn is the total number of data points in the n th layer and Pj
(
ξi

n
⃒
⃒σn,

N
)

is the probability that a data point i belongs to a soil unit j in the 
Robertson chart. The latter can be computed using a two-dimensional 
integration of the Gaussian distribution spread over the chart, which 
in this paper has been performed numerically using a Monte Carlo 
simulation. 

Assuming independence between the layers, the prior distribution of 
the model parameters and the likelihood function are 

P(ΩN |N ) =
∏N

n=1
P(σn|N ) (5)  

P(ξ|ΩN ,N) =
∏N

n=1
P(ξn|σn,N ) (6)  

where ΩN = σ1, σ2,⋯, σN is the set of model parameters for the N layers. 
Within the Bayesian framework, the posterior distribution of the model 
parameters is given by 

P(ΩN |ξ,N ) = K × P(ξ|ΩN ,N) × P(ΩN |N ) (7)  

where K is a normalising constant. The most probable layer thicknesses 
(h*

N) are identified by approximating this posterior distribution by a 
Gaussian distribution. Under this assumption, maximising P(ΩN|ξ,N )

leads to the most likely values of the model parameters and the layer 
thicknesses. 

If MN denotes a scenario with N layers, the most likely scenario (M*
N) 

with the maximum occurrence probability amongst all possible sce
narios is the one which gives the maximum value of the following: 

P(MN |ξ ) = P(ξ|MN) × P(MN)/P(ξ) (8)  

where P(ξ) is the pdf of ξ, and P(MN) is the prior probability of MN. 
Under the assumption of no prior information, M*

N can be found by 
maximising the conditional probability P(ξ|MN ), which is approximated 
by (see Wang et al. [20] for details) 

P(ξ|MN ) ≈
1

Ht
N− 1

∫

P(ξ|ΩN ,MN )P(ΩN |MN )dΩN (9)  

where Ht is the total thickness of the soil strata. The term 1/Ht
N− 1 re

flects the occurrence probability of the most probable layer thicknesses 
and represents the penalty against choosing a higher value of N. 

As the number of layers increases, the computational time required 
to identify the scenarios with the most probable thickness configuration 
increases significantly. Therefore, an optimisation technique (basin- 
hopping algorithm [19]) has been used in this paper. Furthermore, the 
above procedures (see Eq. (4)) do not consider the fact that the resulting 
configuration can have adjacent layers classified by the same soil unit, 
representing an unrealistic scenario. In this paper, all such configura
tions are therefore discarded before carrying out the optimisations. 

Predicting classifications in 2D 
The soil classifications at the CPTs together with the Kriged pre

dictions of CPT parameters have been used in this paper to predict soil 
classifications in the 2D domain. In the absence of any additional in
formation, the soil compositions at the CPT locations reflect a prior 
knowledge about the soil distributions in the 2D domain. Within the 
Bayesian framework, the updated knowledge of the soil distributions at 
some location in the 2D domain, with Kriged predictions F̂r and Q̂t of 
ln(Fr) and ln(Qt), respectively, can be expressed as 

P(j|F̂r , Q̂t ) = K × P(F̂r , Q̂t |j) × P(j) (10)  

where K is a normalising constant, P(j) is the prior distribution of soil 
unit j and P(F̂r , Q̂t |j) is the likelihood of observing the CPT predictions 
given the soil unit. 

The likelihood function in Eq. (10) can be computed using the results 
of the most likely 1D soil classifications as follows. The results of the 1D 
classification can be grouped together to generate distributions of the 
CPT parameters conditional to the soil units. Using the conditional 
distributions for a given soil unit, the likelihood of observing a certain 
CPT value can be obtained by computing the joint pdf using 

P(F̂r , Q̂t |j) = P
(

F̂r |μFr ,j, σFr ,j
)
× P

(
Q̂t |μQt ,j, σQt ,j

)
(11)  

where P
(

F̂r |μFr ,j, σFr ,j

)
and P

(
Q̂t |μQt ,j, σQt ,j

)
are the pdfs of the condi

tional distributions of ln(Fr) and ln(Qt) with means μFr ,j and μQt ,j and 
standard deviations σFr ,j and σQt ,j, respectively. 

Subsequently, the realisation of soil units at a location in the domain 
can be generated using a Monte Carlo simulation by 

∑s− 1

j=1
P(j|F̂r , Q̂t ) < u ≤

∑s

j=1
P(j|F̂r , Q̂t ) (12)  

where s is the soil unit realised at the location and u is a standard uni
form random number sampled in that realisation over the entire domain. 

Implementation procedure 

A flowchart of the proposed approach is shown in Fig. 2 and a 
summary of the various steps followed is given below: 

Table 1 
Results of the probabilistic subsoil classification at CPT3.  

Case lnP(ξ|MN ) h*
1 h*

2 h*
3 h*

4 h*
5 h*

6 h*
7 h*

8 h*
9  

(m) (m) (m) (m) (m) (m) (m) (m) (m) 

M1  − 536.2  29.6 – – – – – – – – 
M2  − 435.9  2.6 27.0 – – – – – – – 
M3  − 381.7  2.8 4.0 22.8 – – – – – – 
M4  − 336.9  2.6 4.1 7.6 15.3 – – – – – 
M5  − 308.2  2.8 4.0 11.9 5.4 5.5 – – – – 
M6  − 287.7  2.8 4.0 7.6 4.2 6.0 5.0 – – – 
M*

7  − 286.2  2.8 4.0 6.4 7.2 4.4 2.8 2.0 – – 
M8  − 290.9  2.8 4.1 2.6 5.2 4.3 5.4 3.1 2.1 – 
M9  − 294.6  2.6 4.1 2.4 5.4 4.5 1.3 4.1 2.6 2.6  

D. Varkey et al.                                                                                                                                                                                                                                 
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(a) Collect the available CPTs as well as any prior site knowledge.  
(b) Generate Kriged predictions of the normalised CPT parameters 

using Eqs. (1)–(3).  
(c) Perform probabilistic classification at the CPTs and identify the 

most likely classifications:  
i. For a given number of soil layers, identify the most likely layer 

thicknesses using Eqs. (4)–(7).  
ii. Identify the most likely number of layers with the most likely 

thicknesses using Eqs. (8) and (9)).  
(d) Combine (a)–(c) to predict soil classifications in the 2D domain:  

i. Using the results of the most likely 1D classifications, 
generate distributions of CPT parameters conditional on the 
soil units. 

ii. Compute the likelihood of observing the Kriged CPT pre
dictions for a given soil unit using Eq. (11).  

iii. Compute the posterior probability of each soil unit using Eq. 
(10) by using the likelihood function and prior knowledge of 
the soil distributions.  

iv. Generate different possible subsoil configurations using 
Monte Carlo simulation (see Eq. (12)). 

Fig. 8. Most likely classifications at the five CPT locations.  

D. Varkey et al.                                                                                                                                                                                                                                 
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Fig. 9. Histograms of (a) ln(Fr) and (b) ln(Qt) for four soil units obtained from the most likely soil classifications identified at the CPT locations. The values inside 
square brackets are the means and standard deviations of lognormal distribution fits to the histograms. 
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Results and discussions 

The applicability of the proposed approach has been demonstrated 
for a domain comprising five CPTs (CPT1–CPT5) from the Groningen 
region in the Netherlands. The relative locations of the CPTs are shown 
in Fig. 3. The CPTs are distributed over a length of 118 m and are 

Fig. 10. Typical realisations of soil classification of the domain, obtained using the proposed approach with θh = 100 m.  

Fig. 11. Most likely classification of the domain obtained using the proposed approach and its uncertainty.  

Fig. 12. Deterministic classification of the domain obtained by ignoring the uncertainties.  

Table 2 
Percentages of most likely soil units predicted in the 2D domain using the pro
posed approach and those at the CPT locations (1D) based on Wang et al. [20].  

Soil unit 2D 1D 

θh = 24 m θh = 100 m 

Clay  27.9 %  29.7 %  29.6 % 
Silty clay  0.0 %  0.0 %  0.8 % 
Silty sand  9.1 %  6.8 %  12.8 % 
Sand  63.0 %  63.5 %  56.8 %  

Fig. 13. Confidence intervals of predictions at the CPTs obtained using the 
verification procedure. 
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conducted to a depth of 30 m below the ground surface. The dashed line 
shown in Fig. 3 indicates the location of the representative cross-section, 
along which the classification has been carried out by discretising the 
domain into square cells of dimension 0.4 m each. At each CPT location, 
the measured values of sleeve friction (fs) and tip resistance (qc) have 
been normalised to obtain ln(Fr) and ln(Qt), respectively, using the 
following equations: 

Fr =
100fs

qt − σv

Qt =
qt − σv

σ′v

(13)  

where qt = qc +u2(1 − α) is the corrected cone tip resistance, u2 is the 
pore pressure measured behind the cone, α is the shape correction factor 
(which has here been assumed to equal 0.8), and σv and σ′v are the total 
and effective vertical stresses, respectively. 

The CPT parameters between the measurement locations have been 
predicted using the Kriging approach outlined earlier (see Eqs. (1)–(3)). 

The standard deviation of each parameter has been taken to be the 
average of the standard deviations of all five normalised CPT profiles. A 
vertical scale of fluctuation of 2 m has been used for each parameter and 
is based on approximately fitting the auto-correlation function in Eq. (3) 
to the measurements over the entire depth of each CPT, see Fig. 4. (It 
may be noted that the negative values appearing in the figure are a result 
of correlating the measurements over their entire depth range, based on 
a limited number of CPTs, rather than within individual soil layers as is 
more usual.) On the other hand, estimating the horizontal scale of 
fluctuation is more difficult. This is because it requires several closely 
spaced CPTs to be placed strategically next to each other, for example, 
see de Gast et al. [2]. Because of the difficulties in accurately estimating 
θh using the very few CPTs available in this case, various values of θh 

have been considered and the Kriged fields of CPT parameters were 
generated for each combination of θv and θh. The Kriging variances of 
the predicted fields (in standard normal space) obtained using the 
various values are plotted in Fig. 5. This figure shows that the variance 
decreases significantly as the value of θh increases. The Kriged pre
dictions of ln(Fr) and ln(Qt) generated using θh = 24 m (the minimum 
spacing between the CPTs) and θh = 100 m are shown in Fig. 6. 

The fields of ln(Fr) and ln(Qt) are transformed into soil units using the 
two-step approach explained earlier, starting with the 1D classification 
at each CPT. For example, Fig. 7 shows the normalised measurements at 
CPT3 and the deterministic classification at the CPT based on mapping 
the measurements onto the Robertson chart. On considering un
certainties, i.e. by following the probabilistic approach using Eqs. (4)– 
(7), the most probable thickness configurations (h*

N) obtained for the 
various possible cases with N layers for CPT3 are listed in Table 1. The 
conditional probabilities (P(ξ|MN )) calculated using Eq. (8) for each 

Table 3 
Shear strength parameter values used in the slope stability analyses.  

Soil unit Cohesion 
(kPa) 

Friction angle 
(◦) 

Clay 50 0 
Silty clay 40 10 
Silty sand 10 25 
Sand 2 32 
Gravelly sand 0 36  

Fig. 14. Cumulative distribution functions of factor of safety obtained for slopes cut-out in the domain stratified either using the proposed probabilistic approach or 
using the deterministic approach. 

Fig. 15. Factors of safety and failure mechanisms obtained for slopes cut-out in the domain classified as in (a) Fig. 11 and (b) Fig. 12 (deformations have been 
exaggerated for better visualisation). 
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case are also listed in the table. As can be seen from these values, the 
most likely scenario (i.e. with the highest value of P(ξ|MN )) for CPT3 is 
the case with seven layers. The subsoil classifications corresponding to 
this most likely scenario are illustrated in Fig. 8c). The same procedure 
was applied to the other four CPTs and the resulting most probable 
classifications at these CPT locations are also shown in Fig. 8. Due to the 
lack of high quality prior information about the measurements and the 
site, values of 1.0 and 1.5 were assumed for the standard deviations of 
the Gaussian distributions of ln(Fr) and ln(Qt), respectively, and are 
approximately 75 % of their maximum possible values [20]. As can be 
seen from the classification at the CPTs in Fig. 8, the domain consists of 
clay (29.6 %), silty clay (0.8 %), silty sand (12.8 %) and sand (56.8 %). 

The above results are used to predict soil distributions in the domain 
by using Eqs. (10)–(12). As shown in Fig. 9, the results of the most likely 
1D soil classifications are used to generate conditional distributions by 
generating histograms of the CPT parameters that resulted in a certain 
soil unit. Also shown in the figure are the parameters of the lognormal 
distribution fit to each histogram. These distributions, together with the 
Kriged CPT predictions at a location, are used to predict the likelihood 
function and posterior probabilities of the different soil units at the 
location using Eqs. (10) and (11). Although, in this example, only the 
most likely 1D classification at the CPTs have been used as prior 
knowledge, any additional information on the domain from other 
sources, for example borehole data, could also be integrated into the 
framework. 

Following the calculation of the probabilities, a Monte Carlo simu
lation has been carried out to predict the different possible scenarios. 
Typical realisations of subsoil classifications generated for the domain 
are shown in Fig. 10. Fig. 11 shows the most likely classification of the 
2D domain and its uncertainty, which was obtained by comparing the 
most likely classification with those obtained in 500 realisations of the 
Monte Carlo simulation. In this figure, the most likely soil unit at a 
location is chosen as the one which gives the maximum value of the 
following: 

O(s) =
∑500

R=1
I
(
P
(
jR
⃒
⃒F̂r , Q̂t

)
= s

)/
500 (14)  

where O(s) is the occurrence probability of a soil unit s at the location, jR 

is the soil unit simulated at the location in a realisation R using Eq. (12), 
and I() is an indicator function which is equal to 1 if the condition within 
the brackets is true and equal to 0 otherwise. 

For comparison, Fig. 12 shows the deterministic classification ob
tained by simply mapping the predicted values of the CPT parameters, 
obtained using the two values of θh, onto the Robertson classification 
chart. The classifications in Figs. 11 and 12 demonstrate that ignoring 
the uncertainties in the measurements and transformation results in a 
clear difference in the composition of the domain and in the locations of 
the soil units. 

The percentages of various soil units in the most likely classification 
predicted using the proposed approach, for the two values of θh, are 
listed in Table 2. As a result of the very small fraction of silty clay (=0.8 
%) obtained in the most likely 1D classifications, the classification of the 
2D domain is most likely composed of only clay, silty sand and sand, 
whose percentages agree well with those obtained in the most likely 1D 
classifications. Note that, as a result of using the proposed approach with 
the limited number of CPTs, the soil units predicted in the domain at the 
CPT locations are not exactly the same as their most likely 1D classifi
cations (Fig. 8). Nevertheless, it has been observed that the soil units at 
these locations are predicted with an accuracy of 80–97 % compared to 
those in their most likely 1D classifications. 

The accuracy of the proposed approach can be verified by investi
gating its predictive capabilities at known locations. This has here been 
carried out by: (a) removing a CPT from the input and generating the 
Kriged predictions of ln(Fr) and ln(Qt) conditioned on the remaining four 
CPTs, (b) using the predicted fields together with the distributions in 

Fig. 9 to predict the classification in the 2D domain, and (c) comparing 
the soil classification at the location of the missing CPT with its most 
likely 1D classification (shown in Fig. 8). Fig. 13 shows the results of this 
verification procedure, in terms of the means and standard deviations of 
the errors, that have been obtained in the Monte Carlo simulation using 
various values of θh. As can be seen from the figure, on using θh = 100 m 
the proposed approach can predict the soil classifications at the CPTs 
with good accuracy (>72 %). However, the predictions are very poor on 
using a significantly smaller value of θh. This is mainly due to a larger 
Kriged variance of the predicted CPT parameters as a result of the larger 
distance between the adjacent conditioning CPTs relative to the value of 
θh. 

Illustrative example 

The influence of accounting for the uncertainties considered in this 
paper has been illustrated via the stability analysis of a slope cut-out in 
the domain, with a slope angle of 26.6◦ and a height of 20 m. The shear 
strength parameters assumed for the various soil units are listed in 
Table 3. The finite element model for the slope is meshed by 8-noded 
quadrilateral (mainly square) elements of size 0.8 m each and uses 2 
× 2 Gaussian integration. The mesh is fixed at the base, whereas rollers 
are applied on the two ends to prevent movement horizontally. The soil 
units identified at each interval of 0.4 m in the 2D domain are mapped to 
the integration points of the elements and the slope is analysed using the 
strength reduction method. In this method, gravity loading is applied to 
generate the initial in-situ stresses. The resulting shear stresses are 
checked against the Mohr–Coulomb failure criterion and the excess 
stresses are iteratively redistributed throughout the model following a 
viscoplastic stress integration scheme [25]. The lowest strength reduc
tion factor at which equilibrium cannot be achieved within 500 itera
tions is the factor of safety (F) of the slope. 

Fig. 14 shows the cumulative distributions of F for the slope cut-out 
in: (a) generated realisations of the domain that have been classified 
using the proposed approach, and (b) the domain classified using the 
deterministic approach of ignoring uncertainties in the measurements 
and transformation. To investigate the sensitivity of the results to θh, 
Fig. 14 also shows the distributions of F obtained by removing CPT3 
from the input and following the proposed approach to generate real
isations of subsoil classification. The results show that F is less sensitive 
to the chosen value of θh if the distance between the CPTs is smaller than 
that value of θh. Fig. 15 shows a comparison of the results obtained using 
the deterministic approach with those obtained in the most likely clas
sification using the proposed approach. Both figures highlight the sig
nificant difference in computed responses due to differences in the 
composition of the domain and the location of the soil units obtained as 
a result of considering or ignoring the uncertainties. Note that these 
results are based on considering deterministic strength properties for the 
soil units and that it may be worth investigating the differences when the 
spatial variability of properties within each soil unit is also taken into 
consideration. 

Conclusions 

A methodology for predicting subsurface classification using limited 
CPT data has been proposed. The predicted classification is able to 
capture the inherent spatial variability of soil measured via CPTs and 
takes account of the uncertainties that arise from transforming CPT 
measurements into soil units as well as measurement errors. In order to 
do this, a two-step framework has been proposed. In the first step, the 
CPT parameters between the measurement locations are predicted using 
Kriging. In the second step, these parameters are transformed into soil 
units while accounting for uncertainties in the measurements and 
transformation. The latter has been carried out by first implementing 
and updating an existing method of integrating the Robertson chart with 
the Bayesian approach for predicting the most likely 1D classification at 
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the CPTs. These results are integrated with the CPT predictions within 
the Bayesian framework to predict posterior distributions of soil units in 
the domain. 

The applicability of the proposed approach has been illustrated for a 
2D domain consisting of five CPTs in the Netherlands. The results show 
that the proposed approach, when used with a larger horizontal corre
lation length of the CPT parameters than the distance between the CPTs, 
can predict the stratigraphy in the domain with good accuracy. 
Furthermore, the significance of considering the above mentioned fac
tors in carrying out classification has been demonstrated via finite 
element stability analyses of slopes cut-out in the domain. It was 
observed that considering the uncertainties resulted in lower safety 
factors and different failure geometries than the unconservative solution 
obtained by ignoring the uncertainties. 
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