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Abstract. Manual inspection and assessment of structures on a large scale is labour 

intensive and often infeasible, while data-driven machine learning techniques can fail 

to identify relevant failure mechanisms and suffer from poor generalization to 

previously unseen conditions, particularly when limited information is available. We 

propose a physics-informed variational autoencoder formulation for disentangled 

representation learning of confounding sources in the measurements with the aim of 

computing the posterior distribution of latent parameters of a physics-based model 

and predicting the response of a structure when limited measurements are available. 

The latent space of the autoencoder is augmented with a set of physics-based latent 

variables that are interpretable and allow for domain knowledge in the form of prior 

distributions and physics-based models to be included in the autoencoder formulation. 

To prevent the data-driven components of the model from overriding the known 

physics, a regularization term is included in the training objective that imposes 

constraints on the latent space and the generative model prediction. The feasibility of 

the proposed approach is evaluated on a synthetic case study. 

Keywords: Generative models, variational autoencoders, structural health 

monitoring, physics-informed machine learning, disentangled representation learning. 

Introduction 

In the context of Structural Health Monitoring (SHM), three main tasks can typically be 

carried out: inferring the distribution of a set of latent variables (i.e. variables that are not 

directly observable)  that best describe the parameters of a structure to identify its current 

health state; predicting the remaining useful life a structure, and predicting what the condition 

of a structure would have been if some rehabilitation measure were applied.  Generative 

probabilistic models such as Normalizing Flows [1], Variational Autoencoders (VAE) [2] 

and Generative Adversarial Networks (GANs) [3] are a class of models, typically based on 

Neural Network (NN) and Deep Learning (DL) architectures, that can approximate the 

distribution of a given set of data and generate samples from the learned distribution. 

Generative probabilistic models have recently seen a broader use in performing SHM 

inferential and predictive tasks, and for constructing Digital Twins (DTs) of structures [4]. 

In the context of SHM, using these data-driven approaches might lead to poor generalization 
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performance and results that are inconsistent with known physics. Physics-enhanced machine 

learning approaches (also known as hybrid or grey-box models) overcome these limitations 

by utilizing previous knowledge in the form of informative prior distributions and physics-

based models combined with measurements in order to reduce the required amount of data, 

improve accuracy and generalization performance and ensure the consistency of inferred 

quantities and model predictions with the known physics [5]. Importantly, incorporating 

physics-based terms in the predictions can yield models that are robust and explainable, 

representing physically meaningful and interpretable quantities. However, the same 

flexibility and learning capacity of  NNs that enables them to accurately model physical 

processes from data can be problematic when combining them with physics-based models. 

Specifically, when attempting to minimize some discrepancy measure between 

measurements and predictions, the flexibility of overparametrized NNs can result in the data-

driven components overriding the physics-based model, leading to inaccurate inference of 

latent variables and unrealistic and overconfident predictions [6]. 

In this work, we propose a VAE formulation for disentangled representation learning, 

enabling the identification and disentanglement of underlying confounding factors (including 

environmental and operational inputs, damage conditions, and other factors) hidden in the 

structural response measurements (observable data). This approach enables learning 

disentangled representations of the contributing factors in the measurements that are used to 

build an explainable, controllable and robust digital twin with enhanced generalisation 

performance. The approach is dependent on the availability of a physics-based model of the 

underlying structure, and labelled structural response measurements, environmental data, 

condition assessment data, and other relevant labelled data. This labelled training dataset is 

used to extract a low dimensional encoding of features in the structural response 

measurements that are informative about environmental and operational conditions, and 

damage in the structure. This is achieved by having the encoder, decoder and latent space of 

the VAE be semantically and functionally separated into a data-driven branch and physics-

grounded branch, trained jointly in an end-to-end fashion. The VAE architecture and the 

training objective are further modified to prevent the data-driven branch from learning and 

compensating for the discrepancies between the physics-grounded branch predictions and the 

measured structural response.  

1. Methods and Tools  

Throughout this text, capital symbols denote random variables and lower case symbols 

denote deterministic quantities or realizations of random variables. Light symbols denote 

scalars while symbols in bold refer to vector or matrix quantities. Observable random 

variables or deterministic quantities that are available during testing will be denoted by 𝑋, 

labels that are only available during training by 𝑌, and latent variables by 𝑍. The subscripts 

𝑝 and 𝑑 are used to denote components of the physics-grounded branch and data-driven 

branch respectively. 

 

1.1 Bayesian inference 

The posterior distribution of latent variables 𝒁 given data 𝑿 is [7]:  

 

𝑝(𝒁|𝑿) = 𝑝(𝑿|𝒁)𝑝(𝒁)/𝑝(𝑿) (1) 
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When physical knowledge in the form of an analytical or numerical (e.g. finite element) 

physics-based model is available, the likelihood function 𝑝(𝑿|𝒁) can be expressed as a 

combination of a physics-based model and a probabilistic model. Prior knowledge on the 

latent variables (e.g. from previous experiments, literature or expert judgement) can be 

included in the prior distribution 𝑝(𝒁). The marginal likelihood (i.e. the evidence) term in 

the denominator is often a high dimensional integral, and can quantify the relative strength 

of different models.  

1.2 Variational Autoencoder 

In Variational Inference (VI), the posterior distribution is approximated using a prescribed 

parametrized family of distributions. The optimal parameters are obtained by minimizing the 

KL-divergence between the true and approximate posteriors [8]. A VAE [2] can be utilized 

to perform approximate VI in order to learn the joint distribution 𝑝(𝑿, 𝒁). The VAE is 

composed of an encoder network 𝑞𝜙(𝒁|𝑿) and a decoder network 𝑝𝛉(𝑿|𝒁), parametrized by 

𝝓 and 𝜽  respectively. The encoder is typically implemented as a feed-forward NN that maps 

the inputs 𝒙 to a conditional density over latent variables 𝒁. The decoder network 𝑝θ(𝑿|𝒁) 

works in the opposite direction by approximating the density of 𝑋 conditioned on 𝑍. 

Sampling 𝒛~𝑞ϕ(𝒁|𝑿) and evaluating the decoder yields samples from the learned 

distribution of the data, which in the context of SHM can be used for downstream tasks such 

as damage detection and remaining useful life assessment. Optimization is performed by 

maximizing a lower bound on the marginal likelihood of the data known as the Evidence 

LOwer Bound (ELBO) denoted here by ℒ. 

 

log 𝑝𝛉(𝒙) ≥ ℒVAE(𝐱; 𝛉, 𝛟) = 𝔼q𝛟(𝒛|𝒙)[log 𝑝𝛉(𝒙|𝒛)] − KL(𝑞𝛟(𝒛|𝒙)||𝑝𝛉(𝒛)) (2) 

1.3 Conditional Variational Autoencoder 

Conditional generative models are a class of generative models aimed at performing 

representation learning and structured prediction on (typically) high-dimensional outputs 𝒀 

conditioned on a set of input variables 𝑿. In the Conditional VAE (CVAE) architecture [9] 

the outputs are passed to the encoder that maps the input data to the latent space, conditioning 

the latent distribution on both 𝑿 and 𝒀. Similarly, the decoder mapping from 𝒁 to 𝒀 is 

conditioned on 𝑿, resulting in the following objective: 

 

log 𝑝𝛉(𝒙) ≥ ℒCVAE(𝐱, 𝐲; 𝛉, 𝛟) = 𝔼q𝛟(𝒛|𝒙, 𝒚)[log 𝑝𝛉(𝒚|𝒙, 𝒛)] − KL(𝑞𝛟(𝒛|𝒙, 𝒚)||𝑝𝛉(𝒛|𝒙)) (3) 

2. Background and objectives 

2.1 Problem description 

We aim to construct a probabilistic generative model for a structure that, given a set of 

observations of the structural response, environmental parameters and damage, can be used 

to infer the posterior distribution of a set of latent variables of the physics-based model and 

learning some additional latent parameters of a data-driven part to generate samples of the 

future structural response and predict the damage condition of the structure. In practical 

applications, there is often a significant discrepancy between the structural response 

predicted by physics-based models and the measured response of the structure. Several 

different sources of uncertainty may contribute to this discrepancy, with the most significant 
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ones often being [10, 11]: (i) measurement uncertainty stemming from the presence of noise 

and sensor error in the measurements; (ii) parameter uncertainty, i.e. uncertainty in the values 

of the parameters of the physics-based model; (iii) model form uncertainty, i.e. uncertainty 

from simplifications and approximations in the physics-based model of a structure; (iv) 

uncertainty due to the influence of environmental conditions that are not considered in the 

physics-based model (unmeasurable signals that affect the output); (v) uncertainty caused by 

degradation and damage in the structure. If the physics-based model is a good approximation 

of the real behaviour of the physical system in its nominal condition, the model prediction 

error can indicate the type of damage affecting the system or the mechanism through which 

an environmental effect influences the response. In what follows, it is assumed that the 

damage conditions and environmental effects that are expected to affect the structure will 

have an influence in the measured response. 

We seek to approximate the structural response as the sum of a physics-based model 

𝑓p(𝒛p; 𝜽p), and a trainable parametrized function 𝑓d(𝒛d; 𝜽d) that captures the contribution of 

the environmental conditions and damage to the measured structural response. Furthermore, 

we assume that a physics-based model with some uncertain parameters (latent variables) for 

which prior knowledge is available. A set of measurements is obtained for a single structure, 

yielding 𝑁 samples of the matrix 𝑫 = {𝑿r, 𝑿e, 𝒀c}, where 𝑿r = (𝒙r,1, 𝒙r,2 … 𝒙r,N) and 

respectively for 𝑿e and 𝒀c. The vector 𝒙r,i ∈ ℝ𝑑r  denotes a single measurement of the 

structural response from 𝑑r sensors, while 𝒙e,i ∈ ℝ𝑑e is a vector of the environmental 

conditions, and 𝒚c,i ∈ ℝ𝑑𝑐  is a vector of condition assessment measurements quantifying the 

existence and severity of damage in the structure (e.g. from inspections). The 

dimensionalities of the response, environmental and damage measurements are denoted as 

𝑑r, 𝑑e and 𝑑c respectively. In a real-world application, the damage condition data 𝒀c would 

typically be obtained from inspections and would be available during training, but not during 

test time. In contrast, measurements of the structural response and environmental conditions 

are typically obtained from sensor networks and are therefore available both during training 

and testing. 

2.2 Objective 

A straightforward approach to infer the posterior distribution of the latent variables 

conditioned on the data and generate samples of the learned structural response would be to 

incorporate the physics-based model in the likelihood function, assign a prior distribution 

over 𝒁, and train a VAE using measurements of the structural response. Although feasible, 

this approach has a number of disadvantages: (i) the flexibility of the data-driven components 

can result in them dominating the predicted response; (ii) the physics-based latent variables 

𝒁𝑝 lose their physical interpretation and the inferred posterior may be inaccurate; (iii) the 

components of the model prediction are not interpretable; (iv) poor performance in 

generalization to unseen conditions, particularly when training data is sparse. To address 

these issues we seek to learn interpretable and disentangled representations of the various 

factors of variation in the data, separating the influences for which domain knowledge (in the 

form of physics-based models and informative prior distributions) is available from those 

that can’t be modelled directly and must be learned from the data. This is achieved by 

imposing constraints on the data-driven components of the VAE, such that they only 

approximate components of the discrepancy between the measurements and physics-based 

model predictions that are independent of the known physics and can be attributed to 

additional observations of the environmental and damage conditions of the structure.  
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2.3 Previous Work 

A common approach for disentangled representation learning involves adjusting the relative 

importance of the KL-divergence and reconstruction error terms in the ELBO (Eq. 2). In the 

𝛽-VAE architecture [12], the KL-divergence is scaled by a factor 𝛽 ≥ 1 that increases how 

much the approximate posterior is penalized for differing from the prior, effectively limiting 

the capacity of the latent distribution and forcing independence between the latent variables 

at the expense of reconstruction quality. An alternative decomposition of the KL-divergence 

term highlights the importance of the total correlation (TC) [13], a component of the KL-

divergence that penalizes dependence between the latent variables marginalized over the data 

and can be estimated stochastically [14] or approximated with a discriminator network [15, 

3]. Alternative approaches to promote disentanglement in VAEs involve extending the 

standard architecture with components such as discriminators [16] and additional decoders 

[17, 18], utilizing adversarial excitation and inhibition mechanisms [19], and separating 

components of the latent space [20]. Modifications to the standard VAE architecture are often 

coupled with modifications to the optimization objective, in order to adjust the mutual 

information between the input and the latent variables leveraging the information bottleneck 

theory [21, 22]. For a review on representation learning, the reader is referred to [23]. Limited 

guidance is available on incorporating physics-based models in VAE, and particularly on the 

impact of combining DL components and physics-based models on the interpretability and 

generalizability of the predictions. The issue of balancing physics-based and DL components 

is highlighted is highlighted in [6], and addressed using a regularized training objective based 

on the posterior predictive check [7]. 

3. Approach 

The proposed VAE architecture is schematically illustrated in Fig. 1. Two feature extractors 

implemented as feed-forward NNs are utilized to reduce the dimensionality of the response 

measurements, which are subsequently provided as input to two sets of NNs that output the 

mean 𝜇, standard deviation 𝜎 and a lower triangular matrix 𝑳 of multivariate Normal 

distributions implementing the physics-based and data-driven latent spaces. The standard 

deviation and lower triangular factor are the LDL decomposition terms of the covariance 

matrix 𝚺 of a multivariate Normal distribution, i.e. 𝚺 = 𝑳𝑫𝑳𝑇. The decoder is composed of 

a physics-based model combined with multiple feed-forward NNs. The mean of the predicted 

response is obtained as a sum of the outputs of the physics-based model 𝑓θp

r  and a machine 

learning component 𝑁𝑁θd

r . The environmental and damage condition predictions are 

obtained from 𝑁𝑁θd

e  and 𝑁𝑁θd

c  respectively. Crucially, a gradient reversal layer [24] is 

utilized to prevent the data-driven part of the encoder from learning features related to the 

reconstruction of the input data and the discrepancies between measurements and physics-

based model predictions, instead forcing it to retain only a low-dimensional representation 

of the features that are informative about the environmental and damage condition 

observations. The motivation for this formulation of the objective is the assumption that the 

environmental conditions and damage modes may be identified by features of the response 

that can be extracted from measurement data and encoded into a low-dimensional 

representation in the latent space. 
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Fig. 1. Schematic overview of the proposed VAE architecture. Symbols with hat denote VAE predictions. 

We aim to derive an objective that encourages the data-driven subset of the latent 

variables 𝒁d to capture a low dimensional representation of the features in the response 

measurements 𝑿r that are informative about the environmental conditions or the existence of 

damage in the structure. This is achieved by including the mutual information between the 

physics-based and data-driven latent variables as an additional regularization term. We define 

�̅�(𝒛) ≔ 𝑞(𝒛p)𝑞(𝒛d) and write the optimization objective as the sum of the VAE losses, and 

the mutual information between 𝑞(𝒛) and �̅�(𝒛): 

 

ℒ(𝒙, 𝒚; 𝜽, 𝝓) = ℒp(𝒙r; 𝜽p, 𝝓p) + ℒd(𝒙r, 𝒙e, 𝒚c; 𝜽𝑑 , 𝝓𝑑) + 𝜆 ⋅ KL(𝑞(𝒛)||�̅�(𝒛)) (5) 

 

The physics-based and data-driven losses ℒp and ℒd are obtained by deriving the VAE (Eq. 

2) and CVAE (Eq. 3) objectives for the physics-based and data-driven components of the 

model respectively. The term KL(𝑞(𝒛)||�̅�(𝒛)) penalizes the mutual information between the 

approximate posterior distributions of the physics-based and data-driven latent variables 

marginalized over the data, and is computed using an importance sampling approach [14]. 

The hyperparameter 𝜆 ≥ 0 balances the quality of the reconstruction and the complexity of 

the learned encoding, with larger values resulting in a more severe penalty at the cost of 

reduced reconstruction accuracy. The result of optimizing the parameters 𝜽 and 𝝓 of the 

VAE using the objective given in Eq. 5 is that the features of 𝑿r that are informative about 

𝑿e and 𝒀c are encoded in the distribution of the latent variables from which the decoder 

reconstructs the corresponding outputs 𝑿e and 𝒀c. 

4. Case Study  

It is assumed that the true behaviour (i.e. the ground-truth representation) of a structure can 

be accurately modelled as a two-dimensional Euler-Bernoulli beam with constant length 𝐿 =
1.0 m, a point load 𝐹 = 5.0 N, pinned left support, and rotational and vertical translation 

spring boundary conditions in the right support. It is assumed that we only possess partial 

knowledge (i.e. a reduced model) of the true physics. The ground-truth and reduced models 

are illustrated in Fig. 2 (left). The Young’s modulus 𝐸 and the position of the point load 𝑥F 

are considered as uncertain latent variables of the physics-based models, such that 𝒛𝑝 =
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{𝐸, 𝑥F}. Additionally, the rotational stiffness of the right support is considered fully 

dependent on the temperature 𝑇 through the non-linear function 𝑘r = exp (
10

1+𝑒−𝑇 + 8.0), 

shown in Fig. 2 (right). It is assumed that the temperature is an observed environmental 

parameter such that 𝑋e = {𝑇}, and that the vertical spring log-stiffness log 𝑘v represents 

damage in the structure, i.e. 𝑌c = {log 𝑘v}. Therefore, measurements of log 𝑘v will be 

available during training but not during test-time. The structure is assumed to be equipped 

with 𝑑r displacement sensors, equally spaced along the length of the beam. 

 

 
Fig. 2. Two-dimensional Euler-Bernoulli beam with point force. Ground truth model (top left) and reduced 

model (bottom left) representing our partial knowledge of the physics. The relationship between temperature 

and 𝑘r is shown on the right. 

The prior distributions over 𝐸 and 𝑥F, as well as the ground truth distributions of all 

the latent variables used to generate the training data are summarized in Table 1. The 

temperature and vertical spring log-stiffness are only included in the (unknown to us) true 

physical model and not in the partial model, and therefore no physically meaningful prior 

distribution can be specified. The dataset used to train the VAE is composed of 𝑁 = 1024 

measurements of the beam displacement, obtained by drawing 𝑁 samples from the ground 

truth distribution of the latent variables and evaluating the true physical model on the sampled 

points, yielding 𝑿r = (𝒙r,1, 𝒙r,2 … 𝒙r,N) where each element 𝒙r,i is a vector of length 𝑑r =
32. The measurements are subsequently contaminated with Gaussian white noise with 

standard deviation of 0.05 m. The environmental and damage condition measurements 𝑿e 

and 𝒀c are taken as the sampled temperature and vertical log-stiffness values respectively. 

 
Table 1. Prior distributions of the latent variables and ground truth distributions used to generate training data. 

LATENT VARIABLE PRIOR DISTRIBUTION GROUND TRUTH 

𝐸 [Pa] 𝒩(4.0, 0.5) 𝒩(4.0, 0.35) 

𝑥F [m] 𝒩(0.5, 0.1) 𝒩(0.5, 0.07) 

𝑇 [𝐶𝑜] - 𝒩(8.0, 5.6) 

log 𝑘v  [𝑁/𝑚] - 𝒩(−4.0, 2.1) 

 

For the physics-grounded branch, the feature extractor and encoder are formulated as 

feed-forward NNs while the decoder is the partial physics-based model. For the data-driven 

branch, the feature extractor, encoder and decoders are all formulated as feed-forward NNs. 

Details of all components are provided in Table 2.  
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Table 2. Summary of the formulation of the VAE components. Numbers in brackets denote the width of the 

hidden layers in the NNs. 

BRANCH FEATURE EXTRATOR ENCODER DECODER 

Physics-based 𝑁𝑁ϕp

𝑓
 [256, 64] 𝑁𝑁ϕp

𝜇
 [128] 

𝑁𝑁ϕp

𝜎  [128] 

𝑁𝑁ϕp

𝑐𝑜𝑣 [128] 

𝑓θp

𝑟  [-] 

Data-driven 𝑁𝑁ϕd

𝑓
 [256, 64] 𝑁𝑁ϕd

𝜇
 [128] 

𝑁𝑁ϕd

𝜎  [128] 

𝑁𝑁ϕd

𝑐𝑜𝑣 [128] 

𝑁𝑁θd

𝑟  [256, 64] 

𝑁𝑁θd

𝑒  [128] 

𝑁𝑁θd

𝑐  [128] 

 

Optimization is performed using the Adam algorithm [25] with minibatch gradient 

estimation [2]. The model is trained for 25.000 iterations, and the objective and gradients 

are estimated using 32 Monte Carlo samples and a batch size of 64. A value of 𝜆 = 2 is used 

for training as it was found to result in a good compromise between disentanglement and 

reconstruction accuracy. The coefficient of the gradient reversal layer is taken as 𝜆g = 0, 

preventing the backwards flow of gradient information from the data-driven decoder. The 

decoders are formulated as Normal distributions with mean equal to the output of the 

corresponding NN. For the displacement decoder, the standard deviation is included in the 

vector 𝜽 and jointly optimized with the other hyperparameters, while for the environment 

and damage decoders it is set to 𝜎e = 𝜎d = 0.05 𝐶𝑜 and 𝑁/𝑚 respectively. Both feature 

extractor NNs are set to output eight features, and the number of dimensions of the data-

driven latent space is set to two. The VAE is intentionally overparametrized by specifying a 

larger number of features in the output of the feature extractors than necessary, in order to 

demonstrate that prior knowledge of the number of failure mechanisms, environmental 

influences and physical processes affecting the response of a structure is not necessary. 

After training, the disentanglement between physics-grounded and data-driven 

components is qualitatively assessed by examining the latent space and predictions. Each 

variable is linearly interpolated within the interval [𝜇gt − 3𝜎gt, 𝜇gt + 3𝜎gt] (where 𝜇gt and 

𝜎gt are the ground truth mean and standard deviation corresponding to the variable as shown 

in Table 1), while the other variables are held constant at their ground truth mean value. The 

resulting sets of input variables are then used to generate synthetic displacement and 

temperature data, which are in turn given as input to the VAE. The resulting predictions of 

the physics-based and data-driven components, as well as the combined prediction are shown 

in Fig. 3. It can be observed that the data-driven component of the prediction is invariant to 

changes in 𝐸 and 𝑥F contributing only a constant deformed shape to the total predicted 

response, and that additionally, the physics-based component of the prediction is relatively 

insensitive to varying log 𝑘v and 𝑇 values. However, it can also be seen that the predictions 

obtained from the two branches of the VAE are neither fully disentangled, nor do they 

perfectly capture the true structural response. The trade-off between these two objectives can 

be adjusted using the 𝜆 parameter (Eq. 5). 
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Fig. 3. Comparison of VAE predictions for a single input measurement per value of the latent variables. Mean 

and std. dev. of the physics-based (top), data-driven (middle), and combined prediction (bottom). Dots denote 

the input measurements. 

Further insights on the impact of the additional regularization term and gradient reversal layer 

on the performance of the VAE and the disentanglement of the physics and data terms can 

be obtained by examining the behaviour of the latent space with respect to the varying input 

data, shown in Fig. 4. It can be seen that, although correlation between 𝐸 and 𝑥F is present 

as evidenced by the curved shape of the “paths” of samples for varying input, as well as the 

correlation that is present in the posterior of each individual input, only limited correlation is 

observed between the two subsets of laten variables {𝐸, 𝑥F} and {𝑧d,1, 𝑧d,2}. The limited 

correlation between the two sets of latent variables indicates that the modified TC objective, 

in addition to the structure of the VAE itself, promotes independence between the physics-

grounded and data-driven components of the latent space. 

 

   
Fig. 4. Samples from the latent space for a single input measurement per value of the latent variables. The 

vertical axis are the first (top row) and second (bottom row) data-driven latent variables 𝑧𝑑,1, 𝑧𝑑,2. 

It is noted that the objective of this case study is not to provide a comprehensive assessment 

of the performance of the proposed architecture compared to a purely data-driven approach, 
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but rather to highlight the benefits of disentangling the physics-based and data-driven 

components of the model and demonstrate the feasibility of the proposed architecture. 

Therefore, the results shown in this section are only qualitative. A thorough, quantitative 

comparison with other data-driven and physics-informed approaches is left for future work. 

5. Conclusions and Future Work 

A VAE architecture with two separate encoder and decoder branches, one physics-based and 

one data-driven, is proposed as a means to tackle SHM problems and create DT models for 

which domain knowledge can be expressed in terms of a physics-based model. The training 

objective is designed to promote disentangled learning, separating the physics-based 

components of the latent space (the uncertain parameters of the physics-based model for 

which a prior distribution is available) from the data-driven components of the latent space, 

as well as the physics-based predictions from the data-driven predictions, by incorporating 

an additional KL-divergence term scaled by a hyperparameter 𝜆. Additionally, a gradient 

reversal layer is included before the data-driven decoder of the structural response in order 

to prevent the data-driven latent space from encoding features of the structural response that 

are not relevant to the reconstruction of the additional environmental condition 

measurements and damage condition labels. The approach is demonstrated using a synthetic 

case study, with the results indicating that the proposed architecture enables disentangled 

learning of the structural response components that correspond to the partially known physics 

from those stemming from environmental influences and the existence of damage in the 

structure. Follow-up work will be focused on investigating the impact of the 𝜆 and 𝜆𝑔 

parameters on the accuracy of the inferred posterior and the quality of the disentanglement, 

and more generally on the accuracy of the approximate posterior obtained from the proposed 

model formulation. Determining the applicability of existing disentanglement metrics for 

evaluating the disentanglement of known physics from environmental and damage 

influences, or deriving a specialized metric for this task, are also interesting avenues for 

future work.  
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