
Data-Driven Extract Method
Recommendations: An Initial

Study at ING

Master’s Thesis

David van der Leij

Data-Driven Extract Method
Recommendations: An Initial

Study at ING

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

David van der Leij
born in Assen, the Netherlands

Software Engineering Research Group
Department of Software Technology
Faculty EEMCS, Delft University of Tech-
nology
Delft, the Netherlands
www.se.ewi.tudelft.nl

IT Innovation
Omnichannel

ING Bank N.V.
Bijlmerdreef 106

Amsterdam, The Netherlands
www.ing.nl

www.se.ewi.tudelft.nl
www.ing.nl

© 2021 David van der Leij.
This thesis project is executed under the supervision of ING as part of the
Industrial-grade Verification and Validation of Evolving Systems (IVVES)
project, which is a part of EU ITEA 3 1.

1https://itea3.org/project/ivves.html

https://itea3.org/project/ivves.html

Data-Driven Extract Method
Recommendations: An Initial

Study at ING

Abstract

Refactoring is the process of improving the structure of code with-
out changing its functionality. The process is beneficial for software
quality but challenges remain for identifying refactoring opportunities.
This work employs machine learning to predict the application of the
refactoring type Extract Method in an industry setting with the use of
code quality metrics.

We detect 919 examples in industry code of Extract Method and
986 examples where Extract Method was not applied and compare
this to open-source code. We find that feature distributions between
industry and open-source code differ, especially in class-level metrics.

We train models to predict Extract Method in industry code and
find that Random Forests perform best. We find that class-level met-
rics are most important for the performance of these models. We then
investigate whether models trained on an open-source set generalize
to an industry setting. We find that, although less performant than
a custom fit model, a Logistic Regression type model performs ad-
mirably. Afterward, we examine whether these models perform on
unseen industry projects by validating on projects excluded from the
training set. We find that average performance is decent but lower
than when using the whole industry dataset or an open-source dataset
for training.

Lastly, we conduct a blind user study in which we ask experts to
judge predictions made by our best model. We find that experts gen-
erally agree with the model’s predictions. In the case that experts
agree with the model’s prediction to apply Extract Method, they do so
because of high code complexity. When they agree with the model’s
prediction not to refactor they most frequently give the reason that
the respective methods are already sufficiently understandable.

Author: David van der Leij
Student id: 4701151
Email: davidvanderleij@gmail.com

davidvanderleij@gmail.com

Thesis Committee:

Chair: Dr. E. Visser, Faculty EEMCS, TU Delft
University supervisor: Dr. M. Aniche, Faculty EEMCS, TU Delft
Company supervisor: Dr. Y. Luo., ING, Omnichannel, ING / TU Eindhoven

ii

Preface

I want to thank my supervisor Maurício Aniche for the great supervision he
has given me during this unusual time. The ease and style of comunications
have helped me make this project possible during a time where meeting in-
person was impossible.

I would also like to thank my colleagues at ING for their feedback and
suggestions. Their insights and willingness to spend time to improve my
work helped me to stay motivated and improved the end result. In partic-
ular, I want to thank Luna Yaping and Robbert van Dalen for their advice
and help. In addition, I would like to thank Jasper Binda and Pieter Vallen
for their insights and help in performing the user study.

Finally, I would like to thank prof. dr. Eelco Visser for his interest in my
work and for joining the thesis committee.

David van der Leij
Amsterdam, the Netherlands

April 23, 2021

iii

Contents

Preface iii

Contents v

List of Figures vii

1 Introduction 1

2 Related work 5
2.1 Rule-based approaches . 6

2.2 Search-based approaches . 6

2.3 Machine learning-based approaches 8

3 An Empirical Study of Extracted Methods in Industry 11
3.1 Methodology . 11

3.2 How does code that underwent and did not undergo Extract
Method in industry and open-source compare, in terms of code
metrics? . 16

3.3 How does code that did and did not undergo Extract Method
differ in different industrial projects? 22

4 The Effectiveness of Data-Driven Extract Method Models in
Industry 25
4.1 Methodology . 25

4.2 How effective are supervised machine learning models at pre-
dicting Extract Method refactoring opportunities for industry
code? . 29

4.3 How well do Extract Method recommendation models gener-
alize? . 32

4.4 How well do Extract Method models generalize across differ-
ent industrial projects? . 35

5 A User Study on Extract Method Recommendations in the Wild39

v

Contents

5.1 Methodology . 39
5.2 Do industry experts deem recommended Extract Method refac-

torings useful/not useful? . 40
5.3 Why do industry experts deem recommended Extract Method

refactorings useful/not useful? 42

6 A Proposal for a Tool To Recommend Data-Driven Extract
Methods 47
6.1 The tool in practice . 49

7 Threats to validity 51
7.1 Internal validity . 51
7.2 External validity . 53

8 Conclusions and future work 55
8.1 Conclusions . 55
8.2 Future work . 58

Bibliography 61

A Violin Plots 67

B Features Used 73
B.1 Class level metrics . 73
B.2 Method level . 74

C Feature Importances and Linear Coefficients 75
C.1 Industry trained models . 75

D Hyperparameters Best-performing Models 79

E Confusion Matrices 81

F User study and recommendation examples 83

G User study — Agreement Metrics 85
G.1 Metric definitions . 85
G.2 Metric values . 85

vi

List of Figures

3.1 Data collection control flow . 13
3.2 LOC for industry and open-source code 18
3.3 CBO for industry and open-source code 20
3.4 TCC and LCC for industry and open-source code 21
3.5 Code metrics per industry project 23

4.1 Permutation importance in industry-trained models 31
4.2 Permutation importance in open-source-trained models 34
4.3 Performance metrics per project 36

5.1 Reasoning when expert agrees with model 44
5.2 Reasoning when expert disagrees with model 45

6.1 The architecture of all artifacts and their relationships with each
other. 47

A.1 RFC for industry and open-source code 67
A.2 Cyclomatic complexity for industry and open-source code 68
A.3 Unique words quantity for industry and open-source code 69
A.4 Class-level metrics per industry project 70
A.5 Method-level metrics per industry project 71

C.1 Feature importances industry trained model 75
C.2 Coefficients industry trained model 76
C.3 Feature importances open-source trained model 76
C.4 Coefficients open-source trained model 77

F.1 Survey example question . 83
F.2 Recommendation example . 83

vii

Chapter 1

Introduction

Software projects are ever-evolving due to the advent of new functionality,
bug fixes, and performance optimizations. With this evolution, however,
comes the problem of degradation of code quality. As a project evolves,
the scope and complexity increase and the original design ideologies fade.
Refactoring is defined by Fowler as the process of changing a software
system in such a way that does not alter the external behavior of the code
yet improves its internal structure [14]. This process has been shown to
improve code quality in terms of code quality metrics and other aspects [23,
21, 15] In addition to this, developers perceive it to have a wide array of
benefits [21].

Nonetheless, there are challenges for developers applying refactoring
operations. For example, developers worry about behavior preservation
when applying refactoring operations [23, 6, 21, 30]. Next to this, refac-
toring might incur certain costs for developers [21]. Also, the benefits
of refactoring might not immediately be apparent [3]. Finally, developers
might misclassify refactoring opportunities, or miss them altogether [30].
A wide variety of approaches have been applied to circumvent the above
problems. One of which is facilitating the detection of suitable refactoring
opportunities on which this thesis will focus.

Detecting refactoring opportunities is an active field of research. An
example of a well-known tool for recommending refactoring opportunities
is JDeodorant [10]. This Eclipse plugin implements results in the field to
recommend several refactoring operations within the IDE. Some examples
of operations supported are Extract Method [33, 32] and Extract Class [11,
9, 10].

Another approach using machine learning was proposed by Aniche et al.
in 2020. Their paper applies a total of six different machine learning algo-
rithms to the problem [4]. They model the problem as binary classification
and use code metrics as features to predict whether code should be refac-
tored or not. Aniche et al. use RefactoringMiner [34], a tool that detects
whether a refactor occurred. They define code as non-refactored when it
was changed but not refactored for 50 consecutive changes. When using a

1

1. Introduction

Random Forest type model with open-source code as input, they achieve a
precision rate of over 90%. The authors also show that the resulting models
generalize well, as precision levels are high for unseen code.

Aniche et al. pose several research questions to be further investigated.
Many of these were examined by Gerling, who expanded on this approach [16].
He did so by ensuring data quality, increasing the scale of the dataset, and
investigating the reason behind the high importance of process-and owner-
ship metrics. He also achieved an understanding of refactoring operations
and source code metrics, and further explored the machine learning algo-
rithms and their potential for this problem.

Some issues in the original paper [4] are still open, however. In Section
6.3, the authors note that the current models are trained on open-source
projects only and, to show the effectiveness of the approach on industry
projects as well, a replication study on a large-scale industry dataset is nec-
essary. In the same section, the authors mention that they did not include
any large-scale industrial systems in their research and can therefore not
make any strong assumptions about the generalizability of their models in
such industry settings. They suggest further case studies are necessary to
investigate this. Finally, in Section 6.2, the authors mention that they did
not take into account any reasons a developer might have for applying any
particular refactoring operation.

To address all of these issues, we define the following three focuses for
this thesis.

1. Data analysis: Collecting and analyzing a refactoring dataset based
on industry code, and subsequently comparing it to the open-source
counterpart.

2. Machine learning: Analyzing the results of applying supervised ma-
chine learning on the industry dataset, where models are trained on
both open-source and industry datasets.

3. User study: Conducting a user study that measures industry experts’
opinions on predictions generated by the best-performing models.

In this thesis, we dedicate a chapter to each of these focuses. This work
will focus on the refactoring of type “Extract Method” only. The reasons for
this choice can be found in Section 3.1. We will now go into more details on
each focus.

Data Analysis is explored in Chapter 3 and serves to understand the
behavior of our models better by investigating their respective feature dis-
tributions. Doing this gives us more insight into the following aspects:

1. Performance measures: Why does a certain model perform better
than another? Can we explain this with the feature distribution?

2

2. Feature importance: Can we recognize any patterns confirming or
contradicting the reported feature importances in Chapter 4?

Section 3.2 investigates differences between open-source and industry fea-
ture distributions. This is done to better understand the reasons behind
the generalizability of models on industry code when they were trained on
open-source code. Section 3.3 investigates whether there are differences
between individual industry projects. This has a similar goal as before, but
this time it gives us information on why models might generalize within
industry code.

Machine learning is explored in Chapter 4 and will examine how well
classification algorithms perform on the industry dataset as described in
Chapter 3. First, we investigate whether the approach described by Aniche
et al. performs well on industry code. We do this in Section 4.2. Next,
we investigate whether a model trained on open-source code generalizes
to an industry setting. We do this in Section 4.3. To better understand
the way these models operate and how they differ from each other we also
investigate which features are important for their performance. Finally, we
are interested in how these models perform on unseen projects in industrial
systems. We achieve this in Section 4.4.

The results in Chapter 4 only give insight into the theoretical perfor-
mance of these models. In Chapter 5 we analyze whether our models gener-
ate predictions that are deemed useful to industry experts. We investigate
their qualitative and quantitative opinions on suggestions generated by the
best-performing model.

We summarize these goals by the main research question:

MRQ: What is the effectiveness of ML-based Extract Method recommenda-
tion models in industry code?

We summarize the contributions this thesis provides as follows:

• An empirical study of code metrics in code that underwent an Extract
Method refactoring in an industry setting.

• An analysis in the performance of machine learning models for rec-
ommending Extract Method in industry code.

• Industry expert quantitative and qualitative assessment on Extract
Method predictions generated by machine learning models.

• A pipeline that allows for the automatic recommendation of Extract
Method predictions generated by machine learning models in produc-
tion code.

3

Chapter 2

Related work

Refactoring was popularized by Fowler when he wrote his book on the sub-
ject in 1999 [14]. Since the book’s release, many literature studies on the
subject have been performed.

One of these was by Mens and Tourwe and their study was primarily
concerned with the following criteria [26]: They examine the different types
of refactoring activities and the kind of software that is being refactored.
They also investigate which aspects are important in systems that recom-
mend refactoring operations and what their effects are on the software
development process. They find that identifying code smells is one of the
most widespread techniques to detect code that requires refactoring. They
also observe that the rate of success in identifying refactoring opportunities
can highly depend on the software’s domain. Mens and Tourwe’s survey ex-
plores papers in a more exploratory manner and does not systematically
compare them.

Baqais and Alshayeb, introduce a systematic literature survey on refac-
toring [5]. They analyze 148 papers and answer five qualitative questions
regarding refactoring for these papers. Baqais and Alshayeb find that a
majority of papers describe refactoring techniques (71%), rather than pro-
viding tools (29%). Out of these tools, they find the majority of them use a
search-based genetic algorithm variant (69%).

A tertiary literature study by Lacerda et al. identifies 40 secondary stud-
ies [22]. The study focuses primarily on code smells and refactoring and
their relationship in literature. The authors find that the techniques that
appear most are extraction techniques such as Extract Method. They also
observe that there is a gap between refactoring execution and identifying
refactoring opportunities. Moreover, Lacerda et al. argue that there is a
lack of validation using experts in the field. They also find that the major-
ity of projects described by current research utilize open-source code and
more research into industry code is necessary.

Lastly, a survey by Dallal about identifying refactoring opportunities an-
alyzed 47 papers and found that the majority of these used open-source as

5

2. Related work

their source for data [8]. They strongly advise researchers to incorporate
industry experts to participate in future studies.

From these studies, we identify that code smell detection and refactor-
ing are often strongly related. We also identify the following three tech-
niques prevalent in this field of research:

1. Rule-based approaches (RB)
2. Search-based approaches (SB)
3. Machine learning-based approaches (ML)

We summarize the works described in this chapter in Table 2.1.

2.1 Rule-based approaches

Rule-based approaches apply rules on code metrics or other aspects of code
to detect code smells or refactoring opportunities. Marinescu proposes a
metric-based code smell detection technique [25]. They use logic rules in
combination with code quality metrics to detect code smells. They report
an average accuracy rate of 67% when analyzing 9 different types of smells.

Silva et al. use a similarity-based approach to detect Extract Method
refactoring opportunities. They define a heuristic that scores candidates
based on code dependencies. Using this in combination with selecting
only the top recommendation per method, they achieve precision and re-
call rates of both 0.87.

Another approach was proposed by Moha et al. [27]. They created a
framework named DECOR, which they later implemented in a tool called
DETEX. Their tool uses DSLs in the form of rules which generate smell
detection algorithms. These are then applied to the systems that were used
to build these DSLs.

Tsantalis and Chatzigeorgiou propose a method to detect Extract Method
type refactoring opportunities using code slicing. In a small case study, they
report a developer agreement ratio of 5/9 methods [32].

2.2 Search-based approaches

Harman and Jones describes search-based software engineering as redefin-
ing software engineering problems as search-based problems and solving
them using search techniques [18]. In addition to a search-based repre-
sentation, he discusses the need for a fitness function and mutation op-
erators for the representation as requirements for reformulating software
engineering problems as search-based ones.

Later, Harman and Tratt proposed a search-based method that applies
to Java code [19]. Their approach is fit for general purpose and allows for
multiple fitness functions to present different Pareto optimal metrics.

6

2.2. Search-based approaches

Approach Results
RB

[25] Logic rules with code metrics to
detect code smells.

Average accuracy of 69% on 9
code smells.

[31] Predicting Extract Method us-
ing similarity.

Precision and recall of 87%.

[27] Rule base DSL’s that generate
smell detection algorithms.

Precision and recall of up to
88.6% and 100% when detect-
ing Blob code smell

[32] Predicting Extract Method with
code slicing.

5 out of 9 correct predictions in
a small case study.

SB

[18] Proposal of search-based ap-
proaches for SE.

Definitions for facets required
for search-based SE.

[19] Finding Pareto optimal frontier
to detect optimal metrics.

General purpose technique that
allows multiple fitness func-
tions.

[28] Improvement of code maintain-
ability testing 4 types of SB al-
gorithms.

Ascent Hill climbing performs
best with their tool.

[1] Genetic algorithms with input
from developer interactions to
serve refactoring opportunities.

Precision and recall of 82% and
86% respectively on 10 differ-
ent systems.

ML

[13] ML techniques to predict
smells.

Accuracy up to 99% with Ran-
dom forests when detecting
Long Method.

[12] 32 different ML algorithms to
detect 4 types of smells with
code metrics.

Tree-based and naive Bayes
perform best.

[24] Deep learning to detect Feature
Envy and subsequently Move
Method.

53% and 75% accuracies on
Feature Envy and Move Method
respectively.

[36] Combining static analysis and
ML for recommending Extract
Method for clones

83% and 76% accuracies within
project and cross-project re-
spectively.

Table 2.1: Summary of the related work discussed in this chapter

7

2. Related work

O’Keeffe and Cinnéide describe CODe-Imp, a search-based approach
that allows for automatic improvement of code maintainability [28]. They
test four different types of algorithms in conjunction with their tool and find
that multiple-ascent hill climbing is the best-performing algorithm.

More recently, Alizadeh et al. propose an interactive method that defines
an offline and an online phase [1]. The offline phase collects refactoring
solutions using a genetic algorithm to serve the developer. In the online
phase, the developer ranks these suggestions and these rankings are used
in the next iteration of the offline phase to constrain the set of refactoring
solutions.

2.3 Machine learning-based approaches

Fontana et al. use a machine learning-based approach to predict several
types of code smells, including class-level smells Large Class and Data Class
and method-level smells Long Method and Feature Envy [13]. They apply
several machine learning algorithms including but not limited to SVM’s,
Random forests, and Naïve Bayes. Using code metrics as input, they achieve
up to an accuracy of 0.990 when predicting Long Method using a Random
forest type model.

Fontana et al. conducted a study comparing several machine learning
techniques for code smells [12]. They evaluated 32 different machine learn-
ing algorithms to detect four different types of code smells. They used
code metrics as input for their algorithm. They found that tree-based and
naive Bayes algorithms resulted in the best performance in classifying code
smells.

Another study by Liu et al. shows the application of deep learning to de-
tect the Feature Envy code smell [24]. As input, they use code metrics and
code transformed into vectors. They then, based on the outcome, predict
the destination of a Move Method refactoring operation. They present an
average f1 score of 52.98% in detecting feature envy and an accuracy score
of 74.94% in recommending Move Method destinations.

Yue et al. combine static analysis and machine learning to recommend
Extract Method to software clones [36]. They report an average f1 score
of 83% when testing within projects. An average f1 cross-project score of
76% is reported.

2.3.1 The Effectiveness of Supervised Machine Learning
Algorithms in Predicting Software Refactoring

In Chapter 1, we briefly discussed previous work done by Aniche et al. on
refactoring. The work in this thesis, for a large part, expands on that ap-
proach. More implementation details can be found in Sections 3.1 and 4.1.
Aniche et al. collected examples of refactoring and non-refactoring code

8

2.3. Machine learning-based approaches

from three datasets, namely: Apache, GitHub, and F-Droid [4]. They col-
lected refactoring examples, which include 21 different types of refactoring
operations on class, method, and variable level.

Aniche et al. recorded many different types of code and process metrics
with these examples to be used as feature vectors. Out of six types of mod-
els tested, they found that Random forest performed best with accuracy
up to 0.99 on some types of refactoring operations. When analyzing which
features are important, they found process metrics to be most important
for predicting class-level refactoring operations, and class-level metrics to
be important for predicting method-level refactoring operations. They also
found that Random forest type models generalize well to unknown datasets.
In addition, models trained on heterogeneous projects increase generaliz-
ability to unknown data.

9

Chapter 3

An Empirical Study of
Extracted Methods in

Industry

In this chapter we answer the following research questions:

RQ1 How does code that underwent and did not undergo Extract
Method in industry and open-source compare, in terms of code
metrics?

RQ2 How does code that did and did not undergo Extract Method
differ in different industrial projects?

3.1 Methodology

To build a dataset consisting of code that underwent an Extract Method
refactoring and code that did not undergo an Extract Method refactoring,
we make use of the Git history. We walk through the Git history in reverse,
all the while analyzing each commit. For every commit, we check whether
it can be classified as an Extract Method commit or a non-Extract Method
commit.

We explain these classifications steps in Sections 3.1.1 and 3.1.2. If we
classify a commit, we save the metrics for the classified unit by using CK.
CK collects code metrics by using static analysis1. This chapter analyzes a
few key metrics but the complete list of collected features can be found in
Appendix B. The approach is the same as the one used by Aniche et al. and
replicated by Gerling [4, 16].

The scope of this thesis will be limited to the refactoring of type Extract
Method for the following reasons:

1. This operation is relatively simple to understand, which will facilitate
the interpretability of results. This is also advantageous for the user

1https://github.com/mauricioaniche/ck

11

https://github.com/mauricioaniche/ck

3. An Empirical Study of Extracted Methods in Industry

study in Chapter 5, in which it is preferable that the operation is easily
executable and comprehensible for all types of developers.

2. The current version of the data collection tool does not provide a suffi-
cient degree of granularity for a large proportion of refactoring types
detected. Take, for example, the refactoring of the type Rename Pa-
rameter which occurs when a method parameter is renamed. Our
current data collection tool will tell us in which method this occurred
but, if the relevant method has more than one parameter, it does not
tell us which of these was renamed. Since we want to use this data to
predict new refactoring opportunities it is important to choose a type
that is usable in a practical situation. Although Extract Method does
not tell us what part of the method to extract, it is an abstract enough
operation to be more applicable than other refactoring types.

3. For industry code, there are fewer refactoring samples available com-
pared to the large open-source dataset. For some refactoring types,
such as Extract Interface, there are as few as 95 samples available
in our dataset. Choosing Extract Method, gives us a combination of
the above-mentioned advantages and a large number of samples to
analyze.

3.1.1 Methods that underwent an Extract Method
refactoring

We use RefactoringMiner version 2.0 [34, 35] to detect Extract Method oc-
currences in Git commits. RefactoringMiner is a refactoring detection tool
that allows as input Git commits and subsequently detects any refactoring
operations that occurred in those commits. Tsantalis et al. report to achieve
precision and recall rates of 99.8% and 95.8% respectively for detecting an
Extract Method refactoring operations [34, 35].

We collect the metrics of a class and method from the unit before the
refactoring has occurred rather than after it has been completed. This
is because we want to investigate the method’s state for when it was a
candidate for refactoring.

3.1.2 Methods that did not undergo an Extract Method
refactoring

For this type of code, we could simply look at every commit and detect
whether the class’s methods did not undergo an Extract Method refactor-
ing. However, a coherent change to a project often does not encompass
only a single commit. For example, a change request that implements a
particular feature often consists of multiple commits. To incorporate this
phenomenon, we use a heuristic that defines a sensitivity parameter s. We

12

3.1. Methodology

classify a class as one that did not contain methods that underwent an Ex-
tract Method refactoring if it was changed but not refactored for s consec-
utive times. In the context of the Git history this means the following: If
we take s steps (commits) in the history without encountering a commit
where any Extract Method occurred, we classify that commit and class as
one which does not contain methods that underwent an Extract Method
refactoring.

If we increase s, the tool gets less sensitive about what to class as a non-
refactored class as the class needs to not be refactored for more consecu-
tive commits. Conversely, if we lower the sensitivity, the collector will re-
quire fewer steps and confidence before classing a class as non-refactored.

In this report, we analyze a single value of s. We choose this value by
using the following heuristic: The idea is that a change request consists of
one comprehensive change in the project. Therefore, if we take the median
amount of commits in change requests in all projects this might be a good
approximation of the sensitivity level. This approach results in s = 20 for
industry code and this will be the value used throughout this report.

A summary of the data collection process can be found in Figure 3.1 The

Get next commit
in tree

Yes

No

Commits left?
Run refactoring

detection on
commit

Yes

No

Refactoring
 detected?

Save as
refactored

commit with
metrics

scurrent = 0

Increment
 scurrent

Yes

No

scurrent ≥ s?

Save as non-
refactored

commit with
metrics

scurrent = 0

End

Figure 3.1: Simplified control flow for the data collection pipeline.

code for the data collection process can be found on GitHub 2.

3.1.3 Metrics to analyze

Metrics are captured on class and method-level. We only use metrics that
are available in CK. For the metrics TCC and LCC, no method-level metric
is available.

We primarily analyze metrics that were deemed highly important in our
best-performing machine learning models as described in Sections 4.2.2
and 4.3.2. This leads us to analyze the following metrics:

• Lines of code (LOC) [0,∞] A longer class or method might indicate
more complexity than a short one.

2https://github.com/refactoring-ai/Data-Collection

13

https://github.com/refactoring-ai/Data-Collection

3. An Empirical Study of Extracted Methods in Industry

• Response for class (RFC) [0,∞] This is the sum of all distinct method
calls plus the number of methods in a class/method. A higher value
indicates more potential interactions and could indicate a higher com-
plexity.

• Cyclomatic complexity (WMC for classes, CC for methods) [0,∞]

Indicates branching complexity. For classes, we use the sum of the
cyclomatic complexity of the methods in that class.

• Quantity of unique words (UW) [0,∞] A higher value might indi-
cate more responsibilities or interactions with different domains for a
certain class/method.

• Coupling between objects (CBO) [0,∞] Represents the number of
connections to a respecting class/method.

• Tight class cohesion (TCC) [0,1] Measures cohesion between visible
methods. This is calculated by dividing the number of direct connec-
tions between a class by the number of possible connections.

• Loose class cohesion (LCC) [0,1] The same as TCC, but this metric
also takes into account indirect connections.

3.1.4 Duplication removal

Our datasets contain a significant amount of duplicates for both Extract
Method and non-refactored instances. We class two instances as duplicates
when their complete feature vector is equal to each other. For both cases,
we remove these duplicates. We now go over why these duplicates occur in
both cases and why we remove them.

We record an instance as Extract Method refactored when Refactoring-
Miner detects it in a commit. The problem arises when multiple Extract
Method operations occur for the same method in the same commit. We
give an example instance that was found during a manual investigation of
the duplicates to elaborate. The instance in question was a method of a few
hundred lines that was split up into five different methods. Therefore the
data collection tool classed this as five Extract Methods, which is correct
behavior. However, since this all occurred in the same commit, the same
metrics were recorded for all five occurrences of this Extract Method. This
behavior is useful when we want to know exactly what a certain Extract
Method operation entailed, as with this approach, we can, for example,
see to which new method part of the source method was extracted. How-
ever, since we are only interested in binary classification (i.e. did an Extract
Method occur in a commit or not) it does not make sense to include these
duplicates in our analysis.

For non-refactored instances, most duplicates occur because the detec-
tion of these types of instances is performed at class-level. We do not know
whether a specific method was not changed for s consecutive times. When a
class is classified as non-refactored for a commit, the tool classes all meth-
ods in that class as stable. It can happen, however, that a class is classified

14

3.1. Methodology

as stable twice without the metrics associated with the methods in that
class changing, causing a duplicate.

For both instance types, we also ran into the issue of code duplication,
especially on project-level. Some projects had partially been duplicated into
other projects. In some cases, we even saw complete duplication of commit
history. This can lead to misleading results in our data analysis, as certain
classes and/or methods can be overrepresented, while in reality, they are
duplicates.

These duplicated instances can have adverse effects on our classifica-
tion pipeline. All of the above reasons can lead us to end up with duplicates
in our training and test set when splitting train-test data. This can cause
our training algorithms to have access to the test set, overfit and inflate
performance metrics. More details on the adverse effects of duplicated
code in machine learning models are further elaborated upon in a paper by
Allamanis [2].

3.1.5 Datasets

As explained prior, we analyze and compare two datasets. The first dataset
consists of open-source code from GitHub. This dataset was mined by
Gerling [16]. The projects were sourced from GHTorrent [17]. From this
dataset, Gerling selected the top 100000 watched projects, and after remov-
ing faulty projects they were left with 92280 projects to analyze.

This resulted in 616088 Extract Method and 503393 non Extract Method
instances. After removing duplicates, we were left with 449949 Extract
Method and 460974 non-Extract Method instances.

The second dataset consists of proprietary code from an industry part-
ner. This dataset contains metrics from 18 industry projects which were
chosen with the help of industry experts. The data collection resulted in
2083 Extract Method and 1483 non-Extract Method instances. After remov-
ing duplicates for this dataset, we were left with 919 Extract Method and
986 non-Extract Method instances. These amounts are summarized in Ta-
ble 3.1.

Extract Method Non Extract Method
Dataset

Industry 919 986
Open-source 449949 460974

Table 3.1: Amount of samples in each dataset for each type of instance.

When analyzing individual projects we only analyze projects that have at
least 30 Extract Method and non-refactored samples. We do this to ensure
a certain level of confidence in our observations. After removing duplicates
and applying the above rule we are left with six projects to analyze on an

15

3. An Empirical Study of Extracted Methods in Industry

individual level. Table 3.2 displays these projects and their Extract Method
and non-refactored amount of samples.

Extract Method Non Extract Method
Project

#1 58 37
#2 273 450
#3 152 84
#4 135 212
#5 49 46
#6 52 32

Table 3.2: Amount of instances for individual industry projects.

3.2 How does code that underwent and did not
undergo Extract Method in industry and
open-source compare, in terms of code
metrics?

We plot each metric in violin plots, which gives the advantage of including
the distribution of the data. The left side of the violin plot summarizes the
metric for the open-source dataset while the right side summarizes the met-
ric for the industry set. Since much of the data is widely distributed, using
just the median as a summary of the data is not sufficient. We, therefore,
use both the median and the interquartile range in our analysis and display
them in the plots. We also summarize our findings in Table 3.3. The plots
of some metrics are included in Appendix A to increase readability.

We plot both Extract Method refactored and non-refactored instances
for each dataset in the same figure to allow for comparison between the
two types.

16

3.2. How does code that underwent and did not undergo Extract Method
in industry and open-source compare, in terms of code metrics?

ClassEM ClassNR MethodEM MethodNR

Metric

LOC ↓ ↓ ≈ ↓
RFC ↓ ↓ ↑ ↓
WMC/CC ↓ ↓ ≈ ↓
UW ↓ ≈ ↑ ↑
CBO ≈ ↑ ≈ ≈
TCC ↑ ↑ — —
LCC ↑ ↑ — —

Table 3.3: Summary of comparing industry to open-source feature distribu-
tions.
ClassEM indicates classes that contain methods that underwent an Extract
Method refactoring.
ClassNR indicates classes that did not undergo an Extract Method refactor-
ing.
MethodEM indicates methods that underwent an Extract Method refactor-
ing.
MethodNR indicates methods that did not undergo an Extract Method refac-
toring.
↑ Indicates that the industry values of the metric are higher than the open-
source one, ↓ indicates they are lower and,≈ indicates they are approxi-
mately the same.

Observation 1: Classes that contain methods that underwent an
Extract Method refactoring in industry code are smaller and less
complex than classes in OSS. From Figure 3.2a, we see that industry
classes that contain methods that underwent an Extract Method refactor-
ing (MED = 112, IQR = [60–190]) are shorter than the same type of open-
source classes (MED = 196, IQR = [95–419]). Similarly, for classes that did
not contain methods that underwent an Extract Method refactoring, in-
dustry classes are also shorter (MED = 339, IQR = [180–678]) as their open-
source counterparts (MED = 497, IQR = [175–1202]). From Figure A.1a we
see that for classes that contain methods that underwent an Extract Method
refactoring, the industry RFC (MED = 38, IQR = [20–60]) is slightly lower
than RFC in open-source classes of this variant (MED = 43, IQR = [23–79]).
We also observe that RFC for industry classes that do not contain methods
that underwent an Extract Method refactoring (MED = 80, IQR = [33–163])
is lower than the RFC of the same type of open-source classes (MED =

69, IQR = [31–134]).
We see from Figure A.2a that the industry WMC for classes that contain

methods that underwent an Extract Method refactoring (MED = 23, IQR =

[12–42]) is almost half that of its open-source counterpart (MED = 41, IQR =

[19–92]). We see the same pattern in the classes that do not contain meth-
ods that underwent an Extract Method refactoring, where industry WMC

17

3. An Empirical Study of Extracted Methods in Industry

0

200

400

600

800

1000

1200

1400

LO
C

Dataset
Industry
Open-source

(a) Class level: The left violin plot indi-
cates classes that contain methods that
underwent an Extract Method refactor-
ing. The right violin plot indicates
classes that do not contain methods that
underwent an Extract Method refactor-
ing.

0

10

20

30

40

50

60

LO
C

(b) Method level: The left violin plot in-
dicates methods that underwent an Ex-
tract Method refactoring. The right vi-
olin plot indicates methods that did not
undergo an Extract Method refactoring.

Figure 3.2: LOC distributions for open-source and industry code on both
class and method-level

(MED = 57, IQR = [22–142]) is again almost half that of open-source (MED =

105, IQR= [35–269]). We also note that WMC for open-source classes is much
more widely spread than its industry counterpart. This can be seen by the
extremely thin violin for both types of instances for this dataset.

Figure A.3a We observe that for classes that contain methods that un-
derwent an Extract Method refactoring, the unique word quantity is higher
for open-source (MED = 116, IQR = [68–199]) as it is for industry (MED =

90, IQR = [61–124]). For classes that do not contain methods that underwent
an Extract Method refactoring, we see that the industry unique word quan-
tity is similar (MED = 225, IQR = [134–407]) to the open-source unique word
quantity (MED = 217, IQR = [103–394]).

Observation 2: Industry method-level complexity metrics are gen-
erally more similar to open-source method-level complexity metrics
than class-level complexity metrics are. Although there are differences
between industry and open-source method-level complexity metrics, gener-
ally, they are less pronounced than the differences between industry and
open-source class-level metrics.

Figure 3.2b shows us that industry methods that did not undergo an
Extract Method refactoring (MED = 25, IQR = [16–43]) are similar to indus-
try methods that did not undergo an Extract Method refactoring (MED =

18

3.2. How does code that underwent and did not undergo Extract Method
in industry and open-source compare, in terms of code metrics?

24, IQR = [15–38]).
Figure A.1b shows that for methods that underwent an Extract Method

refactoring, industry RFC (MED = 13, IQR = [8–22]) is slightly higher than
open-source RFC (MED = 10, IQR = [6–17]). The opposite happens in meth-
ods that did not get refactored with Extract Method, where we see that
industry methods (MED = 5, IQR = [3–11]) have a marginally lower RFC as
the open-source ones (MED = 7, IQR = [4–12]).

In Figure A.2b We see similar industry cyclomatic complexity for meth-
ods that did not undergo an Extract Method refactoring (MED = 3, IQR =

[2–4]) as the same type of methods in open-source (MED = 4, IQR = [3–8]).
From Figure A.3b, we see more unique words for methods that un-

derwent an Extract Method refactoring in industry code (MED = 34, IQR =

[23–47]) as the same type of open-source methods (MED = 29, IQR = [19–44]).
We see the same pattern but more pronounced when we compare industry
and open-source methods that did not undergo an Extract Method refactor-
ing ((MED = 30, IQR = [18–43]) for industry vs (MED = 23, IQR = [15–36]) in
open-source).

Observation 3: Coupling is similar at class and method-level except
for in classes that do not contain methods that underwent an Extract
Method refactoring. In these cases it is higher for industry code.
Figure 3.3a shows that for classes that did not undergo an Extract Method
refactoring, the open-source class CBO (MED = 20, IQR = [9–41]) is much
lower than the same industry class CBO (MED = 29, IQR = [14–84]). Most
interestingly, however, is the upper quartile, where the open-source has
a normal distance from the median, but the industry CBO is very high in
comparison.

Figure 3.3b illustrates that for methods that underwent Extract Method,
method CBO levels are very similar between industry (MED= 4, IQR= [2–6])
and open-source (MED = 4, IQR = [3–6]). The same holds for methods that
did not undergo Extract Method, where the industry (MED = 2, IQR = [1–4])
and open-source (MED= 2, IQR= [1–4]) median and interquartile ranges are
equal.

19

3. An Empirical Study of Extracted Methods in Industry

0

20

40

60

80

100

120

140

160

C
B

O

Dataset
Industry
Open-source

(a) Class level: The left violin plot indi-
cates classes that contain methods that
underwent an Extract Method refactor-
ing. The right violin plot indicates
classes that do not contain methods that
underwent an Extract Method refactor-
ing.

0

1

2

3

4

5

6

7

C
B

O

(b) Method level: The left violin plot in-
dicates methods that underwent an Ex-
tract Method refactoring. The right vi-
olin plot indicates methods that did not
undergo an Extract Method refactoring.

Figure 3.3: CBO distributions for open-source and industry code on both
class and method-level.

Observation 4: Cohesion is higher in industry classes. From Fig-
ure 3.4a we see that for industry classes that contain methods that un-
derwent an Extract Method refactoring, the interquartile range (MED =

0.30, IQR = [0.00–1.00]) spans all possible values of the TCC metric. This is
probably due to the high density around 1.00 as seen by the upper part
of the violin plot. This range is much wider as in the same open-source
case (MED = 0.16, IQR = [0.02–0.37]). We see the same pattern, but more
pronounced in LCC from Figure 3.4b, supporting our observation.

20

3.2. How does code that underwent and did not undergo Extract Method
in industry and open-source compare, in terms of code metrics?

0.0

0.2

0.4

0.6

0.8

1.0

1.2

TC
C

Dataset
Industry
Open-source

(a) TCC distributions for open-source
and industry code.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

LC
C

(b) LCC distributions for open-source
and industry code.

Figure 3.4: The left violin plot in each subfigure indicates classes that con-
tain methods that underwent an Extract Method refactoring. The right
violin plot in each subfigure indicates classes that do not contain methods
that underwent an Extract Method refactoring.

Key takeaways:

• Classes that contain methods that underwent an Extract Method
refactoring in industry code are smaller and less complex than
classes in OSS.

• Industry method-level complexity metrics are generally more sim-
ilar to open-source method-level complexity metrics than class-
level complexity metrics are.

• Coupling is similar at class and method-level except for in classes
that do not contain methods that underwent an Extract Method
refactoring. In these cases it is higher for industry code.

• Cohesion is higher in industry classes.

21

3. An Empirical Study of Extracted Methods in Industry

3.3 How does code that did and did not undergo
Extract Method differ in different industrial
projects?

To analyze the differences in metrics in individual projects we create a vi-
olin plot per project in one figure. This allows for comparison between the
projects. The top of the violin plot indicates code that underwent an Extract
Method refactoring while the bottom indicates code that did not. For these
figures, we only plot the median values and omit the interquartile range of
the metrics to increase readability.

Observation 5: We observe clusters for class complexity metrics in
the form of projects #2 and #4 and #3, #5 and #6.. Figure 3.5a il-
lustrates that, for classes that do not contain methods that underwent an
Extract Method refactoring, projects #2(MED = 509, IQR = [231–772]) and
#4 (MED = 500, IQR = [235–750]) form a group with similar class lengths
and wide interquartile ranges. They are different from the non-refactored
cases in #3 (MED = 286, IQR = [202–674]), #5 (MED = 266, IQR = [147–404])
and #6 (MED = 229, IQR = [170–302]) which also seem similar to each other,
although the IQR’s of these projects differ slightly.

Observation 6: Project #1 has very different complexity feature dis-
tributions when compared to the other projects. In Figure 3.5a we
see that project #1 has much shorter classes than the other projects for
both Extract Method (MED = 51, IQR = [51–82]) and non-refactored (MED =

53, IQR = [36–88]) code. For this project, we also see a very small IQR for
both classes that contain methods that underwent an Extract Method refac-
toring and classes that do not contain such methods. The next project in line
with the shortest classes is project #6 where classes that contain methods
that underwent an Extract Method refactoring (MED = 118, IQR = [70–178])
are more than double as long. We also see that classes that do not contain
methods that underwent an Extract Method refactoring (MED = 229, IQR =

[176–302]) are more than quadruple as long.

For RFC, quantity of unique words, and WMC we see the same patterns
as described in observation 6. That is, for project #1 these metrics are
much lower in both classes that contain methods that underwent an Extract
Method refactoring and classes for which this is not the case in comparison
with these metrics in the other projects and their range is also much less
wide. The plots for RFC, quantity of unique words, and WMC can be found
in Appendix A, in figures A.4a, A.4b and A.4c respectively.

Observation 7: Method level metrics are very similar between dif-
ferent projects. Figure 3.5b illustrates method-level CBO across industry
projects. We see that for all projects, and for both types of instances, ranges

22

3.3. How does code that did and did not undergo Extract Method differ in
different industrial projects?

0 500 1000
LOC

#1

#2

#3

#4

#5

#6

Pr
oj

ec
t

Instance type
Extract method
Non-Extract Method

(a) Class level LOC

0 20 40 60
RFC

#1

#2

#3

#4

#5

#6
Pr

oj
ec

t

(b) Method level RFC

0 20 40
CBO

#1

#2

#3

#4

#5

#6

Pr
oj

ec
t

(c) Class level CBO

0.00 0.25 0.50 0.75 1.00
TCC

#1

#2

#3

#4

#5

#6

Pr
oj

ec
t

(d) TCC

Figure 3.5: Metrics per project. The y-axis indicates the project while the
x-axis shows the distribution for the metric in question. The top violin in-
dicates the distribution for code that underwent an Extract Method refac-
toring while the lower violin indicates the distribution for code that did not
undergo an Extract Method refactoring. The number indicates the median
for the metric in question.

23

3. An Empirical Study of Extracted Methods in Industry

of values do not differ from project to project to a large degree. For exam-
ple, if we compare the largest difference between two projects for methods
that underwent an Extract Method refactoring, which can be found between
projects #4 (MED = 16, IQR = [9–27]) and #6 (MED = 12, IQR = [10–16]), we
see that they are relatively insignificant. Appendix A contains the plots for
the other method-level metrics which show similar patterns.

Observation 8: Class coupling varies widely in some projects for
classes that do not contain methods that underwent an Extract Method
refactoring. Figure 3.5c shows that the interquartile ranges for all projects
but #1 (MED = 16, IQR = [12–22]) and #3 (MED = 23, IQR = [22–29]) are very
large. The upper quartiles of some projects, such as #4 (MED = 30, IQR =

[19–320]) are even larger, as evidenced by the fact they do not fit in the plot.

Observation 9: Code from project #2 has less widely distributed
TCC values as other projects. Figure 3.5d illustrates that TCC rates for
code in project #2 are much lower and are distributed less widely for both
classes that contain methods that underwent an Extract Method refactoring
(MED = 0.13, IQR = [0.00–0.33]) and classes that did not (MED = 0.09, IQR =

[0.00–0.31]).

Key takeaways:

• There are two clusters of projects with similar feature distribu-
tions.

• Project #1 has very different complexity feature distributions
when compared to the other projects.

• Method level metrics are very similar between different projects.

• Class coupling varies widely in some projects for classes that do
not contain methods that underwent an Extract Method refactor-
ing.

• Code from project #2 has less widely distributed TCC values as
other projects.

24

Chapter 4

The Effectiveness of
Data-Driven Extract Method

Models in Industry

In this chapter we answer the following research questions:

RQ3 How effective are supervised machine learning models at pre-
dicting Extract Method refactoring opportunities for industry
code?

RQ4 How well do Extract Method recommendation models general-
ize?

RQ5 How well do Extract Method models generalize across different
industrial projects?

4.1 Methodology

We model the problem of classifying whether an Extract Method refactoring
should be applied as binary classification. We attach true labels to code that
is refactored with Extract Method. False labels are attached to code that
did not undergo an Extract Method refactoring. Our feature vectors consist
of the collected code metrics.

We train our models using scikit-learn [29]. We make use of the same
algorithms as used in the paper of Aniche et al. except neural networks [4].
From an exploratory investigation, we found that neural networks did not
achieve better performance when compared to our best-performing model.
Because of this, the large number of hyperparameters, and the long train-
ing times we decide not to investigate this algorithm. To keep our figures
readable we will refer to the algorithms by their abbreviation. The algo-
rithms used and their corresponding abbreviations are as follows:

• Random forest (RF)

25

4. The Effectiveness of Data-Driven Extract Method Models in Industry

• Decision Tree (DT)
• Logistic Regression (LR)
• Linear SVM (SVM)
• Gaussian Naive Bayes (NB)

On a high level, the training pipeline consists of the following steps for
each algorithm:

1. Pre-process data:

a) Query Extract Method and non Extract Method instances and
their corresponding metrics.

b) Apply the associated labels.

c) Shuffle the data.

d) Split the data into a train and test set in a stratified manner.

e) Scale the features.

f) Apply feature reduction (LR only).

2. Train the model for every hyperparameter combination and investi-
gate their performance.

3. Record the hyperparameter combination of the model with the highest
performance.

4. Calculate the performance of this model on the test set.
5. Train a production model with the above parameters using both the

training and test set and persist it.

The next sections will go into more detail on each of these steps. The code
for the machine learning pipeline can be found on GitHub1.

4.1.1 Data pre-processing

We use the data as described in Chapter 3. Our tool allows for the selection
of training and test datasets. When we train and validate on the same
dataset, for example, in the case of training and validating on the industry
set, we split the dataset into a train and test set. If our training and test
sets differ, for example, in the case of training on open-source, there is no
need for a split, as the model is trained on open-source data and validated
on industry data.

We next apply a label of “true” to the Extract Method instances and a
label of “false” to instances that did not undergo an Extract Method refac-
toring. Depending on the datasets used, the aforementioned splitting is
applied. We use stratification during the split to ensure classes are not
overrepresented in the test or training set by chance. Afterward, we scale
all our features using a MinMaxScaler since this benefits most machine

1https://github.com/refactoring-ai/Machine-Learning

26

https://github.com/refactoring-ai/Machine-Learning

4.1. Methodology

learning algorithms2. Finally, we apply feature reduction only for the logis-
tic regression model.

4.1.2 Training approach

Each of these models has associated hyperparameters that must be tuned.
To improve our models’ performance, we optimize these hyperparameters
by defining a hyperparameter space and exhaustively searching for the
combination of parameters that results in the best performance. We use
f1 as our performance metric because we are working with a slightly imbal-
anced dataset. We execute sklearn’s grid search, which fits a model using
all combinations in a pre-defined hyperparameter search space. For every
combination of hyperparameters, we calculate the performance of the re-
sulting model with the help of K-fold validation on the training set where
k = 10. This will give us the combination of hyperparameters that produces
the model with the highest performance on this training set. Appendix D
contains the hyperparameter combinations of the best-performing models.
With the resulting model, we now calculate the confusion matrix using the
kept out test set. The raw confusion matrices can be found in Appendix E.
These confusion matrices are then used to calculate the following metrics:

Accuracy = T P+T N
n The proportion of correct predictions

out of all predictions.

Precision = T P
T P+FP The proportion of correct positive pre-

dictions.

Recall = T P
T P+FN The proportion of correct positive pre-

dictions while taking into account the
number of wrong negative predictions.

f1 = 2 · Precision·Recall
Precision+Recall Designed to mitigate class imbalance.

A high f1 score indicates a good perfor-
mance for predicting both classes.

To analyze which features are most important for a model’s performance
we make use of permutation importance. This measures the reduction of
performance in a particular model on a validation set if we randomly per-
mute a certain feature [7]. If the performance drops significantly, we know
that the feature is important for the model’s performance. Conversely, if
it drops only a small amount or not at all we know the feature to be unim-
portant for the model’s performance on that set. We compute this on the
validation set to measure the performance on unseen data. We permute

2Based on sklearn’s manual: https://scikit-learn.org/stable/modules/preproce
ssing.html#preprocessing-scaler

27

https://scikit-learn.org/stable/modules/preprocessing.html#preprocessing-scaler
https://scikit-learn.org/stable/modules/preprocessing.html#preprocessing-scaler

4. The Effectiveness of Data-Driven Extract Method Models in Industry

each feature 50 times to increase our confidence in the performance reduc-
tion.

We do not analyze coefficients for linear models (SVM and LR) and the
feature importances available in impurity-based models (DT and RF). We
opt for the permutation importance instead, since the linear coefficients
and impurity-based feature importances illustrate features’ importance on
the training set rather than its importance for a model to perform well on
unseen data. In addition to this, impurity-based feature importances are
biased towards high cardinality numerical features3. For reference, plots of
the above coefficients and feature importances can be found in Appendix C.

Finally, for the best-performing model only, we create a so-called “pro-
duction model”. This model is trained with the previously found best-performing
hyperparameter set and uses all data, including the test set. It is not used
for analysis as the test set is used to build it. This model and its associ-
ated scaler are then saved in ONNX4 format. This format is useful in the
experiment in Chapter 5 since it allows prediction in other programming
languages.

4.1.3 Balancing

In their paper, Aniche et al. choose to balance their dataset such that the
amount of positive samples is equal to the amount of negative samples.
They do this because, for most refactoring types, the classes are highly
unbalanced, and imbalanced data can lead to problems in machine learn-
ing [20].

In our experiments, we choose to not balance our dataset because of the
following factors:

1. For the refactoring type Extract Method, this imbalance between classes
is not as severe. We see this by the number of samples in each class
displayed in Table 3.1. The ratio is 919 for Extract Method (48%)
to 986 for non-Extract Method (52%) for industry code and 449949
for Extract (49%) to 460974 for non-Extract Method (51%) for open-
source code.

2. During exploratory runs of our models, we did not observe significant
changes in f1 performance when comparing a model trained on bal-
anced vs imbalanced data.

4.1.4 Testing performance on unseen projects

In Section 4.1.1 we mention that we use a train-test split ratio of 0.8/0.2. We
want to know, however, whether models perform well on completely unseen

3Based on sklearn’s manual: https://scikit-learn.org/stable/auto_examples/in
spection/plot_permutation_importance.html

4https://github.com/onnx/onnx

28

https://scikit-learn.org/stable/auto_examples/inspection/plot_permutation_importance.html
https://scikit-learn.org/stable/auto_examples/inspection/plot_permutation_importance.html
https://github.com/onnx/onnx

4.2. How effective are supervised machine learning models at predicting
Extract Method refactoring opportunities for industry code?

projects. That is if a model has not encountered any samples from a certain
project, is it still able to perform on that project. To examine whether mod-
els trained on industry code generalize well to unseen projects, we train the
model on all industry projects except for a single project. We then validate
on that excluded project. We continue this until all projects have been used
for validation once. An example follows to elaborate on this process.

Assume we have three projects: #1, #2, and #3. The first step would
be to train on instances from #2 and #3 and validate on instances from
#1. The next step would be to train on projects #1 and #3 and validate on
#2. Finally, we train on #1 and #2 and validate on #3. For every excluded
project we collect the performance metrics and analyze the performance
on each project for every model type.

4.2 How effective are supervised machine
learning models at predicting Extract Method
refactoring opportunities for industry code?

First, we examine the performance metrics of the best-performing models.
Then we investigate which features are important for those models.

4.2.1 Performance

We summarize our findings by compiling the achieved performance of each
model into Table 4.1.

Observation 10: All performance metrics are relatively high in all
model types. From Table 4.1 we see that there is no precision rate below
0.721 (NB). For recall, the lowest rate is 0.832 for a DT type model. Lastly,
if we look at the aggregated metrics of accuracy and f1, we see that they
do not drop below 0.782 (NB) and 0.799 (NB) respectively.

Observation 11: Out of all types of models tested, RF has the highest
performance for all types of performance metrics. Table 4.1 shows
that RF type models achieve the highest values for all performance metrics.
For accuracy, f1, precision and recall we observe values of 0.934, 0.935,
0,899 and 0.973 respectively.

4.2.2 Feature importances

First, we analyze which features are most important for each type of model.
We do this by sorting the permutation importance for each type of model
from high to low. We then pick the top five out of this list and display them
in Table 4.2 for comparison between model types.

29

4. The Effectiveness of Data-Driven Extract Method Models in Industry

Accuracy F1 Precision Recall
Model type

RF 0.934 0.935 0.899 0.973
DT 0.850 0.843 0.855 0.832
LR 0.824 0.825 0.794 0.859
SVM 0.829 0.832 0.793 0.875
NB 0.782 0.799 0.721 0.897

Table 4.1: Performance metrics for models trained and validated on indus-
try code

Next, we investigate how each feature affects the performance of a
model quantitatively. We achieve this by plotting the permutation impor-
tances in Figure 4.1.

Observation 12: The RF type model is more stable with regard to per-
formance when permuting features in comparison with other types
of models. Figure 4.1 shows that out of all models, when we permute fea-
tures for the RF type model, the performance drops at most 0.0139. Out
of all other models, the minimum max drop of 0.0233 occurs for NB when
permuting CBO which is much higher as for RF. We also see performance
drops as high as 0.1504 for the SVM type model when permuting UW, which
is almost 15 times as high as the max performance drop for RF.

Observation 13: Class level features are most important for model
performance. In Table 4.2 we see that for all model types, the top five
features that reduce performance the most when permuted are all class-
level. We do not see a single method-level feature in the top five for all
types of models.

Observation 14: UW and CBO are the most important for most mod-
els. CBO is in the top five most important features for all types of
models while UW is in all but one top five. Table 4.2 shows that Unique-
WordsQty shows up as the number one feature for permutation importance
in four out of five types of models. Only NB differs from this pattern and
has NumberOfPublicMethods as the number one model. CBO shows up in
the top five for all types of models and is the second most important for 3
out of models.

30

4.2. How effective are supervised machine learning models at predicting
Extract Method refactoring opportunities for industry code?

DT LR RF
Rank

1 UniqueWordsQty UniqueWordsQty UniqueWordsQty
2 Cbo Loc Cbo
3 methodRfc Cbo Lcom
4 Lcom Wmc Loc
5 Private AssignmentsQty Rfc

NB SVM

1 NumberOfPublicMethods UniqueWordsQty
2 NumberOfMethods Cbo
3 Cbo ReturnQty
4 Lcom methodRfc
5 ReturnQty VariablesQty

Table 4.2: Top five highest feature importances for each model type both
trained and validated on industry code. All features are class-level ex-
cept for method RFC.

Rfc Cbo Lcom
UniqueWordsQty Loc

Feature

0.00

0.05

0.10

0.15

P
er

m
ut

at
io

n
im

po
rta

nc
e

Model type
RF
DT
LR
SVM
NB

Figure 4.1: Permutation importance for models trained and validated on
industry data. All features are class-level. The y-axis shows the mean de-
crease in model accuracy on the validation set when we permute the corre-
sponding feature displayed on the x-axis 50 times. The error bars are the
length of the standard deviations. The color of each bar indicates a type of
model type. All metrics are class-level.

31

4. The Effectiveness of Data-Driven Extract Method Models in Industry

Key takeaways:

• All performance metrics are relatively high in all model types.

• Out of all types of models tested, RF has the highest performance
for all types of performance metrics.

• Class level features are most important for model performance.

• UW and CBO are the most important for most models. CBO is in
the top five most important features for all types of models while
UW is in all but one top five.

4.3 How well do Extract Method recommendation
models generalize?

We do this using the same approach as in Section 4.2 but instead of using
the industry-trained model, we use the open-source-trained model.

4.3.1 Performance

Observation 15: Open-source-trained models, in particular linear
ones, perform reasonably well on industry code. They do not perform
nearly as well on industry code as models trained on industry code.
Table 4.3 shows that the best-performing model (LR) achieves an accuracy
and f1 score of 0.761 and 0.794 respectively. This is relatively high but
much lower than the best-performing industry-trained model (RF) which
achieves accuracy and f1 scores of 0.934 and 0.935 respectively.

Observation 16: Models trained on open-source code are much bet-
ter at predicting non-Extract method instances as they are at pre-
dicting Extract Method instances in industry code. Table 4.3 illus-
trates that recall scores, which indicate the ability to perform well on non-
Extract Method instances, are high in all models including the best-performing
type (LR). For non-tree type models (SVM, NB, and LR), recall is even
higher than their industry-trained counterparts. The same table shows that
precision, a metric that indicates the ability to predict refactoring instances
correctly, is much lower for all types of models where the best-performing
type (LR) only achieves a score of 0.678 while the best-performing industry-
trained model (RF) achieves a precision score of 0.899.

32

4.3. How well do Extract Method recommendation models generalize?

Accuracy F1 Precision Recall
Model type

RF 0.687 0.748 0.611 0.963
DT 0.606 0.664 0.564 0.808
LR 0.761 0.794 0.678 0.958
SVM 0.759 0.794 0.676 0.963
NB 0.614 0.713 0.556 0.995

Table 4.3: Performance metrics for models trained on open-source and val-
idated on industry code.

4.3.2 Feature importances

Observation 17: Features that are important for open-source-trained
models are similar to features important to industry-trained models.
For models trained on open-source code, Table 4.4 shows that UniqueWord-
sQty occurs in the top five most important features for all but one (NB) type
of model. CBO appears in the top five for three out of five types of mod-
els, including the best-performing types (SVM and LR). These are the same
features important to the models trained on industry code as illustrated in
observation 14.

DT LR RF
Rank

1 methodParametersQty UniqueWordsQty UniqueWordsQty
2 UniqueWordsQty Cbo Lcom
3 methodRfc methodRfc methodRfc
4 NumberOfFields StringLiteralsQty NumberOfPublicMethods
5 NumberOfStaticFields Rfc TCC

NB SVM

1 Cbo UniqueWordsQty
2 StringLiteralsQty Cbo
3 NumberOfPublicMethods methodRfc
4 ReturnQty StringLiteralsQty
5 NumberOfMethods Rfc

Table 4.4: Top five highest feature importances for each model type for a
model trained on open-source and validated on industry code. All features
are class-level except for methodRfc and methodParametersQty.

Observation 18: Unlike industry-trained models, a method-level met-
ric is important to the best-performing open-source-trained models.
In observation 13 we noted that, for industry-trained models, there are

33

4. The Effectiveness of Data-Driven Extract Method Models in Industry

no method-level metrics important for all types of models, including the
best-performing type (RF). From Table 4.4 we see that method RFC is the
third most important feature for the best-performing models (SVM and LR).
Method RFC is also important for tree-based models (DT and RF). Lastly,
we see that one other method-level metric is important, namely methodPa-
rametersQty for the DT type model, where it is the most important feature
for performance.

Rfc Cbo
methodRfc

UniqueWordsQty
StringLiteralsQty

Feature

0.02

0.00

0.02

0.04

0.06

P
er

m
ut

at
io

n
im

po
rta

nc
e

Model type
RF
DT
LR
SVM
NB

Figure 4.2: Permutation importance for models trained on open-source data
and validated on open-source. All features are class-level except for
method RFC. The y-axis shows the mean decrease in model accuracy on
the validation set when we permute the corresponding feature displayed on
the x-axis 50 times. The error bars are the length of the standard deviations.
The color of each bar indicates a type of model type.

Key takeaways:

• Open-source-trained models, in particular linear ones, perform
reasonably well on industry code. They do not perform nearly as
well on industry code as models trained on industry code.

• Models trained on open-source code are much better at predicting
non-Extract method instances as they are at predicting Extract
Method instances in industry code.

34

4.4. How well do Extract Method models generalize across different
industrial projects?

• Features that are important for open-source-trained models are
similar to features important to industry-trained models.

• Unlike industry-trained models, a method-level metric is impor-
tant to the best-performing open-source-trained models.

4.4 How well do Extract Method models
generalize across different industrial projects?

Table 4.5 shows the means of the performance metrics for the experiment
explained in 4.1.4. Figure 4.3 summarizes the performance of all types of
models on each individual project.

Observation 19: Average performance is still decent, but much lower
than when using the whole dataset and slightly lower than when
training on open-source. From Table 4.5 we see decent aggregated per-
formance metrics with the best model for aggregated performance (RF)
having mean accuracy and f1 rates of 0.744 and 0.771 However, perfor-
mance is much lower as when testing on the whole dataset (RF, 0.934 and
0.935) and slightly lower as the open-source-trained model (SVM, 0.759
and 0.794). We do see, with the help of the precision metric, that perfor-
mance on Extract Method instances (LR, 0.787) is higher compared to the
open-source-trained model (LR, 0.678).

Accuracy f1 Precision Recall
Model type

DT 0.612 0.653 0.609 0.724
NB 0.652 0.601 0.758 0.525
SVM 0.711 0.671 0.762 0.641
LR 0.720 0.692 0.787 0.668
RF 0.744 0.771 0.715 0.860

Table 4.5: Means of performance metrics when training on all industry
projects but one.

Observation 20: For each project, there exists a type of model that
performs well, except for project #1. In Figure 4.3 we see that for all
projects, except project #1, there is always one type of model that achieves
a score of 0.75 or higher. For project #1 this is not the case, as the highest
f1 score is only 0.66 for the RF type model. This is due to a low recall score,
as the aforementioned RF type model only achieves a recall score of 0.58
on the project.

35

4. The Effectiveness of Data-Driven Extract Method Models in Industry

0.0

0.5

1.0

S
co

re
Left out as test set = #1 Left out as test set = #2

0.0

0.5

1.0

S
co

re

Left out as test set = #3 Left out as test set = #4

Accuracy f1 PrecisionRecall
Score type

0.0

0.5

1.0

S
co

re

Left out as test set = #5

Accuracy f1 PrecisionRecall
Score type

Left out as test set = #6

NB
SVM
DT
LR
RF

Figure 4.3: Performance metrics when training on all but one project and
validating on the left out project. There is a sub-plot for each excluded and
validated on project. Every bar in the plot signifies a certain model type.
The groups on the x-axis of bars indicate the type of scoring metric.

Observation 21: The project with the worst performance (project #1)
is the same project that showed a different feature distribution for
class complexity metrics in Section 3.3. In observation 6 we showed
that project #1 differs in complexity metrics from the other projects for
classes that do not contain methods that underwent an Extract Method
refactoring. This is the same project on which our models do not perform
well while predicting that type of code.

Observation 22: Different types of models perform well on different
projects. From Figure 4.3 we see that there is not one type of model that
performs the best on one project. From the f1 score, we see that the RF
type model performs best on projects #1, #3, #5, and #6. We observe that
the SVM type model performs best on project #4. Finally, we see that the
LR type model performs best on project #2.

36

4.4. How well do Extract Method models generalize across different
industrial projects?

Key takeaways:

• Average performance is still decent, but much lower than when
using the whole dataset and slightly lower than when training on
open-source.

• For each project, there exists a type of model that performs well,
except for project #1.

• The project with the worst performance (project #1) is the same
project that showed a different feature distribution for class com-
plexity metrics in Section 3.3.

• Different types of models perform well on different projects.

37

Chapter 5

A User Study on Extract
Method Recommendations in

the Wild

In this chapter we answer the following research questions:

RQ6 Do industry experts deem recommended Extract Method refac-
torings useful/not useful?

RQ7 Why do industry experts deem recommended Extract Method
refactorings useful/not useful?

5.1 Methodology

All predictions served to experts in this chapter were generated by the best-
performing model in Chapter 4. This is the Random Forest type model
that was trained on industry code. We choose code quality experts at ING
and invite them to fill in a questionnaire. All participants have substantial
experience with the Java programming language. Two participants work
with the code displayed in the survey daily, while three offer an outside
perspective.

The survey consists of 30 questions, each displaying a method originat-
ing from industry code. The set of methods to display was randomly chosen
from the predictions generated during the experiment described in Sec-
tion 6.1. For every method, the industry expert will answer two questions,
one qualitative and one quantitative. The study is blind with participants
not knowing what the model’s assigned label for a given method is.

The first question consists of a scale with four levels where the expert
indicates to what extent they find an Extract Method should be applied to
the method shown. A score of 1 indicates that they think it should not be
applied at all, while a score of 4 indicates that the operation surely should
be applied. A score of 3 or 4 is interpreted as a sign that the expert thinks
an Extract Method should be applied to the method. Vice-versa, a score of

39

5. A User Study on Extract Method Recommendations in the Wild

1 or 2 is interpreted as a sign that the expert thinks the method should not
be refactored with Extract Method. The second question asks the expert to
elaborate on their choice. An example of a question about a method can be
found in Appendix F, in Figure F.1.

We settle on a total of 30 methods because this limits the time spent
on the survey by each expert and gives us a decent statistical sample. The
average time for an expert to complete the survey was approximately 42
minutes. We select one set of methods for the questionnaire, that is, ev-
ery expert receives a survey containing the same methods. We are more
interested in evaluating methods for which an Extract Method refactoring
is suggested as opposed to when no Extract Method refactoring is recom-
mended. Therefore, we select 20 methods where the model attached a true
label to the method and ten where it attached a false label.

We manually check the answers to the qualitative questions. We do
this by examining and attaching characteristics to each answer. We then
identify patterns in answers and summarize the reasons into characteristics
for the quantitative answers. We only characterize an answer a certain
way if the participant explicitly mentions that specific characteristic in their
answer.

5.2 Do industry experts deem recommended
Extract Method refactorings useful/not useful?

We analyze the agreement of the experts with the model by measuring how
often the experts agree with the model’s prediction to apply Extract Method
or not to refactor. We define the following four situations:

• Extract Method agreement (RA) The model classifies the method as
to be refactored. The expert agrees that an Extract Method refactor-
ing is necessary.

• Non-refactor agreement (NA) The model classifies the method as to
not be refactored. The expert agrees that no Extract Method refactor-
ing is necessary.

• Extract Method disagreement (RD) The model classifies the method
as to be refactored. The expert disagrees and thinks an Extract Method
refactoring is not necessary.

• Non-refactor disagreement (ND) The model classifies the method as
to be refactored. The expert disagrees and thinks an Extract Method
refactoring is necessary.

With these situations, we define four ratios similar to accuracy, precision,
recall, and f1 used in Chapter 4.

40

5.2. Do industry experts deem recommended Extract Method refactorings
useful/not useful?

• AR: Agreement ratio of the experts with the model’s predictions (sim-
ilar to accuracy).

• AREM: Agreement ratio of experts for methods where the model pre-
dicts Extract Method (similar to precision).

• ARNR: Agreement ratio of experts for methods where the model pre-
dicts to not apply an Extract Method refactoring (similar to recall).

• AR f 1: Agreement ratio while taking into account imbalance of classes
such as is the case in our experiment (similar to f1).

These definitions allow for one-to-one comparison with the theoretical per-
formance. The raw occurrences and calculations can be found in Appendix G.

AR AR f 1 AREM ARNR

Expert

1 0.767 0.788 0.650 1.000
2 0.700 0.757 0.700 0.824
3 0.567 0.606 0.500 0.769
4 0.667 0.687 0.550 0.917
5 0.900 0.919 0.850 1.000

All/Mean 0.720 0.756 0.650 0.903

Table 5.1: Each row shows the scores for one participant.

Observation 23: Industry experts’ opinions on model predictions
seem to align with the model’s predictions to a certain extent, but do
not align as well with the theoretical score. From Table 5.1 we see that,
for each participant, no aggregated scores (AR, AR f 1) are below 0.567. The
scores are generally much lower than in the best theoretical case, however.
For that case, we see in Table 4.1 that accuracy and f1 scores are 0.934 and
0.935 respectively.

Observation 24: The agreement of experts with the model where
the model predicted to apply an Extract Method is lower than the
agreement with the model’s predictions to not apply Extract Method.
Table 5.1 shows that ARNR rates are much higher as AREM rates, which
indicates higher agreement on predictions where the model predicted to
not apply Extract Method in comparison with cases where the model did
recommend to apply an Extract Method refactoring. The average ARNR is
0.903 while the average AREM of 0.650 is much lower. Also, if we look
at the minimum AREM and ARNR, we see that the minimum AREM of 0.5 is
much lower than the ARNR counterpart of 0.769. The same is true for the
maximum, where the AREM of 0.850 is quite a bit lower than the maximum
ARNR of 1.00.

41

5. A User Study on Extract Method Recommendations in the Wild

Observation 25: Experts who work with projects where the model
was trained on seem to agree with the model’s predictions more.
Table 5.1 shows that for participants #2, #5, and who use the analyzed
code daily, performance rates are higher on average as for people who do
not use the code daily. The average AR, AR f 1, AREM and ARNR rates are
0.720, 0.756, 0.903 and 0.650 respectively. Expert #2’s outperforms this,
with metrics of 0,700, 0.757, 0.824, and 0.700. The same is true to an even
greater extent for expert #5’s metrics of 0.900, 0.919, 1.000, and 0.850
which are the best out of all experts.

Key takeaways:

• Industry experts’ opinions on model predictions seem to align with
the model’s predictions to a certain extent, but do not align as well
with the theoretical score.

• The agreement of experts with the model where the model pre-
dicted to apply an Extract Method is lower than the agreement
with the model’s predictions to not apply Extract Method.

• Experts who work with projects where the model was trained on
seem to agree with the model’s predictions more.

5.3 Why do industry experts deem recommended
Extract Method refactorings useful/not useful?

Using the process explained in Section 5.1, the following characteristics
were identified:

1. Understandable: The method is described to be understandable.
2. Specific: The method is described as specific in its goal. Often these

answers contained remarks on how the method’s purpose was domain
/functionality-specific.

3. High complexity: The method is marked as too complex. This in-
cludes matters such as long methods, too many try-catch blocks and,
other complexity-related issues.

4. Pattern: The participant mentions a design pattern or anti-pattern.
The specific pattern that was meant was not mentioned in most cases.

5. Potential: The participant mentions that an Extract Method opera-
tion does not necessarily have to be applied but that it could improve
code quality.

6. Repetition: Code repetition is mentioned.

42

5.3. Why do industry experts deem recommended Extract Method
refactorings useful/not useful?

7. Readability: The participant mentions that understandability can be
improved.

These include the reasons for all situations, including agreement and dis-
agreement for the models.

We summarize the results of this experiment by plotting the frequency
of characteristics in a bar chart. We present two figures each with two bar
charts, one figure displays the frequencies of reasons given where the par-
ticipants agreed with the model (Figure 5.1), and the other plots the reason
frequencies where the experts did not agree with the model (Figure 5.2).

Observation 26: When experts agree with the model’s decision to
apply Extract Method, they most often cite the need to apply Extract
Method because of high code complexity, followed by patterns or
code smells. We see from Figure 5.1 that the most commonly given rea-
son for apply Extract Method to a method with 25 occurrences is that it is
too complex. The second most given reason with 21 occurrences is that the
method contains an anti-pattern or does not adhere to a pattern. Other rea-
sons are not given very often as can be seen by the number of occurrences
of only four for the next most common reason.

Observation 27: When experts agree with the model’s prediction to
not apply Extract Method, they give as a reasons that the code is
specific enough most frequently. The second most frequently given
reason in this situation is that the method in question is sufficiently
understandable. We observe from Figure 5.1 that when participants agree
with the model’s prediction not to refactor, they most commonly, with 22
occurrences, mention that the method is specific enough. The next most
common reason, with 17 appearances, is that the method is understand-
able enough. The next reason (“potential”) is much less common but still
appears four times.

Observation 28: Experts tend to give similar reasons for their choices
whether they agree with the model or not. Figure 5.2 shows the distri-
bution of characteristics in answers for instances where the study partici-
pant did not agree with the model’s prediction. We see from the left plot
that, when a participant thinks an Extract Method operation is necessary,
but the model proposes it is not, the top reasons given by the participant
stay the same as when they do agree. In the situation the participant says
an Extract Method is necessary, they mention design patterns/code smells
and high complexity. The same is true when the participant does not think
an Extract Method operation is necessary, where we see that understand-
ability and a method being specific enough are the top reasons, which is
the same as when the participant agrees with the model.

43

5. A User Study on Extract Method Recommendations in the Wild

H
ig

h
co

m
pl

ex
ity

P
at

te
rn

R
ea

da
bi

lit
y

R
ep

et
iti

on

P
ot

en
tia

l

U
nd

er
st

an
da

bl
e

S
pe

ci
fic

Category

0

10

20

co
un

t
Type = RA

H
ig

h
co

m
pl

ex
ity

P
at

te
rn

R
ea

da
bi

lit
y

R
ep

et
iti

on

P
ot

en
tia

l

U
nd

er
st

an
da

bl
e

S
pe

ci
fic

Category

Type = NA

Figure 5.1: The number of times a characteristic appeared in a participant’s
reasoning for cases where they agreed with the model’s prediction. The plot
on the left shows the case where the model suggested to apply an Extract
Method operation on the method. The plot on the right shows when the
model suggested to not refactor the method.

Observation 29: When experts disagree with the model’s prediction
to apply Extract Method, they often do propose a potential refactor-
ing operation different from “Extract Method”. Figure 5.2 shows that
the third most common characteristic of “potential” is mentioned when the
user does not agree with the model’s prediction to apply Extract Method.
We see this occur eight times. These answers were often also accompanied
by an explanation on how the method could be Extract Method, but the
corresponding refactoring operation mentioned was not “Extract Method”.

44

5.3. Why do industry experts deem recommended Extract Method
refactorings useful/not useful?

P
at

te
rn

H
ig

h
co

m
pl

ex
ity

U
nd

er
st

an
da

bl
e

S
pe

ci
fic

P
ot

en
tia

l

R
ep

et
iti

on

Category

0

5

10

15

co
un

t

Type = ND

P
at

te
rn

H
ig

h
co

m
pl

ex
ity

U
nd

er
st

an
da

bl
e

S
pe

ci
fic

P
ot

en
tia

l

R
ep

et
iti

on

Category

Type = RD

Figure 5.2: The number of times a characteristic appeared in a participant’s
reasoning for cases where they did not agree with the model’s prediction.
The plot on the left shows the case where the model suggested to apply
an Extract Method refactor to the method but the user did want to refac-
tor. The plot on the right shows when the model suggested applying Extract
Method to the method but the expert did not think an Extract Method refac-
toring was necessary.

Key takeaways:

• When experts agree with the model’s decision to apply Extract
Method, they most often cite the need to apply Extract Method be-
cause of high code complexity, followed by patterns or code smells.

• When experts agree with the model’s prediction to not apply Ex-
tract Method, they give as a reasons that the code is specific
enough most frequently. The second most frequently given rea-
son in this situation is that the method in question is sufficiently
understandable.

• Experts tend to give similar reasons for their choices whether they
agree with the model or not.

• When experts disagree with the model’s prediction to apply Ex-
tract Method, they often do propose a potential refactoring oper-
ation different from “Extract Method”.

45

Chapter 6

A Proposal for a Tool To
Recommend Data-Driven

Extract Methods

This chapter elaborates on how the different software artifacts of the pre-
diction pipeline function and interact with each other. Figure 6.1 shows
an overview of every separate software artifact used to achieve the results
in this thesis. We refer to each component with the number displayed in

3. DB

2. Data collection

1. Git server

4. Machine learning

7. Git provider

Prediction metadata

6. Poller

User

User

User

5. ONNX model

Repositories

Projects

Refactored
Non-refactored

Metrics

Refactored
Non-refactored

Metrics

Projects
Parameters

Produces

Predictions

Metrics

Merge requests

Comments

Projects

8. DB

Figure 6.1: The architecture of all artifacts and their relationships with
each other.

Figure 6.1. A normal workflow would be as follows:

1. The user starts the data collection process (box 2. in Figure 6.1) with

47

6. A Proposal for a Tool To Recommend Data-Driven Extract Methods

a CSV containing the projects they wish to collect data of as input.

2. For each project, the data collection process (box 2.) fetches the
projects from a Git server (box 1.) and collects data as specified in
Section 3.1. It then stores this in a database (box 3.).

3. The user then starts the machine learning (box 4.) pipeline with the
list of training and test projects and the required machine learning pa-
rameters. The Machine learning (box 4.) process fetches the relevant
data from the DB (box 3.) and builds the model (box 5.) as specified
in Section 4.1.

4. Next, the user starts the poller (box 6.) with the projects they want to
recommend Extract Method on.

The poller does what its name suggests: it polls for any change requests
that might have been opened since it last polled. A more elegant solution
would be to implement this in a continuous integration (CI) pipeline, that is,
the recommendation of refactoring opportunities would be a step in the CI
pipeline. Such a prototype was built, but it required too many privileges to
implement into a production system. The approach we took allows for any
user with access to the VCS to place comments and minimizes risk as only
the privileges of the user running the tool are exposed. It also allows for
iterative experimentation, as we can easily tweak the process and models
without having to go through the steps of approval again.

The tool goes through all projects that were specified by the user, and
for each of these projects, it uses the Git repository provider API to fetch
a list of open change requests. Then, it checks whether that particular
change request is already processed, and if not it starts processing it. It
clones the project if necessary, and checks out the commit hash of the
change request. Then, for every changed method, it collects the code met-
rics and feeds them into the ONNX model. The model then returns a label
and a probability. For every method where the model predicted an Extract
Method refactoring, the model attempts to place a comment on the appro-
priate line in the corresponding change request. The details of the following
entities used in the process are saved to a DB (box 8.) for further analysis.

• The methods that were analyzed.
• Their assigned labels and probabilities.
• The model used to predict these.
• The change request in which the methods were encountered.
• The project in which the change request was located.

In addition to this, the link to the survey in the comment on the change
request also contains the id of the prediction so the feedback can easily be
linked to the corresponding prediction. An example of such a comment can
be found in Appendix F in Figure F.2.

48

6.1. The tool in practice

We also allow for the specification of a probability threshold and a max-
imum amount of comments per change request. For our experiment, we
set the probability threshold to 60% and the number of comments to three.
We also sort the predictions so that the highest confidence predictions are
recommended first. We added this step so as to avoid the potential to over-
whelm developers, as when testing, we saw some change requests with
over 20 generated comments.

The code for this tool can be found on GitHub1.

6.1 The tool in practice

We ran this tool on 16 different projects for the duration of two months.
Before deploying the tool, we sent out an email informing the developers
who worked on these projects that they might expect comments and asked
them to interact with the comments.

We analyzed a total of 147 change requests with 1641 total methods.
Out of these, 57 predictions were successfully recommended on open change
requests.

The tool worked well technically, but as alluded to in Chapter 5, the
tool’s initially set goal was not achieved due to the following reasons:

1. Although a large number of methods were analyzed, we were only
able to place comments on a small fraction of them. This is because
the method has to be edited in the change request in order to place a
comment on the corresponding line.

2. The conversion rate for people clicking on the feedback link was low.
Out of the 57 comments placed, only 11 people clicked on a link of
which seven actually finished filling in the survey. Of these people,
only two gave a reason for their answer. Some indications for why this
was the case were given by developers who received the comments
on their change requests. First, the refactoring suggestion was not
specific enough in what lines to extract from the respective method.
Secondly, they mentioned that when a comment is placed on a line
in a change request, they can only see the title of the corresponding
method and not the actual contents of the method without extra man-
ual steps. This makes it difficult to see the contents of the method
as one has to manually inspect the diff and find the corresponding
method.

Nevertheless, this tool can be adjusted and used in the future to further
research the use of machine learning generated refactoring predictions in
industry code. In particular, it might be interesting to investigate whether
making predictions more specific increases conversion.

1https://github.com/refactoring-ai/Refactory

49

https://github.com/refactoring-ai/Refactory

Chapter 7

Threats to validity

7.1 Internal validity

This section illustrates potential threats to validity originating from design
decisions.

The disparity between models After already having finished the execu-
tion of the user survey, we found a few imperfections in the pre-processing
step for training our models. Since the user study was already completed
when these were found, we were unable to deploy the most up-to-date
model. We did see, however no large differences in theoretical results af-
ter implementing these improvements. We also did not see any significant
change in model behavior regarding feature importances. The following list
outlines the changes in the pipeline and their potential impact on the user
study:

1. The lack of stratification when splitting into a train and test set.
Our dataset consists of slightly unbalanced data that is shuffled before
the split. This could cause one class to be over or under-represented
in either the train or test set due to random chance. However, we did
not see a large change of performance metrics or feature importances
after implementing this stratification. In addition to this, the dataset
was only slightly unbalanced in the first place.

2. The discovery of duplicates in the training set. In Section 3.1.4,
we explain the removal of two types of duplicates in the training set.
These were only discovered after the completion of the user study.
It resulted in the removal of around 500 samples from the industry
dataset. Again, we saw no significant change in feature importance.
We did see a slight decrease in performance which is a known phe-
nomenon for duplicated code in machine learning for software engi-
neering [2].

51

7. Threats to validity

Since the improved model more accurately follows the real distribution of
data and we, therefore, decrease areas where it could overfit, we hypoth-
esize that the results shown in the user study can only improve when de-
ploying such an improved model in the future. Nevertheless, it cannot be
guaranteed that these factors did not have an influence on the predictions
the model generated for use in the user study and therefore also on the
user’s responses to them. A replication of the user study with these im-
proved models could be performed in order to investigate the impact of the
issue.

Use of class metrics in method-level refactoring This report analyzes
the refactoring of type Extract Method, and since every method is contained
in a class, we train not only on method-level metrics but also on class-level
metrics. We do this to give the classification algorithms “context”. This
does mean, however, that these class metrics are often duplicated in our
dataset, as multiple methods exist in one class. We saw that class-level
metrics are most important for our model’s performances. This can cause
the same problems as described in 3.1.4, as class metrics from the test set
“leak” into the test set, inflating performance. More research is needed
into the role of partially duplicated feature vectors in such models.

Correlation between features In both this and previous work, feature
performance is analyzed by permuting single features and seeing the de-
crease in performance in the model. When two features are correlated,
however, the model could still have access to that feature by proxy, making
it appear that the feature is not important when in reality it is1. Further
research needs to be done into the role of potentially correlated features.

Difference between refactored and non-refactored instances In our
problem definition, we define two types of instances, Extract Method and
non-Extract Method instances. While we classify Extract Method instances
by detecting them, non-Extract Method instances are classified using a
heuristic. This heuristic includes the step of checking whether no refac-
toring operations occurred. When the tool does this, it checks for all types
of refactoring operations detected by RefactoringMiner 2.0 and not only for
Extract Method.

This means there is a disparity between the way Extract Method and
non-Extract Method instances are detected as we are, in theory, building a
model that classifies Extract Method as one class and no refactoring of any
type as the other class. Future research needs to be done to measure the
effectiveness of a truly binary model. This entails detecting Extract Method

1According to the sklearn manual: https://scikit-learn.org/stable/auto_example
s/inspection/plot_permutation_importance_multicollinear.html

52

https://scikit-learn.org/stable/auto_examples/inspection/plot_permutation_importance_multicollinear.html
https://scikit-learn.org/stable/auto_examples/inspection/plot_permutation_importance_multicollinear.html

7.2. External validity

in the same way as is done in this work but detecting non-Extract Method
instances by using only Extract Method and no other refactoring types.

Software faults As seen by Figure 6.1, building a complete pipeline that
executes all steps for generating Extract Method predictions is a compli-
cated process. Even though automated tests were implemented for most of
these steps, bugs, and design flaws were still found during the execution of
this project. Most of the individual tools build for the pipeline are not pro-
duction quality, and faults in any single part of them could affect our results.
That being said, extensive manual checking was done at every step of the
process. It would, however, be advisable for future research to combine all
steps of this pipeline into a single software artifact. This minimizes the risk
of mismatches between the individual artifacts or misalignment between
configurations.

Finally, we use non-mature external libraries and tools such as Refac-
toringMiner 2.0, ONNX, CK, sklearn. Any bugs, inconsistencies, or faults
in these libraries might render our results less reliable.

7.2 External validity

This section illustrates possible threats to validity originating from a lack of
generalizability of our approach.

Past refactoring operations as an oracle for future operations Our
models are based upon the belief that decisions made in the past regarding
refactoring are correct. It could be, however, that code that is a valid can-
didate for refactoring, might not be refactored as explained in Chapter 1.
Furthermore, refactoring could decrease code quality, introduce bugs or
cause a change of behavior in some instances.

We believe this not to be a significant problem, as it is shown that refac-
toring generally has many advantages [23, 21, 15], and we believe these
will be captured into our models as a result.

Survey participants In our survey, we chose three experts who gave an
outsider’s perspective and two who worked with the relevant code on a
daily basis. It could be that the outside perspective is not an accurate
assessment of what would be appropriate refactoring opportunities for the
respective project. This could be because, in order to know what to refactor,
experience with the project is needed.

Next to this, it could be the case that the assessment of the experts
familiar with the respective projects is inaccurate. The model might have
learned from refactoring in the past that these two experts executed. Since
the model is trained on this data, a subsequent suggestion would there-
fore be biased towards these developers, creating a self-fulfilling prophecy.

53

7. Threats to validity

However, refactoring is often subjective, and code quality is in the eye of
the beholder. The quality of a project often not only consists of metrics and
adherence to patterns but also out of how well it is regarded by the team
working on it. In addition to this, we have no reason to believe that the
refactoring operations executed by these experts reduce code quality for
these projects in particular. We can, however, make no strong guarantees
about their generalizability of the approach to experts other than the ones
in this study.

Language specificity The current tool focuses only on the Java program-
ming language. It is assumed that many of the observations made in this
thesis would translate to other object-oriented programming languages but
there is no guarantee for this. Next to this, we can make no assumptions
on how well the approach would work on different programming paradigms
such as imperative ones. It would therefore be useful to try a similar ap-
proach in other popular languages, both object-oriented and imperative.
Another domain of interest is the application of this approach for a more
high-level multi-language approach.

Domain specificity For this report, we compare the performance of the
approach on industry code. This is code from a single company in the fi-
nancial industry. It could be that the results shown here do not translate
to other industries in the same manner. This approach has to be applied in
different companies to investigate this. In addition to this, it is interesting
to investigate whether a model trained for one company would translate
well to another.

The role of process metrics In previous work, it was noted that pro-
cess metrics were classed as important for model performance [4, 16]. We
decided not to use these types of metrics because of the complexity of cal-
culation in our recommendation engine for the user study. Therefore, per-
formance might be lower than it could potentially be. However, due to their
importance in previous work, it might be interesting to test the approach in
an industry setting including these metrics.

54

Chapter 8

Conclusions and future work

8.1 Conclusions

This work has shown that using supervised machine learning models to pre-
dict Extract Method refactoring opportunities in industry code is an effec-
tive approach. These results could lead to better, easier and finer tailored
automated refactoring suggestions in large-scale industrial systems.

The following paragraphs will summarize the approach and results for
each research question.

How does code that underwent and did not undergo Extract Method
in industry and open-source compare, in terms of code metrics? We
analyzed and compared code metric distributions between industry and
open-source code for both code that underwent an Extract Method refac-
toring and code that did not undergo an Extract Method refactoring.

From our observations, we can conclude that code that underwent
Extract Method and code that did not undergo Extract Method in an
industry setting does differ from the same type of open-source code.
We see differences especially at class-level, but less so at method-level,
as illustrated by observation 2. Observation 1 illustrates longer and more
complex classes in open-source code as opposed to industry code. Next
to this, observation 3 shows us that coupling levels are similar between
industry and open-source code, except for classes that contain methods
that underwent an Extract Method refactoring. Lastly, in observation 4, we
observe that cohesion is higher in industry code than it is in open-source
code.

How does code that did and did not undergo Extract Method differ
in different industrial projects? We compared the code metric distri-
butions of six different industry projects.

From our observations, we can conclude that code that underwent
Extract Method and code that did not undergo Extract Method does

55

8. Conclusions and future work

differ between individual industry projects. Observation 7 illustrates
that this is most prominent in class-level metrics as opposed to method-
level metrics. Observation 6 shows us that project #1 has a different distri-
bution for class-complexity metrics when compared to other projects. We
show in observation 5 that there seem to be two groups of projects that are
similar to each other. Observation 8 shows us that, for many projects, class
coupling varies widely for classes that do not contain methods that under-
went an Extract Method refactoring. We also see from observation 9 that
project #2 has a lower and a smaller distribution for TCC for both classes
that contain methods that underwent an Extract Method refactoring and
classes that do not contain such methods.

How effective are supervised machine learning models at predict-
ing Extract Method refactoring opportunities for industry code? We
trained and validated six different types of models on industry code for the
purpose of predicting Extract Method opportunities and subsequently mea-
sured their performance.

We conclude that the approach is effective in predicting refactor-
ing opportunities for industry code with models trained on industry
code. From observation 10 we see that all types of model, accuracy, f1,
precision are high. The Random Forest type model performs the best out
of all types as illustrated by observation 11. Observation 12 explains that
this type of model is very stable and does not depend on any single feature
for its high level of performance. Observation 14 illustrates that UW and
CBO, in particular, are most important to four out of five types of models,
including the best-performing Random Forest type. Lastly, we explain in ob-
servation 13 that all metrics that are most important to any type of model
are class-level rather than method-level.

How well do Extract Method recommendation models generalize?
We repeated the experiment but instead of training on industry code, we
trained on open-source code and validated on industry code.

We conclude that open-source-trained models generalize reason-
ably well to an industry setting but perform worse than industry-
trained models. We show in observation 15 that linear models (LR and
SVM) have the highest performance on industry code but still not nearly
as high as the best-performing industry-trained models. We show in ob-
servation 16 that these models seem to be better at classifying instances
where Extract Method was not applied as opposed to classifying instances
of where Extract Method was applied. Feature-wise, many of the features
that are important to industry-trained models, such as CBO and UW, are
also important to open-source models as shown in observation 17. Observa-
tion 18 illustrates that for open-source trained models, some method-level
metrics are also important as opposed to industry-trained models, where

56

8.1. Conclusions

only class-level metrics are.

How well do Extract Method models generalize across different in-
dustrial projects? We trained models where we excluded one project at
a time out of the training set and then validated on that project. We find
that models generalize reasonably on most unseen industry projects.
Observation 19 shows that these models, on average, have much lower per-
formance rates as models trained on the whole dataset and slightly lower
performance than the ones trained on open-source data except for on in-
stances where Extract Method was applied. We see from observation 20
that for all but one project there exists a type of model that performs well
on that project. Also, in observation 21 we note that models perform poorly
when predicting instances where no Extract Method was applied on the
project that differs in class complexity from the other projects. Finally, ob-
servation 22 illustrates that different types of models do well on different
projects and there is not a single type that does well on all projects.

Do industry experts deem recommended Extract Method refactor-
ings useful/not useful? We surveyed with 30 predictions generated by
our best-performing model and asked industry experts to evaluate whether
these methods should be refactored or not.

We conclude that industry experts do find predictions generated by
supervised machine learning models accurate. Observation 23 shows
that, although not as accurate as in theory, developers agree with the model
more often than not. In observation 24, we observe a lower rate of accuracy
in cases where an Extract Method refactoring should be applied vs cases
where an Extract Method should not be applied. Lastly, as shown obser-
vation 25, we see that experts who work with the projects that the model
was trained on, tend to agree with the model’s prediction to a higher extent
than experts who do not work with these projects.

Why do industry experts deem recommended Extract Method refac-
torings useful/not useful? We asked experts to explain their reasoning
behind their choice to apply or not apply Extract Method to methods. The
following are the situations and their reasons of industry experts regard-
ing Extract Method predictions: The most brought up characteristic when
experts agree with the model’s prediction to apply Extract Method is high
code complexity followed by a design pattern/code smell as seen in observa-
tion 26. We see in observation 27 that when experts agree with the model’s
decision to not apply Extract Method, they most often mention that the
code is specific enough. The second most cited reason is that the code
is understandable. We see from observations 28 and 29 that experts give
the same reasons for their choices in cases they disagree with the model’s
predictions.

57

8. Conclusions and future work

8.2 Future work

This section elaborates on future work in this field of research.

Binary classification In this thesis, we class the problem of predicting
Extract Method as binary classification. We see advantages to model the
problem as a multi-class problem instead. One approach would be to intro-
duce one output class for each type of refactoring and one additional output
class for non-refactored cases. This could give more accuracy in classifying
refactored instances, as not only one type of refactoring is considered. This
would also be more accurate to how the current data collection tool classi-
fies non-refactored instances, as it examines whether any type of refactor-
ing was not found in a commit, rather than a specific type.

Choice of input and classification algorithms Our choice of algorithms
is based on the choices made in Aniche et al.’s original paper. We also only
use quantitative input for our training data. We see, however, that text-
based metrics, like the number of unique words, often appear as important
features for a model’s performance. Further research is needed into the
use of natural language for predicting refactoring opportunities.

Relationship between feature distributions and models In our work,
we see strong indications that the described models are better at predicting
Extract Method if metric distributions are similar to the training set. For
example, increasing the amount of test data, as we did when training with
the open-source set, does not increase accuracy the same way as when
training on such similar code does.

We see this by the fact that the performance of industry-trained mod-
els is much higher than that of open-source models as described in Sec-
tions 4.2 and 4.3. We see from Section 3.2 that industry code does dif-
fer from open-source code which supports this claim. Another indicator of
this phenomenon is observed from the experiment described in Section 4.4.
Here we see lower performance on project #1, which is the same project
that is identified as having a very different feature distribution from other
projects in Section 3.3.

We do see that for predicting instances where no Extract Method is
applied, increasing the number of samples does increase accuracy, as the
open-source trained model performs very well for these types of instances.
This is supported by the fact that in Section 4.4, where the amount of exam-
ples is not as high, models perform poorly such instances originating from
project #1.

The need for complex models In the user study, we find that for many
questions, experts do not explain why they find an Extract Method refactor-

58

8.2. Future work

ing is necessary or not. In these cases, especially when the participant finds
that an Extract Method is necessary, the participant elaborates on how they
would execute a refactor on the method shown. When a method is marked
as not to be refactored with Extract Method, experts often just mention
the method is “understandable” without mentioning the reasons why it is
understandable. We find that over a third of all answers (54/150) consists
of these cases. It seems that participants often do not consciously think
about why a method should be extracted, but rather have a more complex,
unconscious decision-making process.

This could indicate that complex models, like the ones explored in this
report, are necessary for recommending Extract Method, as developers
cannot put their reasoning into words easily and, in many cases, rely on
intuition and experience.

59

Bibliography

[1] Vahid Alizadeh, Marouane Kessentini, Mohamed Wiem Mkaouer, Mel
Ocinneide, Ali Ouni, and Yuanfang Cai. An Interactive and Dynamic
Search-Based Approach to Software Refactoring Recommendations.
IEEE Transactions on Software Engineering, 46(9):932–961, sep 2020.
ISSN 19393520. doi: 10.1109/TSE.2018.2872711.

[2] Miltiadis Allamanis. The adverse effects of code duplication in ma-
chine learning models of code. In Onward! 2019 - Proceedings
of the 2019 ACM SIGPLAN International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software, co-
located with SPLASH 2019, volume 11, pages 143–153, New York,
NY, USA, oct 2019. Association for Computing Machinery, Inc. ISBN
9781450369954. doi: 10.1145/3359591.3359735. URL https://dl.a
cm.org/doi/10.1145/3359591.3359735.

[3] Erik Ammerlaan, Wim Veninga, and Andy Zaidman. Old habits die
hard: Why refactoring for understandability does not give immediate
benefits. In 2015 IEEE 22nd International Conference on Software
Analysis, Evolution, and Reengineering, SANER 2015 - Proceedings,
pages 504–507. Institute of Electrical and Electronics Engineers Inc.,
2015. ISBN 9781479984695. doi: 10.1109/SANER.2015.7081865.

[4] M Apa) Aniche, E ; Maziero, R ; Durelli, and V ; Durelli. The Ef-
fectiveness of Supervised Machine Learning Algorithms in Predict-
ing Software Refactoring. IEEE Transactions on Software Engineer-
ing Citation, 2020. doi: 10.1109/TSE.2020.3021736. URL https:
//doi.org/10.1109/TSE.2020.3021736.

[5] Abdulrahman Ahmed Bobakr Baqais and Mohammad Alshayeb.
Automatic software refactoring: a systematic literature review,
jun 2020. ISSN 15731367. URL https://doi.org/10.1007/
s11219-019-09477-y.

61

https://dl.acm.org/doi/10.1145/3359591.3359735
https://dl.acm.org/doi/10.1145/3359591.3359735
https://doi.org/10.1109/TSE.2020.3021736
https://doi.org/10.1109/TSE.2020.3021736
https://doi.org/10.1007/s11219-019-09477-y
https://doi.org/10.1007/s11219-019-09477-y

Bibliography

[6] G Bavota, B De Carluccio, A De Lucia, M Di Penta, R Oliveto, and
O Strollo. When Does a Refactoring Induce Bugs? An Empirical Study.
In 2012 IEEE 12th International Working Conference on Source Code
Analysis and Manipulation, pages 104–113, 2012. doi: 10.1109/SCAM
.2012.20.

[7] Leo Breiman. Random forests. Machine Learning, 45(1):5–32,
oct 2001. ISSN 08856125. doi: 10.1023/A:1010933404324. URL
https://link-springer-com.tudelft.idm.oclc.org/article/10.
1023/A:1010933404324.

[8] Jehad Al Dallal. Identifying refactoring opportunities in object-
oriented code: A systematic literature review. Information and Soft-
ware Technology, 58:231–249, 2015. ISSN 09505849. doi: 10.1016/j.
infsof.2014.08.002.

[9] Marios Fokaefs, Nikolaos Tsantalis, Alexander Chatzigeorgiou, and
Jörg Sander. Decomposing object-oriented class modules using an
agglomerative clustering technique. In IEEE International Confer-
ence on Software Maintenance, ICSM, pages 93–101, 2009. ISBN
9781424448289. doi: 10.1109/ICSM.2009.5306332.

[10] Marios Fokaefs, Nikolaos Tsantalis, Eleni Stroulia, and Alexander
Chatzigeorgiou. JDeodorant: Identification and application of extract
class refactorings. In Proceedings - International Conference on Soft-
ware Engineering, pages 1037–1039, 2011. ISBN 9781450304450.
doi: 10.1145/1985793.1985989.

[11] Marios Fokaefs, Nikolaos Tsantalis, Eleni Stroulia, and Alexander
Chatzigeorgiou. The Journal of Systems and Software Identification
and application of Extract Class refactorings in object-oriented sys-
tems. The Journal of Systems and Software, 85:2241–2260, 2012. doi:
10.1016/j.jss.2012.04.013. URL http://dx.doi.org/10.1016/j.jss.
2012.04.013.

[12] Francesca Fontana, Mika V. Mäntylä, Marco Zanoni, and Alessan-
dro Marino. Comparing and experimenting machine learning tech-
niques for code smell detection. Empirical Software Engineer-
ing, 21(3):1143–1191, jun 2016. ISSN 15737616. doi: 10.1007/
s10664-015-9378-4. URL https://link-springer-com.tudelft.idm
.oclc.org/article/10.1007/s10664-015-9378-4.

[13] Francesca Arcelli Fontana, Marco Zanoni, Alessandro Marino, and
Mika V. Mäntylä. Code smell detection: Towards a machine learning-
based approach. In IEEE International Conference on Software Main-
tenance, ICSM, pages 396–399, 2013. doi: 10.1109/ICSM.2013.56.

62

https://link-springer-com.tudelft.idm.oclc.org/article/10.1023/A:1010933404324
https://link-springer-com.tudelft.idm.oclc.org/article/10.1023/A:1010933404324
http://dx.doi.org/10.1016/j.jss.2012.04.013
http://dx.doi.org/10.1016/j.jss.2012.04.013
https://link-springer-com.tudelft.idm.oclc.org/article/10.1007/s10664-015-9378-4
https://link-springer-com.tudelft.idm.oclc.org/article/10.1007/s10664-015-9378-4

Bibliography

[14] Martin Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999. ISBN 0-201-48567-2.

[15] M. Gatrell and S. Counsell. The effect of refactoring on change
and fault-proneness in commercial C# software. Science of Com-
puter Programming, 102:44–56, may 2015. ISSN 01676423. doi:
10.1016/j.scico.2014.12.002.

[16] Jan Gerling. Machine Learning for Software Engineering: a large-
scale empirical study. Master’s thesis, Delft University of Technology,
2020. URL http://resolver.tudelft.nl/uuid:bf649e9c-9d53-4e
8c-a91b-f0a6b6aab733.

[17] Georgios Gousios. The GHTorrent dataset and tool suite. In Proceed-
ings of the 10th Working Conference on Mining Software Repositories,
pages 233–236. IEEE Press, 2013. ISBN 978-1-4673-2936-1. URL
http://dl.acm.org/citation.cfm?id=2487085.2487132.

[18] Mark Harman and Bryan F. Jones. Search-based software engineer-
ing. Information and Software Technology, 43(14):833–839, dec 2001.
ISSN 09505849. doi: 10.1016/S0950-5849(01)00189-6.

[19] Mark Harman and Laurence Tratt. Pareto optimal search based refac-
toring at the design level. In Proceedings of GECCO 2007: Genetic
and Evolutionary Computation Conference, pages 1106–1113, New
York, New York, USA, 2007. ACM Press. ISBN 1595936971. doi:
10.1145/1276958.1277176. URL http://portal.acm.org/citation.
cfm?doid=1276958.1277176.

[20] Haibo He and Edwardo A. Garcia. Learning from imbalanced data.
IEEE Transactions on Knowledge and Data Engineering, 21(9):1263–
1284, sep 2009. ISSN 10414347. doi: 10.1109/TKDE.2008.239.

[21] Miryung Kim, Thomas Zimmermann, Nachiappan Nagappan, Nachi
Nagappan, and Tom Zimmermann. An Empirical Study of Refactoring
Challenges and Benefits at Microsoft. IEEE Transactions on Software
Engineering, 40(7), 2014. URL https://www.microsoft.com/en-us/
research/publication/an-empirical-study-of-refactoring-cha
llenges-and-benefits-at-microsoft/.

[22] Guilherme Lacerda, Fabio Petrillo, Marcelo Pimenta, and Yann Gaël
Guéhéneuc. Code smells and refactoring: A tertiary systematic review
of challenges and observations. Journal of Systems and Software, 167:
110610, sep 2020. ISSN 01641212. doi: 10.1016/j.jss.2020.110610.

[23] R Leitch and E Stroulia. Assessing the maintainability benefits of de-
sign restructuring using dependency analysis. In Proceedings - In-
ternational Software Metrics Symposium, volume 2003-Janua, pages

63

http://resolver.tudelft.nl/uuid:bf649e9c-9d53-4e8c-a91b-f0a6b6aab733
http://resolver.tudelft.nl/uuid:bf649e9c-9d53-4e8c-a91b-f0a6b6aab733
http://dl.acm.org/citation.cfm?id=2487085.2487132
http://portal.acm.org/citation.cfm?doid=1276958.1277176
http://portal.acm.org/citation.cfm?doid=1276958.1277176
https://www.microsoft.com/en-us/research/publication/an-empirical-study-of-refactoring-challenges-and-benefits-at-microsoft/
https://www.microsoft.com/en-us/research/publication/an-empirical-study-of-refactoring-challenges-and-benefits-at-microsoft/
https://www.microsoft.com/en-us/research/publication/an-empirical-study-of-refactoring-challenges-and-benefits-at-microsoft/

Bibliography

309–322. IEEE Computer Society, 2003. ISBN 0769519873. doi:
10.1109/METRIC.2003.1232477.

[24] Hui Liu, Zhifeng Xu, and Yanzhen Zou. Deep learning based feature
envy detection. In ASE 2018 - Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, pages
385–396. Association for Computing Machinery, Inc, sep 2018. ISBN
9781450359375. doi: 10.1145/3238147.3238166.

[25] Radu Marinescu. Detection strategies: Metrics-based rules for de-
tecting design flaws. In IEEE International Conference on Software
Maintenance, ICSM, pages 350–359, 2004. doi: 10.1109/ICSM.2004.
1357820.

[26] T Mens and T Tourwe. A survey of software refactoring. IEEE
Transactions on Software Engineering, 30(2):126–139, 2004. doi:
10.1109/TSE.2004.1265817.

[27] Naouel Moha, Yann Gaël Guéhéneuc, Laurence Duchien, and
Anne Françoise Le Meur. DECOR: A method for the specification
and detection of code and design smells. IEEE Transactions on
Software Engineering, 36(1):20–36, 2010. ISSN 00985589. doi:
10.1109/TSE.2009.50.

[28] Mark O’Keeffe and Mel Ó Cinnéide. Search-based refactoring: an em-
pirical study. Journal of Software Maintenance and Evolution: Re-
search and Practice, 20(5):n/a–n/a, sep 2008. ISSN 1532060X. doi:
10.1002/smr.378. URL http://doi.wiley.com/10.1002/smr.378.

[29] F Pedregosa, G Varoquaux, A Gramfort, V Michel, B Thirion, O Grisel,
M Blondel, P Prettenhofer, R Weiss, V Dubourg, J Vanderplas, A Passos,
D Cournapeau, M Brucher, M Perrot, and E Duchesnay. Scikit-learn:
Machine Learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[30] Tushar Sharma, Girish Suryanarayana, and Ganesh Samarthyam.
Challenges to and Solutions for Refactoring Adoption: An Industrial
Perspective. IEEE Software, 32(6):44–51, nov 2015. ISSN 07407459.
doi: 10.1109/MS.2015.105.

[31] Danilo Silva, Ricardo Terra, and Marco Tulio Valente. Recommend-
ing automated Extract Method refactorings. In 22nd International
Conference on Program Comprehension, ICPC 2014 - Proceedings,
pages 146–156, New York, New York, USA, jun 2014. Association
for Computing Machinery, Inc. ISBN 9781450328791. doi: 10.
1145/2597008.2597141. URL http://dl.acm.org/citation.cfm?do
id=2597008.2597141.

64

http://doi.wiley.com/10.1002/smr.378
http://dl.acm.org/citation.cfm?doid=2597008.2597141
http://dl.acm.org/citation.cfm?doid=2597008.2597141

Bibliography

[32] Nikolaos Tsantalis and Alexander Chatzigeorgiou. Identification of
Extract Method refactoring opportunities. In Proceedings of the
European Conference on Software Maintenance and Reengineering,
CSMR, pages 119–128, 2009. ISBN 9780769535890. doi: 10.1109/CS
MR.2009.23.

[33] Nikolaos Tsantalis and Alexander Chatzigeorgiou. Identification of Ex-
tract Method refactoring opportunities for the decomposition of meth-
ods. Journal of Systems and Software, 84(10):1757–1782, oct 2011.
ISSN 01641212. doi: 10.1016/j.jss.2011.05.016.

[34] Nikolaos Tsantalis, Matin Mansouri, Laleh M Eshkevari, Davood Maz-
inanian, and Danny Dig. Accurate and Efficient Refactoring Detec-
tion in Commit History. In Proceedings of the 40th International
Conference on Software Engineering, pages 483–494. ACM, 2018.
ISBN 978-1-4503-5638-1. doi: 10.1145/3180155.3180206. URL http:
//doi.acm.org/10.1145/3180155.3180206.

[35] Nikolaos Tsantalis, Ameya Ketkar, and Danny Dig. RefactoringMiner
2.0. IEEE Transactions on Software Engineering, 2020. doi: 10.1109/
TSE.2020.3007722.

[36] Ruru Yue, Zhe Gao, Na Meng, Yingfei Xiong, Xiaoyin Wang, and
J. David Morgenthaler. Automatic clone recommendation for refac-
toring based on the present and the past. In Proceedings - 2018 IEEE
International Conference on Software Maintenance and Evolution, IC-
SME 2018, pages 115–126. Institute of Electrical and Electronics En-
gineers Inc., nov 2018. ISBN 9781538678701. doi: 10.1109/ICSME.
2018.00021.

65

http://doi.acm.org/10.1145/3180155.3180206
http://doi.acm.org/10.1145/3180155.3180206

Appendix A

Violin Plots

0

20

40

60

80

100

120

140

160

RF
C

Dataset
Industry
Open-source

(a) Class level: The left violin plot indi-
cates classes that contain methods that
underwent an Extract Method refactor-
ing. The right violin plot indicates
classes that do not contain methods that
underwent an Extract Method refactor-
ing.

0

5

10

15

20

25

R
FC

(b) Method level: The left violin plot in-
dicates methods that underwent an Ex-
tract Method refactoring. The right vi-
olin plot indicates methods that did not
undergo an Extract Method refactoring.

Figure A.1: RFC distributions for open-source and industry code on both
class and method-level.

67

A. Violin Plots

0

50

100

150

200

250

300

350

W
M

C

Dataset
Industry
Open-source

(a) Class level: The left violin plot indi-
cates classes that contain methods that
underwent an Extract Method refactor-
ing. The right violin plot indicates
classes that do not contain methods that
underwent an Extract Method refactor-
ing.

0

2

4

6

8

10

12
C

yc
lo

m
at

ic
 c

om
pl

ex
ity

(b) Method level: The left violin plot in-
dicates methods that underwent an Ex-
tract Method refactoring. The right vi-
olin plot indicates methods that did not
undergo an Extract Method refactoring.

Figure A.2: Cyclomatic complexity distributions for open-source and indus-
try code. On class-level weighted cyclomatic complexity is displayed.

68

0

100

200

300

400

500

600

700

800

U
ni

qu
e

w
or

ds

Dataset
Industry
Open-source

(a) Class level: The left violin plot indi-
cates classes that contain methods that
underwent an Extract Method refactor-
ing. The right violin plot indicates
classes that do not contain methods that
underwent an Extract Method refactor-
ing.

0

20

40

60

80

U
ni

qu
e

w
or

ds

(b) Method level: The left violin plot in-
dicates methods that underwent an Ex-
tract Method refactoring. The right vi-
olin plot indicates methods that did not
undergo an Extract Method refactoring.

Figure A.3: Quantity of unique words distributions for open-source and
industry code on both class and method-level.

69

A. Violin Plots

0 100 200
RFC

#1

#2

#3

#4

#5

#6

Pr
oj

ec
t

Instance type
Extract method
Non-Extract Method

(a) Class-level RFC

0 250 500 750
Unique words

#1

#2

#3

#4

#5

#6
Pr

oj
ec

t

(b) Class-level unique word quantity

0 100 200
WMC

#1

#2

#3

#4

#5

#6

Pr
oj

ec
t

(c) Weighted cyclomatic complexity

Figure A.4: Class-level metrics per project. The y-axis indicates the project
while the x-axis shows the distribution for the metric in question. The top
violin indicates the distribution for code that underwent an Extract Method
refactoring while the lower violin indicates the distribution for code that
did not undergo an Extract Method refactoring. The number indicates the
median for the metric in question

70

0 20 40 60
LOC

#1

#2

#3

#4

#5

#6

Pr
oj

ec
t

(a) Method-level lines of code

0 10 20
Cyclomatic complexity

#1

#2

#3

#4

#5

#6

Pr
oj

ec
t

Instance type
Extract method
Non-Extract Method

(b) Method-level cyclomatic complex-
ity

0 100 200
Unique words

#1

#2

#3

#4

#5

#6

Pr
oj

ec
t

(c) Method-level unique word quan-
tity

0 5 10
CBO

#1

#2

#3

#4

#5

#6

Pr
oj

ec
t

(d) Method-level coupling between
objects

Figure A.5: Method-level metrics per industry project. The y-axis indicates
the project while the x-axis shows the distribution for the metric in question.
The top violin indicates the distribution for code that underwent an Extract
Method refactoring while the lower violin indicates the distribution for code
that did not undergo an Extract Method refactoring. The number indicates
the median for the metric in question

71

Appendix B

Features Used

Explanations on features can be found in the CK documentation1.

B.1 Class level metrics

• AnonymousClassesQty
• AssignmentsQty
• Cbo
• ComparisonsQty
• LambdasQty
• Lcom
• Loc
• LCC
• LoopQty
• MathOperationsQty
• MaxNestedBlocks
• Nosi
• NumberOfAbstractMethods
• NumberOfDefaultFields
• NumberOfDefaultMethods
• NumberOfFields
• NumberOfFinalFields
• NumberOfFinalMethods
• NumberOfMethods
• NumberOfPrivateFields
• NumberOfPrivateMethods

• NumberOfProtectedFields
• NumberOfProtectedMethods
• NumberOfPublicFields
• NumberOfPublicMethods
• NumberOfStaticFields
• NumberOfStaticMethods
• NumberOfSynchronizedFields
• NumberOfSynchronizedMethods
• NumbersQty
• ParenthesizedExpsQty
• ReturnQty
• Rfc
• StringLiteralsQty
• SubClassesQty
• TryCatchQty
• UniqueWordsQty
• VariablesQty
• Wmc
• TCC
• isInnerClass

1https://github.com/mauricioaniche/ck

73

B. Features Used

B.2 Method level

• AnonymousClassesQty
• AssignmentsQty
• Cbo
• ComparisonsQty
• LambdasQty
• Loc
• LoopQty
• MathOperationsQty
• MaxNestedBlocks
• NumbersQty

• ParametersQty
• ParenthesizedExpsQty
• ReturnQty
• Rfc
• StringLiteralsQty
• SubClassesQty
• TryCatchQty
• UniqueWordsQty
• VariablesQty
• Wmc

74

Appendix C

Feature Importances and
Linear Coefficients

All features are class-level except when prefixed with method.

C.1 Industry trained models

N
um

be
rO

fM
et

ho
ds

U
ni

qu
eW

or
ds

Q
ty

Lc
om

m
et

ho
dR

fc

C
bo

m
et

ho
dV

ar
ia

bl
es

Q
ty

S
tri

ng
Li

te
ra

ls
Q

ty

R
fc

m
et

ho
dU

ni
qu

eW
or

ds
Q

ty

R
et

ur
nQ

ty

V
ar

ia
bl

es
Q

ty

Lo
c

Feature

0.0

0.1

0.2

Fe
at

ur
e

im
po

rta
nc

e

Model type
RF
DT

Figure C.1: Feature importance for models trained on industry data

75

C. Feature Importances and Linear Coefficients

U
ni

qu
eW

or
ds

Q
ty

M
et

ho
dA

ss
ig

nm
en

ts
Q

ty

S
ub

cl
as

se
sQ

ty

m
et

ho
dR

fc

C
bo

W
m

c

Lo
c

N
um

be
rO

fP
ro

te
ct

ed
M

et
ho

ds

N
um

be
rO

fF
in

al
M

et
ho

ds

N
um

be
rO

fS
ta

tic
M

et
ho

ds

R
et

ur
nQ

ty

m
et

ho
dL

oc

Feature

10

0

10

C
oe

ffi
ci

en
t Model type

LR
SVM

Figure C.2: Coefficients for models trained on industry data

C
om

pa
ris

on
sQ

ty

S
tri

ng
Li

te
ra

ls
Q

ty

U
ni

qu
eW

or
ds

Q
ty

A
no

ny
m

ou
sC

la
ss

es
Q

ty

m
et

ho
dR

fc

A
ss

ig
nm

en
ts

Q
ty

Lo
c

R
fc

V
ar

ia
bl

es
Q

ty

N
um

be
rO

fM
et

ho
ds

W
m

c

Feature

0.00

0.02

0.04

Fe
at

ur
e

im
po

rta
nc

e

Model type
RF
DT

Figure C.3: Feature importance for models trained on open-source data

76

C.1. Industry trained models

S
tri

ng
Li

te
ra

ls
Q

ty

m
et

ho
dN

um
be

rs
Q

ty

m
et

ho
dC

bo

Lc
om

m
et

ho
dR

fc

m
et

ho
dW

m
c

Lo
c

m
et

ho
dM

ax
N

es
te

dB
lo

ck
s

m
et

ho
dU

ni
qu

eW
or

ds
Q

ty

m
et

ho
dS

tri
ng

Li
te

ra
ls

Q
ty

Feature

100

0

C
oe

ffi
ci

en
t

Model type
LR
SVM

Figure C.4: Coefficients for models trained on open-source data

77

Appendix D

Hyperparameters
Best-performing Models

Model type RF

bootstrap False
ccp_alpha 0.0
criterion gini
max_depth 24
max_features log2
min_impurity_decrease 0.0
min_samples_leaf 1
min_samples_split 2
min_weight_fraction_leaf 0.0
n_estimators 100

Model type DT

ccp_alpha 0.0
criterion entropy
max_depth 12
min_impurity_decrease 0.0
min_samples_leaf 1
min_samples_split 2
min_weight_fraction_leaf 0.0
splitter best

Model type LR

C 81.796
dual False
fit_intercept True
intercept_scaling 1
max_iter 100
multi_class auto
penalty l2
solver saga
tol 0.0

Model type SVM

C 0.718
dual False
fit_intercept True
intercept_scaling 1
loss squared_hinge
max_iter 1000
multi_class ovr
penalty l1
tol 0.0

Model type NB

var_smoothing 0.000

Table D.1: Parameters for the best-performing industry trained models

79

D. Hyperparameters Best-performing Models

Model type RF

bootstrap False
ccp_alpha 0.0
criterion gini
max_features log2
min_impurity_decrease 0.0
min_samples_leaf 1
min_samples_split 2
min_weight_fraction_leaf 0.0
n_estimators 200

Model type DT

ccp_alpha 0.0
criterion entropy
max_features log2
min_impurity_decrease 0.0
min_samples_leaf 1
min_samples_split 2
min_weight_fraction_leaf 0.0
splitter random

Model type LR

C 77.681
dual False
fit_intercept True
intercept_scaling 1
max_iter 500
multi_class auto
penalty l2
solver saga
tol 0.0

Model type SVM

C 2.504
dual False
fit_intercept True
intercept_scaling 1
loss squared_hinge
max_iter 1000
multi_class ovr
penalty l2
tol 0.0

Model type NB

var_smoothing 0.000

Table D.2: Parameters for the best-performing open-source trained models

80

Appendix E

Confusion Matrices

TP TN FP FN
Model type

RF 179 (46%) 177 (46%) 20 (5%) 5 (1%)
DT 153 (40%) 171 (44%) 26 (6%) 31 (8%)
LR 158 (41%) 156 (40%) 41 (10%) 26 (6%)
SVM 161 (42%) 155 (40%) 42 (11%) 23 (6%)
NB 165 (43%) 133 (34%) 64 (16%) 19 (4%)

Table E.1: Confusion matrix for models trained and validated on industry
code

TP TN FP FN
Model type

RF 885 (46%) 423 (22%) 563 (29%) 34 (1%)
DT 743 (39%) 411 (21%) 575 (30%) 176 (9%)
LR 880 (46%) 569 (29%) 417 (21%) 39 (2%)
SVM 885 (46%) 561 (29%) 425 (22%) 34 (1%)
NB 914 (47%) 255 (13%) 731 (38%) 5 (0%)

Table E.2: Confusion matrix for models trained on open-source code and
validated on industry code

81

Appendix F

User study and
recommendation examples

Figure F.1: Example of how a question would look like in the survey.

Figure F.2: Example of a refactoring recommendation on a merge made by
our model. We include a link to give feedback and a link to an explanation
in case the developer is unfamiliar with the refactor in question

83

Appendix G

User study — Agreement
Metrics

G.1 Metric definitions

• Agreement = RA+NA
RA+NA+RD+ND

• AgreementEM = RA
RA+RD

• AgreementNR = RA
RA+ND

• Agreement f 1 = 2 · AgreementEM ·AgreementNR
AgreementEM+AgreementNR

G.2 Metric values

RA NA ND RD

Expert

1 13 10 0 7
2 14 7 3 6
3 10 7 3 10
4 11 9 1 9
5 17 10 0 3

All/Mean 65 43 7 35

Table G.1: Agreement of the experts with the model’s predictions.

85

	Preface
	Contents
	List of Figures
	Introduction
	Related work
	Rule-based approaches
	Search-based approaches
	Machine learning-based approaches

	An Empirical Study of Extracted Methods in Industry
	Methodology
	How does code that underwent and did not undergo Extract Method in industry and open-source compare, in terms of code metrics?
	How does code that did and did not undergo Extract Method differ in different industrial projects?

	The Effectiveness of Data-Driven Extract Method Models in Industry
	Methodology
	How effective are supervised machine learning models at predicting Extract Method refactoring opportunities for industry code?
	How well do Extract Method recommendation models generalize?
	How well do Extract Method models generalize across different industrial projects?

	A User Study on Extract Method Recommendations in the Wild
	Methodology
	Do industry experts deem recommended Extract Method refactorings useful/not useful?
	Why do industry experts deem recommended Extract Method refactorings useful/not useful?

	A Proposal for a Tool To Recommend Data-Driven Extract Methods
	The tool in practice

	Threats to validity
	Internal validity
	External validity

	Conclusions and future work
	Conclusions
	Future work

	Bibliography
	Violin Plots
	Features Used
	Class level metrics
	Method level

	Feature Importances and Linear Coefficients
	Industry trained models

	Hyperparameters Best-performing Models
	Confusion Matrices
	User study and recommendation examples
	User study — Agreement Metrics
	Metric definitions
	Metric values

