
Securing BGP
Communities
Design of a new RPKI object to
mitigate BGP Community Attacks
R.F. Huisman

D
el
ft
U
ni
ve
rs
ity

of
Te
ch
no
lo
gy

Securing BGP

Communities
Design of a new RPKI object to
mitigate BGP Community Attacks

by

R.F. Huisman
to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Friday July 15, 2022 at 09:00.

Student number: 4657993
Project duration: November 22, 2021 – July 15, 2022
Thesis committee: Prof. dr. ir. G. Smaragdakis, TU Delft, Responsible Full Professor

Dr. ir. A. Zarras, TU Delft, Daily Supervisor
Dr. ir. G. Iosifidis, TU Delft, Third Committee Member

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract
Research has shown that the Border Gateway Protocol (BGP) is vulnerable to a new attack that exploits
the community attribute. These community attacks can influence BGP routing in unintended ways. Cur-
rently, there are no effective mitigations against these attacks which do not limit the normal usage of
BGP communities or offer cryptographic authorization of community values. In this thesis, we are the
first to design and evaluate a new Resource Public Key Infrastructure (RPKI) object that provides these
properties, called a Route Community Authorization (RCA). Autonomous Systems (ASes) can sign and
upload an RCA that includes which communities are authorized to be used and under which conditions
to reduce the attack surface. The approach does not alter BGP itself and ASes that deploy the security
solution can verify if route announcements with community values are allowed to use those communi-
ties. With the RPKI construction of our solution, cryptographic operations are offloaded from the router
to a separate server. This is because most BGP routers deployed on the internet are not capable yet
of performing cryptographic operations on every announcement.

We simulate attack scenarios and evaluate the developed solution to see if it is a viable option to
be deployed on the internet. The results show that the developed solution can block the community
attacks, on the condition that ASes have properly configured the RCA and at least the target, or an AS
between the attacker and the target, deploys the solution. If ASes configure the RCAs too broad, then
there is still room for an attacker to abuse the community values. We show that the performance of
the solution using properly configured RCAs can keep up with the rate of announcements seen on the
internet. Since experiments were performed in simulations, additional experiments are needed in the
future on hardware routers and by ASes on the internet to see if the results are the same. The biggest
issue for the developed solution is the initial adoption by ASes since security benefits are low in the
beginning, but increase once more ASes participate.

Once deployed BGP routers can handle cryptographic operations on every announcement, we sug-
gest using BGPsec and extending it to include the community attribute. Using a BGPsec approach will
improve security and provide integrity of the community attribute, which RCA does not provide.

iii

Preface
”Securing BGP Communities, Design of a new RPKI object to mitigate BGP Community Attacks” is my
thesis to obtain the degree of Master of Science in Computer Science at the Delft University of Tech-
nology, with a specialization in Cyber Security. I started in November 2021 and finished in July 2022
with researching and writing this thesis.

This research topic was suggested by the PhD student Bart Hermans. The topic was challenging
and fun, especially since mitigating BGP community attacks with cryptographic authorization was an
area that was still unexplored at the time of writing. I want to thank Bart Hermans, Apostolis Zarras,
and Georgios Smaragdakis for their excellent guidance during this thesis. Their feedback on the thesis
was highly appreciated and helpful, and without their cooperation I would not have been able to deliver
this result.

Finally, I want to thank my friends and family for their continued support throughout the thesis and
my overall studies so far. I am proud of the final results, the thesis itself, and the overall work that I put
in. I have developed a passion for this area of research during the project and for future research in
this area that I hope to convey to you as a reader. I hope you enjoy reading this thesis and can either
benefit from it or be inspired for future research work in the area.

Thanks!

R.F. Huisman
Delft, July 2022

v

Contents

1 Introduction 1

2 Background 3
2.1 BGP . 3

2.1.1 Community Attribute . 4
2.2 BGP Security . 5

2.2.1 Security Classification . 5
2.2.2 Attack Classification . 6
2.2.3 Desired solution properties. 7

2.3 Community Attribute Vulnerabilities . 8
2.3.1 Community Attacks. 8
2.3.2 Possible Mitigations . 9

2.4 Notable BGP security extensions . 10
2.5 BGP Alternatives . 13

3 Related Work 15

4 Methodology 19
4.1 Research questions . 19
4.2 Approach . 19

4.2.1 What has already been done to secure BGP against community attribute attacks? 19
4.2.2 What is important to consider a solution viable for deployment, and with which

metrics can we measure that? . 20
4.2.3 How can we meaningfully develop and test solutions without deploying them live

on the internet? . 20
4.2.4 How can we verify the community attribute while satisfying the requirements for

a viable solution? . 20
4.3 Data collection . 20
4.4 Scope . 21

5 Design 23
5.1 Theoretical . 23

5.1.1 Requirements. 23
5.1.2 RPKI Object. 24
5.1.3 Algorithms . 25
5.1.4 Deployment . 28
5.1.5 Example. 29
5.1.6 Attacks . 29
5.1.7 Conditions . 30
5.1.8 Drawbacks and improvements. 30

5.2 Implementation . 31
5.2.1 Overview . 31
5.2.2 Architecture . 32
5.2.3 Example. 32
5.2.4 Drawbacks . 33

6 Evaluation 35
6.1 Disclaimer. 35
6.2 Theoretical results . 35

6.2.1 Security properties . 36
6.2.2 Performance properties . 36

vii

viii Contents

6.2.3 Privacy properties . 37
6.2.4 Deployability properties . 37

6.3 Approximate results . 38
6.3.1 Time To Mitigation . 38
6.3.2 Average BGP Data . 39
6.3.3 RCA size . 39

6.4 Exact results . 41
6.4.1 Community Attacks. 42
6.4.2 Verification algorithm . 43
6.4.3 Validation algorithm. 45

6.5 Threat model . 49

7 Discussion 53

8 Conclusion 57

1
Introduction

The internet consists of sets of interconnected networks, called Autonomous Systems (ASes). Each
AS contains hosts and routers that are under the administrative control of a single entity [1]. ASes as-
sign IP addresses to their hosts and routers and are responsible for forwarding traffic to and from their
IP addresses. For ASes to communicate which routes can be used to reach an IP address, they use
the Border Gateway Protocol (BGP). BGP is used to communicate network reachability information to
other BGP routers on the internet. BGP plays a critical role on the internet to route internet traffic, but
it provides no security guarantees [2, 3].

A large number of security proposals have been developed to make BGP more secure, but not many
are adopted or are viable to deploy [3, 4]. With the few that are currently deployed on the internet, BGP
still remains vulnerable to different attacks [3]. Attackers are also aware of the vulnerabilities in BGP,
which they have exploited in the past. To name a few examples of attacks and manual mistakes:

• Pakistan Telecom brought down YouTube globally for two hours in 2008 in an attempt to block
YouTube in their country [5].

• A BGP hijack attack redirected users of MyEtherWallet (a website hosting Ethereum cryptocur-
rency wallets) to a malicious clone, stealing the credentials and in turn, emptying the users’
Ethereum wallets in 2018 [6].

• A large portion of European mobile traffic was temporarily routed through China Telecom in 2019
due to a route leak at a Swiss data center named Safe Host [7].

These are just a few of the attacks and misconfigurations that have happened. Research shows that
many attacks are possible and what attackers can gain from it [3]. In 2018, a new attack vector was
discovered against BGP, using the community attribute [8]. BGP communities are an extension to BGP
that can be used to signal semantics between BGP routers within and between ASes. Streibelt et al.
have shown that communities are widely used and that they can be exploited to influence routing in un-
intended ways. This is because BGP communities have complex policies, error-prone configurations,
a lack of cryptographic integrity and authentication, and they propagate far beyond their intended target
[8].

In 2018, the first attack was observed making use of BGP communities. In this attack, a BGP hi-
jack targeting US payment processing companies used BGP communities to increase the propagation
of the hijacked prefixes to a larger set of peers [9]. In 2019, the authors of [10] showed how adversaries
can launch targeted interception attacks using BGP communities. Although research has shown the
exploitability of BGP communities [8, 10, 11], there has only been one theoretical research paper yet
that protects the community attribute with cryptographic authentication or integrity. Furthermore, none
of the cryptographic security proposals that currently exist for BGP cover the community attribute [8].
This means that even if BGP security proposals are widely deployed, attacks enabled by BGP commu-
nities are still possible. The only extension to date for protecting communities is proposed in [11], where

1

2 Introduction

the author suggests incorporating the community attributes in BGPsec. However, this proposal is only
theoretical and has no concrete metrics showing that it works in practice or what the impact would
be on BGP performance. Since BGPsec has many issues hindering its adoption and effectiveness in
partial deployment [3], more research is needed to develop robust solutions that protect against BGP
community attacks.

This thesis will try to fill that gap by being the first to develop and evaluate a solution that provides
cryptographic authorization for BGP communities. The solution achieves this by creating a new RPKI1
object where an AS can sign which communities are allowed to be used and provide several conditions
that need to hold to reduce the attack surface. ASes that deploy the solution can verify if route an-
nouncements carrying communities are allowed to use that community. Verification failures can result
in dropping the announcement and can thus block attack attempts.

Therefore, the main contributions of this thesis are the design of a protocol to secure BGP communities
via cryptographic authorization. Such a protocol that protects community values using a cryptographic
approach, while still allowing the legitimate use of communities and having adequate performance,
does not exist yet. Furthermore, we do not only provide a theoretical protocol design but also imple-
ment it in code and evaluate the protocol in simulation software. The evaluation is based on metrics
that are considered important for BGP security proposals and on the overall effectiveness against com-
munity attacks. The main research question that this thesis will answer is:

”How can we secure BGP community attributes against attacks?”

The thesis is structured as follows. In Chapter 2, we will discuss the relevant background for BGP,
the community attribute, notable security extensions, and community attacks that is required to un-
derstand this thesis. Readers can skip the sections in this chapter that they are already familiar with.
After the background, we will discuss the related work in Chapter 3. Afterward, Chapter 4 discusses
the methodology of this thesis, and in Chapter 5 the design of the security solution is explained and
documented. The evaluation of the effectiveness and performance of the solution is discussed in Chap-
ter 6. Finally, we end this thesis with a discussion of the results and limitations in Chapter 7 and the
conclusion in Chapter 8.

1Resource Public Key Infrastructure, designed to protect against prefix hijacking [12]. RPKI is explained in Chapter 2.

2
Background

In this section, we will discuss the necessary background of BGP that is needed for this thesis. To
accomplish this, we first discuss the workings of BGP itself, with the community attribute in particular,
and take a look at the security issues and attacks on the plain protocol. In addition, we discuss the
properties that a viable security solution should have. After that, we take a look at the vulnerabilities of
the community attribute, the attacks that are possible with it, and why it remains an issue to this day.
We finish this chapter by discussing the most notable security extensions of BGP.

2.1. BGP
The internet consists of large sets of networks, called autonomous systems. Each autonomous system
is identified by a unique AS number (ASN). The Internet Assigned Numbers Authority (IANA) is respon-
sible for the ASNs used for routing internet traffic. IANA delegates the allocation and assignment of
ASNs to Regional Internet Registries, which allocate and assign the ASNs to network operators accord-
ing to their policies [13]. An AS consists of a set of routers under a single technical administration [1].
The ASes are granted a set of delegated IP addresses, which they assign to their hosts and routers. To
route packets between these routers within an AS, they use an intra-AS routing protocol like OSPF1.
To also be able to route packets with other ASes, an inter-AS routing protocol is needed. BGP is such
an inter-AS routing protocol.

BGP consists of BGP routers to exchange network layer reachability information to other BGP routers
[1]. Two ASes that exchange routing information are called peers. A peer in a different AS is called
an external peer, and a peer within the same AS is an internal peer. Each AS has a routing policy
that defines which routes to accept and which routes to publish to other ASes. BGP uses TCP as its
transport protocol.

Routes on the internet are announced via BGP UPDATE messages. Each update message contains
a range of IP addresses, indicated by a prefix. For example, a prefix of 192.168.0.0/24 means the
IP range of 192.168.0.0 - 192.168.0.255, and 192.168.0.0/16 means 192.168.0.0 - 192.168.255.255.
Each UPDATE message contains a few attributes that can fall in four categories, seen below [1]:

1. Well-known mandatory.

2. Well-known discretionary.

3. Optional transitive.

4. Optional non-transitive.

All well-known attributes must be recognized by all different BGP implementations. The mandatory
attributes must be included in each UPDATE message containing IP ranges, while the discretionary
1https://datatracker.ietf.org/doc/html/rfc2328

3

4 Background

attributes may or may not be included depending on the type of UPDATE message [1]. Optional at-
tributes, on the other hand, are not required to be recognized by all BGP implementations. If they are
transitive, then a BGP implementation must accept the UPDATE message and can be passed along
to other peers. If the attribute is included when passing it along, then it must stay transitive (it cannot
be changed back to non-transitive). If an attribute is non-transitive, then BGP implementations must
ignore the attribute and must not pass this attribute along to other peers [1]. It is good to know that
optional transitive attributes can be attached to an update by any routers on the path, not only the
originator. For non-transitive attributes, it depends. However, both types of optional attributes can be
altered by BGP implementations on the path [1]. An update message, to name a few attribute exam-
ples, contains the AS originating the prefix called ORIGIN, a sequence of ASes that have forwarded
this announcement so far called AS-PATH, and the IP address of the next router called NEXT_HOP [1].

When an UPDATE message has been sent by a BGP router, the receiving BGP speaker stores the
update message locally in its Routing Information Base (RIB). Routes learned from other BGP speak-
ers are stored in the Adj-RIB-In. Based on its policy, which can be influenced by economical factors,
business decisions, etc., the BGP speaker selects a set of routes to use itself. These routes are stored
in the Loc-RIB, which is after the policies have been applied to the routes from the Adj-RIB-In. Finally,
a BGP speaker chooses a set of routes to advertise to its peers, which is located in Adj-RIB-Out [1].
The route decision process is determined by the best path selection algorithm. This algorithm deter-
mines which route is used to forward traffic to when multiple routes exist. Multiple attributes of BGP
and information about the route are used in this algorithm, but an important one is that higher prefer-
ence is given to routes with more specific IP prefixes, known as the longest prefix match rule. As an
example, 192.168.0.1/32 is preferred over 192.168.0.0/24 as the /32 prefix is more specific. Another
important rule is the shortest AS-PATH, meaning that shorter AS paths are preferred over longer paths.
As an example, if AS A receives two routes p with AS-PATH of size two and three respectively from
two distinct ASes, then the route with AS-PATH size 2 is preferred. Note that business decisions and
economics also influence routing decisions, as certain paths can be more expensive to use than others
or a certain path has less bandwidth than another one for example. A complete overview of a best
path selection algorithm used in practice can be found here for Cisco systems2 and here for Juniper
systems3, two major hardware vendors in the BGP field.

Three types of ASes can be classified [3]. First, there are stub ASes, which only carry traffic where
the source or destination is located within the AS. Second, there are stub ASes that have connections
to multiple ASes, which are called multi-homed ASes. Lastly, there are provider ASes that can also
forward traffic whose source or destination is not located in that AS. A different name for these ASes
is transit ASes.

On the other hand, there are also Internet eXchange Points (IXPs), which provide a data intercon-
nection facility where hundreds of ASes meet and exchange inter-domain traffic [14]. By connecting
to an IXP, ASes can shorten the paths to the transit coming from other ASes, which reduces latency,
round-trip time and reduces costs by avoiding routing network through providers [14].

2.1.1. Community Attribute
As we have seen above, BGP has several attributes, which can provide support in the decision mak-
ing of routing policies. One of these attributes is called BGP communities. BGP communities are an
optional transitive BGP attribute that are tagged to route advertisements [15].

Network operators can use BGP communities to take different actions based on the received com-
munity tags. This means that communities can be used as a common label for groups of prefixes,
but also to signal semantics between ASes or within the same AS [8]. They now encode a wide vari-
ety of information and are increasing in popularity. A few examples are encoding geolocation, traffic
engineering, encoding latency information, and Remotely Triggered Blackholing (RTBH) services [8].
RTBH is a service that can be offered by an AS for their customers to mitigate Denial-Of-Service attacks
2https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/13753-25.html
3https://www.juniper.net/documentation/en_US/junos/topics/reference/general/
routing-protocols-address-representation.html

https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/13753-25.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/general/routing-protocols-address-representation.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/general/routing-protocols-address-representation.html

2.2. BGP Security 5

by dropping traffic to the announced prefix [16]. Later in this chapter, we will see how the community
attribute can be exploited by an adversary.

The community attribute is a 32-bit field and can take any value. However, [17] introduced large com-
munities which takes 96-bits to accommodate larger ASN values. In this thesis, we will assume the
use of 32-bit community values, but the translation to 96-bits should be trivial. The convention is to
represent the ASN of the AS defining the community as the first 16 bits, and the last 16 bits as the
actual ’value’. This value can either signal an action, like RTBH, or a label, like geolocation [8]. As an
example, the format for a community value 567 defined by AS 1234 will look like 1234:567.

[15] defines a few standardized community labels, but this is small compared to the actual range of
values used in practice [8]. These values can differ in meaning per AS, and there is no documentation
for each AS as to what values they support or use, and this documentation is sometimes incomplete.
There is also no policy for how ASes should handle routes tagged with communities. Each AS is free
to define and use its actions and labels for the possible community values. In addition, each AS is free
to add, delete and modify the communities of announcements it receives [8]. As we will see later, this
freedom of community values is problematic, as well as how far community values propagate in the
network [18]. Furthermore, the security extensions of BGP which we will discuss later in this section,
do not protect the community attribute.

Communities have been identified to be used both internally in an AS when receiving a new route,
and externally to signal an action or information about a route. [19] identified that ASes are effectively
a combination of taggers or silent (they add community values or not) and cleaner or forward (remove
tags or ignore). According to [19], the communities that are sent to other ASes fall in one of these
categories:

• route selection: performed by adjusting the local preference attribute (used to manipulate the
best outbound path for an AS, it is set on received routes) and with AS path prepending (used to
manipulate routing decisions by inflating the AS path).

• selective announcements: done by labelling routes according to which class of AS (or even which
specific AS) they should be announced to.

• route suppression: performed by stating which AS not to announce to.

• blackholing: RTBH, typically indicated only for /32 prefixes to be as specific as possible.

• location: used to signal where a route has been learned, can be used for route selection.

2.2. BGP Security
Now that we have discussed BGP briefly, we will focus on the security issues with the protocol and take
a look at the approaches that have been developed so far to fix them. The most important shortcoming
of BGP routing is the lack of authentication and integrity [2]. Without authentication, there is no certainty
that an announcement that you received is coming from the AS that it says. See Figure 2.1a for an
example attack exploiting BGP without authentication. A different example showing how BGP can
be exploited without integrity is shown in Figure 2.1b. In this section, we will discuss the most notable
security extensions of BGP by first discussing a classification of security of BGP relevant for this thesis,
before discussing a few of the security extensions. For a complete overview of BGP security, proposals,
history and its challenges, the reader is directed to [3, 4].

2.2.1. Security Classification
Since we are only considering malicious use of the BGP protocol itself in this thesis, and not tampering
with lower layer protocols or physical tampering with hardware or cables between routers, there are a
few classifications of security for BGP [3]. First, there is securing the control plane, which means pro-
tection against tampering with routing information. Second, there is securing the data plane, meaning
guaranteeing that the routers forward the packets according to the route announcements they made. In
this thesis, we are only interested in securing a part of the control plane security, namely the community

6 Background

AS C

p

AS A
Possesses prefix p

AS B

p

(a) A is connected to C, as well as B. AS A possesses prefix p
and announces it to C. B, the attacker, announces p as well.
Depending on the route selection of AS C, it might choose to
route traffic for p to AS B, since C has no way to check if B is

allowed to originate p.

AS B

p

AS A
Possesses prefix p

AS C

p'

(b) A is connected to B, and B is connected to C. AS A
possesses prefix p and announces it to B. B, the attacker,

propagates the announcement p to C, but changes the contents
(for example, changing the AS-PATH, the prefix, etc.). C receives
the malicious changed announcement, but has no way to check if

B changed the original announcement from A.

Figure 2.1: Two examples exploiting the lack of authentication and integrity in BGP using ASes A, B, and C.

attribute.

Next to the proactive security of securing the control and data plane, there are also reactive secu-
rity measures for BGP. This includes anomaly detection and mitigation. For example, this can include
monitoring services that monitor the route announcements of BGP, like BGPmon4, and raising an alarm
when an attack is detected. Another research direction is the mitigation of these attacks, which could
include an automatic response that mitigates a detected attack. These are interesting and important
security directions for BGP but are not the focus of this thesis. Next, we will discuss the attack classi-
fication of attacks on the control plane.

2.2.2. Attack Classification
According to [3], the following attack taxonomy can be identified for the control plane, starting with data
falsification:

• Prefix hijack: An AS announces a prefix that it is not allowed to originate.

• Subprefix hijack: An AS announces a sub prefix (a subset of a prefix) that does not belong to the
AS. Since sub prefixes are more specific than the original prefix, there is a high chance that, if
the attack succeeds, other ASes will adopt the route.

• AS-PATH forgery: An AS changes the AS-PATH of a route announcement. This can either create
a one-hop prefix hijack by announcing a fake link between the AS and the victim or announce

4”BGPmonmonitors the routing of your prefixes and alerts you in case of an ’interesting’ path change”: https://www.bgpmon.
net/

https://www.bgpmon.net/
https://www.bgpmon.net/

2.2. BGP Security 7

a fake link to the sub prefix of the victim (which is called a one-hop sub prefix hijack). Another
variant of AS-PATH forgery is the AS-PATH prepending that we have seen before, or removing
ASes in the path to create a shorter, more attractive route.

• Interception attack: An AS uses previously mentioned attacks to redirect traffic through himself
(for eavesdropping purposes for example, or setting up a Man-In-The-Middle (MITM) attack) and
forwards it back to the legitimate AS. In this attack, connectivity is not affected if done correctly,
but victims will see an increase in latency.

• Replay/Suppression attack: An AS replays or suppresses an older route announcement.

• Collusion attack: Two ASes that are not direct peers of each other create a BGP session with
each other through a virtual tunnel. Through this virtual link, they can forge routes without causing
suspicious routing conflicts.

Next to data falsification attacks, there also exist protocol manipulation attacks where an AS manipu-
lates properties of the BGP protocol. Lastly, there also exist data misuse attacks, where an AS uses
correct routing data for malicious purposes. This can cause a Denial of Service (DoS) or a route leak. A
route leak happens when an AS announces routes to peers that are not intended to receive said routes
[3]. For example, business contracts might prohibit announcing those routes. Route leaks can cause
unintended routes that slow the internet down or route unintended traffic through a small AS (due to a
provider leaking a route) that is not able to handle the load.

2.2.3. Desired solution properties
As stated in [3, 4, 20, 21], securing BGP is a difficult task. There are many factors to consider, and
many proposals have failed to get them right. Since we want to develop a new extension for BGP in
this thesis, it is important to consider these properties and make the right balance between them. Since
there is no free lunch in computer science, there is no such thing as perfect security and performance,
so sacrifices need to be made. The compromises and balancing of our proposal is documented in
Chapter 5. Based on [3], the following properties for security solutions can be identified:

Security properties
How much extra security does the new extension guarantee? Which vulnerabilities remain for BGP
when deployed? Furthermore, new proposals should not introduce new attack vectors that do not exist
in legacy BGP.

Performance properties

• Convergence delay: security always comes at a performance cost, either in computational over-
head or additional communication costs. This performance overhead can cause a delay for
routers to reach a stable state, where they settled on the best route. The time it takes to reach this
state is the convergence delay and is compared to the convergence delay of plain BGP without
the security extension deployed.

• Stability: a stable state is important in BGP since the quality of connections is otherwise de-
creased or even unusable. Stability is measured if convergence on the best route is ever reached
between routers. If due to the new security extension the stability is compromised, it is unusable
for deployment.

• Scalability: due to the additional overhead of the security extension, the complexity of the protocol
is increased. Scalability measures how well the new protocol scales as the number of ASes
increases. It should scale when fully deployed on the internet, otherwise, it cannot be deployed.

• Computational overhead: As discussed before, security increases computational and communi-
cation overhead. The computational overhead can be defined as how many BGP control mes-
sages can be processed per unit of time, or as how many operations need to be executed on
each message compared to legacy BGP. This needs to be measured on the same hardware,
but a compromise can be made to install better hardware depending on the additional security
guarantees a protocol can guarantee (but this new hardware needs to be justified).

8 Background

• Bandwidth overhead: Additional communication overhead impacts the bandwidth needed for
BGP to function. More overhead can be costly, both in terms of the rate of BGP messages
to be sent, but also economically depending on how much the bandwidth costs.

• Storage overhead: New security protocols can require more memory on the BGP routers to per-
form the necessary computations compared to legacy BGP. The degree of additional memory
required is called the storage overhead and also includes the case if additional hardware is re-
quired to deploy the security extension.

Privacy properties
Certain ASes want to keep their routing policies, business contracts/relationships, or other data private.
A new protocol should not require additional sensitive information that is revealed compared to plain
BGP, as ASes will otherwise not want to deploy it.

Deployability properties
The above three properties are important to consider for BGP, but they do not consider the deployability
of the solution. A new solution should ideally be easy to deploy incrementally on the internet and also
provide immediate security benefits. If only security benefits are guaranteed when all ASes deploy the
new protocol, or everyone needs to deploy it at once, then the protocol will never be deployed in the
real world. A large number of ASes exist (73444 at the moment of writing [22]) and they all have their
own hardware. Certain ASes might not care or have the money/time to deploy a new protocol version
right away, and the incentives for an AS to deploy the security proposal are minimal if they do not see
fast security improvements. In addition, interoperability with legacy BGP is needed because not all
ASes can deploy a new version right away, or want to deploy it.

2.3. Community Attribute Vulnerabilities
The BGP community attribute introduces several new attack vectors due to a lack of integrity and au-
thenticity, the complex policies of ASes, error-prone configurations, missing semantics, and the wide
degree of community propagation in the network [8]. Streibelt et al. found that due to the rich connec-
tivity of transit ASes, received BGP communities are effectively propagated globally. In this section,
we will look at why community attacks are possible, which attacks can be performed, and how they can
be (partly) mitigated.

2.3.1. Community Attacks
Three possible attacks can be classified as identified in [8]. There are multiple scenarios under which
these types of attacks can be performed, but only one will be given to explain the concept:

• RTBH: As discussed before, the RTBH community value drops traffic to the destination under
attack, and can be added to a route announcement that should be as specific as possible. Note,
that this should also be done as close to the source of the attack as possible. However, Streibelt
et al. identified 50% travelled up to two hops [8]. This service offered by ASes should only be
used when an IP address is under attack and the announcer should have authority over the IP
address. Due to a lack of authenticity, this allows for an RTBH attack. See Figure 2.2 for an
example.

• Traffic steering: An easy example to illustrate traffic steering is with the community value that en-
ables path prepending for ASes that define that service. If an adversary performs path prepend-
ing, it can make a route less attractive for the AS that receives the altered announcement. Due
to this, the AS might choose a different path to route traffic.

• Route manipulation: Some IXPs offer specific services that are enabled by community values,
and one of those services is signalling which routes should be advertised to other IXP members
or not. An attacker could use this service to cause the IXP to not advertise certain prefixes to
peers. This is just an example of route manipulation, and this example is possible since some
IXPs handle community-based services in a specific order. In this case, the ’do not advertise’
community is handled before the ’do advertise’ community that was sent by the legitimate AS [8].

2.3. Community Attribute Vulnerabilities 9

AS A
Possesses prefix p AS B AS C

Offers RTBH

p
Community: -

p
Community: 666

Figure 2.2: RTBH attack by AS B. AS C offers RTBH service and B adds the blackhole community (value 666) to the route
announcement of A before forwarding it.

Streibelt et al. identified two conditions that are necessary or sufficient to perform community attacks:

1. Necessary condition: Remotely triggered actions based on community values can be used if com-
munities are propagated beyond a single AS and the community service is known (or guessed/inferred
by the attacker).

2. Sufficient condition: For the community vulnerabilities to be triggered, it is sufficient if the attacker
can advertise prefixes with the appropriate communities for all ASes on the path to the target AS.

The authors confirmed that necessary conditions hold on the internet due to communities propagating
beyond their direct neighbours [8]. They also carried out the attacks in the wild, and provide a summary
of their insights, which can be seen in Figure 2.3.

Figure 2.3: Summary of insights from attacks carried out in the wild by Streibelt et al. in [8].

2.3.2. Possible Mitigations
The authors of [8] identified with network operators that the scope of community values is usually only
one or two hops, but based on observations, the communities propagate beyond that. Streibelt et al.
came up with a few mitigations. One mitigation is deciding if the benefits of easy signalling using com-
munities is worth the risks of potential attacks. The second mitigation is filtering the communities to limit
the reach. The third is the call for authentication of the right to attach a community to an announcement
or modify one in transit, but the authors list that there are no known means to do this. Lastly, monitoring
more globally could discourage malicious parties from carrying out attacks, since there is a high risk of
being caught. However. there is no global BGP view and route collectors do not see every announce-
ment or community as some ASes filter or change them [8]. Since there is no clear semantics for the
communities, these ’undefined’ values cannot be monitored properly for what the consequence might
be. That is why Streibelt et al. call for proper documentation. Community values still pose a clear threat
and there exist no completely effective mitigations yet.

10 Background

Birge-Lee et al. found that you can also perform interception attacks using BGP communities. How-
ever, from the currently available mitigations, only prefix filtering could stop the attack. Route origin
validation and AS-PATH filtering are ineffective against an interception attack [10]. The authors list a
few possible countermeasures, namely restricting community propagation, restricting community size
in announcements, restricting community actions, and anomaly detection based on historical updates.
All of the countermeasures they list can stop the interception attack, but limit the legitimate use of BGP
communities [10]. The authors do note that BGPsec offers the most comprehensive resolution to BGP
interception and hijack attacks, but BGPsec does not prevent all community attacks and has severe
issues that hinder deployment. Both of these issues of BGPsec will be explored in the next section.

2.4. Notable BGP security extensions
There have been a vast majority of security proposals for BGP. [3, 4] made an extensive overview of
the current state of BGP security. An overview of these security proposals and what they can protect
against can be seen in Figure 2.4, which has been made by the authors of [3]. As can be seen, there
are many proposals, but only a few are actually adopted or even standardized. A big issue with BGP
security as well is that many proposals are only theoretical academic papers. In addition, many of the
proposals do not meet the desired properties for security proposals that we introduced before, making
them not a viable option (see Figure 2.4). For the notable security extensions, we will only consider the
ones that are (partially) adopted and BGPsec. In addition, since the release of [3], there have been a
few interesting proposals. One of them is ASPA, which we will also take a brief look at.

Figure 2.4: A summary of main BGP security proposals from [3]. Notion: ■ has feature, � partially has feature, □ does not have
feature.

Route filtering
ASes can use route filtering to filter out bogus route announcements, caused either due to miscon-
figurations or malicious attempts. A few examples of filters are filtering out IP prefixes (like private
or special IP ranges), a match on AS paths, or any other attribute of a BGP prefix [23]. But network
operators can also use a publicly available database containing internet routing information from other
ASes [23]. Such a database is the Internet Routing Registry (IRR). The IRR provides a global view of
the routing information where ASes can upload their routing data. This can be used to filter out an-
nouncements that do not comply with the data of the IRR for example. However, the IRR is flawed due
to complex routing policies, the distributed nature of the database, security issues, and the accuracy of
the database [3]. For example, some ASes do not share their routing information due to privacy issues
(due to a lack of access control as to who can see which information). Furthermore, due to a lack of

2.4. Notable BGP security extensions 11

authentication, ASes could advertise a prefix not belonging to them in the IRR and create blackholes
and other security threats [23].

Peerlocking
Peerlocking was presented in 2016 as a deployable solution to defend against route leaks. ASes com-
municate out-of-band (meaning not via BGP itself, but via a different channel) a protected AS and a
protector AS [24]. The protected AS communicates designated authorized upstreams to the protector.
The protector then filters out route announcements whose AS-PATH contains the protected AS unless
it is received directly from the protected AS (or one of its designated upstreams, if peer locking is de-
ployed at a lower-tier AS). A requirement for this to work is trust between the ASes that are peerlocking.
The filter prevents the protector AS from propagating its traffic onto any leaked routes that transits the
protected AS [24]. Several tier 1 ASes (the ASes do not have providers themselves) are already using
peerlocking [24]. A light version that requires no communication is also deployed by networks to filter
out tier 1 ASes from announcements and thus prevent tier 1 leaks. This is based on the assumption
that provider ASes should never receive a route from a customer where the AS-PATH includes a tier 1
AS [24].

RPKI
The SIDR working group developed a Resource Public Key Infrastructure (RPKI) for BGP, to provide
origin authentication for route announcements. RPKI provides a set of building blocks that allows var-
ious levels of protection of the routing system, with the initial goal being route origin validation [12].
This improves upon some of the issues with IRR, where authentication is not present. Each AS can
upload a cryptographically signed Route Origin Authorization (ROA) in a regional database that pro-
vides cryptographic proof that that AS is the rightful owner of a prefix and is thus allowed to announce
it. RPKI data is delivered via a validated cache using the RPKI-RTR protocol to the BGP routers. The
router itself does not perform any cryptographic validation, this is all handled by the validated cache.
This setup improves the deployability of RPKI by causing minimal overhead for BGP routers and a
negligible influence on convergence speed [25]. There are three states when a route announcement
is checked against a ROA. Valid means the route is covered by at least one ROA, Invalid means the
announced prefix is not covered by a ROA (for example, if announced by an unauthorized AS, but this
could also mean that the ROA is expired), and NotFound means that the prefix is not covered by a ROA
[25]. These three states allow for incremental deployment of BGP as more ASes upload their ROAs.
An issue with this approach is maintaining an up-to-date view of the regional databases, since stale
records and other misconfigurations have a direct impact on reachability of affected prefixes [26].

Each ROA contains the following information [27]:

• Version number.

• Timestamp.

• ROA Name.

• ASN of the origin AS that is authorized to announce the prefixes in this ROA.

• Validity date start and end, where the ROA is considered valid.

• Prefix and prefix length to speficy the range of IP addresses that are associated, and thus autho-
rized, to be announced by the origin AS specified earlier. Multiple prefix, prefix length, and max
length tupples can be specified after each other.

• Max length to specify the smallest prefix length that is allowed for this prefix to be announced.
This is an optional field.

Several tools are available to easily deploy RPKI validation for routers5 and an increasing number of
ASes enforce RPKI filtering [26]. Although global adoption is still relatively low6 at the time of writing,
RPKI is currently the most widely deployed cryptographic security measure for BGP and the number
5https://rpki.readthedocs.io/en/latest/ops/tools.html
6https://rpki-monitor.antd.nist.gov/

https://rpki.readthedocs.io/en/latest/ops/tools.html
https://rpki-monitor.antd.nist.gov/

12 Background

of ROAs is increasing over time7. The main factors that hinder adoption are human errors causing in-
validity of RPKI objects and dependencies between organizations where ASes need to wait for others
to deploy RPKI first [3, 28].

One of the remaining issues is that RPKI does not provide integrity, so a lot of attacks are still pos-
sible. To further complicate the issue, RPKI itself can be circumvented with a one-hop prefix hijack
[3]. As an example, see Figure 2.5. Because RPKI does not provide integrity, this type of hijack is still
possible. However, it does inflates the AS-PATH compared to a normal prefix hijack, which can make
the route less preferable and thus the attack less successful depending on the circumstances.

AS A
Possesses prefix p AS C & AS D AS E

p
AS-PATH: [A]

p
AS-PATH: [C D A]

AS B

p
AS-PATH: [B A]

Figure 2.5: One-hop prefix hijack using ASes A, B, C, D, and E. We will assume that all ASes in this example deploy RPKI. AS
A possesses prefix p and announces it via AS C and D to AS E, which makes the AS-PATH of length 3. AS B announces p as
well, but it is not authorized to do so. Instead, B adjusts the AS-PATH and says it has a route to AS A which it does not have.
AS E receives the announcement and cannot check if B has a path to A. Since A is authorized to announce p, E will accept the

announcement of B. Since it has an AS-PATH of 2, it is likely that E will route traffic through B.

BGPsec
The lack of integrity of RPKI is where BGPsec comes into play. BGPsec provides authenticity and
integrity of route announcements by also protecting the AS-PATH with authentication and integrity [29].
BGPsec uses RPKI for origin authentication. Furthermore, each router has a certificate to sign the
route announcement received from the previous router. This creates a chain of cryptographic signa-
tures that can be checked to make sure that the first AS can originate the prefix and that every router
on the path did not alter the contents of the AS-PATH. This creates the following property for a path of
BGPsec-enabled routers: ”every Autonomous System (AS) on the path of ASes listed in the UPDATE
message has explicitly authorized the advertisement of the route to the subsequent AS in the path” [29].

The issue with BGPsec, however, is the need to replace or deploy extra hardware to support BGPsec
due to the heavy computations required for signature validation [3, 4]. Furthermore, the announce-
ments increase in size due to each signature, which has an impact on the bandwidth. A different issue
with the protocol is the lack of benefits when BGPsec is deployed partially, meaning the incentive for
adoption is low [3]. The biggest issue of BGPsec, however, is the ability to perform a downgrade attack
[29]. BGPsec can only be used if every router on the AS-PATH supports the protocol. If this is not the
case, legacy BGP is used which has all of the issues that BGPsec tries to solve. A malicious AS can
thus say that it does not support BGPsec and carry out path hijacks and other attacks again.

The reader might wonder if BGPsec is able to protect against the community attacks that we have
seen earlier, since it provides authenticity and integrity. Unfortunately, this is not the case. BGPsec
only provides authenticity and integrity for the AS-PATH attribute [29], meaning the community attribute

7https://rpki.cloudflare.com/

https://rpki.cloudflare.com/

2.5. BGP Alternatives 13

is still unprotected [8]. Community attacks are thus still possible even when BGPsec is used.

ASPA
As we have seen, the lack of AS-PATH verification in RPKI is one of the biggest security issues that
remains after deploying RPKI. BGPsec tries to solve this but fails to meet the metric requirements of a
security extension that we discussed. Furthermore, the downgrade attack makes it possible to drop all
BGPsec security measures, making BGPsec not suitable for any deployment soon before these issues
are addressed and the necessary hardware upgrades have been made.

This is why Autonomous System Provider Authentication (ASPA) is an interesting and promising addi-
tion to RPKI. It is currently still in the draft stage at the time of writing, but the workings of ASPA and the
promised security benefits are exciting. The basic idea is that if a valid route is received from a cus-
tomer or peer, then there must be a customer-provider pair present in the AS-PATH [30]. Because of
this, if we have a validated database of customer-provider pairs, then we can verify the routes received
from customers and providers. The validation can be done by introducing a new RPKI object. The
new object binds a set of provider ASNs to a customer ASN, which is signed by the customer AS [30].
ASPA is incrementally deployable and scalable and looks to be similar in computational requirements
to RPKI. It brings benefits even in partial adoption and hardware additions are most likely not required
to deploy ASPA as it works on the existing RPKI architecture [30].

ASPA has similarities to Peerlock, but Peerlock requires manual labour to coordinate authorizations
between peers. ASPA is intended to replace Peerlock deployments according to the draft [30]. How-
ever, it is good to note that ASPA has limitations. Customer ASes need to maintain a correct set of
providers in the signed objects. Furthermore, ASPA only allows the detection of misconfigurations and
malicious attempts of announcements received from customers and peers [30]. There is no explicit
integrity protection on the AS-PATH. This means that the upstream providers become a trusted source,
meaning that these providers can hijack their customers or send malformed AS-PATHs to customers
[30]. The authors do note that we have to consider the likelihood of this since providers have legal
consequences for doing such practices.

2.5. BGP Alternatives
There are also alternative internet architectures that try to solve problems that plague the internet to-
day, which is not limited to BGP. A few interesting and promising approaches are SCION (Scalability,
Control, and Isolation On Next-Generation Networks)8, RINA (Recursive InterNetwork Architecture9,
and NDN (Named Data Networking)10. Each of these proposed future internet architectures is solving
the problems of the internet differently, and they may have problems on their own. There is much
research going on in these emerging architectures and it is good to keep an eye out for them. The
treatment of these internet architectures is out-of-scope for this thesis, but we have left a few foot-
notes for readers interested in them and to make people aware that there are other architectures than
BGP in development, and possibly used in the future. Also check out 2STIC, a joint research program
to ”develop and evaluate mechanisms for increasing the security, stability and transparency of inter-
net communications, both through extensions of today’s Internet as well as through emerging internet
architectures.”11

8https://scion-architecture.net/
9https://csr.bu.edu/rina/index.html
10https://named-data.net/
11https://www.2stic.nl/index.html

https://scion-architecture.net/
https://csr.bu.edu/rina/index.html
https://named-data.net/
https://www.2stic.nl/index.html

3
Related Work

In this chapter, we will discuss the related work that has been done by researchers on both BGP secu-
rity and security issues of the BGP community attribute relevant for this thesis. In the background, we
briefly discussed how BGP and the community attribute works, the notable security extensions to BGP
and desired security properties for extensions, and discussed the taxonomy of community attacks and
a few possible mitigations. We also discussed an interesting security extension called ASPA, which
provides AS-PATH validation. The implementation of ASPA consists of creating a new RPKI object,
which is a source of inspiration for the solution that we will develop in Chapter 5. Here, we will look at
other related work in the area of BGP and community attacks. This includes attack detection, which
is a reactive approach to dealing with security, contrary to the proactive approaches we have seen so
far.

Many papers have talked about the security issues of BGP and provided future directions for later
research, which we briefly discussed in Chapter 2. Because of the many metrics that security propos-
als need to keep in mind (see Section 2.2.3), and since many proposals are only academic [3], BGP
security extensions are hard to develop and difficult to deploy quickly. ASes are hesitant and have a
lack of incentives since many solutions are suboptimal in terms of metrics. Both the authors of [3] and
[4] provide an extensive and up-to-date survey of the current state of BGP security and what has been
done in the past, together with the issues and difficulty of securing BGP. Multiple papers, also covered
by [3], try to look at a more practical security, including better monitoring and automatic mitigation,
which is certainly an interesting direction for securing BGP. As an example, [31] provides a system for
detecting serial hijackers.

Testart and Clark provide an in-depth overview of the state of routing security, adoption of security
proposals, the problems with them, and directions for the future [20]. The authors also introduce a
new concept called ’zone of trust’, using the enhanced operational practices of MANRS participants.
Their approach is compared to ASPA, with the main difference that ASPA requires a global database
and that in ASPA any AS can inspect an announcement for an invalid path instead of only a MANRS
participant. Due to issues of centralizing records globally in databases [20], our solution in Chapter 5
will also use include an approach without a centralized database.

Streibelt et al. introduce the threat of community attacks to the world and provide the first attack taxon-
omy in [8]. They showed why communities can be an attack vector and why more research is needed in
understanding the use of communities, but also to research new mitigations for the threat. They show
the difficulty of performing community attacks and how practical they are to achieve on the internet.
Furthermore, Krenc et al. stress a second unintended side effect besides the security vulnerabilities of
communities, namely an increase in unnecessary BGP routing messages due to the large propagation
of community values in the network [18]. A change in community value induces update messages
throughout established routes that just update the community value. In later research, Krenc et al.
presented the first classification of BGP communities, namely the tagger, forwarder, cleaner, and silent
ASes [19] that we discussed in Chapter 2.

15

16 Related Work

On the other hand, Birge-Lee et al. show with their SICO attack that advanced interception attacks
can also be achieved with communities. The attack they introduced is novel and shows how advanced
interception attacks can be performed live on the internet, and that 83% of multi-homed ASes is capable
of launching these attacks [10]. This only raises the importance of finding good mitigations, since we
have seen in Chapter 2 that current mitigations are lacking. To further stress issues with communities,
Nawrocki et al. talks about the issues of RTBH practices at IXPs. They reveal that only a third of RTBH
events correlate with DDoS attacks, 2000 RTBH events are announced for prefixes of clients in DSL
networks, that RTBH only drops 50% of traffic on average, and that some (even large ISP) operators do
not even accept /32 prefixes for blackholing [32]. They also find that there is collateral damage when
using RTBH since RTBH stays active for a long time after the actual attack is finished.

A first cryptographic security proposal for BGP communities was introduced by Miller and Pelsser. The
authors presented a taxonomy of BGP blackholing attacks and researched that fully/partially deployed
RPKI or BGPsec do protect against some of the attacks, but not against all. Furthermore, none of them
protect against on-path attackers [11]. As a first step towards a cryptographic security extension for
communities, the authors propose to extend the AS-PATH attribute to also include community values
in the signatures. The proposal is only theoretical, so there are no concrete performance numbers.
Since BGPsec is not a viable option for deployment yet (see Chapter 2), and that adding more values
in the AS-PATH will only inflate the size of messages even further, this approach is not a viable option
for protecting community attributes currently.

Since our security proposal builds upon RPKI, it is a good idea to understand the issues that face RPKI
itself and the deployment. Gilad et al. talks about why RPKI has deployment issues and that wide
deployment is not sufficient to protect against prefix and sub prefix hijacking. Furthermore, the authors
also provide a survey with network operators to identify the causes of slow RPKI adoption [28]. This
mostly consists of loss of traffic due to badly issued ROAs and inter-organization dependencies (waiting
for another AS to deploy RPKI for example). Fortunately, many obstacles can be avoided according to
the paper by focussing on large ISPs, making modest changes to RPKI, and using detection systems
[28]. To further understand the hesitance of ASes to deploy security proposals, Sermpezis et al. sur-
veyed network operators to identify the reasons that hinder the deployment of defence mechanisms
in general. The importance of characteristics of a defence system, according to network operators, is
summarized in Figure 3.1.

A different issue of RPKI is the importance of good ROA management. Testart et al. discuss the need
to regularly sync local RPKI data to make sure there is no loss in traffic [26]. Hlavacek et al. on the
other hand, try to solve the manual and error-prone certification process of RPKI issues by using au-
tomatic deployment [33]. Any error made can result in loss of traffic, so the authors came up with a
novel system called DISCO, which automates certification and generates appropriate filtering rules.
Furthermore, the system is tested live on the internet using the PEERING testbed1 and is considered
deployable by the authors [33]. The approach they took for implementing DISCO in a deployable way
is an inspiration for our developed protocol, which we will talk more about in Chapter 5.

While a lot of research is done on new security proposals for BGP or discovering new vulnerabili-
ties, NIST has researched an architecture to overcome the deployment issues of RPKI and BGPsec,
including performance metrics [35]. In addition, to overcome the one-hop prefix hijack of RPKI, Cohen
et al. focus on extending RPKI using path-end validation. Their approach does not require upgrading,
replacing BGP routers or performing much more expensive cryptographic operations [36]. It provides
added security benefits on top of RPKI by preventing the one-hop prefix hijack. Lastly, there is also
an organization called MANRS2. It is a global initiative to provide guidelines and concrete actions for
network operators to follow to reduce the most common routing threats. MANRS outlines four concrete
actions for participants [37]:

1PEERING provides testbeds for live BGP studies, including new security proposals, to test live on the internet as a means of
mitigating the obstacles that come with executing experiments on the internet. The platform supported over 40 experiments
and 15 publications already in 2019 [34].

2Mutually Agreed Norms for Routing Security: https://www.manrs.org/

https://www.manrs.org/

Related Work 17

Figure 3.1: Importance of characteristics of a defense system, according to network operators [21].

• Filtering: preventing propagation of incorrect routing information.

• Anti-Spoofing: preventing traffic with spoofed source IP addresses.

• Coordination: facilitating global operational communication and coordination between network
operators.

• Global Validation: facilitating validation of routing information on a global scale.

4
Methodology

In this section, we will explain and motivate the setup of this research and the approaches that will be
taken. This includes what the research questions are and how they will be answered. In addition, we
discuss and motivate the approaches for the data collection of the experiments needed to answer the
research questions and define the scope of this thesis. The tools that are going to be used, development
of the security solution in theory and practice, tools used to perform the experiments, etc. are discussed
in Chapter 5 and how they impact the goal of this research and its outcomes. The experiments of
this thesis are defined, explained, and discussed in Chapter 6, together with any limitations of the
approaches taken. This makes it easier to understand and reference the experiments when discussing
the results for the reader.

4.1. Research questions
As discussed in the introduction, the main research question for this thesis is: ”How can we secure BGP
community attributes against attacks?”. To be able to answer this question effectively, we have come
up with four sub-questions that will progressively help us to arrive at an answer. These sub-questions
are as follows:

1. What has already been done to secure BGP against community attribute attacks?

2. What is important to consider a solution viable for deployment, and with which metrics can we
measure that?

3. How can we meaningfully develop and test solutions without deploying them live on the internet?

4. How can we verify the community attribute while satisfying the requirements for a viable solution?

4.2. Approach
Now that we have defined the main research question and its sub-questions, we need to define the
approach to answer each question and the tasks that need to be performed. For each sub-question,
we will list the approach to answer it and any tasks that are required to be completed. An overview of
the main outcomes of each subquestion will be presented in Chapter 7.

4.2.1. What has already been done to secure BGP against community attribute
attacks?

This question will be answered by performing a literature review to find the current state of BGP security,
the state of BGP community attacks, and the state of current mitigations against the attack. The main
outcomes will be presented in Chapters 2 and 3.

19

20 Methodology

4.2.2. What is important to consider a solution viable for deployment, and with
which metrics can we measure that?

This question will be answered by reviewing current BGP security solutions and analyzing why they
are either successful or not. Furthermore, it is important to see what the stakeholders, in this case
the ASes, find important to consider a solution viable and what they are looking for. In addition, to
find out important metrics, we can look at what other BGP security solutions have used to measure
performance and viability for deployment. These metrics must be independent of the security solution
being developed, i.e. they are not chosen or cannot only be applied to this security solution. It should
be a generic approach for assessing BGP security solutions.

4.2.3. How can we meaningfully develop and test solutions without deploying
them live on the internet?

This question requires us to research how we can develop BGP security proposals and test them
without having access to production equipment and the rich connectivity of ASes live on the internet.
The outcome of this question will be a combination of tools, software, or approaches, to develop and
test BGP security solutions, and should be independent of the security solution being developed. There
will be limitations by taking this approach, and these limitations must be clear and documented.

4.2.4. How can we verify the community attribute while satisfying the require-
ments for a viable solution?

To answer this question, we need to make a theoretical model of the proposed security solution. With
this model, we can analyze what the solution can and should protect against, and we can analyze the
properties of the security model using a theoretical analysis. This theoretical model can predict how the
performance will be, what attacks it can defend against and which not, if the BGP protocol should be
changed, etc. To arrive at and develop such a model, we can look and make use of previous security
proposals for BGP and their pros and cons. Furthermore, with some creativity, we could also develop
a new approach of mitigating attacks or take inspiration by taking a look at other security solutions
outside of BGP. The outcome should guarantee a result where the use of community attribute values
can be cryptographically authorized while keeping the metrics that we defined in the previous question
in mind. Through trial and error, or incremental changes to the model, we can improve if any issues are
found. Somewhere in the metrics, compromises must be made to arrive at a balanced solution. These
compromises must be explained and documented.

4.3. Data collection
To answer some of the subquestions, and of course the main research question, the developed security
solution needs to be evaluated. We have defined the metrics with which we can assess BGP security
solutions in the background chapter. These metrics can be expressed in different ways, depending on
the capabilities of the simulations and of course time constraints for this project. For this thesis, the
following options are possible:

1. Theoretical results: certain metrics might not be measurable in an exact number depending on
various reasons. This could be due to limitations of the simulations, lack of data, time constraints,
etc. If a metric is expressed with only a theoretical analysis, this analysis should be sound and
clearly explain why it is only theoretically analyzed.

2. Approximate results: for certain metrics, it is not needed to know exactly how fast the solution is.
For example, speed can depend on a lot of factors, and will give different results depending on
the hardware it runs on, and also if it is running on actual routers or in software only. We might
only be interested in seeing if the difference between the metric of the plain solution and the
proposed solution is negligible. For example, if we want to measure if the start-up time of a router
is significantly impacted by the security solution deployed, we are only looking if the results are
acceptable. This means that if a normal router takes 10 seconds, and a security solution takes
15 seconds, then this can be considered acceptable if the security solution brings added benefits
and thus outweighs the drawbacks. That is why certain metrics will have so-called approximate
results, i.e. the results should not be significantly different from each other. This also means that

4.4. Scope 21

these approximate results do not need the same kind of precision as exact results, as the added
precision does not influence the outcome. As an example, it does not matter if the precision is 15
seconds or 14.89465767 if we are only looking at the precision of seconds.

3. Exact results: some metrics need more precise results to draw meaningful conclusions, in con-
trast to approximate results. For example, if we want to know how long it takes a router to validate
a certificate, we want a precise answer as a small difference in results has an impact on the num-
ber of certificates that can be validated each second. An approximate result is simply not good
enough here as we need the precision in these cases. Metrics that require exact results will be
indicated and explained properly and require better precision than the approximate results that
we talked about before.

Properly defining the kind of results that we gather in the simulations is important. Due to the difference
between approximate and exact results, the time to run simulations decreases and allows for analysing
and gathering other data in the given time frame of the project.

4.4. Scope
It is important to discuss and define the scope of this thesis before proceeding with the experiments
and development of a solution. In the background we have discussed attacks against BGP, which
also includes attacks other than community attacks. However, for developing the solution, we will only
consider protecting the community attribute and thus only protect against community attacks. More
specifically, we will focus on the ’normal’ community attribute in this thesis, and not consider the large
community attribute or the extended community attribute. However, extending the developed solution
later in this thesis to also include these two different community attributes is trivial, but not considered
for both readability of this thesis and quicker development and testing. The same goes for IPv6, we
will only consider IPv4 in this thesis, but the translation to IPv6 should be trivial. Other BGP attributes
are not relevant for this thesis and thus also not protected by the developed solution. Furthermore,
vulnerabilities or weaknesses related to TCP, or any of the lower network layer protocols used by BGP,
are out of scope. We will only protect a part of the control plane in BGP (specifically, the authorized
usage of the community attribute), and not other attributes or the data plane.

Now that we have defined what we are protecting in BGP, we can further define the scope for the
security solution that we are going to develop. This thesis is going to focus on mitigating community
attacks via cryptographic authorization. We will do this by making use of RPKI objects, which will be
further motivated and explained in Chapter 5.

In the background we also discussed that one of the issues of communities is the lack of semantics. It is
important to note that semantics are not validated with this security proposal, but that this is an interest-
ing improvement to the developed solution. This will also be further discussed in the discussion chapter.

At last, it is important to define what is achievable in this thesis, and what is not. In the time frame
of the project, we will develop a theoretical security solution first. Afterwards, this solution is developed
and tested in simulation software. The choice to do it in simulations is partly due to it being easier in
the time frame than developing and testing on real hardware. On the other hand, due to the corona
pandemic, the university was not able to provide the guidance and equipment for hardware testing,
meaning that simulations are the only feasible option. Regarding the experiments to measure the met-
rics of the developed solution, this will be a split between theoretical analysis and actual measurements.
Some properties, like scalability on the internet, are not possible to measure in simulations with only
a laptop. However, we can analyse in theory how it would scale and use measurements on lower
scales to see if we can estimate the scalability to internet size. We will further define and talk about the
limitations of the approach and the analyses in the discussion chapter.

5
Design

In this chapter, we will discuss the solution design from both a theoretical and practical standpoint.
We start by creating the theoretical solution and explain why it was chosen this way. Afterwards, we
can theoretically analyze how it will perform and what it can protect against, but also what the potential
drawbacks are. After that, we explain the practical implementation of the security solution together with
drawbacks and improvements of the solution, the tools, simulation, and the implementation.

5.1. Theoretical
We start by discussing and explaining the theoretical part of the proposed security solution design.
The solution is called RCA, which stands for Route Community Authorization, named after the related
ROA in RPKI. We start by discussing the requirements for the solution design and the creative process
to arrive at this solution. Afterwards, we discuss the newly developed RPKI object in detail, where
it is explained what the capabilities are and why it works. Then, we discuss the deployment of RCA
and its benefits. We end this section by discussing an example and looking at the drawbacks and
improvements.

5.1.1. Requirements
As discussed in the background, there are a lot of requirements that a security solution for BGP should
have to be considered viable for deployment. In the background, we discussed several metrics to as-
sess a security solution. As a quick recap, a solution should be secure, performant, deployable, and
privacy-friendly. But, as is the case for every single security solution, you cannot have all of them, there
needs to be a compromise somewhere. Since we have seen that community values are widely used by
ASes, the security solution should not impact the usability too much. Otherwise, ASes will not consider
it if their usability is affected. Another important requirement is that the BGP protocol itself should not
be altered.

The first idea that came to mind is signing the community value or attaching a Message Authenti-
cation Code (MAC) to each announcement. However, this would require cryptographic operations on
every outgoing BGP UPDATE, which is expensive. We also know from the issues of BGPsec that cryp-
tographic operations on every UPDATE message are not going to work with the current hardware and
incentives of ASes. We need to consider a solution where cryptography can be offloaded, like RPKI
and ASPA.

The second idea came to mind by doing just that. ASPA is interesting since it is a new RPKI object
that promises AS-PATH verification. From the background, we know that RPKI objects are uploaded
to a database, just like ROAs, so there is no cryptographic operation for each UPDATE message. In-
stead, the object defines customer-provider pairs that can be validated. ASPA has been claimed to be
incrementally deployable, scalable, and similar in the computational requirements to RPKI. However,
ASPA is still in the draft stage, and the integrity of the AS-PATH attribute itself is not protected. Check
out Chapter 2 for more background and potential issues of ASPA.

23

24 Design

Using this idea from ASPA, and looking at how ROAs work, we started working on the second idea.
By introducing a new RPKI object, we can define which community values are allowed by signing them
and uploading them as an RPKI object. When values are seen that are not included in the object,
the UPDATE is dropped and a potential community attack is prevented. With this approach, there are
still issues: since it is based on RPKI objects, it suffers from the same problems as ROAs and ASPA.
There is no integrity and the objects are uploaded in global/regional databases, to name two specific
examples. Privacy is impacted as well since everyone can look at which AS uploaded which allowed
community values, which might expose sensitive information. Furthermore, ASes that are participating
do not protect themselves but protect others that deploy RCAs. The more ASes participate, the more
protected everyone becomes, but there are no security benefits if you are an early adopter.

The third idea is an iteration of the second idea, but slightly improved. ’Perfect’ security is not always
achievable, or even desired due to complexity or computational impact. A general good approach to
securing things is to reduce the attack surface. With this, we mean that you define what is strictly al-
lowed, and everything else is considered a violation. Just look at the examples that already exist in the
wild: firewalls drop traffic which is not explicitly allowed, applications are hardened by explicitly listing
what they can do and the Operating System stops everything outside of those capabilities (AppArmor
is a good example on Linux1), ransomware protection on Windows lists which processes are allowed
to edit files in protected folders, others are blocked2, etc. What if we use this practice of listing what
is allowed and consequently reducing the attack surface, and thus improve the security of community
usage?

The third iteration uses this idea and adds more information to the RPKI object regarding specific
conditions for community usage, which we will see in the next section in detail. By defining which ASes
are allowed on the AS-PATH, the maximum AS-PATH length, regex for community values, max pre-
fix length, etc. we can specify specific conditions where we can reduce the attack surface and thus
achieve better security than the second idea.

The final idea is inspired by Peerlock and one of the critiques against ROAs. ROAs are stored in
global databases, and global databases are accessible to any participating party. This means that
sensitive information of an AS is required to be uploaded to a global database if the AS wants to deploy
ROAs. Amore privacy-friendly option is to exchange information between peers (which Peerlock does).
This does not reveal sensitive information globally, which improves privacy. So instead of using global
databases only, ASes can exchange RPKI objects with peers. The information that they wish to deploy
globally can still be done, but by exchanging via specific peers certain information does not need to be
exchanged with every single AS. When validating an incoming announcement, peer databases are pri-
oritized, before looking in the global database. This approach has the benefits of both peer databases
and a global approach.

5.1.2. RPKI Object
Now that we have defined the iterations of arriving at a generic idea for protecting community values,
we can discuss the technical part and make it concrete. Below, we will list the complete definition of
an RCA object and explain each of its properties. RPKI needs to be used by an AS before RCAs can
be used.

Route Community Authorization

• version <int> (required): just like a ROA, this indicates the version of the object. It might change
in the future, and this makes future upgrades possible.

• timestamp <int> (required): an epoch timestamp indicates when the RCA was created

• asn <int> (required): the ASN of the AS, matches with a ROA.
1https://apparmor.net/
2https://docs.microsoft.com/en-us/microsoft-365/security/defender-endpoint/
controlled-folders?view=o365-worldwide

https://apparmor.net/
https://docs.microsoft.com/en-us/microsoft-365/security/defender-endpoint/controlled-folders?view=o365-worldwide
https://docs.microsoft.com/en-us/microsoft-365/security/defender-endpoint/controlled-folders?view=o365-worldwide

5.1. Theoretical 25

• validity_date_start <int> (required): epoch timestamp from which this RCA is considered valid.

• validity_date_end <int> (required): epoch timestamp from which this RCA is considered invalid.

• prefixes <array<ip» (required): array of prefixes, which are covered by a ROA, which this RCA
covers. It can be a subset of the ROA prefixes.

• max_prefix_length <int> (optional, default 32): the maximum length of prefixes that can be used
in route announcements to consider this RCA valid.

• ASes <array<asn» (optional, default allow all): array of ASNs that indicate which ASes are al-
lowed to be included in the AS-PATH.

• as_path_length <int> (optional, default infinite): maximum number of ASes allowed in the AS-
PATH attribute.

• communities <array<string» (required): array of strings that indicate the community values al-
lowed for this RCA. Regex is allowed to add more flexibility.

• allow <bool> (required): indicates if community values listed before are allowed or should be
denied. This makes it easier to create a deny policy whenever required by an AS.

5.1.3. Algorithms
There are two main algorithms to make RCA verification and validation work. The verification algo-
rithm takes care of verifying the certificate of the RCA and makes sure that the RCA is considered valid
according to the technical specification of the object. This offloads expensive operations, like crypto-
graphic verification. When RCAs are downloaded periodically from databases, they can be verified
once and uploaded to the routers, which then only have to run validation on announcements. This
idea is similar to how ROAs are used in practice. The validation algorithm validates an incoming route
announcement and matches it against one of the RCAs (if it exists). Depending on the match, the
announcement is either allowed or dropped. We will list and discuss both algorithms below in Python.

The verification algorithm for verifying RCAs. An RCA is embedded in a
certificate. In addition, the matching ROA prefixes are fed to the
algorithm, assuming that the ROAs have already been validated and
verified. This algorithm is run when a new RCA is received and the
result is 'cached'. Using this approach, the heavy verification that
contains cryptographic verification is offloaded and improves
performance on the router side.

↪

↪

↪

↪

↪

↪

def rca_verification(certificate, roa_prefixes, encr_alg):
verify the certificates based on the encryption algorithm that is

used↪

if encr_alg == ”rsa”:
certificate.public_key().verify(

certificate.signature,
certificate.tbs_certificate_bytes,
padding.PKCS1v15(),
certificate.signature_hash_algorithm

)
elif encr_alg == ”ed25519”:

certificate.public_key().verify(certificate.signature,
certificate.tbs_certificate_bytes)↪

elif encr_alg == ”ecdsa”:
certificate.public_key().verify(certificate.signature,

certificate.tbs_certificate_bytes, ec.ECDSA(hashes.SHA256()))↪

retrieve the embedded RCA and parse it into an object that can be
used↪

26 Design

rca = parse_rca(certificate.extensions.get_extension_for_oid(
x509.ObjectIdentifier(”1.2.3.4”)).value.value.decode())↪

if parsing fails, return False
if rca is None:

return False, ”RCA parsing error”

verify that the RCA is still valid
if datetime.datetime.now() > rca.validity_date_end or

datetime.datetime.now() < rca.validity_date_start:↪

return False, ”RCA outdated”

loop through the prefixes of the rca and verify that they are
covered by the ROA prefixes↪

for prefix in rca.prefixes:
covered = False

for roa_prefix in roa_prefixes:
roa_network = ipaddress.IPv4Network(roa_prefix[”prefix”] + ”/”

+ roa_prefix[”prefix_len”])↪

if ipaddress.IPv4Network(prefix).subnet_of(roa_network):
covered = True
break

if the prefixes are not covered by ROA, the RCA is not valid
if not covered:

return False, ”RCA prefixes not covered by ROA prefixes”

RCA verification succeeded
return True, ”Valid RCA Certificate”

The validation algorithm that is run on each incoming announcement. RCA
verification is offloaded, so it is assumed that any RCAs fed to this
algorithm are verified. The algorithm needs the announcement and an
array of RCAs that match the origin AS. This array first contains the
rcas received from a peer (if any) and then the global rcas (if any),
meaning that peer RCAs are considered a higher priority than global
RCAs.

↪

↪

↪

↪

↪

↪

def rca_announcement_validation(announcement, rcas):
gather the array of communities from the announcement
community_list = announcement[”community_list”].split()

If the announcement does not contain communities, it is
automatically valid.↪

if len(community_list) == 0:
return True, ”Announcement does not contain communities”

gather the array of ASes on the path from the announcement
as_path_list = announcement[”as_path”].split()

get the network that is announced
announced_network = ipaddress.IPv4Network(announcement[”prefix”] + ”/”

+ str(announcement[”prefix_len”]))↪

5.1. Theoretical 27

loop through each RCA in the array and validate if it covers the
announcement. When an RCA matches, return True. Otherwise, go to
the next one until we looped through the array. In that case, the
announcement is not covered by the RCAs and is thus invalid.

↪

↪

↪

for rca in rcas:
covered = False

verify if the prefixes in the announcement match the prefixes in
the RCA, otherwise continue↪

for prefix in rca.prefixes:
if announced_network.subnet_of(ipaddress.IPv4Network(prefix)):

covered = True
break

if not covered:
continue

validate if the prefix length does not exceed the max prefix
length of the RCA↪

if rca.max_prefix_length is not None and
announced_network.prefixlen > rca.max_prefix_length:↪

continue

validate if the ASes of the announcement are a subset of the
allowed RCA ASes. Otherwise, the announcement contains ASes
not allowed and is thus not covered by the RCA.

↪

↪

if rca.ases is not None and not
set(as_path_list).issubset(set(rca.ases)):↪

continue

validate if the AS path length is not exceeded
if rca.as_path_length is not None and len(as_path_list) >

rca.as_path_length:↪

continue

when parsing RCAs, a regex is built where the communities are
ORed together like this:↪

- RCA contains communities 666, 103, and a regex expression X
- the validation regex becomes ”666|103|X”
using this approach, we can match each announcement community

against the regex validation string, even if one of the RCA
communities is defined by a regex.

↪

↪

match = True

loop through each community and match it against the regex
string.↪

for community in community_list:
if rca.regex.search(community) is None:

match = False
break

if a community is not covered by the regex, continue to the next
RCA↪

if not match:
continue

28 Design

if the communities match the RCA, but the communities are
disallowed by the RCA, immediately return False for the
validation algorithm

↪

↪

elif not rca.allow:
return False, ”Announcement disallowed by RCA: ” +

rca.identifier↪

announcement matches the RCA and is allowed, return True
return True, ”Announcement covered by RCA: ” + rca.identifier

none of the RCAs matched the announcement, return False
return False, ”Announcement not covered by any RCA”

5.1.4. Deployment
Now that we have a theoretical basis for the security solution, it is time to plan a deployment strategy.
Since our goal is to not alter the BGP protocol, there are two options:

1. Routers need to add support, just like with RPKI and other protocols like BGPMonitoring Protocol
(BMP), which we will see later. These are protocols that do not alter BGP itself but add additional
functionality. However, altering a router is not a reachable goal for this thesis. Another option
is altering a BGP software router. A few good open-source projects are FRRouting, BIRD, and
GoBGP. However, altering these open source projects takes a lot of time as well, which is not
achievable in the time frame or part of the goal of this thesis. An advantage of a router solution
is the ability to drop invalid routes directly with RCAs, something that is not achievable with the
next option.

2. Monitoring the BGP messages, like ARTEMIS does with their BGP hijacking protection3, and re-
sponding to detected attacks to mitigate them with a specifically crafted BGP UPDATE message.
To achieve this, we need to be able to monitor incoming BGP messages in the Adj-RIB-In. Luck-
ily, there exists an excellent protocol that has been developed in 2016 which does exactly that:
”BGP Monitoring Protocol (BMP) is intended to provide a convenient interface for obtaining route
views. Before the introduction of BMP, screen scraping was the most commonly used approach
to obtaining such views. The design goals are to keep BMP simple, useful, easily implemented,
and minimally service affecting.” [38]

BMP is standardised in RFC 7854 and is supported by most major vendors like Juniper, Cisco,
GoBGP, and FRRouting (both hardware routers and software daemons) for multiple years. We
can use BMP on routers where we want to use RCA to stream the incoming BGP updates to a
server. This server uses the validation algorithm for all incoming announcements and handles
the retrieval and verification of RCAs. If a violation is found, it is the task of this server to mit-
igate the potential attack. Note that we use BMP in monitoring mode and not mirroring mode.
”In BMP’s normal operating mode, after the BMP session is up, Route Monitoring messages are
used to provide a snapshot of the Adj-RIB-In of each monitored peer” [38], while mirroring mode
duplicates all BGP messages received. Mirroring is not an option since it can lead to ”router re-
source exhaustion, the potential to interfere with the transmission or reception of BGP UPDATE
messages, and the slowing of routing convergence” [38].

Now that we have a deployment approach which is minimal service affecting and widely usable, we are
just left with two tasks: RCA validation needs to be able to keep up with the stream of incoming BGP
updates on the internet (i.e. it needs to be performant), and we need to be able to remove violating
routes from the router’s routing table.

The first task is something that we can analyze in the results, so it is not relevant for now. Drop-
ping invalid routes is challenging since you cannot withdraw a route that you did not announce in BGP.
Something that we can do, however, is overwriting the invalid route with a ’cleaned’ route. In the BGP
3https://bgpartemis.org/

5.1. Theoretical 29

best-path selection algorithm, the first step is to always prefer the route with the highest local preference
value4. A strategy that we can use to overwrite routes is easy and quick:

• Remove invalid communities that are not covered by RCAs from the announcement.

• Set the local pref value to be 1 higher than the announcement itself.

• Announce the route to the router.

Using this strategy successfully overwrites the route, which can be seen in Chapter 6. The routing table
uses the mitigation route instead of the violating route.

5.1.5. Example
Let’s demonstrate the capabilities of RCA using an example. For this example, we will be using an
RCA object defined in Table 5.1.

RCA attribute Value

Version 1

Timestamp 1651841017

ASN 3

Validity_date_start 1651841017

Validity_date_end 1683369885 (∼1 year later)
Prefixes [3.3.3.0/24]

Max_prefix_length 32

ASes [2, 3]

AS_path_length 2

Communities [\d+:666]

Allow True

Table 5.1: Example RCA object for AS 3

In plain text, this means that AS 3 has issued a certificate that is valid for one year, which authorizes
other ASes to use the community value \d+:666 (regex that allows any number, followed by :666, note
that this is the blackhole community) with the following conditions: this community value can only be
used for the IP addresses within 3.3.3.0/24, can be as specific as /32, only ASes 2 and 3 are allowed
in the AS-PATH, and the AS-PATH cannot contain more than 2 ASes.

A different example might be a disallow RCA. If using the above example, but we change allow to
False, we disallow announcements that match the attributes from using the community value.

5.1.6. Attacks
In this section, we will show the relevance of each attribute in an RCA that might prevent an attack.
We have described that we are reducing the attack surface by specifically mentioning what is allowed
and disallowed. Now, to get a better understanding of why this is important, we will demonstrate an
example for each attribute that can stop an attack below:

• validity dates: An attacker AS is not able to use a community since its use has expired.
4Except in Cisco routers, where it is the second step

30 Design

• prefixes: An attacker AS cannot use a community for a prefix that is not specified in the RCA.

• max prefix length: An attacker cannot use a more specific prefix than allowed by the RCA.

• ASes: If an RCA only allows AS 3 in the path, then the community value becomes invalid when
any other AS is in the path besides AS 3. This limits the reach of the community value and by
which ASes the community can be used.

• AS-PATH length: An AS cannot use the community value more than a certain number of ASes
away from the origin (useful when community values are only used by direct peers of an AS for
example).

• communities: An attacker AS cannot tag the announcement with a community that is not allowed.

• allow: An attacker AS cannot use community values if the values are disallowed by the RCA.

Besides stopping community attacks, RCAs can also solve one of the issues that RTBH has, which
was discussed in Section 2. It was shown that prefixes are blackholed longer than they should, or even
forgotten about. By using RCAs, you could upload an RCA that is only valid for one day for example,
and after it expires the blackhole value can no longer be used. This also means that providers do not
have to always allow blackhole communities on their prefixes, but simply upload a short-lived RCA
when needed. This can prevent abuse of blackholing.

One might think that this causes a big delay before an RCA has effect, since RCAs are fetched every
X minutes. However, note that there are peer databases that we can make use of in this case. If we
need to authorize a blackhole to drop traffic to a specific prefix, we can upload an RCA to the peer
databases of these ASes, and it immediately takes effect (as peer RCAs are directly uploaded and
received periodically). The delay of a global database fetch is circumvented with this approach, and it
is another advantage of using peer databases besides the privacy benefits.

5.1.7. Conditions
In the background, we discussed the necessary and sufficient conditions for an AS to be able to suc-
cessfully perform a community attack. We can also derive the necessary and sufficient conditions for
defenders to successfully mitigate a community attack, which we will list below:

1. Necessary condition: Community attacks can be mitigated if the origin has configured their RCAs
correctly to block the community value that an attacker uses for the attack.

2. Sufficient condition: For community attacks to be mitigated, it is sufficient if the target AS, or a
single AS on the path between the attacker and the target, deploys RCA.

Do note that due to certain RCA configurations, attacks can only be stopped at the target AS and not by
an AS on the path between the attacker and the target. Correct RCA configuration is therefore impor-
tant. Furthermore, malicious ASes could modify the AS-PATH attribute for example to circumvent an
RCA if that RCA relies on the ASes and AS-PATH length attribute. We therefore recommend deploying
both ASPA (when it becomes available) and RCA if possible.

5.1.8. Drawbacks and improvements
The first drawback of the current approach is that there is still no integrity. However, adding integrity
protection requires cryptographic operations per announcement, which is not realizable yet with the
hardware deployed at ASes. Maybe in the future this is possible, but we are trying to make a viable
solution that is deployable with current hardware.

The second drawback is that this system is susceptible to human error. If an AS specifies its com-
munity values too specific, the usability is impacted. However, if an AS makes it too broad, an attacker
can abuse the allowed values that it still has access to. This is very similar to, for example, configuring
firewalls. It can be solved by teaching the operators about the proper use of RCAs.

There is still room for improvement however. The current attributes are just examples of what we

5.2. Implementation 31

came up with that can protect community values by limiting the attack surface. Maybe it is necessary
to add more attributes, like minimum prefix length, to make it more usable for ASes. The idea of this
research is not to make this specific version of the RCA and not allow any changes, but to show the
potential and the ability to stop a new kind of attack against BGP. If further testing and input from the
community show the need for different attributes, this can of course be added or modified appropriately
(or added in a new version update).

Last, but not least, currently we are adopting an approach of dropping invalid routes. However, this
could introduce a new attack with RCAs. If a malicious AS purposely makes use of communities that
are not allowed, it can cause a target AS that is either one or more hops away (depending on if the
ASes between the attacker and the target remove the communities or not) to not accept otherwise valid
routes. This can cause connectivity issues or higher economic costs by using more expensive routes
for example. An improvement to RCAs could be to not drop routes with invalid communities, but clean
the announcements instead. An invalid community is removed from the announcement, and the rest of
the announcement is accepted by the AS. This mitigates the attack that we described. Another possible
attack is that since you can specify regexes for RCAs, it could be the case that a misconfiguration or
a malicious AS causes an RCA to contain a regex that takes long to run. To combat a potential DoS
where a regex takes too long, you can specify a maximum amount of time that each announcement
validation can take. Any malicious attempts will be obvious as all ASes can see where the RCA came
from, so this could also discourage anyone from constructing malicious regexes.

5.2. Implementation
After discussing the theoretical part of an RCA object, we can now take a look at the implementation.
We start this section by giving a detailed overview of the implementation of RCA. After that, we discuss
the architecture, where we give an overview of what RCA deployment looks like. We end the section
by discussing an example and looking at the drawbacks of the practical implementation.

5.2.1. Overview
The first step for a practical implementation, where we can test RCAs with BGP routers, is an environ-
ment for network simulation. We decided to use GNS3 for this as it was recommended by one of the
professors and it is free to use.

Next, we need to run the actual routers. Since the amount of RAM and CPU cores is limited on the
laptop where the experiments are running, we need a small image that GNS3 can run and still has all
of the functionality that we require. Alpine Linux images are great for this, as they are lightweight. The
images are using the qcow2 format so that we can use QEMU for virtualization which allows the GNS3
project to be portable. We decided to go with GoBGP as the BGP router since it is open source. The
Linux images are running GoBGP with Zebra to enable kernel routing.

Now that we have network simulation, virtualization, and BGP routing, we need to set up the envi-
ronment for RCAs. The first step is to use RPKI. We can use Krill for a local RPKI certificate authority
and Routinator to fetch and distribute verified data via the RPKI-to-Router (RTR) protocol to the routers.
These two programs are running on a server in the simulated network to which the routers can connect
to.

With RPKI running, we need to use BMP. BMP requires a BMP server to receive the data from the
routers. Luckily, there is an open-source project that implements this server called OpenBMP. With
OpenBMP, there is great support for languages to connect to the server and receive the stream of
BGP messages. For this project, we decided to use Python as it has great support with the technolo-
gies that we use and allows for quick and easy scripting. Using Python, we can connect to the BMP
server and process each announcement. In Python, we have also implemented the RCAs together
with the necessary algorithms to validate and verify incoming RCAs and announcements.

Next up for RCA support is a global database and a peer database per AS to store RCAs. These
two databases are also implemented in Python. ASes themselves can connect with other ASes to dis-

32 Design

tribute and receive RCAs whenever desired, or store them in a global database that is fetched every
X minutes. We also need a BGP speaker to be able to announce the mitigations to the routers if a
violation is detected. We decided to use ExaBGP for this, as it also uses Python and is a quick and
easy way to announce custom BGP messages in a user-friendly plain text format.

Last, but not least, we need to encode the RCA in a certificate, just like ROAs. To make this work,
we should make a custom ASN.1 encoding to be able to add it as an extension to an x509 certificate.
Since that takes a lot of time, we simply encode an RCA to a string. This string can then be embedded
in an x509 UnrecognizedExtension in Python. In our experiments, we can still use this unrecognized
extension in supported libraries in Python to embed an RCA in a certificate without going through a
time-consuming process to create custom ASN.1 encoding to test certificate verification with RCAs.
By simply encoding an RCA to a string, embedding it in a certificate, and decoding it from the string
upon verification of the certificate, we have a fully working certificate solution to test.

5.2.2. Architecture
Now that we have implemented all necessary technologies and systems to have RCA support for
routers, we create and explain an architecture diagram to have a good idea of what the deployment of
RCA currently looks like. Note that if routers decide to implement RCAs in the future, the RCA servers
in the architecture are no longer needed. Please look at Figure 5.1 for an overview of the RCA deploy-
ment architecture in an example with three ASes, where AS 2 is malicious. Note that the BMP server,
ExaBGP speaker and RCA scripts (together with a peer database) are all included in the RCA Server.

AS 3: 3.3.3.0/24 AS 2: 2.2.2.0/24

GoBGP Router GoBGP Router GoBGP Router

RPKI Server

 RCA Server RCA Server

AS 1: 1.1.1.0/24

Peer
Database

Peer
Database

Global RCA Database

Figure 5.1: Architecture diagram of a simple RCA deployment. Note that the BMP server, ExaBGP speaker and RCA scripts
(together with a peer database) are all included in the RCA Server.

5.2.3. Example
Using the architecture diagram from above, we will discuss an example to explain the flow of the inner
workings with RCA. This gives a good idea of how it works internally and how everything flows between
the different systems. We explain and show the process of registering RCAs, up to mitigating an at-

5.2. Implementation 33

tack in the overview below. The steps reference the systems that are shown in the architecture diagram.

In the example that is described below, AS 2 is considered malicious. AS 3 is trying to protect its
prefixes by deploying RCAs, just like AS 1. This means that both AS 1 and AS 3 can protect each
other. All ASes use RPKI, but in this case it is only necessary for AS 1 and 3. Furthermore, AS 1
implements a blackhole policy, which AS 2 will try to abuse by blackholing a prefix of AS 3.

1. AS 3 crafts the RCA to protect its prefixes from blackhole attacks.

2. AS 3 signs an x509 certificate that contains the embedded RCA.

3. AS 3 has the option to either upload the certificate to AS 1 directly or in a global database, de-
pending on its privacy needs.

4. AS 1, or the global database, runs the verification algorithm before accepting the RCA and storing
it in the database. If the RCA is stored globally, AS 1 will retrieve it during a periodic fetch and
rerun the verification algorithm before adding it to its internal copy of the global database.

5. AS 2 decides it is time to try a blackhole attack. After AS 3 announces the IP range 3.3.3.0/24,
it tags the announcement with 666 (Note, normally blackhole is only allowed for /32 ranges, but
this is just for demonstration purposes. Blackhole attacks are easier to understand than other
community attacks).

6. AS 1 receives the tagged announcement from AS 2. RPKI validation succeeds and the route
is added to the RIB. Since the blackhole policy matches with the community value, AS 1 drops
traffic to 3.3.3.0/24.

7. BMP monitors the incoming BGP UPDATE and sends it to the OpenBMP server.

8. The OpenBMP server streams the BGP UPDATE to the listeners, in this case, the RCA validation
script.

9. The validation script checks if it has any RCAs for AS 3 and the prefix 3.3.3.0/24, which it has,
and runs the algorithm.

10. The validation fails because AS 2 is not allowed on the AS-PATH (or a different approach to
blocking the blackhole attack, like completely disallowing 666).

11. The script notifies the ExaBGP script to mitigate the attack.

12. ExaBGP announces the same announcement, but with the community removed and with a higher
local preference to overwrite the route.

13. AS 1 stores the route in its RIB and the route of AS 2 is overwritten due to the higher local
preference, mitigating the blackhole attack.

14. Traffic to 3.3.3.0/24 is restored.

5.2.4. Drawbacks
The deployment strategy from above has many upsides. BMP is performant and does not introduce
noticeable performance impact, the router does not have to handle the additional load of validating
communities due to BMP, BGP itself is not altered, and routers that support BMP and RPKI can use
this security measure already by simply deploying an additional server, to name a few examples. How-
ever, this approach also has drawbacks of course.

The first drawback is that RCA is not running on the router itself. There is a small time frame where
the attack is successful and where traffic in the above example is dropped. We will analyze the con-
sequences of this in Chapter 6. This is because in a BMP deployment, routes are accepted initially
and the BMP server processes the received routes shortly afterwards. When a violation is seen, then
it is mitigated. Routers will still receive all routes and all communities when using BMP and receive
mitigations shortly after the initial receival of routes.

34 Design

The second drawback is that RPKI needs to be used. An AS that does not want to run RPKI, but
wants to use RCA, is not able to use it. We will further discuss any drawbacks that arise during the
simulation and from the experiment results in Chapter 6, where the results are discussed and analyzed.

6
Evaluation

In this chapter, we discuss how the experiments in the simulations are performed and the setup for the
experiments to gather the required data for this thesis. In some cases, it is not possible to measure
the required data in the simulation setup, which is why have to make some theoretical analyses. We
first provide a disclaimer about the collected results in this chapter. Then, we start by discussing the
theoretical results. In addition, using the experiments later on, we can confirm some of the claims that
we have made so far regarding the capabilities of the developed solution. Furthermore, we discuss
the approximate results, as defined in the methodology chapter, and the exact results. At the end,
we create a threat model to analyze what damage an attacker can do during the short time until the
mitigation is sent when using BMP.

6.1. Disclaimer
The results from the experiments gathered here were gathered on an HP ZBook G4 Studio with an Intel
Core i7-7700HQ and 24 GB RAM. The simulations were run in GNS3 2.2.31 with the GNS3 VM running
on VMWare Workstation 16.2.3 Player. The BGP routers are using GoBGP v3.0.0-rc3 on Alpine Linux
3.15. The RCA implementation was made in Python 3.8. Running the experiments on other hardware
or software can result in different results.

Furthermore, the algorithms and implementations that are shown have not been optimized and are
written in Python. After optimization and implementing it in different languages, results can and will
probably be better.

Last, but not least, due to the restrictions of this thesis, all experiments were done via BMP moni-
toring deployment as explained in Chapter 5. There are advantages and disadvantages of running on
a router directly, or via the BMP approach here, we will also see in this chapter.

6.2. Theoretical results
As we have seen previously, we need to judge our RCA solution based on the following properties:

• Security properties

• Performance properties

• Privacy properties

• Deployability properties

As some of the properties can only be analyzed theoretically, we will discuss each of them below.
Furthermore, for each of the properties that cannot be measured, an appropriate explanation will be
given.

35

36 Evaluation

6.2.1. Security properties
When assessing the security properties of a solution, we need to know how much extra security it guar-
antees, which vulnerabilities remain for BGP, and if new attack vectors are introduced. We will discuss
each of these three below, but these properties cannot be expressed or measured precisely.

The extra security is a difficult property to assess. As we have seen in the solution design, RCA
makes sure that each announcement uses communities that have been authorized to be used by the
origin AS. The added security depends on the configuration of the origin AS. When properly configured,
RCA reduces the attack surface to only those values that have been defined by the origin AS, just like
a firewall configuration only allows traffic that is configured by the administrator. However, to make
the security work, multiple ASes need to deploy RCAs to protect each other. And this is also where
incentive becomes difficult. If only one AS deploys RCAs, then there is still no security. Just like with
RPKI, you can only enforce the security when multiple people use it. This is also the biggest issue of
RCA, because ASes have misaligned incentives here, you want to protect yourself not others. We will
discuss this issue further in Chapter 7. If two ASes deploy RCAs, then they will only protect each other.
Depending on if they are neighbours or not, this protection is either useful or not. Once people start to
pick up RCAs more, the security for everyone increases. RCAs thus offer incremental security once
more people start using them, but there is a slow start just like with RPKI and ASPA. Using different
experiments that we see later in this chapter, we know that if RCAs are properly configured, and ASes
deploy the solution, then community attacks are correctly mitigated. We have also seen in Chapter
5 that the sufficient condition for mitigating community attacks is that only a single AS between the
attacker and the target, or the target itself, needs to deploy RCA for successful mitigation, assuming
that the RCAs have been configured correctly to detect attacks.

Due to the approach we took for RCAs, we only guarantee authorized use of communities. An AS
lists the conditions for the communities that can be used, and everything else is not allowed. This
means that misconfigured RCAs (for example, an RCA that allows almost everything) can still be ex-
ploited in attacks. Furthermore, RCAs only protect community usage in BGP, other attributes are not
protected or affected. Any other issues in BGP apart from what RPKI solves and what RCAs can guar-
antee are not protected and remain an issue. As an example, the integrity of community values is not
protected, meaning that ASes can alter the values without the receiving party knowing if something
was changed (as long as the changed value is allowed by an RCA). The AS-PATH attribute can still be
altered as well, which might enable attackers to circumvent an RCA that relies on the ASes or AS-PATH
length attribute as explained in Chapter 5. We thus recommend to also deploy ASPA once it is available.

As far as we know, RCAs do not introduce new attack vectors, apart from the one listed in Chapter
5. Since the approach that we took is ’just’ limiting what can be done with community values, we do
not introduce new behaviour in BGP, it only states what can no longer be used. Therefore, there is
not a lot of room to introduce new vulnerabilities. As seen in the attack of Chapter 5, one might argue
that a malicious AS could modify announcements and include communities which will cause the route
to be dropped at the target AS. This potential attack vector can prevent a target from accepting new
routes. A solution to this is to apply a ’cleaning policy’ instead of dropping routes. By removing the
invalid communities upon violation, routes are not dropped and this attack is not possible anymore. In
addition, there is one issue with RCAs which is explained by analyzing the threat model. When deploy-
ing RCAs and mitigating attacks via BMP, a malicious announcement is still accepted by the router for
a brief moment. How long this moment is exactly, and what damage can be done during this moment,
will be analyzed further in the threat model later in this chapter. Lastly, since you can specify regexes
for RCAs, it could be the case that a misconfiguration or a malicious AS causes an RCA to contain a
regex that takes long to run. To combat a potential DoS where a regex takes too long, you can specify
a maximum amount of time that each announcement validation can take. Any malicious attempts will
be obvious as all ASes can see where the RCA came from, so this could also discourage anyone from
constructing malicious regexes.

6.2.2. Performance properties
To analyze the performance of BGP, we can use a combination of experiments and analyses. Especially
when not deploying and testing these solutions globally on the internet, but only in simulations, certain

6.2. Theoretical results 37

data cannot be gathered. We will discuss each of the performance properties below.

• Convergence delay: we can measure if using the security solution causes BGP to take longer
to reach a stable state than using plain BGP. Exactly measuring this is possible but not that
meaningful without real hardware routers and more than a few routers in software. You want
to measure the convergence with internet-like circumstances. To compensate for this, we will
measure properties like scalability with performance benchmarks instead, and analyse in theory
if the solution will cause stability issues, as seen below in the next point. If we can theoretically
predict that the stability is not influenced, and show with benchmarks that the overhead on the
routers is reasonable when scaling and can keep up with the rate of announcements seen on the
internet, we can predict that the convergence delay will not be impacted greatly. However, exact
numbers need to be measured in the future to confirm these theories, but this is left for future
work. This will be discussed further in Chapter 7.

• Stability: without deploying RCAs globally on the internet, this is a difficult property to measure.
RCAs themselves should not cause instability from our testing, since we are only stating which
community values can be used or not. If an AS uses values that we disallowed, then the route
will be dropped at an enforcing AS. Thus, instability can happen if ASes try to use community
values which are not allowed. This can be prevented with the cleaning policy that we discussed
against this attack.

• Scalability: this property is also difficult to measure without deploying it on the internet. Besides
the approach that we discussed for the convergence delay, we can additionally analyze howmuch
longer validating each route takes. Using both of these data, we can predict if RCA usage will
scale or not.

• Computational overhead: just like with scalability, we canmeasure the number of announcements
that can be processed per second and determine what the overhead is, and if this is an issue or
not for BGP. We can estimate howmany routes can be processed per second, and see howmany
routes are usually processed per second on the internet by a single router.

• Bandwidth overhead: additional bandwidth is needed to exchange RCAs globally and between
peers. The overhead depends on the size of the database that needs to be exchanged. In
addition, if BMP is used, then the the Adj-RIB-In is sent to the BMP server, which increases
bandwidth. However, there is no additional bandwidth required in the BGP protocol other than
any mitigations that are sent, since all of the communication is done out of band. We can calculate
how much space an RCA takes, and calculate an estimate based on that.

• Storage overhead: using the storage requirement for a single RCA, we can calculate an estimate
for how much extra storage is required when using RCAs with certain parameters (number of
communities, prefixes, etc.) and at a certain deployment stage (i.e. 10% ASes use RCA, 30%,
50%, etc.).

For each of the parameters in the validation and verification algorithms, which mainly determine the
performance impact of RCAs, we can calculate the impact of increasing the number of communities
and prefixes. This will also reveal how the developed algorithms scale (e.g. exponential, polynomial,
or linear).

6.2.3. Privacy properties
Because RCAs allow exchanging certain RCAs only between specific peers, the protocol does not have
to reveal additional sensitive information compared to plain BGP. If ASes use global RCAs however,
then privacy can be impacted. If properly used, then this should not be a problem.

6.2.4. Deployability properties
We have seen in implementation of the solution design, that deploying RCAs itself is not necessarily
difficult. Although extra hardware is needed, it is only one additional computer which can be a normal
laptop or a simple server, it does not need a lot of computational power as we will see later in the exper-
iment results. Furthermore, you only need to use RPKI if you did not already, install the RCA scripts,

38 Evaluation

configure the RCAs (both on a global and on a peer level if desired), and connect the server via BMP
to the router. That is all, the most difficult step is configuring the RCAs or deploying RPKI if it was not
already used before. Routers without BMP are not supported, but we have seen that the major router
vendors do ship routers with BMP support since a few years. If in the future routers support RCA, then
deploying it will be easier since BMP and manually installing scripts is no longer required.

As discussed in the security properties above, the security of the solution is incremental with the num-
ber of ASes deploying it. Just like with RPKI, this means that the security guarantees are low when
adoption is low. We know that at least the target itself, or one of the ASes on the path between the
attacker and the target, needs to deploy RCA to mitigate attacks when the origin AS has configured
their RCAs correctly. Thus, as with RPKI, security benefits will increase when more ASes join. This
can cause an issue with incentive though, as ASes want to protect themselves immediately. Adoption
is the biggest issue for RCAs after all, which will be further discussed in Chapter 7. Communication is
done out of band though, meaning that BGP itself does not need to be altered.

6.3. Approximate results
In this section, we will discuss the approximate metric results. As explained in Chapter 4, these are
results where the outcome should just show that the result is approximately in the neighbourhood of
other results, or has a significant impact. We will explain the different experiments and how they are
conducted below.

6.3.1. Time To Mitigation
Since the experiments are running in the BMP deployment instead of router deployment, attacks that
are detected are not immediately dropped. This means that there is a time window where the attack is
successful until the mitigation is launched. Using a threat model, we will later showwhat an attacker can
do within such a time frame. Time to mitigation is measured in the following way with the architecture
shown in Figure 5.1:

1. The attack is launched on router 2 on the prefixes of router 3. Router 3 is disabled due to RAM
size restrictions on the laptop, but router 2 can still announce its prefixes without influencing this
experiment.

2. When the malicious announcement is seen on the wire (we use Wireshark1 for this), the exact
time is noted.

3. When the mitigation announcement is seen on the wire, the exact time is noted.

4. The difference between these two times is the time to mitigation and shows how long a malicious
announcement is accepted in the monitoring deployment before it is overwritten by the mitigation.

5. The measurements are repeated for both the Global and Peer database to see if either of the
database deployments show a significant difference.

6. The measurements are repeated both with a simple BGP table (only contains the routes from the
ASes in the architecture diagram) and full BGP tables (contains all routes that a typical router will
contain when deployed on the internet, about 950k at the moment of writing). Full BGP tables
can help indicate if there is an obvious bottleneck in mitigation time depending on the BGP table
size, as this is the size of a router’s table when deployed live on the internet. We injected a BGP
table from the global route collector RRC00 from RIPE RIS in Amsterdam2. We wait until BGP
has converged before starting the experiment.

The reason this experiment uses approximate results is that we are running it in simulation software.
The results will be different in the real world and across different hardware (or software). Ideally, you
would want to run RCA on a router directly anyways, which means there will be no time window where
1https://www.wireshark.org/
2The data can be downloaded here: https://data.ris.ripe.net/rrc00/. Note that at the time of reading this thesis it
might contain more or fewer routes than at the time of testing.

https://data.ris.ripe.net/rrc00/

6.3. Approximate results 39

attacks are successful. The second reason for approximate results is that we try to see if there is a
significant difference between global/peer databases or simple/full BGP tables. A significant difference
can be seen in this experiment setup, but we are not looking at differences of milliseconds here. The
median of the results can be seen in Table 6.1, and the boxplot of the data can be seen in Figure 6.1.
This experiment was run 10 times since we are only interested in an approximation of the mitigation
time, not a precise number.

Deployment type Median

Global RCA database with simple BGP tables 0.11175704002380371 seconds

Global RCA database with full BGP tables 0.11802792549133301 seconds

Peer RCA database with simple BGP tables 0.115181565284729 seconds

Peer RCA database with full BGP tables 0.12220454216003418 seconds

Table 6.1: Time to mitigation results

Figure 6.1: Boxplot of the time to mitigation results.

From the boxplot in the figure, we cannot conclude statements like a peer database or global database
is faster. It does seem like full BGP tables make the mitigation time a bit slower, which would make
sense. However, more experiments are needed to confirm conclusions like that, this is not the purpose
of the mitigation time experiment since we do not see a significant differences. This experiment shows
that the median mitigation time is relatively close to each other.

A mitigation time of about 0.12 seconds sounds good, but we need to see what it actually means.
Therefore, it is important to look at the damage that can be done in this amount of time by an attacker
to see the impact. This will be analysed at the end of this chapter in a threat model.

6.3.2. Average BGP Data
In this ’experiment’, we gathered average BGP data from multiple sources. This data can be used
later to draw meaningful conclusions about the performance of the algorithms, or estimate the average
attributes that need to be present in an RCA and the announcements that wewill use for the benchmarks
later in this section. The collected statistics can be seen in Table 6.2.

6.3.3. RCA size
To estimate the bandwidth and storage overhead, we first need to estimate the size of an RCA and the
certificate it is embedded in. An RCA is encoded by separating each attribute of the object with a ’|’. We

40 Evaluation

Data Average

AS-Path length 5 [39]

Announcements per day for a router peaks as high as 1 million IPv4 announcements [40]

Communities per announcement ∼90% of announcements contain ≤ 10 communities [8]

Daily convergence time IPv4 50-60 seconds [40]

Number of ASes in routing system 73444 [22]

Table 6.2: Average BGP data

calculate the following RCA and certificate sizes in Table 6.3 under different amounts of communities,
prefixes, and ASes.

Object Size

RCA size

1 community, 1 prefix, and 1 AS
68 bytes

Certificate PEM size with RCA embedded

1 community, 1 prefix, and 1 AS
522 bytes

RCA size

10 communities, 10 prefixes, and 10 ASes
222 bytes

Certificate PEM size with RCA embedded

10 communities, 10 prefixes, and 10 ASes
733 bytes

RCA size

100 communities, 100 prefixes, and 100 ASes
2023 bytes

Certificate PEM size with RCA embedded

100 communities, 100 prefixes, and 100 ASes
3179 bytes

Table 6.3: RCA and certificate size

Of course, depending on how much information the RCA contains, the size will either increase or
decrease. We encourage each AS to calculate the sizes based on their community usage and prefixes
they want to cover to get a better idea. In Figure 6.2, we plotted the growth of the RCA size when
varying the number of communities, number of ASes, and the number of prefixes at the same time.
The figure shows that the size scales linearly. Size growth is of course very dependent on each variable.
An extra AS in the allowed ASes, for example, is just an extra number. An extra community, however,
depends on how the community is defined. ”1:666” does not grow the size much, but a complex regex
would have a bigger impact. In this experiment we assumed simple communities. We cannot make
concrete statements about RCA size under each circumstance, but we can show that the RCA size
scales linearly and how that influences the size of certificates, which is also linear.

If we assume for the following example that each AS that uses RCAs has an average of 10 RCAs,
each containing 10 communities, 10 prefixes, and 10 ASes, we can calculate the requirements per
AS storage-wise. The number 10 only serves as an example here to show storage and bandwidth
estimations. We consider that 30% of total ASes deploy RCAs in the following calculations, which can
be seen in Table 6.4. At the time of writing, a total of 73444 ASes are in the routing system. Since we

6.4. Exact results 41

(a) RCA size when varying number of communities, prefixes, and ASes. (b) Certificate PEM size when varying number of communities, prefixes,
and ASes.

Figure 6.2: Plots of how the RCA and certificate size grow when varying the number of communities, prefixes, and ASes at the
same time.

have shown in Figure 6.2 that RCA size grows linearly, the storage and bandwidth requirements will do
the same.

Storage Size

Global Database Total

(stores RCA certificates)
10 ∗ 733 ∗ 0.3 ∗ 73444 = 161.503356 MB

Storage per AS

(only encoded RCAs)
10 ∗ 222 ∗ 0.3 ∗ 73444 = 48.913704 MB

Bandwidth downloading Global Database

every X minutes (RCA certificates)
161.503356 MB every X minutes

Bandwidth uploading to Global Database

(RCA certificates only when new)
733 bytes per certificate upload

Table 6.4: Storage estimations in a 30% AS deployment with 10 RCAs each containing 10 communities, 10 prefixes, and 10
ASes. We disregard any bandwidth for setting up connections or other overhead but only consider the RCA or certificate data

being sent over the internet. In practice, the numbers will therefore be higher.

As can be seen in Table 6.4, even if the estimations on average RCA contents or average RCAs per
AS are a bit off, it does show that the total amount of storage and bandwidth required is not huge, but
manageable. Especially since not all ASes will use RCAs, the storage and bandwidth requirements
at the beginning of deployment will be even lower. The results show that storage and bandwidth re-
quirements are reasonable and that, in our opinion, it should not be an issue for ASes to consider RCA
deployment.

6.4. Exact results
In this section, we will discuss the exact results that we collected. Each experiment is discussed inde-
pendently below.

42 Evaluation

6.4.1. Community Attacks
From the experiments that were run, the RCA solution successfully sends a mitigation for every com-
munity attack. Note that the RCA needs to be configured correctly for this to work. We will explain how
the experiment works below, see Figure 5.1 as a reference for the setup. AS 1 has the RIB configured
as seen in Figure 6.3a. After AS 2 in the architecture diagram tries to use a community value which is
disallowed, in this case a blackhole attack, the RCA solution responds and mitigates the attack. The
attack from AS 2 can be seen in Figure 6.3b. The RCA server from AS 1 responds by sending a miti-
gation, which can be seen in Figure 6.3c. The final RIB of AS 1 shows that the mitigation successfully
overwrites the attack in Figure 6.3d. Note that the attack would have been successful without the mit-
igation since the blackhole policy sets the next hop of 3.3.3.0/24 to 192.0.2.1, which is configured as
a blackhole on the router of AS 1. We repeated this experiment for every single case in the validation
algorithm (see the if-statements of the validation algorithm in Chapter 5) and with different community
values, including regex statements. We also repeated the experiments for other attacks different than
the blackhole attack, like path prepending.

(a) The BGP table of AS 1 before the attack happens.

(b) The BGP UPDATE community attack seen on the wire from the
attacker to the target using Wireshark.

(c) The BGP UPDATE mitigation seen on the wire from the RCA server
to the target using Wireshark.

(d) The BGP table of AS 1 after the attack happens. Notice that the mitigation route overwrites the attacker’s route. The router has configured
that 192.0.2.1 is a blackhole route.

Figure 6.3: These images show the different stages of a community attack when running an RCA server. We show the BGP
table before the attack happens, the BGP UPDATE message of a community attack (in this case, a simple blackhole attack for
readability), the BGP UPDATE message of the mitigation, and the resulting BGP table once the mitigation has happened.

Because any community value that is not allowed causes the announcement from the attacker to be
mitigated (either by dropping, cleaning, or overwriting), and assuming that the RCAs are configured cor-
rectly, any attack of the scenarios that we discussed in the background can be mitigated. We confirmed
that traffic still resumes normally after mitigation (for example, traffic is not blackholed after mitigating
a blackhole attack). Testing if all traffic can still reach the destination via the correct path was done in
GNS3 simulations. This is a promising result as it confirms the theory of the solution that we developed.

6.4. Exact results 43

6.4.2. Verification algorithm
The verification algorithm is measured precisely. We did this to give a good indication of the perfor-
mance of individual components and show that even a laptop with adequate hardware is capable of
keeping up to speed with verification. This means that expensive hardware is not needed, since a
simple server can offload the routers from cryptographic operations, just like RPKI does with ROAs.
The experiment works as follows:

1. Setup an RCA and embed it in an x509 certificate.

2. For this experiment it is assumed that ROA data is already verified, so we just provide the algo-
rithm with the prefixes from the ROA.

3. Start a timer and run the algorithm. Stop the timer and get the time it took. Repeat this n amount
of times (indicated per experiment in the figures).

4. After n runs, calculate the median time.

5. The verification algorithm can have three cases, namely the case where a signature is invalid,
a signature is valid but the RCA is not, and a valid signature and valid RCA. All three cases
can happen during verification, but the worst case in terms of time for a router would be that all
signatures and RCAs are valid. Therefore, the last experiment is the most important one since
that will be the greatest potential bottleneck.

6. We repeat the experiments for three different encryption schemes, namely RSA, ECDSA, and
Ed25519. We chose the key sizes with a security strength of 128 according to the NIST rec-
ommendations on key sizes [41]. This means that RSA uses 3072 bits, ECDSA 256 bits, and
Ed25519 also 256 bits. These runs are run with RCAs containing 10 communities and 10 prefixes,
and with RCAs containing 1 community and 1 prefix.

7. We repeat the experiments for Ed25519 with an increasing number of communities and an in-
creasing number of prefixes to see how verification time is influenced and how it scales.

First, we need to define what we mean by increasing variables. There are three variables in this
experiment, and we will explain for each one what it means to change that variable:

• Encryption scheme: this is the underlying encryption scheme for signing and verifying the cer-
tificates. Changing encryption schemes can change signing and verification times, which will
influence how the verification algorithm performs.

• Communities: the number of communities increases the size of the RCA and therefore the size of
the certificate. Furthermore, when parsing an RCA from a certificate, we perform regex validation.
We could have chosen the number of ASes as well since that also increases RCA size, but we
decided to go with communities since they are also verified in terms of regex. When we talk
about increasing the number of communities, we define them as follows. 1 community is defined
as [”1:1”], 3 are constructed as [”1:1”, ”1:2”, ”1:3”], etc.

• Prefixes: the number of prefixes increases the RCA size, but prefixes themselves are verified
additionally. In the algorithm, we check if the ROA prefixes cover the RCA prefixes, which means
that more prefixes will cause more calculations. The ROA prefix is defined as 0.0.0.0/0, meaning
all possible prefixes. When talking about increasing the prefixes, we construct it as follows: 1
RCA prefix is 0.0.0.0/32, 3 prefixes are 0.0.0.0/32, 0.0.0.1/32, 0.0.0.2/32, etc. You can already
tell from this that it is more performant to aggregate prefixes, but we perform the experiments
this way to show how a lot of prefixes can cause longer verification times. We use the 0.0.0.0/0
construction to make sure each additional prefix is covered.

Now that the variables and how they are increased are clear, we can continue with the results. The
results with the three encryption schemes can be seen in Figure 6.4. In this figure, we plotted the
boxplots for each encryption scheme. In Figure 6.4a you can see the experiments with 1 prefix and
community, and in Figure 6.4b you can see the experiments with 10 communities and prefixes. From
these results, we can see that Ed25519 performs the best in the experiments while having the same

44 Evaluation

security strength as the other schemes according to the NIST recommendations. We thus recommend
using Ed25519 for RCA certificates. Note that we did not draw the outliers in the figures with boxplots.
They are still present in the datasets and the other calculations, but we decided to not draw them to
make the boxplots easier to visualize and interpret.

(a) (b)

Figure 6.4: Benchmark of the verification algorithm with three different encryption schemes. We both show the experiment with
1 community and prefix, and with 10 communities and prefixes.

In Table 6.5, we show the raw numbers to make them easier to read instead of looking at the plots.
From these results, we can calculate that we can successfully verify 2325 RCAs per second with 10
communities and 10 prefixes. This seems on the low side, but there should not be a continuous stream
of RCAs every second, but in batches every X minutes. By multi-threading the algorithm, the number
of announcements verified per second can be greatly increased. The algorithm can also be further
optimized, perhaps in another language than Python. This number of RCAs per second depends on
the number of communities used in an RCA, and the number of prefixes. For example, with only 1
community and prefix, we can suddenly verify 3949 RCAs per second. Next, we will look at how com-
munities and prefixes influence the scalability of the algorithm.

Verification result Median

Valid signature and valid RCA,

10 communities and 10 prefixes
0.00043010000000265336 seconds

Valid signature and valid RCA,

1 community and 1 prefix
0.00025320000000306209 seconds

Table 6.5: Verification performance results with Ed25519. n=1E+05

In Figure 6.5a, we can see how the verification time behaves when increasing the number of commu-
nities with Ed25519 encryption. We can see that it scales linearly, which is a positive result. In Figure
6.5b, we can see how the verification times are influenced when increasing the number of prefixes. The
reason why the increase is steeper than with communities is that communities only increase the size
of an RCA in the verification algorithm. No calculations other than verifying the certificate, and regex
validation, are influenced by this size increase. However, the prefixes of an RCA are also verified if they
are covered by a ROA prefix. The calculation for this is apparently heavy compared to only increasing
the RCA size, and will thus give us a steeper increase. From the results, we can also see that it scales
linearly.

6.4. Exact results 45

(a) Varying amounts of communities. (b) Varying amounts of prefixes.

(c) Varying amounts of both communities and prefixes at the same time.

Figure 6.5: Benchmark of the verification algorithm with both varying amounts of prefixes and communities. It uses the
Ed25519 encryption scheme.

The last question to answer is the scalability of the whole algorithm. The two variables independently
scale linearly, but it could turn out that the algorithm is polynomial when scaling them at the same time.
In Figure 6.5c we increased both variables at the same time. From this figure, we can see that the
whole algorithm scales linearly as well.

We recommend the following advice for each of the two variables that influence verification speed:

• The number of communities does not influence verification speed that much compared to prefixes.
It could be slightly improved by generalizing communities via regex.

• The number of prefixes does influence verification speed significantly. Therefore, we recommend
aggregating prefixes as much as possible (like /24 instead of multiple /32 prefixes). This will
improve verification time quite a bit.

6.4.3. Validation algorithm
For the validation algorithm, the experiment looks a bit different:

1. Setup an RCA.

2. Create announcements for three possible validation cases that will happen in the wild: RCA not
found, best-case validated, and average-case validated.

3. RCA not found is simple, the announcement is from an AS that does not have any RCAs. Ev-
ery single announcement that passes a router will take at least this much longer to process an

46 Evaluation

announcement.

4. Best-case validated means that there are RCAs, but the announcement does not contain any
communities, meaning that it is automatically valid.

5. Average-case validated means that we have to go through the whole validation algorithm. This
time will be dependent on several variables. This experiment is the most important to see if there
is a bottleneck for a router and how many announcements a router can process per second.

6. Run each of the cases n times and output the median results and plots.

7. Repeat the experiments by varying the different variables like number of prefixes, number of
communities, etc.

First, we need to define what we mean by increasing variables. There are four variables in this experi-
ment, and we will explain for each one what it means to change that variable:

• Communities: the number of communities, either in an announcement or in an RCA, means that
more regex checks need to be performed to validate an announcement. When we talk about
increasing the number of communities, we define them as follows. 1 community is defined as
[”1:1”], 3 are constructed as [”1:1”, ”1:2”, ”1:3”], etc. When we talk about increasing the commu-
nities, we mean that both the communities in an announcement and the RCA are increased, as
both have an impact on performance. Note, that we disregard complex regexes in this experi-
ment and only use simple ones. We previously mentioned that a malicious AS could construct a
regex that takes too long on purpose. Perhaps there should be restrictions on the regex besides
a maximum time to combat any potential DoS attempts. However, this is disregarded for this
experiment where we assume that regexes are simple.

• Prefixes: in the validation algorithm, we check if the announcement is covered by an RCA before
proceeding with additional validation checks. If an announcement or RCA contains multiple pre-
fixes, then additional calculations need to be performed. The announcement prefix is defined as
0.0.0.0/0, meaning all possible prefixes. When talking about increasing the prefixes, we construct
it as follows: 1 RCA prefix is 0.0.0.0/32, 3 prefixes are 0.0.0.0/32, 0.0.0.1/32, 0.0.0.2/32, etc. You
can already tell from this that it is more performant to aggregate prefixes (like /24 instead of mul-
tiple /32 prefixes), but we perform the experiments this way to show how a lot of single prefixes
can cause longer validation times. We use the 0.0.0.0/0 construction to make sure that each
additional prefix is covered.

• ASes: the number of ASes are the ASes that are allowed to be on the path of an announcement.
So if an announcement contains ASes [2, 3], and the RCA contains ASes [2, 3, 4, 5], we perform
a subset calculation to see if the announcement ASes are covered by the RCA ASes. When
we talk about increasing the number of ASes, we both increase the ASes in the announcement
and the RCA. They are constructed as follows: 1 AS means [1], 3 ASes mean [1, 2, 3], etc. By
increasing both the announcement and RCA ASes, the subset calculation will take the maximal
amount of time. Note that in practice, it will be much more likely if the subset calculations are
smaller.

• RCAs: the number of RCAs, is the number of RCAs that are checked to see if an announcement is
valid. If the first RCA does not cover the announcement in any of the checks, the algorithm checks
the next RCA, etc. When we talk about increasing the number of RCAs, we are repeating the
average-case validated scenario n times. In reality, it will be much more likely that the algorithm
proceeds to the next RCA in one of the earlier checks instead of continuing to the end each time.

Now that the variables and how they are increased are clear, we can continue with the results. The
results for the different validation cases are listed in Table 6.6 with both 1 of each variable, and 10 of
each variable. The boxplots for these results can be seen in Figure 6.6.

In Figure 6.7, we have plotted the algorithm against increasing amounts of each variable, and we can
see in the plot how the algorithm time increases and behaves depending on which variable is increased.

6.4. Exact results 47

Validation result Median

RCA not found

1 community, 1 prefix, 1 AS, and 1 RCA
0.00000040000000001150 seconds

RCA not found

10 communities, 10 prefixes, 10 ASes, and 10 RCAs
0.00000040000000001150 seconds

Best-case validated

1 community, 1 prefix, 1 AS, and 1 RCA
0.00000060000000035032 seconds

Best-case validated

10 communities, 10 prefixes, 10 ASes, and 10 RCAs
0.00000060000000012828 seconds

Average-case validated

1 community, 1 prefix, 1 AS, and 1 RCA
0.00002250000000003638 seconds

Average-case validated

10 communities, 10 prefixes, 10 ASes, and 10 RCAs
0.00102210000000013679 seconds

Table 6.6: Validation performance results with n=1e5.

From the previously mentioned results and figures, we can already draw some conclusions. First, we
can see that the algorithm has excellent performance for low amounts of variables. However, as we
increase each variable, we can see that it gets significantly slower. For each variable, we can draw the
following conclusions and recommendations:

• Increasing the communities does not influence the timing that much. While keeping all variables
at 1, instead of processing 44444 announcements per second with 1 community, we can process
about 10000 per second with 200 communities. As we will see later, this is still a reasonable
number. If many communities need to be specified, we recommend generalizing communities
with regexes, on the condition that the generalized regex is quicker than individually specifying
the communities.

• When looking at prefixes, we can see that it significantly influences validation speed. As we also
have seen in the verification algorithm, calculating if prefixes cover other prefixes is an expensive
operation. To improve validation time, we recommend aggregating prefixes. As an example,
instead of specifying several /32 prefixes, validation speed can be improved by specifying a single
/24 prefix. This is also a common practice for BGP itself.

• Number of ASes influences the validation speed the least. There is not a specific recommendation
here.

• Number of RCAs that need to be checked before validation succeeds has the biggest impact. This
makes sense, as in this experiment the algorithm repeats all validation checks for the number of
RCAs that was specified. In the real world, this will be faster, as validation can already move
to the next RCA if a condition is found early on that shows that the RCA does not cover the
announcement. Generalizing RCAs can improve validation speed. As an example, instead of
creating an RCA that covers prefix p with community value 1, and another RCA that covers prefix
p with community value 2, it is quicker to make 1 RCA for p containing both community values.

Using the results from Table 6.6, we can calculate statistics like the number of announcements per
second, and total processing time when validating an entire full BGP table. These statistics can be
seen in Table 6.7. In the simulations performed, when using full BGP tables, we see that the router

48 Evaluation

(a) 1 of each variable. (b) 10 of each variable.

Figure 6.6: Boxplots of the validation benchmark with 1 and 10 of each variable.

sends between 70k and 80k announcements every 10 seconds to the validation algorithm when in-
jecting a full BGP table. Receiving BGP tables also happens when a router is starting and receives
the BGP tables from its peers. However, we do not know how many announcements are sent when
this happens on the internet, and if the amount is equivalent to the 70k in 10 seconds we saw during
experiments. The algorithm can keep up with this rate when we use 1 for each variable. However,
with 10 for each variable, the validation becomes a bottleneck during startup. If we use more realistic
numbers however, and keep the advice for variables in mind, we can calculate the validation speed for
an RCA with 10 communities, 3 prefixes, 10 ASes, and 4 RCAs. With n=1e5, we get a median speed
of 0.00024520000000194386 seconds, meaning that it processes 4078 announcements per second,
and 40783 every 10 seconds. Keep in mind that this is single-threaded and that not every announce-
ment goes through complete validation in reality, but it does in our experiments due to the setup since
we assume each announcement takes the average-case validated. There will be higher percentage
of announcements that result in RCA not found or a best-case validated compared to average-case
validated when running on the internet, since not all ASes will deploy RCA, especially in the beginning.
This means that in a realistic scenario, and with multi-threading, the solution should be fast enough to
keep up to speed when a router starts and receives full tables from peers. We also know from Table 6.2
that once a router is running and is stable, the number of updates per day is relatively low compared to
starting a router and receiving a full BGP table. Since there can be peaks as high as 1 million IPv4 an-
nouncements per day for a router, our solution can easily keep up with this rate. Therefore, even if we
assume the performance of 978 announcements per second (single-threaded, average-case validated
for each announcement), there will not be a bottleneck when considering the rate of announcements
seen on the internet. This is because at this rate of 978 per second, we can process 86400 (number
of seconds in a day) * 978 = 84.499.200 announcements per day. This means that our algorithm will
potentially only result in longer startup times. We believe that increased security is worth the extra time
when starting a router, as long as it does not bottleneck the performance once running stable on the
internet.

In the beginning when ASes rollout RCA, it will not take longer than a few seconds at maximum to val-
idate an entire BGP table. However, if the entire internet decides to use RCA (which is unlikely, since
RPKI usage is not even close to that [42]), startup times will take longer if the code is not optimized
further and if there are no further hardware improvements. ASes need to decide if the additional time is
worth the extra security that it brings. Do note however, that this experiment assumes that validation is
not multi-threaded. Multi-threading the validation code will improve the performance, and if the solution
is run in BMP monitoring mode, then the router itself will have no additional load. This is because in
that case, the validation is done on the server-side, at the cost of a small increase in mitigation time.

Finally, from Figure 6.8, we can see how the validation time is influenced when varying all variables of
the validation algorithm at the same time. We have already seen in the figures that increasing each

6.5. Threat model 49

(a) Varying amounts of communities. (b) Varying amounts of prefixes.

(c) Varying amounts of ASes. (d) Varying amounts of RCAs.

Figure 6.7: Benchmark of the validation algorithm with varying amounts of communities, prefixes, ASes, and RCAs.

variable independently scales linearly. However, when increasing them at the same time, we see in
the figure that the algorithm has polynomial scaling. This makes sense when looking at the code for
the validation algorithm. Thus, polynomial scaling is expected and not necessarily a bad result. When
running the algorithm with realistic numbers, and even without optimisations like multi-threading, it is
performant and seems to keep up with the rate of announcements seen on the internet.

6.5. Threat model
As we have seen in the experiments, there is a small time window (∼0.12 seconds) where the commu-
nity attack is considered successful before the mitigation is effective when using BMP. To demonstrate
the capabilities of an attacker, and the damage that can be done in 0.12 seconds, we will construct a
threat model and analyze what damage can be done. Please note that this threat model is only appli-
cable when RCAs are used via BMP. When RCAs are implemented on a router itself, then an attack
can be immediately stopped by dropping or cleaning an announcement (unless an AS misconfigured
their RCAs).

We will construct a threat model and analyze the damage for the three kinds of community attacks
that we have seen in the background chapter. A realistic threat actor is described as follows:

• The threat actor can control an AS. This AS can send, modify, and drop arbitrary BGP messages.

• We assume that the attacker AS has rich connectivity with peers, meaning that it can launch
a wide range of community attacks against different targets. All three attacks described in the
background can be launched by the threat actor.

50 Evaluation

Validation result Announcements per second Processing time full BGP table

RCA not found

1 for each variable
2499999 0.37861400001 seconds

RCA not found

10 for each variable
2499999 0.37861400001 seconds

Best-case validated

1 for each variable
1666666 0.56792100033 seconds

Best-case validated

10 for each variable
1666666 0.56792100012 seconds

Average-case validated

1 for each variable
44444 21.2970375 seconds

Average-case validated

10 for each variable
978 967.4534235 seconds

Table 6.7: Validation performance results in terms of announcements per second and processing time.

• The neighbours of the attacker AS deploy RCA and RPKI, since the attack will always be suc-
cessful otherwise. We are considering the damage that can be done when RCA protection is
used.

• The threat actor does not have unlimited bandwidth or unlimited compute power, as this is not a
realistic scenario.

• The victims and targets of the threat actor configured their RCAs correctly and are vulnerable to all
community attacks when not using RCAs (meaning that they offer services with path-prepending
communities, blackhole communities, etc.).

• The targets deploy RCA using BMP, so the time to mitigation is ∼0.12 seconds per attack.

• The threat actor only uses attacks that exploit community values. BGP hijacks or other BGP-
related attacks are not considered in the threat model.

With the above description of a realistic threat actor, we can take a look at the three different community
attacks and analyze the damage of ∼0.12 seconds where the attack is not mitigated yet.

• Blackhole attack: When the attacker has launched a successful blackhole attack, traffic to the
destination IP that is targeted is unreachable for 0.12 seconds for traffic that goes through the
target AS to the destination (or from the destination through the target AS). Depending on the
connectivity with peers of the victim AS, this can either drop lots of traffic or only a small portion.
Afterwards, the mitigation kicks in and the destination is reachable again through the target AS.
There are two scenarios for the attacker here:

1. The attacker only launches 1 attack. In this case, TCP traffic will recover since most con-
nections will close after an idle time in the order of minutes. Clients will notice a small delay
but immediately recover after it. In the case of UDP, traffic is lost and the damage depends.
Usually, UDP is used when traffic is allowed to fail anyways for additional performance (like
with video streaming), so we should not consider the payload of UDP valuable here. TCP
should have been used otherwise. Clients will notice that the traffic was dropped depending
on the application that uses the data. In the case of video streaming, the frame will hang for
a short amount of time before resuming.

6.5. Threat model 51

(a) Variables until 100. (b) Variables until 1000.

Figure 6.8: Benchmark of the validation algorithm while increasing all variables at the same time.

2. The attacker launches consecutive attacks. In both cases of UDP and TCP, the impact is
as big as a successful blackhole attack. Either there is very low throughput through the
target AS to the destination, or the connection becomes completely unusable. We consider
both of these cases as too much of an impact and comparable to a successful blackhole
attack. However, reviewing the logs of BGP or the RCA security solution will immediately
reveal such an attack going on. Administrators can take action based on this (for example by
disallowing the community). An alerting mechanism can also be implemented that detects
such consecutive attacks and notify administrators since these consecutive attacks are easy
to notice.

• Traffic steering: The scenario is the same as described above. However, in this case, the traffic
is lost for a brief moment due to a route change. This can cause issues to reach the destination
properly through the target AS. If that happens once, this might not be a huge issue for the
end-user. If it happens continuously, then there will be a noticeable increase in latency or it
can even cause reachability issues. Depending on the application, this can either have a big
impact or not. Note that continuous route switching, also called route flapping, leads to a higher
router processing load caused by instability and prevents the network from converging. This will
cause reachability issues. Continuous traffic steering can thus make the destination unreachable
through the target AS, while a one-time traffic steer is only successful for ∼0.12 seconds. In
these 0.12 seconds, the attacker can eavesdrop on the communication if we assume that BGP
converges immediately. However, in practice, convergence will take a while (see Table 6.2), and
the mitigation already takes place after 0.12 seconds. So if it happens once, the traffic is probably
never successfully steered in practice on the internet and the destination is just unreachable for
a bit for traffic that goes through the target AS to the victim (or from the victim through the target).

• Route manipulation: Just like before, a successful route manipulation attack will cause certain
peers of an IXP to not receive certain prefix advertisements. If it happens once, a peer will not
receive the prefix advertisement for ∼0.12 seconds. Depending on the reachability of this peer,
either traffic is routed via a different route or the peer does not have reachability to the prefix for
a brief moment. Continuous route manipulation can also cause a situation where route flapping
occurs if we assume that the route advertised to the peer is preferred over the other routes, which
will cause a route change. Otherwise, we expect that there will be a slightly higher load on the
router but probably no impact on reachability.

From above, we can see that in practice the threat actor can only cause damage by disturbing the
reachability through the target AS to the destination, either shortly if the threat actor attacks once, or
continuously if the attacker keeps repeating the attack. The damage depends on if the victim AS is still
reachable through other peers and what is running or making use of the destination. As an example,
in the case of stock trading, there can be an economic impact if the stock trade exchange becomes

52 Evaluation

unreachable. The damage of these kinds of attacks needs to be evaluated similarly to DoS and DDoS
attacks.

7
Discussion

In this chapter, we discuss the results of this thesis that were gathered in Chapter 6 and the solution
that was designed itself. Furthermore, we will discuss the limitations of the research that was done and
provide directions for future research. Afterward, we will answer the subquestions of this research as
stated in the methodology.

As discussed and motivated in Chapter 5, the final solution design that protects the BGP community
attribute provides a tradeoff between the different metrics that a BGP security solution should ideally
have, as discussed in Chapter 2. We protect the community value by authorizing their usage through
a new RPKI object called Route Community Authorization (RCA). The results of the experiments as
seen in Chapter 6 look promising. We first showed that community attacks can be stopped using
correctly configured RCAs by either dropping or cleaning an announcement with invalid communities.
Furthermore, we predicted both with a theoretical analysis and with a combination of benchmarks in
simulation software that the solution should be able to keep up with the rate of updates that are sent on
the actual internet. The only place where we identified that it could potentially cause delays is during
router startup where full BGP tables are received in a short amount of time. However, we argued that
this delay will probably not happen in practice based on deployment rates when looking at RPKI and
with some performance improvements we suggested for RCAs. If it does happen, we think that longer
startup times can be acceptable (if it is not too long of course) for the added security benefits of RCAs.
The benchmarks show that the verification algorithm has linear scaling and the validation algorithm
polynomial scaling. We also made suggestions for how ASes can configure RCAs to make sure it is
performant and how performance can be improved in the future, for example, by multi-threading the al-
gorithms. Our predictions, like scalability to the size of the internet, that we made need to be confirmed
using additional experiments on the internet in future research.

The security of participating ASes is determined by the configuration of RCAs, and how many ASes
are participating. We have seen in the results that either the target of the attacker, or an AS on the path
between the attacker and the target, needs to deploy RCA to successfully mitigate an attack, on the
condition that RCAs are configured correctly. We did discover that in certain cases where RCAs rely on
the ASes and AS-PATH length attribute, that these RCAs can be circumvented if an attacker modifies
the AS-PATH attribute in the BGP UPDATE message. Since RCA cannot provide integrity protection of
the AS-PATH attribute in BGP, we recommend deploying ASPA in the future when it becomes available
to limit this risk. Furthermore, we made recommendations to limit execution time for regexes, or more
strict requirements for them, to limit any ASes from potentially configuring regexes that take too long
to execute.

The idea of RCAs, and ROAs, is that you are protecting other participants, but that also means that
there is (almost) no security when deployment is low. This also causes an issue for incentive, as you
want to protect yourself when choosing a security solution, not essentially others. Deployment of the
solution by ASes will be the biggest obstacle for the future of RCA. Since incentive is a big issue for
deployment of security solutions of BGP in general, it can be generated if providers are enforced to

53

54 Discussion

deploy security solutions by law for example, or if larger ASes implement security proposals first.

Since router hardware currently deployed is not capable of performing cryptographic operations per
route announcement, this means that certain security goals like the integrity of the community attribute
cannot be achieved. Using RPKI objects, we can offload cryptographic operations from the router to
a verification server and offer authorized use of community values. This approach provides a solution
that can be used with current hardware routers (currently through BMP). But that also means that when
RCAs are configured too broad, attackers can still abuse them. Due to the current hardware, we think
that the approach of RCA is the best way to protect against community attacks at the moment since it
does not limit the legitimate usage of community values like other mitigations do. Only an additional
server is needed, without too much computational power since experiments were done on just a laptop
with adequate hardware in our case. Furthermore, since communication is done out of band, BGP
itself does not need to be altered. In the future though, we suggest using BGPsec and extending it
with community values as well for better security when routers are capable of running BGPsec. Using
a BGPsec approach will improve security and provide integrity of the community attribute, which are
security properties that RCA cannot provide.

There are some limitations of the research due to a limited time frame and the scope of this thesis,
as explained in Chapter 4. which means that certain goals were not achievable. Additional experi-
ments are needed to see if RCAs can successfully capture the RCA usage of ASes, if these RCAs are
still performant enough (both on software and real hardware routers), and if it scales successfully to
the size of the internet. We currently used our parameters for RCA configuration, but it could be that
ASes have different needs than we predicted, which could impact the performance. Furthermore, due
to the scope and time frame of the thesis, we were only able to perform the experiments in software
simulations, where ideally they are performed on actual hardware routers.

Other future work can be directed at implementing router support for RCAs and repeating the experi-
ments on those routers. Then the actual impact on routers can be measured, and there is no time to
mitigation window anymore as there is with BMP. This improves the security of RCAs. Furthermore,
future work can also be directed at adjusting the RCA model. For example, RCA can be slightly ad-
justed to just notify administrators of violations instead of performing automatic mitigation. In addition,
the model of RCAs could be improved with additional attributes to enhance the capabilities, or a more
efficient algorithm that we did not think about. With input from other researchers or the community,
RCA can be further improved. Also, as mentioned in the scope, we only worked with the normal com-
munity attribute and IPv4. The RCA model can be extended to also include the large and extended
community attribute, and the same goes for IPv6 support. Additionally, in the scope of this thesis, it
was defined that the semantics of the community values are not verified or validated by an RCA, only
the values that are defined by the origin AS. It would be an exciting direction, and quite the challenge,
to research a method to verify and validate the semantics of community values. This can strengthen
the security guarantees that RCA can offer. Last, but not least, we encourage researchers to perform
additional research on mitigating community attacks. This could result in a different solution compared
to RCAs that use different tradeoffs to protect against community attacks.

Now that we have discussed the results of the thesis, the limitations, and the future work, we can
answer the subquestions of the thesis.

What has already been done to secure BGP against community attribute at-
tacks?
The answer to this research question is the result of Chapters 2 and 3, where we discussed the back-
ground of both BGP, the community attribute, BGP security and attacks, notable security solutions,
community attacks and their (not so effective) mitigations, and related work in this research area. Us-
ing this background that we acquired, we were able to use the literature to come up with a new security
solution. We used metrics that are important to consider, researched why certain security solutions
failed and why others (partly) succeeded, what is important for ASes to consider deploying security
solutions, etc. Based on this information we can estimate and try to arrive at a solution that makes use
of history by using what succeeded, and avoiding what failed.

Discussion 55

What is important to consider a solution viable for deployment, and with which
metrics can we measure that?
As we briefly mentioned in the previous question, metrics are important to define beforehand so we
know what we need to keep in mind when developing a solution, and with which metrics we can assess
the effectiveness. In summary, we need to assess security solutions based on four different properties,
namely:

• Security properties: What kind of security does the solution provide, does it introduce new vul-
nerabilities, which vulnerabilities remain in BGP with this solution, and how many ASes need to
deploy it before security benefits arise?

• Performance properties: Does the security solution influence the stability on the internet, cause
an increase in convergence, does it scale, and how much overhead does it introduce in terms of
computational, bandwidth, and storage overhead?

• Privacy properties: Do ASes need to expose their routing policies, business relationships, or
other private information to make use of the security solution?

• Deployability properties: Is the solution easy to deploy, can it be deployed incrementally, is addi-
tional hardware needed, and is there interoperability with legacy BGP?

Of course, one solution cannot excel in all of these properties, tradeoffs need to be made. Which
tradeoffs are made is important for a solution to be considered viable for deployment, and we can use
the knowledge from the previous question to estimate what an ideal tradeoff would be. The result of
how our solution scores at these metrics is presented in Chapter 6.

How can we meaningfully develop and test solutions without deploying them
live on the internet?
This is an important question, but at the same time difficult to answer. One option would be to simulate
the routers and create different scenarios in the simulation software to test properties like scalability.
However, to be able to measure those kinds of metrics, lots of computational power is needed, as
simulations are computationally and memory-heavy tasks. The best solution is still to be able to run
experiments on the internet using the PEERING testbed for example. However, in the end, we used
a combination of simulation scenarios, benchmarks, and theoretical analyses to be able to assess
and test our security solution. We created several scenarios with a handful of routers to test if the
solution even works. Using benchmarks, we estimated how much overhead there is when processing
announcements, how much storage is required, etc. These results are presented in Chapter 6. As
indicated in future work, more research is needed to confirm our predictions about scalability by testing
the solution on hardware routers and on the internet.

How can we verify the community attribute while satisfying the requirements
for a viable solution?
Using the information from the first subquestion, we decided to use RPKI to create a new object where
an AS authorizes which community values can be used. These objects can be cryptographically verified
and are called RCAs. The construction has several benefits and drawbacks, which we discussed in
this thesis and in this chapter. We think that this approach using RPKI is currently the best since current
routers deployed are not capable of performing cryptographic operations on every announcement. With
the RPKI construction of RCAs, cryptographic operations are offloaded to a separate server that verifies
the certificates instead of putting this load on the router. The verified RCAs can then be sent to the
router where the router can validate each announcement using the RCAs. In the future, we suggest
using BGPsec and extending it with community values for better security. Using a BGPsec approach
will improve security and provide integrity of the community attribute, which is something that RCA
cannot provide. Until routers that are deployed on the internet can handle BGPsec, we believe that this
is the best solution in the meantime to mitigate community attacks compared to the other mitigations.

8
Conclusion

In this thesis, we have developed a security solution to protect against a new attack vector of BGP that
makes use of the community attribute. There are no effective mitigations against these attacks to date,
and none of the security extensions that have been developed for BGP so far protect the community
attribute. That is why this thesis is relevant, as we have developed the first solution that provides au-
thorized use of communities that can be cryptographically verified. The main research question for this
thesis to answer is defined as follows: How can we secure BGP community attributes against at-
tacks? We answered this question by creating a new RPKI object that includes information like which
community values are allowed to be used and the prefixes that it covers, to name a few examples.
This information restricts the attack surface of communities, but still allows for the legitimate usage of
them. If ASes configure their objects correctly, other ASes can enforce the rules specified in the new
RPKI object that we called Route Community Authorization (RCA) and take action when encountering
announcements with disallowed communities. Our approach does not alter the BGP protocol itself, as
the communication for our solution is performed out of band.

From the results, we see that the solution can successfully mitigate community attacks with properly
configured RCAs. We have also seen in benchmarks that the developed solution should be able to
keep up with the rate of announcements that are seen by routers on the internet. We also predict that it
should be scalable to the size of the internet using a theoretical evaluation and with benchmarks. How-
ever, as mentioned in the thesis, our research was limited by performing the experiments in simulation
software only. That means that we were not able to perform experiments on hardware routers or on the
internet to test important properties like scalability. It is important that experiments are also performed
by ASes themselves, to see if the RCAs can successfully capture their community usage and if these
RCAs are still performant enough. These limitations are discussed in more detail in the discussion,
together with the future work that is possible. The biggest issue that will remain for the developed so-
lution is the initial adoption and deployment by ASes. This is because the security benefits are low in
the beginning, but increase as more ASes participate. This causes a lack of incentive to initially adopt
the new security solution.

As current routers used by ASes are not capable of performing cryptographic operations per announce-
ment, we used the approach with RPKI objects to offload the cryptographic operations to a verification
server. This server can forward the verified RCAs to the actual router, which means that the router
does not have to perform these cryptographic operations itself. We believe that our developed solution
is currently the most suited for mitigating community attacks, as it does not alter BGP itself or limit the
community usage of ASes, as compared to other mitigations. In the future, when routers can handle
the cryptographic load per announcement, we recommend using BGPsec and extending it to include
the community attribute for better security than our solution with RPKI objects can offer, like integrity
protection.

57

Bibliography
[1] Y. Rekhter, S. Hares, and T. Li, A Border Gateway Protocol 4 (BGP-4), RFC 4271, Jan. 2006.

DOI: 10.17487/RFC4271. [Online]. Available: https://www.rfc-editor.org/info/
rfc4271.

[2] S. L. Murphy, BGP Security Vulnerabilities Analysis, RFC 4272, Jan. 2006. DOI: 10.17487/
RFC4272. [Online]. Available: https://www.rfc-editor.org/info/rfc4272.

[3] A. Mitseva, A. Panchenko, and T. Engel, “The state of affairs in bgp security: A survey of attacks
and defenses,” Computer Communications, vol. 124, pp. 45–60, 2018, ISSN: 0140-3664. DOI:
https://doi.org/10.1016/j.comcom.2018.04.013. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S014036641731068X.

[4] C. Testart, “Reviewing a historical internet vulnerability: Why isn’t bgp more secure and what can
we do about it?,” TPRC, 2018.

[5] R. NCC, “Youtube hijacking: A ripe ncc ris case study,” Mar. 2008. [Online]. Available: https://
www.ripe.net/publications/news/industry-developments/youtube-hijacking-
a-ripe-ncc-ris-case-study.

[6] S. Nichols, “Aws dns network hijack turns myetherwallet into thievesetherwallet,” The Regis-
ter, Apr. 2018. [Online]. Available: https : / / www . theregister . com / 2018 / 04 / 24 /
myetherwallet_dns_hijack/.

[7] D. Madory, “Large european routing leak sends traffic through china telecom,” APNIC, Jun.
2019. [Online]. Available: https://blog.apnic.net/2019/06/07/large-european-
routing-leak-sends-traffic-through-china-telecom/.

[8] F. Streibelt et al., “Bgp communities: Even more worms in the routing can,” in Proceedings of
the Internet Measurement Conference 2018, ser. IMC ’18, Boston, MA, USA: Association for
Computing Machinery, 2018, pp. 279–292, ISBN: 9781450356190. DOI: 10.1145/3278532.
3278557. [Online]. Available: https://doi.org/10.1145/3278532.3278557.

[9] Doug Madory, “Bgp/dns hijacks target payment systems,”Oracle Dyn, Aug. 2018. [Online]. Avail-
able: %7Bhttps://web.archive.org/web/20190611040109/https://dyn.com/
blog/bgp-dns-hijacks-target-payment-systems/%7D.

[10] H. Birge-Lee, L. Wang, J. Rexford, and P. Mittal, “Sico: Surgical interception attacks by manipulat-
ing bgp communities,” in Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’19, London, United Kingdom: Association for Computing
Machinery, 2019, pp. 431–448, ISBN: 9781450367479. DOI: 10.1145/3319535.3363197.
[Online]. Available: https://doi.org/10.1145/3319535.3363197.

[11] L. Miller and C. Pelsser, “A taxonomy of attacks using bgp blackholing,” in Computer Security –
ESORICS 2019, K. Sako, S. Schneider, and P. Y. A. Ryan, Eds., Cham: Springer International
Publishing, 2019, pp. 107–127, ISBN: 978-3-030-29959-0.

[12] M. Lepinski and S. Kent, An Infrastructure to Support Secure Internet Routing, RFC 6480, Feb.
2012. DOI: 10.17487/RFC6480. [Online]. Available: https://www.rfc-editor.org/
info/rfc6480.

[13] IANA, Autonomous system (as) numbers, Dec. 2021. [Online]. Available: https://www.iana.
org/assignments/as-numbers/as-numbers.xhtml.

[14] Cloudflare, “What is an internet exchange point?,” [Online]. Available: https://www.cloudflare.
com/learning/cdn/glossary/internet-exchange-point-ixp/.

[15] T. Li, R. Chandra, and P. S. Traina, BGP Communities Attribute, RFC 1997, Aug. 1996. DOI: 10.
17487/RFC1997. [Online]. Available: https://www.rfc-editor.org/info/rfc1997.

59

https://doi.org/10.17487/RFC4271
https://www.rfc-editor.org/info/rfc4271
https://www.rfc-editor.org/info/rfc4271
https://doi.org/10.17487/RFC4272
https://doi.org/10.17487/RFC4272
https://www.rfc-editor.org/info/rfc4272
https://doi.org/https://doi.org/10.1016/j.comcom.2018.04.013
https://www.sciencedirect.com/science/article/pii/S014036641731068X
https://www.sciencedirect.com/science/article/pii/S014036641731068X
https://www.ripe.net/publications/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study
https://www.ripe.net/publications/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study
https://www.ripe.net/publications/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study
https://www.theregister.com/2018/04/24/myetherwallet_dns_hijack/
https://www.theregister.com/2018/04/24/myetherwallet_dns_hijack/
https://blog.apnic.net/2019/06/07/large-european-routing-leak-sends-traffic-through-china-telecom/
https://blog.apnic.net/2019/06/07/large-european-routing-leak-sends-traffic-through-china-telecom/
https://doi.org/10.1145/3278532.3278557
https://doi.org/10.1145/3278532.3278557
https://doi.org/10.1145/3278532.3278557
%7Bhttps://web.archive.org/web/20190611040109/https://dyn.com/blog/bgp-dns-hijacks-target-payment-systems/%7D
%7Bhttps://web.archive.org/web/20190611040109/https://dyn.com/blog/bgp-dns-hijacks-target-payment-systems/%7D
https://doi.org/10.1145/3319535.3363197
https://doi.org/10.1145/3319535.3363197
https://doi.org/10.17487/RFC6480
https://www.rfc-editor.org/info/rfc6480
https://www.rfc-editor.org/info/rfc6480
https://www.iana.org/assignments/as-numbers/as-numbers.xhtml
https://www.iana.org/assignments/as-numbers/as-numbers.xhtml
https://www.cloudflare.com/learning/cdn/glossary/internet-exchange-point-ixp/
https://www.cloudflare.com/learning/cdn/glossary/internet-exchange-point-ixp/
https://doi.org/10.17487/RFC1997
https://doi.org/10.17487/RFC1997
https://www.rfc-editor.org/info/rfc1997

60 Bibliography

[16] T. King, C. Dietzel, J. Snijders, G. Döring, and G. Hankins, BLACKHOLE Community, RFC 7999,
Oct. 2016. DOI: 10.17487/RFC7999. [Online]. Available: https://rfc-editor.org/rfc/
rfc7999.txt.

[17] J. Heitz, J. Snijders, K. Patel, I. Bagdonas, and N. Hilliard, BGP Large Communities Attribute,
RFC 8092, Feb. 2017. DOI: 10.17487/RFC8092. [Online]. Available: https://www.rfc-
editor.org/info/rfc8092.

[18] T. Krenc, R. Beverly, and G. Smaragdakis, “Keep your communities clean: Exploring the routing
message impact of bgp communities,” in Proceedings of the 16th International Conference on
Emerging Networking EXperiments and Technologies, ser. CoNEXT ’20, Barcelona, Spain: As-
sociation for Computing Machinery, 2020, pp. 443–450, ISBN: 9781450379489. DOI: 10.1145/
3386367.3432731. [Online]. Available: https://doi.org/10.1145/3386367.3432731.

[19] ——, “As-level bgp community usage classification,” in Proceedings of the 21st ACM Internet
Measurement Conference, ser. IMC ’21, Virtual Event: Association for Computing Machinery,
2021, pp. 577–592, ISBN: 9781450391290. DOI: 10.1145/3487552.3487865. [Online]. Avail-
able: https://doi.org/10.1145/3487552.3487865.

[20] C. Testart and D. D. Clark, “A data-driven approach to understanding the state of internet routing
security,” Available at SSRN 3750155, 2020.

[21] P. Sermpezis, V. Kotronis, A. Dainotti, and X. Dimitropoulos, “A survey among network operators
on bgp prefix hijacking,” SIGCOMM Comput. Commun. Rev., vol. 48, no. 1, pp. 64–69, Apr.
2018, ISSN: 0146-4833. DOI: 10.1145/3211852.3211862. [Online]. Available: https://
doi.org/10.1145/3211852.3211862.

[22] G. Huston, Cidr report for 20 may 22, May 2022. [Online]. Available: https://www.cidr-
report.org/as2.0/.

[23] J. Durand, I. Pepelnjak, and G. Döring,BGPOperations and Security, RFC 7454, Feb. 2015. DOI:
10.17487/RFC7454. [Online]. Available: https://rfc-editor.org/rfc/rfc7454.txt.

[24] T. McDaniel, J. M. Smith, and M. Schuchard, Flexsealing bgp against route leaks: Peerlock active
measurement and analysis, 2020. arXiv: 2006.06576 [cs.NI].

[25] N. Labs, “Securing bgp,” [Online]. Available: https://rpki.readthedocs.io/en/latest/
rpki/securing-bgp.html.

[26] C. Testart, P. Richter, A. King, A. Dainotti, and D. Clark, “To filter or not to filter: Measuring the
benefits of registering in the rpki today,” in Passive and Active Measurement, A. Sperotto, A.
Dainotti, and B. Stiller, Eds., Cham: Springer International Publishing, 2020, pp. 71–87, ISBN:
978-3-030-44081-7.

[27] ARIN, Route origin authorizations (roas), Jun. 2022. [Online]. Available: https://www.arin.
net/resources/manage/rpki/roa_request/.

[28] Y. Gilad, A. Cohen, A. Herzberg, M. Schapira, and H. Shulman, “Are we there yet? on rpki’s
deployment and security,” Feb. 2017. DOI: 10.14722/ndss.2017.23123.

[29] M. Lepinski and K. Sriram, BGPsec Protocol Specification, RFC 8205, Sep. 2017. DOI: 10.
17487/RFC8205. [Online]. Available: https://www.rfc-editor.org/info/rfc8205.

[30] A. Azimov, E. Bogomazov, R. Bush, K. Patel, and J. Snijders, “Verification of AS_PATH Using the
Resource Certificate Public Key Infrastructure and Autonomous System Provider Authorization,”
Internet Engineering Task Force, Internet-Draft draft-ietf-sidrops-aspa-verification-08, Aug. 2021,
Work in Progress, 15 pp. [Online]. Available: https://datatracker.ietf.org/doc/html/
draft-ietf-sidrops-aspa-verification-08.

[31] C. Testart, P. Richter, A. King, A. Dainotti, and D. Clark, “Profiling bgp serial hijackers: Capturing
persistent misbehavior in the global routing table,” in Proceedings of the Internet Measurement
Conference, ser. IMC ’19, Amsterdam, Netherlands: Association for Computing Machinery, 2019,
pp. 420–434, ISBN: 9781450369480. DOI: 10.1145/3355369.3355581. [Online]. Available:
https://doi.org/10.1145/3355369.3355581.

https://doi.org/10.17487/RFC7999
https://rfc-editor.org/rfc/rfc7999.txt
https://rfc-editor.org/rfc/rfc7999.txt
https://doi.org/10.17487/RFC8092
https://www.rfc-editor.org/info/rfc8092
https://www.rfc-editor.org/info/rfc8092
https://doi.org/10.1145/3386367.3432731
https://doi.org/10.1145/3386367.3432731
https://doi.org/10.1145/3386367.3432731
https://doi.org/10.1145/3487552.3487865
https://doi.org/10.1145/3487552.3487865
https://doi.org/10.1145/3211852.3211862
https://doi.org/10.1145/3211852.3211862
https://doi.org/10.1145/3211852.3211862
https://www.cidr-report.org/as2.0/
https://www.cidr-report.org/as2.0/
https://doi.org/10.17487/RFC7454
https://rfc-editor.org/rfc/rfc7454.txt
https://arxiv.org/abs/2006.06576
https://rpki.readthedocs.io/en/latest/rpki/securing-bgp.html
https://rpki.readthedocs.io/en/latest/rpki/securing-bgp.html
https://www.arin.net/resources/manage/rpki/roa_request/
https://www.arin.net/resources/manage/rpki/roa_request/
https://doi.org/10.14722/ndss.2017.23123
https://doi.org/10.17487/RFC8205
https://doi.org/10.17487/RFC8205
https://www.rfc-editor.org/info/rfc8205
https://datatracker.ietf.org/doc/html/draft-ietf-sidrops-aspa-verification-08
https://datatracker.ietf.org/doc/html/draft-ietf-sidrops-aspa-verification-08
https://doi.org/10.1145/3355369.3355581
https://doi.org/10.1145/3355369.3355581

Bibliography 61

[32] M. Nawrocki, J. Blendin, C. Dietzel, T. C. Schmidt, and M. Wählisch, “Down the black hole: Dis-
mantling operational practices of bgp blackholing at ixps,” inProceedings of the Internet Measure-
ment Conference, ser. IMC ’19, Amsterdam, Netherlands: Association for Computing Machinery,
2019, pp. 435–448, ISBN: 9781450369480. DOI: 10.1145/3355369.3355593. [Online]. Avail-
able: https://doi.org/10.1145/3355369.3355593.

[33] T. Hlavacek et al., “Disco: Sidestepping rpki’s deployment barriers,” Network and Distributed Sys-
tem Security Symposium (NDSS), DOI: 10.14722/ndss.2020.24355. [Online]. Available:
https://par.nsf.gov/biblio/10155040.

[34] B. Schlinker, T. Arnold, I. Cunha, and E. Katz-Bassett, “Peering: Virtualizing bgp at the edge
for research,” in Proceedings of the 15th International Conference on Emerging Networking Ex-
periments And Technologies, ser. CoNEXT ’19, Orlando, Florida: Association for Computing Ma-
chinery, 2019, pp. 51–67, ISBN: 9781450369985. DOI: 10.1145/3359989.3365414. [Online].
Available: https://doi.org/10.1145/3359989.3365414.

[35] O. Borchert, K. Lee, K. Sriram, D. Montgomery, P. Gleichmann, and M. Adalier, “Bgp secure
routing extension (bgp-srx): Reference implementation and test tools for emerging bgp security
standards,” National Institute of Standards and Technology, Tech. Rep., 2021.

[36] A. Cohen, Y. Gilad, A. Herzberg, and M. Schapira, “Jumpstarting bgp security with path-end vali-
dation,” in Proceedings of the 2016 ACM SIGCOMM Conference, ser. SIGCOMM ’16, Florianop-
olis, Brazil: Association for Computing Machinery, 2016, pp. 342–355, ISBN: 9781450341936.
DOI: 10.1145/2934872.2934883. [Online]. Available: https://doi.org/10.1145/
2934872.2934883.

[37] D. Freedman et al.,Manrs implementation guide, Jan. 2017. [Online]. Available: https://www.
manrs.org/isps/bcop/.

[38] J. Scudder, R. Fernando, and S. Stuart, BGP Monitoring Protocol (BMP), RFC 7854, Jun. 2016.
DOI: 10.17487/RFC7854. [Online]. Available: https://www.rfc-editor.org/info/
rfc7854.

[39] G. Huston, As65000 bgp routing table analysis report, May 2022. [Online]. Available: https:
//bgp.potaroo.net/as2.0/bgp-active.html.

[40] ——, Bgp in 2021 – bgp updates, Jan. 2022. [Online]. Available: https://labs.apnic.net/
?p=1559.

[41] NIST, Nist report on cryptographic key length and cryptoperiod, May 2020. [Online]. Available:
https://www.keylength.com/en/4/.

[42] ——, Nist rpki monitor, May 2022. [Online]. Available: https://rpki-monitor.antd.nist.
gov/.

https://doi.org/10.1145/3355369.3355593
https://doi.org/10.1145/3355369.3355593
https://doi.org/10.14722/ndss.2020.24355
https://par.nsf.gov/biblio/10155040
https://doi.org/10.1145/3359989.3365414
https://doi.org/10.1145/3359989.3365414
https://doi.org/10.1145/2934872.2934883
https://doi.org/10.1145/2934872.2934883
https://doi.org/10.1145/2934872.2934883
https://www.manrs.org/isps/bcop/
https://www.manrs.org/isps/bcop/
https://doi.org/10.17487/RFC7854
https://www.rfc-editor.org/info/rfc7854
https://www.rfc-editor.org/info/rfc7854
https://bgp.potaroo.net/as2.0/bgp-active.html
https://bgp.potaroo.net/as2.0/bgp-active.html
https://labs.apnic.net/?p=1559
https://labs.apnic.net/?p=1559
https://www.keylength.com/en/4/
https://rpki-monitor.antd.nist.gov/
https://rpki-monitor.antd.nist.gov/

	Introduction
	Background
	BGP
	Community Attribute

	BGP Security
	Security Classification
	Attack Classification
	Desired solution properties

	Community Attribute Vulnerabilities
	Community Attacks
	Possible Mitigations

	Notable BGP security extensions
	BGP Alternatives

	Related Work
	Methodology
	Research questions
	Approach
	What has already been done to secure BGP against community attribute attacks?
	What is important to consider a solution viable for deployment, and with which metrics can we measure that?
	How can we meaningfully develop and test solutions without deploying them live on the internet?
	How can we verify the community attribute while satisfying the requirements for a viable solution?

	Data collection
	Scope

	Design
	Theoretical
	Requirements
	RPKI Object
	Algorithms
	Deployment
	Example
	Attacks
	Conditions
	Drawbacks and improvements

	Implementation
	Overview
	Architecture
	Example
	Drawbacks

	Evaluation
	Disclaimer
	Theoretical results
	Security properties
	Performance properties
	Privacy properties
	Deployability properties

	Approximate results
	Time To Mitigation
	Average BGP Data
	RCA size

	Exact results
	Community Attacks
	Verification algorithm
	Validation algorithm

	Threat model

	Discussion
	Conclusion

