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Abstract

Efficient management of water resources is increasingly critical in the face of grow-
ing challenges such as climate change and population growth. This research paper
introduces RL4Water, an adaptable framework for simulating water management
systems using multi-objective reinforcement learning (MORL). Adhering to the
Gymnasium API standard, RL4Water ensures seamless integration with existing
MORL algorithms. The framework includes diverse facility classes to accurately
model the physical components of water networks. Its generalizability is enhanced
by allowing users to modify both the physical properties of these components and
the key features of the MORL simulations. RL4Water’s capabilities are demon-
strated through two case studies: simulations of the Nile River and the Susquehanna
River, validating its accuracy and flexibility in managing both large, distributed
water systems and centralized systems with complex reservoirs. By bridging the
gap between water management and reinforcement learning, RL4Water offers a
unified platform for developing and researching water management simulations.

1 Introduction

The management of water resources in the face of climate change presents an urgent challenge that
demands innovative solutions [3, 10]. It requires us to model complex problems, such as water flow
control of a river, to make informed decisions when planning new facilities or controlling existing
ones.

Traditional methods for addressing water management issues often rely on custom algorithms tailored
to specific problems, which often share many similarities with reinforcement learning (RL) techniques.
Reinforcement learning is an area of machine learning where an agent learns to make decisions by
interacting with a given environment. For its actions, the agent receives feedback in the form of a
reward, allowing it to improve decision-making policy over time. This makes reinforcement learning
suitable for sequential decision-making problems, such as control of water management systems, that
change over time and need continuous adaptation.

Complex water management systems often include different objectives that need to be balanced.
These goals might include minimizing water deficit in a region, maximizing hydropower generation
or ensuring steady water flow through the system. Modelling the problem as a multi-objective allows
splitting the decision-making process of which objectives should be prioritized, from the simulation
calculating the sets of feasible solutions. As a result, people making decisions based on the simulation
results get more insightful knowledge and do not rely on the frameworks used for the simulations to
weigh different objectives that are individual to each problem.
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Existing simulations in the water management field often do not explicitly utilize reinforcement
learning methods, nor do they leverage specific algorithms developed within the field of computer
science. This presents an opportunity to bridge the gap between these two domains and explore
the potential benefits of applying reinforcement learning to address water management challenges.
Existing literature provides detailed descriptions of various water system components and can serve
as a foundation for developing an RL-based water management framework [15, 8].

In our research, we want to address this gap by answering the following research question: How
can the water systems simulation be generalised for multi-objective reinforcement learning?
To do that we will develop a new framework for integration of various reinforcement learning
algorithms into complex water management systems. We want to create a solution that will allow
future researchers to easily customise and adapt it to their specific water management problems,
removing the need to develop custom algorithms. The implementation will test the Nile River and
Susquehanna River simulations [15, 8], by connecting them with a multi-objective reinforcement
learning (MORL) [5] algorithm to demonstrate the applicability of the developed framework in
real-world scenarios.

The rest of the paper has the following structure. Section 2 provides the background information on
the reinforcement learning. The methodology chosen to conduct the research is described in Section
3. The overview of the RL4Water framework and its generalization properties is outlined in Section 4.
Section 5 provides the application of the framework to respectively, the Nile River and Susquehanna
River case studies. The responsible research part of the paper is described in Section 6. Section 7
discusses the created framework. The conclusions and future works are provided in Section 8.

2 Background

2.1 Water management environments

The Nile River and Susquehanna River environments, detailed in Section 5, are designed to optimize
reservoir control policies within complex water management systems. They incorporate multiple
facilities, such as power plants, demand districts, and catchments, to simulate the components of
real-world water systems. These systems can span large regions, often crossing national boundaries
and involving multiple stakeholders, each with its objectives and priorities that need to be addressed.

2.2 EMODPS

To facilitate the need to optimize multiple objectives within the simulations, the Evolutionary
multi-objective direct policy search (EMODPS) algorithm was developed by the water management
community [4]. It combines the direct policy search (DPS) with multi-objective evolutionary algo-
rithms (MOEA) to come up with Pareto-approximate operating policies [16]. The DPS maps the
state and observations from the given environment into action, while the MOEA search through the
solution space using evolutionary algorithms.

2.3 Multi-objective reinforcement learning

The MORL simulations consist of two main components, shown in Figure 1: agent and environment.
The environment defines the world in which the agent is placed. At each step of the simulation,
it provides the agent with the state that includes all information the agent can observe about the
environment. The agent, based on the observed state, decides on an action to take. The action changes
the state of the environment and provides the agent with a set of rewards.

In traditional reinforcement learning, the agent tries to optimize a single objective. However, in
MORL, the agent needs to consider multiple goals at the same time, often requiring trade-offs between
them. This aspect is critical in complex decision-making scenarios, such as water management, where
different factors such as water supply, flood risk or power production need to be balanced.

To take all of these objectives into account, a Multi-Objective Natural Evolution Strategies
(MONES) [5] was integrated with the RL4Water framework. MONES is designed to produce
a Pareto-front of alternative policies. The Pareto-front represent a set of non-dominated solutions,
allowing the user to choose the most suitable policy based on their specific priorities. It separates the
simulation logic of finding policies from the analysis of the trade-offs between objectives.
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Figure 1: Multi-objective reinforcement learning interaction of the agent with the environment.

2.4 Gymnasium API

To allow easy integration of the environment with existing reinforcement learning algorithms the
choice to use the Gymnasium API standard [1] was made. The Gymnasium library was developed by
OpenAI and allows for easy separation of the environment from the agent and training algorithms.
The library imposes a unified structure of the environment to guarantee compatibility across different
code bases. Each environment class must implement the following methods:

• step: Updates the environment with action and returns the next observation, reward, whether
the action caused environment termination or truncation and additional information from
the environment.

• reset: Resets the environment to its initial state.
• render: Renders the visual environment, allowing users to better understand the simulation

process.
• close: Closes the environment, it is needed for handling connections to external software or

libraries.

Additionally, the environments have a few attributes that help to define the space of their implementa-
tion:

• action_space: Space representing all valid actions that can be taken in the environment.
• observation_space: Space representing all valid observations of the environment state.
• reward_space: Space representing all possible rewards received from the environment.

3 Methodology

The initial stage of the research involved a detailed study of the Nile River simulation [15] to
understand the underlying principles of water management systems and identify their core component.
This step was necessary to create a bridge to integrate the reinforcement learning techniques into the
water management field. Following the study, an analysis of the Gymnasium API was done. The goal
was to understand the structure the framework needs to have to be compatible with existing MORL
algorithms.

The next step focused on adopting the Nile River simulation to be compatible with the Gymnasium
library and connecting it with MONES. At that stage, the goal was not to create a framework that
could be applied to a variety of water management systems, but to show the feasibility of the approach.

To ensure the correctness of the translated simulation and allow for an easy generalization of the
software at later stages, a verification process was created. It involved comparing the behaviour of
the simulation before and after adaptation to assert identical results. The verification process allowed
for preventing bugs in the development at further steps.

With the base implementation the most important process was started, generalizing the framework to
apply to a wide range of water management problems. The objective was to make the software easily
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customizable, by allowing users to configure component’s parameters and adjust their behaviours
without modifying the core codebase.

Afterwards, to validate the capabilities developed at the previous stage, a simulation of the Susque-
hanna River was re-implemented using the RL4Water framework. This step demonstrated the
developed solution can be adapted to different water management systems, proving its generalization
capabilities.

Finally, the RL4Water framework was compared with another reinforcement learning software
developed for controlling water management systems [7]. The differences in approaches, as well as
the results produced by both of these solutions, were discussed.

4 Water management reinforcement learning framework

The implementation of the RL4Water framework was done in Python programming language, because
of its ease of use and vast amount of packages for data science and machine learning. Moreover, both
Nile River and Susquehanna River simulations were developed in Python, making it a natural choice
as the programming language for the framework.

4.1 Overview of the RL4Water framework

The RL4Water framework provides a WaterManagementSystem class that supports the Gymnasium
API [1]. It is responsible for interacting with the agent by providing information about the state of the
environment and rewards for action taken by the agent. To model-specific components of the water
systems, it utilizes other classes divided into three groups: flows, facilities and controlled facilities.
The general structure of the framework, showing the relations between all of its components, is
presented in Figure 2.

Figure 2: Structure of the RL4Water framework.

The Flow class represents the water flow in the system. It allows users to define connections between
different facilities. It can connect multiple sources of inflow to multiple outflow destinations, allowing
for the creation of complex water flow networks. The class can be easily customized with a few
parameters to better match the needs of specific simulations:

• max_capacity: The maximum capacity of the flow. Can be used to model flooding scenarios
by providing negative rewards or terminating the simulation. Additionally, it can be set to
infinity to disable the feature.

• evaporation_rate: The evaporation rate of the flow that caused the water loss.

• delay: The number of time steps it takes the water to get from the source to the destination,
it can be used to model long connections.
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• default_outflow: The default amount of water flowing through the flow when the delay
parameter was used. The default_outflow is used for the first number of steps equal to the
value set for the delay parameter.

Both Facility and ControlledFacility classes represent components of the simulation that can
influence the water system and provide a reward based on their state. In contrast to the Facility class
that represents a static part of the system that cannot be controlled and only responds to the state of
the environment, the ControlledFacility class can receive an action from the agent to actively interact
with the state of the environment. The current RL4Water framework provides an implementation
of three different facilities: catchment, demand district, power plant and the implementation of one
controlled facility: reservoir.

The Catchment class is the simplest facility that allows the modelling of additional inflows to the
system. It can be initialized with all_water_accumulated parameter that takes a list of inflows the
catchment provides for each step of the simulation.

The DemandDistrict class models a facility that consumes water from the system to meet its needs.
The default implementation of this facility provides a reward based on the proportion of the demand
met. The demand of the facility per each step of the simulation can be specified by all_demand
initialization parameter.

The PowerPlant class represents a facility with the ability to produce power from the water flow.
To do that it needs to be connected to a reservoir that provides it with stored water available for
power production. The class needs multiple parameters to define its physical attributes necessary for
calculating power production capabilities:

• efficiency: Efficiency coefficient of the power plant.
• head_start_level: The water level required for the power plant to generate water.
• max_capacity: Maximum power capacity of the power plant.
• operating_hours: The number of hours the power plant operates for.
• min_turbine_flow: Minimum flow through the turbines to produce hydro energy.
• max_turbine_flow: Maximum flow through the turbines for hydro energy production.
• water_usage: Ratio of water flowing through the turbines that is consumed.

The Reservoir class allows for controlling the water flow through the system. It can accumulate the
water in its storage and release it depending on the action chosen by an agent. It allows for complex
storage shapes, e.g. cones, to be modelled using functions that describe the relation of the amount of
water stored to its level and surface area. The functions can be passed to the system as following sets
of data points, that will be further interpolated by the Reservoir class:

• storage_to_minmax_release_relation: Relation of the stored water amount in m3 to the
minimum and maximum amount of water that can or needs to be released from the reservoir.

• storage_to_level_relation: Relation of the stored water amount in m3 to the water height
level in meters, used for calculating the power production.

• storage_to_surface_relation: Relation of the stored water amount in m3 to the surface area
in m², used for calculating the amount of evaporated water.

Moreover, the Reservoir class can be initialized with a few parameters that define additional attributes
of the object:

• max_capacity: Maximum amount of water that can be stored in the reservoir.
• stored_water: Initial amount of water stored in the reservoir.
• evap_rates: Evaporation rates of the reservoir’s storage per simulation step, that can be used

to represent environmental effects.
• integration_timestep_size: Time units per each reservoir’s state should be re-evaluated.

Finally, the reservoir can control water release in multiple directions. This is achieved by providing
the class with one action for each of the connected destination facilities. The reservoir then calculates
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the total possible outflow and determines the proportion of target outflows (split_release_ratio), based
on the ratio of the received actions. This parameter is afterwards used by the Flow class to redistribute
water to downstream facilities.

4.2 Generalization features of the RL4Water framework

The RL4Water framework can be easily adapted to model different water management scenarios by
selecting suitable attributes for the facility classes. As a result, the framework becomes resilient to
changes in the physical properties of the model components, reducing the amount of work needed to
adjust the simulation. Apart from the option to input the class attributes, the framework allows for
easy control of the simulation parameters, such as actions, observations, objectives and time frame of
the simulation run.

4.2.1 Custom action space

As every ControlledFacility class can be controlled by the agent, it needs to accept actions that define
its behaviour. The type and the space of the allowed actions are determined by the action_space
attribute, which needs to be set for each controlled facility during its initialization. For the Reservoir
class implemented in the framework, the action space represents all possible values of the amount of
water the reservoir can release. While it’s not possible to change the action type to a different than the
amount of released water, the space that defines the action can be easily modified to be a discrete or
continuous space, using respectively Discrete and Box classes available from the Gymnasium library.

To ensure seamless integration between the MONES algorithm and the WaterManagementSystem
class, a ReshapeArrayAction wrapper was added. MONES outputs a single array of actions for
the environment, without subdividing them for each controlled facility. The implemented wrapper
converts this action array into a dictionary, using the facility name as the key and the corresponding
actions as values. It automatically extracts all necessary information, supporting multidimensional
action spaces and simplifying the process for the user.

4.2.2 Custom observations

Each of the ControlledFacility classes requires information about the type and space of observations
it can provide. That information is defined by the observation_space attribute, which is passed
during the class initialization. The Reservoir model, by default, expects a single, one-dimensional,
continuous space with the lower and upper bounds equal respectively to the minimum and maximum
amount of water that can be observed in the storage. The observation value that is provided to the
agent at each step of the simulation is defined by the determine_observation method, which out of
the box, returns the amount of water stored in the reservoir’s storage. To modify the observation
outputted by the environment, one only needs to adjust the determine_observation method to return
the required variable or set of variables and make sure that the controlled facility class gets initialized
with the space correctly defining the new observation.

4.2.3 Custom objectives

Different water management scenarios want to maximize different objectives, thus it is essential to
make them interchangeable. In the RL4Water framework, the objectives are implemented using two
components: rewards and objective functions.

The rewards are calculated by the determine_reward method that needs to be implemented for each
Facility and ControlledFacility class. The method defines which class attributes are relevant to
compute the reward, e.g. water demand and inflow for the demand district or water level in storage
for the reservoir. Then the method can utilize the objective_function attribute, passed during the class
initialization, allowing it to compute the final reward from the chosen components. There are nine
different objective functions implemented in the Objective class that allow for various objective
calculations.

The objective of the simulation can be easily modified by overriding the determine_reward method to
use a different set of attributes or by swapping the objective_function during class initialization.

Moreover, the framework can combine objectives from different classes together. It can be done by
setting the same objective_name attribute for all the classes that should share the same objective. As
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a result, simulation components that contribute to the same goal can provide a singular reward, e.g.
multiple demand districts that provide water for the same area.

4.2.4 Custom time step unit

Often in reinforcement learning the agent interacts with the environment only for a limited amount
of steps. To set that limit, for simulation done using the RL4Water framework, the TimeLimit
wrapper class from the Gymnasium library can be used. It takes as arguments the environment and
the maximum number of steps we want the simulation to run for.

Additionally, different water management systems might want to run for different periods, using
different step sizes, e.g. the Nile River simulation was run over 20 year time period with each step
being one month [15], while the Susquehanna River simulation was run over the frame of one year
with a step size of four hours [17]. To facilitate that the RL4Water framework allows to set the size of
each step with the timestep_size attribute of WaterManagementSystem class. The time step size
can represent any amount of time from multiple years to a second. Moreover, to allow for accurate
computations, that take into account leap years and the specific number of days each month has, a
start_date argument needs to be provided to specify when the simulation starts.

Finally, to allow reservoirs to take more granularly controlled actions, the RL4Water framework
implements an integration step. The integration step divides the main step of the simulation into
multiple smaller phases, each with the size set by integration_timestep_size attribute of the Reservoir
class. Furthermore, the actions are applied at each integration stage, instead of the simulations step,
ensuring that all physical constraints of the reservoir are respected, as it would not always be possible
when taking release actions once over the large period of the whole simulation step, e.g. one month
for the Nile River simulation [15].

5 Case studies

The capabilities of the RL4Water framework are shown through two case studies: the re-
implementation of the Nile River simulation [15] and the Susquehanna River simulation [8], further
referred to as original simulations. Each case study introduces the setting of the environment and
describes its structure based on the used framework components. To validate the accuracy of the
RL4Water framework, its behaviour was compared to that of the original Nile River simulation.

5.1 Case study of Nile River simulation

The case study of Nile River simulation focuses mainly on simulating the Blue Nile part of the
basin. The next two largest tributaries: the White Nile and Atbara River are only modelled as water
inflows and do not include any facilities. The area covered by the case study spans over territory of
three African countries: Egypt, Sudan and Ethiopia. Each of these actors in the region has different
facilities and objectives that are modelled in the case study.

Following the original simulation, the assumption was made, that the agent has complete information
on the state of the river basin [15]. Moreover, the agent single-handedly decides on the release actions
for all reservoirs. As a result, the scenario modelled in the simulation provides a set of solutions
trying to compromise between objectives of different actors in the region.

The simulation horizon was set to twenty years, from 2022 until 2042, with each step of the simulation
lasting one month. The size of the integration step was set to half an hour, to ensure that the physical
constraints of the reservoirs are not violated [15].

The topological overview of all components of the Nile River simulation model is shown in Figure 3.
It demonstrates all facilities used in the case study, as well as the flow between them.

Reservoirs There are four reservoirs modelled in this case study: High Aswan Dam (HAD),
Sennar, Roseries and Grand Ethiopian Renaissance Dam (GERD). The HAD as the most downstream
reservoir is responsible for controlling the water supply of Egypt and provides significant economic
gains for the country [9]. Both Sennar and Roseries dams are located in Sudan and play a significant
part in meeting the irrigation demands of the region [13]. Finally, the GERD as the most upstream
reservoir is located in Ethiopia. With its primary goal to increase access to electricity across the
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Figure 3: The topology of the Nile River case study detailing all components of the simulation.
Adapted with permission from: [15]

country, it will be the largest hydroelectric power plant on the continent [11, 13]. The initialization
setup of the GERD reservoir is shown in Code Listing 1.

GERD_reservoir = Reservoir(
name="GERD",
observation_space=Box(low=0, high=80_000_000_000),
action_space=Box(low=0, high=10000),
integration_timestep_size=relativedelta(minutes=30),
objective_function=Objective.no_objective ,
stored_water=15_000_000_000 ,
evap_rates=np.loadtxt(evap_rates_file),
storage_to_minmax_rel=np.loadtxt(storage_to_minmax_rel_file),
storage_to_level_rel=np.loadtxt(storage_to_level_rel_file),
storage_to_surface_rel=np.loadtxt(storage_to_surface_rel_file),

)

Code Listing 1: Code for initialization of the Reservoir class.

Power Plants Even though all four reservoirs have the capacity to generate hydroelectric power,
our simulation will focus only on the power plant connected to the GERD. Additionally, the original
simulation did not include power production for other countries as an objective, making the other
three power plants irrelevant to the modelled water management system [15]. The GERD power
plant got loaded using the code from the Code Listing 2.
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GERD_power_plant = PowerPlant(
name="GERD_power_plant",
objective_function=Objective.scalar_identity(1 / 1000000000),
objective_name="ethiopia_power",
efficiency=0.93,
min_turbine_flow=0,
max_turbine_flow=4320 ,
head_start_level=507 ,
max_capacity=6000 ,
reservoir=GERD_reservoir ,

)

Code Listing 2: Code for initialization of the PowerPlant class.

Demand Districts The case study simulation models six different irrigation districts. Five of them
are part of Sudan, and one is located in the territory of Egypt, shown in the Code Listing 3. The
Sudanese districts are Upstream Sennar, Gezira-Managil, Downstream Sennar, Tamaniat to Hassanab,
and Hassanab to Dongola, while the single Egyptian district aggregates the irrigation needs of the
entire country. The districts were selected based on their demand aggregation zones [12].

Egypt_irr_system = DemandDistrict(
name="Egypt_irr",
all_demand=np.loadtxt(egypt_irrigation_demand_file),
objcetive_function=Objective.deficit_minimised ,
objective_name="egypt_deficit_minimised",

)

Code Listing 3: Code for initialization of the DemandDistrict class.

Catchments The simulation represents the Blue Nile as the primary inflow to the Nile River by
modelling it using the Inflow class. The other two main tributaries of the Nile River are implemented
as catchments, with the Atbara inflow setup demonstrated in the Code Listing 4. The case study
includes an additional five smaller catchments, all located within Sudan, that contribute to the inflow
of the water management system.

Atbara_catchment = Catchment(
name="atbara_catchment",
all_water_accumulated=np.loadtxt(atbara_inflow_file),

)

Code Listing 4: Code for initialization of the Catchment class.

Objectives Four different objectives were implemented to meet the specific needs of each country
located in the eastern Nile River basin. Egypt’s primary focus is maintaining the reliability of the
water supply by minimizing the deficit in water demand of their irrigation district. Moreover, to keep
the energy supply, they want to keep the water level of HAD above the minimum level of 159 meters
needed to produce the hydroelectric power [14]. Similarly to Egypt, Sudan also strives to minimize
the aggregated water deficit across all its irrigation districts. Finally, Ethiopia prioritizes maximizing
hydropower generation from the GERD, as it was the main reason for its construction.

5.2 Case study of Susquehanna River simulation

The Susquehanna River is the longest river on the East Coast of the United States, spanning over three
states: New York, Pennsylvania and Maryland. The case study models the lower Susquehanna River
basin, particularly the largest nonfederal dam Conowingo constructed in 1928. Since the reservoir is
responsible for controlling a large share of river flow in the basin, it impacts multiple shareholders
with different objectives.

In 1968 the Muddy Run Pumped Storage Hydroelectric Facility was connected to the Conowingo
reservoir. The original simulation modelled the additional facility as controlled by a predefined set of
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rules, making it not suitable for control by a reinforcement learning agent. Additionally, it did not
directly contribute to any of the modelled objectives, resulting in a decision not to include the Muddy
facility in the modelled environment.

The environment was simulated for one year, with one step having a duration of four hours. Addition-
ally, the included reservoir had an integration step with a size of one hour allowing it to calculate
storage and evaporation changes more granularly.

The overview of the Susquehanna River simulation components, which include one reservoir and
four demand districts, is illustrated in Figure 4.

Figure 4: The topology of the Susquehanna River case study detailing all components of the
simulation.

Reservoir The Conowingo reservoir is responsible for controlling the downstream water flow,
supplying Chester and Baltimore cities and providing water for cooling of the Peach Bottom atomic
power plant. Moreover, the reservoir’s body of water is used for recreation. In contrast to the reservoirs
described in the Nile River case study, which always had a single destination, the Conowingo dam
distributes the water flow in multiple directions.

Power Plant The simulation includes a single power plant connected only to the downstream
outflow of the Conowingo reservoir. The maximum capacity of the power plant was defined as the
combined capacity of its thirteen turbines, and the minimum corresponds to that of the smallest
turbine.

Demand Districts The lower Susquehanna River basin contains three demand districts modelled
in the simulation: Chester, Baltimore and the downstream region. Both cities have water demands,
changing over the time frame of the simulation, that need to be met to sustain their population. On the
other hand, the downstream region of the basin needs to meet minimum flow requirements defined by
the Federal Energy Regulatory Commission (FERC) to conserve fishing resources [2].

Objectives The Susquehanna River environment modelled four objectives: hydropower revenue,
water supply, environment and recreation [8]. The hydropower revenue is computed as a product of
the power production (MWh) at the Conowingo hydropower plant and the power prices (US$/MWh).
Baltimore, Chester and the Peach Bottom atomic power plant share the same objective of water supply
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calculated as a water supply ratio to water demand. The environmental objective (JSI ) is described
as the daily average shortage index in relation to the minimum flow required by FERC, defined
using the Equation 1. The quadratic formulation discourages large water deficits while allowing for
minor shortages. The final objective maximizes the recreational value of the Conowingo reservoir by
promoting the state when the water level in the storage is above the minimum level of 32.5 m (106.5
ft) during the weekend.

JSI = −
(
max(Demand− Supply, 0)

Demand

)2

(1)

5.3 Verification

To verify the correctness of the RL4Water framework, the behaviour of the Nile River case study was
compared with the behaviour of the original simulation. The Nile River simulation was chosen as it
included more different components than the Susquehanna River Simulation. Moreover, its original
simulation had a clearer codebase with a more detailed explanation of the behaviour in the paper,
allowing for a more detailed comparison.

The validation process was conducted by running the original simulation for the set period of 240
steps of one month each, corresponding to the 20 years of the desired simulation horizon. At each
step, the action used to control each of the reservoirs, alongside the state of the environment, was
logged into a file. The state of the simulation was defined by the amount of water stored and released
from each of the four reservoirs (HAD, Sennar, Roseries, GERD) and the power produced by the
GERD.

Afterwards, the case study simulation was run using the same simulation horizon and actions described
above. At each step, the state of the water management system was asserted to match the variables
previously logged in the file, with a relative difference of less than 1e−10. The only modification
made to the RL4Water framework during the validation process was skipping the leap years by
incrementing the current_date attribute of the WaterManagementSystem by one year each time the
leap year was encountered. This alteration was made to match the number of days per month used in
the original simulation that did not support leap years.

The Nile River environment, developed using the RL4Water framework, takes 28.47 seconds to
run a 20-year simulation horizon. This timing exclusively measures the environment’s step method
using pre-determined actions, excluding the action selection process by the agent. The benchmarking
experiment was conducted on a laptop with a Windows 10 operating system and an AMD Ryzen 7
4800H processor.

6 Responsible Research

6.1 Reproducibility

In this research, we adhere to Findable, Accessible, Interoperable, Reusable (FAIR) data principles.
To ensure the reproducibility and allow for collaborative development of the RL4Water framework,
we have made the entire codebase publicly available on GitHub2. The repository can be accessed
by anyone, allowing for transparency and increasing community involvement. Users can comment
on the software and provide suggestions for further improvements. The chosen developer platform
supports version control, allowing everyone to view the exact changes made to the framework to
validate the research process. All data used for creating the simulations and running the environments
is included in the published code, ensuring an integrated solution that can be analyzed and processed
by others. The software was developed using clear naming and comments, making it straightforward
to reuse or modify. Moreover detailed descriptions of the framework’s properties are provided in
Section 4, ensuring that users can fully understand and utilize the capabilities of the framework.

2https://github.com/krmuniak/rl4water
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6.2 Framework usage

The presented paper describes and provides simulations of two water management systems: the Nile
River and the Susquehanna River. The data used for creating these environments was directly adapted
from previous studies [15, 8] without any modifications. It is important to note that the presented
simulation should not be used as an indicator for making decisions about reservoir control in these
regions. The case studies were intended to demonstrate the feasibility of the framework to model
such scenarios, but they do not validate the accuracy of the results. While the RL4Water codebase
provides a platform for modelling and experimentation, selection of the input data to correctly and
validation of the results, are necessary for practical decision-making in real-world water management
systems.

7 Discussion

This section discusses the similarities and differences between the RL4Water framework developed
using a top-down approach and another MORL framework based on a bottom-up methodology [7].
Moreover, it analyses the possibilities of extending the existing codebase with new functionalities
and considers the limitations of the developed framework.

7.1 Similar work

The RL4Water framework was developed by first adapting the Nile River simulation for MORL
and then generalizing it to meet the needs of similar water management problems. This top-down
approach focused on creating modular classes that simplify the setup process of the environments.
The pre-defined methods and classes make it easier to implement water management scenarios based
on reservoir control.

In contrast, the bottom-up framework was developed by extracting core principles from different
water management problems. This approach focused on creating a generalized system based on
water flows between abstract nodes. While this method offers greater flexibility and customization, it
requires users to define functions that specify the interactions of these nodes with the environment.
Thus, the bottom-up approach requires more effort during setup and configuration, making it less
straightforward.

Both frameworks aim to address similar problems but from different perspectives. The RL4Water
framework provides an out-of-the-box solution with pre-built components, while the bottom-up
framework offers more customization options at the expense of increased complexity.

7.2 Extendability of the framework

The RL4Water framework was designed to be easily extended with new facilities. This was achieved
through a unified integration of Facility and ControlledFacility with the WaterManagementSystem
and Flow classes, specified in the step method. As a result, adding a new facility does not require any
changes to the core integration. Each facility only needs to implement specific functionalities that
define its properties and behaviour. For the Facility class, the necessary methods are:

• determine_reward: Provides the reward of the facility based on its current state.
• determine_consumption: Calculates the amount of water the facility uses, which allows for

the automatic calculation of the outflow.

For the Controlled Facility class, the required methods are:

• determine_reward: Provides the reward of the facility based on its current state.
• determine_outflow: Calculates the water outflow from the facility based on an action

provided to the method.
• determine_observation: Provides the observations of the facility, allowing the agent to make

more informed decisions.
• is_terminated: Defines whether the simulation should be terminated based on the state of

the facility.

12



By implementing these methods, new facilities can be seamlessly integrated into the RL4Water
framework, improving its versatility and applicability in various water management scenarios.

7.3 Limitations

The RL4Water framework has a few limitations. One is the lack of unit tests, as the current
implementation only includes an end-to-end test of the entire Nile River simulation. Adding more
tests would help to minimize the risk of unnoticed bugs and simplify further development. This
would allow for more detailed verification of the codebase and more precise identification of potential
error sources.

Another limitation is the lack of static validation for the simulation setup. The framework depends on
users to understand its structure and configure simulations correctly. Users can set up environments
with invalid parameters without receiving any warnings, leading to incorrect simulation results or
unexpected crashes. For instance, users might create facilities that are not connected to the system
or set incompatible parameters, such as a power plant with a min_turbine_flow greater than its
max_turbine_flow. Introducing an assertion step at the beginning of the environment setup would
mitigate these issues, reducing the dependency on the user’s understanding of the framework and
making it more robust.

8 Conclusions

The developed framework bridges the gap between water management and reinforcement learning
fields by demonstrating a practical application of MORL to real-world reservoir control problems. It
creates a unified system for building water management simulations, enabling easier research in the
field.

The RL4Water software offers a general solution supporting simulations of water management
problems with multiple objectives. It handles complex water flow network systems that consist of
facilities with different specifications and purposes, including reservoirs, power plants, catchments and
numerous demand districts. By using Gymnasium API, the framework enables seamless integration
with reinforcement learning algorithms, such as MONES.

One of the most essential features of the constructed platform is its generalization capabilities. It
allows for easy setup of component parameters and modification reinforcement learning properties,
including action and observation spaces, objectives, and simulation horizons. This flexibility was
demonstrated through two case studies of Nile River and Susquehanna River simulations.

The Nile River case study showcased the codebase’s ability to manage large distributed water systems
with multiple facilities. In comparison, the Susquehanna River simulation demonstrated the capability
to model a centralized system with a single complex reservoir controlling multiple surrounding
facilities. The correctness of the software was verified by comparing its behaviour with the adapted
Nile River simulation.

8.1 Future works

One of the possible further improvements to the developed RL4Water framework includes automatic
detection of the flow network topology. Currently, environments need to be initialized with an ordered
list of flows and facilities from the most upstream to the most downstream elements. It makes the
users responsible for ensuring a correct setup and requires them to correctly organize the network
flow. This feature would reduce the complexity of the simulation configuration process, making it
even easier.

Additionally, validation of the framework against other water management simulations is desired
to further confirm the generalization capabilities of the codebase. Such a process could include the
development of new facilities and covering a larger set of water management problems to utilize
reinforcement learning. Including a verification step for that simulation would boost the confidence
in the framework’s reliability and effectiveness.

Another important step in verifying the feasibility of applying MORL for reservoir control problems
is bench-marking the MONES algorithm with the EMODPS, which is commonly used in the water
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management field. The comparison of these algorithms was done using the Nile River simulation [6],
however, extending it to other water management problems would allow to verify the results and help
to identify new ways to further increase the performance of both approaches.

Finally, translating of mentioned water management algorithms to be compatible with the Gymnasium
structure would help in making the RL4Water framework a unified solution in the field. It would
enable the use of well-established algorithms, together with the ease of creating new environments
that the developed codebase provides.
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