
Proving Univalence for Generic Higher Structures and
Specific Monoids on Sets

Raul Santana Trejo
Supervisors: Benedikt Ahrens, Kobe Wullaert

EEMCS, Delft University of Technology, The Netherlands

June 19, 2022

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering

1



Abstract

Type Theory enables mathematicians to perform proofs in a formal language that
computers can understand. This enables computer-assisted proofs and the computeri-
zation of all mathematical knowledge. Homotopy Type Theory (HoTT) views types as
topological spaces, unlocking new ways to understand and expand Type Theory. One
of the most interesting expansions of Type Theory thanks to HoTT has been the de-
velopment of the Univalence Axiom which expands the definition of "equality between
types". This paper analyses the work done in the paper "Isomorphims is Equality"
and applies their proof of Univalence for higher structures to two specific monoids on
sets. This is done in terminology that is understandable to Computer Scientists with
the aim to further the collaboration between the two fields.

1 Introduction
Mathematics has a lot to offer to the Computer Science world by providing us models to
understand and verify code without even having to run it. Type Theory is one of these tools,
it allows us to construct mathematical proofs that computers can understand. This has lead
to developments such as TRX, an interpreter developed in Coq that is able to produce for-
mally correct programs [7]. Mathematicians have recently developed a very promising new
branch of Type Theory called Homotopy Type Theory (HoTT), which enables mathemati-
cians (and consequently Computer Scientists) to reason about much broader problems, and
generalize findings between different mathematical structures. Much of this early research
is very mathematical in nature so we find a knowledge gap in making this knowledge ac-
cessible to Computer Scientists. With this paper we attempt to translate those findings in
terms that are more familiar to Computer Scientists so we can harness the power of Homo-
topy Type Theory in our programs and further the collaboration between the mathematics
and computational worlds, like was the case with recent research that uses Homotopy Type
Theory to avoid combinatorial explosion bottlenecks in Big Data [8].

One recent research paper in the HoTT field is "Isomorphism is Equality" by Coquand
and Danielsson [3] (also referred to as the "reference paper" further on). This paper proofs
univalence for higher structures by first creating a way to define such structures in Type
Theory and then using these definitions in their proof. We will go over the proofs in the
paper using two specific isomorphic monoids and relating each step of definition and proof
to the specific monoids, we hope this helps in understanding the proof, especially for people
unfamiliar with very abstract mathematical thinking.

To achieve this explanation we tackle the question, "How do the proofs for complex
structures from "Isomorphism is Equality" translate to Computer Science terminology and
how do we apply the proof to specific monoids?". This question is then divided into three
subquestions:

• What is the intuition behind Homotopy Type Theory in Computer Science terms?

• What is the Univalence Axiom in Computer Science terms?

• What is the intuition behind the proofs in the "Isomorphism is equality" paper?

• How do the proofs on the paper match the process of defining univalence between two
specific monoids?

2



We start in the Preliminary section where we explain the basic notion behind Type
Theory as a basis for mathematics, what the Homotopy Type Theory interpretation is, and
what the Univalence Axiom states. We also take the chance to explain the key preliminary
concepts behind the proof of "Isomorphism is Equality". In the Analysis section we then
make a step-by-step walk-through of the paper using different explanations and referring
to two specific monoids at every step. Explaining it in this terminology helps Computer
Scientists to understand how to use the Univalence Axiom for higher proofs and takes us
further to applying this knowledge to structures as complex as entire programs. We finalize
the paper with recommended next steps and implications of the research.

2 Preliminaries
This section introduces the reader to the background knowledge on Homotopy Type Theory
necessary for understanding the proofs in this paper. The core of this knowledge comes
from the Homotopy Type Theory textbook which contains alternative explanations for all
presented concepts along with further details, proofs and implications [1]. This section
attempts to transmit the knowledge from the book in terms that are understandable for
someone with a Computer Science bachelors degree. First we explain how Type Theory is
used to perform proofs in a computer-friendly manner, then we dive into Homotopy Type
Theory, the main intuitions and how they lead to the reference paper.

2.1 Type Theory and Computer Science
2.1.1 How Type Theory can be used for mathematical proofs

Most computer scientists will be familiar with the concept of a Type Checker, a computer
program that can check all the declarations and operations in a piece of code to ensure
that all the steps are valid and create an object of the desired type. This process is very
similar to the process of checking a mathematical proof, one starts with several definitions
and applies them to create a new structure that satisfies the desired conclusion. We can use
Type Checking algorithms to check mathematical proofs, as long as we can write our proofs
in terms of Types, this is the concept of Type Theory: defining mathematics in terms of
types that can be understood and checked by a Type Checker.

Mathematical proofs have always been written by hand. This has lead to big debates on
the validity of some proofs such as the case of the ABC Conjecture [6], by using Type Theory
and computer-checkers we can define the entirety of mathematics in a formal, indexed and
verifiable way.

The key insight in Type Theory as a basis for mathematics is to view types as propo-
sitions. Any theorem, assumption and conclusion corresponds to a specific Type. We can
then define other logical concepts such as implications, conditional logic and predicate logic
using several other structures that are common in computer programs. A proof finally looks
like a function that takes in several arguments (assumptions) and applies operations to them
(logical rules) to derive a final output (conclusion). If the final output’s Type is the one
that corresponds to the desired conclusion, we have proven that conclusion.

3



2.2 Homotopy Type Theory
One interesting question that mathematicians have been diving into is "What is a type?".
There are several models that help us reason about types, the Homotopy Type Theory model
thinks of a type as a space, and equalities between two objects is related to the ability to
go from one object to the other within the space, this is explained in detail in the following
sections.

2.2.1 Types as spaces

In HoTT, types are seen as spaces, with instances of that type being points in the space. So
the Type of Integers could be seen as a space with several disconnected points, each point
being a specific Integer. Other logical notions have a topological equivalent, for example
two objects are equal if there is a path between them, a function from A → B transforms
space A into space B by assigning every point of A a corresponding point in B. These are
also shown in the table below.

Computer Science Types as spaces
Integer i i is a point in the space of all Integers

Equality : a == b there is a path between a and b
f : Integer → N f maps the space of Integers to the space of Natural Numbers

2.2.2 Equality between spaces and the Univalence Axiom

One of the key questions in Homotopy Type Theory is the concept of equality. When are
two objects equal? Traditional definitions of equality as seen in Set Theory are often too
strict, same applies with traditional equality between spaces. For example take the two
paths in Figure 1.

Figure 1: Two similar paths between two points

It would be naive to consider them completely distinct just because they are not point-
wise equal. In Homotopy Type Theory two paths are considered equal if there is a continuous
transformation between them as shown in Figure 2.

The rise of Homotopy Type Theory came from Vladimir Voevodsky when he realized
this concept of "equality coming from transformations" could be applied to entire spaces,
and thus entire Types. This concept is called the "Univalence Axiom" (UA). The UA
states that two objects that have an Isomorphism between them are equal. An Isomorphism
is a continuous transformation back and forth (like the paths in figure 2 above). So the

4



Figure 2: Continuous transformation between two paths

Univalence Axiom states that we can define equality between entire Types as the condition
that there exists a continuous transformation back and forth between them. Isomorphism is
the same as equality. When applying the univalence axiom we will use the function ≃ =⇒ ≡,
this name comes from transforming an equivalence (≃) into an equality (≡).

2.2.3 Higher Structures

The univalence axiom applies to Types that form basic spaces, but does not necessary apply
to Types that have additional conditions (such as monoids, discrete fields, or posets). So
the Univalence Axiom applies to the Natural numbers, but does not immediately apply to
two monoids building on the Natural numbers. In this paper we call these advanced types
that have additional conditions "Higher Structures" and we will see later on that as long
as we can define our Higher Structures in certain ways within Type Theory, we can proof
univalence axiom holds for them.

2.3 Monoids
We will particularly look into the example of monoids as the Higher Structure of choice. A
monoid is a mathematical structure composed of three elements: a Carrier Type, a binary
operator and an identity element. The Carrier Type states what type of objects the monoid
works with, the binary operator is an operation that combines two elements of the Carrier
Type, and the identity element is a special element of the Carrier Type such that when
combined with another element n using the binary operator, the output will always be n.
For example we have the monoid (N, λmn.m+ n, 0) with Carrier Type N, binary operator
(λmn.m+ n) and identity element 0. Monoids have three rules, left identity, right identity
and associativity. Left identity states that the "identity on the binary operator" works
when the identity element is the first argument, right identity states that identity holds
when the identity element is the second argument, and associativity says that concatenating
the binary operation in different orders has no effect on the result (a+ b) + c ≡ a+ (b+ c).
We will encode all of the above information in Type Theory in order to proof Univalence
for monoids.

Monoids are highers structures because they start with a basic Type (Carrier Type) and
add extra structure and rules on them (the binary operator, identity element and monoid
rules).

5



2.3.1 Dependent Pairs

Dependent pairs are a Type-theory concept that is heavily used in the proof we discuss below.
A dependent pair is a pair of items where the Type of the second element depends on the
first. Dependent Pairs can be used as the Type Theory version of "there-exists" statements
from predicate logic. "There exists x such that P" can be seen as a pair (x, P x) where the
existence of x is necessary to construct P . In the sections below we denote dependent pairs
as Σ x. P x, and if we want to specify the type of x we use Σ x : X. P x, (there exists an x
of type X such that P x holds).

2.3.2 resp, subst and the transport theorem

One of the key advantages of working with equalities and similarities is the ability to translate
findings from one object to the other. For example in traditional algebra if we know x = y,
we can substitute all instances of x by instances of y, which may lead to interesting findings,
proofs or simplifications.

Let P be some operation on a space and let A and B be two spaces. An interesting case
is when P "respects isomorphism", essentially meaning that A ≃ B → P A → P B, we call
this property resp, it means that P transforms the space of A in such a way that we can
still transform from P A to P B. More specifically resp eq (PA) : P B, we transform P A
into P B using the original isomorphism eq. This allows us to make claims about B thanks
to the fact that it is isomorphic to A.

Another useful thing to do with equalities is substitution, we define substitution as
subst : x ≡ y → P x → P y, essentially if x ≡ y and P x holds, then P y must hold. We
can substitute equal objects in any proposition P .

Notice that the univalence axiom allows us to transform equivalences to equalities, this
means that subst also applies to equivalences, if we have eq : A ≃ B, we can transform it to
an equality eq : A ≡ B using univalence. More specifically, given a proof p of P A we have
resp eq p ≡ subst (≃ =⇒ ≡ eq) p, with both sides being a proof P B. The fact that A and
B are isomorphic implies that we can substitute any instance of P A by an instance of PB.
This is called the "Transport Theorem", we can substitute two isomorphic objects.

3 Analysis
The paper "Isomorphism is equality" begins with two monoids (N, λmn.m + n, 0) and
(N \ 0, λmn.m + n − 1, 1). These monoids are isomorphic but are not equal in tradi-
tional set theory. In this section we will proof these two equal under HoTT, following the
steps of the reference paper and relating each step to these two original monoids.

From now on we will call these monoids M1 and M2 respectively, and for conciseness
we assign each component of the monoid a different variable name, that is:

M1 = (N, λmn.m+ n, 0) = (C1, b1, e1)

M2 = (N \ {0}, λmn.m+ n− 1, 1) = (C2, b2, e2)
(1)

For example we write b1 to refer to M1’s binary operation, λmn.m+ n. These monoids
are isomorphic as witnessed by isomorphism λn.n + 1, we will call this isomorphism eqM
and use it later on to proof M1 ≡ M2.

6



3.1 Defining higher structures and similarity in Type Theory
The first step is defining the Higher Structures as explained in Section 2.2.3 using Type
Theoretic terms. First we give a generic approach to defining higher structures (how we
describe what a "monoid" is), then we define what an instance of a structure is composed
of (how we describe specific monoids M1 and M2), and finally we create a definition of
equality and isomorphism (What does M1 ≡ M2 and M1 ≃ M2 even mean).

3.1.1 The universe of all higher-structures

First we build a universe that encompases all higher structures U , and define a function
El : U → Type → Type. El is a function that takes in a specific higher-structure a : U and
represents all instances of that higher-structure. For example El monoid N describes all
monoids that have the Natural Numbers as their carrier set, so M1 is an element of type
El monoid N while M2 is an element of El monoid N\{0}.

This El is a transformation of the Carrier Type, it expands the Carrier Type into the
more complex higher-structure. It is important later on that El respects Isomorphism,
meaning that if two Carrier Types B and C are isomorphic then El a B and El a C are
also isomorphic, this property is the resp property that we defined in section 2.3.2, so:

resp : ∀ a B C. B ≃ C → El a B → El a C (2)

Going back to our original M1 and M2, resp states that since C1 and C2 are isomorphic
through eqN , we can transport any instance of El a C1 to an instance of El a C2 by moving
along eqM , we can morph the space M1 into the space of M2. According to the transport
theorem as mentioned in section 2.3.2, this means we can substitute M1 by M2 in any
proposition thanks to eqM .

Now that we have defined a universe that can host our higher-structures, let’s use it to
give generic definitions for higher-structures.

3.1.2 Defining generic and specific higher structures

We define Higher Structures using Codes and Instances. A Code is a generic description of
a structure, for example we could have a Code for "monoids". A Code consists of a (the
structure’s features) and P (a family of propositions). a is the special components of the
structure (like the binary operator and identity elements of monoids), and P represents the
rules for the structures, such as the monoid laws (identity and associativity).

An Instance is a specific formulation of a structure, it turns a given Code into a C: the
carrier type, x: the structure components (in other words a value of type El a C), and p: a
proof that x satisfies all the Code’s propositions. To reiterate we have:

Code = (a, P )

Instance (a, P ) = (C, x, p)
(3)

Going back to our monoids we can generally describe them as follows:

monoid : Code

monoid = ((b, e), laws)
(4)

7



Where b is a binary operator on the Carrier Type, e is an element of the Carrier Type
and laws is a function that constructs the monoid laws from the given Carrier Type, b and
e.

More specifically we define:

b = (id → id → id)

e = id

laws = λC(_ • _, e).

((Is− Set C)×
(∀x.e • x ≡ x)×
(∀x.x • e ≡ x)×
(∀x y z.x • (y • z) ≡ (x • y) • z)

(5)

b and e just contain the given arguments belonging to the carrier type. The laws object
is more interesting. It first gives name to the arguments by using a λ expression, specifically
it defines the Carrier Type to be C and the pair of binary operator and identity element
to be _ • _ and e respectively. Defining the binary operator as _ • _ allows us to place
arguments in the underscores. Once the arguments have been named we describe how they
should behave, first of all we say that the Carrier Type C should be a Set using some Is−Set
function (we omit this definition but it can be found in the reference paper [3]). Note that
this requirement for C to be a Set is only necessary because we are restricting our work to
monoids whose Carrier Types are Sets, if we wanted to expand the work on the reference
paper to non-set monoids we would remove this requirement, but this leads to complications
as mentioned later in section 3.2.3. After Is-Set C we define the three main monodic laws:
left identity, right identity and associativity. The left identity term (∀x.e • x ≡ x) states
that for any argument x, if the first argument of the operator is the identity element e then
the result must just be x. The definition for right identity is similar. Finally associativity
is defined for any combination of three arguments.

Basically monoid : Code says that in order to define a monoid we will need three things:
a binary operator, an identity element and a way to construct elements of each of the monoid
laws from the given operation and element. Remember that in Type Theory constructing an
element of a type means we are proving the proposition related to the type, so constructing
an element of the law from the operator and identity is the same as proving the laws hold
under the given operator and identity, thus they are valid operator and identity, and form
a valid monoid.

An Instance of a monoid is just a triplet that satisfies the Code above, M1 and M2
can easily be turned into these triplets, M1Instance = (N, (λmn.m + n, 0), proofM1) and
M2Instance = (N \ {0}, (λmn.m + n − 1), proofM2). We don’t construct the proofs for
monoid laws in this paper but they do hold.

3.1.3 Defining isomorphism and equality

The univalence axiom shows a relation between equality and isomorphism, so we need to
define these two relationships for Instances. An Instance is composed of three things, a
Carrier Type, an element and a proof. Isomorphism only focuses on the Carrier Type and
element, since the proofs don’t contribute to the algebraic properties of the structure. First
we want to ensure that a given equivalence eq is an isomorphism for the elements of the

8



Instances. We do this by transforming one element x into another y using the resp function
defined before, if this is possible then the given equivalence works for the elements.

Is-isomorphism : ∀a{B C}.B ≃ C → El a B → El a C → Type

Is-isomorphism a eq x y = resp a eq x ≡ y
(6)

We then want to state that Instances are Isomorphic when there exists an equivalence
that can transform both between Carrier Types and between elements:

Isomorphic : ∀c. Instance c → Instance c → Type

Isomorphic (a, P ) (C, x, p) (D, y, q) = Σeq : C ≃ D.Is-isomorphism a eq x y
(7)

In this case Isomorphic takes in a specific code (a, P ) and two instances of that code
(C, x, p) and (D, y, q) and sets the requirement that there exists an equivalence eq that
allows us to transform between Carrier Types C and D, and also allows us to transform
between instances x and y. Since we can transform between the two key components of the
Instances we can transform between Instances and thus have an Isomorphism.

Taking it to M1 and M2 using isomorphism eqM we see that eqM transforms between
C1 and C2, so we satisfy the part of Σ eq : C ≃ D, now we need to ensure that it is
also an isomorphism for two elements, so we need to show Is-isomorphism a eq x y. This
holds because we defined in section 3.1.1 that El respects isomorphisms, and C1 and C2 are
isomorphic.

Now that we have defined Isomorphism for Instances we define equality. Equality
between Instances is equivalent to a pair containing an equality for the Carrier Types and
an equality for the elements. Note that unlike in Isomorphisms, the equality function doesn’t
have to be the same for both Carrier Type and element, we can use two separate equalities.
Essentially two Instacnes are equal if the Carrier Types are equal and the elements are
equal, this is called the equality-pair-lemma.

3.2 Univalence for higher structures
3.2.1 Main Theorem

Now that we have defined Isomorphism and Equality between generic higher structures we
can provide a proof that these to relationships are equal in Homotopy Type Theory under
the univalence axiom. The claim has the following definition:

isomorphism-is-equality : ∀ a X Y . Isomorphic a X Y ↔ (X ≡ Y )
In other words: for any two Instances X and Y isomorphism is equivalent to equality.
The proof in the paper is as follows:

(1) Isomorphic a X Y ↔
(2) Σeq : C ≃ D. resp a eq x ≡ y ↔
(3) Σeq : C ≃ D. subst (El a) (≃ =⇒ ≡ eq) x ≡ y ↔
(4) Σeq : C ≡ D. subst (El a) eq x ≡ y ↔
(5) X ≡ Y

(8)

9



We start in step (1) with the assumption that we have two Isomorphic Instances (X and
Y ) of some structure a and then build our way to equality from them. The transformations
at each step are all bijective, so we prove the relationship both ways.

In step (2) we unfold the definition of Isomorphic and state that there must exist some
function eq that allows us to transform C into D and transform element x into y.

In step (3) we use the transport theorem, stating that since we can transform x into y,
we can just substitute x and y, this uses the univalence axiom as explained in section 2.3.2.

Equality of entire instances needs both an equality of carrier types and an equality of
elements, while eq is only an equivalence. This is where the univalence axiom is crucial,
univalence states that equivalence and equality are the same thing, thus we can just assume
that eq is also an equality between both the Carrier Type and elements, this results in step
(4).

Finally according to the equality-pair-lemma the existence of an equality eq that equates
the Carrier Types C ≡ D and also equates the Instances x ≡ y (by using subst on x), means
these entire Instances are equal, meaning we can turn step (4) into step (5), reaching our
desired conclusion QED.

3.2.2 Proving equality for the two specific isomorphic monoids

We can finally proof M1 and M2 to be equal.
We start with the fact that they are Isomorphic, there exists an eq that can transform

N into N \ {0}, for example eqM = (λn.n+1) satisfies this. The elements of Instances M1
and M2 are (λmn.m+n, 0) and (λmn.m+n−1, 1) respectively. Notice that eqM also allows
us to transform these elements, the outputs of b2 can be turned into the outputs of b1 using
eqM , and the b1 into b2 using the inverse eq−1

M = λn.n − 1. The identity elements are also
converted between eachother using eqM and eq−1

M , eqM0 = 1 and eq−1
M 1 = 0. So we have

proven that eqM is an isomorphism between the elements, since (eqM b1, eq−1
M e1) = (b2, e2).

We have established that eqM does indeed satisfy the conditions for step (2). In step (3)
we show that, according to the transport theorem, we can substitute (λmn.m + n, 0) for
(λmn.m+ n− 1, 1) by using eqM to change from one to the other, this makes them equal.
Now since we can transform between N and N \ {0} we can directly use univalence on the
Carrier Types to state that N ≡ N \ {0}. We have shown that both the Carrier Types are
equal (N ≡ N \ {0}) and that the instances are equal ((λmn.m+n, 0) ≡ (λmn.m+n−1, 1))
so according to the equality-pair-lemma, M1 and M2 are equal, QED.

3.2.3 Requirement that the monoids are built on sets

One of the key limitations of the work on monoids is the requirement that the monoid’s
Carrier type is a set. This requirement is used in the transition from step (3) to step (4), we
are allowed to assume that the isomorphism eq : C ≃ D is also an equality eq : C ≡ D. This
transformation requires that the types of C and D are also univalent, so we can transform
≃ =⇒ ≡, sets satisfy this requirement. Another advantage of using sets is that, as stated
in the reference paper, when defining "isomorphism between monoids" we often assume a
homomorphic bijection, so a relation of type M1 ↔ M2, while our definition wants us to
start with a homomorphic equivalence M1 ≃ M2. When using sets these two relations
are equivalent, so we are allowed to forgo the step of transforming eq : M1 ↔ M2 into
eq : M1 ≃ M2.

10



3.3 Expanding the monoid structure
As a final observation we expand the structure we defined in section 3.1.2 to see how the
system in the reference paper adapts to sets with multiple monoid structures (sets built
using monoids that have more than one operator that satisfy the monoid laws). A generic
definition for a set with two monoid structures could look like this:

b = ((id → id → id)× (id → id → id))

e = (id× id)

laws = λC(_ • _, e•,_ △ _, e△).

((Is− Set C)×
(∀x.e• • x ≡ x)×
(∀x.x • e• ≡ x)×
(∀x y z.x • (y • z) ≡ (x • y) • z)×
(∀x.e△ △ x ≡ x)×
(∀x.x△ e△ ≡ x)×
(∀x y z.x△ (y △ z) ≡ (x△ y)△ z)

(9)

We define an isomorphism between two instances of these double-monoids M21 ≃ M22
as a function that can transform between the carrier sets, but also between both operators.
Such a transformation respects steps (2) and (3) of our proof, since it means we can still
transform the instance of the monoids, and since we define the additional operator as a
tuple we preserve univalent properties, we can just create the transformed operator-tuple
by applying the isomorphism to the projections of the binary operators.

In fact we can see that we can add an arbitrary number of operators to the monoid
as long as we can guarantee that the single original isomorphism works for all of the new
operators. To add an operator it suffices to add an operator to b and then add all the
desired laws, as long as the laws are propositional. To perform the proof we just have to
appropriately project the corresponding operator before applying the equivalence.

4 Responsible Research
Most mathematical research does not expose itself to the ethical impacts that other research
fields have to deal with, most of the research is about discovering new ways to understand
abstract concepts and the world around us. With that said there is certainly some room for
the philosophical discussion of the effects that developing Type Theory will have on creative
thinking, mathematics and computer science as a whole.

Type Theory takes us further into a world where everything is formally defined, but
abstract concepts and conversation hold a lot of power, sometimes it is worth expressing
ideas that are not perfectly described, or even complete. If we enforce a world were math-
ematical thinking is only acceptable once completely defined, we put a lot more pressure
on the thinker and limit the room for creativity, collaboration and thinking outside the
box. Computerization is generally idealized, but it may take us away from the connection
between philosophy and mathematics that has always benefited both fields.

From the mathematical point of view, one must ask if Type Theory is truly the best
foundation for mathematics, or if we are encouraged to think so because of the convenience
of being able to work with computers while using it. The concept of a Set is more concrete

11



and approachable (at least at first encounter) than the abstract concept of a Type. If we
choose to make the monumental effort of translating large volumes of mathematics into
a new foundation we should objectively consider why we have chosen such a foundation.
One valid argument is that once computerized (in any foundation) one can build machine
translators that automatically translate from one computer-friendly foundation to another,
but if there is a different foundation that is more computer-friendly, human-friendly and
aligns better with previous mathematical work, it should be considered as an alternative to
Type Theory.

In Computer Science one has to consider the implications of computers engaging in math-
ematics. Mathematics has been the foundation for some of the most important programs
in history, from Euclid’s algorithm to finding the Greatest Common Divisor of a number[9],
to Fourier transforms used in signal processing [2]. Mathematics is a powerful tool that
can have implications beyond our initial impression. To allow computers to understand and
create mathematical proofs, is to allow them to create all sorts of algorithms that we do
not understand. These algorithms could have negative effects on the areas of cryptography,
data processing and statistical analysis, we should consider how much freedom and trust we
place into computer-generated proofs and algorithms.

5 Conclusions and Future Work
The above is an application of the findings in "Isomorphism is Equality" [3] to two specific
monoids on sets, in an attempt to explain the contents of the paper in different terms and
show how the findings in the paper apply to real instances. The definitions of Code and
Instance in the paper work really well for the case of monoids, it is very easy to translate a
monoid into these definitions, and the generic proofs of the paper match naturally with
the specific monoid instances we chose. Further research could be done in testing the
specific instances of the other structures in the paper: Discrete Fields and Posets. Another
avenue of research would be proving Univalence for other types of Higher Structures, such
as Monoids that are not built on Sets or groupoids, such work includes research on univalent
typoids [10]. Ultimately it will be fascinating to see how univalence can be implemented
into existing computer programs, since this will further the development of formally correct
programs and languages. This includes works such as the Coq framework implemented by
Tabareau et al. that "allows the user to transparently transfer definitions and theorems for
a type to an equivalent one, as if they were equal. For instance, this makes it possible to
conveniently switch between an easy-to-reason-about representation and a computationally
efficient representation as soon as they are proven equivalent." [5]. Another approach is
developing compilers for new type theories and exploring their applications, such as recent
work by Abel et al. on a cubical type theory compiler [4]

References
[1] Homotopy type theory: Univalent foundations of mathematics. Institute for Advanced

Study, 2013.

[2] Ronald Newbold Bracewell. The Fourier transform and its applications, volume 31999.
McGraw-hill New York, 1986.

12



[3] Thierry Coquand and Nils Anders Danielsson. Isomorphism is equality. Indagationes
Mathematicae, 24(4):1105–1120, 2013. In memory of N.G. (Dick) de Bruijn (1918 -
2012).

[4] Andreas Abel et al. Compiling programs with erased univalence. 2021.

[5] Nicolas Tabareau et al. The marriage of univalence and parametricity. J. ACM, 68(1),
jan 2021.

[6] Erica Klarreich. Titans of Mathematics Clash Over Epic Proof of ABC Conjecture.

[7] Adam Koprowski and Henri Binsztok. TRX: A formally verified parser interpreter.
Logical Methods in Computer Science, 7(2), jun 2011.

[8] Tosiyasu L. Kunii and Masaki Hilaga. Homotopy type theory for big data. In 2015
International Conference on Cyberworlds (CW), pages 204–209, 2015.

[9] Ben Lynn. Euclid’s algorithm.

[10] Iosif Petrakis. Univalent typoids, 2022.

13


