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Abstract

We study a link between the ground-state topology and the topology of the lattice via
the presence of anomalous states at disclinations – topological lattice defects that violate
a rotation symmetry only locally. We first show the existence of anomalous disclination
states, such as Majorana zero-modes or helical electronic states, in second-order topolog-
ical phases by means of Volterra processes. Using the framework of topological crystals
to construct d-dimensional crystalline topological phases with rotation and translation
symmetry, we then identify all contributions to (d −2)-dimensional anomalous disclina-
tion states from weak and first-order topological phases. We perform this procedure for
all Cartan symmetry classes of topological insulators and superconductors in two and
three dimensions and determine whether the correspondence between bulk topology,
boundary signatures, and disclination anomaly is unique.
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1 Introduction

Topological crystalline insulators and superconductors have an excitation gap in the bulk and
feature protected gapless or zero-energy modes on their boundaries [1–3]. These boundary
modes are anomalous in the sense that they can only be realized in the presence of a topological
bulk. Crystalline symmetries, such as rotation or inversion symmetry, may protect higher-
order topological phases for which anomalous states are located at corners or hinges of the
crystal [4–27]. In particular, a d-dimensional topological crystalline phase of order n hosts
(d−n−1)-dimensional anomalous states at hinges or corners of the corresponding dimension.
This correspondence between bulk topology and boundary anomaly is a fundamental aspect
of topological insulators and superconductors [12,25,28–33].

Topological lattice defects violate a crystalline symmetry locally while the rest of the lattice
remains locally indistinguishable from a defect-free lattice. They can be constructed by cutting
and gluing symmetry-related sections of the lattice by means of a Volterra process [19,34–36].
Topological lattice defects are characterized by their holonomy, which is defined as the action
on a local coordinate system transported around the defect. Common examples are dislo-
cations and disclinations. The latter violate rotation symmetry locally and carry a rotation
holonomy. The association to a holonomy is the property that distinguishes topological lattice
defects from other lattice defects. For example, atomic defects such as vacancies, substitu-
tions, or atoms at interstitial positions are not associated to a holonomy, and therefore are not
considered topological. For grain boundaries separating regions of different lattice orienta-
tions, it has been suggested that they can be described as arrays of dislocations [37–39] or
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disclinations [40–45].
Previous works have shown that dislocations carry anomalous states in weak topologi-

cal phases [31, 46–52]. The label weak indicates that the topological phase is protected by
translation symmetry. The existence of anomalous states at disclinations in the absence of
weak topological phases has been shown in Refs. [14, 19, 36, 53–55]. Moreover, crystalline
topological phases generally have a topological response associated with topological lattice
defects [36]. A possible link between second-order topology and anomalous states at discli-
nations has been put forward in Refs. [14, 19]. Furthermore, a correspondence between a
fractional corner charge in two-dimensional topological crystalline insulators [5,6,18,56] and
a fractional disclination charge has been shown in Refs. [16,20]. A correspondence between a
topological phase realized on a lattice with dislocations and a topological phase realized on a
defect-free lattice on a manifold with a larger genus has been suggested in Refs. [57–59]. More
generally, symmetry-flux defects have been shown to characterize symmetry-protected phases
of matter [60]. In strongly interacting spin-boson models, it has been suggested that the in-
terplay between spontaneous symmetry breaking and symmetry protected topology leads to
the appearence of anomalous defect modes at solitons [61,62].

In this study, we establish a precise relation between second-order topological phases pro-
tected by rotation symmetry and anomalous states at disclinations. By using both heuristic
arguments and the framework of topological crystals [22], we work out for all Cartan classes
of spinful fermionic systems the exact conditions under which this bulk-boundary-defect corre-
spondence holds. In the cases where it breaks down, the anomaly at the disclination depends on
the microscopic properties of the system. Under certain conditions, this obstruction manifests
as a domain wall that is connected to the disclination.

Our analysis covers both topological phases defined in the long-wavelength limit where
the lattice may be neglected, and topological phases enabled by the presence of the discrete
translation symmetry of a lattice. The former shows that the bulk-boundary-defect correspon-
dence does not require an underlying lattice. The latter identifies the contribution of weak
topological phases to the anomaly at a dislocation or disclination with non-trivial translation
holonomy.

We further go beyond the known result that first-order topological phases can host anoma-
lous states at defects carrying a magnetic flux quantum, for example vortices in a two-dimen-
sional p-wave superconductor [63]. In particular, building on the results of Ref. [47], we
show that first-order topological phases in symmetry classes that allow for (d−2)-dimensional
anomalous states host such anomalous states at defects that carry a geometric π flux, i.e., the
wavefunction of a particle transported around the defect acquires a phase shift of π. These
defects can be viewed as an abstract generalization of vortices in superconductors to other
Cartan symmetry classes of quadratic fermionic Hamiltonians.

By collecting all of these contributions, our work contains a unified description of defects in
systems described by quadratic fermionic Hamiltonians with translation and rotation symme-
tries and their anomalous states associated with the topology of the bulk. We provide compre-
hensive formulas for the defect anomalies in terms of the topological properties of the defect
and the topological invariants of the bulk. These formulas apply to disclinations, dislocations,
and vortices, as well as combinations and collections thereof. We discuss these defects and
their anomalies for all Cartan symmetry classes of quadratic fermionic Hamiltonians in two
and three dimensions, which generalizes the previous results for individual symmetry classes
or lattice defects of Refs. [14,31,36,46–55].

Our article is organized as follows. Section 2 reviews the construction and the holonomy
classification of disclinations in lattice models of fermionic systems. In Sec. 3, we begin by
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giving a brief overview of second-order topological phases and their bulk-boundary correspon-
dence. We determine the existence of anomalous states at disclinations for models defined in
the long-wavelength limit. In the following Sec. 4, we construct real-space representations of
second-order and weak topological phases in the presence of discrete translation symmetry
to deduce the existence of anomalous disclination states. This section may be skipped at first
reading. In Sec. 5, we cumulate our results to show that each topological property of a disclina-
tion, i.e., its translation and rotation holonomies as well as the presence of quantized vortices,
is linked to a unique bulk topological invariant determining the existence of anomalous states
at the defect. For all symmetry classes we detail whether the bulk-disclination correspondence
holds and whether there exist weak and strong first- and second-order topological phases that
may contribute d − 2 dimensional anomalous states bound to a disclination. In Sec. 6, we
apply our construction to a few simple, but physically relevant examples in superconductors
in Cartan classes D, DIII, and in insulators in Cartan class AII. We summarize our results and
conclude in Sec. 7.

2 Disclinations

We begin by providing a brief review of disclinations in two and three dimensions, which are
at the core of this work. We recall their definition, their construction from a defect-free lattice
through a Volterra process, and their holonomy classification. Finally, we draw a connection
from the abstract lattice with disclination to its decoration with physical degrees of freedom.
In particular, we show how to construct the hopping terms of a given Hamiltonian around
the disclination and identify the arising symmetry constraints on the Hamiltonian terms. In
subsequent sections, we will use the latter to show the existence or absence of anomalous
disclination states in various symmetry classes.

2.1 Topological lattice defects

A lattice is abstractly defined by its space group Glat that contains all crystalline symmetry
elements, e.g., translations, rotations, and inversion symmetry. More precisely, we define the
lattice as the charge density ρ(r ) of the crystalline system. The charge density breaks the
Galilean symmetry group GGalilean = O(d) n Rd of free, d-dimensional space into a discrete
subgroup Glat ⊂ GGalilean. 1 As the lattice is symmetric only with respect to discrete translations
T , the charge density in all space can be constructed from the charge density in a minimal
volume by applying the translation operators. This minimal volume is called the primitive unit
cell [64].

A topological lattice defect breaks an element of the space group of the lattice Glat locally
such that the lattice , i.e. the charge density, remains locally indistinguishable from a defect-
free arrangement everywhere else 2. These defects are topological in the sense that local
rearrangements of the lattice can only move, but not remove the lattice defect. This implies
that there exists a topological quantity, defined on a closed loop or surface enclosing the defect,
that quantifies the lattice defect. This topological quantity can be expressed in terms of the

1Later in the manuscript, we discuss systems with both magnetic and non-magnetic space groups
G ⊂ GGalilean × ZT2 , where ZT2 is the group generated by time-reversal symmetry T (see also our discussion in
section 2.5). As the charge density is a real scalar, it preserves time-reversal symmetry. Therefore, the space group
of the lattice Glat ⊂ GGalilean can be constructed from general space groups by selecting the unitary elements in the
quotient G ×ZT2 /Z

T
2 . For non-magnetic space groups G, we have simply Glat = G.

2A finite volume is said to be locally indistinguishable from a defect-free lattice if the charge density in the
volume can be constructed by applying the space group symmetry elements to any primitive unit cell within the
volume.
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(a) (b) (c)Σ1
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Figure 1: Volterra processes to construct two different π/2 disclinations in a C4-
symmetric lattice. The solid lines outline the boundary of the primitive unit cell. (a)-
(c) Type-0 disclination centered at a 3-vertex. (d)-(f) Type-1 disclination centered
at a triangular cell. The red dashed lines in (c) and (f) indicate paths encircling the
respective disclination.

holonomy associated with the defect. For lattice defects with co-dimension 2, the holonomy is
defined as the action on a local coordinate system upon parallel transport along a closed loop
around the defect [54]. Common examples of topological lattice defects are dislocations and
disclinations, which locally violate translation symmetry and rotation symmetry, respectively.
In the following, we focus on disclinations and show how they are constructed using a Volterra
process [34,35] for the example of a lattice with C4 symmetry.

2.2 Volterra process

To construct a disclination as a topological lattice defect, we require that one chooses a sym-
metric primitive unit cell that respects the rotation symmetry. The local charge density in the
primitive unit cell should respect the rotation symmetry. We consider an example of a two-
dimensional lattice with fourfold rotation symmetry, where the symmetric primitive unit cell
is a square.

We first cut the crystal along two lines, Σ1 and Σ2, intersecting in a point p and related
by a rotation about an angle Ω = π/2 consistent with the lattice symmetry [see Figs. 1(a),
and (d)]. The cuts should be performed at the boundary of our choice of symmetric primitive
unit cell. We then remove the enclosed segment [see Figs. 1(b), and (e)], deform the crystal
such that the linesΣ1 andΣ2 come together, and finally glue the lattice back together along the
cut [see Figs. 1(c) and (f)]. By cutting the sample only along the boundary of symmetric prim-
itive unit cells, we ensure that upon gluing the lattice back together, the charge density with
disclination is locally indistinguishable from the defect-free configuration. At the same time,
this construction provides a consistent definition of a unit cell in the presence of a topological
lattice defect.

This procedure may be used to construct distinct types of π/2 disclinations depending on
the number of additional lattice translations along the direction of the cut: in Fig. 1(c), no
extra translation is applied, thereby forming a disclination centered at a vertex with three con-
nections. In Fig. 1(f), one additional translation leads to a disclination centered at a triangular
cell. The presence of the disclination strains the lattice close to the defect.

We point out that instead of cutting and removing a segment, one can also cut the crys-
tal along a single line and insert a segment with boundaries related by a Ω rotation. This
process constructs a disclination with a negative Frank angle −Ω (see below). Furthermore,
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disclinations can be constructed as pairs with opposite Frank angle, as we exemplify in App.
B.2. In these so-called disclination dipoles, only loops that encircle a single disclination carry
a rotation holonomy.

2.3 Holonomy of disclinations in two dimensions

Disclinations are classified by their holonomy, which is defined as the amount of excess trans-
lation and rotation accumulated by parallel transporting a coordinate system on a closed path
around the disclination [35,50,53,54,65,66]. Holonomic quantities are path-independent as
long as the starting point is fixed and the path encircles the disclination only once. By con-
sidering equivalence classes of holonomies that can be reached by a change of starting point,
the holonomic quantities become also independent of the starting point (see Appendix A for
details). The rotation holonomy Ω is called the Frank angle and is, by construction, identical
to the angle Ω in the Volterra process defined above. The equivalence classes Hol(Ω) of Ω
disclinations in 2π/Ω-fold rotation symmetric lattices are [53,66]

Hol(π) = Z2 ⊕Z2,

Hol(2π/3) = Z3,

Hol(π/2) = Z2,

Hol(π/3) = 0.

(1)

These equivalence classes distinguish disclinations by their translation holonomy. The inequiv-
alent translation holonomies are accompanied by an inequivalent connectivity of unit cells at
the disclination center, as illustrated in Fig. 1 (c) and (f) forΩ= π/2 and Fig. 2 forΩ= π/3, π
and 2π/3.

For twofold symmetric lattices, there are four types of π disclinations. They are distin-
guished by the parity of the number of translations along the x and y direction of the crys-
tal (see Fig. 2). Threefold rotation-symmetric lattices may host three distinct types of 2π/3
disclinations distinguished by their rotation holonomy modulo three, which is illustrated in
Fig. 2. For fourfold symmetric lattices, there are two types of π/2 disclinations corresponding
to whether an even (type 0) or odd (type 1) number of translations by primitive Bravais lattice
vectors is required to move around the disclination This is illustrated in Figs. 1(c) and (f),
respectively. Finally, sixfold symmetric lattices allow for only a single type of π3 disclination
(see Fig. 2).

Note that a local rearrangement of the lattice allows to split a topological lattice defect
into its elemental components, and vice versa. For example, a π/2 disclination of type 1 can
be split into a π/2 disclination of type 0 and a dislocation with odd translation holonomy.

2.4 Screw disclinations in three dimensions

In three dimensions, a disclination can also carry a translation holonomy Tz in the direction
of the rotation axis. These disclinations can be constructed through a Volterra process by
translating one of the cut surfaces, Σ1 or Σ2, along the z direction before they are reconnected.
A disclination that carries such a translation holonomy is called a screw disclination.

2.5 Decorating a lattice with disclination

In section 2.1, we defined the lattice through the local charge density. The local charge density
specifies where the orbitals are located, but not which local degrees of freedom are provided
by the orbitals. The physical properties of the local degrees of freedom on the lattice can be de-
scribed by a tight-binding Hamiltonian H. Below, we discuss how to construct a Hamiltonian
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π (0,0) (0,1) (1,0) (1,1)

2π
3 (0) (±1) π

3

Figure 2: Disclinations in twofold-, threefold-, and sixfold-symmetric lattices: π
disclinations in twofold-symmetric lattices come in four types (Tx mod2, Ty mod2)
distinguished by the parity of their translation holonomy Ti (i = x , y). The transla-
tion holonomy is indicated by the dashed lines, where red (blue) lines are transla-
tions in the x (y) direction of the local coordinate system. The unit cells of three-
fold symmetric lattice are parallelograms composed of two equilateral triangles (see
Fig. 5). For sixfold symmetric lattices, we choose a hexagonal primitive unit cell. For
a threefold-symmetric lattice, there are three types of 2π/3-disclinations. Different
threefold rotation centers within the unit cell are denoted by filled and hollow dots.
The two types (±1) of 2π/3-disclinations differ by exchanging the filled-dot rotation
centers with the hollow-dot rotation centers. Finally, in sixfold-symmetric lattices
there is only a single type of π3 disclinations, which is centered at a five-sided cell.

H on a lattice with disclination from a defect-free Hamiltonian, such that H is locally indistin-
guishable from the defect-free system everywhere except at the disclination. As a result, we
will see that in some symmetry classes, this construction would break some symmetries along
the cut line where the system is glued together to form a disclination. We will argue that for
these symmetries classes, the cut line can be regarded as a domain wall separating regions
distinguishable by a local order parameter.

For our construction, we consider the lattice containing the disclination as the result of a
Volterra process [see again Fig. 1(b) and (c)] with the real space positions r and RΩr along
the cut lines identified, where RΩ denotes a rotation by the angle Ω. In this picture, both the
coordinate system and the local degrees of freedom of two adjacent unit cells across the cut
lines are rotated with respect to each other by the Frank angle Ω. A particle hopping across
this branch cut has to respect this local change of basis. Hence, its wavefunction |ψ(r −δr )〉
has to transform to U(RΩ)|ψ(RΩr + δr )〉 when moving from r − δr to RΩr + δr across
the branch cut. Here, U(RΩ) is the representation of rotation symmetry acting on the local
degrees of freedom within a unit cell and δr is a finite but small integer mulitple of the lattice
vectors. As mentioned above, the points r and RΩr are identified. This implies that all hop-
ping terms crossing the branch cut have to incorporate the basis transformation. Requiring
that the hopping across the branch cut be indistinguishable from the corresponding hopping
in the bulk, the hopping terms Hcut

r ,r+an
, in mathematically positive direction with respect to
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the Frank angle Ω of the disclination, can be expressed as

Hcut
r ,r+an

= U(RΩ)Hri ,ri+an
, (2)

where Hri ,ri+an
is a corresponding hopping element between unit cells at ri and ri + an in the

translation symmetric bulk. 3

The hopping terms across the branch cut in Eq. (2) have to respect all internal symme-
tries g ∈ Gint of the crystal, where g denotes the symmetry element and Gint is the group of
internal symmetries. Internal symmetries are global onsite symmetries that act trivially on
the real space coordinates. Examples are time-reversal symmetry T , particle-hole antisym-
metry P , chiral antisymmetry C = PT , and SU(2) spin rotation symmetry S. The onsite
action of each (crystalline or internal) symmetry element g ∈ G × Gint on the Hamiltonian
H is expressed by its representation U(g). In the following, we present and discuss the aris-
ing constraints on the Hamiltonian terms due to the presence of both unitary and antiunitary
symmetries/antisymmetries.

First, for general hopping elements Hri ,ri+an
, the internal unitary symmetries/antisymme-

tries U = S,C require
U(U)Hcut

ri ,ri+an
U(U)† = ±Hcut

ri ,ri+an
. (3)

This condition can only be fulfilled if the representation of the unitary rotation symmetry
commutes with all internal symmetries/antisymmetries of the crystal. If rotation and internal
symmetries do not commute, any finite hopping across the branch cut that respects the internal
symmetries/antisymmetries necessarily breaks rotation symmetry locally along the branch cut.
In this case, the algebraic relations between the symmetry operators obstruct the choice of a
hopping across the branch cut that is locally indistinguishable from the bulk hopping. As
such, the branch cut can be regarded as a physical domain wall separating regions that are
distinguishable by a local order parameter that relates to the local arrangement of the orbitals
in the unit cell (see Appendix B.1 for an in-depth discussion).

We point out that this domain wall may become locally unobservable if the sample as a
whole breaks at least one of the internal symmetries, or if the translation holonomy of the
disclination involves a translation holonomy by a fractional lattice vector, see Appendix B.1.
Throughout this paper we aim to make general statements for the topological properties in
each symmetry class, and omit model specific details. Therefore, we assume throughout the
paper that (i) the sample as a whole obeys all internal symmetries and (ii) that the translation
holonomy of the disclination is restricted to integer multiples of the lattice vectors. The latter
condition is fulfilled by the topological lattice defects as constructed in this section, because this
construction provides a global definition of the unit cell even in the presence of a disclination.

Second, the internal antiunitary symmetries/antisymmetries A= T ,P give the constraint

U(A)
�

Hcut
ri ,ri+an

�∗
U(A)† = ±Hcut

ri ,ri+an
. (4)

Note that there is generally a U(1) phase ambiguity in choosing the representation of rotation
symmetry: the Hamiltonian is symmetric under eiφU(RΩ) for all phases φ. The value of
φ enters in the commutation relations of eiφU(RΩ) with antiunitary time-reversal symmetry
T and particle-hole antisymmetry P as U(RΩ)U(A) = e−2iφU(A)U(RΩ)∗. The condition in
Eq. (4) therefore fixes the phase factor eiφ up to a sign, but does not otherwise obstruct the
formation of disclinations which are indistinguishable away from their core.

If a system is symmetric under the combined action of rotation and time-reversal symmetry
RT , but neither under the action of rotation nor time-reversal symmetry separately, the system
is said to have magnetic rotation symmetry. When constructing a 2π/n disclination in a lattice

3For concreteness, the element Hri ,ri+an
can be taken from the translation symmetric system without disclination

and without boundary whose lattice positions are denoted by ri .
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with an n-fold magnetic rotation axis using a Volterra process, we have to connect two parts
of the lattice that are mapped onto each other under magnetic rotation symmetry. Since the
disclination cannot involve the time-reversal operation, any finite hopping across the branch
cut necessarily breaks magnetic rotation symmetry. Thus, the branch cut forms a domain wall
separating regions distinguishable by a local order parameter that is odd under time-reversal
symmetry, see Appendix B.3 for an explicit example.

In summary, a necessary condition for the application of a bulk-equivalent hopping across
the branch cut [see Eq. (2)] is a unitary rotation symmetry that commutes with all unitary
internal symmetries and antisymmetries of the system. In the absence of additional crystalline
symmetries, this condition is also sufficient. If this condition is violated, the Volterra process
leads to a domain wall emanating from the disclination. This insight will be crucial in subse-
quent sections to show for which symmetry classes anomalous disclination states exist.

2.6 Rotation holonomy for spinful fermions

At the end of this section, we want to briefly remark on a peculiarity regarding systems with
half-integer spins. Rotating a particle with half-integer spin by 2π shifts the phase of its wave-
function by π. As a consequence, it seems as if the rotation holonomy of disclinations for
particles with half-integer spin should be defined modulo 4π [54]. However, when transport-
ing a half-integer spinful particle around a 2π disclination 4, there are two effects contributing
a π phase to its wavefunction: (i) the rotation of the real space coordinate system and (ii) the
basis rotation U(R2π) = −1 of the local degrees of freedom upon applying the gluing prescrip-
tion Eq. (2) when forming the disclination. 5 The total phase acquired is thus π+π= 2π.

The geometric phase shift α obtained upon parallel transport of a particle along a closed
loop can be quantized to multiples of π both by time-reversal, as well as by particle-hole
symmetry. In the presence of time-reversal symmetry, the magnetic flux enclosed by a closed
loop is quantized to multiples of the magnetic flux quantum φ0 = hc/2e. Parallel transporting
a charged particle around a magnetic flux quantum leads to aπ phase shift of its wavefunction.
Particle-hole symmetry also quantizes this phase shift to integer multiples of π, as can be best
seen in superconductors, where the integer corresponds to the number of superconducting
vortices which are encircled by the particle’s path. Throughout the paper we say a defect
carries a geometric π-flux if the geometric phase shift α is equal to π mod 2π.

As by the above argument parallel transporting a half-integer spin particle around a 2π
disclination does not cause a π phase shift, we distinguish between disclinations on the one
hand and point defects binding geometric π-flux quanta on the other hand. Throughout the
paper, we therefore assume that a disclination does not bind a geometric π-flux unless other-
wise stated.

3 Strong second-order topology and disclinations

In this section, we set out to investigate anomalous states bound to disclinations in second-
order topological phases with rotational symmetry. More specifically, we focus on strong topo-
logical phases where the presence of the underlying lattice can be neglected. The effect of
translational symmetries will be considered in a later section (see Sec. 4).

We first review properties of rotation-symmetry protected topological phases, define the
notion of topological charge for anomalous bound states, and present constraints on these

4A 2π disclination may also be formed through a Volterra process, for example by inserting a segment.
5By insisting on the gluing prescription Eq. (2) also for 2π disclinations, we ensure that they can be combined

from disclinations with smaller Frank angle and that disclinations are clearly distinguished from geometricπ fluxes.
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(a) (b) (c)

≃

Figure 3: Examples of strong topological phases protected by a fourfold rotation
symmetry: (a) with Majorana corner states in two dimensions, and (b) with helical
hinge modes in three dimensions. In (c), a three-dimensional insulator with chi-
ral hinge modes consistent with a magnetic rotation symmetry C4T is depicted. A
symmetry-allowed decoration as indicated changes the propagation direction of the
chiral modes after hybridization.

charges imposed by rotational symmetry. We then consider these phases in the presence of an
isolated disclination breaking the protecting rotational symmetry locally. Using Volterra pro-
cesses as introduced in Sec 2.2, we show under which conditions strong second-order topo-
logical phases host protected anomalous states at disclinations. Finally, we provide a brief
summary of the main results of this section.

3.1 Strong rotation-symmetry protected second-order topological phases

A strong topological phase does not rely on the microscopic translation symmetry for its topo-
logical protection. In particular, it is independent of the size of the unit cell.6 This allows to
coarse-grain the lattice and switch to an effective, continuous description (c.f. also Ref. [36] for
a detailed discussion). For strong topological phases, we only need to require that the topolog-
ical properties are realized when the system size is much larger than any microscopic length
scale associated with the Hamiltonian. Consequently, during a Volterra process of a topological
crystalline phase, we can assume that also the cut-out part is in the same topological phase.

A second-order topological phase protected by rotation symmetry has (d −2) dimensional
anomalous boundary states, for example isolated Majorana bound states at the corners of a
two-dimensional crystal or chiral/helical modes at the hinges of a three-dimensional crystal.
This is illustrated in Figs. 3(a) and (b). We require that the anomalous boundary excita-
tions are intrinsic [11,12,25], i.e., we allow any changes of the crystal termination consistent
with the rotation symmetry, for instance a decoration of the boundary with lower-dimensional
topological phases. This property ensures that the anomalous boundary excitations are truly
attributed to the topology of the d-dimensional bulk. Furthermore, throughout this article we
focus on tenfold-way anomalous boundary states appearing in systems described by quadratic
fermionic Hamiltonians.

3.2 Topological charge

The topological charge associated with an anomalous boundary state quantifies the anomaly.
For topological insulators, helical hinge modes are characterized by a Z2 topological charge
Q ∈ {0, 1} measuring their existence. Chiral hinge modes are quantified by a Z topological
charge Q = n+− n− defined as the difference of the number of forward-propagating (n+) and

6In topological band theory, such as developed in Ref. [1], strong topological phases can be described in the
long-wavelength expansion of the single-particle Hamiltonian. To connect to this approach, one needs to require
that the momentum is well-defined in the long wavelength limit. As only the long-wavelength limit is required,
the size of the unit cell can be chosen arbitrarily large.

11

https://scipost.org
https://scipost.org/SciPostPhys.10.4.092


SciPost Phys. 10, 092 (2021)

backward-propagating (n−) chiral modes. The Abelian groups Z2 and Z determine how the
anomalous boundary states hybridize (fusion rules). For topological superconductors, Majo-
rana corner modes and helical Majorana hinge modes have a Z2 topological charge, while
chiral Majorana modes have a Z topological charge. Zero-energy eigenstates in Cartan classes
AIII, BDI and CII are simultaneous eigenstates of the unitary chiral antisymmetry C = PT with
eigenvalue c = ±1. This symmetry prohibits to hybridize and gap out zero-modes with the
same eigenvalue c. Therefore, a Z topological charge is obtained by counting the number of
zero-energy eigenstates weighted with their eigenvalue c.

Anomalous states always appear in pairs with canceling anomaly at the boundary or at
defects of a topological bulk [31]. Consequently, in a closed system, isolated Majorana bound
states, or Kramers pairs thereof, always come in pairs. The zero-dimensional anomalous states
with Z topological charge occur in pairs with opposite eigenvalue under chiral antisymmetry.
One-dimensional anomalous states form closed loops at the boundary or along defect lines of
a topological bulk. For a three-dimensional system with anomalous hinge states, the number
of inward and outward propagating modes intersecting any closed (or infinite open) surface
needs to be equal and the associated topological charge needs to cancel.

In summary, for anomalous states withZ2 topological charge Q i the total topological charge
Qtot needs to be even

Qtot =
∑

i

Q i mod 2= 0, (5)

where for zero-dimensional anomalous states we sum over all anomalous states in the system,
and for one-dimensional anomalous states we sum over all states intersecting an arbitrary
closed (or infinite open) surface. Similarly, for zero- and one-dimensional anomalous states
with Z topological charge Q i , the total topological charge Qtot must vanish

Qtot =
∑

i

Q i = 0. (6)

3.3 Boundary-signature constraints from rotation symmetry

The presence of rotational symmetries leads to constraints on the possible boundary signatures.
As we explain in the following, this can be seen by invoking the topological charge introduced
above.

A rotation-symmetric sample can be divided into asymmetric sections. An asymmetric
section is the maximal volume such that no two points in the volume are related by rotation
symmetry. The rotation symmetry then relates the topological charge in symmetry-related
sections. Because anomalous states always come in pairs (Qtot = 0), asymmetric sections with
non-zero topological charge can only exist in systems with even order of rotation symmetry,
i.e., C2, C4 and C6. The anomalous boundary signatures in rotation symmetric topological
phases have also been discussed in Refs. [4–6,8,9,11–27,55].

For asymmetric sections exhibiting a non-zero Z topological charge, the internal action
of rotation must invert the topological charge of the anomalous states to satisfy the anomaly
cancellation criterion in Eq. (6). In particular, a rotation-symmetry protected second-order
topological phase hosting anomalous zero-energy corner states in Cartan classes AIII, BDI and
CII can exist only if the representation of rotation symmetry anticommutes with chiral anti-
symmetry. In this case, the chiral eigenvalue c = ±1 of states related by rotation symmetry al-
ternates. Similarly, a second-order topological phase with chiral (Majorana) hinge modes may
exist only in the presence of magnetic rotation symmetry. The reason is that the time-reversal
operation is required to invert the propagation direction of modes related by symmetry.

For second-order anomalous states with Z topological charge protected by rotation sym-
metry, only a Z2 factor can be attributed to the bulk topology as an intrinsic boundary sig-
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nature [4, 11, 12, 25]. This factor merely measures the existence of anomalous states but not
their number. To illustrate this, consider a cubic crystal with chiral hinge modes, as depicted
in Fig. 3(c), as an example of a second-order topological phase protected by magnetic fourfold
rotation symmetry C4T . A symmetry-allowed decoration with Chern insulators reverses the
propagation direction of the chiral hinge modes, thereby changing their Z topological charge
by an even number.

3.4 Volterra process with a second-order topological phase

In the following, we establish the existence of anomalous disclination states in a given second-
order topological phase by performing a Volterra process. Recall that, in this section, we con-
sider strong topological phases that do not rely on the presence of translation symmetries.
Therefore, we allow to coarse-grain the lattice or break the translation symmetries. In such
cases, disclinations are characterized only by their Frank angle Ω. We lay out our arguments
for two-dimensional systems. Nevertheless, they are generalized straightforwardly to d > 2
dimensions by considering a symmetric-pillar geometry and by applying the anomaly cancel-
lation criterion to the (d − 2)-dimensional hinge modes with respect to a plane perpendicular
to the rotation axis.

A unique correspondence between bulk topology and disclination anomaly exists only if
the system can be made locally indistinguishable from the bulk everywhere away from the
disclination as a result of the Volterra process. This requires us to connect the lines/surfaces
at the branch cut of the Volterra process using the appropriate hybridization terms given by
the conditions imposed by Eq. (2) derived in the previous section. Below, we establish the
correspondence for symmetry classes in which these conditions can be fulfilled.

In some symmetry classes, however, these conditions can not be satisfied. For instance,
we showed in the previous subsection above that second-order topological phases with zero-
energy states of Z topological charge exist only if rotation symmetry anticommutes with chiral
antisymmetry. However, a chiral antisymmetry anticommuting with rotation symmetry for-
bids to construct bulk-equivalent hopping terms across the branch cut in the Volterra process,
which follows from the central insight of our discussion in Sec. 2.5 above. Similarly, second-
order topological phases hosting one-dimensional chiral hinge states require magnetic rotation
symmetry, for which bulk-equivalent hopping terms across the branch cut are also not allowed
(see again Sec. 2.5). These arguments can be generalized to second-order topological phases
protected by rotation symmetry with Z anomalous boundary states in any dimension d ≥ 2
(see Appendix B.4). Hence, only nonmagnetic second-order phases in symmetry classes with
Z topological charge may allow for a bulk-boundary-defect correspondence. A detailed dis-
cussion on other symmetry classes where the branch-cut hopping condition in Eq. (2) cannot
be satisified is provided in Appendix B.

Twofold rotation symmetry

Twofold rotation-symmetry protected second-order topological phases host anomalous states
on symmetry-related points of their boundary. The Volterra process to construct a π disclina-
tion is illustrated in Fig. 4(a). The first step is to cut the sample into two symmetric halves.
We require that the cutting process preserve the bulk and surface Hamiltonians except for the
breaking of bonds along the cut. Therefore, the two symmetric halves host anomalous bound-
ary states at corners with the same orientation as the original sample. Note that this requires
the energy gap to close and reopen along the cut. Upon deforming the sample and hybridizing
the bonds across the cut to complete the Volterra process, the two upper corners connect to
form a smooth boundary. In the resulting sample, the bulk and all (d−1)-dimensional bound-
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(a) (b)

(c) (d)

Figure 4: Volterra processes to construct disclinations in systems with second-order
topology and different rotation symmetries: (a) twofold symmetry in two dimen-
sions, (b) four-fold symmetry in two dimensions, (c) four-fold symmetry in three
dimensions, (d) sixfold symmetry in two dimensions. Red dots and red lines indicate
anomalous corner and hinge modes, respectively. In (d), adjacent triangles in red
and purple are related by a sixfold rotation.

aries are gapped by construction. 7 Consequently, the anomalous state formerly located at one
of the upper corners moves to the disclination in the process. An equivalent way to see this is
to note that, upon gluing the surface, the boundary gap closes and reopens in the same way
as when cutting the sample.

Fourfold rotation symmetry

In Fig. 4(b), we show the Volterra process for a fourfold rotation-symmetric system in two
dimensions along with its boundary signatures. The removed segment in this process is itself
fourfold symmetric and has, by the anomaly cancellation criterion, second-order boundary sig-
natures at its corners. After deforming and gluing the other part, the resulting lattice has four
singular points that may host zero-dimensional anomalous states: the three corners and the
disclination. As the three corners remain unaffected during the deformation, the disclination
has to host an anomalous state to satisfy the anomaly cancellation criterion. Fig. 4(c) shows
the same process for a three dimensional system.

Sixfold rotation symmetry

We consider a sixfold symmetric sample in the shape of a hexagon. It can be divided into six
equilateral triangles as demonstrated in Fig. 4(d). A two-dimensional second-order topological
phase protected by sixfold rotation symmetry hosts anomalous boundary states on symmetry-
related corners of a hexagonal sample. Since each triangle has only threefold rotation sym-
metry, there are two types of triangles related by a sixfold rotation. The anomaly cancellation
criterion together with threefold rotation symmetry requires that the topological charge at
each corner of the triangle must cancel, i.e., the topological charge at each corner, if present,
must be even. In order for the hexagonal sample to exhibit its anomalous corner states, hy-
bridizing two triangles along a shared boundary needs to close and reopen the excitation gap
to create a pair of anomalous states [see Fig. 4(d)]. Conversely, breaking the bonds between
two triangles closes and reopens the gap along the shared boundary, thereby removing the
anomalous corner states. Putting all triangles together results in six anomalous states at the
center of the hexagon, which gap out upon hybridization.

7Note that the corner state at the corner that is connected to its partner during the Volterra process can not
move to the other, unrelated corner because the initial (d − 1)-dimensional boundaries (not created by the cut)
remain gapped during the process.
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In the first step of the Volterra process, we remove a triangle from the hexagon. This re-
quires to break the bonds between adjacent triangles of opposite orientation. By the arguments
above, the excitation gap closes and reopens along both of the cut lines, thereby removing the
anomalous corner states. In the second step, we deform one triangle adjacent to the cut to
glue the sample back together. This process rotates the part of the deformed triangle close
to the cut by π/3. As the type of triangle is determined by the orientation of the triangle in
space, the deformation smoothly interpolates between the two types as defined above. Thus,
hybridizing the deformed sample across the cut creates a pair of anomalous boundary states,
one at the disclination and one at the corner. The disclination state appears because the gap
closes and reopens an odd number of times during the Volterra process: once along each of
the two cut lines when removing a triangle, and once when gluing the edges back together.

3.5 Summary of results

In this section, we have shown that strong second-order topological phases protected by C2,
C4, or C6 symmetries host anomalous disclinations states provided that the symmetry con-
ditions summarized at the end of Sec. 2.5 are satisfied. In particular, we have argued that
only nonmagnetic phases in symmetry classes with Z2 topological charge may allow for such
a bulk-boundary-defect correspondence.

In the following section, we will generalize these results to include effects coming from
the presence of translational symmetries. In Section 6, we will apply these concepts to a
few examples of superconductors hosting Majorana bound states or Kramers pairs thereof at
disclinations, and to time-reversal symmetric insulators hosting a helical disclination mode.
An example for the appearance of a domain wall at a disclination in a magnetic topological
insulator hosting chiral hinge states is given in Appendix B.3.

4 Disclinations in topological crystals

Our considerations thus far have been independent of translational symmetries. In this section,
we extend our arguments to lattice models with discrete translation symmetries. As discussed
in Sec. 2, disclinations in lattices are classified into topological equivalence classes according to
their rotation and translation holonomy. Real-space representations of topological crystalline
phases naturally including translation symmetries can be constructed using the framework
of topological crystals [22]. Below, we briefly review and discuss the essential steps of the
topological-crystal construction applied to lattices with rotation symmetries. Moreover, we
extend the recipe developed in Ref. [22] by showing how to relate the constructed real-space
representation to weak and higher-order topological phases obtained from other classification
schemes [12,25,67]. We then apply the topological-crystal construction to determine the ex-
istence of anomalous states at disclinations of all types. As the topological crystal construction
was originally performed for periodic samples, we briefly comment in App. C.4 on the valid-
ity of the approach for finite size samples or in the presence of inhomogeneities. Finally, we
provide a summary of the main results of this section.

4.1 Cell decomposition

The first step in the topological-crystal construction is the covering of the system’s lattice with
specific types of cells as detailed below. Consider a d-dimensional space Rd subject to the sym-
metry group G × Gint . As only topological crystalline phases protected by translation and/or
rotation symmetry can contribute to the anomaly at a disclination (see Sec. 5.4 below), we
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Figure 5: Cell decompositions of unit cells in space group G in dimensions d = 2, 3:
Pink stars, red triangles, green squares and blue stars denote inequivalent twofold,
threefold, fourfold and sixfold rotation axes, respectively. Colored areas and bold
lines denote inequivalent 2-cells and 1-cells, respectively. In two dimensions, the
2-cell is the asymmetric unit. The 0-cells coincide with the rotation axis. In three
dimensions, the asymmetric unit is a 3-cell whose hinges are denoted by dotted lines.
The 0-cells lie at the end of the rotation axes. We use the standard labels for Wyckoff
positions.

focus on the (magnetic) space groups G = pn (G = pn′) generated by n-fold (magnetic) ro-
tation symmetry and translations. Further note that only (n ∈ {2,3, 4,6})-fold rotations are
compatible with translation symmetry. First, one defines an asymmetric unit (AU) as the inte-
rior of the largest region in Rd such that no two distinct points in this region are related by a
crystalline symmetry g ∈ G. A cell complex structure is generated by copying the AU through-
out Rd using all elements of the space group G. Next, one places cells of dimension (d−1) on
faces where adjacent AUs meet. Throughout the following, cells of spatial dimension db are
denoted as db-cells. These cells are chosen as large as possible, such that no two distinct points
in the same cell are related by a crystalline symmetry. Furthermore, cells are not allowed to
extend over corners or hinges of the AUs. In the same way, one continues iteratively by placing
(d − n− 1)-cells on faces where (d − n)-cells coincide. We present the resulting cell complex
structures for p2, p3, p4 and p6 in two and three dimensions in Fig. 5 (see Appendix C.1 for
details on their construction).

4.2 Decoration of cells with topological phases

The considered space is filled with matter by decorating the db-cells with db-dimensional topo-
logical phases. The topological phases have to satisfy all internal symmetries of the cell. Fur-
thermore, a cell located on a mirror plane or on a rotation axis can only be decorated with
topological phases satisfying the crystalline symmetries that leave the cell invariant. As one
aims to construct only phases with an excitation gap in the bulk, one also requires that gapless
modes on adjacent faces or edges of the decorated cells gap out mutually.

The tenfold-way topological phases have an Abelian group structure where the group op-
eration is the direct sum “⊕” of two Hamiltonians [1,3,31]. Topological crystals constructed as
decorations with tenfold-way topological phases inherit this Abelian group structure. This al-
lows to choose a set of generators from which all topological crystals can be constructed using
the direct sum and symmetry-allowed deformations of the generating topological crystals.
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The labels weak and strong for topological crystalline phases refer to the behavior of the
topological crystalline phase under breaking of translation symmetry. A topological crystalline
phase is called weak if its topological invariant can be changed by a redefinition of the unit cell,
thereby breaking the translation symmetry of the original crystal. If this is not possible, the
topological crystalline phase is termed strong. For a topological crystal, we determine whether
it is weak or strong using the following procedure: we first double the unit cell by combining
two adjacent unit cells of the original crystal. After this redefinition we allow for symmetric
deformations to express the result in terms of generating topological crystals. A topological
crystal that remains invariant during this procedure corresponds to a strong topological crys-
talline phase.

Furthermore, we identify the order of the topological crystal from its boundary signature.
A topological crystal corresponding to a decoration of db cells has a (db − 1)-dimensional
boundary signature. This is because its anomalous boundary states are inherited from the
decoration. Hence, it represents a topological phase of order (d − db − 1).

4.3 Decorations for rotation-symmetric lattices

Having reviewed the general procedure and nomenclature of the topological-crystal construc-
tion, we now focus on the special case of space groups with rotational symmetries. In particu-
lar, we determine all possible weak and second-order topological phases using the topological-
crystal construction.

Without specifying the set of internal symmetries, we first work out for each space group
the set of generating topological crystal decorations. For these generators, we then check
whether they describe a weak or a strong topological phase, and finally determine the order of
this phase. The group of internal symmetries together with the space group and the algebraic
relations of their representations finally decides whether the decoration is valid. In other
words, we determine whether the d-dimensional topological phases required to decorate the
d-cells of the system exist for a given set of internal symmetries, and whether the anomalous
states at the cell interfaces can be gapped out. In particular, to decide whether the asymmetric
unit can be decorated with a topological phase, we have to ensure that all boundaries, corners,
and hinges are gapped at the rotation axis.

For three-dimensional systems we omit decorations of 1-cells parallel to the rotation axis
as they cannot give rise to anomalous states with the same dimension as the disclination
line. Moreover, the plane perpendicular to the rotation axis corresponds to a two-dimensional
rotation-symmetric system. The decorations in this plane acquire the label weak because their
topological invariant can be changed by a redefinition of the unit cell in the z direction.

We defer the detailed derivation of the generating 1-cell (2-cell) decorations for rotation-
symmetric lattices in two (three) dimensions to Appendix C.2. Below, we present the generat-
ing sets together with their properties for decorations with Z topological phases. The results
for decorations with Z2 phases are straightforwardly obtained by taking the topological charge
of the decorations modulo two.

Twofold rotation symmetry. With twofold rotation symmetry, there exist two distinct weak
topological phases and one strong second-order topological phase, which we depict in Figs. 6(a)-
(c).

Threefold rotation symmetry. For threefold symmetry, there is no valid 1-cell decoration
(2-cell decoration parallel to the rotation axis). The reason is that each 1-cell (2-cell) ends
at a threefold rotation axis at which the anomaly cancellation criteria (5) and (6) cannot
be satisfied locally. Thus, there are neither weak nor second-order topological phases with
threefold rotation symmetry.

Fourfold rotation symmetry. In a two (three) dimensional lattice with fourfold rotation
symmetry, all 1-cell decorations (2-cell decorations parallel to the rotation axis) are generated
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(a) p2, weak in x (b) p2, weak in y (c) p2, 2nd order

(d) p4, weak (e) p4, 2nd order (f) p6, 2nd order

Figure 6: Generating sets of valid 1-cell decorations (cross sections of 2-cell decora-
tions parallel to the rotation axis) of two (three) dimensional lattices with twofold,
fourfold, and sixfold rotation axes. Black lines denote one (two) dimensional topo-
logical phases with anomalous boundary states depicted as dots: for Z topological
phases, the red and blue dots distinguish between topological charges q = +1 and
q = −1, respectively. For Z2 topological phases with topological charges q mod 2,
the two colors are equivalent.

from one weak and one strong second-order topological phase, which we show in Figs. 6(d)
and (e). The weak phase exists only for 1-cell (2-cell) decorations with Z2 topological phases.

Sixfold rotation symmetry. With sixfold rotation symmetry, the only valid 1-cell decoration
(2-cell decoration parallel to the rotation axis), which we depict in Fig. 6(f), corresponds to a
strong second-order topological phase.

Furthermore, in a symmetry class in which the (d−2)-dimensional anomalous states have
Z topological charge, one can show that the direct sum of a strong second order topological
phase with itself can be adiabatically deformed such that no (d − 2)-dimensional anomalous
states remain in the system (see Appendix C.2). This holds for all (n= 2, 4,6)-fold symmetric
systems. It confirms our statement from the end of Sec. 3.3 that only a Z2 factor of the topo-
logical charge of anomalous boundary states in these systems is an intrinsic property of the
topological bulk.

4.4 Weak and second-order topological phases with disclinations

We are now equipped to study disclinations in the weak and second-order topological phases
constructed above. In particular, we determine for each generator (see Fig. 6) whether it
hosts topological disclination states. We realize this by decorating a lattice with disclination,
as constructed through a Volterra process, with its topological-crystal limit. The disclination
breaks rotation symmetry locally, thus only internal symmetries constrain the hybridization of
disclination states.

We require that the system is locally indistinguishable from the bulk along the branch cut.
As we have shown in Sec. 3.4, this is not possible in symmetry classes that host rotation-
symmetry protected second-order topological phases with Z topological charge. In fact, in
these symmetry classes a decoration with weak or second-order topological phases represents
an obstruction to forming a lattice with an isolated disclination (see Appendix C.3). We there-

18

https://scipost.org
https://scipost.org/SciPostPhys.10.4.092


SciPost Phys. 10, 092 (2021)

Ω π π π π

type (0,0) (1,0) (0,1) (1,1)

2nd
or

de
r

w
ea

k
in

x
w

ea
k

in
y

Figure 7: Decorations of twofold rotation-symmetric lattices with π disclinations of
all types as defined in Fig. 2: decorations with second-order topological phases pro-
tected by twofold rotation symmetry and decorations with weak topological phases
as stacks in the x and y directions. Red dots represent d−2 dimensional anomalous
states with Z2 topological charge. Dashed blue lines indicate the branch cut in the
Volterra process across which anomalous states hybridize. Green circles denote loca-
tions where unpaired anomalous states remain. Note that for weak phases hosting
an anomalous disclination state, there is also an odd number of anomalous states on
the boundary.
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Figure 8: Decorations of fourfold-symmetric lattices with π/2 disclinations of both
types: decorations with second-order topological phases and decorations with weak
topological phases. The left column depicts the corresponding topological crystals.
For simplicity, anomalous bound states hybridizing within a unit cell are not shown.
We use the same symbols and colors as in Fig. 7.
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Figure 9: Unique decoration patterns of a sixfold rotation symmetric lattice without
disclination (Ω = 0) and with disclination of Frank angle Ω 6= 0: decorations with
second-order topological phases of Z2 topological charge. Symbols and colors are as
in Fig. 7.

fore restrict our discussion to symmetry classes whose d − 2 dimensional anomalous states
have Z2 topological charge.

Our results for the corresponding decorations of twofold, fourfold, and sixfold symmetric
lattices are presented in Figs. 7, 8, and 9. The decoration pattern is unique up to an arbitrary
decoration at the disclination itself, which cannot change the total topological disclination
charge due to the anomaly cancellation criterion of Sec. 3.2. Therefore, the unique bulk dec-
oration pattern determines the existence of anomalous states at the topological lattice defect.

In three dimensions, also screw disclinations with a translation holonomy Tz along the
rotation axis may occur. However, by a local rearrangement of the lattice a screw disclination
can be separated into a disclination with trivial translation holonomy Tz = 0 and a screw dislo-
cation carrying the translation holonomy Tz . The topological charge bound to the topological
lattice defects depends only on its holonomies defined on a loop enclosing the defects. These
defects can be pulled apart arbitrarily. Hence, the topological charge at a defect with multi-
ple non-trivial holonomies can be determined from the sum of the topological charge at the
individual defects with a single non-trivial holonomy. The arguments of Ref. [46] show that
the weak topological phases obtained by stacking 2D first-order phases along the rotation axis
contribute (d − 2)-dimensional anomalous states to screw dislocations with odd translation
holonomy Tz . While Ref. [46] considered explicitly weak topological insulators in class AII,
their arguments generalize straightforwardly to other symmetry classes as well 8 [47].

Using the decorations constructed above, we deduce that the contributions of weak and
second-order topological phases with topological invariants Gν =

�

νx ,νy ,νz

�T
and ν2π/n

9,

8In particular, Ref. [46] considers a finite sample with screw dislocation. The screw dislocation is the termination
of two step edges on the two opposite surfaces perpendicular to the screw dislocation. In a corresponding weak
topological phase, these step edges host one-dimensional anomalous states. As the one-dimensional anomalous
state cannot terminate at the screw dislocation, it must continue along the screw disclination and connect to the
opposite surface. This argument holds for all symmetry classes hosting one-dimensional anomalous states.

9The topological invariants νi , i = x , y, z and ν2π/n for the weak and second order topological phases, respec-
tively, can be abstractly defined through the isomorphism ν from the abelian group of stable topological equivalence
classes of Hamiltonians [1] to its isomorphic abelian group of integers Z or Z2, with addition as group operation
and generator "1". For second-order topological phases, we argued in section 3 that their classifying group is iso-
morphic to Z2. In this case, the quantity ν2π/n can be abstractly defined as a quantity that takes the value "0"
in the trivial phase and "1" in the topological phase. For weak topological phases, the classifying group can be
isomorphic to Z2 or Z' 2Z. In the latter case, the quantity νi should take the value "1" or "2" for the generator of
the abelian group of topological equivalence classes of Hamiltonians and respect the abelian group property in its
domain and image. Here, we distinguish the cases where the symmetries constrain a topological invariant to be
even, see also the discussion in Sec. 5. This isomorphism is typically expressed for a periodic system as a quantity
of the reciprocal space Hamiltonian, such as the Chern number [31], or a symmetry-based indicator [68]. Explicit
expressions for the topological invariants for topological superconductors in Cartan class D using symmetry-based
indicators are presented in Appendix E. In general, explicit expressions for topological invariants of higher-order
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respectively, to the number of (d−2)-dimensional anomalous states θdisc
n at a disclination with

rotation holonomy Ω and translation holonomy T are

θdisc
2 =

Ω

π
νπ + T ·Gν mod 2, (7)

θdisc
3 = Tzνz , (8)

θdisc
4 =

2Ω
π
νπ/2 + T ·Gν mod 2, (9)

θdisc
6 =

3Ω
π
νπ/3 + Tzνz mod 2. (10)

In two dimensions, the dimension spanned by the z direction is absent such that Tz and νz are
absent. Furthermore, recall that in Eq. (9), fourfold rotation symmetry requires that νx = νy
such that for a π/2 disclination of type 1, the two equivalent translation holonomies T = (0, 1)
and T = (1,0) always yield the same result.

For symmetry classes whose (d − 2)-dimensional anomalous states have Z2 topological
charge, these equations not only predict the total parity of anomalous states at disclinations,
but also at dislocations and at collections thereof. First, Eqs. (7) to (10) are also valid for
dislocations: for zero Frank angle, the equations agree with the familiar result for dislocations
[50]. Second, Eqs (7) to (10) depend only on the holonomical quantities of a loop around
the defect. This allows to perform local rearrangements of the lattice at the defect, which in
particular allows to split the defect into multiple defects. By regarding the holonomy of a loop
around each of these defects, one can apply Eqs. (7) to (10) to each defect individually. This
shows that Eqs. (7) to (10) determine the parity of anomalous states of collections of defects
from the holonomy of an enclosing loop. As a consequence, Eqs. (7) to (10) also determine
the fate of the defect anomalies upon splitting and, conversely, fusion of lattice defects.

4.5 Summary of results

Using the topological crystal construction, we have shown that d = 2 and d = 3 dimensional
weak and second-order topological phases with Z2 topological charge host anomalous states
at disclinations. We have summarized these results in Eqs. (7)–(10) relating the number of
states bound to a disclination to the weak and second-order invariants of the bulk. Recall that
the first-order (or ten-fold way) invariants of weak and higher-order topological phases are
zero. A complete picture of the bulk-boundary-defect correspondence in rotation-symmetric
systems, however, also has to contain the first-order contributions to the number of disclination
states. This will be done in the next section.

5 Bulk-boundary-defect correspondence

The bulk-boundary correspondence and the bulk-defect correspondence link the bulk topolog-
ical invariant of a sample to the existence of anomalous states at its boundaries and its defects,
respectively. Cumulating our results from previous sections, we now determine the precise re-
lationship between the topological charge at point defects and bulk topological invariants in
rotation-symmetric systems.

First, we work out the relation between disclinations and anomalous states for first-order
topological phases to derive a general formula relating the number of anomalous states at
disclinatinons to the first-order, second-order, and weak topological invariants of a rotation-
symmetric system with Z2 topological charge. This represents the central result of our work.

topological phases can be derived using the method outlined in Refs. [67,69].
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After that, we discuss implications of our findings, such as the presence of domain walls in
systems where the bulk-boundary-defect correspondence fails. We further argue that, in cer-
tain symmetry classes, a bulk-boundary-defect correspondence also holds for systems with Z
topological charge. We continue with a recipe on how to apply our results to systems with
additional symmetries besides rotational and translational symmetry. Finally, we present com-
plete classification tables for all Cartan classes in 2D and 3D showing the possible first-order,
second-order, and weak topological crystalline phases and whether the bulk-boundary-defect
correspondence holds.

5.1 Topological invariants and topological charge at disclinations

In Sec. 2, we argued that the rotation and translation holonomies of disclinations on the one
hand and bound geometric π-flux quanta on the other hand are distinct topological properties
of point defects. In the previous Sec. 4, we worked out the contributions of weak and second-
order topological phases to the topological charge at a disclination. Conversely, to determine
the bulk topological invariants from the topological charge at the lattice defect, we first need
to investigate under which conditions a first-order topological phase hosts anomalous states at
a point defect.

Our detailed analysis is presented in Appendix D. We find that tenfold-way (first-order)
topological phases, which are independent of crystalline or internal unitary symmetries for
their protection, host anomalous states at disclinations only if bound to a geometric π-flux
quantum. This general result is in agreement with case studies in the literature indicating
that these phases may bind (d − 2)-dimensional anomalous states to point and line defects
with geometric π-flux quanta [31, 47, 48, 63, 70–72] if allowed in the respective symmetry
class. Furthermore, we find that this statement can be generalized to all dimensions d ≥ 2
(see Appendix D.2). As a consequence, a tenfold-way topological phase in a symmetry class
that allows for (d − 2)-dimensional anomalous defect states hosts an anomalous state at a
disclination if and only if the disclination also binds a geometric π-flux quantum.

Hence, we can express the total number of (d − 2)-dimensional anomalous state θn at
a disclination in an n-fold rotation-symmetric system, in the presence of a unitary rotation
symmetry whose representation commutes with all internal unitary symmetries and antisym-
metries (see Sec. 2.5), as

θn = θ
disc
n +

α

π
ν1 mod 2, (11)

where θdisc
n is defined as in Eqs. (7)–(10), α = lπ, l ∈ Z, is the geometric phase obtained

by parallel transporting a particle around the defect, and ν1 is the tenfold-way strong first-
order topological invariant of the system’s bulk Hamiltonian. In the presence of time-reversal
symmetry, the geometric phase α= φ

φ0
is given by the quantized magnetic flux φ = lφ0 bound

to the defect, where φ0 =
hc
2e is the magnetic flux quantum. 10

One can determine the second-order topological invariant ν2π/n and the weak topologi-
cal invariants Gν = (νx ,νy ,νz) by probing disclinations with different translation holonomies.
The parity of the first-order topological invariant is determined from the existence of an anoma-
lous state at a π-flux point defect. For phases of matter that obey rotation symmetry but no

10The flux quantization in time-reversal symmetric systems is a result of the following Gedankenexperiment: If
a defect of codimension 2 binds a magnetic flux that is a multiple of φ0 =

hc
2e , then any electron transported around

that path acquires a geometric phase that is a multiple of π. Under time-reversal symmetry, both the flux and
the corresponding geometric phase are reverted. As the phase of the wavefunction is defined only modulo 2π, a
time-reversal symmetric system with defect with flux a multiple of φ0 =

hc
2e still satisfies a time-reversal symmetry.

As all other values of the flux break time-reversal symmetry, the requirement of time-reversal symmetry quantizes
the flux to multiples of φ0 =

hc
2e .
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translation symmetry, Eqs. (7)–(11) apply with trivial translation holonomy T = 0, in agree-
ment with our arguments in Sec. 3. Equations (7)–(11) are the central result of this paper.

Putting our results into perspective, for lattices with rotation symmetry we have shown:
(i) as any anomaly at a disclination has to be canceled somewhere else in the system, any crys-
talline topological phase with an anomalous state at a disclination also hosts anomalous bound-
ary states. This provides a sufficient condition for the existence of anomalous boundary states
based on the topological properties of the lattice defect alone. (ii) Each crystalline-symmetry
protected topological phase contributes anomalous states only to defects that carry a holon-
omy of the protecting crystalline symmetry. As summarized in Eqs. (7) to (10), the rotation
holonomy only contributes to disclination states in the presence of a nontrivial second-order
topological invariant, whereas the translation holonomy only contributes if there are nonzero
weak topological invariants. This establishes a bridge between two distinct phenomenologies
of topological crystalline phases: their higher-order bulk-boundary correspondence on the one
hand and their topological response with respect to topological lattice defects [36] on the other
hand.

5.2 Implications and remarks

Having presented our central result, we now discuss consequences that follow from our find-
ings.

If the representation of the unitary rotation symmetry does not commute with all internal
unitary symmetries and antisymmetries, or if the symmetry group does not contain a unitary
rotation symmetry, the cut in the Volterra process remains distinguishable from the bulk (see
Sec 2.5). In these cases, the disclination must be the end point of a domain wall between
regions distinguishable by their local arrangements of orbitals in the unit cell (see Appendix B.1
for details). Moreover, the hopping across the domain wall is not restricted to a unique pattern.
Thus, we cannot determine the topological charge at the disclination from the bulk and the
lattice topology alone. We can only make a statement about the parity of the topological charge
along the domain wall, for which we refer the interested reader to Appendix B.2.

In three dimensions, a disclination may also host a one-dimensional stack of zero-dimen-
sional anomalous states whose pairwise annihilation is prohibited by translation symmetry
along the lattice defect. These states exist in the presence of weak topological phases ob-
tained by stacking two-dimensional topological phases along the defect direction. The contri-
butions of stacks of two-dimensional first-order, second-order and weak topological phases
are determined by similar equations as Eqs. (7) to (11), where the topological invariants
{ν1,ν2π/n,νx ,νy ,νz} must be replaced by {νz ,ν2π/n,z ,νx ,z ,νy,z , 0} measuring the presence
of weak topological phases obtained by a stack of two-dimensional strong first-order (νz),
second-order (ν2π/n,z) and two-dimensional weak topological phases (νx ,z ,νy,z) along the de-
fect direction. There are no contributions proportional to the translation holonomy Tz . There-
fore, νz can be replaced by 0.

5.3 Disclinations in systems with Z topological charge

Eqs. (7) to (11) were derived for symmetry classes whose (d − 2)-dimensional anomalous
states have Z2 topological charge. Nevertheless, also for symmetry classes with Z topological
charges we can make a couple of statements. For this purpose, we note that these symmetry
classes can be divided into two subsets (which are contained in Tables 1 and 2 below):

(i) In symmetry classes that, at the same time, allow for strong, rotation-symmetry pro-
tected second-order topological phases, our arguments from Sec. 3 show that the anomaly
at the disclination depends on the microscopic properties of the system. This situation gives
again rise to the appearance of a domain wall, as discussed in detail in Appendix B.
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(ii) In the remaining subset of symmetry classes where strong, rotation-symmetry pro-
tected second-order topological phases are forbidden, the anomaly at the disclination may
still be determined from the bulk topology alone. In particular, in three-dimensions these
symmetry classes may allow for two-dimensional first-order topological phases stacked along
the rotation axis. Their contribution to the number of one-dimensional anomalous states at a
disclination or dislocation is θ = νz Tz . This is in fact the only contribution, as both first-order
topological phases as well as weak topological phases obtained by stacking two-dimensional
first-order topological phases in the x- or y-direction are forbidden in these symmetry classes.
The former statement follows from the structure of the tenfold-way classification. The latter is
a consequence of the topological crystal construction (see Appendix C). Tables 1 and 2 below
contain a list of the corresponding symmetry classes in two and three dimensions, respectively.

5.4 Presence of additional symmetries

Disclinations may exist in all space groups with rotation symmetry. For space groups with addi-
tional symmetry elements other than translations and rotations, our findings apply as follows:
a strong crystalline topological phase hosts anomalous disclination states if it realizes a strong
second-order topological phase after lifting all symmetry constraints except for rotation sym-
metries. This statement holds because we have shown the existence of anomalous disclination
states for all Hamiltonians realizing second-order topological phases, which may also satisfy
additional symmetries. This allows us to identify the anomaly at disclinations by considering
only topological crystalline phases with translation, rotation and internal symmetries. Note,
however, that we also have to respect any additional crystalline symmetries when we construct
the hopping terms across the branch cut of the Volterra process, as defined in Eq. (2).

Furthermore, the presence of additional internal unitary symmetries U may protect anoma-
lous states at points with U -symmetry flux in first-order topological phases (see Appendix D.3).

5.5 Application to all Cartan classes

To complete our discussion, we summarize our results in Tables 1 and 2. We present a clas-
sification of first-order, second-order, and weak topological crystalline phases with real-space
limits as in Fig. 6 for all Cartan classes describing spinful fermions with magnetic and non-
magnetic rotation symmetry in two and three dimensions. Those cover all topological phases
that give rise to d−2 dimensional anomalous states at disclinations in rotation-symmetric lat-
tices. For each symmetry class we determine whether the disclinations have to be connected
to a domain wall as discussed in section 2.5. This criterion determines whether the bulk-
boundary-defect correspondence holds (the disclination is not associated to a domain wall),
or whether it does not hold (domain wall necessarily exists).

A few remarks are in order. For spinful fermions, rotation symmetry satisfies U(R2π/n)n =
−1 and commutes with time-reversal symmetry U(R2π/n)U(T )K = U(T )U(R2π/n)∗K , where
K denotes complex conjugation. Spin-rotation symmetry, if present, can be combined with
rotation symmetry such that the representation of rotation symmetry within a spin subspace
satisfies U(R2π/n)n = 1. For superconductors, our discussion covers all possible pairing sym-
metries for which u(R2π/n)∆(R2π/nk)u†(R2π/n) = eiφ∆(k), where u(R2π/n) is the represen-
tation of n-fold rotation symmetry acting on the normal-state Hamiltonian (see Appendix F.1
for details). We interpret Cartan class AIII as a time-reversal symmetric superconductor with
U(1) spin-rotation symmetry. Cartan class BDI is interpreted as a superconductor of spinless
fermions, in which time-reversal symmetry and particle-hole antisymmetry square to 1 and the
crystalline symmetry operations satisfy U(R2π/n)n = 1 and commute with time-reversal sym-
metry. We interpret Cartan class CII as a superconductor of spinful fermions with spin-rotation
symmetry and an emergent time-reversal symmetry T 2 = −1 in each spin subspace. Also in
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Table 1: Classification of two-dimenional n-fold rotation-symmetric weak, second-
order, and first-order topological superconductors that give rise to anomalous bound-
ary states. Q indicates the topological charge of zero-dimensional anomalous states
in the given Cartan class. G denotes the space group pn (pn′) with n-fold unitary
(magnetic) rotation symmetry. φ is the U(1) phase determining the superconduct-
ing pairing symmetry. The three central columns show the structure of the topo-
logical invariants. For systems with first-order invariant 2Z, the rotation symmetry
constrains the Chern number to be even. The last column indicates whether the bulk-
boundary-defect correspondence (BBDC) holds at a disclination (Ø). The remaining
(non-superconducting) Cartan classes do not allow for zero-dimensional anomalous
states, i.e., they have Q = 0.

Cartan
class

Q G φ
Weak in

x / y
2nd

order
1st

order
BBDC

D Z2 p2 0 Z2
2 Z2 Z Ø

π - - 2Z Ø
p4 0,π Z2 Z2 Z Ø

π
2 , 3π

2 - - 2Z Ø
p6 0, 2π

3 , 4π
3 - Z2 Z Ø

π, π3 , 5π
3 - - 2Z Ø

p2′ Z2
2 Z2 - -

p4′ Z2 Z2 - -
p6′ - Z2 - -

DIII Z2 p2 0 Z2
2 Z2 Z2 Ø

π Z2
2 Z2 - -

p4 0 Z2 Z2 Z2 Ø
π Z2 Z2 - -

p6 0 - Z2 Z2 Ø
π - Z2 - -

AIII,
BDI,
CII

Z p2 0 - - - Ø
π Z2 Z2 - -

p4 0 - - - Ø
π - Z2 - -

p6 0 - - - Ø
π - Z2 - -

this case, the rotation symmetry operators satisfy U(R2π/n)n = 1 and are assumed to commute
with time-reversal symmetry. We present the detailed results for each symmetry class of our
classification in Appendix F.

Finally, we point out that our results for anomalies at disclinations respect the Abelian
group structure of topological crystalline phases given by the direct sum 11 In particular, in
symmetry classes for which the bulk-boundary-defect correspondence holds, the direct sum
of a first-order topological phase with itself cannot lead to a second-order topological phase.
In symmetry classes in which a disclination is connected to a domain wall, meaning that the
bulk-boundary-defect classification does not hold, the direct sum of a first-order topological
phase with itself may result in a second-order topological phase. The latter scenario is absent
for all cases discussed here. Our classification results are consistent with corresponding results
from Refs. [12,67,69].

11Note that the direct sum operation in the Abelian group structure of topological crystalline phases is applied
to both the Hamiltonians H1⊕H2 and the representations of its symmetries U1(g)⊕U2(g). Here, the Hamiltonians
Hi , i = 1, 2, are elements of the same symmetry class, with corresponding representation Ui(g) of all symmetry
elements g ∈ G × Gint.
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Table 2: Classification of three-dimenional n-fold rotation-symmetric weak, second-
order, and first-order topological insulators and superconductors that give rise to
one-dimensional anomalous defect states. We use the same notations as in Table 1.
Here, Q denotes the topological charge of the one-dimensional anomalous states in
the given symmetry class. Since non-magnetic rotation symmetry preserves the prop-
agation direction of chiral modes, there are neither weak nor higher-order phases in
Cartan classes A, D, and C with non-magnetic rotation symmetry.

Cartan
class

Q G φ
Weak in

x / y
Weak
in z

2nd

order
1st

order
BBDC

A Z p2 - Z - - Ø
p4 - Z - - Ø
p6 - Z - - Ø
p2′ Z2 - Z2 - -
p4′ - - Z2 - -
p6′ - - Z2 - -

D Z p2 0 - Z - - Ø
π - 2Z - - Ø

p4 0,π - Z - - Ø
π
2 , 3π

2 - 2Z - - Ø
p6 0, 2π

3 , 4π
3 - Z - - Ø

π, π3 , 5π
3 - 2Z - - Ø

p2′ Z2 - Z2 - -
p4′ - - Z2 - -
p6′ - - Z2 - -

DIII Z2 p2 0 Z2
2 Z2 Z2 Z Ø

π Z2
2 - Z2 - -

p4 0 Z2 Z2 Z2 Z Ø
π Z2 - Z2 - -

p6 0 - Z2 Z2 Z Ø
π - - Z2 - -

AII Z2 p2 Z2
2 Z2 Z2 Z2 Ø

p4 Z2 Z2 Z2 Z2 Ø
p6 - Z2 Z2 Z2 Ø

C Z p2 0 - 2Z - - Ø
π - 2Z - - Ø

p4 0,π - 2Z - - Ø
π
2 , 3π

2 - 2Z - - Ø
p6 0, 2π

3 , 4π
3 - 2Z - - Ø

π, π3 , 5π
3 - 2Z - - Ø

p2′ Z2 - Z2 - -
p4′ - - Z2 - -
p6′ - - Z2 - -
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Figure 10: Model of a 2D second-order topological phase in class D protected by
twofold rotation symmetry, as defined in Eq. (12), on a lattice with one and two
disclinations: real-space weights for the wavefunctions of the two eigenstates with
lowest absolute energy. Darker colors denote larger weights. The boundary condi-
tions forming the disclinations are indicated by black and gray arrows: sites along
corresponding lines of arrows are connected respecting the arrow orientation. The
model is based on a two-layer stack of Chern superconductors with opposite Chern
numbers Ch = ±1. The model parameters are m = −1 and b1 = b2 = 0.4. The
first column shows the full model with both layers coupled. The second and third
columns correspond to the individual, decoupled layers when we set b1 = b2 = 0.
In (e), we plot four instead of two lowest eigenstates to also indicate the presence of
the chiral edge modes.

6 Examples

Having laid out the general theory, we now turn to demonstrating our statements for spe-
cific models of second-order topological phases. In particular, we illustrate how to carry out
the Volterra process explicitly and how anomalous disclination states arise in these phases.
Throughout this section, we use τi ,ρi ,ηi ,σi , i ∈ {0, 1,2, 3}, to denote Pauli matrices act-
ing in different subspaces. For the computations and visualizations we have used the Python
software package Kwant [73].

6.1 Class D in two dimensions

Cartan class D allows for topological phases in one and two dimensions. In one dimension,
this phase corresponds to a Kitaev chain with zero-energy Majorana end states. In two dimen-
sions, it is a superconductor with nontrivial Chern number and chiral Majorana edge states.
We consider superconductors whose superconducting order parameter is even under rotation
(φ = 0 as in Table 1). In this case the representation of n-fold rotation symmetry satisfies
U(R2π/n)n = −1 and commutes with particle-hole antisymmetry.

Using symmetry-based indicators, we derive in Appendix E an explicit expression for the
number of Majorana bound states at a disclination in terms of the Chern number and rota-
tion invariants. This specific result for class D is in agreement with previous literature [54].
Moreover, our method is applicable to other symmetry classes as well.
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6.1.1 Twofold rotation symmetry

A model for a second-order topological superconductor protected by twofold rotation symme-
try is

HD,2(k) = τ2ρ3(m+ 2− cos kx − cos ky) (12)

+τ3ρ3 sin kx +τ1ρ3 sin ky + b1τ1ρ2 + b2τ3ρ2,

with particle-hole symmetry P = K in the Majorana basis and rotation symmetry U(Rπ) =
iτ2ρ3. The 4 × 4 matrices τiρ j are Kronecker products of Pauli matrices acting on the four
sublattice degrees of freedom. For −2 < m < 0 and b1 = b2 = 0, this model corresponds to a
stack of two Chern superconductors in the τ subspace with opposite Chern numbers hosting
counterpropagating chiral edge modes. The terms proportional to b1 and b2 hybridize the two
layers. The hybridization gaps the counterpropagating chiral edge modes such that a pair of
Majorana bound states appears on corners related by twofold rotation.

Exact diagonalization of the Hamiltonian on a lattice with disclination shows that the
model hosts one Majorana bound state at the disclination [see Fig. 10(a)]. This is in agree-
ment with our general results from Eqs. (7) and (11) where, in this case, only the nontrivial
second-order invariant contributes to the topological charge at the disclination. We observe
that the Majorana bound state persists upon decoupling the layers by setting b1 = b2 = 0. As
there is only a single Majorana at the disclination, our general results suggest that one of the
two decoupled Chern superconductors must therefore bind a π-flux to the disclination. This
is indeed the case as we confirm by investigating the hybridization across the branch cut in
the two layers. According to Eq. (2), the nearest-neighbor hopping along the surface normal
n is constructed from the bulk hopping Hr ,r+n in the direction of n as Hcut

r ,r+n = U(Rπ)Hr ,r+n .
As the representation of twofold rotation differs by a π phase between the subspaces of the
two layers, the disclination binds a π-flux in only one of the layers. We confirm this picture by
exactly diagonalizing the two layers in the decoupled limit separately, as shown in Figs. 10(b)
and (c).

We also construct a lattice with two π disclinations by connecting the surfaces as shown in
Fig. 10(d). The exact diagonalization results confirm that the second-order topological phase
hosts one anomalous state at each of the two disclinations. Moreover, recall that the total
phase shift of a particle after transporting it around a 2π disclination is 2π (see Sec. 2). As a
consequence, each of the two decoupled layers of Chern superconductors hosts an even num-
ber of Majorana bound states, zero or two in this case, distributed over the two disclinations
[see Figs. 10(e) and (f)].

6.1.2 Fourfold rotation symmetry

To construct a model for a second-order topological superconductor protected by fourfold
rotation symmetry [5, 74], we consider a square lattice in the x y plane and place at each
lattice site a Majorana mode γi = γ

†
i . We add imaginary nearest-neighbor hopping between

the Majorana modes, which we dimerize in the x and in the y direction. Finally, we thread a
magnetic flux quantum through each lattice plaquette. The model is illustrated in Fig. 11(a).
It can be viewed as an array of alternatingly coupled Kitaev chains in the presence of a gauge
field. The Bloch Hamiltonian of the model reads

HD,4(k) = (t +δt) [τ3ρ2 +τ2ρ0]

− (t −δt) [cos(kx)τ3ρ2 + sin(kx)τ3ρ1]

− (t −δt) [cos(ky)τ2ρ0 + sin(ky)τ1ρ0], (13)

with the real hopping parameters t and δt. The model is written in the Majorana basis
{γa,k ,γb,k ,γc,k ,γd,k}, as indicated in Fig. 11(a). It satisfies particle-hole antisymmetry
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Figure 11: Model of a 2D second-order topological superconductor in class D pro-
tected by fourfold rotation symmetry as defined in Eq. (13): (a) depiction of the
model Hamiltonian with t1,2 = t ±δt. Majoranas hopping along red arrows pick up
an additional π phase giving rise to a total magnetic flux of φ0 per lattice plaquette.
The red square denotes the unit cell of the model. (b) Illustration of how to connect
sites across the cuts in the Volterra process for the fully dimerized limit (t1 = 0),
which leads to a π/2 disclination at the center of the lattice. Finally, on a lattice with
π/2 disclination and model parameters δt = −0.5t we show in (c) the spectrum
close to E = 0 and in (d) the real-space weights of the zero modes. In (c), the four
zero modes in the spectrum are highlighted in red.

H∗(−k) = −H(k) and fourfold rotation symmetry Uπ
2
H(ky ,−kx)U

†
π
2
= H(k). The representa-

tion of fourfold rotation Uπ
2

describes a couterclockwise rotation of the Majorana particles in
the unit cell including a sign change γa→−γc .

For δt < 0, the model realizes a second-order topological superconductor with Majorana
corner states. Figure 11(b) shows explicitly for the fully dimerized limit (δt = −t) how unit
cells are connected across the cuts in the Volterra process to form a π/2 disclination. In this
limit, it is apparent that unpaired Majorana bound states occur only at the three corners and at
the disclination. Nevertheless, exact diagonalization of the model confirms that the Majorana
bound states persist also away from the completely dimerized limit [see Fig. 11(c) and (d)].
This is in agreement with our general results from Eqs. (9) and (11) with only the second-order
invariant contributing to the topological charge at the disclination.

6.1.3 Sixfold rotation symmetry

A model Hamiltonian for a second-order topological superconductor protected by sixfold rota-
tion symmetry can similarly be constructed from a sixfold-symmetric arrangement of Majorana
fermions in the unit cell [54]. Our model is composed of two hybridization patterns thereby
interpolating between trivial and topological phase,

HD,6 = t1Htriv + t2Htopo. (14)

Htriv describes the trivial phase [see Fig. 12(a)] as all Majorana fermions are recombined within
the unit cell. Htopo, on the other hand, corresponds to a second-order topological phase [see
Fig. 12(b)] where Majorana bound states hybridize across unit cells. A Bloch Hamiltonian for
the topological phase is given in Ref. [54].

In the topological phase, the model features a Majorana zero mode bound to a π/3 discli-
nation, as illustrated in Figs. 12(c) and (d), in accordance with the general result for the
topological charge at a disclination presented in Eq. (10). Moreover, in Fig. 13 we explicitly
show that a 2π/3 disclination does not give rise to anomalous disclination states.
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Figure 12: Model of a 2D second-order topological superconductor in class D pro-
tected by sixfold rotation symmetry: (a), (b) depiction of the model in the two fully
dimerized limits, where (a) describes the trivial phase Htriv and (b) the second-order
topological phase Htopo. The unit cell (red hexagon) consists of six Majorana fermions
depicted by different colors. For a lattice with π/3 disclination and model parame-
ters t1 = 1.5 and t2 = 0.5, we show in (c) the spectrum close to E = 0 and in (d)
the real-space weights of the six zero modes. In our model, there is another pair of
in-gap modes localized at the disclination. These modes are not anomalous and can
be pushed into the bulk spectrum by a local deformation at the disclination.

6.2 Class DIII in two dimensions

Cartan class DIII describes time-reversal symmetric superconductors in the absence of spin-
rotation symmetry. As before, we assume a pairing symmetry of the form U(R)∆(Rk)U†(R) =
∆(k). We can straight-forwardly construct a class-DIII second-order topological superconduc-
tor from a corresponding model HD(k) in class D by augmenting it with its time-reversed copy
H∗D(−k). We do this explicitly for the fourfold-symmetric model defined in Eq. (13) Note that
models for the other rotation symmetries can be constructed in the same way.

The resulting model HD(k)⊕ H∗D(−k) is time-reversal symmetric with the anitunitary op-
erator T = iτ0ρ0σ2K and k → −k, where σi are Pauli matrices acting on the pseudo-
spin degree of freedom. The model is particle-hole symmetric with the antiunitary opera-
tor P = K , k → −k. The representation of fourfold rotation symmetry is R̃ π

2
= Uπ

2
σ0,

(kx , ky)→ (ky ,−kx), where Uπ
2

is the same as for the class-D model. In our model we allow
for symmetry-preserving nearest-neighbour coupling between the pseudo-spins. The Bloch
Hamiltonian takes the form,

HDIII,4(k) =

�

HD,4(kx , ky) λA(kx , ky)
λA(kx , ky) H∗D,4(−kx ,−ky)

�

, (15)

with the term

A(k) = [1− cos(kx)]τ3ρ2 − sin(kx)τ3ρ1

+ [1− cos(ky)]τ2ρ0 − sin(ky)τ1ρ0,

coupling the two pseudo-spin subblocks.
In the second-order topological phase, this system features one Majorana Kramers pair at

each of the four corners of a square-shaped sample. After carrying out the Volterra process,
the resulting π/2 disclination binds one Majorana Kramers pair, as illustrated in Fig. 14. This
again confirms our general results from Eqs. (9) and (11).

6.3 Class DIII in three dimensions

In Cartan class DIII, second-order topological superconductors exist both in two and three
dimensions. In three dimensions, those come in two different variants: First, a strong second-
order topological phase is constructed from a corresponding two-dimensional model in class
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Figure 13: 2D second-order class D model from Eq. (14) with a 2π/3 disclination:
model parameters t1 = 1.5 and t2 = 0.5. (a) shows the spectrum close to E = 0 for
a disclination for which the central sites have been removed [similar to Fig. 12(c)
and (d)]. We find four zero modes localized to the four corners of the lattice and
two finite-energy mid-gap states at the disclination (see inset). In (b), we visual-
ize the real-space weights of these six modes. The two finite-energy modes are not
anomalous and can be pushed into the bulk spectrum by a local deformation at the
disclination. This is explicitly demonstrated in (c) and (d) by recovering the four
central sites at the disclination.

Figure 14: Model of a 2D second-order topological superconductor in class DIII on
a square lattice with disclination as defined in Eq. (15): the model parameters are
δt = −0.5t, λ= 0.5t. (a) Low-energy spectrum with four Kramers pairs of Majorana
zero modes highlighted in red. (b) Real-space weights of the Majorana zero modes.

D by using the dimensional raising map [47,75,76]. Alternatively, since class DIII already fea-
tures second-order topological phases in 2D, these nontrivial class-DIII models can be stacked
along the rotation axis to produce a weak second-order topological superconductor. In the
following, we demonstrate these two cases explicitly for fourfold symmetric systems, but the
same procedures are applicable also to models with other rotation symmetries.

6.3.1 Strong second-order topological superconductor

Applying the dimensional raising map to the Hamiltonian HD,4(k) from Eq. (13) (see Ap-
pendix F.3.3) results in the following Bloch Hamiltonian,

Hst
DIII(k) = HD,4[kx , ky ;δt → δt cos(kz)]σ3

+ sin(kz)τ0ρ0σ1, (16)

where we replace δt in the definition of HD,4(k) by δt cos(kz). The model is defined on a cubic
lattice and has particle-hole, time-reversal, and fourfold rotation symmetry around an axis par-
allel to the z axis. The respective operators have the same structure as for the two-dimensional
model in class DIII discussed at the end of the previous section: P = K , T = iτ0ρ0σ2K , and
R̃ π

2
= Uπ

2
σ0 with the C4 operator Uπ

2
of the underlying model in class D.
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Figure 15: Bandstructures of 3D second-order topological superconductors in class
DIII protected by fourfold symmetry: (a) strong topological phase and (b) weak topo-
logical phase, with model Hamiltonians as defined in Eqs. (16) and (17), respectively.
The corresponding models are realized in a pillar geometry with a line disclination
parallel to the z axis. The insets show the real-space weights of the zero-energy states
at the respective momenta.

We consider this model in a pillar geometry, infinite along the z direction and having a
finite, square-shaped cross section with open boundary conditions in the x and y directions.
We carry out a Volterra process, as depicted in Fig. 4(c), resulting in an infinitely long π/2
line disclination parallel to the z axis. The bandstructure shows that the disclination binds one
helical Majorana mode. We observe the same features at the three hinges of the lattice [see
Fig. 15(a)]. This strong topological phase is robust against translation symmetry breaking.

6.3.2 Weak second-order topological superconductor

A stack of the two-dimensional systems HDIII(kx , ky) as defined in Eq. (15) is described by a
Hamiltonian of the form

Hw
DIII(kx , ky , kz) = HDIII(kx , ky) + tz sin(kz)τ0ρ0σz , (17)

where we have included a symmetry-allowed hybridization between adjacent layers propor-
tional to tz . The symmetries of this system and their representations are identical to the two-
dimensional class-DIII model.

We consider this model in the same pillar geometry as for the strong second-order phase
above and apply the Volterra process accordingly. We show the bandstructure of the lattice with
disclination in Fig. 15(b). For each of the three hinges and for the disclination line, there is a
pair of particle-hole symmetric bands within the bulk energy gap. Most notably, these bands
are detached from the bulk continuum but pinned to the momenta kz = 0 and π at E = 0
by symmetry. The hinge and disclination spectra correspond to chains of Majorana Kramers
pairs. This is a weak topological phase because it can be trivialized by breaking translation
symmetry such that states at k = 0 and π hybridize.

6.4 Class AII in three dimensions.

A class-AII model can formally be constructed from a Hamiltonian Hst
DIII in class DIII [see

Eq. (16)] by breaking its particle-hole antisymmetry while preserving time-reversal and ro-
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Figure 16: Bandstructure of a 3D second-order topological insulator in class AII pro-
tected by fourfold symmetry as defined in Eq. (18): the model is realized in a pillar
geometry with a line disclination parallel to the z axis. The inset shows the real-space
weight of the electronic in-gap states at kz = 0.

tation symmetry. In addition, this requires that the corresponding single-particle Hamiltonian
is defined in terms of electronic operators d†

kaσ instead of Majorana operators γkaσ, where a
and σ denote the sublattice and pseudo-spin degrees of freedom, respectively.

With the above transformation, a suitable model in class AII is given by

HAII(k) = Hst
DIII(k) + tb cos(kz)τ0ρ0σ0 , (18)

where the term proportional to tb breaks particle-hole antisymmetry. The symmetry operators
are T = iτ0ρ0σ2K with T 2 = −1, and R̃ π

2
= Uπ

2
σ0 with (Ũπ

2
)4 = −1.

The spectrum for the same pillar geometry with disclination as above reveals the presence
of helical electronic states running along the line disclination (see Fig. 16). The energy bands
corresponding to the helical states traverse the bulk-energy gap. As opposed to the model in
class DIII, the crossing point of the helical bands is no longer at zero energy due to the absence
of particle-hole antisymmetry.

We point out that models for second-order topological insulators in class AII protected by
twofold or sixfold rotation symmetries can be constructed in the same way.

7 Conclusion

Results. By combining an exhaustive holonomy classification of lattice defects in rotation
symmetric two- and three-dimensional lattices with an exhaustive classification of topological
phases of free fermions in such lattices, we have determined the precise relation between bulk
topology, and boundary and defect anomaly. This relation is captured by Eqs. (7) to (11). Our
result shows that topological phases protected by a crystalline symmetry contribute anoma-
lous states only at lattice defects that carry a holonomy of the protecting crystalline symmetry.
In particular, second-order topological phases contribute to the anomaly of disclinations, and
weak topological phases contribute to the anomaly at dislocations and disclinations with non-
trivial translation holonomy. Tenfold-way first-order topological phases contribute anomalous
states only at defects that bind a π-flux, such as a superconducting vortex. These results apply
both to individual defects as well as to the total anomaly of a collection of defects determined
from the holonomy of a loop around the collection.

These results formalize the concept of bulk-boundary-defect-correspondence for rotation
and translation symmetric topological phases of free fermions: the topological protection of
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anomalous states at a translation or rotation symmetric boundary and at a defect that carries a
translation or rotation holonomy is tied to the same bulk crystalline topological phase, whose
bulk topology in turn is protected by the respective crystalline symmetry.

Furthermore, we have identified the set of symmetry classes in which the disclination as
constructed from the Volterra process is the edge of a domain wall. The domain wall is present
in the absence of a unitary rotation symmetry that commutes with all internal unitary symme-
tries and antisymmetries of the system’s Hamiltonian. In case the disclination is connected to
a domain wall, the anomaly at the disclination depends on the microscopic properties of the
domain wall. Therefore, in these symmetry classes the presence of the domain wall prohibits
a unique determination of the disclination anomaly from the bulk topology. We note that the
domain wall may become locally unobservable if the disclination breaks some internal sym-
metries otherwise present in the bulk, or if the disclination involves a translation holonomy by
a fractional lattice vector.

Finally, we have determined for all Cartan classes of free fermions with a physically mean-
ingful representation of rotation symmetry in two and three dimensions: (i) all possible con-
tributions to (d − 2)-dimensional anomalous states at a disclination, dislocation or geometric
π flux defect and (ii) whether a domain wall emerges at a disclination in the given symmetry
class. These results are summarized in tables 1 and 2. We ensure to capture all contributions
to (i) by comparing to a complete classification of first and second-order strong topological
phases and the relevant weak topological phases. We have confirmed our construction for a
few physical examples of superconductors with and without time-reversal symmetry in Cartan
classes D and DIII and for a time-reversal symmetric insulator in Cartan class AII.

Discussion. Due to the large elastic stress associated with a disclination in ordered media,
disclinations typically appear in pairs with canceling Frank angle or at the edges of grain
boundaries [35]. More specifically, in the disclination model of grain boundaries, they come
in bound pairs [40,44]. Therefore, anomalous disclination states along a grain boundary may
gap out pairwise through hybridization. On the contrary, isolated disclinations may be realized
at the center of nanowires.

Possible platforms for the study of anomalous disclination states are SnTe and antiper-
ovskite materials. These materials classes have been put forward as candidates for second-
order topological insulators protected by rotation symmetry [4,15]. Our findings suggest that
disclinations in these materials may bind helical modes. Moreover, SnTe nanowires with a
pentagonal crossection have been succesfully fabricated [77]. Their unusual shape hints at
the presence of an isolated disclination at their core, rendering them a promising experimen-
tal platform for the study of anomalous disclination states.

On the other hand, second-order topological superconductors protected by rotation sym-
metry may be realized in the superconducting phases of certain topological crystalline insu-
lators [26] or in iron-based superconductors [78]. In these materials, disclinations may bind
helical Majorana modes.

Disclinations can also appear in mesomorphic phases [35,79–81]. Our arguments of Sec. 3
show that the bulk-boundary-disclination correspondence also holds for these partially ordered
phases. Furthermore, a bulk-disclination correspondence has been observed in photonic crys-
tals [82].

Going beyond our results in this work, we conjecture that relations similar to Eqs. (7)–(10),
relating the topological charge at a defect to the higher-order topology of the bulk also exist
for crystalline symmetries other than rotations. Topological lattice defects can be defined for
all space-group symmetries and it has been shown that crystalline topological phases generally
exhibit a topological response with respect to a corresponding topological lattice defect [36].
Hence, we expect that higher-order topological phases host anomalous states at topological
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lattice defects whose holonomy corresponds to an action of the protecting crystalline symmetry.
Our results have extended the higher-order bulk-boundary correspondence of topological

crystalline phases to disclinations in rotation-symmetric systems. We have thereby established
a link to the topological response theory for defects familiar from the study of interacting
symmetry-protected topological phases [36,83].

All files and data used in this study are available in the repository at Ref. [84].
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for enlightening discussions.

Funding information MG acknowledges support by project A03 of the CRC-TR 183 "En-
tangled States of Matter" and by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program under grant agreement No. 856526.
ICF was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foun-
dation) under Germany’s Excellence Strategy through the Würzburg-Dresden Cluster of Ex-
cellence on Complexity and Topology in Quantum Matter – ct.qmat (EXC 2147, project-id
390858490). AL was supported by the International Centre for Interfacing Magnetism and
Superconductivity with Topological Matter project, carried out within the International Re-
search Agendas program of the Foundation for Polish Science co-financed by the European
Union under the European Regional Development Fund.

Author contributions. ICF initiated the project with the idea of considering the Volterra
process in 2d and 3d second order topological phases. AL supervised the project. MG per-
formed the topological crystal calculations and obtained the classifications presented in our
tables. AL and MG performed the numerical simulations. MG and AL produced the figures of
the manuscript. All authors contributed in developing and understanding the results and in
writing the manuscript.

Appendix

The Appendix is organized as follows. In Appendix A, we review in more detail how to con-
struct equivalence classes of holonomies for disclinations. Appendix B contains a detailed
discussion on the occurrence of domain walls bound to disclinations in certain certain sym-
metry classes. In Appendix C, we provide supplementary information on the derivation of the
topological crystal construction and on the presence of the domain wall as an obstruction to
a symmetric decoration in the topological crystal construction. In Appendix D, we present
an argument that the contribution of first-order topological phases to the number of anoma-
lous states at disclinations is independent of their rotation holonomy, but only depends on
the presence of π-fluxes for tenfold-way topological phases. Appendix E contains an example
on how to apply symmetry-based indicators to determine the presence of anomalous states at
a disclination. Finally, Appendix F presents the details on how to derive the classification of
anomalous disclination states in all symmetry classes in two and three dimensions as summa-
rized in Tables 1 and 2 of the main text.
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A Holonomy equivalence classes of disclinations

We briefly review the construction of the equivalence classes of holonomies Hol(Ω) of disclina-
tions with Frank angle Ω as presented in Ref. [50]. The lattice density ρ(r ) = ρ(r + t ) breaks
the Galilean symmetry group GGalilean = SO(2)nR2 in two dimensions into a discrete space
group of the lattice Glat with lattice vector t . These groups are constructed from the semidirect
product n of rotations r(φ) ∈ SO(2) and translations t because these elements in general do
not commute. Disclinations can be described in the simplest case where Glat = Cn n T is sym-
morphic and is generated by n-fold rotations r(2π/n) and translations T ' Z2. Therefore, the
lattice density is an element of the order parameter space GGalilean/Glat = SO(2)nR2/Cnn T .
Point defects in this order parameter space are described by the fundamental groupπ1(GGalilean/

Glat)'
2π
n Zn T whose elements (Ω, t ) describe the rotation Ω and translation holonomy t of

the defect. Because translations and rotations in G do not commute, for point defects with
Ω 6= 0 (i.e. disclinations), the holonomy of a loop depends on the initial point and orien-
tation of the coordinate system that is transported around the system. As the classification
should not depend on this arbitrary choice, one takes the equivalence relation over all initial
conditions obtained by a translation or rotation of the initial coordinate system. As a result,
each lattice defect is characterized by an element (Ω, [t ]) where [t ] are the equivalent trans-
lation holonomies obtained by a variation of the initial condition. The number of inequivalent
translation holonomies depends on the Frank angle Ω of the defect. The resulting classifica-
tion Hol(Ω) of disclinations with Frank angle Ω distinguished by their inequivalent translation
holonomies t is summarized in Eq. (1) of the main text. A detailed example on how the
equivalence classes are computed can be found in the Supplementary Material of Ref. [66].

B Symmetry classes hosting disclinations binding domain walls

We argued in Sec. 2.5 of the main text that in certain symmetry classes it is impossible to apply
the bulk hopping across the cut during the Volterra process without breaking some internal
symmetries. In Sec. B.1 below, we illustrate that for these symmetry classes the Volterra process
leads to a domain wall bound to the disclination. The domain wall separates regions that are
distinguishable by the local arrangement of orbitals in the unit cell. In particular, the presence
of a domain wall implies that there is no unique hybridization pattern across the cut line.
As a consequence, the topological charge at the disclination is not uniquely determined from
rotation and translation holonomies and bulk topological invariants alone. However, we show
in Sec. B.2 that the parity of the topological charge along the cut line can be related to the bulk
topology. These facts are illustrated with an example of a magnetic topological insulator in
Sec. B.3. Furthermore, we argue in Sec. B.4 that for all symmetry classes with d−2 dimensional
anomalous states with Z topological charge and (n ∈ 2,3, 4,6)-fold rotation symmetry the
following holds: either (i) no strong second-order or weak topological phase with topological
crystal limit as shown in Fig. 6 of the main text exists, or (ii) their symmetry group does not
contain a unitary rotation symmetry, i.e., it contains only an antiunitary rotation symmetry or
a rotation antisymmetry. This provides a no-go theorem for a unique correspondence between
strong bulk topology and (d−2) dimensional disclination anomaly in these symmetry classes.

B.1 Domain wall interpretation

In Sec. 2.5 of the main text, we showed that in certain symmetry classes the disclination
necessarily connects to a line along which some symmetries are broken. These are precisely
those symmetry classes that either do not contain a unitary rotation symmetry (for instance in
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Figure B.1: An internal unitary symmetry or antisymmetry U with U2 = 1 allows
to label the physical degrees of freedom in the unit cell, indicated by the signs ± on
the orbitals depicted by yellow circles. In (a), we show a fourfold rotation symmetric
lattice in which the representation of fourfold rotation symmetry has to anticommute
with the internal unitary symmetry or antisymmetry because the rotation permutes
the labels. In (b), we show a disclination that is connected to a domain wall (blue
dashed line) between two regions related by a permutation of the labels.

magnetic space groups) or whose unitary rotation symmetry anticommutes with some internal
unitary symmetries or antisymmetries. Here, we show that in these cases one can define labels
or an order parameter that allow to distinguish the two regions bordered by the line. This
shows that the line is in fact a domain wall.

Internal unitary symmetries or antisymmetries provide labels for the physical degrees of
freedom on the lattice. These labels are defined in the diagonal basis of the internal unitary
symmetry/antisymmetry. The representation of unitary rotation symmetry describes the ac-
tion on the physical degrees of freedom that needs to be performed such that the system is
invariant under the rotation. In case the representation of unitary rotation symmetry anticom-
mutes with an internal unitary symmetry or antisymmetry, the rotation symmetry permutes
the labelled degrees of freedom, as illustrated for a fourfold rotation symmetric sample in
Fig. B.1(a). Thus, two patches that are rotated with respected to each other without applying
the representation of internal symmetry are distinguishable by their configuration of labels.
In this case, a disclination is therefore the end of a domain wall bordering two regions with
permuted labelling, see Fig. B.1(b).

For magnetic space groups, where only the product of rotation and time reversal is pre-
served but not individually, one can define a vectorial order parameter, such as a local mag-
netization, that is odd under time reversal. A disclination with Frank angle corresponding to
the magnetic rotation symmetry is thus the end point of a domain wall separating regions that
are related by time-reversal symmetry. This is further illustrated with an example in Sec. B.3
below.

In the presence of translation symmetry, the local order parameter can be expressed in
terms of the labels under the unitary internal symmetry or antisymmetry U2 = ±1 (or the lo-
cal magnetization for magnetic rotation symmetry) in the asymmetric unit within the unit cell,
see Fig. 5 in the main text. The unit cell then consists of asymmetric sections with labels re-
lated by rotation symmetry. In case rotation symmetry anticommutes with the unitary internal
symmetry or antisymmetry (in case of magnetic rotation symmetry), the labels (local mag-
netization) in symmetry related asymmetric sections are opposite. Here, despite rotations, a
translation by half a lattice vector may interchange the labels. Therefore, the domain wall may
become locally unobservable if the disclination contains a translation holonomy by a fraction
of a lattice vector. Note that in this case, the sample does not allow for a global and consistent
definition of the unit cell. Throughout the paper, we restrict ourselves to lattice defects with a
translation holonomy that is an integer multiple of the lattice vectors. These lattice defects can
be constructed and analyzed with the methods from Sec. 2.2 in the main text. By construc-
tion, the lattice with the defect contains a consistent definition of the unit cell. The interplay
of topological phases and screw dislocations with fractional translation holonomy has been
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Ω = − π/2 Ω = π/2

Figure B.2: A disclination dipole consisting of two disclinations with opposite Frank
angleΩ= ±π/2 can be constructed in a fourfold rotation symmetric lattice by remov-
ing a square from the sample and connecting the boundaries as indicated by the blue
dashed and green dotted lines. The blue dashed lines indicate boundary conditions
that involve a rotation by π/2. The green dotted lines indicate boundary conditions
that do not involve any rotation. A path around the disclination with Frank angle
Ω = π/2 (Ω = −π/2) is indicated by the red (orange) bold line. For clarity, the
sample boundary is highlighted by the black bold line.

investigated in Ref. [85].
Furthermore, we point out that if the sample with disclination as a whole does not respect

all internal symmetries of the bulk system, then the domain wall may become unobservable.
In particular, this may be the case when constructing nearest-neighbor lattice models with
an artificial ’sublattice’ antisymmetry Γ 2 = 1 which indicates the absence of hopping terms
between different sublattices and the equality of the chemical potential on both sublattices. In
case n-fold rotation symmetry anticommutes with the sublattice antisymmetry, the sublattices
are interchanged at adjacent unit cells across the branch cut attached to a disclination with
Frank angleΩ equal to an odd integer multiple of 2π/n. If the sublattices are indistinguishable
up to their label, then applying the same nearest-neighbor hopping across the branch cut yields
a branch cut indistinguishable from the bulk lattice. This breaks the sublattice antisymmetry
along the branch cut as sites with same sublattice label are connected by a hopping term. As a
consequence, also the disclination breaks the sublattice antisymmetry and a potentially bound
state may acquire a finite energy and is not anomalous. For consistency, we assume throughout
the paper that the sample with disclination as a whole respects the internal symmetries of the
bulk system.

B.2 Topological charge at the domain wall and a disclination dipole

In case the cut line forms a domain wall and connects to the boundary, the intersection of the
line with the boundary forms another point defect. Then, the parity of the total topological
charge along the domain wall is determined by identical expressions as in Eqs. (7) to (11)
in the main text. This is because of the anomaly cancellation criterion: anomalous boundary
states associated to the domain wall can only be created pairwise.

However, in case of a disclination dipole, the domain wall may connect between the two
partners of the dipole. A disclination dipole consists of two disclinations with opposite Frank
angle that are connected by a cut line, as depicted in Fig. B.2. In case none of the two discli-
nations involves a translation holonomy, the topological charge at the pair cancels. Thus, the
topological charge at the disclinations of the dipole cannot be predicted from the bulk topology
if the cut line forms a domain wall.

B.3 Example: Magnetic topological insulator

A magnetic topological insulator breaks time-reversal symmetry, but preserves the product of
time-reversal symmetry and a crystalline symmetry operation. In the following, we consider
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Figure B.3: Depiction of the model Hamiltonian for the magnetic second-order topo-
logical insulator defined in Eq. (20). Crosses and dots denote chiral modes with
opposite chirality as defined from an expansion of the Hamiltonian around kz = 0
and kz = π. Full (dashed) lines denote the hybridization at kz = 0 (kz = π). Red
lines include a π phase. The unit cell is highlighted by a red square. In (a)–(c), we
show three different possibilities of connecting the hybridizations at kz = 0 across
the cut in the Volterra process to construct a π

2 disclination.

a three-dimensional magnetic topological insulator where the product of fourfold rotation
and time-reversal symmetry is preserved. In this case, there is only a strong second-order
phase. Weak phases corresponding to arrangements of Chern insulators parallel to the rotation
axis are forbidden as the copropagating chiral modes at twofold rotation symmetric momenta
in this decoration cannot gap out. Furthermore Chern insulators are not compatible with a
perpendicular magnetic rotation axis.

A model for a second-order topological insulator with magnetic fourfold rotation symmetry
can be constructed similar to the class D model in Eq. (13) of the main text. The Hamiltonian
of our model is given by

HA(k) = t(1− cos kz) [τ3σ2 −τ2σ0] (19)

− t(1+ cos kz) [cos(kx)τ3σ2 + sin(kx)τ3σ1]

+ t(1+ cos kz) [cos(ky)τ2σ0 − sin(ky)τ1σ0]

+ tz sin kzτ3σ3.

As in the previous section, the hopping parameter t is real, τiσ j are four-by-four matrices
composed of Pauli matrices acting on the four degrees of freedom in the unit cell. Here, our
basis consists of four fermionic operators ck,a, ck,b, ck,c , ck,d arranged as depicted in Fig. B.3(a).
Magnetic fourfold rotation exchanges the fermions in the unit cell counter-clockwise including
a phase ck,a→−ck,c and a time-reversal operation implemented by complex conjugation. This
model can be adiabatically deformed to the chiral higher-order topological insulator of Ref. [4].

To understand the topology of this model, consider an expansion in small kz around kz = 0
and kz = π separately. Both cases around kz = 0 and kz = π correspond to a lattice of
chiral modes whose chirality is determined by the term tz sin kzτ3σ3. Around kz = 0 and
for positive tz the “a” and “d” (“b” and “c”) lattice sites have positive (negative) chirality. The
chiral modes are hybridized across unit cells such that there is a chiral mode remaining at each
corner, as depicted by the dashed lines in Fig. B.3. Around the kz = π plane the chiralities are
reversed and all chiral modes are hybridized within the unit cells such that no corner modes
are remaining, as depicted by the full lines in Fig. B.3. The Hamiltonian interpolates between
the two hybridizations and remains gapped for every kz . As a consequence, the model realizes
chiral hinge states in agreement with fourfold magnetic rotation symmetry.

In the Volterra process we need to determine the fate of the hybridizations of the chiral
modes around kz = 0 across the cut. As depicted in Fig. B.3 there are two choices realizing

39

https://scipost.org
https://scipost.org/SciPostPhys.10.4.092


SciPost Phys. 10, 092 (2021)

completely dimerized limits along the cut line. Both limits require a breaking of fourfold
magnetic rotation symmetry along the cut line, in agreement with our results from Sec. 4 of
the main text. The configuration in Fig. B.3(a) can be realized without closing the excitation
gap along the cut line. It realizes a chiral disclination mode propagating into the plane and
two chiral modes propagating out of the plane at the end of the cut line. In order to obtain
the configuration in Fig. B.3(b) one needs to change the hybridization pattern along both cut
lines which requires a closure of the excitation gap along these lines. This configuration has
a disclination mode propagating out of the plane and gapped boundaries. Finally, Fig. B.3(c)
depicts a hybridization pattern where the excitation gap needs to close only on one of the two
cut lines. This pattern hosts no anomalous disclination state, but a single chiral mode at the
end of the cut line.

Domain wall interpretation

For an antiferromagnetic insulator with magnetic space group p4′, one can define a vectorial
order parameter as the magnetization within a quarter of the unit cell. Thus, with a consistent
definition of a unit cell as provided by the Volterra process in Sec. 2 of the main text, the
order parameter distinguishes regions that are rotated by π/2 with respect to each other. A
disclination with Frank angle Ω= π/2 is thus the edge of a domain wall.

B.4 No-go theorem in symmetry classes whose d − 2 dimensional anomalous
states have Z topological charge

The purpose of this section is to show that for symmetry classes whose d − 2 dimensional
anomalous states have Z topological charge, either (i) no strong second-order topological
phase exists, or (ii) the symmetry group does not contain a unitary rotation symmetry that
commutes with all internal unitary symmetries or antisymmetries. We presented an argument
that shows the correctness of this statement in two and three dimensions in Sec. 3.4 of the
main text. Here, we show that the argument can be generalized to any dimension d ≥ 2 using
the dimensional raising map [47,75,76].

The dimensional raising map provides an isomorphism between the classifying groups of
the strong topological phases in different symmetry classes and dimensions. It has been ex-
tended to be applied in the presence of crystalline symmetries [75, 76]. Here, we apply the
dimensional raising map such that rotation symmetry acts trivially in the added dimensions.
Below we are going to review how the Hamiltonians and symmetry operators are mapped un-
der the dimensional raising maps following Ref. [76]. We refer to Ref. [76] for the derivation
of the expressions and proof of the isomorphism property.

First, we introduce the γ-matrices used in the expressions of the images of the Hamiltonian
and representations under the dimensional raising map,

γ
(k)
2n−1 =

�

n−1
⊗

σ0

�

⊗σ2 ⊗

�

k−n
⊗

σ3

�

, (20)

γ
(k)
2n =

�

n−1
⊗

σ0

�

⊗−σ1 ⊗

�

k−n
⊗

σ3

�

, (21)

for 1 ≤ n ≤ k and γ(k)2k+1 =
⊗kσ3,γ(0)1 = 1 where

⊗nσ j = σ j ⊗ ... ⊗ σ j describes the n-

fold Kronecker product of the Pauli matrix σ j . The γ-matrices satisfy {γ(k)i ,γ( j)i } = 2δi, j . We
furthermore define

�(+)j = 1⊗ γ(r)2 j

�(−)j = 1⊗ iγ(r)2 j−1

. (22)
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B.4.1 Dimensional raising from a symmetry class with chiral antisymmetry

The dimensional raising map is expressed in terms of a map of a representative Hamiltonian
H(k) defined on the base space k ∈ X and representations U(g) of the symmetry opera-
tors g ∈ G × C. Here, G is the magnetic space group that includes all unitary or antiunitary
symmetries of system, such as time-reversal and crystalline symmetry operations. The chiral
antisymmetry C plays a special role in the construction of the dimensional raising map. In
particular, one defines the subgroup GC ⊂ G × C compatible with chiral antisymmetry C that
consist of all elements g ∈ G × C that satisfy

U(g)H(gk)U†(g) = c(g)H(k)

U(g)U(C)U†(g) = c(g)U(C)
, (23)

for g unitary and
U(g)H∗(−gk)U†(g) = c(g)H(k)

U(g)U∗(C)U†(g) = c(g)U(C)
, (24)

for g antiunitary with the same value c(g) ∈ {−1,1}. For c(g) = 1 (c(g) = −1) the ele-
ment g ∈ GC is a symmetry (antisymmetry). Note that GC is a normal subgroup of G × C and
GC × C = G × C. The elements of GC are going to be used to construct the symmetry elements
in the image of the dimensional raising map.

To define the dimensional raising map for a representative Hamiltonian H1(k) of a given
(nontrivial) topological equivalence class, one considers a parameter family of Hamiltonians
H10(k, m) with m ∈ [m0, m1] such that H(k, m0) = H0(k) is a representative Hamiltonian of a
trivial topological equivalence class and H(k, m1) = H1(k). As H0(k) and H1(k) are in distinct
topological equivalence classes, the gap needs to close for some finite value of the parameter
m.

For two-dimensional n-fold rotation symmetry protected second-order topological super-
conductors in a Cartan class with chiral antisymmetry, the symmetry group G is generated by
rotations R2π/n and, if present, time-reversal symmetry T = PC. In the presence of spin-
rotation symmetry (or other internal unitary symmetries), the Hamiltonian is block-diagonal
such that the analysis can be restricted to separate blocks.

Raising by an odd number of dimensions – First, we show how to construct a Hamiltonian
in dimension d = 2+ 2r + 1 from a second-order topological phase in d = 2. Without loss of
generality, we assume that H10(k, m) interpolates between the second-order topological phase
for −2< m< 0 and a trivial phase for m> 0. We denote the momentum directions of the two
dimensional second-order topological phase by k = (kx , ky)T and the newly added momentum
directions by k⊥. The dimensional raising map is given by defining the (d = 2 + 2r + 1)-
dimensional Hamiltonian H(k, k⊥) inheriting its topological invariants from the family of two-
dimensional Hamiltonians H10(k, m) as

H(k, k⊥) = H10(k, m(k⊥))

+
r
∑

j=1

(i�(−)j sin k⊥, j + �
(+)
j sin k⊥,r+ j)

+ �C sin k⊥,2r+1,

(25)

withH10(k, m(k⊥)) = H10(k, m(k⊥))⊗γ
(r)
2r+1, �C = U(C)⊗γ(r)2r+1 and m(k⊥) = −1+

∑2r+1
j (1−

cos k⊥, j). To express the corresponding representations of the symmetry elements U(g, k, k⊥)
we first introduce

U(g, k) =

¨

U(g, k)⊗ 1 for c(g) = 1

U(g, k)⊗ γ(r)2r+1 for c(g) = −1.
(26)
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This allows us to express U(g, k, k⊥) for g ∈ GC unitary as

U(g, k, k⊥) = U(g, k) (27)

and for g ∈ GC antiunitary as

U(g, k, k⊥) =

 

r
∏

j=1

�(+)j

!

�CU(g, k). (28)

The mapped Hamiltonian (25) satisfies for g ∈ GC unitary

U(g, k, k⊥)H(gk, k⊥)U
†(g, k, k⊥) = c(g)H(k, k⊥) (29)

and for g ∈ GC antiunitary

U(g, k, k⊥)H
∗(−gk,−k⊥)U

†(g, k, k⊥)

= (−1)r+1c(g)H(k, k⊥).
(30)

Raising by an even number of dimensions– Under the dimensional raising map a d = 2+2r
dimensional Hamiltonian inheriting its topological invariants from the family of two-dimensional
Hamiltonians H10(k, m) is constructed as

H(k, k⊥) = H10(k, m(k⊥))

+
r−1
∑

j=1

(i�(−)j sin k⊥, j + �
(+)
j sin k⊥,r+ j)

+ �(−)r sin k⊥,r + �C sin k⊥,2r ,

(31)

where the representations U(g, k, k⊥) are given for g ∈ GC unitary as

U(g, k, k⊥) = U(g, k) (32)

and for g ∈ GC antiunitary as

U(g, k, k⊥) =

 

r−1
∏

j=1

�(+)j

!

�CU(g, k). (33)

In addition, the Hamiltonian (31) satisfies the unitary antisymmetry U(C, k, k⊥) = �(+)r ,

�(+)r H(k, k⊥)�(+)r = −H(k, k⊥). (34)

The mapped Hamiltonian (31) satisfies for g ∈ GC unitary

U(g, k, k⊥)H(gk, k⊥)U
†(g, k, k⊥) = c(g)H(k, k⊥) (35)

and for g ∈ GC antiunitary

U(g, k, k⊥)H
∗(−gk,−k⊥)U

†(g, k, k⊥)

= (−1)r c(g)H(k, k⊥).
(36)

The same commutation relations hold for the representations of the symmetry elements and
the chiral antisymmetry U(C, k, k⊥) = �(+)r . In particular, they are for g ∈ GC unitary

U(g, k, k⊥)U(C, k, k⊥)U
†(g, k, k⊥) = c(g)U(C, k, k⊥) (37)

and for g ∈ GC antiunitary

U(g, k, k⊥)U
∗(C, k, k⊥)U

†(g, k, k⊥)

= (−1)r c(g)U(C, k, k⊥).
(38)
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B.4.2 No-go theorem

Two-dimensional n-fold rotation symmetry protected second-order topological phases in Car-
tan classes AIII, BDI and CII (whose 0-dimensional anomalous states haveZ topological charge)
require that the representations of chiral antisymmetry U(C) and n-fold rotation symmetry
U(R2π/n) anticommute. In this case, the conditions (23), (24) imply that the group of symme-
try elements compatible with chiral antisymmetry GC is generated by a rotation antisymmetry
R2π/nC and, depending on the Cartan class, either time-reversal symmetry or particle-hole
antisymmetry. Thus GC does not contain any unitary rotation symmetries.

Upon raising the dimension by an odd number, Eqs. (29) and (30) also show that the rota-
tion elements in the image of the dimensional raising map cannot be both unitary and commute
with the Hamiltonian. Upon raising the dimension by an even number, Eq. (37) shows that
the anticommutation of the chiral antisymmetry with the representation of (unitary) rotation
symmetry remains preserved. Antiunitary symmetry elements remain antiunitary under the
dimensional raising map.

Finally, any d > 2 dimensional rotation symmetry protected second-order topological
phase can be constructed from a d = 2 dimensional second-order topological phase where
the corresponding model can be found by using the inverse dimensional reduction map of the
isomorphism. The dimensional reduction map can be explicitly expressed in terms of a contin-
uous deformation of the Hamiltonian [47] or in terms of the scattering matrix of a symmetric
boundary [11,86].

Therefore, the criterion from Sec. 2.5 of the main text for the application of the unique
bulk hybridization (2) is violated for all symmetry classes and dimensions d ≥ 2 that host
n-fold rotation symmetry protected topological phases with Z anomalous boundary states.
This proves the absence of a unique correspondence between (d−2) dimensional disclination
anomaly and strong bulk topology in these symmetry classes.

C Details on the topological crystal construction

We present additional details on the topological crystal construction. Section C.1 shows in
detail how to perform the cell decomposition with space group p2. Section C.2 contains details
on how to determine the valid decorations as well as their properties in terms of weak and
strong topological phases as well as their Abelian group property. Finally, in Sec. C.3 we
show that an obstruction exists to decorate the d − 1 cells of lattices with disclination with Z
topological phases.

C.1 Cell decomposition with space group p2

The cell decomposition of a cubic lattice with space group p2 in two and three dimensions is
shown in Fig. 5 in the main text.

Two dimensions. In two dimensions, we choose the asymmetric unit to be bounded by the
lines (x , 0) with x ∈ [0, a

2], (0, y) and ( a
2 , y) with y ∈ [0, a]. This choice is made such that a

corner of the asymmetric unit lies at the unit cell center and its edges are parallel to the lattices
vectors. Note that with this choice, the asymmetric unit extends over two adjacent unit cells.
In particular, the boundary of the unit cell at y = a

2 is not a boundary of the asymmetric unit
as chosen here.

There are three symmetry inequivalent 1-cells which together cover the complete bound-
ary of the 2-cell upon translating them with the crystalline translation and twofold rotation
symmetries. They are given by the lines: i) (x , 0) with x ∈ [0, a

2], ii) (0, y) with y ∈ [0, a
2],
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and iii) ( a
2 , y) with y ∈ [0, a

2].
The symmetry-inequivalent 0-cells are the boundaries of the 1-cells. They coincide with

maximal Wyckoff positions, which are labeled in standard notation as 1a at x = (0, 0), 1b at
x = ( a

2 , 0), 1c at x = (0, a
2 ) and 1d at x = ( a

2 , a
2 ).

Three dimensions. In three dimensions, see Fig. 5 in the main text, the asymmetric unit is a
cuboid where every x-y plane cut reproduces the two-dimensional asymmetric unit. Without
loss of generality and for simplicity, we set the boundaries of the cube at the planes z = ± a

2 .
There are four symmetry-inequivalent 2-cells:

• (red) the x-y plane bounded between the lines (x , 0, a
2 ) with x ∈ [0, a

2], (0, y, a
2 ) and

( a
2 , y, a

2 ) with y ∈ [0, a],

• (blue) an x-z plane bounded between the lines (x , 0,± a
2 )with x ∈ [0, a

2], (0,0, z) (Wyck-
off position 1a) and ( a

2 , 0, z) (Wyckoff position 1b) with z ∈ [− a
2 , a

2],

• (yellow) a y-z plane bounded by the lines (0, y,± a
2 ) with y ∈ [0, a

2], (0,0, z) (Wyckoff
position 1a) and (0, a

2 , z) (Wyckoff position 1c) with z ∈ [− a
2 , a

2] and

• (green) another y-z plane bounded by the lines ( a
2 , y,± a

2 ) with y ∈ [0, a
2], (

a
2 , 0, z)

(Wyckoff position 1b) and ( a
2 , a

2 , z) (Wyckoff position 1d) with z ∈ [− a
2 , a

2].

There are seven symmetry inequivalent 1-cells, three in the x-y-plane similar to the two di-
mensional cell decomposition, and four at the four maximal Wyckoff positions 1a at x = (0,0, z),
1b at x = ( a

2 , 0, z), 1c at x = (0, a
2 , z) and 1d at x = ( a

2 , a
2 , z), z ∈ [− a

2 , a
2].

Finally, there are four symmetry inequivalent 0-cells at x = (0,0, a
2 ), x = ( a

2 , 0, a
2 ), x = (0, a

2 ,
a
2 ) and x = ( a

2 , a
2 , a

2 ).

C.2 Decorations of topological crystals with rotation symmetry

In this section we present in detail the decoration of the 1-cells (2-cells parallel to the rotation
axis) in two (three) dimensional rotation symmetric lattices with Z topological phases and the
properties of the resulting decorations in terms of weak, strong and higher-order topological
phases. The results for decorations with topological phases with Z2 anomalous edge states can
be straightforwardly obtained by taking the fusion rules modulo two. Below we present the
derivation for two dimensional lattices and comment on the straightforward extension to three
dimensions. At the end of the section we show some criteria that simplify the determination
of the existence of a decoration.

Twofold rotation symmetry in two dimensions. With twofold rotation symmetry, the unit cell
and cell decomposition is shown in Fig. 5 in the main text.

The asymmetric unit is a 2-cell that can be decorated with a two dimensional topological
phase. The decoration describes a gapped topological phase if the anomalous state along
its boundaries can be gapped by hybridization with anomalous boundary states of adjacent
decorated 2-cells. Note that the hybridization of edge states along the 1-cells may create
anomalous states at the twofold rotation axis.

There are in total Z3 topological crystals that can be constructed from decorations of
the three distinct 1-cells with Z topological phases. A given 1-cell decoration can be iden-
tified by the vector ν = (ν1a|1b,ν1a|1c ,ν1b|1d) where νi| j is the topological invariant charac-
terizing the topological phase occupying the 1-cell between Wyckoff positions i and j where
i, j ∈ {1a, 1b, 1c, 1d}. As we show in Fig. C.4 (d) some topological crystals are topologically
equivalent in the sense that they can be adiabatically deformed into each other: A topological
crystal describing the element (0,2, 0) can be written as a direct sum H(0,2,0) = H(0,1,0)⊕µH(0,1,0)
where Hν is a Hamiltonian describing the topological crystal with topological invariants ν and
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(a) (b) (c)

(e) (f) (g) (h)

(d)

1a 1b

1c 1d

Figure C.4: Panels (a), (b) and (c) repeat for convenience the generating set of
valid 1-cell decorations for two dimensional twofold rotation symmetric lattices with
topological invariants as in Fig. 6 in the main text. In panel (a) we included
the labels of the maximal Wyckoff positions at the twofold rotation axes denoted
by the violet stars. The decorations (a), (b), (c) have the topological invariants
ν = (ν1a|1b,ν1a|1c ,ν1b|1d) = (0,1, 0), (1,0, 0) and (0,1,−1) as defined in the text,
respectively. Figure (d) shows that a topological crystal ν = (0, 2,0) can be adi-
abatically and symmetrically deformed to a topological crystal ν = (0, 0,2) up to
additional d − 2 dimensional topological phases at and parallel to the rotation axis
(black dots) by deforming the hybridization of the anomalous edge states (green
bars) such that it allows a symmetric and adiabatic movement of the decoration. (e),
(f) Doubling of the unit cell in y , x-direction with a decoration with the topological
crystal shown in (a). The topological crystal shown in (a) is invariant under a dou-
bling of the unit cell in y direction after hybridization of the anomalous edge states.
A doubling of the unit cell in x direction takes the Hamiltonian H describing the
topological crystal shown in (a) to H ⊕H after a movement of the symmetry related
pairs of 1-cells as shown in (f). In contrast, the topological crystal shown in (c) is
invariant under a doubling of the unit cell in y , x direction shown in (g), (h) using
hybridization and symmetry allowed deformations.

the subscript µ indicates that Pauli matrices denoted by µ j act in the space of the two systems.
A simple check directly shows that if H(0,1,0) describes a gapped system whose anomalous edge
states at the maximal Wyckoff positions hybridize and whose hybridization is given by h, then
h⊗µ1 is a possible hybridization of H(0,2,0). This hybridization is shown by the green bars in
Fig. C.4 (d) and allows to symmetrically move the decoration to the 1-cell pointing from 1b
to 1d. 12

Note that in order to adiabatically deform the hybridization h⊗µ0 obtained from the direct
sum H(0,1,0) ⊕µ H(0,1,0) to the required h ⊗ µ1 one may need to add extra gapped degrees of
freedom at the rotation axis. In two dimensions, these additional degrees of freedom are a
0-cell describing a gapped orbital. In higher dimensions, the additional degrees of freedom
can be a d − 2-dimensional topological phase that decorates the d − 2-cell that coincides with
the rotation center. The additional degrees of freedom remain as d − 1-cells are moved. As

12The block-off-diagonal coupling h ⊗ µ1 is required for the following reason. Twofold rotation symmetry ex-
changes the (d − 1)-cell decorations within each block. Upon symmetrically moving the decorations away from
the (d − 1)-cells at the center of the unit cell, any diagonal hopping h ⊗ µ0 or h ⊗ µ3 would become non-local
because the twofold rotation symmetry related decorations within a single block move in opposite directions. Only
a block-off-diagonal coupling h ⊗ µ1 remains local upon moving the decorations of each block symmetrically in
opposite directions, as shown in Fig. C.4 (d).
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in this article we restrict the analysis to the properties of the topological crystals obtained
from d − 2-cells, we do not discuss under which conditions the addition of gapped degrees of
freedoms is necessary, nor the properties of the resulting topological crystals.

This shows that the element (0, 2,0) is equivalent to the element (0, 0,2) up to an atomic
limit or decorated d − 2 cells parallel to the rotation axis. Note that a similar deformation
is not allowed for a decoration (0,1, 0) as this would require either a hybridization of non-
overlapping anomalous edge states of the 1-cells or an absence of a hybridization of the anoma-
lous edge states which corresponds to a bulk gap closure.

A complete set of 1-cell decorations from which all topological crystals can be constructed
using the direct sum operation is given by ν= (0, 1,0), (1,0, 0) and (0, 1,−1) shown in Fig. C.4
(a), (b) and (c), respectively. In order for the decorations to be valid, i.e., to describe a gapped
topological phase, all anomalous edge states of the decorations need to gap out with overlap-
ping anomalous states at the same location. Each 1-cell ends at a twofold rotation axis and
thus has a partner under twofold rotation. A sufficient criterion for the validity of all deco-
rations ν = (0,1, 0), (1,0, 0) and (0, 1,−1) is that the anomalous states at the rotation axis
gap out with their partner under twofold rotation. This requires that the topological charge at
each rotation axis is balanced. For this space group, this criterion is also necessary as Wyckoff
positions 1c and 1d border only to a twofold rotation symmetry related pairs of 1-cells.

The topological crystals shown in Fig. C.4 (a), (b) are real space limits of weak topological
phases corresponding to stacks of twofold rotation symmetric one dimensional topological
phases. Figure C.4 (f) shows that the topological crystal shown in Fig. C.4 (a) can be trivialized
by a doubling of the unit cell in x direction. However, it is invariant under a doubling of the
unit cell in y direction as shown in Figure C.4 (e). A similar argument holds for the topological
crystal shown in Fig. C.4 (b). The topological crystal shown in Fig. C.4 (d) is the real space
limit of a strong second-order topological superconductor. It is invariant under a redefinition
of the unit cell in both x and y direction, as seen in Fig. C.4 (g) and (h), respectively. Due to
the equivalence relation, the strong second-order topological phase has Z2 character, i.e. the
topological crystal with topological invariants (0,2,−2) can be adiabatically deformed to the
trivial crystal (0,0, 0) up to an atomic limit or decorated d − 2 cells parallel to the rotation
axis. In case decorated d − 2 cells remain, the resulting topological crystal may be a strong
third order topological phase, as expected from the K-theoretic results from Ref. [12].

Fourfold rotation symmetry, two dimensions. With fourfold rotation symmetry, the unit cell
and cell decomposition is shown in Fig. 5 in the main text. The decoration of the 2-cell with
a two dimensional topological phase is valid if all 1-cells and 0-cells of its boundaries gap out
upon hybridizing the anomalous edge states of adjacent 2-cells.

There are two distinct 1-cell decorations shown in Fig. 6 (d) and (e) in the main text.
Similar arguments as for twofold rotatation symmetry show that (a) is a weak topological
phase and (b) is a strong topological second-order topological phase with Z2 character due to
an equivalence relation invovling an adiabatic and symmetric deformation moving the 1-cell
decorations between the two 1-cells. By construction, every fourfold rotation symmetric Wyck-
off position is the edge of four 1-cell decorations and therefore hosts four zero-dimensional
anomalous edge states of the 1-cells. As every fourfold rotation symmetric Wyckoff position
also satisfies twofold rotation symmetry, gapping of twofold rotation symmetry related pairs of
anomalous edge modes of 1-cells is a sufficient criterion for the existence of both 1-cell decora-
tions. This criterion is also necessary for the weak topological phase shown in Fig. 6 (d) in the
main text as the twofold rotation symmetric Wyckoff position 2c border only to a twofold ro-
tation symmetry related pair of 1-cells. However, this criterion is not necessary for the strong
second-order topological phase shown in Fig. 6 (e) in the main text. In fact, the 1-cells of
the weak topological crystal cannot be decorated with Z topological phases as the anomaly
cancellation criterion cannot be satisfied both at twofold and fourfold rotation axis: In order
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to gap the anomalous states at fourfold rotation axis, fourfold rotation needs to invert the Z
topological charge. As the action of twofold rotation is given by a double action of fourfold
rotation, twofold rotation leaves the topological charge invariant. As in the weak phase, the
twofold rotation axes are occupied only by two anomalous states related by twofold rotation,
their topological charge needs to be equal. This prohibits anomalous states with Z topological
charge to gap at the twofold rotation axis of the weak topological crystal. An example where
the weak topological phase is forbidden while the strong second-order topological phase exists
is a magnetic topological insulator as discussed in Sec. B.3.

Sixfold rotation symmetry, two dimensions. With sixfold rotation symmetry, the unit cell
and cell decomposition is shown in Fig. 5. As before, the decoration of the 2-cell with a two
dimensional topological phase is valid if all 1-cells and 0-cells of its boundaries gap out upon
hybridizing the anomalous edge states of adjacent 2-cells. There is only a single decoration
of 1-cells shown in Fig. 6 (f) that is consistent with the anomaly cancellation criterion at each
rotation axis. A decoration of 1-cells ending at a threefold rotation symmetric momentum can-
not be consistent with the anomaly cancellation criterion for tenfold-way topological insulators
and superconductors. The valid 1-cell decoration is a strong second-order topological phase.
As every sixfold rotation symmetric Wyckoff position also satisfies twofold rotation symmetry
and Wyckoff position 3c borders only to a twofold rotation symmetry related pair of 1-cells,
gapping of twofold rotation symmetry related pairs of anomalous edge modes of 1-cells is a
sufficient and necessary criterion for the existence of both 1-cell decorations.

Extension to three dimensions. In three dimensions, the cell decompositions for space
groups p2, p4 and p6 are shown in figures Fig. 5 in the main text. For the three dimen-
sional asymmetric unit, all 2-cells and the 1-cells perpendicular to the rotation axis similar
arguments as in two dimensions apply. Decorations of the 1-cells parallel to the rotation axis
would give rise to a weak topological phase and a third order topological phase hosting an
anomalous state at a rotation symmetric corner of the crystal. As in this article we focus on
topological crytalline phases that may host second-order anomalous states at disclinations, we
omit the construction of topological crystals corresponding to decorations of 1-cells parallel to
the rotation axis.

A necessary criterion on a strong first order topological phase for fourfold and sixfold rotation
symmetry. A first order topological phase in a given topological crystal exists if the decoration
of the asymmetric unit with the first order topological phase is valid. As both the fourfold and
sixfold rotation symmetric lattices contain a separate twofold rotation axis, the decoration with
the first order topological phase in fourfold and sixfold rotation symmetric lattices is possible
only if the corresponding decoration is possible in the twofold rotation symmetric lattice.

Connection to K-theoretic classification schemes. The existence of a mass term gapping
anomalous states related by n-fold rotation symmetry can be determined from the existence of
a strong second-order phase protected by n-fold rotation symmetry in the respective symmetry
class and dimension as determined from K-theoretic methods (see Refs. [11,12,25,87]). This
follows as it has been shown in these articles that a strong second-order topological phase can
be deformed into symmetry related d − 1 dimensional building blocks decorated with d − 1
dimensional first order topological phases. This limit is identical to the topological crystal limit
locally around a rotation axis. This draws a one-to-one correspondence between the existence
of mass terms hybridizing symmetry related d − 2 dimensional anomalous states at a rota-
tion axis and the existence of a second-order topological phase protected by the same rotation
symmetry.

C.3 Obstruction to decorate a lattice with disclination with Z topological phases

We show that the topological crystal limit of second-order or weak topological phases in sym-
metry classes with Z anomalous boundary modes reveals an obstruction to realize these phases
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Figure C.5: Decoration of a fourfold symmetric lattice with π/2 disclinations of both
types with strong second-order topological phases with Z anomalous boundary state.
The first row shows the corresponding topological crystals. For simplicity, the anoma-
lous bound states that hybridize within the unit cell are not shown.
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Figure C.6: Sixfold rotation symmetric lattice with disclination with Frank angle Ω
decorated with a second-order topological phase whose d−2 dimensional anomalous
states have Z topological charge. Note for the lattice with π/3 or π disclination that
it is impossible to choose a decoration along the cut line that preserve the sixfold
rotation symmetry. In these cases we omit the decoration of the (d − 1)-cells along
the cut line. For the 2π/3 disclination the unique decoration pattern of the second-
order topological phase is shown.

on a lattice with disclination such that the system is locally indistinguishable from the bulk ev-
erywhere except at the disclination.

Upon forming a 2π/n disclination by folding the lattice, the unit cells are rotated by 2π
n

in real space without applying any interal action on the degrees of freedom within the unit
cell. For (d − 1)-cell decorations with edge states with Z topological charge, the onsite action
is resposible for inverting the topological charge of symmetry related anomalous states within
the unit cell. Due to the absence of the interal action in the rotation of the lattice during the
Volterra process, unit cells whose configuration of anomalous states is rotated by 2π/n are
brought next to each other. These unit cells form a continuous line connecting the disclination
to the boundary or to another disclination. At each point along the line, the Hamiltonian is
locally distinguishable from the bulk. Local rotations of unit cells can move, but not remove
this line.

Fourfold rotation symmetry. For example, consider the fourfold rotation symmetric lattice
with π/2 disclination depicted in the left column of Fig. C.5. The cut line over which the
system was folded is visible as the decorations of adjacent unit cells are rotated with respect
to each other. Along this line, the overlapping anomalous states are located in a way that is
inconsistent with fourfold rotation symmetry as it is defined in the translation-invariant bulk.
It is impossible to apply the same hybridization term as in the bulk.

Sixfold rotation symmetry. With sixfold rotation symmetry, the topological crystal construc-
tion of the second-order topological phase dictates that every line connecting nearest sixfold
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Figure C.7: Decorations of a twofold rotation symmetric lattice with π disclinations
of all types with second-order topological phases protected by twofold rotation sym-
metry and weak phase as a stack in x , y direction. Red and blue dots denote d − 2
dimensional anomalous states with Z topological charge ±1. The red dashed lines
denote a possible hybridization of the anomalous states on the surface. The green
dashed line denotes the cut line.

rotation centers is decorated with a topological phase. The corresponding decorations on a
lattice with π/3, 2π/3 or π disclination is shown in Fig. C.6. For a lattice with π/3 or π discli-
nation, a decoration of the cut line with Z topological phases that respects the sixfold rotation
symmetry all along the cut line is not possible. A symmetric decoration of a lattice with 2π/3
disclination is possible. In this case the disclination does not host an anomalous state.

Twofold rotation symmetry. The generators of d − 2 cell decorations of a twofold rotation
symmetric lattice with π disclinations of all types are shown in Fig. C.7. As before, rotation
symmetry is broken along the cut line. For weak topological phases, if the disclination is cre-
ated by folding the gapless surface then there is an array of anomalous states with the same
topological charge along the cut line which cannot be gapped. If the disclination is created by
folding the gapped surfaces then the cut line in the folded lattice with π disclination is gapped.
In this case the weak topological phase that corresponds to a stack of lower dimensional topo-
logical phases in the x , y direction hosts anomalous disclination states at disclination of type
(1,0), (0,1), respectively. The anomalous states at the boundary switch their topological charge
at the intersection of the cut line with the boundary.

C.3.1 Relation to the no-go theorem from Sec. B.4

In two dimensions, the local configuration of Z topological charges is expressed by the rep-
resentation of chiral antisymmetry. In case the representations of chiral antisymmetry and
rotation symmetry R2π/n anticommute, a 2π/n rotation without applying the internal action
of rotation symmetry exchanges the topological charges in the system. This implies that the
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pattern of Z topological charges in two unit cells adjacent over the cut line connected to a
2π/n disclination needs to be distinguishable from the pattern in the bulk, which is the ob-
struction found from the topological crystal decoration of lattices with disclination as shown
in Figs. C.5, C.6, C.7.

The anticommutativity between the representations of chiral antisymmetry and rotation
symmetry is necessary for the existence of the second-order and weak topological crystal as
the anomaly cancellation criterion (6) needs to be satisfied at each rotation axis in the unit
cell. This shows that the obstruction to decorating a lattice with disclination such that it is
locally indistinguishable from the bulk everywhere except at the disclination is related to the
obstruction of applying the bulk hopping term due to the algebraic relations of the symmetry
elements as discussed in Appendix B.4.

C.4 Validity of the topological-crystal construction for inhomogeneous and fi-
nite size systems

In this subsection, we briefly comment on the validity of the topological-crystal construction
for samples of finite size or with spatial inhomogeneities as necessarily present due to the
strain around disclinations.

For a system with finite sample geometry and characteristic sample length scale L (such
as the distance between defects and/or boundaries), one needs to require that L is much
larger than any characteristic correlation length or entanglement length ξ of the system. This
requirement is necessary as our derivation for the existence of anomalous disclination states
was performed in the topological crystal limit. Ref. [22] argues that the topological crystal
limit is an element of the stable topological equivalence class of a topological crystalline phase
if there exists an adiabatic process – while allowing to add an arbitrary fine mesh of trivial
degrees of freedom – such that all characteristic correlation length or entanglement length
scales ξ can be reduced to be much smaller than the thickness w of the topological phases on
the lower-dimensional cells of the cell decomposition. Here, w should be much smaller than
the lattice spacing a. Ref. [22] argues that strictly speaking, the existence of such an adiabatic
deformation for all elements in the stable topological equivalence class should be treated as
a conjecture. If the conjecture does not hold, the topological crystal construction applies only
to those systems for which the adiabatic deformation exists.

The argumentation of Ref. [22] was performed for systems with periodic boundary con-
ditions. Therefore, we expect that this deformation also holds in the bulk if the real-space
variation of the Hamiltonian is slow on the scale of all internal length scales of the Hamil-
tonian ξ, such that one can regard each point in space to a good approximation as locally
translation symmetric. Then, for sufficiently large and slowly varying systems, the topological
crystal construction applies in the bulk and guarantees the existence of anomalous defect and
boundary states – independently on whether the system directly at the defect or boundary can
be deformed into the topological crystal limit.

D First order topology and point or line defects

Strong first order topological phases are classified in the tenfold way [1,31] and do not require
any crystalline symmetries for their protection. They may be realized in systems without a
lattice structure where the dimensionality is only enforced by the locality of the Hamiltonian.
Crystalline symmetries however may prohibit the existence of first order topological phases.
A typical example is that the presence of a mirror symmetry requires the Chern number in a
plane perpendicular to the mirror plane to vanish.
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In Sec. D.1 below we show that the independence on any type of underlying lattice of
strong first order topological phases implies that there can be no term ∝ Ω · ν1 linking the
rotation holonomy Ω of disclinations with the first order topological invariant ν1 contributing
to the number of anomalous disclination states. However, tenfold-way first order topological
phases respond to π-fluxes, which may be bound to point or line defects. In Sec. D.2 we list
the cases in which they host anomalous states at point or line defects binding π-fluxes.

D.1 First order topology and disclinations

In two dimensional space without an underlying lattice one can define disclinations with ar-
bitrary Frank angle Ω as point defects such that any coordinate system that is parallel trans-
ported in a closed loop enclosing the disclination (and no additional disclinations) is rotated
by Ω. The rotation holonomy Ωtot of a coordinate system parallel transported around several
disclinations j is given by the sum of their Frank angles Ωtot =

∑

j Ω j . Now suppose that a
disclination with Frank angle Ω0 would host an anomalous disclination state in the strong first
order topological phase. As the existence of disclination states in a topological phase has to be
a property of the topological bulk, their existence may only depend on the rotation holonomy
of a closed loop that may be deformed to be arbitrarily far away from the disclination (as long
as the deformation of the loop does not cross any other disclinations). Thus a disclination with
Frank angle 2Ω0 can be constructed by moving two disclinations with Frank angle Ω0 to the
same point in space. As a consequence, the topological charge at a disclination with Frank
angle 2Ω0 is twice the topological charge of a disclination with Frank angle Ω0. Furthermore,
if a disclination with Frank angle Ω0 hosts an anomalous state with topological charge Q = 1,
the topological charge at a disclination with Frank angle Ω0/2 has to depend on microscopic
details of the disclination and cannot be a property of the topological bulk as the topological
charge is quantized to integers.

As first order topological phases do not require any rotation symmetry for their topological
protection that would single out a specific Frank angle Ω0, all disclinations independent on
their Frank angle should have the same properties under topological deformations perseving
the bulk gap of the first order topological phase. This is only possible if first order topological
phases do not host anomalous states at disclinations.

These general arguments can be confirmed by combining the exact diagonalization results
from Ref. [54] with the classification and corresponding topological invariants from Ref. [87]
for twofold and fourfold rotation symmetric systems. In Ref. [54] models for topological su-
perconductors with odd Chern number and trivial and nontrival weak invariants have been
defined and systematically exactly diagonalized on lattices with disclinations. Applying the
topological invariants from Ref. [87] to their corresponding models with twofold and fourfold
rotation symmetry shows that these models are not simultaneously in a second-order topo-
logical phase. Thus the absence of Majorana bound states at disclinations of the odd Chern
number model with trivial weak invariants confirms our general arguments from this section.

D.2 First-order topological phases and π-fluxes

In this section we show that first order topological phases in symmetry classes and dimension
d that allow for d−2 dimensional anomalous states host anomalous states at d−2 dimensional
defects with the property that the geometric phase α acquired by parallel transport around a
closed a loop around the defect is π.

In two dimensions, this property corresponds to the familiar statement that p-wave super-
conductors with odd Chern number host Majorana bound states at vortex cores [63, 70]. By
augmenting such a Chern superconductor with its time reversed copy by applying the same
procedure as in 6.2, one constructs a two dimensional topological superconductor in class DIII.
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This procedure defines a homomorphism hT : KD(d = 2)→ KDIII(d = 2) from the classifying
group KD(d = 2)' Z of two dimensional topological superconconducts in class D to the clas-
sifying group two dimensional topological superconductors in class DIII KDIII(d = 2) ' Z2.
Under this homomorphism, the Majorana bound state at a vortex is mapped to a Kramers pair
of Majorana bound states at a vortex. This procedure shows that the two dimensional super-
conductor in class DIII hosts Kramers pairs of Majorana bound states at vortices, in agreement
with Ref. [71].

By applying the dimensional raising maps from Refs. [47, 75, 76] to the two dimensional
first order topological superconductors in class D and class DIII, one shows that d − 2 dimen-
sional defects binding a π-flux in all related symmetry classes and dimensions host d − 2 di-
mensional anomalous states. The dimensional raising maps starting from Cartan classes with
a chiral antisymmetry were reviewed and applied in Appendix B.4. The dimensional raising
map preserves the existence of d−2 dimensional states at point defects as long as all crystalline
symmetries, if present, act trivially in the newly added dimensions. This was exemplified in
Sec. 6.3 and was shown using a dimensional reduction scheme based on the scattering matrix
in Ref. [11].

D.3 Presence of internal unitary symmetries

First-order topological phases protected by an internal unitary symmetry U may also host
anomalous states at a U -symmetry flux defect [83]. These defects are defined as the end of
a branch cut upon which a crossing particle is acted upon by the symmetry U . The presence
of the symmetry flux thus is another property of point defects in addition to the Z2 geometric
π-flux and the rotation and translation holonomies that needs to be specified when construct-
ing a disclination. The construction of a lattice with U -symmetry flux is similar as discussed
in Sec. 2.5. Therefore, similar conditions hold for the algebraic relations on the symmetry
elements in order to ensure the absence of a domain wall that allows a unique prediction of
the existence of anomalous states at the U -symmetry flux defect.

Furthermore, the classification of first-order topological phases in the presence of addi-
tional unitary symmetries follows by block diagonalizing the Hamiltonian under the irreducible
representations of the unitary symmetries and identifying the Cartan class and relations be-
tween each block [67,69].

An example is a two-dimensional topological superconductor in Cartan class D with a Z2
unitary internal symmetry U with U2 = 1 that commutes with particle-hole conjugation. In
this case the Hamiltonian can be block-diagonalized with respect to the two eigenvalues ±1 of
U and the two blocks individually are in Cartan class D and can be characterized by a Chern
number Ch± where the subscript ± denotes the block. One can identify a generator of a Z2
symmetry enriched topological phase as a Hamiltonian with Ch+ = 1 and Ch− = 0 and a gener-
ator of the Z2-symmetry protected topological phase as a Hamiltonian with Ch− = −Ch+ = 1.

In this example, one can distinguish a geometric π-flux from a U -symmetry flux: the geo-
metric π-flux is defined by introducing a branch cut through the system such that each particle
crossing the branch cut acquires a π phase shift. In contrast, the U -symmetry flux is defined by
introducing a branch cut such that each particle crossing it is acted upon by U . The geometric
π-flux defect hosts a number of Majorana fermions that is given by the parity of the total Chern
number θflux = Ch++Ch− mod 2. The U -symmetry flux hosts a number of Majorana fermions
θU = Ch− mod 2 given by the parity of the Chern number in the −1 block only. This can be
seen as in the block-diagonal basis of U , the U -symmetry flux contributes a π phase shift only
in the −1 subspace while it acts trivially in the +1 subspace.

As for our crystalline examples, each property of the defect is associated with exactly one
generator of the topological phases that contributes anomalous states to the defect: only the
generator of the symmetry-enriched topological phase with Ch+ = 1 and Ch− = 0 contributes a
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Majorana bound state to the geometricπ-flux defect, and only the generator of the Z2 internal-
symmetry protected topological phase with Ch− = −Ch+ = 1 contributes a Majorana bound
state to the U -symmetry flux defect.

E Symmetry-based indicators for two dimensional superconduc-
tors in class D

Symmetry-based indicators are easy-to-compute topological invariants for topological crys-
talline insulators and superconductors that are expressed using the matrix-valued single-parti-
cle Hamiltonian H(ks) at a certain set of high-symmetry momenta ks. The symmetry-based in-
dicators for a Cartan class D superconductor with twofold and fourfold rotation symmetry have
been derived in Ref. [87]. The symmetry-based indicators of Ref. [87] are in one-to-one cor-
respondence to the rotation invariants of Ref. [54]. Here, we show how the symmetry-based
indicators can be used to formulate a criterion on the existence of anomalous disclination
states in terms of the bulk topological invariants.

Fourfold rotation symmetry. Anomalous states at point defects exist only for pairing symme-
tries u(Rπ/2)∆(Rπ/2k)u†(Rπ/2) = ±∆(k). For the other pairing symmetries, there are no topo-
logical phases that can host zero-dimensional Majorana defect states (see Table 1 and Appendix
F.2). Below we present the result for even pairing symmetry u(Rπ/2)∆(Rπ/2k)u†(Rπ/2) =∆(k).
There are two symmetry-based indicators,

z1;x ,y =N
(π,0)
1
2
+N

(π,π)
1
2

+N
(π,π)
5
2

mod 2 (39)

and

z2 =−N
(0,0)
1
2
+ 3N(0,0)

5
2
− 2N(π,0)

1
2

(40)

+ 3N(π,π)
1
2
−N

(π,π)
5
2

mod 8.

Here, Nks
j is the number of eigenstates with negative eigenenergy and eigenvalues ei j2π/n un-

der rotation symmetry of the Hamiltonian H(ks) at the high symmetry momentum ks with
n-fold rotation symmetry. The symmetry-based indicator z1;x ,y detects the weak topological
superconductor. The elements z2 mod 8 correspond to a Chern superconductor. The element
“4” ∈ Z8 is ambiguous and may either correspond to the second-order topological supercon-
ductor or to a Chern superconductor with Chern number Ch= 4.

Due to the ambiguity of the second-order topological superconductor with the Chern su-
perconductor, it is impossible to define a necessary criterion on the existence of Majorana
bound states at a disclination purely in terms of topological band labels. However, a criterion
can be formulated assuming the Chern number Ch can be explicitly determined. The number
of Majorana bound states at a disclination with Frank angle Ω and translation holonomy T is

θ =
Ω

2π
(z2 − Ch) + T ·Gν mod 2 , (41)

where Gν = (z1;x ,y , z1;x ,y)T is the weak invariant and T is the translation holonomy of the
disclination.

Twofold rotation symmetry. Anomalous states at point defects exist only for even pair-
ing symmetry u(Rπ)∆(Rπk)u†(Rπ) = ∆(k), see Table 1 and Appendix F.2. There are three
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symmetry-based indicators. The first two,

z1;x =N
(π,0)
1
2
+N

(π,π)
1
2

mod 2, (42)

z1;y =N
(0,π)
1
2
+N

(π,π)
1
2

mod 2, (43)

correspond to weak topological superconductors with topological crystal limits shown in Fig. 6
(a), (b) in the main text, respectively. Furthermore, there is a symmetry-based indicator

z2 =N
(0,0)
1
2
−N

(0,π)
1
2
−N

(π,0)
1
2
+N

(π,π)
1
2

mod 4, (44)

whose odd elements detect the parity of the Chern number and the value z2 = 2 is ambiguous
between a Chern superconductor with even Chern number and a second-order topological
superconductor. The number of Majorana bound states at a disclination with Frank angle Ω
and translation holonomy T can be determined as

θ =
Ω

2π
(z2 − Ch) + T ·Gν mod 2, (45)

where Gν = (z1;x , z1;y)T is the weak invariant.

F Derivation of tables 1 and 2

This section shows how the classification of strong first order, strong rotation symmetry pro-
tected second-order, and weak topological phases summarized in tables 1 and 2 can be ob-
tained using our results from C.2 and similar arguments as in the examples Sec. 6. In addition,
we briefly review the symmetry classification of superconducting order parameters in Sec. F.1
as it determines the topological classification. A complete discussion can be found in Ref. [87].

In Appendix C.2, we derived simple criteria for the existence of rotation symmetry pro-
tected second-order and weak topological phases. In particlar, we showed that a sufficient cri-
terion for the existence of a second-order topological phase with fourfold and sixfold rotation
symmetry is the existence of a second-order topological phase with twofold rotation symmetry
with representation U(Rπ) = U(Rπ/2)2 and U(Rπ) = U(Rπ/3)3, respectively. For sixfold sym-
metric second-order topological phases on a lattice and for weak topological phases in fourfold
symmetric lattices this criterion is also necessary. All entries have been verified by checking
that i) the required hybridization terms to gap out the anomalous states in the topological crys-
tal construction exist or ii) a tight binding model realizing the topological crystalline phase in
question can be explicitly defined.

F.1 Symmetry of the superconducting order parameter

The classification of topological crystalline superconductors depends on the symmetry of su-
perconducting order parameter, as the explicit examples in sections F.2 and F.3 below show.
The following is a brief summary of the extensive discussion in Ref. [87].

The BdG Hamiltonian describing superconducting systems is of the form

HBdG(k) =

�

h(k) ∆(k)
∆(k)† −h∗(−k)

�

, (46)

where ∆(k) = −∆T (−k) is the superconducting order parameter and h(k) is the normal
state single particle Hamiltonian. The BdG Hamiltonian satisfies a particle-hole antisymmetry
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HBdG(k) = −τ1HBdG(−k)∗τ1 where τ are Pauli matrices in particle-hole space. The symme-
try of the superconducting order parameter ∆(k) can be characterized by a one-dimensional
representation Θ of the point group [87,88] as

∆(k) = u(g)∆(gk)u†(g)Θ∗(g), (47)

where u(g) is the representation of the point group element g on the normal-state Hamiltonian
h(k). The corresponding representation on the Bogoliubov-de Gennes Hamiltonian is

U(g) =

�

u(g) 0
0 u∗(g)Θ(g)

�

. (48)

With this representation one finds directly the commutation relation between particle-hole
antisymmetry and the point group elements

gP = Θ(g)P g. (49)

For point groups generated by a single n-fold rotation symmetry the one dimensional repre-
sentation θ (g) is entirely specified by the phase φ of the generating element eiφ = θ (R2π/n).

F.2 Two dimensions

F.2.1 Class D

Twofold rotation. The existence of the mass term guaranteeing the existence of weak and
second-order topological phases for both pairing symmetries characterized by the phase φ = 0
and π follows from results of Refs. [11,12], as detailed in the last paragraph of Sec. C.2. For
concreteness, for φ = 0 we may choose the representations U(Rπ) = iτ2, P = K where the
mass term that gaps a pair of symmetry related Majorana bound states is τ2. Forφ = πwe may
choose the representations U(Rπ) = iτ2, P = τ3K where no mass term exists. Refs. [11,12]
also show that a Chern superconductor with odd Chern number exists only for φ = 0 while
for φ = π, the Chern number is constrained to be even.

Fourfold rotation. The topological classification of superconductors with pairing symmetry
characterized by the phase φ = 0 and π (φ = π/2 and 3π/2) are identical as they are related
by a multiplication of the representation of rotation symmetry with a phase [87]. Forφ = 0,π,
the weak and second-order phases exist as the Majorana bound states at the rotation axes gap
out in twofold rotation symmetry related pairs. For φ = π/2,3π/2 Ref. [87] has shown that
no strong second-order topological phase and no weak phase exists and the Chern number is
constrained to be even.

Sixfold rotation. Similar as for fourfold rotation, the topological classification of supercon-
ductors with pairing symmetry characterized by the phase φ = 0,2π/3 and 4π/3 (φ = π,π/3
and 5π/3) are identical. A second-order topological phase exists only for φ = 0, 2π/3 and
4π/3. For φ = 0, a superconductor with Chern number Ch = 1 is given by the px + ipy
superconductor [54],

H(k) =
3
∑

i=1

sin(k · a1)a1 ·τ+ cos(k · a1)τ3, (50)

with τ = (τx ,τy)T and a1 = (1,0), a2 = (−
1
2 ,
p

3
2 ) and a3 = (−

1
2 ,−

p
3

2 ) and representation
of sixfold rotation symmetry U(Rπ/3) = eiπτ3/6 and particle-hole antisymmetry P = τ1K . For
φ = π a superconductor with odd Chern number does not exist. In this symmetry class, a
model for a superconductor with Chern number Ch= 2 can be defined as

H(k) =
3
∑

i=1

sin(k · a1)a1 ·τρ0 + cos(k · a1)τ3ρ0, (51)
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with τ = (τx ,τy)T and a1 = (1,0), a2 = (−
1
2 ,
p

3
2 ) and a3 = (−

1
2 ,−

p
3

2 ) and representation of
sixfold rotation symmetry U(Rπ/3) = eiπτ3/6ρ3 and particle-hole antisymmetry P = τ1ρ1K .

Magnetic twofold rotation. A magnetic rotation symmetry consists of the combined action
of rotation and time-reversal symmetry. For spinful fermions, these operators commute. Thus,
for magnetic twofold rotation symmetry we have (U(RπT )K)2 = 1. A pair of Majorana bound
states related by RπT with U(RπT ) = τ1 gaps upon hybridization with the mass term τ2. As
a consequence, the second-order and weak topological phase exist. Twofold magnetic rotation
symmetry requires the Chern number to vanish [].

Magnetic fourfold rotation. For magnetic fourfold rotation symmetry, the operator
�

U(Rπ/2T )K
�2

is a unitary twofold rotation operator that commutes with particle-hole anti-

symmetry. Furthermore, we have
�

U(Rπ/2T )K
�4
= −1 for spinful fermions. Here, Majorana

bound states hybridize in twofold rotation symmetry related pairs. Thus a weak and second-
order topological phase exists. Furthermore, magnetic fourfold rotation prohibits the existence
of a Chern number.

Magnetix sixfold rotation. A system with magnetic sixfold rotation symmetry also satisfies
magnetic twofold rotation symmetry. We have shown that for the latter, Majorana bound
states hybridize in pairs and the Chern number needs to vanish. Thus only the second-order
topological phase exists.

F.2.2 Class DIII

Pairing symmetryφ = 0. Superconductors in class DIII withφ = 0 can be constructed from the
class D superconductors with φ = 0 by taking two time reversed copies as shown in Sec. 6.2.
This construction shows the existence of weak and strong first and second-order topological
phases for twofold, fourfold and sixfold rotation symmetry.

Pairing symmetry φ = π. For this pairing symmetry, Kramers pairs of Majorana bound
states at rotation axes with representations T = iσ2τ0K , P = σ0τ3K hybridize in partners
related by twofold rotation U(Rπ) = iσ3τ1 as the mass term σ1τ2 exists. In systems with
fourfold rotation symmetry with φ = π, the representation of twofold rotation symmetry
commutes with particle-hole symmetry. With the results from the previous paragraph on the
pairing symmetry φ = 0, also at fourfold rotation axes the Kramers pairs of Majorana bound
states hybridize in partners related by twofold rotation symmetry. Thus, weak and second-
order phases exist with twofold, fourfold and sixfold rotation symmetry. The first order topo-
logical phase is prohibited by n-fold rotation symmetry with pairing symmetry φ = π.

Furthermore, with φ = π rotation symmetry anticommutes with particle-hole antisymme-
try. As argued in Sec. 2.5, in this case it is impossible to construct a finite hopping across the
cut that preserves all symmetries and is locally indistinguishable from the bulk. This implies
that there is in general no bulk-defect correspondence at disclinations for pairing symmetry
φ = π.

F.2.3 Classes AIII and BDI

In class AIII, the zero dimensional anomalous states have Z topological charge as zero-energy
states with the same eigenvalue under chiral antisymmetry Γ do not gap out in pairs. There-
fore, a set of symmetry related zero-energy states can only gap out if the rotation symmetry
anticommutes with chiral antisymmetry such that the eigenvalue of chiral antisymmetry of
symmetry related zero-energy states is opposite. In this case, twofold rotation symmetry re-
lated states gap out with a mass term τ2 with representations U(Rπ) = τ2 and Γ = τ3. As
a consequence, second-order topological phases exist for twofold, fourfold and sixfold rota-
tion symmetric lattices. Weak topological phases exist in twofold rotation symmetric lattices.
There does not exist a first order topological phase in class AIII in two dimensions.
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The same result holds for class BDI in two dimensions as the mass term also satisfies the
antiunitary symmetry T = τ3K .

F.2.4 Class CII

Class CII has time-reversal symmetry T 2 = −1 and particle-hole antisymmetry P2 = −1.
Similar arguments as in class AIII hold here, except that the zero-energy states appear in
Kramers pairs. Here, a mass term gapping twofold rotation symmetry related partners can be
chosen as σ3τ2 with representations T = iσ2τ0K , P = σ0τ2K and U(Rπ) = σ3τ2.

F.3 Three dimensions

In three dimensions, the d − 1 dimensional anomalous states with Z topological charge are
chiral states. Their topological charge (i.e. their propagation direction) is only inverted by
magnetic rotation symmetry. As a consequence, there are no weak or second-order topological
phases in classes A, D, C with non-magnetic rotation symmetry. Furthermore, these Cartan
classes also do not host first order topological phases.

F.3.1 Classes A and D

In class A, chiral modes related by twofold magnetic rotation symmetry gap out in pairs, as the
mass term τ2 for two chiral modes related by twofold magnetic rotation symmetryRπT = τ1K
described by the low energy Hamiltonian vkzτ3 exists. For fourfold magnetic rotation symme-
try, it has been shown in Sec. B.3 that the mass term τ3σ2−τ2σ0 describing a ring hybridiza-
tion of rotation symmetry related chiral modes with low energy Hamiltonian vkzτ3σ3 creates
a gap in the spectrum. As a consequence, second-order topological phases exist in lattices
with twofold, fourfold and sixfold magnetic rotation symmetry. The weak topological phases
as shown in Fig. 6 in the main text exist only in lattices with twofold rotation symmetry.

The mass terms and low energy Hamiltonians also satisfy particle-hole antisymmetryP = K .
Thus the results apply also to class D.

The weak phases corresponding to stacks of Chern insulators with stacking direction par-
allel to the rotation axis exist in class A with non-magnetic rotation symmetry as the Chern
number is consistent with rotation symmetry. Magnetic rotation symmetry requires the Chern
number to vanish. In class D, the results from section F.2 apply.

F.3.2 Class C

We regard physical systems in class C as superconductors in the presence of spin rotation
symmetry. In this case, magnetic twofold rotation symmetry still satisfies (RπT )2 = 1. With
RπT = τ0ρ1K and P = τ2ρ0K , the mass term τ0ρ2 gaps out the low energy Hamiltonian
vkzτ0ρ3 describing the minimal number of chiral modes related by magnetic twofold rotation
symmetry. In class C, fourfold magnetic rotation symmetry satisfies (Rπ/2T )4 = 1. Here a ring
hybridization with real hopping elements gaps symmetry related chiral modes. This shows the
existence of the weak and second-order topological phases as shown in Fig. 6 in the main text
in lattices with twofold, fourfold and sixfold magnetic rotation symmetry in Cartan class C.

Two dimensional superconductors in class C allow for an even Chern number. The weak
phases corresponding to stacks of Chern superconductors with even Chern number with stack-
ing direction parallel to the rotation axis exist with non-magnetic rotation symmetry for any
pairing symmetry.
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F.3.3 Class DIII

Pairing symmetry φ = 0. Three dimensional superconductors in class DIII with φ = 0 can be
constructed from two dimensional class D superconductors with φ = 0 using the dimensional
raising map as we also used in Appendix B.4. It has been shown using the reflection matrix di-
mension reduction scheme in Ref. [11] that the dimensional raising map preserves anomalous
states at defects.

Below we illustrate the usage of the dimensional raising map to define a model Hamiltonian
for the second-order topological superconductor in class DIII in three dimensions.

In the model described by the Hamiltonian HD in Eq. (13) the dimerization parameter (or
mass) δt can be used to tune between the trivial and the topological phase. In particular, the
system undergoes a topological phase transition at δt = 0, where the bulk gap closes. The
dimensional raising map requires to replace δt → δt cos kz , such that the model interpolated
between the trivial and the topological phase as a function of the additional momentum pa-
rameter kz . In order to ensure that the system remains gapped for all kz one adds another
term tz sin kzγz to the Hamiltonian, requiring that γz anticommutes with the Hamiltonian at
kz = 0,π. Starting from a model without chiral antisymmetry one needs to introduce a new de-
gree of freedom described by Pauli matrices σ by taking the original model HD→ HDs3. Then
we may choose γz = σ3. Now the model satisfies an additional chiral antisymmetry Γ = σ2
and, in combination with particle-hole antisymmetry, a time-reversal symmetry T = iσ2K .
Thus we may interpret the σ3 degree of freedom as spin.

These arguments are collected in the dimensional raising map, which is expressed as

HD(kx , ky ;δt) → HD(kx , ky ;δt cos[kz])σ3

+ tz sin[kz]τ0ρ0σ1.

This lifts our two-dimensional model in class D to a three-dimensional model in class DIII
realizing a strong second-order topological phase.

Pairing symmetry φ = π. Similar to two dimensional class DIII superconductors with pair-
ing symmetryφ = π, helical Majorana modes vkzσ3τ0 related by twofold rotation U(Rπ) = iσ3
τ1 and representations T = iσ2τ0T , P = σ0τ3K hybridize as the mass term σ1τ2 exists.
Weak and second-order phases exist with twofold, fourfold and sixfold rotation symmetry. The
first order topological phase is prohibited by n-fold rotation symmetry with pairing symmetry
φ = π. These results are consistent with Ref. [67].

The existence of weak phases corresponding to stacks of two-dimensional first order topo-
logical superconductors with stacking direction parallel to the rotation axis follows from the
results of section F.2.

F.3.4 Class AII

The classification of time reversal symmetric insulators in class AII is related to class DIII by
lifting the particle-hole antisymmetry constraint of class DIII. This construction maps the first
order topological phases in d = 2, 3 and corresponding anomalous states of class DIII to the
corresponding first order topological phases and anomalous states in class AII [31]. Applying
this construction to class DIII topological superconductors with pairing symmetryφ = 0 shows
the existence of first-order, second-order and weak topological phases in class AII.

Weak phases corresponding to stacks of two-dimensional first order topological insulators
with stacking direction parallel to the rotation axis exist with twofold rotation symmetry.
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