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A B S T R A C T

Attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) is an essential tool for the
analysis of bituminous binders due to its cost-effectiveness, user-friendliness, and non-destructive nature.
However, its effectiveness is often hampered by challenges such as non-informative regions, lack of standardized
analysis methods, and inconsistent baselines in spectral data. Addressing these challenges, this study aims to
comprehensively evaluate the impact of various data pre-processing (DP) methods on ATR-FTIR spectra from
diverse bituminous binder types, sources, and aging conditions. Using partial least squares-discriminant analysis
(PLSDA) classification, the study assesses the effectiveness of baseline correction, normalization, and their
combinations. The methodology involves analyzing peak areas, indices, entire spectra, and first derivative
spectra to determine the most effective pre-processing strategies. Key findings reveal that the effectiveness of DP
methods is influenced by the classification goals, characteristics of the spectral dataset, and the specific methods
employed for input data preparation. The study demonstrates that using entire spectra or their first derivatives
leads to higher classification accuracy compared to indices or specific spectral peak areas. The choice between
peak area and indices calculation methods should align with the study’s objectives. For efficient and rapid se-
lection of DP methods, tools like PLSDA are recommended. Among the normalization methods, normalization to
constant vector length (NCV), normalization to change the maximum to 1 (NMO), robust scaling (RS), and
normalization to sum (NTS) are suitable for peak area or indices-based classification. For entire spectra and their
first derivatives, NTS, NCV, autoscaling (AS), pareto scaling (PS), and standard normal variate (SNV) methods
are recommended. Regarding baseline correction, Adaptive Smoothness Penalized Least Squares (aspls) is suit-
able for studies focusing on gradual material changes, such as multi-level aging studies, but not for additive
detection studies. The findings of this study provide valuable insights and practical recommendations for
selecting appropriate DP methods, thereby enhancing the classification accuracy and reliability of ATR-FTIR
spectral analysis of bituminous binders. This contributes significantly to the design of experiments, reduces
operational risks, and optimizes resource utilization in the field.

1. Introduction

Bituminous binders are essential materials in pavement construction,
derived from crude oil residues and rich in functional groups, including
aromatic and aliphatic hydrocarbons. These materials’ chemical
complexity, influenced by various elements such as sulfur and oxygen-
containing groups, affects their stability and adhesive properties [1].
Understanding these functional groups is critical for explaining the
behavior of bituminous binders under diverse conditions and optimizing
their application in fields like pavement construction and water-
proofing. A widely used method to analyze the chemical complexity of

bituminous binders is attenuated total reflectance Fourier-transform
infrared spectroscopy (ATR-FTIR) [2]. ATR-FTIR is valued for its cost-
effectiveness, user-friendly nature, and non-destructive analysis capa-
bilities [3,4]. This method can track changes in functional groups due to
oxidative aging and the introduction of new materials like polymers or
rejuvenators [5,6]. Such changes are observable in ATR-FTIR spectra,
facilitating comparisons between chemically altered and unaltered
samples [7].

While ATR-FTIR offers several advantages and can quickly produce
extensive data, there are still challenges, especially when applied to
bituminous binders. One specific issue is the complexity in analysing the
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spectra results of binders. Generally, values like the area under spectral
curves or indices are used to characterize samples and compare various
samples with different degrees of modifications and aging [2,8]. Un-
fortunately, the lack of a standardized analysis method makes it difficult
to compare findings across different studies. Aside from a lack of a
standardized analysis method for FTIR spectra, presence of both infor-
mative and uninformative regions in the spectra leads to reduced per-
formance of post-processing steps [9]. Moreover, inconsistent baseline
and noise cause systematic variation in the spectra [4,9]. Sample con-
ditions, particle sizes, chemical interferences, and how the data is
collected can change the intensity of both wanted and unwanted parts of
the spectra [10]. Sources of unwanted variation could arise from
inherent limitation of instrument (e.g. instrument drifts) or samples (e.g.
particle size or homogeneity level). An additional source of systematic
variations induced by different sample quantity is especially pro-
nounced in case of solid sample [10,11].

These challenges necessitate effective data pre-processing (DP)
methods to improve the accuracy and reliability of spectral analysis. The
DP methods can be divided in to two main categories: first, normaliza-
tion data-pre-processing (NDP) and second, baseline-correction data-
pre-processing (BDP).

Searching through literature, it is not conclusive what the best Data
Pre-processing (DP) method is because many works do not explain why a
specific DP method is chosen perhaps because they rely on others’
choices when selecting DP methods for their own work [9]. Most studies
seem to select DP methods based on literature, as only a few methods are
consistently highlighted by researchers. This practice may lead re-
searchers to overlook the most suitable DP methods for their specific
data. Additionally, from the available literature, it is noted that most
researchers have not compared clearly how their chosen DP method
performs compared to the raw, untreated IR spectra [9]. They have
assumed that the selected DP method would improve the results without
further investigation.

When using ATR-FTIR to evaluate bituminous binders, analyses fall
into two categories: using the entire spectral data or relying on peak
areas/indices. In both categories, the selection and discussion of data
pre-processing (DP) methods are often unclear. Ma et al. [12] used
standard normal variate (SNV) and Savitzky–Golay (SG) methods before
applying PCA-linear discriminant analysis (LDA) to classify different
aging states of bituminous binders. Primerano et al. [13] applied stan-
dardized scaling to FTIR data and used random forest, PCA, and PLSDA
to differentiate between various aged samples. Garmarudi et al. [14]
employed Mean Centering followed by PCA, hierarchical cluster analysis
(HCA), and SIMCA to classify crude oils geologically. Weigel and Ste-
phan [15] used SNV transformation and the first derivative of FTIR data
in LDA and PLSR algorithms to distinguish bituminous binder samples
by refinery.

In studies focusing on peak areas and indices, DP methods are also
limited. Hofko et al. [2] evaluated ATR-FTIR reliability and sensitivity,
recommending normalized spectra with an absolute baseline and peak
area integration. Weigel and Stephan [16] applied SNV transformation
to calculate peak areas, creating PLS regression models for various
bituminous binder parameters. Wieser et al. [17] optimized DP methods
for aging analysis, finding exponential baseline correction, vector 2
normalization, and peak-fit integration as the best methods for studying
aging based on the carboxyl peak.

2. Objectives and research structure

In this study, our motivation to evaluate the effects of different DP
methods on ATR-FTIR spectra analysis in bituminous binder research
stems from the lack of comprehensive references guiding DP method
selection. We aim to incorporate all pre-treatment methods from the
literature into a unified framework and compare standard Pressure
Aging Vessel (PAV) aging with moisture-aged samples, crucial for future
laboratory aging protocols.

To ensure dataset diversity, we use samples from various bituminous
binder types, sources, and aging conditions, including unmodified
binder from different sources, polymer modified binder, and rejuve-
nated binder, both pre- and post-aging. Using the partial least squares-
discriminant analysis (PLSDA) algorithm, we assess how pre-treatment
methods affect FTIR spectral data classification. The classification
goals include grouping by binder source, modification type, or aging
state. While binder modification and source significantly influence FTIR
spectra, aging conditions result in less pronounced differences. There-
fore, we focus on aging studies to ensure optimized DP methods can
detect even minor discrepancies.

Specifically, aging under PAV and humid conditions was examined,
ensuring the findings are applicable to various aging protocols. As a
result, our findings become more reliable and are capable of dis-
tinguishing between fresh samples and those aged under different con-
ditions. Given the consideration that the chemical differences among
samples originated from different sources or modified by various ma-
terials are larger than that among samples at all kinds of ageing levels,
our hypothesis suggests that the DP method most effective for aging
classification should also perform well for other classification purposes.
We aim to examine and confirm this hypothesis through an example in
the last section that focuses on the classification of samples before and
after rejuvenations.

This study aims to address the following research questions:

1. Can pre-treatment methods, such as normalization, baseline correc-
tion, or a combination of both, enhance classification accuracy
compared to using raw input data?

2. Which pre-treatment method is most effective for the aging classifi-
cation of bituminous binders?

3. What is the most suitable method for calculating areas or aging
indices in aging studies?

4. What region of FTIR spectra are more important for classification?
Does the importance of regions change with pre-treatment of
spectra?

5. When considering either the entire spectra or the first derivative
instead of peak areas or indices, which method proves superior for
future aging-related chemometric analysis?

6. Does the optimal method for aging classification demonstrate
effectiveness for other classification purposes?

By addressing these questions, this study aims to provide guidelines
for selecting DP methods, thereby enhancing the accuracy and reliability
of ATR-FTIR spectral analysis for bituminous binders.

3. Materials and methods

3.1. Data collection (sample preparation, aging conditions, and FTIR
measurement)

The first set of data in this research was extracted from a study
conducted by Ren et al. [18] (Table 1S, supporting information). For the
investigation of rejuvenated binders, a 70/100 virgin bituminous binder
was utilized. The study encompassed four types of rejuvenators: bio-oil
(BO), engine-oil (EO), naphthenic-oil (NO), and aromatic-oil (AO). The
rejuvenated binders comprised 20 h-PAV aged samples mixed with 10 %
of rejuvenators, 40 h-PAV aged samples mixed with 5 %, 10 %, 15 % of
rejuvenators, and 80 h-PAV aged samples mixed with 10 % of re-
juvenators. These samples were collectively treated as a fresh group. All
these rejuvenated samples were then conditioned by 1PAV ageing,
which were considered as the aged group. An ATR-FTIR device (Wal-
tham, MA, USA) was used to detect the distribution of functional groups
in the samples, within the wavenumber range of 600–4000 cm− 1, with
12 scans conducted for each sample. To ensure data reliability, a mini-
mum of three parallel tests were conducted for each specimen. In total,
120 samples were measured at room temperature for this dataset.

S. Khalighi et al.
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The second set of data was obtained from the study by Ma et al. [12]
(Table 1S, supporting information). They aimed to explore the chemical
properties of bituminous binder derived from diverse crude oil sources,
exhibiting various penetration grades, polymer modifiers (Styr-
ene–butadiene–styrene (SBS)), and aging states. A total of 16 binder
samples, representing eight different types, were prepared at two aging
states—fresh and PAV aged. These samples included bituminous binder
sourced from Q, featuring penetration grades 40/60, 70/100, and SBS
modifier (using 70/100 as the base bituminous binder). Additionally,
bituminous binder from source T included penetration grades 70/100,
100/150, and 160/220. Another variation was bituminous binder from
source V, with penetration grade 70/100 and SBS modifier (using 70/
100 as the base bituminous binder). The long-term aged samples were
crafted through a combination of short-term aging simulated by the
thin-film oven test (TFOT) at 163 ◦C for five hours, followed by extended
aging in the 1PAV. The ATR-mode FTIR spectroscopy was utilized, with
a wavelength range of 4000–600 cm− 1, a resolution of 1 cm− 1 and 32
scans. Three independent measurements were conducted for each
sample, resulting in a total of 48 samples (16 × 3 repetitions) measured
at room temperature for this group.

The final section of our input data set was sourced from the works by
Tarsi [19] and Mocetti [20] (Table 1S, supporting information). Three
types of bituminous binder were employed, including two unmodified
binders and one polymer-modified bituminous binder. The two pure
binders have penetration grades of 40/60 and 70/100, respectively,
both derived from source Q. The polymer-modified bituminous binder
was achieved through the addition of SBS polymers into a Q-sourced
bituminous binder. The binder films had a diameter of 27.50 mm, and a
thickness of 2 mm. Five aging methods were applied to these binders,
namely aging at room temperature, oven aging, aging through the
Pressure Aging Vessel (PAV), a protocol combining Rolling Thin Film
Oven Test (RTFOT) and PAV aging, and moisture aging. Room tem-
perature aging lasting for 5, 15, and 25 days were performed, with an
average room temperature of 24.6 ◦C. Oven aging was conducted at
135 ◦C for three durations, namely, 60 h, 10 days, and 15 days. The PAV
test adhered to standard conditions, aging samples at a temperature of
100 ◦C and a pressure of 2.1 MPa for 20 h, following the NEN-EN
14769:2005 European Standard. PAV testing was also conducted at
the same temperature and pressure but for twice the standard aging time
(40 h). The combined short-term and long-term aging procedures
involved initial RTFOT aging according to the NEN-EN 12607–1:2014
European Standard [21], followed by PAV aging under the standard
condition [22]. For moisture aging, all bituminous binder types under-
went two different conditions, i.e., liquid water and water vapor with a
RH=88 %, at temperatures of 20 and 40 ◦C for 5 and 15 days. The FTIR
spectrum was obtained in the spectral range between 4,000 and 600
cm− 1, with a scanning resolution of 4 cm− 1. Five scans were obtained
and averaged for each measurement, and four repetitions were con-
ducted for each sample. In total, 216 FTIR spectra were obtained.

These three groups were combined and examined collectively to
determine the optimal pre-treatment method. The spectra from all
groups were gathered, resulting in a comprehensive data frame
comprising 384 spectra.

3.2. Data pre-processing (DP) methods

3.2.1. Baseline correction methods
The BDPs are crucial for minimizing irrelevant variations linked to

elevated baselines which are created due to reduction of reflection with
decrease of the wavenumbers [9,23]. In this research, nine different data
pre-processing techniques for baseline correction (BDP) were chosen
from past bituminous binder studies [24] and the pybaselines python
library [25]. We specifically picked methods from the pybaselines py-
thon library because they align with the inherent characteristics of the
binder’s FTIR spectra, based on the explanations provided in the library.
The descriptions and relevant equations for these BDP methods are

provided in Table 2S in supporting information.
Whittaker-smoothing-based (WSB) algorithms, often known as

weighted least squares, Penalized Least Squares, or Asymmetric Least
Squares, aim to align the baseline with the measured data while
penalizing its roughness. The general function minimized to determine
the baseline is outlined in Table 2S. Asymmetric Least Squares (asls),
Adaptive Iteratively Reweighted Penalized Least Squares (airpls), and
Adaptive Smoothness Penalized Least Squares (aspls) fall under the
principles of the WSB algorithms. The baseline is determined iteratively
through a linear system. This process involves solving for the baseline,
updating the weights, solving for the baseline using the updated
weights, and repeating these steps until the exit criteria are met. The
distinction among WSB algorithms lies in the choice of weights [26].

Additionally, three approaches employing polynomial fitting were
employed for baseline correction: regular polynomial (poly), modified
polynomial (modpoly), and improved modified polynomial (imodpoly).
Firstly, regular polynomial fitting utilizes least-squares polynomial
fitting along with selective masking, where a custom weight array is
introduced into the fitting function. This array has values set to 0 in peak
regions and 1 in baseline regions, facilitating its use for baseline fitting.
Secondly, modified polynomial employs thresholding to iteratively fit a
polynomial baseline to the data. Thresholding, an iterative method,
initially fits the data using traditional least-squares and then sets the
next iteration’s fit data as the element-wise minimum between the
current data and the ongoing fit. Thirdly, improved modified poly-
nomial is an enhancement of the modpoly algorithm for noisy data,
incorporating the standard deviation of the residual (data − baseline)
during thresholding [26].

Another approach for baseline correction involves using splines
(refers to a flexible, piecewise polynomial function), specifically basis
splines (B-splines), which are emphasized due to their prevalent use in
pybaselines. To regulate the smoothness of the fitting spline, a penalty is
introduced on the finite-difference between spline coefficients, resulting
in penalized B-splines known as P-splines. P-splines share similarities
with Whittaker smoothing; setting the number of basic functions, (M,
Table 2S, supporting information), equal to the number of data points,
(N, Table 2S, supporting information), and the spline degree to 0 makes
the identity matrix, rendering the equation identical to that used for
Whittaker smoothing. Consequently, Penalized Spline Asymmetric Least
Squares (pspline_asls) and Penalized Spline Asymmetric Least Squares
(pspline_airpls) are penalized versions of Asymmetric Least Squares
(asls) and Adaptive Iteratively Reweighted Penalized Least Squares
(airpls) [26]. The final method is the eight-point baseline correction
(8points) proposed by RILEM work [24].

3.2.2. Normalization methods
NDPs can address challenges related to varying sample size or

quantity, flaws or limitations intrinsic to the instrument, for instance,
low signal intensity or scattering, and variations caused by different
mean or standard deviations. In this investigation, the impacts of nine
distinct normalization data pre-processing (NDP) techniques on ATR-
FTIR spectra were explored. Namely, the NDP methods include
Normalization to sum (NTS), Normalization to constant vector length
(NCV), Normalization to change the maximum to 1 (NMO) [27], Mean
centring (MC), Autoscaling (AS), Pareto scaling (PS), Robust scaling
(RS), Standard normal variate (SNV), Multiplicative scatter correction
(MSC) [28,29]. Table 3S (supporting information) lists these NDP
methods alongside related equations. In this study, the reference spec-
trum required for MSC is set as the average spectral value of the entire
dataset. Regarding the NMO method, the minimum point of the curve in
the range 2800–3200 cm− 1 is set at zero, and then the maximum point is
adjusted to 1.

Among the selected NDP methods, normalization to sum (NTS),
normalization to constant vector (NCV), and standard normal variate
(SNV) are referred to as one-way methods, where each spectrum is pre-
processed individually, meaning that normalized results of a spectrum

S. Khalighi et al.
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are determined solely on by its own characteristics. In contrast, the other
NDP methods are essentially two-way methods, where the results of
normalization are affected by all spectra. Reviews detailing the theo-
retical foundations of the NDP methods are widely available [29,30]. To
prevent incorrect analyses for one versus two-way methods, this study
independently pre-processed the test set from the training set [28,31].

3.2.3. Combined normalization and baseline-correction methods
It remains uncertain whether normalization, baseline-correction, or

a combination of both is optimal for analysing FTIR spectra in bitumi-
nous binder-related studies. When both methods are considered, the
common practice in existing FTIR studies in the bituminous binder field
involves first applying baseline correction and then normalization to the
raw spectra. This approach is to ensure that baseline irregularities do not
influence the normalization process, allowing us to focus on normalizing
the actual spectral features without being hindered by baseline artifacts
[17,24].

In line with literature, the combined pre-processing was achieved by
initially conducting baseline correction followed by normalization in
this work. Consequently, employing 9 baseline correction methods with
9 normalization correction methods results in 81 combined data pre-
processing (CDP) methods. Ultimately, 100 pre-processed datasets
were generated from the initial input data frame.

3.3. Transformation of spectra to peak areas and indices

In a FTIR spectrum of a bituminous binder sample, informative peaks
describing the carbonyl, sulfoxide, aromaticity, aliphatic, sulfone, long
chain, and hydroxyl groups can be observed, with their wavenumber
ranges detailed in Table 1. Two common approaches employed in
pavement engineering and bituminous binder studies, peak area calcu-
lation and index calculation, were used to characterize these functional
groups following the pre-processing of the input data. Two peak area
calculation methods were utilized, i.e., area-to-base, and tangential
area. For index calculation, Equation (1) was applied for each functional
group, using the vertical limits outlined in Table 1. Four distinct types of
indices were derived by varying the methods for peak area calculation
and the selection of reference area. The definitions and applications of
these indices and peak areas are presented in Table 4S (supporting
information).

The computation of indices followed this equation:

index = Ax/Aref (1)

The symbol Ax denotes the peak area under the curve within specific
ranges outlined in Table 1. Aref represents either the sum of all peak

areas (ATOTAL) or exclusively the aliphatic peak areas (AALI).
The calculation can be performed in two distinct manners: either as

peak area to the baseline (AB) or tangential peak area (AT), as illustrated
in Fig. 1S (supporting information).

The methods for calculating peak areas and indices in ATR-FTIR
spectra analysis are varied and defined by specific criteria in Table 4S.
The “Peak area to base” method (AB) calculates the peak area under-
neath the curve and above the x-axis in the specified range, without
computing any indices. The “Tangential peak area” method (AT) also
calculates the peak area underneath the curve but above a tangential
line in the specified range, similarly without indices. The “Peak area to
base-all peak area” method (AB / ATOTAL) involves calculating the peak
area to base and then dividing each calculated peak area by the sum-
mation of all the calculated peak areas (ATOTAL) to form indices. The
“Peak area to base-aliphatic peak areas” method (AB / AALI) follows a
similar approach but the indices are formed by dividing each calculated
peak area by the summation of all the calculated peak areas specifically
for aliphatic groups (AALI). The “Tangential peak area-all peak areas”
method (AT/ ATOTAL) calculates the tangential peak area and then di-
vides each by the summation of all peak areas to create indices. Lastly,
the “Tangential peak area-aliphatic peak areas” method (AT/ AALI) cal-
culates the tangential peak area and forms indices by dividing each peak
area by the summation of all peak areas for aliphatic groups (A
aliphatic). The details of peak areas and indices calculation are pre-
sented in Table 4S.

3.4. Partial least squares-discriminant analysis

Three different approaches for assessing DP methods are recognized:
spectrum-comparison, clustering of samples projected on a PCA score
plot, and modelling accuracy/error [33]. The spectrum-comparison
method is subjective, requiring laborious work, and is qualitative,
while clustering of samples on a PCA score plot is also subjective but
somewhat quantitative. Evaluating modelling accuracy/error is goal-
oriented and demands time and computational resources. The accu-
racy assessment can be performed using chemometric approaches like
Partial Least Squares Discriminant Analysis (PLSDA) [9,34].

Over the last two decades, the PLSDA has become widely acknowl-
edged and extensively utilized in previous research [35–37]. Theoreti-
cally, PLSDA combines two processes – dimensionality reduction and
discriminant analysis – into a single algorithm, which is particularly
effective for handling complex, high-dimensional (HD) data [38].
Importantly, PLSDA does not assume that the data follows a specific
distribution, making it more adaptable compared to other discriminant
algorithms, such as Fisher’s linear discriminant analysis. Spectral data
usually have high dimensionality, and the variables (like wavenumbers)
are often interconnected (collinear). As a result, traditional discriminant
methods like LDA are not suitable for spectral data [34,39]. Addition-
ally, while PCA could address the challenges associated with LDA in HD
data, PLSDA has frequently exhibited superior performance compared to
PCA-LDA [40,41]. The combination of spectral data and PLSDA has
exhibited notable success across various domains, such as food analysis
[42] and forensic science [43]. Therefore, in this study, PLSDA will be
employed to assess the impact of different pre-processing methods.

PLSDA relies on PLS multivariate calibration, enabling the simulta-
neous decomposition of matrix X(n, m) (indices/spectral data-frame)
containing n samples and m variables, and a vector y, which denotes
the numerical labelling of each sample based on its class, such as fresh or
aged bituminous binder. The introduction of new axes termed latent
variables establishes a coordinate system that captures the most valu-
able information from the original variables. Equations 1S and 2S
(supporting information) describe the decomposition of X and y into this
novel coordinate system [44].

The decision rule employs a fixed point-based approach, specifically
considering only the model’s predicted values for the response variable
y and incorporating a single fixed point, i.e., the cut-off point set at 0.5.

Table 1
Main functional groups of bituminous binder in FTIR spectra with their
respective vertical bands and their molecular information [32].

Peak
area

Vertical band
limit(cm¡1)

Functional groups

A810 710–734
734–783
783–833
833–912

Hydrocarbon chain, (CH2)n, C–H in isolated/two/
four adjacent hydrogen aromatic rings or C–CH2

rocking in alkyl side chains with more than four
carbons

A1030 984–1047 Oxygenated function-sulfoxide, S=O
A1200 1100–1180

1280–1330
Tertiary alcohol C–C–O, C–O in carboxylic acid,
C–C–C in diaryl ketones, C–N secondary amides,
O=S=O in sulfone

A1376 1350–1395 Branched aliphatic structures bending, CH3

A1460 1395–1525 Aliphatic structures bending, CH3 and CH2

A1600 1535–1670 Aromatic structure, C=C
A1700 1660–1800 Oxygenated function-carbonyl, C=O
A2953 2820–2880

2880–2990
Aliphatic structures, Symmetric, Asymmetric
stretching, CH

A3400 3100–3800 Hydroxyl stretching, OH, NH
ATOTAL = A 810 + A1030 + A1376 + A1460 + A1600 + A 1700 + A2953 + A 3400
AALI = A1376 + A1460

S. Khalighi et al.
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3.5. Partial least squares-discriminant analysis model validation

In practical terms, the selection of a model validation method is
influenced by the dataset’s size. For smaller datasets, internal validation
methods like cross-validation (CV) are often preferred [34]. Addition-
ally, in v-fold CV, reducing the value of v increases the associated bias
but reduces both variance and computational load [34]. Hence, in this
study, a 10-fold CV approach was employed. Despite its computational
expense, it minimized the risk of bias compared to 5 or 7-fold CVs.

In this investigation, a 10-fold cross-validation strategy was applied
to conduct PLSDA. This approach entails dividing the dataset into 10
equal segments, employing 9 segments for model training and reserving
one segment for testing. The process iterated 10 times, using a different
segment for testing each time, and the accuracy outcomes were averaged
to yield a robust evaluation of the model’s effectiveness. Given the un-
even distribution of 282 aged samples and 102 fresh samples in the input
data-frame, a potential bias could arise from simple random sampling
[28]. To address this, stratified k-fold cross-validation was employed
instead of the standard random k-fold method. This ensures that the
class distribution in each data split aligns with the distribution in the
complete training dataset and the target variable (y), thus controlling
the sampling process [45].

In multilabel classification, the accuracy score provides the subset
accuracy. A subset accuracy of 1.0 is achieved when the entire set of
predicted labels for a sample exactly matches the true set of labels;
otherwise, it is 0.0. The accuracy score is calculated based on Equation
3S (supporting information). The accuracy values derived from this
method were utilized to assess the suitability of various pre-processing
techniques and their combinations in distinguishing between binary
classifications.

3.6. Variable importance in projection scores (VIP scores)

VIP scores in PLSDA quantify the importance of each predictor var-
iable in distinguishing between predefined classes [46]. These scores are
calculated by evaluating the contribution of each variable to the PLS
components and the explained variance in the classification model,
involving a weighted sum of the PLS weights, adjusted for the discrim-
inative power of each variable. Specifically, the calculation involves a
weighted sum of squared correlations between the PLSDA components
and the original variable, with the weights representing the percentage
of variation explained by the respective PLSDA component. The formula
for calculating the VIP score for a variable j can be expressed as Equation
4S (supporting information).

Variables with VIP scores greater than 1 are typically considered
significant contributors to the classification model, while those with
scores less than 1 are deemed less influential [47]. In some studies,
threshold values of 1 and 0.7 are used to categorize features into highly,
moderately, and lowly important groups. In summary, VIP scores in
PLSDA provide a valuable measure of variable importance, highlighting
which predictors are most influential in the classification process, and
were computed for the preprocessing methods demonstrating the
highest accuracy in each section, particularly for aging classification.

3.7. Hierarchical cluster analysis (HCA)

HCA utilizes two main strategies: agglomerative and divisive. In the
agglomerative approach, each sample starts as an independent cluster.
The algorithm progressively merges pairs of clusters based on a pre-
defined metric describing sample distance (commonly Euclidean,
Mahalanobis, or Manhattan distance) and the selected linkage criterion
(single, complete, average, and Ward’s linkage). These linkage criteria
offer different ways to define the distance between clusters, contributing
to cluster formation. In this study, we adopted the agglomerative
approach, employing Euclidean distance and Ward’s linkage criterion.
Agglomerative approach is often computationally more efficient and

allows for the flexibility of choosing different linkage methods. Ward’s
linkage minimizes variance within each cluster and is chosen for its
effectiveness in optimizing a specific target function. HCA results are
typically depicted as dendrograms, providing a visual representation of
sample organization within a hierarchical tree-like structure [48].

In a dendrogram (Fig. 2S, supporting information), each branch is
referred to as a clade, and the end of each clade is called a leaf. The
arrangement of these clades communicates the level of similarity among
individual leaves. The point where branches intersect indicates the
extent of likeness or dissimilarity, with higher intersections signifying
more significant differences. Dendrograms can be interpreted in two
ways: firstly, concerning broad-scale groupings, starting from the top
and emphasizing high-level branch points (forming cluster X and cluster
Y). Secondly, to discern which specific components are most similar,
reading from the bottom and identifying the earliest converging clades
as we move upwards. The length of the vertical lines in the dendrogram
reflects the degree of divergence between branches, where longer lines
denote greater distinctions. The horizontal alignment of dendrograms is
not crucial, seeing it as a flexible structure where the arms may shift
while maintaining consistent vertical height and subgroup arrangement
[49].

4. Methodological approach

In this section, we describe the analysis steps undertaken in this
study, illustrated in Fig. 1.

Initially, pre-processing was applied to a data frame containing 384
raw FTIR spectra measured at 3400 wavenumbers, resulting in 100 pre-
processed data frames of size 384 × 3400. These frames included 9
normalized, 9 baseline-corrected, 81 combined-methods (BDPs +

NDPs), and 1 raw data frame. For each pre-processed frame, 6 new
frames of indices and peak areas (Table 4S) were generated, yielding a
total of 600 data frames of size 384 × 14. Additionally, the entire spectra
and their first derivatives were considered, resulting in 200 frames of
size 384 × 3400 after applying the Savitzky–Golay (SG) method for
derivative calculation.

Subsequently, for PLSDA analysis (Fig. 1), 600 frames of size 384 ×

14 and 200 frames of size 384 × 3400 were considered. Two classifi-
cation systems, aging and rejuvenation classification, were employed,
and results were presented separately. Our primary focus has been on
aging classification. We consider it to be a more complex task than
identifying or classifying other materials like rejuvenators or polymers,
based on the assumption that aging introduces fewer alterations to FTIR
spectra compared to the introduction of new substances. The idea is to
optimize the selection of DP methods initially for the more challenging
scenario, namely, the classification of fresh and ageing states. Subse-
quently, we extend this comparison of DP methods to other simpler
cases, such as the classification of rejuvenation. This is to test if the
effectiveness of DP methods observed in the case of ageing remains
consistent or varies for other classification objectives. To evaluate the
suitability of the optimized DP methods for different types of classifi-
cations, the complete dataset was divided into two separate groups. For
aging classification, the dataset was split into fresh and aged samples of
various binder types. For rejuvenation classification, the dataset was
divided into two parts: one containing FTIR spectra of both fresh and
aged binders with rejuvenators, and the other comprising binders
without any rejuvenators, including both fresh and aged samples. For
each classification, the following steps were undertaken and discussed
individually, and subsequently, the results were compared.

Each data frame was divided into 10 parts, with 9 parts used for
PLSDA training and 1 part reserved for testing. This process iterated 10
times, using a different segment for testing each time, and accuracy
outcomes were averaged and presented in the result and discussion
section. Subsequently, HCA was conducted on the accuracies of classi-
fication for DP modified spectra’s indices and peak areas. This was un-
dertaken to assess the similarities and differences among these methods
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for calculating peak areas and indices.
In the Results and Discussion section, classification accuracies for

NDP and BDP modified peak areas/indices were visualized in a heatmap
with an HCA clustering (cluster map). Classification accuracies for
combined methods and entire spectra with their first derivatives were
presented in separate tables. For methods with the highest accuracy, VIP
scores, which are indicators of the most influential predictors in the
classification process, were obtained to identify important regions,
especially for aging classification.

The PLSDA and HCA implementation used Python programming li-
braries, and the entire statistical analysis process is outlined in Fig. 1.
The Python code for the entire procedure, covering normalization,
baseline correction, combined methods, and PLSDA classification, will
be made available upon request from the authors.

5. Results and discussion

5.1. IR spectra

The complete dataset utilized in this study is compiled from three
distinct investigations, detailed in the materials and methods section.
Fig. 2 illustrates the spectra for all samples, measured in the wave-
number range of 600 to 4000 cm− 1 through ATR-FTIR spectroscopy.
While the spectra in Fig. 2 exhibit similarities, characterized by peaks in
the regions specified in Table 1, variations in absorbance intensity are
evident due to differences in binder type, source, and aging level. This
difference is particularly noticeable in the carbonyl and hydroxyl re-
gions upon visual examination. The differently coloured spectrum
groups consist of both fresh samples and their corresponding aged
counterparts, as explained earlier. Additionally, all spectra display a
slope in the lower wavelength region, though the slope varies across
groups, with the last part of the data showing the highest rise. It is
important to emphasize that these observations are solely based on vi-
sual inspection of the spectra. The classification potential of the spectra
will be further assessed through PLSDA modelling, as discussed in the
subsequent sections.

5.2. Effect of DPs on aging classification of areas and indices

This section examines the effects of nine normalization methods,
nine baseline correction methods, and 81 combinations of both methods
in comparison to the raw data through binary classification of fresh and
aged samples using PLSDA.

5.2.1. Effect of different baseline correction methods on ageing
classification of peak areas/indices

Fig. 3 illustrates the impact of 9 baseline correction methods on a
specific spectrum. The baseline-corrected spectra exhibit variations
depending on the correction formula employed in Table 2S in supporting
information. The disparity between the corrected and original spectra is
more noticeable for certain methods.

To evaluate the impact of different baseline correction methods on
aging classification accuracy, PLSDA and HCA were applied to various

Fig. 1. The schematic diagram depicts the sequential steps involved in the pre-processing and post-processing analysis conducted in this study. It offers a
comprehensive overview of each stage, including details about the size and quantity of the data frames considered. The process begins with reading the data,
applying pre-processing methods, and transforming the pre-processed data into area, indices, entire spectra, or first derivative spectra. This is followed by applying
PLSDA classification with stratified cross-validation and HCA. Additionally, VIP scores were analyzed.

Fig. 2. ATR-FTIR spectra derived from three distinct studies: the initial section
sourced from [18], the second portion from [12], and the final segment ob-
tained from [19,20]. Details of each study are presented in Table 1S. For better
visualization, the data from the Ren et al. study and the Mocetti and Tarsi
studies are shifted by − 0.25 and +0.25 in their absorbance, respectively.
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FTIR-related peak areas and indices. Classification accuracies and clus-
tering of peak areas and indices were presented in Fig. 4.

FTIR-related peak areas and indices, calculated as per Table 4S,
showed both positive and negative influences after applying BDP
methods. HCA clustering indicated that peak areas and indices respond
differently to BDPs. AALI-based methods are more closely grouped
compared to ATOTAL-based indices. AB and AT varied in accuracy after
baseline corrections, ranging from 0.70 to 0.83 for AB and from 0.71 to
0.82 for AT. Indices were less affected due to internal normalization by
AALI or ATOTAL.

Among baseline correction methods, asls and aspls significantly
impacted classification accuracies, with asls showing the lowest and
aspls the highest performance. Asls may not adapt well to local

variations in classification tasks due to its emphasis on handling asym-
metric errors in regression [50], while aspls’s penalty term for
smoothing coefficients effectively reduces noise, enhancing classifica-
tion accuracy by improving the signal-to-noise ratio in the data [51 52].
This aligns well with previous findings that the importance of noise
reduction in spectroscopic data analysis were emphasized [53,54].

Polynomial fitting and 8points methods also negatively affected
classification accuracies. Modpoly [55] and imodpoly [56], despite
being advanced methods, sometimes reduced accuracy due to over-
fitting [57,58]. In our scenario, where data was collected from different
studies with varying baseline characteristics, simpler methods outper-
form the modified versions. This suggests that simpler baseline correc-
tion methods might be more effective since data-expantion is needed for
complicated models to fine-tune the hyper-parameters [58]. The pspli-
ne_airpls method performed worse than airpls, which adapts better to
diverse baseline patterns [59]. The 8points method notably reduced
accuracies, particularly for indices, probably due to linear shifts in
spectra causing information loss. While indices calculation stabilizes
datasets, it can reduce valuable information for specific baseline-
correction methods before classification.

In conclusion, only aspls consistently improved classification accu-
racy for all peak area or index calculations, mainly by effectively elim-
inating noise from the spectra. The ability of aspls to enhance signal
quality suggests its potential application in other spectroscopic studies
requiring high classification accuracy.

5.2.2. Effect of different normalization methods on aging classification of
peak areas/indices

Fig. 5 illustrates the impact of 9 normalization methods on a group of
20 spectra. Each normalization method uniquely alters the raw spectra,
as indicated by the formula outlined in Table 3S in supporting infor-
mation. The application of the nine normalization methods to the FTIR
spectra in Fig. 5 results in spectra that retain the same overall shape but
exhibit differences in absorbance values and relative positions. Although
the peaks and their positions within each spectrum remain consistent,
different normalization methods alter the relative positioning and

Fig. 3. FTIR spectra before (Gray spectra, right vertical axis) and after (coral spectra, left vertical axis) the implementation of BDPs: a) asls, b) aspls, c) airpls, d) poly,
e) modpoly, f) imodpoly, g) pspline_asls, h) pspline_airpls, i) 8points.

Fig. 4. Cluster map illustrating aging classification accuracies associated with
BDPs and the HCA dendrogram. Each column displays accuracies for various
BDPs concerning a specific peak area or index calculation method, while each
row represents the classification accuracies for a distinct BDP method but with
different approaches to peak area and index calculations.
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spacing of the spectra in relation to each other. Consequently, each
normalization technique modifies the variation within the dataset.

Fig. 6 presents a cluster map and HCA dendrogram showing the
classification accuracies of aging states using index and peak area pa-
rameters. The HCA analysis reveals two distinct clusters for AT-based
and AB-based methods. Indices using AALI as the reference are more
distant than those with ATOTAL or peak areas. Classification accuracy for
raw data ranges from 0.75 to 0.79, with AB and AB-based indices
consistently yielding higher accuracies than AT and AT-related indices.
This indicates the robustness of AB-based methods in capturing relevant
features for classification aligns well with previous findings [2].

Among normalization methods, NDP is ineffective for AT/AALI, while

NCV is most effective for AT and AT/ATOTAL, increasing classification
accuracy from 0.75 to 0.82 by normalizing vector length [17]. For AB
and AB-based indices, NMO and RS show the highest improvement.
NMO preserves proportionality between features, and RS standardizes
data, reducing sensitivity to outliers [60]. Outlier detection was not
performed as all data points were integral and previous analyses showed
no unusual findings [12,18,19], highlighting that extreme points impact
full peak area classifications more significantly.

Integrating MC with AT-based calculations (AT, AT/ATOTAL, and AT/
AALI) shows no improvement in classification accuracy, consistent with
previous studies [28]. Applying NTS to AB-based calculations also
proves ineffective. This suggests that eliminating the mean effect (MC)
or focusing on relative contributions (NTS) is less effective than pre-
serving absolute values (NMO) or standardizing data (RS).

In summary, the superior performance of NMO and RS for AB and AB/
ATOTAL index, and NCV for AT and AT/ATOTAL index for enhancing
classification accuracy, provides valuable insights for future research
and practical applications in aging studies. These findings provide a
foundation for optimizing data preprocessing techniques in similar
spectroscopic analyses.

5.2.3. Effect of combined BDP and NDP methods on aging classification of
peak areas/indices

To evaluate the combined impact of baseline correction and
normalization, the original data frame was transformed into 81 modified
data frames using combinations of NDP and BDP methods. Peak areas
and indices were computed for each modified data frame, resulting in
486 accuracy values from PLSDA analysis, with their standard de-
viations from a 10-fold CV. These values are provided in the supporting
information, Table 5S. This paper focuses on the highest, lowest, and
raw data accuracy values for each FTIR parameter calculation method,
as shown in Table 4S. Additionally, an HCA dendrogram of all 486
values is presented in Table 2, revealing three primary groups: one for
peak area variables (AB and AT), another for aliphatic-based indices (AB,

T/AALI), and the last for summation of all peak area-based indices (AB, T/
ATOTAL). This illustrates the unique impact of peak area or index
calculation methods on the effectiveness of different DP methods.

Fig. 5. FTIR spectra of 20 samples before (Gray spectra, right vertical axis) and after (coral spectra, left vertical axis) the implementation of NDPs: a) NTS, b) NCV, c)
NMO, d) MC, e) AS, f) PS, g) RS, h) SNV, and i) MSC.

Fig. 6. Cluster map illustrating aging classification accuracies associated with
NDPs and HCA dendrogram. Each column displays accuracies for various NDPs
concerning a specific peak area or index calculation method, while each row
represents the classification accuracies for a distinct NDP method but with
different approaches to peak area and index calculations.
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The accuracy values indicate that the application of DP methods does
not consistently enhance post-processing quality. The belief that
randomly selecting DP methods or using multiple ones can be beneficial
is disproved, as some DP methods result in lower accuracy than raw
data. However, certain combinations can positively impact PLSDA
classification. For example, combining aspls with NMO for AB and AT
enhances accuracies to levels exceeding 0.80, although similar high
accuracies are achieved by using either NMO or aspls alone, indicating
no additional benefit from the combination.

Conversely, the lowest accuracies in each HCA cluster are from
different combined methods. For datasets based on peak areas (AB or
AT), the modpoly_MSC combination shows the lowest accuracy. MSC
normalizes variations across the entire spectrum, which, while elimi-
nating scatter effects, may diminish variations crucial for class
discrimination in aging classification. Modpoly and imodpoly, designed
to eliminate baseline variations, might lose discriminatory information
when followed by MSC. Additionally, combining DP methods can result
in an overly complex model, leading to overfitting and loss of important
classification information.

For indices based on AALI, the asls_MC combination results in the
lowest accuracy. Individually, asls decreased accuracy, and MC was
either ineffective or slightly improved accuracy, but their combination
significantly reduced accuracies. For indices based on ATOTAL, the
8points_NMO method exhibited the lowest accuracy. The 8points
method performed poorly individually, and its combination with NMO
led to reduced final accuracy. These findings highlight that the negative
impact of baseline correction methods can outweigh the positive effect
of normalization methods.

To sum up, the impact of combining BDPs and NDPs on classification

depends on the specific techniques used and can either enhance or
weaken post-processing quality. It is advisable to use appropriate NDPs,
such as NMO and RS for AB and AB/ATOTAL TAL, and NCV for AT and AT/
ATOTAL, or BDPs like aspls, rather than combined methods, to minimize
unnecessary computational expenses.

5.3. Variable importance in projection scores (VIP scores) for aging
classification of peak areas/indices

To determine the influential regions in bituminous binder spectra
affecting PLSDA classification of aging, VIP scores for each peak region
were calculated. VIP scores, which indicate the contribution of various
features to the PLSDA modeling, were categorized into highly, moder-
ately, and lowly important groups using thresholds of 1 and 0.7 [47].
This comparative analysis identified key regions for aging classification.
Fig. 7 shows VIP scores derived from classification using all peak areas
and indices calculated from raw spectral data, revealing significant
variability in scores based on the calculation method and region selec-
tion. Notably, the carbonyl region consistently attained the highest VIP
score for aging classification when analyzed using AB, AT, and the AALI-
based indices. High VIP scores were also observed in the hydroxyl and
fingerprint regions for indices-based classification, whereas the sulf-
oxide region demonstrated lower discriminatory power, particularly for
AB/AALI and AT/AALI indices.

Fig. 8 illustrates VIP scores for each peak region after applying DP
methods, using classification scenarios with the highest accuracy: NMO
and RS for AB and AB/ATOTAL, NCV for AT and AT/ATOTAL, and aspls for
both AB and AT. For NMO-based AB (Fig. 8 a), the regions 1280–1330,
1350–1395, and 1535–1670 cm− 1 exhibit the highest VIP scores,

Table 2
Upper and lower aging classification accuracy limits for the combination of NDPs and BDPs are provided, alongside raw data accuracies. The HCA dendrogram for the
entire accuracy dataset (Table 5S) is included for the clustering analysis of peak areas and indices.

Fig. 7. VIP scores of different regions in the PLSDA classification of ageing on peak areas and indices of raw spectral. This study employs threshold values of 1 and
0.7 to categorize features into highly, moderately, and lowly important groups.
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indicating their significant contribution to aging classification. These
regions correspond to various functional groups (Table 1), including
branched aliphatic structures (CH3) and aromatic structures (C=C
bonds), which play crucial roles in bituminous binder’s aging behaviour
[1]. The regions 710–912, 1100–1180, and 2820–2880 cm− 1 also show
high VIP scores, while the 2880–2990 cm− 1 region has the least impact.
Other regions, such as sulfoxide, carbonyl, and hydroxyl, have moderate
influence.

For NMO-based AB/ATOTAL indices, the regions 2820–2880 and
2880–2990 cm− 1 (aliphatic structure stretching) demonstrate the
highest scores, followed by the fingerprint region (710–912 cm− 1) and
aromatic and carbonyl regions. Conversely, the regions 1350–1390 and
1395–1525 cm− 1 (aliphatic structure bending) exhibit the lowest
contribution. This difference highlights the sensitivity of stretching vi-
brations to molecular alterations due to aging processes like oxidation.
Stretching vibrations involve changes in bond length and are more
responsive to these modifications, whereas bending vibrations, which
entail changes in bond angles, are generally less influenced by chemical
alterations compared to stretching vibrations [61]. Other regions, such
as sulfoxide, sulfones, and hydroxyl regions, hold a moderate impact on
aging classification.

In RS-based AB (Fig. 8 b), the regions 2820–2880 and 2880–2990
cm− 1 show the highest VIP scores, with aromatic and carbonyl regions
also presenting high scores. The hydroxyl region shows the least
contribution, with other regions having moderate impact. Similar to
NMO patterns are observed for RS-based AB/ATOTAL indices. For AT/
ATOTAL based on NCV-modified spectra (Fig. 8 c), the fingerprint region
exhibits the highest VIP score, followed by the segments 1350–1390
cm− 1, hydroxyl, and carbonyl regions. The sulfone region shows the

lowest contribution, while other regions such as sulfoxide, aromatic,
2820–2990, and 1280–1330 cm− 1 have moderate impact. Similar results
were obtained for NCV-modified AT.

For aspls-modified AB and AT (Fig. 8 d), only the carbonyl and aro-
matic regions have VIP scores above 1, demonstrating their significant
contribution, while the hydroxyl region shows the lowest contribution.
Other regions, including sulfoxide, sulfone, fingerprint, and 2820–2990
and 1280–1525 cm− 1, have moderate VIP scores. This finding aligns
with the VIP scores observed for raw data. Thus, it can be inferred that
implementing the aspls modification has the potential to enhance the
accuracy of peak area-based classification while maintaining the re-
gion’s importance similar to the original data. The VIP scores for AB and
AB/ATOTAL indices indicate that calculating indices diminishes the sig-
nificance of the aliphatic region (1350–1525 cm− 1) compared to AB
calculation. For AT and AT/ATOTAL indices, there is no observable dif-
ference in scores for all spectral regions. Normalization methods and
index calculations can alter the significance of various regions, high-
lighting the importance of methodological choices in aging
classification.

In summary, the key regions for aging classification depend on the
chosen normalization or baseline correction method, the approach to
peak area or index calculation, and the underlying chemistry of aging.
While data analysis provides initial insights, a comprehensive evalua-
tion requires integrating both data-driven analysis and fundamental
chemical knowledge.

Fig. 8. VIP scores of different regions in the PLSDA classification of ageing on, a) NMO-modified AB and AB/ATOTAL indices, b) RS-modified AB and AB/ATOTAL
indices, C) NCV-modified AT and AT/ATOTAL, d) aspls-modified AB and AT. This study employs threshold values of 1 and 0.7 to categorize features into highly,
moderately, and lowly important groups.
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5.4. Effect of DPs on entire and first derivative spectra for aging
classification

As previously mentioned in the introduction, research of bituminous
binders using chemometrics often concentrates on entire spectra or their
first derivatives. Consequently, this work investigated the impact of DP
methods on the classification utilizing both the entire spectra and its first
derivative (Fig. 3S, supporting information).

Table 3 lists the classification accuracies for the entire spectra with
and without DPs. Results show that the accuracy of 80 % for the entire
raw spectra is nearly identical to the value of 79 % when using peak area
or index parameters calculated based on raw spectra, as shown in
Table 4S. However, the influence of DP methods is more pronounced for
the entire spectra compared to the classification based on peak area or
index.

The baseline correction methods applied to the entire spectra did not
significantly improve PLSDA performance, likely due to the minimal
impact of baseline distortions on the overall spectral shape and pattern.
Only the pspline_asls method showed a slight increase in accuracy for
the entire spectra by correcting baseline distortions and improving peak
measurement accuracy [62]. This method’s improvement in spectra
quality can enhance classification performance. However, when pspli-
ne_asls was used for peak area and index calculation, a lower accuracy
was observed, as shown in Fig. 4. This is because pspline_asls focuses on
correcting distortions rather than the peak shapes crucial for
classification.

For the entire spectra, the NDPs with the highest accuracies were
autoscaling (AS), Pareto scaling (PS), and standard normal variate (SNV)
methods, which effectively normalize data and reduce variations in
absolute intensity levels [63]. Autoscaling and Pareto scaling [64] also
minimize noise impact and highlight relevant spectral features by
dividing by the standard deviation. However, these methods had less
impact on peak area/indices-based classification, as shown in Fig. 6,
possibly due to their specific effectiveness in normalizing intensity levels
rather than affecting peak regions significantly. When combined DP
methods were applied to the entire spectra, the highest accuracy reached
0.87 ± 0.02, comparable to normalization methods alone. However, the
poly_MC method decreased PLSDA accuracy for the entire spectra,
showing limited individual impact and poorer results when combined.

Table 4 shows classification accuracies for the first derivatives of
FTIR spectra affected by DP methods. Baseline correction applied to the
entire spectra, or their first derivatives did not significantly enhance
PLSDA performance. For first derivative spectra classification,
autoscaling (AS), robust scaling (RS), and standard normal variate (SNV)
methods again showed the highest accuracies. The poly_MC and asls_MC
methods reduced PLSDA accuracy when applied to the entire spectra
and its first derivative, respectively, indicating limited individual in-
fluence and even poorer results when combined.

In light of these findings, it is advisable to exclusively employ
appropriate normalization methods (SNV, AS, PS, and RS) for both

entire spectra and their first derivative datasets.

5.5. Effect of DPs on rejuvenation classification

The main objective of the following sections is to evaluate whether
the use of DP methods can improve the efficiency of distinguishing be-
tween rejuvenated and unrejuvenated binders. The characteristic peaks
of the utilized rejuvenators [18,65] (Fig. 4S, supporting information) fall
within the same ranges as those of bituminous binder, as specified in
Table 1. This observation indicates that none of the rejuvenators intro-
duce new range of consideration to the bituminous binder spectra. In the
bituminous binder mixed with rejuvenators spectra, only bio oil exhibits
two significant peaks at 1750 and 1160 cm− 1. These peaks fall within the
relevant range according to Table 1. While this was somewhat expected
due to the shared aromatic and aliphatic components between re-
juvenators and bituminous binder, only variations in peak shape and
area may occur due to peak overlap from both the binder and the added
oil.

5.5.1. Effect of different baseline correction methods on rejuvenation
classification of peak areas/indices

Fig. 9 illustrates the impact of baseline correction methods on reju-
venation classification and HCA clustering results for different peak area
and indices calculation methods.

The HCA dendrogram reveals two clusters: one with AB, AT and their
AALI-based indices, and the other with ATOTAL-based indices. These
clusters illustrate how BDPs influence accuracy. BDPs negatively impact
AB, AT, AALI-based indices, as shown in the right cluster of Fig. 9, while
positively affecting ATOTAL-based indices in the left cluster.

For raw data without BDPs, high classification accuracy indicates the
original dataset effectively distinguishes between rejuvenated and
unrejuvenated binders. BDPs have mixed effects on rejuvenation clas-
sification accuracy. All BDPs reduced accuracies for AB and AT classifi-
cations to 0.88, suggesting that rejuvenated binders possess unique
features detectable in raw data. BDPs make the data more uniform,
complicating classification, particularly for AB and AT − based classifi-
cations without additional steps like division by AALI or ATOTAL.

Baseline corrections like airpls, poly, and 8points decreased classi-
fication accuracy, and the aspls method reduced accuracy across all peak
area or indices calculations. The aspls method is not beneficial for dis-
tinguishing rejuvenated binders, possibly due to constraints applied to
the aspls model coefficients. However, other BDPs enhance classifica-
tions for ATOTAL-based indices.

To summarize, baseline correction methods varied in effectiveness,
often negatively impacting classification accuracies by eliminating
authentic spectral features or introducing artifacts that disturbed
essential discriminative information.

Table 3
PLSDA aging classification accuracies for the entire spectra in their raw form, after normalization, baseline correction, and using the top three accuracies along with the
lowest accuracy achieved through the combination of NDPs and BDPs.

Baseline-correction method Accuracy Normalization method Accuracy Combined BDP and NDP methods Accuracy
Max accuracy

asls 0.81 ± 0.02 NTS 0.82 ± 0.02 poly_RS 0.87 ± 0.02
aspls 0.80 ± 0.02 NCV 0.83 ± 0.02
imodpoly 0.82 ± 0.01 NMO 0.84 ± 0.02 pspline_asls_RS 0.87 ± 0.02
modpoly 0.82 ± 0.02 MC 0.82 ± 0.02
poly 0.78 ± 0.02 AS 0.86 ± 0.01 8points_RS 0.87 ± 0.02
pspline_asls 0.84 ± 0.02 PS 0.85 ± 0.02
pspline_airpls 0.81 ± 0.02 RS 0.84 ± 0.02 Min accuracy Accuracy
airpls 0.81 ± 0.02 SNV 0.86 ± 0.01 poly_MC 0.77 ± 0.02
8points 0.82 ± 0.02 MSC 0.84 ± 0.02

raw_data: 0.80 ± 0.02
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5.5.2. Effect of different normalization methods on rejuvenation
classification of peak areas/indices

The classification accuracies for the PLSDA classification of rejuve-
nation conditions using normalized data and the clustering based on
HCA analysis are illustrated in Fig. 10. The HCA dendrogram yields two
main clusters. One cluster contains AB and AB-based indices, while the
second group involve AT calculations.

Most normalization methods do not enhance classification accuracy
compared to raw spectral data, and many even reduce it. Exceptions are
the NTS and NCV methods, which achieve the same accuracy as raw
data. These methods address normalization by focusing on proportion-
ality and Euclidean length, crucial for identifying rejuvenation oils in
binders, thereby facilitating comparison between rejuvenated and
unrejuvenated groups. Given the dataset, normalization methods are not
advisable for classifying rejuvenated binders, as raw data exhibits the
highest accuracies.

5.5.3. Effect of combined BDP and NDP methods on rejuvenation
classification of peak areas/indices

Table 5 shows the best and worst accuracies achieved by combining
NDPs and BDPs. Detailed results are in the supporting information
(Table 6S). The table also includes an HCA dendrogram, illustrating how
peak areas or indices calculation methods are grouped based on their
accuracies. Notably, AALI-based indices cluster differently compared to
other peak areas and indices. For these AALI-based indices, combined
NDPs and BDPs did not improve accuracy; all combined methods yielded

lower accuracy than raw data. For AB/AALI and AT/AALI indices, 8points
and poly baseline corrections yielded the lowest classification accuracies
when applied individually. Interestingly, combining 8points and poly
with NMO and RS surpassed other NDPs in accuracy.

For AB, AT, and their ATOTAL-based indices, combining NDPs and
BDPs enhances classification. The imodpoly method, combined with
NTS or NCV, achieves the highest accuracies for AB and AT-based clas-
sification. While applying imodpoly independently significantly reduces
accuracy, combining it with appropriate normalization methods proves
beneficial. Conversely, if a normalization method negatively impacts
accuracy when applied alone, its combination with BDPs, such as RS for
AB-based classification, further reduces accuracy. RS yields the lowest
accuracy for AB-based classification when applied alone, and when
combined with 8points and airpls, it again results in the lowest accuracy.
For AT-based classification, the combined method with MC yields the
lowest accuracies. For ATOTAL-based indices, the airpls method produces
the lowest classification accuracy both individually and in combination
with NDPs.

The efficacy of DP methods depends on the specific peak area or
indices method and the classification purpose. Positive individual out-
comes of DP methods increase the likelihood of achieving high accuracy
through their combination with other DP methods. Conversely, if a DP
method performs poorly when applied individually, its combination
with others will likely also reduce overall performance.

Table 4
PLSDA aging classification accuracies for first derivative spectra in their raw form, after normalization, baseline correction, and using the top three accuracies along
with the lowest accuracy achieved through the combination of NDPs and BDPs.

Baseline-correction method Accuracy Normalization method Accuracy Combined BDP and NDP methods Accuracy
Max accuracy

asls 0.82 ± 0.02 NTS 0.82 ± 0.02 asls_NTS 0.87 ± 0.02
aspls 0.82 ± 0.02 NCV 0.86 ± 0.02
imodpoly 0.83 ± 0.02 NMO 0.86 ± 0.02 asls_NCV 0.87 ± 0.02
modpoly 0.83 ± 0.02 MC 0.82 ± 0.02
poly 0.82 ± 0.02 AS 0.87 ± 0.02 modpoly_NTS 0.87 ± 0.02
pspline_asls 0.82 ± 0.02 PS 0.83 ± 0.02
pspline_airpls 0.82 ± 0.02 RS 0.87 ± 0.02 Min accuracy Accuracy
airpls 0.82 ± 0.02 SNV 0.87 ± 0.02 asls_MC 0.82 ± 0.02
8points 0.82 ± 0.02 MSC 0.86 ± 0.02

raw data: 0.82 ± 0.02

Fig. 9. Cluster map illustrating rejuvenation PLSDA classification accuracies
associated with BDPs and the clustering of peak area or indices methods. Each
column displays accuracies for various BDPs concerning a specific peak area or
index calculation method, while each row represents the classification accu-
racies for a distinct BDP method but with different approaches to peak area and
index calculations.

Fig. 10. Cluster map illustrating rejuvenation classification accuracies associ-
ated with NDPs and clustering of peak area or indices methods. Each column
displays accuracies for various NDPs concerning a specific peak area or index
calculation method, while each row represents the classification accuracies for
a distinct NDP method but with different approaches to peak area and index
calculations.
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5.6. Effect of DPs on the entire and first derivative spectra for
rejuvenation classification

Examining the entire spectral range for rejuvenation classification
yields an accuracy of 0.95 (Table 6). Normalization methods NTS and
NCV significantly enhance accuracy, while MC negatively impacts it.
Baseline correction techniques do not improve accuracy, likely due to
the elimination of crucial features. NDPs outperform BDPs in classifying
based on entire spectra and can mitigate accuracy declines from BDPs.
However, combining poorly performing NDP methods with BDPs further
diminishes accuracy, making MC the least favourable method.

For first derivative spectra, NDP methods generally perform better,
achieving accuracies of 1, except for MC and PS (Table 7). BDP methods
are ineffective and can reduce accuracy, particularly poly and pspli-
ne_asls/airpls. Combined NDPs and BDPs show high accuracies, except
when involving MC and PS. Combining individual underperforming
methods from NDPs, such as MC, and BDPs, like poly, further reduced
accuracy in the combined approach. Effective NDP methods like NTS
and NCV are sufficient for high-quality classification using either entire
spectra or first derivative spectra. Utilizing random DPs and an unop-
timized combined method can suffer from high computational costs and,
more importantly, result in lower classification accuracies.

5.7. Comparison of DP’s effect on different classification goals

In rejuvenation classification, raw data PLSDA accuracy surpasses
aging classification due to distinctive features in rejuvenated binders.
BDPs impact peak area and index classification variably. The aspls
method improves aging classification accuracy when combined with
peak areas and indices, while asls, poly, and 8points decrease it. BDPs do
not enhance aging classification accuracy based on entire spectra or
their first derivative; poly even reduces it. For rejuvenation, BDPs
generally reduce classification quality, with airpls slightly improving the
first derivative. This underscores the necessity of selecting suitable pre-

processing methods aligned with specific objectives and input data.
Among NDP methods, aging classification achieves highest accu-

racies with NMO and RS for AB and AB/ATOTAL, NCV for AT and AT/
ATOTAL, and AS, PS, and SNV for entire spectra and their first derivative.
For rejuvenation, NTS and NCV maintain PLSDA accuracy equivalent to
raw data for peak areas and indices and enhance accuracy for entire
spectra and their first derivative. The MC method reduces accuracies in
both classifications and is not recommended for FTIR spectra studies of
bituminous binders. Combining NDP and BDP methods does not
enhance classification accuracies more than using only NDPs for peak
areas and indices. For entire spectra or their first derivative, the com-
bined DP methods’ performance depends on individual methods’
effectiveness. Low-performing methods like MC and poly result in low
performance when combined.

HCA clustering of peak areas and indices based on BDP-modified
spectra shows that different classification objectives influence clus-
tering outcomes. Irrespective of the clustering objective, calculations
involving AB and AT tend to cluster together. HCA dendrograms based on
NDP-modified spectra reveal consistent clustering patterns for both
aging and rejuvenation classifications, with one cluster encompassing
AB and AB-based indices and another consisting of AT calculations.
Changes in the dataset impact the arrangement and proximity of sam-
ples in clusters. Similar clustering patterns for aging and rejuvenation
classifications based on the accuracies of combined DP methods were
also observed.

6. Conclusions

This study investigates the efficacy of various data pre-processing
(DP) methods, including normalization (NDPs), baseline correction
(BDPs), and their combinations (CDPs), in enhancing the classification
accuracy of ATR-FTIR spectra from different bituminous binder types,
sources, and aging conditions. The primary focus is on evaluating these
pre-treatment methods using Partial Least Squares Discriminant

Table 5
Upper and lower rejuvenation classification accuracy limits for the combination of NDPs and BDPs are provided, alongside raw data accuracies. The HCA dendrogram
for the entire accuracy dataset (Table 6S) is included for the clustering analysis of peak areas and indices.

Table 6
PLSDA rejuvenation classification accuracies for entire spectra in their raw form, after normalization, baseline correction, and using the top three accuracies along with
the lowest accuracy achieved through the combination of NDPs and BDPs.

Baseline-correction method Accuracy Normalization method Accuracy Combined BDP and NDP methods Accuracy
Max accuracy

asls 0.92 ± 0.03 NTS 0.97 ± 0.01 pspline_asls_NTS/NCV 0.99 ± 0.01
aspls 0.90 ± 0.02 NCV 0.98 ± 0.01
imodpoly 0.88 ± 0.03 NMO 0.90 ± 0.02 pspline_airpls_NTS/NCV 0.99 ± 0.01
modpoly 0.85 ± 0.02 MC 0.88 ± 0.03
poly 0.88 ± 0.03 AS 0.95 ± 0.02 airpls_NTS/NCV 0.99 ± 0.01
pspline_asls 0.87 ± 0.03 PS 0.93 ± 0.01
pspline_airpls 0.89 ± 0.03 RS 0.90 ± 0.01 Min accuracy Accuracy
airpls 0.88 ± 0.03 SNV 0.95 ± 0.02 BDPs + MC 0.88 ± 0.03
8points 0.90 ± 0.03 MSC 0.93 ± 0.02

raw data: 0.95 ± 0.01
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Analysis (PLSDA) classification, examining areas under peaks, indices,
entire spectra, and first derivative spectra. This research addresses a
significant gap in the literature concerning optimal pre-processing
strategies for spectral data analysis in the context of bituminous
binder rejuvenation.

The impact of BDPs on classification accuracy is diverse, with both
positive and negative outcomes. The selection of BDPs should be guided
by the dataset’s specific characteristics and the objectives of the classi-
fication task. Therefore, it is advisable to thoroughly weigh the costs,
risks, and benefits of employing baseline correction before incorporating
it into future studies. Moreover, the efficacy of normalization methods
proves to be dependent on the specific objectives of the study and the
calculation method for input data (whether it involves peak areas,
indices, entire spectra, or their first derivative). Furthermore, the com-
bination of normalization and baseline correction methods can yield
diverse outcomes, dependent on the specific DP methods and input
datasets employed.

Analyzing the significance of different spectral regions for classifi-
cation, the variable importance in projection (VIP) scores indicated that
regions like carbonyl and sulfoxide are crucial, although their impor-
tance can change with different pre-treatment methods. Normalization
methods and index calculations can alter the significance of various
regions, highlighting the importance of methodological choices in aging
classification. This underscores the need for careful selection of spectral
regions tailored to the study’s objectives and the pre-processing methods
employed. Relying solely on common practices of focusing on carbonyl
and sulfoxide may not provide sufficient discrimination.

Based on the findings of this study, the comparison between the
performance of entire spectra/first derivative and indices/peak areas
showed that using entire/first derivative spectra yields higher classifi-
cation accuracy, indicating greater informativeness. This finding sup-
ports the use of these approaches for future aging-related chemometric
analyses. Moreover, regarding the most suitable method for calculating
peak areas or aging indices, the findings indicate that indices based on
ATOTAL outperform AALI-based indices and peak areas (either AT or AB)
when subjected to different DP methods. The choice between AT/ATOTAL
and AB/ATOTAL depends on the study’s goal. For investigations aiming to
use diverse data sources and recognize gradual changes across all
sources (like aging), AB/ATOTAL indices are recommended. On the other
hand, for studies focused on distinguishing a specific data source from
the rest, it is suggested to use AT/ATOTAL.

Furthermore, the investigation into whether a single pre-processing
method could be universally effective showed that the effectiveness of
pre-processing methods is dependent on various factors. These factors
include the specific classification goal (e.g., aging studies or the iden-
tification of additional materials like rejuvenators), the characteristics of
the dataset, and the methods employed (peak areas, indices, entire
spectra, or their first derivative). It is crucial to align the choice of DP
methods with specific characteristics of the input dataset and the ob-
jectives of the classification study. Additionally, to choose the best DP

methods rapidly and efficiently for a given study, multivariate analysis
tools like PLSDA are necessary. Among the methods employed in this
study, it is advisable to include NCV, NMO, RS, and NTS methods for
peak area or indices-based classification. For entire spectra and first
derivative, NTS, NCV, AS, PS, and SNV methods are recommended. On
the other hand, MC and poly methods showed poor performance in both
classification analyses, so they are recommended to be excluded from
future analyses. Lastly, aspls is a suitable option for studies focusing on
gradual material changes, such as multi-level aging studies. However,
for studies focused on additive detection, like rejuvenator studies, it is
likely better to exclude the aspls method.

In conclusion, this study provides a comprehensive evaluation of DP
methods for spectral data classification, offering valuable insights into
selecting appropriate pre-treatment strategies to enhance classification
accuracy. By identifying the most effective methods for different clas-
sification tasks, researchers can design more accurate and efficient ex-
periments, optimizing resource allocation and reducing operational
risks. This targeted approach ensures reliable and robust classification
outcomes, contributing to more efficient research and development
processes in the field of bituminous binder analysis.
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Table 7
PLSDA rejuvenation classification accuracies for first derivative spectra in their raw form, after normalization, baseline correction, and using the top three accuracies
along with the lowest accuracy achieved through the combination of NDPs and BDPs.

Baseline-correction method Accuracy Normalization method Accuracy Combined BDP and NDP methods Accuracy
Max accuracy

asls 0.93 ± 0.03 NTS 1.00 ± 0.00 All except methods with MC &PS > 0.97 ± 0.01
aspls 0.92 ± 0.03 NCV 1.00 ± 0.00
imodpoly 0.93 ± 0.03 NMO 0.99 ± 0.01
modpoly 0.93 ± 0.03 MC 0.93 ± 0.03
poly 0.88 ± 0.02 AS 1.00 ± 0.00
pspline_asls 0.89 ± 0.03 PS 0.96 ± 0.01
pspline_airpls 0.93 ± 0.03 RS 0.99 ± 0.01 Min accuracy Accuracy
airpls 0.96 ± 0.01 SNV 1.00 ± 0.00 poly_MC 0.88 ± 0.02
8points 0.93 ± 0.03 MSC 1.00 ± 0.00

raw data: 0.93 ± 0.03
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Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.fuel.2024.132701.
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