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Abstract

With widespread use of advanced technology for the recording, storing and sharing
of social interactions, protecting privacy of people has been a growing concern. This
paper zooms in on the collection of spoken audio with regard for the privacy of recorded
individuals.

Recently efforts have been made to collect audio at a low sampling rate to obfuscate
spoken words in the recorded audio, such that conversations are kept private. This
research investigates whether it is possible to upsample this low-resolution audio, using
an existing super-resolution model, in order to reveal parts of the previously obfuscated
conversations. The performance of the model is measured in terms of the word error
rate of automatically generated transcriptions of the upsampled audio.

It turns out that it is possible to significantly increase the intelligibility of low-
resolution privacy-sensitive audio by upsampling. Though the use of the super-resolution
model seems to be limited when it comes to revealing significant parts of conversations.

1 Introduction

In a world with advanced technology for the recording, storing and sharing of social in-
teractions, protecting privacy of people has been a growing concern. This is evidenced by
a growing number of regulations concerning privacy [1]. Inevitably, this also has a great
impact on how personal data is collected and distributed in all areas of scientific research.
Consequently new studies are putting efforts into preserving the privacy of participants of
data collections, while still being able to perform useful analyses on the collected data.

This paper zooms in on the collection of spoken audio with regard for the privacy of
recorded individuals. Rhythm [2] and MINGLE [3]| are examples of experiments where
spoken audio was recorded and special attention was paid to the privacy of participants.
The audio was recorded in such a way that spoken words are hard to understand, in an
attempt to obfuscate the contents of conversations — this audio is called privacy-sensitive
audio. This was achieved by recording the audio at a very low sampling rate, which results
in loss of high frequency information. Many important speech cues, such as consonants, are
typically contained within these higher frequency bands [4].

While these efforts are certainly promising, not a lot of research has been put into how
sound the method of down-sampling is for the purpose of protecting privacy. There is also a
lack of insight into how useful the remaining low sampling rate audio data is for performing
analyses such as VAD (Voice Activity Detection), laughter detection or emotion detection.

In this paper I aim to address part of the aforementioned concerns, namely the soundness
of down-sampling in protecting privacy. More specifically this paper is about exploring the
possibility of hallucinating the — unrecorded — higher frequency components in order to
increase the intelligibility of the recorded conversational audio and possibly recover hidden
conversations. Hence, the main research question of this paper can be stated as: Can ezisting
super-resolution techniques be used to reveal hidden conversations in privacy-sensitive audio?

Super-resolution is a synonym for bandwidth extension (BWE) — the term BWE is more
commonly used in the world of audio processing. A lot of research has been done in the area
of audio bandwidth extension [5]-[11]. Typically BWE techniques are meant to improve the
quality of telephony speech or compressed music. However, BWE happens to do exactly
what is needed for our purposes as well; infer (i.e. hallucinate) higher frequency components
from low sampling rate audio data. I have used one of these existing models, a neural network
designed by Kuleshov et al. [5], to explore whether it is possible to reveal conversations that
were previously unintelligible.



After training, the model should be able to predict high-resolution audio — containing
information in higher frequency bands — based on a low-resolution input signal. The model
is then validated by transcribing predicted audio using automated speech transcription soft-
ware and comparing the resulting hypothesis transcriptions to reference transcriptions by
calculating the WER (Word Error Rate). By comparing the WER of the predicted audio
transcription to the WER of a low-resolution audio transcription, some insight can be gained
into whether the model is able to increase the intelligibility of spoken audio and in extension
whether conversational information is revealed. Refer to section 3.3 for more information
about WER and other metrics used in this paper.

The remainder of the paper is organized as follows. In section 2, some additional back-
ground is provided on the RhythmBadge and Midge, as well as some background on audio
super-resolution. Section 3 describes the model and the datasets used for training evalua-
tion, followed by . Section 4 presents the results, preceded by a precise description of the
experimental setup. Section 5 reflects on ethical aspects and reproducibility of this research.
Then finally in sections 6 and 7 the main conclusions are presented, followed by a discus-
sion on the limitations of this research as well as some recommendations to what could be
improved upon in follow-up research.

2 Background

This section provides the necessary foundations for understanding the main contributions of
this paper. First more background is provided on the RhythmBadge and Midge experiments,
which form the basis of this research. Then some background on audio super-resolution is
given.

2.1 RhythmBadge

In 2018, the MIT Media Lab developed a measurement platform, called Rhythm, that
was meant to aid research in the fields of computational social science and organizational
design [2]. They also conducted a study around measuring face-to-face interactions in formal
meetings, using the Rhythm platform. The study focused on hybrid meetings, meetings
where some participants are in the same room and others are connected through an online
video call. Using the RhythmBadge, a badge worn by each of the participants, three types of
data were collected: vocal activity, inter-badge proximity and location (relative to beacons
in the room). For privacy reasons the badge recorded audio at a low sample rate (700Hz).
They found that this sampling rate was sufficient for their purposes, as the audio was only
needed for VAD.

2.2 Midge

TUDelft’s Socially Perceptive Computing lab carried out a data collection at the ConfLab
conference in Nice [3]. Different kinds of data types were collected using a badge, called
Midge, which was inspired by the design of the RhythmBadge. The collected data was meant
for measuring and studying social interactions. Similarly to Rhythm, proximity and low
sample rate audio were collected. Additionally, acceleration data was collected for measuring
movements and gestures. A higher sampling rate of 1.25kHz was used for recording the audio,
compared to the 700Hz adopted by the RhythmBadge. This is because the ConfLab setting
— a busy networking event — came with a significant amount of additional noise (so-called



cocktail party noise), compared to the environment of the Rhythm experiment — a formal
business meeting. It is yet to be verified whether the 1.25kHz sampling rate is adequate
when it comes to privacy preservation.

2.3 Audio Super-Resolution
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Figure 1: A visualization of audio super-resolution (also known as artificial bandwidth
extension).

Audio super-resolution entails the inference of a high-resolution signal based on a low-
resolution input signal. It can also be thought of as “hallucinating” higher frequencies that
are missing in the low-resolution input. A visualisation of this process is shown in figure 1.

Methods for audio super-resolution, better known as (artificial) bandwidth extension —
(A)BWE - in audio signal processing, have been widely studied — as summarized by Prasad
and Kumar [12]. Over the years many different approaches have been developed for speech
BWE. Usually these are developed with the goal of increasing the quality and intelligibility
of speech over narrow-band (NB) telephone connections. According to Prasad and Kumar,
speech BWE methods can be classified into two categories: model based techniques and
non-model based techniques. In model based techniques a statistical model is derived from
training data which is then used to predict a wide-band (WB) signal from a NB signal. The
model can be as simple as a linear mapping, or more complex, such as the Gaussian Mixture
Model or the Hidden Markov Model.

Recently the focus has shifted to models based on neural networks [5]-[11]. Methods
using neural networks have proven to outperform previous methods and are often preferred
over other methods because of the versatility of neural networks. A variety of neural net-
work architectures have been proposed, where some operate on time domain audio features
(based on the raw waveform of the audio) [5] and others on frequency domain features (e.g.
spectrograms, achieved by first applying a Fast Fourier Transform to the waveform) [6], [7].
However, the best results so far have been achieved by taking advantage of a combination
of both time and frequency domain features [8]-[11]. All of these hybrid solutions combine
the time and frequency domains in a similar way: the networks operate on a time domain
waveform both as input and output — this is commonly called an end-to-end solution —,
and the loss function is some combination of a time domain loss measure and a frequency
domain loss measure.

For this research I have chosen to use a super-resolution method based on a neural
network, designed by Kuleshov et al. [5], which operates on audio in the time domain.
Refer to section 3.1 for more information on this choice and the model itself.



3 Methodology

This section lays out the methodology that was adopted to answer the main research ques-
tion. First I introduce the model that was used to perform super-resolution. Then I provide
background on the datasets that were used to train and evaluate this model. And finally
the evaluation strategy is discussed.

3.1 The Super-Resolution Model

As discussed in section 2.3, modern super-resolution techniques are usually based on neural
network models. The model I have chosen, developed by Kuleshov et al. in 2017 [5], is not
the most the most recent. In fact, more recent models have proven to outperform Kuleshov’s
model, such as Eskimez’s GAN-based solution [6].

However, Kuleshov’s slightly outdated model was of all the models I found by far the
most accessible, since the source code is publicly available on GitHub!. Additional benefits
of their model are its simplicity, its end-to-end nature and the fact that it can easily handle
any desired sampling rate. The model also supports different upscaling ratio’s (2x, 4x and
6x) out of the box. For these reasons Kuleshov’s model was preferred over more recent
models.

The architecture of Kuleshov’s deep neural network highly resembles that of a typical
autoencoder [13]. Just like a typical autoencoder network it has a number of convolutional
downsampling layers (called D Blocks in figure 2) and an equal number of convolutional
upsampling layers (called U Blocks in figure 2). It also has a bottleneck layer, which is typical
for autoencoders. The bottleneck layer encourages the model to learn a low dimensional
representation of the data, which prevents overfitting on the training data. Unlike typical
autoencoders the model has concatenating skip connections between each corresponding
down- and upsampling layer as well as additive skip connections between the input and
output layers. These skip connections allow the upsampling layers to reuse information
embedded in the weights of the downsampling layers.

Where Kuleshov’s approach differs most from an autoencoder is in the way it is trained.
Autoencoders are trained in an unsupervised manner where the original time series also
serves as the ground-truth, while Kuleshov’s model is trained with low-resolution audio sig-
nals as input and corresponding high-resolution audio signals as output. The low-resolution
audio signal is upsampled using interpolation — by means of a 3rd order B-Spline — such that
the sample rate of the high-resolution output signal is matched, before it is fed through the
network.

A mean squared error (MSE) objective (loss function) is used during training:

D) = %\ [ i = fola) (1

Where D is a dataset consisting of n audio fragments z; and their corresponding reference
fragments y;. fo(z;) represents the prediction on input z; of a model parameterized by 6.

A number of hyper-parameters can be tweaked to change the capacity and (training)
behavior of the model:

e pool size and pool stride, respectively, determine the size and stride of the max-
pooling windows used in the convolutional blocks.

Thttps://github.com/kuleshov/audio-super-res
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Figure 2: The architecture of the neural network model designed by Kuleshov et al. [5]

e The layers parameter (denoted as B in figure 2) determines how many convolutional
layers are included in the upsampling and downsampling blocks — e.g. layers=4 means
there are 4 upsampling and 4 downsampling blocks.

e The scale parameter determines the ratio between the low-resolution input signal and
the high-resolution output signal.

e patch size determines the size of patches in terms of number of samples. These
patches are extracted from the audio in training and validation sets during pre-
processing (see section 4.1). These patches are then passed through the network one
by one to get predicted output per patch.

e patch stride determines at which intervals patches are extracted. If patch stride is
smaller than patch size, subsequent patches will have some overlap.

e The epochs parameter determines the number of epochs to use during training. Dur-
ing each epoch the entire training set is passed through the network in batches and
after each batch the weights of the network are updated based on the prediction error.

e batch size determines the size of each batch in numbers of patches. Larger batch
sizes use more GPU memory, but speed up the training process.

e The learning rate is a scalar that determines by how much the weights are adjusted
after each training step. A higher learning rate causes the model to learn more quickly,
but allows for less exploration of the problem space — thus a learning rate that is too
high might result in sub-optimal model performance.

3.2 The LaRed and ConfLab Datasets

For this research I was provided with two different datasets: the LaRed dataset and the
ConfLab dataset. The ConfLab dataset, as mentioned in 2.2, was gathered at a networking
event and the audio was sampled at a low frequency (1.25kHz). Since the event where



the data was collected was an international event, we can expect different languages to be
contained in the audio. Because of the low sampling rate it is hard to verify what languages
are spoken exactly, but most of the spoken audio is probably in English.

The LaRed dataset was gathered at a different networking event, but the audio was
recorded at a much higher sampling rate (44.1kHz; CD quality). The LaRed dataset contains
audio recorded from the perspectives of 16 different people, totalling roughly 11 hours of
speech data (after cutting out silences). Most of the spoken audio is in Dutch, though
sometimes English is spoken as well.

Since the LaRed audio is available in very high quality, it is well suited as dataset
for training the model. This is because high-resolution audio is needed to generate good
reference transcriptions and it allows for testing model on a wide range of input sampling
rates — in theory anywhere from 0Hz to #kHz, where r is the upsampling rate. The
ConfLab audio, on the other hand, is only available in 1.25kHz sampling rate, which severely
limits its usefulness as training dataset.

Therefore, the LaRed data has been used to train and test the model. And a final
assessment of the model is made by testing the model on the ConfLab data.

3.3 Evaluation

Naturally, a way is needed to quantify the performance of the model objectively. Widely
used metrics for measuring BWE methods in literature are SNR (Signal-to-Noise Ratio),
LSD (Log Spectral Distance) and PESQ (Perceptual Evaluation of Speech Quality).
SNR usually describes the ratio of a signal to noise in that signal — hence its name.
It operates in the time domain, as it divides the squared amplitudes of a reference signal
by the squared amplitudes of a noise signal at corresponding discrete time points. Squared
amplitudes are proportional to the intensity — power per unit area — of a signal. In this paper
SNR is used to compare the intensity of error in predicted audio signals to the intensity of
their corresponding reference signals. The following formula is used for SNR in this paper:

2
SNR(z,y) = 1010g&22 (2)
lz = yll3

Where y is a reference signal and z is an approximation, thus ||z — y|| can be thought of
as the difference, or error, between the approximated signal and the reference signal. Higher
SNR values are better. One thing to note is that it has been shown that the SNR measure
has very low correlation with subjective tests of speech quality, and is therefore not very
indicative of change in intelligibility [14]. The SNR measure is mostly included because it
could be useful for comparing my results with results from previous or future papers.

LSD measures the distance between two spectrograms in decibels. This implies that
the LSD measure operates in the frequency domain. Instead of comparing amplitudes at
discrete time points, LSD compares the power per frequency bin of a reference signal to
the corresponding frequency bin of an approximated signal. Before LSD can be measured,
first the spectrum of an audio signal must be calculated — using the FFT (Fast Fourier
Transform) method —, this spectrum is then squared and the logarithm is taken of the
squared spectrum.

LSD = % > % SIX (LK) - X (1 k)]? (3)
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X and X are the log-power spectra (LPS) of the ground truth and estimated signals respec-
tively. K is the number of frequency bins and L is the number of segments in time.

Similarly to SNR, the LSD metric has low correlation with subjective speech quality
measures and is not particularly useful for our purposes, but is included for comparison
with other papers in the area of audio super-resolution.

PESQ is a measure that was specifically developed for assessing the speech quality in a
degraded signal, standardized by the International Telecommunication Union Telecommu-
nication Standardization Sector (ITU-T). PESQ has been shown to correlate significantly
better with subjective audio quality measures, as it was in fact designed to do [15]. PESQ
emulates the MOS (Mean Opinion Score) metric, which is a measure that is typically used
in subjective studies of audio quality. MOS quantifies the subjectively percepted quality of
audio using a real-valued scale from 1 to 5, where 1 corresponds to bad audio quality and
5 to excellent audio quality. Because of its high correlation with subjective audio quality
measures — which are considered the best way to measure audio quality —, the PESQ metric
is more indicative of audio quality and intelligibility than both SNR and LSD [14].

There is no simple formula to calculate PESQ, instead the measurement is performed
using proprietary software written in C, for which a Python wrapper is publicly available
[16].

While the previously described metrics are somewhat useful for comparing results of one
model to the results of another, their use for measuring the intelligibility of generated audio
is limited and they are of no use at all for testing whether actual words or sentences can be
understood from the generated audio. Thus, to verify whether the model actually increases
the ability to understand or transcribe conversations contained in the audio, another way
of measuring is needed.

To this end, automatic transcription has been used to generate transcriptions of the
audio, which are called hypothesis transcriptions. These hypothesis transcriptions are then
compared to reference transcriptions. We can measure how different the hypothesis is from
the reference by calculating the word error rate (WER):

S+I1+D

WER = = (4)

Where S is the number of substitutions (words that are different in the hypothesis
transcription), I is the number of insertions (words that are in the hypothesis, but not in
the reference), D is the number of deletions (words that are in the reference but not in the
hypothesis) and N is the total number of words in the reference transcription.

This WER can be used to compare the intelligibility of audio generated by one trained
model to audio generated by another. Lower WER’s are better.

4 Experimental Setup and Results

This section describes in detail how the experiments were conducted and concludes with
presenting the results that were obtained in the process.

4.1 The Pre-Processing Pipeline

The audio in the LaRed dataset is contained in 16 large audio files (4 hours each), each
audio file corresponding to audio of a different participant. First, large silences were cut
from the audio, using a custom python script that drops chunks from the audio where the



volume is below a certain threshold — 89dB was found to be a good threshold. This resulted
in 16 audio files between 1 and 3 hours in length.

These audio files were then normalized — such that the volume of each audio file is roughly
the same —, noise-reduced? and cut up into smaller segments of between 0.5 and 100 seconds
in length. The normalization, noise-reduction and cutting were all done using Logic Pro X, a
proprietary software developed by Apple Inc.3. Logic Pro X was chosen because I happened
to have access to it and it has a tool for cutting out silences that was significantly faster
than solutions using python — a bonus is that it offers a nice user interface which helps when
trying to find suitable parameters.

The quality of audio from one of the participants was quite poor as it contained a lot of
popping and cracking sounds, so it was left out of the training set. It was, however, used
for additional evaluation later on. After all of the previous steps, and excluding the audio
from one participant, a total of roughly 10.5 hours of audio remained, consisting purely of
speech with reduced background noise.

The dataset was then split up into three parts: a training set, a validation set (for
evaluating the model during training) and a test set (for evaluating the model after training).
80% of the files were put into the training set, 10% into the validation set and the remaining
10% into the test set. Files were chosen randomly, without replacement. The test set was
used later on to generate all of the results.

Some further processing was needed on the training and validation sets before they could
be passed to the model for training. Each audio file was first resampled to the desired output
sampling rate (X), these audio files would be used as the high-resolution ground truth
samples. Then each of these high-resolution audio files was paired with a low-resolution
version with sampling rate i - X, produced by further decimating the resampled signal by
the inverse of the upsampling ratio (47! = %) — after applying an order 8 Chebyshev type I
filter to avoid aliasing.

Both the low- and high-resolution files were then cut into smaller patches of equal length
— determined by the patch size parameter. These patches have some overlap with preceding
and succeeding patches — depending on a stride parameter. Some patches were dropped to
ensure that the number of patches is a multiple of the batch size — which is required by the
model. Finally, the resulting arrays of patches were written to disk, ready for training.

Using this pre-processing pipeline, five training sets were generated, each based on a
different input sampling rate: 300Hz, 550Hz, 800Hz, 1250Hz and 2000Hz.

4.2 Training the Model

The neural network was trained on each of the five generated training sets. I have chosen to
work with an upsampling ratio of 4, since the creators of the network achieved good results
with it. Furthermore, a batch size of 32 (patches) was chosen. The patch size was set to
8192 (samples) and the stride for patching to 4096. I chose to use a learning rate of 3-1074,
pooling window with size 2 and stride 2 and 4 downsampling and upsampling layers. The
reason for choosing these values is that the creators of the neural network model [5] achieved
good results with them in their experiments and based on exploratory experiments I saw no
apparent reason to change them.

2Noise reduction was performed using the X-Noise plugin for Logic Pro X, which learns a noise profile
based on a user-selected piece of the audio file, containing purely noise, and then applies the noise reduction
to the remainder of the audio.

3https://www.apple.com/logic-pro/



Input sample rate (Hz) Number of epochs Time (hours)

300 60 1.59
550 60 4.56
800 60 10.15
1250 60 18.97
2000 30 20.33

Table 1: Duration of training sessions of the same neural network with different sample rates
as input. The training duration is given in hours.

Each model was trained for 60 epochs, since early tests showed that additional epochs
did not significantly improve performance of the model. With the exception of the 2000Hz
dataset, which was trained for just 30 epochs in the interest of time.

The models were trained on a system running Ubuntu 20.04 with 32GB of RAM and an
Nvidia RTX 3080 GPU — with 10 GB of VRAM. Table 1 shows how long each model took
to train on this system.

4.3 Results

To evaluate the trained models I used four different metrics, as introduced in section 3.3:
SNR, LSD, PESQ and WER. For this evaluation a test set was reserved that contains 1.28
hours of speech data (from 15 different speakers), pre-processed in exactly the same way as
the training set. This data was not seen by the model during training, though the model
was trained on different data from the same participants.

The results are shown in tables 2 and 3. It can be observed that, as expected, speech
quality (PESQ) improves with increasing input sampling rates. This is because simply more
frequency information can be represented with higher sampling rates and the model seems
to be able to make use of this additional information. And this speech quality improvement
seems to also translate to an increase in intelligibility of the predicted high-resolution audio
compared to the low-resolution audio, as evidenced by the WER values in table 3. For each
input sampling rate there seems to be an improvement int the WER of the predicted audio.
Though this improvement is very minimal in the models trained on 300Hz and 550Hz, the
800Hz model already shows a more significant improvement (a 3.3% decrease in WER). The
most significant improvements are achieved with the 1250Hz and 2000Hz models, with a
4.3% and a 7.1% decrease in WER respectively.

Though these relative improvements are promising, it must be noted that a WER of
90% or higher is quite poor, especially considering the fact that these WER'’s are calculated
based on generated reference transcriptions — not a true human-made trancription. Thus
the true WER would be even worse. This means that only a very small percentage of the
actual words are transcribed correctly. I confirmed this by listening to the low-resolution
and predicted high-resolution audio files. Most of the audio is hardly comprehensible in the
1250Hz and lower low-resolution audio files, while words and sometimes sentences or parts
of sentences start to be comprehensible in the upscaled versions of the 1250Hz and 2000Hz
audio files*.

As briefly mentioned in section 4.1, the audio of one speaker was left out of the training
set completely. The audio of this speaker was used to see how well the model performs on

41t must be noted that this listening experiment was purely explorational, in future work a more formal
subjective study to verify results would be recommended.
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Input sample rate (Hz) SNR (dB) LSD (dB) PESQ (MOS)

300 0.27 4.67 1.56
550 1.34 3.64 1.59
800 2.80 3.33 1.73
1250 6.46 3.37 2.33
2000 9.63 3.56 2.67

Table 2: Objective results of the model trained on audio sourced at five different sampling
rates from the same dataset. The SNR and LSD metrics were calculated based on the
predicted audio sampled at the output rate (4x the input rate), with corresponding ground
truth audio segments as reference signals at the same sampling rate. The PESQ measure
was calculated by first resampling the audio signals (both the predicted and reference signal)
at 8kHz.

Input sample rate (Hz) WER (LR)* WER (PR)*

300 0.999 0.993
550 0.999 0.972
800 0.995 0.962
1250 0.972 0.929
2000 0.967 0.896

Table 3: Word error rate results of the model trained on audio sourced at five different
sampling rates from the same dataset. WER (LR) and WER (PR) are the word error rates
of automated transcription of low-resolution (LR) and predicted high-resolution (PR) audio
compared to automated transcription of the same audio but at an 8kHz sampling rate.

unknown data from an wnknown speaker compared to how it performs on unknown data
from known speakers. The results of this experiment are shown in tables 4 and 5 and a graph
comparing aggregated values from this experiment to aggregated values of the experiment
based on data from known speakers is shown in figure 3. It can be seen that in every regard,
the models perform slightly worse on data from an unknown speaker, as can be expected.
However, some significant improvements in terms of WER are still observed for the 1250Hz
and 2000Hz models — a 3.5% and 5% decrease in WER respectively.

Finally, I aimed to perform some evaluation of the model using the ConfLab dataset.
This proved to be a challenging task, however, since the ConfLab dataset is only available in
a low resolution and to calculate all previously discussed metrics a high resolution signal is
needed. This means we cannot use the ConfLab dataset to directly compare how the model

Input sample rate (Hz) SNR (dB) LSD (dB) PESQ (MOS)

300 0.26 5.05 1.30
550 0.55 3.95 1.25
800 1.62 3.33 1.73
1250 4.54 3.50 2.13
2000 8.51 3.59 2.73

Table 4: Objective results of evaluation of the model on data from a speaker that was not in
the training distribution. The evaluation was done in exactly the same manner as in Table
2.
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Input sample rate (Hz) WER (LR)* WER (PR)*

300 1.00 0.989
550 0.999 0.976
800 0.998 0.981
1250 0.978 0.943
2000 0.967 0.917

Table 5: Word error rate results of evaluation of the model on data from a speaker that was

not in the training distribution. The values were generated in the same manner as in Table
3.

B Known M Unknown

SNR LSD PESQ WER (LR)* WER (PR)*

Figure 3: A graph comparing results of evaluation of the model on data from known speakers
versus data from unknown speakers. SNR, LSD and PESQ are all averaged over the different
model runs, whereas WER is summed to better accentuate the differences. For SNR and
PESQ higher is better, while for LSD and WER lower is better.

12



performs on out-of-distribution data — e.g. audio recorded at a different time in a different
place with a different noise profile.

The best I managed to do was compare spectrograms of the predicted ConfLab audio
to spectrograms of the predicted 1.25kHz sample rate version of the LaRed audio visually.
An example of such comparison is given in figure 4. A clear difference can be seen in the
upper frequency bands — above 600Hz — of the predicted LaRed audio (top right) compared
to the predicted ConfLab audio (top left). The LaRed spectrogram displays clear patterns
(the stacked areas of brighter yellow spots), while the ConfLab spectrogram looks a lot
noisier and no clear patterns are seen. This suggests that the model is having a hard time
predicting any useful information in the upper frequency bands. And in fact when comparing
the predicted audio files by listening, the LaRed audio is much more intelligible than the
ConfLab audio.

This, admittedly quite unscientific, experiment seems to imply that the model does not
generalize well on out-of-distribution data. This is no surprise, however, since the model was
only trained on data from one dataset, with volume levels normalized and noise reduced in a
uniform manner. It can not be expected that the model performs equally well on data from
a different dataset with different noise characteristics and speech in different languages.

2500 2500

2000 2000

1500

Hz

1000

Figure 4: A comparison between audio upsampled from the LaRed dataset (the top two
figure) and audio upsampled from the ConfLab dataset. The left two figures are the spec-
trograms of the low-resolution audio (1.25kHz sample rate). The right two figures are the
spectrograms of the predicted high-resolution audio files (5kHz sample rate). Brighter yel-
low corresponds to higher intensity, whereas darker purple corresponds to lower intensity.
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5 Responsible Research

This section reflects on some ethical implications of this research and discusses the repro-
ducibility of the experiments.

5.1 Protecting People’s Privacy

As mentioned in the introduction, the topic of privacy is a central part in this research. The
aim of recording audio in a low-resolution is to preserve privacy. The goal of this research
is to investigate how sound the method of downsampling audio is in terms of preserving
privacy, therefore contributing towards a more privacy-centred digitized world.

Since privacy is very important in this research, extra care has been taken when handling
the provided datasets. All of the processing has been done on local machines, preventing
leakage of the data to third parties.

5.2 Reproducibility of Results

In scientific research it is instrumental that experiments and their results can be reproduced
be independent researchers. To this end the process and evaluation strategy have been
explained in as much detail as possible, while also taking conciseness into consideration.
Additionally, the source code of the super-resolution model, which lies at the core of this
research, is publicly available on GitHub.

A difficulty in reproducing results could lie in the fact that the datasets are, as of today,
not published. This is a caveat of keeping data private in an effort to preserve privacy of
participants. While it might be possible that the datasets will be published one day, until
then a good alternative would be to run the experiments on a similar dataset that is publicly
available.

Finally, the use of Logic Pro X, has some downsides when it comes to reproducibility.
Firstly, Logic Pro X is not free software, and I would not advise anyone to purchase it only
for the purpose of reproducing this research. There are, however, very good free alternatives.
Such as Audacity® or custom python scripts using the librosa and scipy libraries. A second
downside of using Logic Pro X, instead of python scripts, is that there is no easy way to
automate and publish the pre-processing process, thus making it harder to reproduce the
exact steps taken.

6 Conclusion

The results have shown that a considerable improvement in terms of word error rate (WER)
can be achieved using super-resolution on audio sampled at 1.25kHz or 2kHz. The decreased
WER can be interpreted as a significant improvement in intelligibility. And with a WER of
92.9% (4.3% lower than the low-resolution baseline) for the predicted 1.25kHz and a WER
of 89.6% (7.1% lower than the low-resolution baseline) for the predicted 2kHz audio it is
clear that some previously obfuscated words can be revealed from the audio using super-
resolution. In an informal experiment it was verified that indeed words start to become
more intelligible in the predicted audio — compared to their low-resolution counterparts.

Shttps://www.audacityteam.org
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That being said, while individual words and sometimes parts of sentences can be distin-
guished, with the achieved word error rates it seems like it is not realistic to expect entire
conversations or significant parts of conversations to be compromised.

I am not confident in answering the original research question conclusively: Can ezisting
super-resolution techniques be used to reveal hidden conversations in privacy-sensitive audio?
With the model I used, trained on a limited dataset, I would be inclined to say the answer
is not really. Since even on data from the same distribution as the training data, the model
seems to only be able to reveal very limited parts of conversations. However, I suspect that
considerable improvements are possible, using more modern models and training on larger
datasets — more discussion on this is provided in section 7.

7 Discussion and Future Work

Some significant limitations have been identified during the research. First of all, as previ-
ously mentioned, the model that was used for super-resolution is not the most recent model.
More recent models have been proposed that have proven to outperform the model used in
this paper [6]-[11]. These models were not publicly available, however, and it would have
taken valuable time to implement them from scratch.

Another limitation was the size of the dataset used for training. The VCTK Corpus
is a dataset commonly used for super-resolution, containing a total of 44 hours of spoken
sentences [17]. This is four times more speech data than in the LaRed dataset.

In addition, the dataset consisted of mostly of Dutch speech. While this is not a problem
if the goal is to reveal conversations in Dutch low-resolution speech, it is a serious limitation
when the goal is to do the same for audio spoken in a different language. This might very
well explain, in part, the poor performance on the out-of-distribution ConfLab dataset.

Finally I would like to note that the research question might have been stated a bit too
generally, especially for a pioneering research in the area of using super-resolution to reveal
hidden privacy-sensitive conversations. Specifically the part “hidden conversations” may
have been a bit to fuzzy. After all, when can we safely say that an actual conversation has
been compromised, as opposed to just some disjoint words or parts of sentences? It might
have been more apt to limit this research to investigating the possibility of revealing single
words, which would have been much easier to verify.

7.1 Recommendations

Based on the identified limitations, I would like to make some recommendations for future
research. I believe significant performance improvements can be made by improving on three
aspects: the model, the dataset and the training procedure.

An obvious low-hanging fruit is to adopt a more recent super-resolution model. It takes
some effort to make a custom implementation, but might be well worth the effort. An
alternative might be to ask the creators of an existing solution for access to their super-
resolution model.

Another improvement would be to use a larger dataset and preferably even multi-
ple datasets gathered under different circumstances. Using multiple datasets or by pre-
processing parts of the same dataset in different ways a model could be achieved that is
able to generalize better than the model in this paper. Of course the capacity of the model
needs to be adjusted as well, to accommodate the added complexity. Additionally, if there
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is a desire to operate the model on multiple languages, then of course it must be trained on
multiple languages as well.

Finally, a truly ground-breaking approach would be to somehow train a super-resolution

model in conjunction with an ASR (Automated Speech Recognition) model using a shared
objective. This might allow the super-resolution model to optimize on improving intelligi-
bility more directly during training, reinforcing its ability to reveal actual conversational
information.
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